

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2007246869 B2

**(54) Title
p38 MAP kinase inhibitors**

(51) International Patent Classification(s)
C07D 213/73 (2006.01) A61P 29/00 (2006.01)
A61K 31/44 (2006.01) A61P 37/00 (2006.01)
A61P 1/00 (2006.01)

(21) Application No: 2007246869 (22) Date of Filing: 2007.05.01

(87) WIPO No: WO07/129040

(30) Priority Data

(31) Number	(32) Date	(33) Country
0608855.3	2006.05.04	GB
0613914.1	2006.07.13	GB

(43) Publication Date: 2007.11.15

(44) Accepted Journal Date: 2012.10.18

**(71) Applicant(s)
CHROMA THERAPEUTICS LTD.**

**(72) Inventor(s)
Pintat, Stephane; Davies, Stephen; Moffat, David Charles Festus**

**(74) Agent / Attorney
A J PARK, Level 11 60 Marcus Clarke Street, Canberra, ACT, 2601**

**(56) Related Art
WO 2003/076405 A1**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 November 2007 (15.11.2007)

PCT

(10) International Publication Number
WO 2007/129040 A1

(51) International Patent Classification:

C07D 213/73 (2006.01) A61P 29/00 (2006.01)
A61K 31/44 (2006.01) A61P 37/00 (2006.01)
A61P 1/00 (2006.01)

(74) Agent: WALLS, Alan, James; P.O. Box 223, Tadworth, Surrey KT20 5YF (GB).

(21) International Application Number:

PCT/GB2007/001596

(22) International Filing Date: 1 May 2007 (01.05.2007)

(25) Filing Language: English

(26) Publication Language: English

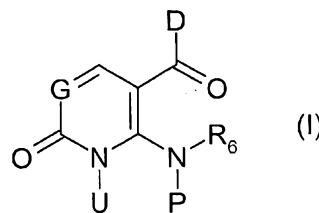
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:

0608855.3 4 May 2006 (04.05.2006) GB
0613914.1 13 July 2006 (13.07.2006) GB

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US):


CHROMA THERAPEUTICS LTD. [GB/GB]; 92 Milton Park, Abingdon, Oxfordshire OX14 4RY (GB).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: p38 MAP KINASE INHIBITORS

(57) **Abstract:** Compounds of formula (I) are inhibitors of p38 MAP kinase, and are therefore of utility in the treatment of, inter alia, inflammatory conditions including rheumatoid arthritis and COPD: (I), wherein: G is -N= or -CH=; D is an optionally substituted divalent mono- or bi-cyclic aryl or heteroaryl radical having 5 - 13 ring members; R6 is hydrogen or optionally substituted C1-C3 alkyl; P represents hydrogen and U represents a radical of formula (IA); or U represents hydrogen and P represents a radical of formula -A-(CH2)z-X1-L1-Y-NH-CHRiR2 wherein A represents an optionally substituted divalent mono- or bicyclic carbocyclic or heterocyclic radical having 5 - 13 ring members; z, Y, L1, and X1 are as defined in the specification; R1 is a carboxylic acid group (-COOH), or an ester group which is hydrolysable by one or more intracellular esterase enzymes to a carboxylic acid group; and R2 is the side chain of a natural or non-natural alpha amino acid.

A1

A1

WO 2007/129040

2007246869 27 Sep 2012

1

p38 MAP Kinase Inhibitors

This invention relates to a series of amino acid and amino acid ester compounds, to compositions containing them, to processes for their preparation and to their use in medicine as p38 MAP kinase inhibitors for the treatment of autoimmune and inflammatory diseases, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, Crohns disease, ulcerative colitis, chronic obstructive pulmonary disease, asthma, multiple sclerosis, diabetes, atopic dermatitis, graft versus host disease, systemic lupus erythematosus and others.

Background of the Invention

Inappropriate activation of leukocytes including monocytes, macrophages and neutrophils leading to the production of elevated levels cytokines such as TNF- α , IL1- β and IL-8, is a feature of the pathogenesis of several inflammatory diseases including rheumatoid arthritis, ulcerative colitis, Crohn's disease, chronic obstructive pulmonary disease (COPD), asthma and psoriasis. The production of cytokines by inflammatory cells is a result of response to a variety of external stimuli, leading to the activation of a number of intracellular signalling mechanisms. Prominent amongst these is the mitogen-activated protein kinase (MAPK) superfamily consisting of highly conserved signalling kinases that regulate cell growth, differentiation and stress responses. Mammalian cells contain at least three families of MAPKs: the p42/44 extracellular signal-regulated kinase (ERK) MAPKs, c-Jun NH2-terminal kinases (JNKs) and p38 MAPK (also termed p38 α /Mpk2/RK/SAPK2a/CSBP1/2). p38 MAPK was first cloned following its identification as a kinase that is tyrosine phosphorylated after stimulation of monocytes by lipopolysaccharide (LPS) [Han et al, Science 1994, 265, 808]. Additional homologues of mammalian p38 have been described and include p38 β [Jiang et al, J.Biol.Chem, 1996, 271, 17920], p38 γ [Li et al, Biochem. Biophys. Res. Commun., 1996, 228, 334] and p38 δ [Jiang et al, J.Biol.Chem. 1997, 272, 30122]. While p38 α and p38 β are ubiquitously expressed, p38 γ is restricted primarily to skeletal muscle and p38 δ is predominantly expressed in lung and kidney.

The release of cytokines by host defence cells and the response of leukocytes to cytokines and other pro-inflammatory stresses are to varying extent regulated by p38 MAPK [Cuenda et al, FEBS Lett, 1995, 364, 229-233]. In other cell types, p38 MAPK

2007246869 27 Sep 2012

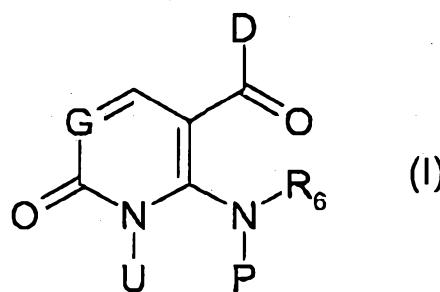
2

controls stress responses such as the production of IL-8 by bronchial epithelial cells stimulated by TNF- α , and the up-regulation of the cell adhesion molecule ICAM-1 in LPS-stimulated endothelial cells. Upon activation, via dual phosphorylation of a TGY motif by the dual specificity kinases MKK3 and MKK6, p38 MAPK exerts its effects through phosphorylation of transcription factors and other kinases. MAP kinase-activated protein kinase-2 (MAPKAPK-2) has been identified as a target for p38 phosphorylation. It has been demonstrated that mice [Kotlyarov et al, Nat. Cell Biol. 1999, 1, 94-97] lacking MAPKAP-K2 release reduced levels of TNF- α , IL-1 β , IL-6, IL-10 and IFN- γ in response to LPS/galactosamine mediated endotoxic shock. The regulation of the levels of these cytokines as well as COX-2 is at the mRNA level. TNF- α levels are regulated through translational control via AU-rich elements of the 3'-UTR of TNF- α mRNA, with MAPKAP-K2 signalling increasing TNF- α mRNA translation. MAPKAP-K2 signalling leads to increased mRNA stability for COX-2, IL-6 and macrophage inflammatory protein. MAPKAP K2 determines the cellular location of p38 MAPK as well as transducing p38 MAPK signalling, possessing a nuclear localisation signal at its carboxyl terminus and a nuclear export signal as part of its autoinhibitory domain [Engel et al, EMBO J. 1998, 17, 3363-3371]. In stressed cells, MAPKAP-K2 and p38 MAPK migrate to the cytoplasm from the nucleus, this migration only occurring when p38 MAPK is catalytically active. It is believed that this event is driven by the exposure of the MAPKAP-K2 nuclear export signal, as a result of phosphorylation by p38 MAPK [Meng et al, J. Biol. Chem. 2002, 277, 37401-37405]. Additionally p38 MAPK either directly or indirectly leads to the phosphorylation of several transcription factors believed to mediate inflammation, including ATF1/2 (activating transcription factors 1/2), CHOP-10/GADD-153 (growth arrest and DNA damage inducible gene 153), SAP-1 (serum response factor accessory protein-1) and MEF2C (myocyte enhancer factor-2) [Foster et al, Drug News Perspect. 2000, 13, 488-497].

It has been demonstrated in several instances that the inhibition of p38 MAPK activity by small molecules, is useful for the treatment of several disease states mediated by inappropriate cytokine production including rheumatoid arthritis, COPD, asthma and cerebral ischemia. This modality has been the subject of several reviews [Salituro et al, Current Medicinal Chemistry, 1999, 6, 807-823 and Kumar et al, Nature Reviews Drug Discovery 2003, 2, 717-726].

2007246869 27 Sep 2012

3


Inhibitors of p38 MAPK have been shown to be efficacious in animal models of rheumatoid arthritis, such as collagen-induced arthritis in rat [Revesz et al, *Biorg. Med. Chem. Lett.*, 2000, 10, 1261-1364] and adjuvant-induced arthritis in rat [Wadsworth et al, *J. Pharmacol. Exp. Ther.*, 1999, 291, 1685-1691]. In murine models of pancreatitis-induced lung injury, pretreatment with a p38 MAPK inhibitor reduced TNF- α release in the airways and pulmonary edema [Denham et al, *Crit. Care Med.*, 2000, 29, 628 and Yang et al, *Surgery*, 1999, 126, 216]. Inhibition of p38 MAPK before ovalbumin (OVA) challenge in OVA-sensitized mice decreased cytokine and inflammatory cell accumulation in the airways in an allergic airway model of inflammation, [Underwood et al, *J. Pharmacol. Exp. Ther.*, 2000, 293, 281]. Increased activity of p38 MAP kinase has been observed in patients suffering from inflammatory bowel disease [Waetzig et al, *J. Immunol.*, 2002, 168, 5432-5351]. p38 MAPK inhibitors have been shown to be efficacious in rat models of cardiac hypertrophy [Behr et al, *Circulation*, 2001, 104, 1292-1298] and cerebral focal ischemia [Barone et al, *J. Pharmacol. Exp. Ther.*, 2001, 296, 312-321].

We have now discovered a group of compounds which are potent and selective inhibitors of p38 MAPK (p38 α , β , γ and δ) and the isoforms and splice variants thereof especially p38 α , p38 β and p38 β 2. The compounds are thus of use in medicine, for example in the treatment and prophylaxis of immune and inflammatory disorders described herein. The compounds are characterised by the presence in the molecule of an amino acid motif or an amino acid ester motif which is hydrolysable by an intracellular carboxylesterase. Compounds of the invention having the lipophilic amino acid ester motif cross the cell membrane, and are hydrolysed to the acid by the intracellular carboxylesterases. The polar hydrolysis product accumulates in the cell since it does not readily cross the cell membrane. Hence the p38 MAP kinase activity of the compound is prolonged and enhanced within the cell. The compounds of the invention are related to the p38 MAP kinase inhibitors encompassed by the disclosures in International Patent Application WO03076405 but differ therefrom in that the present compounds have the amino acid ester motif referred to above.

2007246869 27 Sep 2012

Detailed Description of the Invention

In a first aspect, the present invention provides a compound of formula (I):

wherein:

G is $-N=$ or $-CH=$

D is an optionally substituted mono- or bicyclic aryl or heteroaryl radical having 5 - 13 ring members;

R₆ is hydrogen or optionally substituted C₁-C₃ alkyl;

P represents hydrogen and **U** represents a radical of formula (IA); or **U** represents hydrogen and **P** represents a radical of formula (IA);

wherein

A represents an optionally substituted divalent mono- or bicyclic carbocyclic or heterocyclic radical having 5 - 13 ring members;

z is 0 or 1;

Y is a bond, $-C(=O)-$, $-S(=O)_2-$, $-C(=O)NR_3-$, $-C(=S)-NR_3$, $-C(=NH)NR_3$ or $-S(=O)_2NR_3-$ wherein **R₃** is hydrogen or optionally substituted C₁-C₆ alkyl;

2007246869 27 Sep 2012

L¹ is a divalent radical of formula $-(\text{Alk}^1)_m(\text{Q})_n(\text{Alk}^2)_p-$ wherein
m, **n** and **p** are independently 0 or 1,

Q is (i) an optionally substituted divalent mono- or bicyclic carbocyclic or heterocyclic radical having 5 - 13 ring members, or (ii), In the case where both **m** and **p** are 0, a divalent radical of formula $-\text{X}^2-\text{Q}^1-$ or $-\text{Q}^1-\text{X}^2-$ wherein **X**² is $-\text{O}-$, $-\text{S}-$ or $-\text{NR}^{\text{A}}-$ wherein R^{A} is hydrogen or optionally substituted $\text{C}_1\text{-C}_3$ alkyl, and **Q**¹ is an optionally substituted divalent mono- or bicyclic carbocyclic or heterocyclic radical having 5 - 13 ring members,

Alk¹ and **Alk**² independently represent optionally substituted divalent $\text{C}_3\text{-C}_7$ cycloalkyl radicals, or optionally substituted straight or branched, $\text{C}_1\text{-C}_6$ alkylene, $\text{C}_2\text{-C}_6$ alkenylene, or $\text{C}_2\text{-C}_6$ alkynylene radicals which may optionally contain or terminate in an ether ($-\text{O}-$), thioether ($-\text{S}-$) or amino ($-\text{NR}^{\text{A}}-$) link wherein R^{A} is hydrogen or optionally substituted $\text{C}_1\text{-C}_3$ alkyl; and

X¹ represents a bond; $-\text{C}(=\text{O})-$; or $-\text{S}(=\text{O})_2-$; $-\text{NR}_4\text{C}(=\text{O})-$, $-\text{C}(=\text{O})\text{NR}_4-$, $-\text{NR}_4\text{C}(=\text{O})\text{NR}_5-$, $-\text{NR}_4\text{S}(=\text{O})_2-$, or $-\text{S}(=\text{O})_2\text{NR}_4-$ wherein R_4 and R_5 are independently hydrogen or optionally substituted $\text{C}_1\text{-C}_6$ alkyl.

R₁ is a carboxylic acid group ($-\text{COOH}$), or an ester group which is hydrolysable by one or more intracellular esterase enzymes to a carboxylic acid group; and

R₂ is the side chain of a natural or non-natural alpha amino acid.

In a further aspect, the present invention provides a pharmaceutical composition comprising a compound according to the first aspect of the invention, together with a pharmaceutically acceptable carrier.

In a further aspect, the present invention provides the use of a compound according to the first aspect of the invention in the preparation of a composition for inhibiting the activity of a p38 MAP kinase enzyme *in vitro* or *in vivo*.

27 Sep 2012

2007246869

6

In a further aspect, the present invention provides the use of a compound according to the first aspect of the invention in the preparation of a composition for the treatment of autoimmune or inflammatory disease.

In a further aspect, the present invention provides a method of inhibiting the activity of a p38 MAP kinase enzyme comprising contacting the enzyme with an amount of a compound according to the first aspect of the invention effective for such inhibition.

In a further aspect, the present invention provides a method for the treatment of autoimmune or inflammatory disease which comprises administering to a subject suffering such disease an effective amount of a compound according to the first aspect of the invention.

In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.

In the description in this specification reference may be made to subject matter that is not within the scope of the claims of the current application. That subject matter should be readily identifiable by a person skilled in the art and may assist in putting into practice the invention as defined in the claims of this application.

Compounds of formula (I) above may be prepared in the form of salts, especially pharmaceutically acceptable salts, N-oxides, hydrates, and solvates thereof. Any claim to a compound herein, or reference herein to "compounds of the invention", "compounds with which the invention is concerned", "compounds of formula (I)" and the like, includes salts, N-oxides, hydrates, and solvates of such compounds.

Although the above definition potentially includes molecules of high molecular weight, it is preferable, in line with general principles of medicinal chemistry practice, that the

27 Sep 2012

2007246869

7

compounds with which this invention is concerned should have molecular weights of no more than 600.

The invention provides the use of a compound of formula (I) as defined above, or an N-oxide, salt, hydrate or solvate thereof in the preparation of a composition for inhibiting the activity p38 MAP kinase enzyme.

The compounds with which the invention is concerned may be used for the inhibition of p38 MAP kinase enzyme activity *in vitro* or *in vivo*.

The compounds of the invention may be used in the preparation of a composition for the treatment of autoimmune or inflammatory disease, particularly those mentioned above in which p38 MAP kinase activity plays a role.

The invention provides a method for the treatment of the foregoing disease types, which comprises administering to a subject suffering such disease an effective amount of a compound of formula (I) as defined above.

Terminology

As used herein, the term "comprising" means "consisting at least in part of". When interpreting each statement in this specification that includes the term "comprising", features other than that or those prefaced by the term may also be present. Related terms such as "comprise" and "comprises" are to be interpreted in the same manner.

The term "ester" or "esterified carboxyl group" means a group $R^XO(C=O)-$ in which R^X is the group characterising the ester, notionally derived from the alcohol R^XOH .

As used herein, the term " $(C_a-C_b)alkyl$ " wherein a and b are integers refers to a straight or branched chain alkyl radical having from a to b carbon atoms. Thus when a is 1 and b is 6, for example, the term includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl and n-hexyl.

2007246869 27 Sep 2012

As used herein the term "divalent (C_a-C_b)alkylene radical" wherein a and b are integers refers to a saturated hydrocarbon chain having from a to b carbon atoms and two unsatisfied valences.

As used herein the term " (C_a-C_b) alkenyl" wherein a and b are integers refers to a straight or branched chain alkenyl moiety having from a to b carbon atoms having at least one double bond of either E or Z stereochemistry where applicable. The term includes, for example, vinyl, allyl, 1- and 2-butenyl and 2-methyl-2-propenyl.

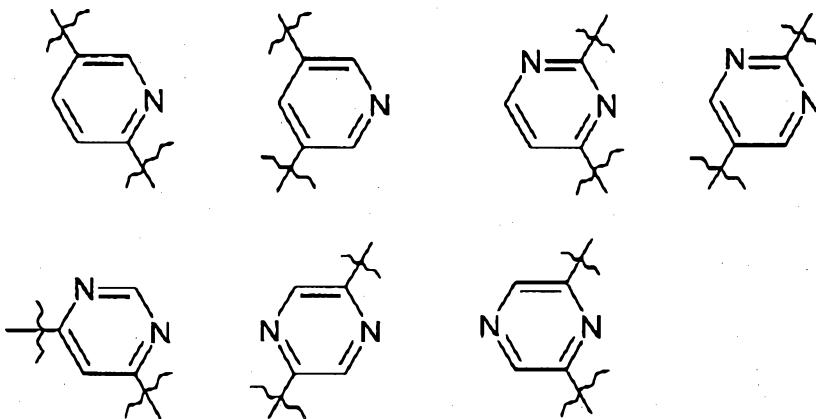
As used herein the term "divalent (C_a-C_b)alkenylene radical" means a hydrocarbon chain having from a to b carbon atoms, at least one double bond, and two unsatisfied valences.

As used herein the term " C_a-C_b alkynyl" wherein a and b are integers refers to straight chain or branched chain hydrocarbon groups having from a to b carbon atoms and having in addition one triple bond. This term would include for example, ethynyl, 1-propynyl, 1- and 2-butynyl, 2-methyl-2-propynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl and 5-hexynyl.

As used herein the term "divalent (C_a-C_b)alkynylene radical" wherein a and b are integers refers to a divalent hydrocarbon chain having from a to b carbon atoms, and at least one triple bond.

As used herein the term "carbocyclic" refers to a mono-, bi- or tricyclic radical having up to 16 ring atoms, all of which are carbon, and includes aryl and cycloalkyl.

As used herein the term "cycloalkyl" refers to a monocyclic saturated carbocyclic radical having from 3-8 carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.


As used herein the unqualified term "aryl" refers to a mono-, bi- or tri-cyclic carbocyclic aromatic radical, and includes radicals having two monocyclic carbocyclic aromatic rings which are directly linked by a covalent bond. Illustrative of such radicals are phenyl, biphenyl and naphthyl.

2007246869 27 Sep 2012

As used herein the unqualified term "heteroaryl" refers to a mono-, bi- or tri-cyclic aromatic radical containing one or more heteroatoms selected from S, N and O, and includes radicals having two such monocyclic rings, or one such monocyclic ring and one monocyclic aryl ring, which are directly linked by a covalent bond. Illustrative of such radicals are thienyl, benzthienyl, furyl, benzfuryl, pyrrolyl, imidazolyl, benzimidazolyl, thiazolyl, benzthiazolyl, isothiazolyl, benzisothiazolyl, pyrazolyl, oxazolyl, benzoxazolyl, isoxazolyl, benzisoxazolyl, isothiazolyl, triazolyl, benztriazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl and indazolyl.

As used herein the unqualified term "heterocycl" or "heterocyclic" includes "heteroaryl" as defined above, and in its non-aromatic meaning relates to a mono-, bi- or tri-cyclic non-aromatic radical containing one or more heteroatoms selected from S, N and O, and to groups consisting of a monocyclic non-aromatic radical containing one or more such heteroatoms which is covalently linked to another such radical or to a monocyclic carbocyclic radical. Illustrative of such radicals are pyrrolyl, furanyl, thienyl, piperidinyl, imidazolyl, oxazolyl, Isoxazolyl, thiazolyl, thiadiazolyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrimidinyl, piperazinyl, indolyl, morpholinyl, benzfuranyl, pyranyl, isoxazolyl, benzimidazolyl, methylenedioxyphenyl, ethylenedioxyphenyl, maleimido and succinimido groups.

A "divalent phenylene, pyridinylene, pyrimidinylene, or pyrazinylene radical" is a benzene, pyridine, pyrimidine or pyazine ring, with two unsatisfied valencies, and includes 1,3-phenylene, 1,4-phenylene, and the following:

2007246869 27 Sep 2012

10

Unless otherwise specified in the context in which it occurs, the term "substituted" as applied to any moiety herein means substituted with up to four compatible substituents, each of which independently may be, for example, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, hydroxy, hydroxy(C₁-C₆)alkyl, mercapto, mercapto(C₁-C₆)alkyl, (C₁-C₆)alkylthio, phenyl, halo (including fluoro, bromo and chloro), trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, -COOH, -COOR^A, -COR^A, -SO₂R^A, -CONH₂, -SO₂NH₂, -CONHR^A, -SO₂NHR^A, -CONR^AR^B, -SO₂NR^AR^B, -NH₂, -NHR^A, -NR^AR^B, -OCONH₂, -OCONHR^A, -OCONR^AR^B, -NHCOR^A, -NHCOOR^A, -NR^BCOOR^A, -NSO₂OR^A, -NR^BSO₂OH, -NR^BSO₂OR^A, -NHCONH₂, -NR^ACONH₂, -NHCONHR^B, -NR^ACONHR^B, -NHCONR^AR^B, or -NR^ACONR^AR^B wherein R^A and R^B are independently a (C₁-C₆)alkyl, (C₃-C₆) cycloalkyl, phenyl or monocyclic heteroaryl having 5 or 6 ring atoms. An "optional substituent" may be one of the foregoing substituent groups.

The term "side chain of a natural or non-natural alpha-amino acid" refers to the group R^Y in a natural or non-natural amino acid of formula NH₂-CH(R^Y)-COOH.

Examples of side chains of natural alpha amino acids include those of alanine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic acid, histidine, 5-hydroxylysine, 4-hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, α -amino adipic acid, α -amino-n-butyric acid, 3,4-dihydroxyphenylalanine, homoserine, α -methylserine, ornithine, piperolic acid, and thyroxine.

Natural alpha-amino acids which contain functional substituents, for example amino, carboxyl, hydroxy, mercapto, guanidyl, imidazolyl, or indolyl groups in their characteristic side chains include arginine, lysine, glutamic acid, aspartic acid, tryptophan, histidine, serine, threonine, tyrosine, and cysteine. When R₂ in the compounds of the invention is one of those side chains, the functional substituent may optionally be protected.

The term "protected" when used in relation to a functional substituent in a side chain of a natural alpha-amino acid means a derivative of such a substituent which is substantially non-functional. For example, carboxyl groups may be esterified (for example as a C₁-C₆ alkyl ester), amino groups may be converted to amides (for example as a NHCOC₁-C₆

2007246869 27 Sep 2012

alkyl amide) or carbamates (for example as an $\text{NHC}(=\text{O})\text{OC}_1\text{-C}_6$ alkyl or $\text{NHC}(=\text{O})\text{OCH}_2\text{Ph}$ carbamate), hydroxyl groups may be converted to ethers (for example an $\text{OC}_1\text{-C}_6$ alkyl or a $\text{O}(\text{C}_1\text{-C}_6$ alkyl)phenyl ether) or esters (for example a $\text{OC}(=\text{O})\text{C}_1\text{-C}_6$ alkyl ester) and thiol groups may be converted to thioethers (for example a tert-butyl or benzyl thioether) or thioesters (for example a $\text{SC}(=\text{O})\text{C}_1\text{-C}_6$ alkyl thioester).

Examples of side chains of non-natural alpha amino acids include those referred to below in the discussion of suitable R_2 groups for use in compounds of the present invention.

As used herein the term "salt" includes base addition, acid addition and quaternary salts. Compounds of the invention which are acidic can form salts, including pharmaceutically acceptable salts, with bases such as alkali metal hydroxides, e.g. sodium and potassium hydroxides; alkaline earth metal hydroxides e.g. calcium, barium and magnesium hydroxides; with organic bases e.g. N-methyl-D-glucamine, choline tris(hydroxymethyl)amino-methane, L-arginine, L-lysine, N-ethyl piperidine, dibenzylamine and the like. Those compounds (I) which are basic can form salts, including pharmaceutically acceptable salts with inorganic acids, e.g. with hydrohalic acids such as hydrochloric or hydrobromic acids, sulphuric acid, nitric acid or phosphoric acid and the like, and with organic acids e.g. with acetic, tartaric, succinic, fumaric, maleic, malic, salicylic, citric, methanesulphonic, p-toluenesulphonic, benzoic, benzenesulphonic, glutamic, lactic, and mandelic acids and the like. For a review on suitable salts, see *Handbook of Pharmaceutical Salts: Properties, Selection, and Use* by Stahl and Wermuth (Wiley-VCH, Weinheim, Germany, 2002).

The term 'solvate' is used herein to describe a molecular complex comprising the compound of the invention and a stoichiometric amount of one or more pharmaceutically acceptable solvent molecules, for example, ethanol. The term 'hydrate' is employed when said solvent is water.

Compounds of the invention which contain one or more actual or potential chiral centres, because of the presence of asymmetric carbon atoms, can exist as enantiomers or as a number of diastereoisomers with R or S stereochemistry at each chiral centre. The invention includes all such enantiomers and diastereoisomers and mixtures thereof.

27 Sep 2012

2007246869

12

As mentioned, the esters of the invention are converted by intracellular esterases to the carboxylic acids. Both the esters and carboxylic acids may have p38 MAP kinase inhibitory activity in their own right. The compounds of the invention therefore include not only the ester, but also the corresponding carboxylic acid hydrolysis products.

In the compounds with which the invention is concerned:

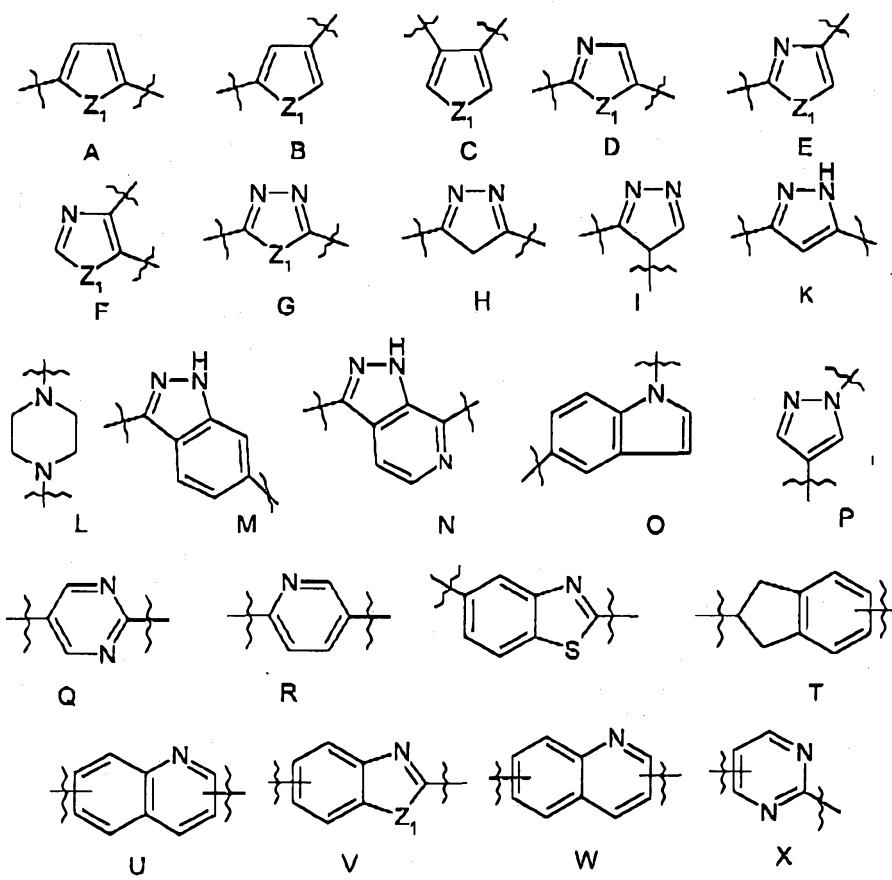
The group D

D is an optionally substituted mono- or bicyclic aryl or heteroaryl radical having 5 - 13 ring members. At present it is preferred that B be optionally substituted phenyl or optionally substituted pyridinyl. Preferred optional substituents in B include chloro, fluoro, methyl, methoxy and trifluoromethyl, for example when B is 2,4-difluorophenyl.

The substituent R₆

R₆ is hydrogen or optionally substituted C₁-C₃ alkyl. Presently it is preferred that R₆ be hydrogen or methyl.

P/U regioisomers

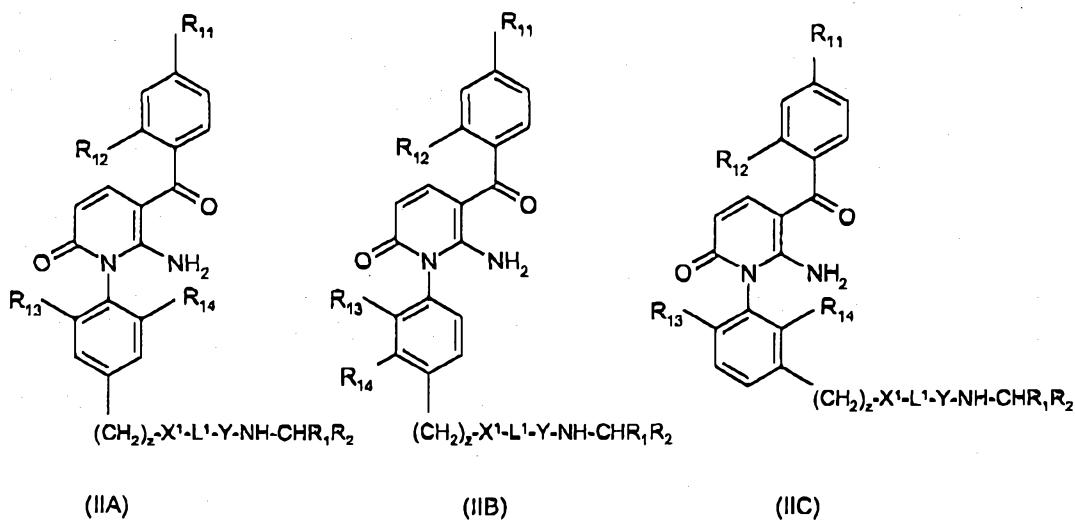

Presently it is preferred that P be hydrogen and U be a radical of formula (IA) as defined above.

The radical A

In the radical of formula (IA), it is currently preferred that A be optionally substituted 1,4-phenylene. In that case preferred optional substituents include fluoro and chloro. A may also be, for example, any of the following, optionally substituted:

2007246869 27 Sep 2012

13



wherein Z_1 is NH, S or O.

A particularly preferred sub-group of compounds of the invention consists of those of formula (IIA), (IIB) and (IIC):

2007246869 27 Sep 2012

14

wherein $R_{11} = F$, $R_{12} = H$, $R_{13} = H$ and $R_{14} = H$; or

$R_{11} = F$, $R_{12} = F$, $R_{13} = H$ and $R_{14} = H$; or

$R_{11} = F$, $R_{12} = H$, $R_{13} = F$ and $R_{14} = F$; or

$R_{11} = F$, $R_{12} = F$, $R_{13} = F$ and $R_{14} = F$; or

$$R_{11} = F, R_{12} = F, R_{13} = F \text{ and } R_{14} = H$$

and wherein z, X¹, L¹, Y, R¹ and R² are as defined above with reference to formula (I), and as further discussed below.

The radical $-Y-L^1-X^1-[CH_2]_z-$

This radical (or bond) arises from the particular chemistry strategy chosen to link the amino acid ester motif $R_1CH(R_2)NH-$ to the ring system A. Clearly the chemistry strategy for that coupling may vary widely, and thus many combinations of the variables Y, L¹, X¹ and z are possible. The precise combination of variables making up the linking chemistry between the amino acid ester motif and the ring system A will often be irrelevant to the primary binding mode of the compound as a whole. On the other hand, that linkage chemistry will in some cases pick up additional binding interactions with the enzyme. It should also be noted that the benefits of the amino acid ester motif (facile entry into the cell, esterase hydrolysis within the cell, and accumulation within the cell of active carboxylic acid hydrolysis product) are best achieved when the linkage between the amino acid ester motif and the ring system A is not a substrate for peptidase activity within the cell, which might result in cleavage of the amino acid from the molecule. Of course, stability to intracellular peptidases is easily tested by incubating the compound with disrupted cell contents, and analysing for any such cleavage.

27 Sep 2012

2007246869

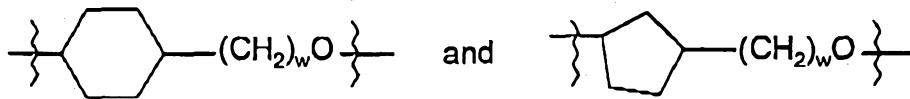
With the foregoing general observations in mind, taking the variables making up the radical $-Y-L^1-X^1-[CH_2]_z-$ in turn:

z may be 0 or 1, so that a methylene radical linked to the ring system A is optional;

specific preferred examples of Y when macrophage selectivity is not required include $-(C=O)-$, $-(C=O)NH-$, and $-(C=O)O-$; Where macrophage selectivity is required any of the other options for Y, including the case where Y is a bond, are appropriate.

In the radical L^1 , examples of Alk^1 and Alk^2 radicals, when present, include $-CH_2-$, $-CH_2CH_2-$, $-CH_2CH_2CH_2-$, $-CH_2CH_2CH_2CH_2-$, $-CH=CH-$, $-CH=CHCH_2-$, $-CH_2CH=CH-$, $CH_2CH=CHCH_2-C\equiv C-$, $-C\equiv CCH_2-$, $CH_2C\equiv C-$, and $CH_2C\equiv CCH_2$. Additional examples of Alk^1 and Alk^2 include $-CH_2W-$, $-CH_2CH_2W-$, $-CH_2CH_2WCH_2-$, $-CH_2CH_2WCH(CH_3)-$, $-CH_2WCH_2CH_2-$, $-CH_2WCH_2CH_2WCH_2-$ and $-WCH_2CH_2-$ where W is $-O-$, $-S-$, $-NH-$, $-N(CH_3)-$, or $-CH_2CH_2N(CH_2CH_2OH)CH_2-$. Further examples of Alk^1 and Alk^2 include divalent cyclopropyl, cyclopentyl and cyclohexyl radicals.

In L^1 , when n is 0, the radical is a hydrocarbon chain (optionally substituted and perhaps having an ether, thioether or amino linkage). Presently it is preferred that there be no optional substituents in L^1 . When both m and p are 0, L^1 is a divalent mono- or bicyclic carbocyclic or heterocyclic radical with 5 - 13 ring atoms (optionally substituted). When n is 1 and at least one of m and p is 1, L^1 is a divalent radical including a hydrocarbon chain or chains and a mono- or bicyclic carbocyclic or heterocyclic radical with 5 - 13 ring atoms (optionally substituted). When present, Q may be, for example, a divalent phenyl, naphthyl, cyclopropyl, cyclopentyl, or cyclohexyl radical, or a mono-, or bi-cyclic heterocyclic radical having 5 to 13 ring members, such as piperidinyl, piperazinyl, indolyl, pyridyl, thienyl, or pyrrolyl radical, but 1,4-phenylene is presently preferred.


27 Sep 2012

2007246869

16

Specifically, in some embodiments of the invention, L^1 , m and p may be 0 with n being 1. In other embodiments, n and p may be 0 with m being 1. In further embodiments, m , n and p may be all 0. In still further embodiments m may be 0, n may be 1 with Q being a monocyclic heterocyclic radical, and p may be 0 or 1. Alk^1 and Alk^2 , when present, may be selected from $-CH_2-$, $-CH_2CH_2-$, and $-CH_2CH_2CH_2-$ and Q may be 1,4-phenylene.

Specific examples of the radical $-Y-L^1-X^1-[CH_2]_z-$ include $-C(=O)-$ and $-C(=O)NH-$ as well as $-(CH_2)_v-$, $-(CH_2)_vO-$, $-C(=O)-(CH_2)_v-$, $-C(=O)-(CH_2)_vO-$, $-C(=O)-NH-(CH_2)_w-$, $-C(=O)-NH-(CH_2)_wO-$

wherein v is 1, 2, 3 or 4 and w is 1, 2 or 3, such as $-Y-L^1-X^1-[CH_2]_z-$, is $-CH_2-$, $-CH_2CH_2-$, $-CH_2CH_2CH_2-$, $-CH_2CH_2CH_2CH_2-$, $-CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2CH_2O-$, $CH_2CH_2CH_2CH_2O-$, $-C(=O)-CH_2-$, $-C(=O)-CH_2O-$, $-C(=O)-NH-CH_2-$, or $-C(=O)-NH-CH_2O-$.

The group R_1

In one class of compounds of the invention, R_1 is a carboxylic acid group. Although compounds of this class may be administered as the carboxylic acid or a salt thereof, it is preferred that they be generated in the cell by the action of an intracellular esterase on a corresponding compound in which R_1 is an ester group.

The ester group R_1 must be one which in the compound of the invention is hydrolysable by one or more intracellular carboxylesterase enzymes to a carboxylic acid group. Intracellular carboxylesterase enzymes capable of hydrolysing the ester group of a compound of the invention to the corresponding acid include the three known human enzyme isotypes hCE-1, hCE-2 and hCE-3. Although these are considered to be the main enzymes, other enzymes such as biphenylhydrolase (BPH) may also have a role in hydrolysing the ester. In general, if the carboxylesterase hydrolyses the free amino acid ester to the parent acid it will also hydrolyse the ester motif when covalently conjugated to the inhibitor. Hence, the broken cell assay and/or the isolated carboxylesterase assay described herein provide a straightforward, quick and simple first screen for esters which have the required hydrolysis profile. Ester motifs selected in that way may then be re-

27 Sep 2012

2007246869

17

assayed in the same carboxylesterase assay when conjugated to the inhibitor via the chosen conjugation chemistry, to confirm that it is still a carboxylesterase substrate in that background.

Subject to the requirement that they be hydrolysable by intracellular carboxylesterase enzymes, examples of particular ester groups R_1 include those of formula $-(C=O)OR_{14}$ wherein R_{14} is $R_8R_9R_{10}C-$ wherein

- (i) R_8 is hydrogen or optionally substituted $(C_1-C_3)alkyl-(Z^1)_a-[(C_1-C_3)alkyl]_b-$ or $(C_2-C_3)alkenyl-(Z^1)_a-[(C_1-C_3)alkyl]_b-$ wherein a and b are independently 0 or 1 and Z^1 is $-O-$, $-S-$, or $-NR_{11}-$ wherein R_{11} is hydrogen or $(C_1-C_3)alkyl$; and R_9 and R_{10} are independently hydrogen or $(C_1-C_3)alkyl$;
- (ii) R_8 is hydrogen or optionally substituted $R_{12}R_{13}N-(C_1-C_3)alkyl-$ wherein R_{12} is hydrogen or $(C_1-C_3)alkyl$ and R_{13} is hydrogen or $(C_1-C_3)alkyl$; or R_{12} and R_{13} together with the nitrogen to which they are attached form an optionally substituted monocyclic heterocyclic ring of 5- or 6- ring atoms or bicyclic heterocyclic ring system of 8 to 10 ring atoms, and R_9 and R_{10} are independently hydrogen or $(C_1-C_3)alkyl$; or
- (iii) R_8 and R_9 taken together with the carbon to which they are attached form an optionally substituted monocyclic carbocyclic ring of from 3 to 7 ring atoms or bicyclic carbocyclic ring system of 8 to 10 ring atoms, and R_{10} is hydrogen.

Within these classes, R_{10} is often hydrogen. Specific examples of R_{14} include methyl, ethyl, n- or iso-propyl, n-, sec- or tert-butyl, cyclohexyl, allyl, phenyl, benzyl, 2-, 3- or 4-pyridylmethyl, N-methylperidin-4-yl, tetrahydrofuran-3-yl or methoxyethyl. Currently preferred is where R_{14} is cyclopentyl.

Macrophages are known to play a key role in inflammatory disorders through the release of cytokines in particular TNF α and IL-1 (van Roon et al, Arthritis and Rheumatism, 2003, 1229-1238). In rheumatoid arthritis they are major contributors to the maintenance of joint inflammation and joint destruction. Macrophages are also involved in tumour growth and development (Naldini and Carraro, Curr Drug Targets Inflamm Allergy,

27 Sep 2012

2007246869

2005, 3-8). Hence agents that selectively target macrophage cell proliferation could be of value in the treatment of cancer and autoimmune disease. Targeting specific cell types would be expected to lead to reduced side-effects. The inventors have discovered a method of targeting p38 kinase inhibitors to macrophages which is based on the observation that the way in which the esterase motif is linked to the p38 kinase inhibitor determines whether it is hydrolysed, and hence whether or not it accumulates in different cell types. Specifically it has been found that macrophages contain the human carboxylesterase hCE-1 whereas other cell types do not. In the general formula (I) when the nitrogen of the esterase motif $R_1CH(R_2)NH-$ is not directly linked to a carbonyl (-C(=O)-), i.e. when Y is not a -C(=O), -C(=O)O- or -C(=O)NR₃- radical, the ester will only be hydrolysed by hCE-1 and hence the inhibitors will only accumulate in macrophages. Herein, unless "monocyte" or "monocytes" is specified, the term macrophage or macrophages will be used to denote macrophages (including tumour associated macrophages) and/or monocytes.

The amino acid side chain R₂

Subject to the requirement that the ester group R₁ be hydrolysable by intracellular carboxylesterase enzymes, the identity of the side chain group R₂ is not critical.

Examples of amino acid side chains include

C₁-C₆ alkyl, phenyl, 2-, 3-, or 4-hydroxyphenyl, 2-, 3-, or 4-methoxyphenyl, 2-, 3-, or 4-pyridylmethyl, benzyl, phenylethyl, 2-, 3-, or 4-hydroxybenzyl, 2-, 3-, or 4-benzyloxybenzyl, 2-, 3-, or 4- C₁-C₆ alkoxybenzyl, and benzyloxy(C₁-C₆alkyl)-groups;

the characterising group of a natural α amino acid, in which any functional group may be protected;

groups -[Alk]_nR₆ where Alk is a (C₁-C₆)alkyl or (C₂-C₆)alkenyl group optionally interrupted by one or more -O-, or -S- atoms or -N(R₇)- groups [where R₇ is a hydrogen atom or a (C₁-C₆)alkyl group], n is 0 or 1, and R₆ is an optionally substituted cycloalkyl or cycloalkenyl group;

27 Sep 2012

2007246869

19

a benzyl group substituted in the phenyl ring by a group of formula $-\text{OCH}_2\text{COR}_{15}$ where R_{15} is hydroxyl, amino, $(\text{C}_1\text{-C}_6)$ alkoxy, phenyl($\text{C}_1\text{-C}_6$)alkoxy, $(\text{C}_1\text{-C}_6)$ alkylamino, di($(\text{C}_1\text{-C}_6)$ alkyl)amino, phenyl($\text{C}_1\text{-C}_6$)alkylamino, the residue of an amino acid or acid halide, ester or amide derivative thereof, said residue being linked via an amide bond, said amino acid being selected from glycine, α or β alanine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, serine, threonine, cysteine, methionine, asparagine, glutamine, lysine, histidine, arginine, glutamic acid, and aspartic acid;

a heterocyclic($\text{C}_1\text{-C}_6$)alkyl group, either being unsubstituted or mono- or di-substituted in the heterocyclic ring with halo, nitro, carboxy, $(\text{C}_1\text{-C}_6)$ alkoxy, cyano, $(\text{C}_1\text{-C}_6)$ alkanoyl, trifluoromethyl $(\text{C}_1\text{-C}_6)$ alkyl, hydroxy, formyl, amino, $(\text{C}_1\text{-C}_6)$ alkylamino, di- $(\text{C}_1\text{-C}_6)$ alkylamino, mercapto, $(\text{C}_1\text{-C}_6)$ alkylthio, hydroxy($\text{C}_1\text{-C}_6$)alkyl, mercapto($\text{C}_1\text{-C}_6$)alkyl or ($\text{C}_1\text{-C}_6$)alkylphenylmethyl; and

a group $-\text{CR}_a\text{R}_b\text{R}_c$ in which:

each of R_a , R_b and R_c is independently hydrogen, $(\text{C}_1\text{-C}_6)$ alkyl, $(\text{C}_2\text{-C}_6)$ alkenyl, $(\text{C}_2\text{-C}_6)$ alkynyl, phenyl($\text{C}_1\text{-C}_6$)alkyl, $(\text{C}_3\text{-C}_8)$ cycloalkyl; or

R_c is hydrogen and R_a and R_b are independently phenyl or heteroaryl such as pyridyl; or

R_c is hydrogen, $(\text{C}_1\text{-C}_6)$ alkyl, $(\text{C}_2\text{-C}_6)$ alkenyl, $(\text{C}_2\text{-C}_6)$ alkynyl, phenyl($\text{C}_1\text{-C}_6$)alkyl, or $(\text{C}_3\text{-C}_8)$ cycloalkyl, and R_a and R_b together with the carbon atom to which they are attached form a 3 to 8 membered cycloalkyl or a 5- to 6-membered heterocyclic ring; or

R_a , R_b and R_c together with the carbon atom to which they are attached form a tricyclic ring (for example adamantyl); or

R_a and R_b are each independently $(\text{C}_1\text{-C}_6)$ alkyl, $(\text{C}_2\text{-C}_6)$ alkenyl, $(\text{C}_2\text{-C}_6)$ alkynyl, phenyl($\text{C}_1\text{-C}_6$)alkyl, or a group as defined for R_c below other than hydrogen, or R_a and R_b together with the carbon atom to which they are attached form a cycloalkyl or heterocyclic ring, and R_c is hydrogen, $-\text{OH}$, $-\text{SH}$, halogen, $-\text{CN}$, -

27 Sep 2012

2007246869

20

CO_2H , $(\text{C}_1\text{-C}_4)$ perfluoroalkyl, $-\text{CH}_2\text{OH}$, $-\text{CO}_2(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{O}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{O}(\text{C}_2\text{-C}_6)\text{alkenyl}$, $-\text{S}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{SO}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{SO}_2(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{S}(\text{C}_2\text{-C}_6)\text{alkenyl}$, $-\text{SO}(\text{C}_2\text{-C}_6)\text{alkenyl}$, $-\text{SO}_2(\text{C}_2\text{-C}_6)\text{alkenyl}$ or a group $-\text{Q}^2\text{-W}$ wherein Q^2 represents a bond or $-\text{O}-$, $-\text{S}-$, $-\text{SO}-$ or $-\text{SO}_2-$ and W represents a phenyl, phenylalkyl, $(\text{C}_3\text{-C}_8)$ cycloalkyl, $(\text{C}_3\text{-C}_8)$ cycloalkylalkyl, $(\text{C}_4\text{-C}_8)$ cycloalkenyl, $(\text{C}_4\text{-C}_8)$ cycloalkenylalkyl, heteroaryl or heteroarylalkyl group, which group W may optionally be substituted by one or more substituents independently selected from, hydroxyl, halogen, $-\text{CN}$, $-\text{CO}_2\text{H}$, $-\text{CO}_2(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{CONH}_2$, $-\text{CONH}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{CONH}(\text{C}_1\text{-C}_6)\text{alkyl}_2$, $-\text{CHO}$, $-\text{CH}_2\text{OH}$, $(\text{C}_1\text{-C}_4)$ perfluoroalkyl, $-\text{O}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{S}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{SO}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{SO}_2(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{NO}_2$, $-\text{NH}_2$, $-\text{NH}(\text{C}_1\text{-C}_6)\text{alkyl}$, $-\text{N}((\text{C}_1\text{-C}_6)\text{alkyl})_2$, $-\text{NHCO}(\text{C}_1\text{-C}_6)\text{alkyl}$, $(\text{C}_1\text{-C}_6)\text{alkyl}$, $(\text{C}_2\text{-C}_6)\text{alkenyl}$, $(\text{C}_2\text{-C}_6)\text{alkynyl}$, $(\text{C}_3\text{-C}_8)$ cycloalkyl, $(\text{C}_4\text{-C}_8)$ cycloalkenyl, phenyl or benzyl.

Examples of particular R_2 groups include hydrogen (the glycine "side chain"), benzyl, phenyl, cyclohexylmethyl, cyclohexyl, pyridin-3-ylmethyl, tert-butoxymethyl, iso-butyl, sec-butyl, tert-butyl, 1-benzylthio-1-methylethyl, 1-methylthio-1-methylethyl, 1-mercaptop-1-methylethyl, and phenylethyl. Presently preferred R_2 groups include phenyl, benzyl, iso-butyl, cyclohexyl and t-butoxymethyl.

For compounds of the invention which are to be administered systemically, esters with a slow rate of carboxylesterase cleavage are preferred, since they are less susceptible to pre-systemic metabolism. Their ability to reach their target tissue intact is therefore increased, and the ester can be converted inside the cells of the target tissue into the acid product. However, for local administration, where the ester is either directly applied to the target tissue or directed there by, for example, inhalation, it will often be desirable that the ester has a rapid rate of esterase cleavage, to minimise systemic exposure and consequent unwanted side effects. In the compounds of this invention, if the carbon adjacent to the alpha carbon of the alpha amino acid ester is monosubstituted, ie R_2 is CH_2R^2 (R^2 being the mono-substituent) then the esters tend to be cleaved more rapidly than if that carbon is di- or tri-substituted, as in the case where R_2 is, for example, phenyl or cyclohexyl.

As mentioned above, the compounds with which the invention is concerned are inhibitors of p38 MAK kinase activity, and are therefore of use in the treatment of

27 Sep 2012

2007246869

21

diseases such as psoriasis, inflammatory bowel disease, Crohns disease, ulcerative colitis, chronic obstructive pulmonary disease, asthma, multiple sclerosis, diabetes, atopic dermatitis, graft versus host disease, or systemic lupus erythematosus and rheumatoid arthritis, in which p38 MAP kinase activity plays a part.

It will be understood that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination and the severity of the particular disease undergoing treatment. Optimum dose levels and frequency of dosing will be determined by clinical trial.

The compounds with which the invention is concerned may be prepared for administration by any route consistent with their pharmacokinetic properties. The orally administrable compositions may be in the form of tablets, capsules, powders, granules, lozenges, liquid or gel preparations, such as oral, topical, or sterile parenteral solutions or suspensions. Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinyl-pyrrolidone; fillers for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricant, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants for example potato starch, or acceptable wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in normal pharmaceutical practice. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, glucose syrup, gelatin hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and if desired conventional flavouring or colouring agents.

27 Sep 2012

2007246869

22

For topical application to the skin, the drug may be made up into a cream, lotion or ointment. Cream or ointment formulations which may be used for the drug are conventional formulations well known in the art, for example as described in standard textbooks of pharmaceutics such as the British Pharmacopoeia.

For topical application by inhalation, the drug may be formulated for aerosol delivery for example, by pressure-driven jet atomizers or ultrasonic atomizers, or preferably by propellant-driven metered aerosols or propellant-free administration of micronized powders, for example, inhalation capsules or other "dry powder" delivery systems. Excipients, such as, for example, propellants (e.g. Frigen in the case of metered aerosols), surface-active substances, emulsifiers, stabilizers, preservatives, flavorings, and fillers (e.g. lactose in the case of powder inhalers) may be present in such inhaled formulations. For the purposes of inhalation, a large number of apparatus are available with which aerosols of optimum particle size can be generated and administered, using an inhalation technique which is appropriate for the patient. In addition to the use of adaptors (spacers, expanders) and pear-shaped containers (e.g. Nebulator®, Volumatic®), and automatic devices emitting a puffer spray (Autohaler®), for metered aerosols, in particular in the case of powder inhalers, a number of technical solutions are available (e.g. Diskhaler®, Rotadisk®, Turbohaler® or the inhalers for example as described in European Patent Application EP 0 505 321).

For topical application to the eye, the drug may be made up into a solution or suspension in a suitable sterile aqueous or non aqueous vehicle. Additives, for instance buffers such as sodium metabisulphite or disodium edetate; preservatives including bactericidal and fungicidal agents such as phenyl mercuric acetate or nitrate, benzalkonium chloride or chlorhexidine, and thickening agents such as hypromellose may also be included.

The active ingredient may also be administered parenterally in a sterile medium. Depending on the vehicle and concentration used, the drug can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as a local anaesthetic, preservative and buffering agent can be dissolved in the vehicle.

Synthesis

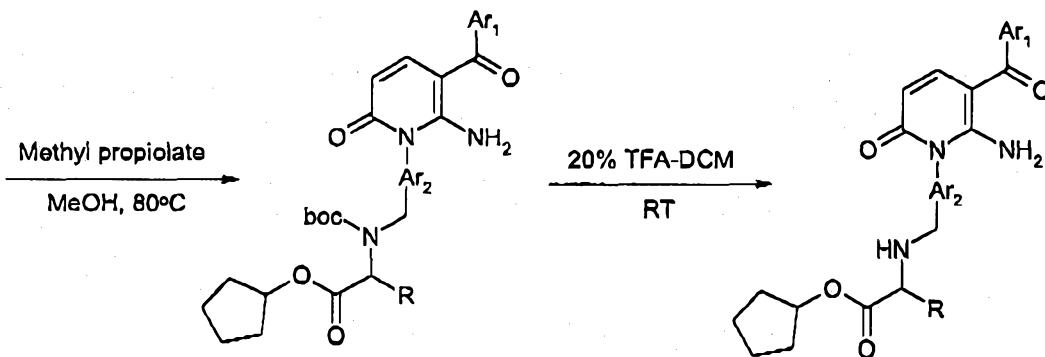
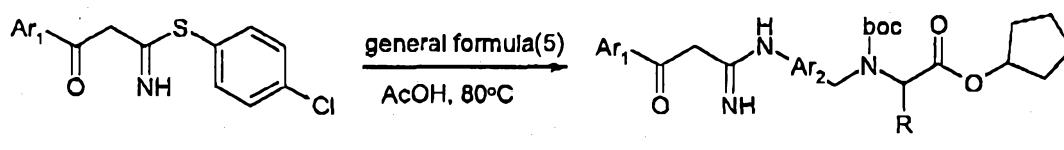
27 Sep 2012

2007246869

23

There are multiple synthetic strategies for the synthesis of the compounds (I) with which the present invention is concerned, but all rely on known chemistry, known to the synthetic organic chemist. Thus, compounds according to formula (I) can be synthesised according to procedures described in the standard literature and are well-known to those skilled in the art. Typical literature sources are "*Advanced organic chemistry*", 4th Edition (Wiley), J March, "*Comprehensive Organic Transformation*", 2nd Edition (Wiley), R.C. Larock, "*Handbook of Heterocyclic Chemistry*", 2nd Edition (Pergamon), A.R. Katritzky), review articles such as found in "*Synthesis*", "*Acc. Chem. Res.*", "*Chem. Rev.*", or primary literature sources identified by standard literature searches online or from secondary sources such as "*Chemical Abstracts*" or "*Beilstein*".

The compounds of the invention may be prepared by a number of processes generally described below and more specifically in the Examples hereinafter. In the reactions described below, it may be necessary to protect reactive functional groups, for example hydroxyl, amino and carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions [see for example Greene, T.W., "*Protecting Groups in Organic Synthesis*", John Wiley and Sons, 1999]. Conventional protecting groups may be used in conjunction with standard practice. In some instances deprotection may be the final step in the synthesis of a compound of general formula (I) and the processes according to the invention described herein after are understood to extend to such removal of protecting groups.



Examples of such methods that may be employed to the synthesis of compounds of general formula (I) are set out, but not limited to the reactions shown in Scheme 1 below.

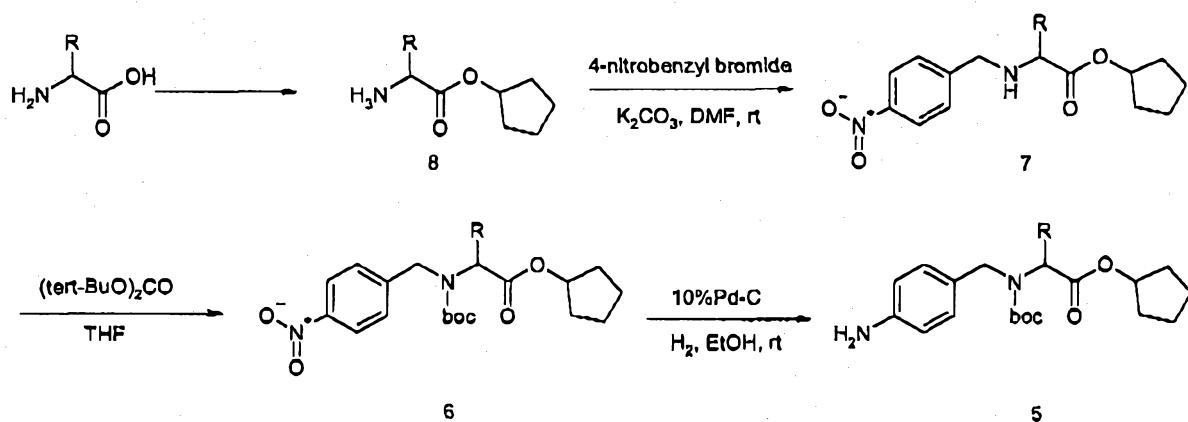
Scheme 1


27 Sep 2012

2007246869

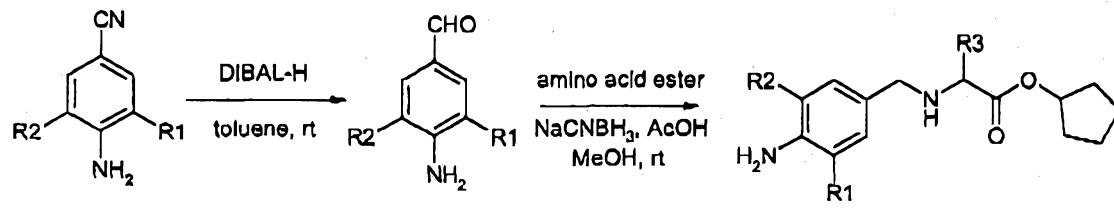
24

and


Thus, amino esters of general formula (A) may be prepared by treatment of the tert-butylcarbamate of general formula (2a) with trifluoroacetic acid in dichloromethane. Intermediates of general formula (2) may be prepared by methods described in WO 03/076405 and references therein. Amino esters of general formula (2b) may be formed as a bi-product in the synthesis of compounds of formula (2a) and treated with trifluoroacetic acid to give compounds of general formula (B).

Intermediate esters of general formula (5) may be prepared by the procedures shown in Scheme 2.

27 Sep 2012


2007246869

25

Scheme 2

Hydrogenation of the nitrobenzyl intermediate (6) over palladium-carbon catalyst in THF provides amines of general formula (5). Intermediates of formula (6) may be prepared by the reaction of the corresponding amine with di-tert-butoxycarbonate in inert solvent such as THF at ambient temperature. Intermediates of general formula (7) may be produced by the alkylation of amino esters of formula (8) with 4-nitrobenzyl bromide. The reaction may be performed in a dialkylamide solvent such as DMF in the presence of an inorganic base such as potassium or caesium carbonate. Such reactions are set forth in March's *Advanced Organic Chemistry* [John Wiley and Sons, 1992].

An alternative general method for the synthesis of N-benzylamino acid esters of general formula (9), where further functionalisation is required on the aryl ring of the benzyl substituent is set out in Scheme 3.

Scheme 3

In a further aspect of the invention, amino esters of general formula (9) may be prepared by, but not limited to, the reactions set out in Scheme 3. Thus benzonitriles of general formula (11), which are either commercially available or can be readily synthesized by methods known to those skilled in the art, may be converted to the corresponding benzaldehyde of general formula (10) by reduction with an appropriate metal hydride

27 Sep 2012

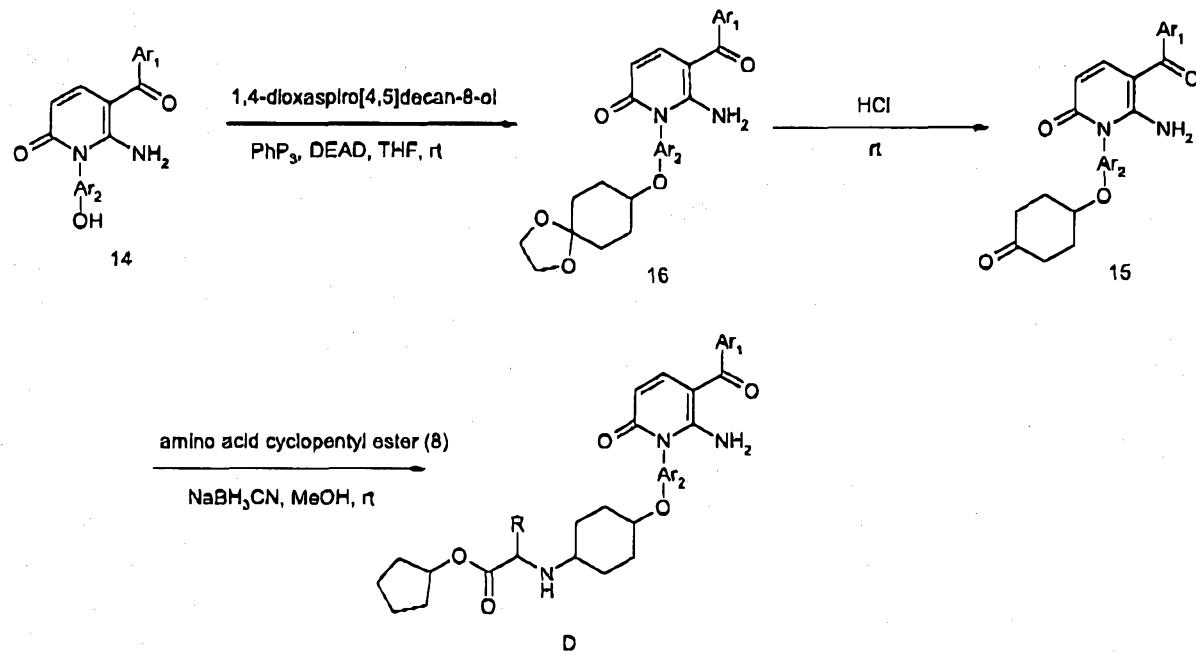
2007246869

26

such as DIBAL-H and acid hydrolysis of the intermediate imine [see for Example LeBel J. Am. Chem. Soc., 1964, 86, 3759]. The N-benzyl amino acid ester of general formula (9) may be prepared by reaction with the said benzaldehyde under conditions of reductive alkylation, employing borohydride reagents such as NaBH_3CN or $\text{NaBH}(\text{OAc})_3$ under acidic conditions in a protic solvent such as methanol [see for example Borsch et al, J. Am. Chem. Soc., 1971, 93, 2897].

Scheme 4

In a further aspect of the Invention, compounds of general formula (C) may be prepared by methods set out in Scheme 4, from the alkylation of intermediates of general formula (8) with mesylates of general formula (12). The alkylation may be carried out in an inert ether solvent such as THF, in the presence of sodium iodide and inorganic bases such as potassium carbonate. It will be recognized by those skilled in the art that the corresponding alkylbromides or alkylchlorides will be of utility in this process. The preparation of mesylate (12) may be performed by treatment of the primary alcohol (13) with methanesulphonyl chloride in an inert solvent such as dichloromethane and in the presence of organic base such as triethylamine. Compounds of general formula (14) may be prepared by methods described in WO 03/076405 and references therein.

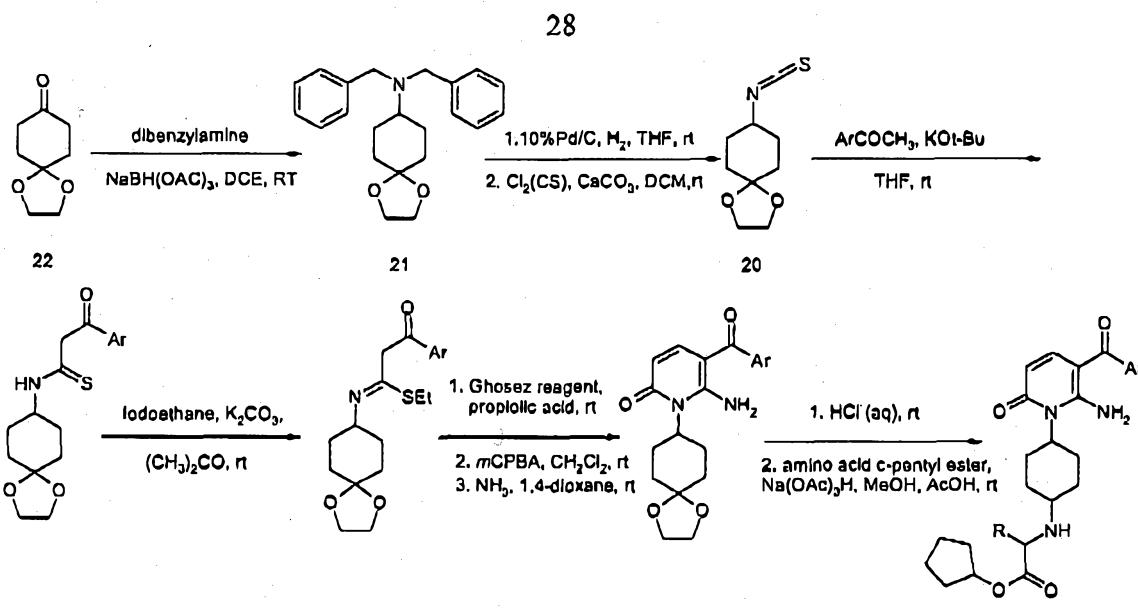

27 Sep 2012

2007246869

27

In a further aspect to the invention compounds of general formula (D) may be prepared by, but not limited to, the reactions in Scheme 5.

Scheme 5

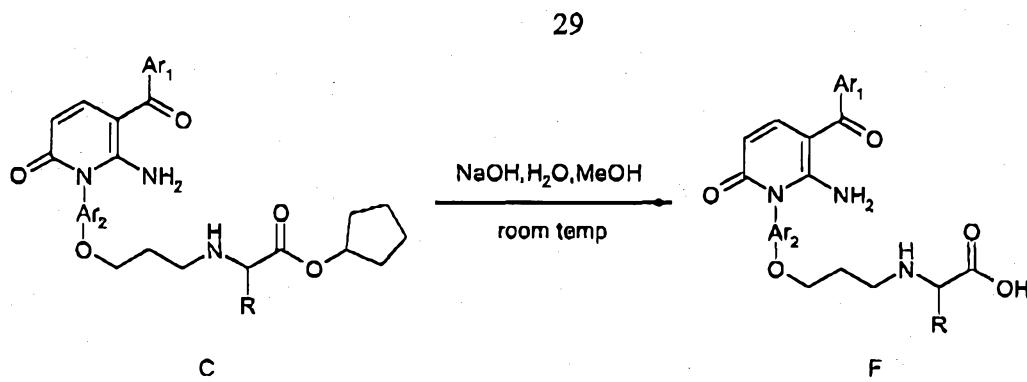

Thus, alcohols of general formula (14) can be alkylated with an appropriately protected cycloalkanol derivative such as 1,4-dioxaspiro[4.5]decan-8-ol using triphenylphosphine and a dialkyl azadicarboxylate such as DEAD in an inert ethereal solvent [see for example Mitsunobu et al, Bull. Chem. Soc. Jpn., 1967, 40, 2380]. Ketals of general formula (16) may be deprotected to the corresponding ketone under aqueous acidic conditions. Reductive amination of compounds of formula (16) may be achieved by treatment with amino acid esters of general formula (8) in the presence of borohydride reagents such as sodium cyanoborohydride and sodium triacetoxyborohydride under acid conditions to give compounds of general formula (D).

In a further aspect to the invention compounds of general formula (E) may be prepared by, but not limited to, the reactions in Scheme 6.

Scheme 6

27 Sep 2012

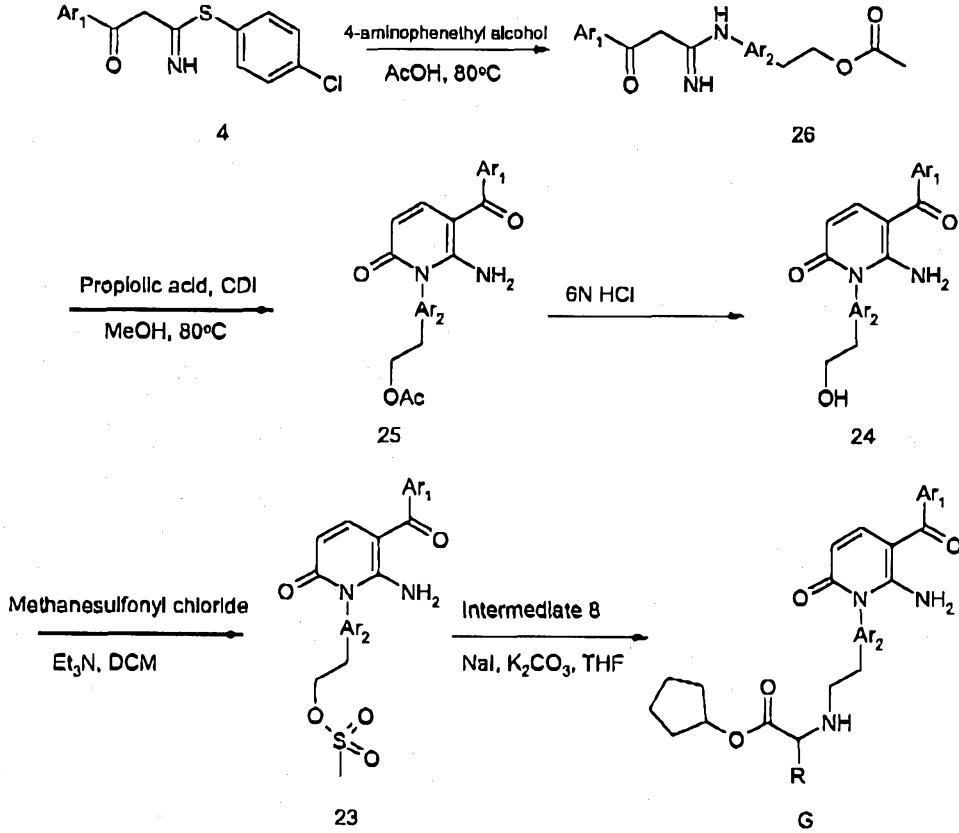
2007246869


Reductive amination of compounds of formula (22) may be achieved by treatment with dibenzylamine in the presence of borohydride reagents such as sodium cyanoborohydride and sodium triacetoxyborohydride under acid conditions to give compounds of general formula (21). Hydrogenation of (21) and subsequent reaction with thiophosgene can give the isocyanate of general formula (20). Compounds of general formula (19) may be prepared by reaction of (20) with the corresponding acetophenone using sodium tert-butoxide. Alkylation of (19) with iodoethane may be carried out using an inorganic base such as potassium carbonate in a solvent such as acetone. Compounds of general formula (18) may be subjected to cyclisation, oxidation and then subsequent ammonia displacement to give ketals of general formula (17). Thus ketals of general formula (17) may be deprotected to the corresponding cyclohexanone intermediate under aqueous acidic conditions, the cyclohexanone then reacted with amino acid esters of general formula (8) under conditions of reductive amination employing borohydride reagents such as sodium cyanoborohydride and sodium triacetoxyborohydride.

In another aspect of the invention, amino acids of general formula (F) may be prepared by, but not restricted to methods set out in Scheme 7.

Scheme 7

2007246869


27 Sep 2012

Thus, for example, amino acid esters of general formula (C) may be hydrolysed to the corresponding amino acids (F) by treatment with aqueous sodium or potassium hydroxide, or any appropriate base, at ambient temperature in a co-solvent such as methanol or ethanol.

In another aspect of the invention, amino acids of general formula (G) may be prepared by, but not restricted to methods set out in Scheme 8.

Scheme 8

2007246869 27 Sep 2012

30

Thus, amino esters of general formula G may be prepared by the alkylation of intermediates of general formula (8) with mesylates of general formula (23). The alkylation may be carried out in an inert ether solvent such as THF, in the presence of sodium iodide and inorganic bases such as potassium carbonate. The preparation of mesylate (23) may be performed by treatment of the primary alcohol (24) with methanesulphonyl chloride in an inert solvent such as dichloromethane and in the presence of organic base such as triethylamine. The alcohol (24) may be prepared by deprotection of the acetyl group of intermediate (25) under acidic conditions such as HCl. Intermediates of general formula (4), (25) and (26) may be prepared by similar methods described in WO 03/076405 and references therein.

The following examples illustrate the invention. All temperatures are in °C. The following abbreviations are used:

MeOH = methanol
EtOH = ethanol
EtOAc = ethyl acetate
Boc = tert-butoxycarbonyl
CDI = 1,1'-carbonyl diimidazole
DCM = dichloromethane
DMF = dimethylformamide
DMSO = dimethyl sulfoxide
TFA = trifluoroacetic acid
THF = tetrahydrofuran
Na₂CO₃ = sodium carbonate
HCl = hydrochloric acid
DIPEA = diisopropylethylamine
NaH = sodium hydride
NaOH = sodium hydroxide
NaHCO₃ = sodium hydrogen carbonate

2007246869 27 Sep 2012

31

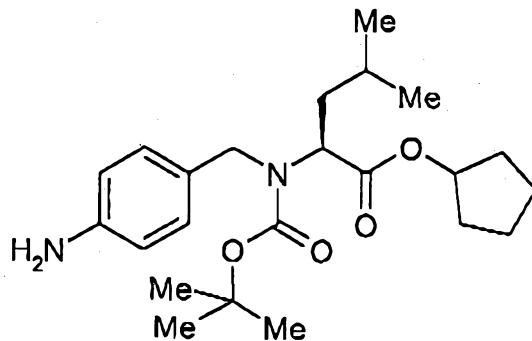
Pd/C = palladium on carbon
TME = tert-butyl methyl ether
N₂ = nitrogen
Na₂SO₄ = sodium sulphate
Et₃N = triethylamine
NH₃ = ammonia
TMSCl = trimethylchlorosilane
TBME = tertiary butyl methyl ether
NH₄Cl = ammonium chloride
LiAlH₄ = lithium aluminium hydride
MgSO₄ = magnesium sulfate
"BuLi = n-butyllithium
CO₂ = carbon dioxide
EDCI = *N*-(3-Dimethylaminopropyl)-*N'*-ethylcarbodiimide hydrochloride
Et₂O = diethyl ether
LiOH = lithium hydroxide
HOBr = 1-hydroxybenzotriazole
ELS = Evaporative Light Scattering
TLC = thin layer chromatography
ml = milliliter(s)
g = gram(s)
mg = milligram(s)
mol = moles
mmol = millimole(s)
LCMS = high performance liquid chromatography/mass spectrometry
NMR = nuclear magnetic resonance
RT = room temperature

Microwave irradiation was carried out using a CEM Discover focused microwave reactor. Solvents were removed using a GeneVac Series I without heating or a Genevac Series II with VacRamp at 30 °C or a Buchi rotary evaporator. Purification of compounds by flash chromatography column was performed using silica gel, particle size 40–63 µm (230–400 mesh) obtained from Silicycle. Purification of compounds by preparative HPLC was performed on Gilson systems using reverse phase ThermoHypersil-Keystone

27 Sep 2012

2007246869

32


Hyperprep HS C18 columns (12 μ m, 100 x 21.2 mm), gradient 20-100% B (A= water/ 0.1% TFA, B= acetonitrile/ 0.1% TFA) over 9.5 min, flow = 30 ml/min, injection solvent 2:1 DMSO:acetonitrile (1.6 ml), UV detection at 215 nm.

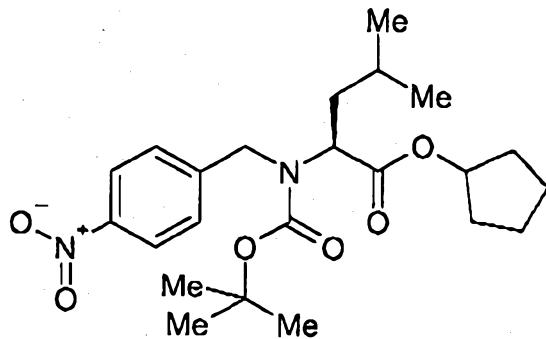
1 H NMR spectra were recorded on a Bruker 400 MHz AV or a Bruker 300 MHz AV spectrometer in deuterated solvents. Chemical shifts (δ) are in parts per million. Thin-layer chromatography (TLC) analysis was performed with Kieselgel 60 F₂₅₄ (Merck) plates and visualized using UV light.

Analytical HPLCMS was performed on Agilent HP1100, Waters 600 or Waters 1525 LC systems using reverse phase Hypersil BDS C18 columns (5 μ m, 2.1 x 50 mm), gradient 0-95% B (A= water/ 0.1% TFA, B= acetonitrile/ 0.1% TFA) over 2.10 min, flow = 1.0 ml/min. UV spectra were recorded at 215 nm using a Gilson G1315A Diode Array Detector, G1214A single wavelength UV detector, Waters 2487 dual wavelength UV detector, Waters 2488 dual wavelength UV detector, or Waters 2996 diode array UV detector. Mass spectra were obtained over the range m/z 150 to 850 at a sampling rate of 2 scans per second or 1 scan per 1.2 seconds using Micromass LCT with Z-spray interface or Micromass LCT with Z-spray or MUX interface. Data were integrated and reported using OpenLynx and OpenLynx Browser software.

Intermediates

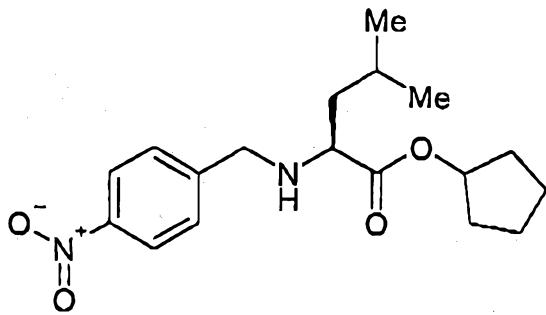
Intermediate 1A Cyclopentyl (S)-2-[(4-Aminobenzyl)-tert-butoxycarbonyl amino]-4-methylpentanoate

Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(4-nitrobenzyl)amino]-4-methylpentanoate (3.8g, 8.74mmol) was dissolved in EtOH (100ml) before addition of Pd/C (10% wet) catalyst


27 Sep 2012

2007246869

33


(100mg) and hydrogenated under balloon pressure at room temperature for 18 h. The reaction mixture was filtered through a pad of celite and evaporated to dryness to give a pink coloured solid (3.15g, 89% yield). LCMS purity 100%, m/z 405 [M+H]⁺.

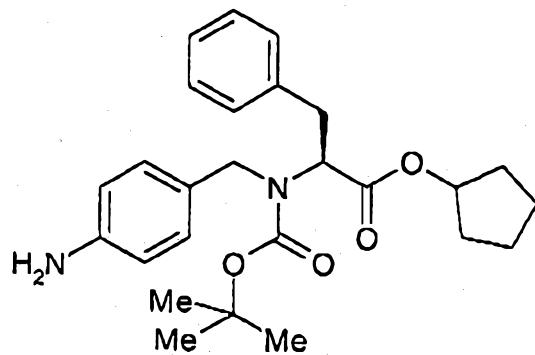
The nitrobenzyl carbamate starting material for this procedure was prepared as follows:

Cyclopentyl (S)-(4-nitrobenzyl)amino]-4-methylpentanoate (15.8g, 47.4mmol) was dissolved in THF (250ml) before addition of potassium carbonate (7.58g, 56.9mmol) and water (150ml). Di-tert-butylcarbonate (15.5g, 71.1mmol) was added and the reaction mixture heated to 50°C for 18 h. The reaction mixture was concentrated under reduced pressure to remove volatiles giving an aqueous residue which was extracted with EtOAc (200ml). The EtOAc layer was washed consecutively with 0.1 M HCl (150ml), sat. aq. NaHCO₃ and water (150 ml). The organic layer was dried (Na₂SO₄), filtered and concentrated to dryness. After purification by flash column chromatography (10% EtOAc/hexane) the product was isolated (9.36g, 46% yield). LC purity 94%, m/z 435 [M+H]⁺.

The nitrobenzylamino starting material used in this procedure was prepared as follows

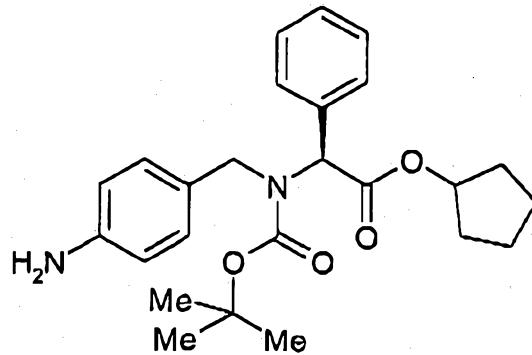
4-Nitrobenzyl bromide (11g, 50 mmol) was dissolved in DMF (180ml) and potassium carbonate (13.6g, 99 mmol) added, followed by L-leucine cyclopentyl ester (**Intermediate 8**) (16g, 43 mmol). The reaction was stirred for 18 h at RT. The residue was diluted with EtOAc (500ml) and washed with water (3x100ml), dried (Na₂SO₄)

27 Sep 2012


2007246869

34

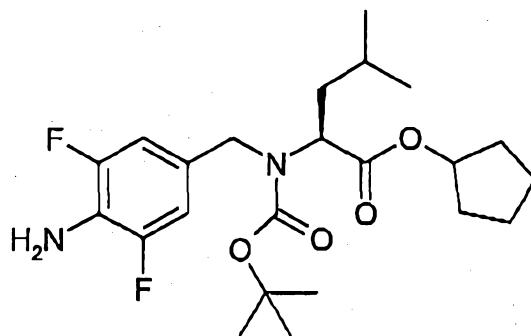
filtered and concentrated to dryness to give the crude product (15.8g) which was used in the next step without further purification. LCMS purity 60%, m/z 335 [M+H]⁺.


The following compounds were prepared in a similar manner:

Intermediate 1B Cyclopentyl (S)-2-[(4-Aminobenzyl)-tert-butoxycarbonyl amino]-3-phenylpropionate

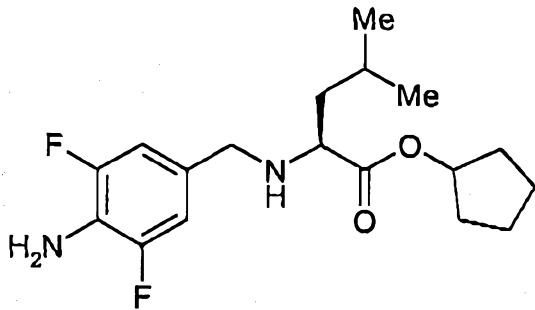
LCMS purity 75%, m/z 439 [M+H]⁺.

Intermediate 1C Cyclopentyl (S)-[(4-Aminobenzyl)-tert-butoxycarbonyl amino]-phenylacetate


LCMS purity 100%, m/z 425 [M+H]⁺.

Intermediate 1D Cyclopentyl (S)-2-[(4-Amino-3,5-difluorobenzyl)-tert-butoxycarbonyl amino]-4-methylpentanoate

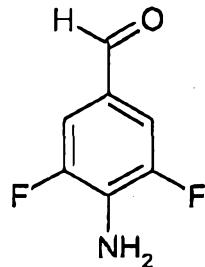
27 Sep 2012


2007246869

35

Cyclopentyl 2(S)-(4-amino-3,5-difluorobenzyl)amino]-4-methylpentanoate (2.54g crude, assume 5.73mmol) was dissolved in a mixture of THF (25ml) and water (25ml). K_2CO_3 (5.15g, 37.3mmol) and Boc_2O (8.14g, 37.2mmol) were added and stirring at RT was continued for 18h. The volatiles were removed under reduced pressure and the residual aqueous layer was extracted with EtOAc (50ml). The organic layer dried (Na_2SO_4), filtered and concentrated under reduced pressure. Purification by flash chromatography (5% EtOAc/ heptane) gave the N-Boc-protected product (1.0g, 40%). LCMS purity 89% m/z 441 $[M+H]^+$.

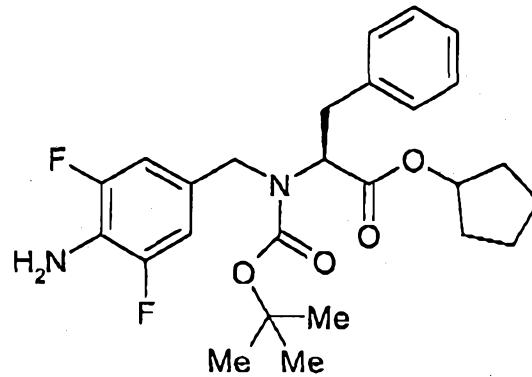
The benzylamino carbamate used as starting material was prepared as follows


To a solution of 4-amino-3,5-difluorobenzaldehyde (0.90g, 5.73mmol) in 1/1 MeOH/DMF (16ml), L-leucine cyclopentyl ester (Intermediate 8) (3.19g, 8.59mmol) and K_2CO_3 (1.19g, 8.59mmol) were added. The reaction mixture was adjusted to pH 5-6 using glacial acetic acid (dropwise) and was stirred for 1h before addition of $NaCNBH_3$ (0.72g, 11.46mmol). Stirring was continued at room temperature for 18h. The reaction mixture was concentrated to remove MeOH, diluted with EtOAc (20ml), washed with $NaHCO_3$ (5ml) followed by water (10ml). The organic layer dried (Na_2SO_4), filtered and concentrated *in vacuo* to give the crude product (2.54g) which was reacted in the next step without purification. LC purity= 68%.

27 Sep 2012

2007246869

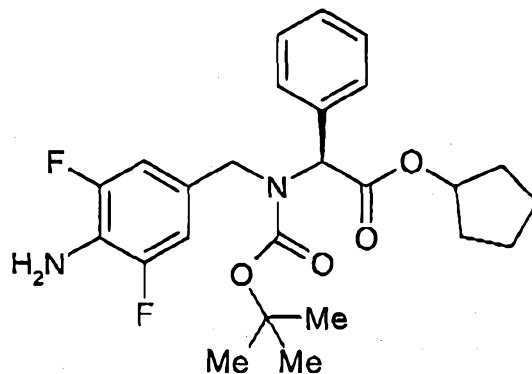
36


The benzaldehyde used as starting material was prepared as follows;

To a stirred solution of 4-amino-3,5-difluorobenzonitrile (2.0g, 12.98mmol) in toluene (16ml) was added dropwise DIBAL (1.5M in toluene) at 0°C. The reaction mixture was warmed to RT and stirring continued for 2h. The reaction was quenched by dropwise addition to 10% aq citric acid (10ml). EtOAc (50ml) and saturated aq potassium sodium tartrate (Rochelle's salt) (30ml) were added and the mixture was vigorously stirred for 20min. The organic layer was isolated and washed with water (10ml), dried (Na_2SO_4), filtered and concentrated to dryness to give a pale yellow solid (1.9g, 93%). LCMS purity 92%, m/z 158 $[\text{M}+\text{H}]^+$.

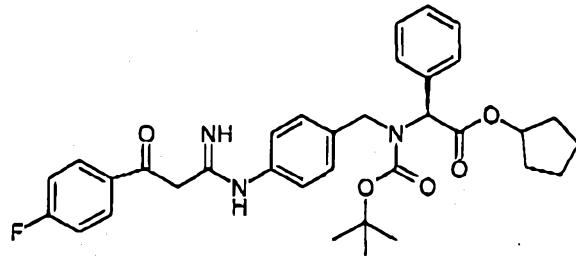
The following compounds were prepared in a similar manner:

Intermediate 1E Cyclopentyl (S)-2-[(4-Amino-3,5-difluorobenzyl)-tert-butoxy carbonylamino]-3-phenylpropionate



LCMS purity 86%, m/z 475 $[\text{M}+\text{H}]^+$.

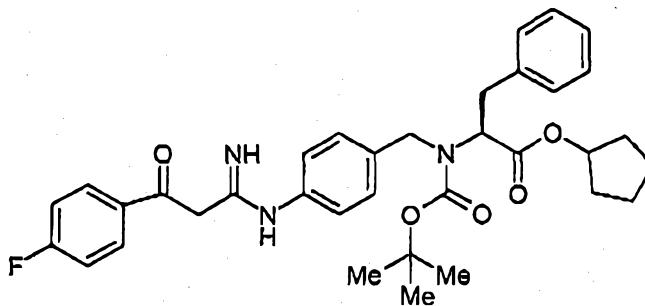
Intermediate 1F Cyclopentyl (S)-2-[(4-Amino-3,5-difluorobenzyl)-tert-butoxy carbonylamino]-phenylacetate


2007246869 27 Sep 2012

37

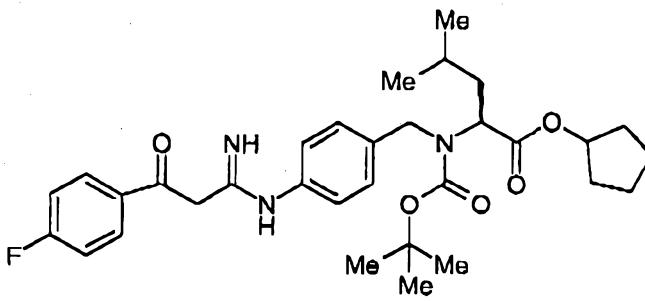
LCMS purity 86%, m/z 461 [M+H]⁺.

Intermediate 2A Cyclopentyl (S)-[tert-Butoxycarbonyl-(4-[3-(4-fluoro phenyl)-3-oxopropionimidoyl]aminobenzyl)aminophenylacetate

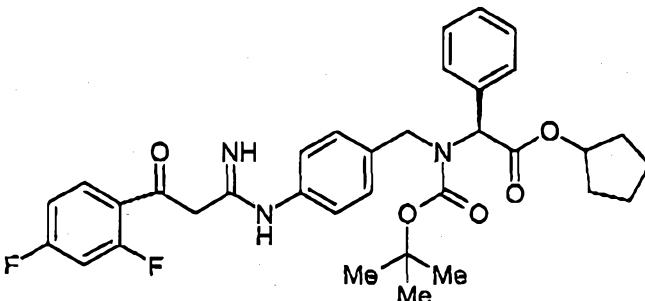

A mixture of 3-(4-fluorophenyl)-3-oxothiopropionimidic acid 4-chlorophenyl ester [WO 03/076405] (300mg, 0.874mmol), **Intermediate 1C** (0.41g, 0.961mmol) and glacial acetic acid (3 ml) was stirred at 80 °C for 2h. Reaction mixture was evaporated to dryness under reduced pressure to give a thick residue which was triturated with ether (3ml). The resultant solid was collected by suction filtration. The product was neutralised by partitioning between EtOAc (20ml) and sat aq NaHCO₃ (10ml). The organic layer was dried (Na₂SO₄), filtered and concentrated *in vacuo*. Yield =305mg (59%). LCMS purity= 75%, m/z 588 [M+H]⁺. The product was used in the next step without further purification.

The following starting materials were prepared in an analogous manner:

Intermediate 2B Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(4-[3-(4-fluoro phenyl)-3-oxopropionimidoyl]amino)benzyl]amino-3-phenylpropionate


2007246869 27 Sep 2012

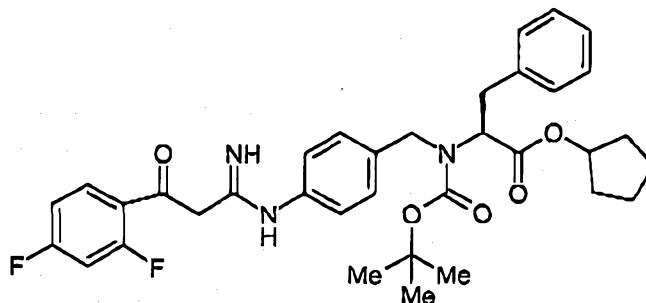
38


From **Intermediate 1B**, LCMS purity 76%, m/z 602 [M+H]⁺.

Intermediate 2C Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(4-[(3-(4-fluorophenyl)-3-oxopropionimidoyl]amino)benzyl]amino]-4-methylpentanoate

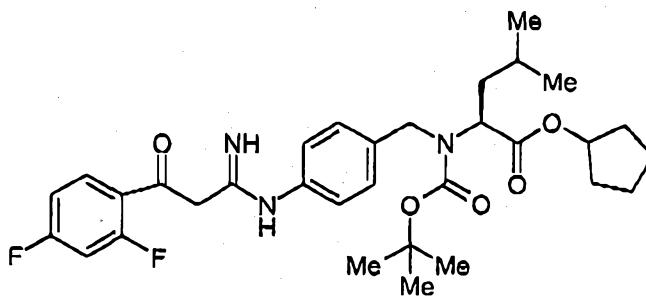
From **Intermediate 1A**, LCMS purity 55%, m/z 568 [M+H]⁺.

Intermediate 2D Cyclopentyl (S)-[tert-Butoxycarbonyl-(4-[(3-(2,4-fluorophenyl)-3-oxopropionimidoyl]amino)benzyl]aminophenylacetate

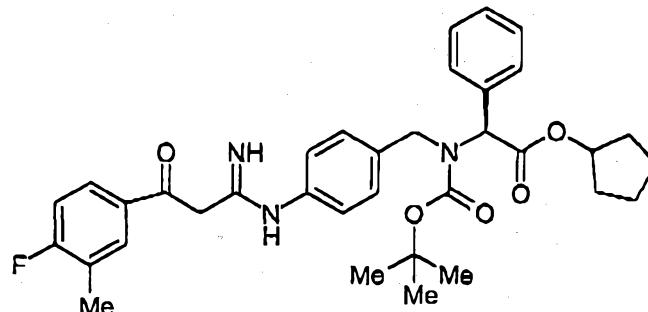

From **Intermediate 1C**, LCMS purity 76%, m/z 606 [M+H]⁺.

27 Sep 2012

2007246869


39

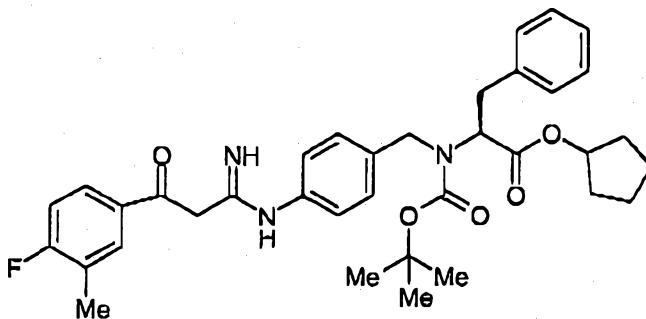
Intermediate 2E Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(4-[(3-(2,4-difluoro phenyl)-3-oxopropionimidoyl]amino)benzyl)amino]-3-phenylpropanoate


From **Intermediate 1B**, LCMS purity 78%, m/z 620 [M+H]⁺.

Intermediate 2F Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(4-[(3-(2,4-difluoro phenyl)-3-oxopropionimidoyl]amino)benzyl)amino]-4-methylpentanoate

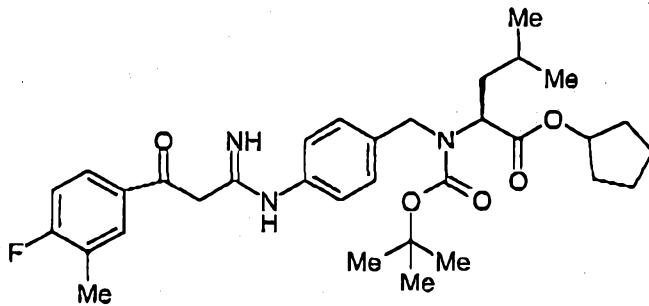
From **Intermediate 1A**, LCMS purity 76%, m/z 586 [M+H]⁺.

Intermediate 2G Cyclopentyl (S)-[tert-Butoxycarbonyl-(4-[(3-(3-methyl-4-fluorophenyl)-3-oxopropionimidoyl]aminobenzyl)aminophenylacetate

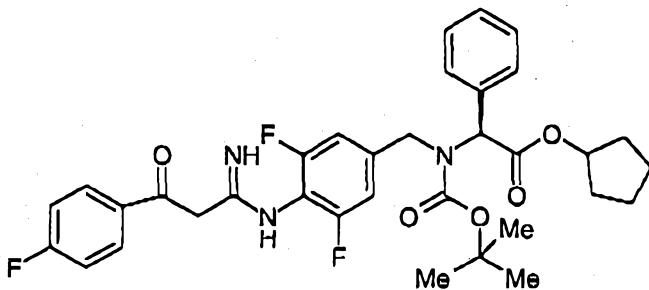

From **Intermediate 1C**, LCMS purity 77%, m/z 602 [M+H]⁺.

27 Sep 2012

2007246869


40

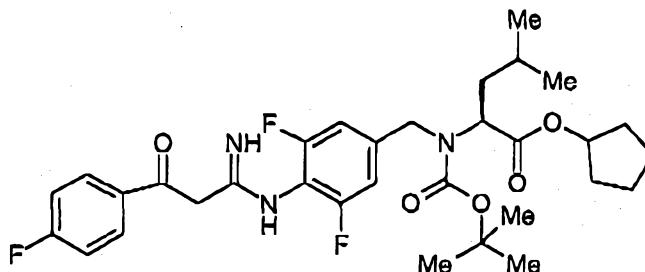
Intermediate 2H Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(4-{[3-(3-methyl-4-fluorophenyl)-3-oxopropionimidoyl]amino}benzyl)amino]-3-phenylpropionate


From **Intermediate 1B**, LCMS purity 77%, m/z 616 [M+H]⁺.

Intermediate 2I Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(4-{[3-(3-methyl-4-fluorophenyl)-3-oxopropionimidoyl]amino}benzyl)amino]-4-methyl pentanoate

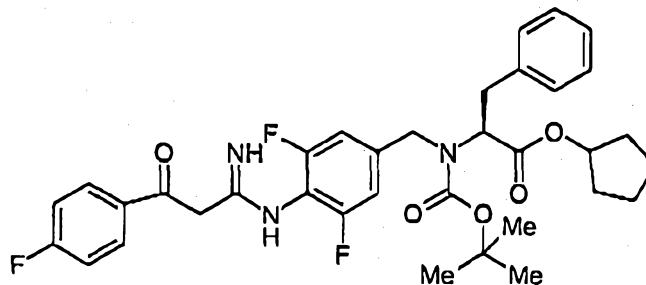
From **Intermediate 1A**, LCMS purity 77 %, m/z 582 [M+H]⁺.

Intermediate 2J Cyclopentyl (S)-[tert-Butoxycarbonyl-(3,5-difluoro-4-{[3-(4-fluorophenyl)-3-oxo-propionimidoyl]amino}benzyl)amino]phenylacetate

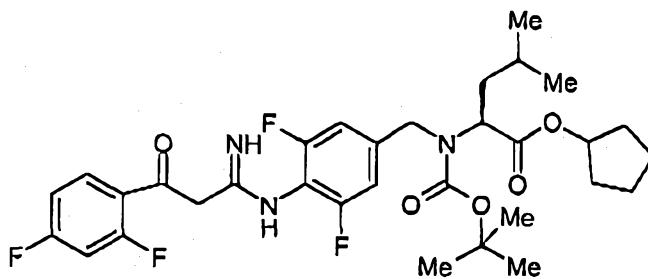

From **Intermediate 1F**, LCMS purity %, m/z 624[M+H]⁺.

27 Sep 2012

2007246869


41

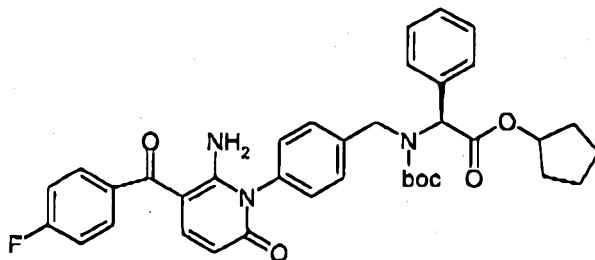
Intermediate 2K Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(3,5-difluoro-4-[(3-(4-fluoro-phenyl)-3-oxopropionimidoyl]amino}benzyl)amino]-4-methyl pentanoate


From **Intermediate 1D**, LCMS purity %, m/z 604 [M+H]⁺.

Intermediate 2L Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(3,5-difluoro-4-[(3-(4-fluoro-phenyl)-3-oxo-propionimidoyl]amino}benzyl)-amino]-3-phenyl propionate

From **Intermediate 1E**, LCMS purity 100%, m/z 638 [M+H]⁺.

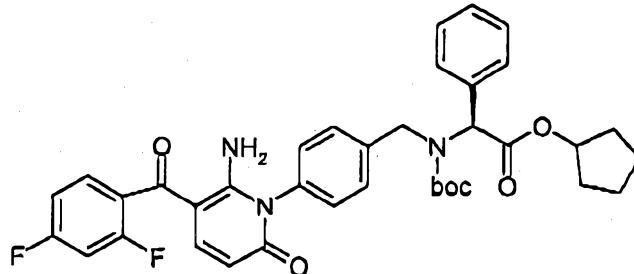
Intermediate 2M Cyclopentyl (S)-2-[tert-Butoxycarbonyl-(3,5-difluoro-4-[(3-(2,4-difluorophenyl)-3-oxopropionimidoyl]amino}benzyl)amino]-4-methylpentanoate


From **Intermediate 1D**, LCMS purity 86%, m/z 622 [M+H]⁺.

27 Sep 2012

2007246869

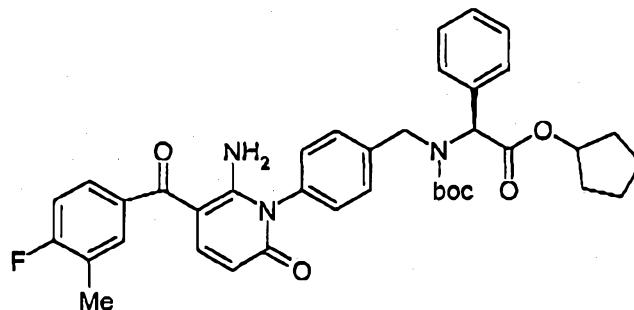
42


Intermediate 3A Cyclopentyl (S)-{(4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridinyl-1-yl]benzyl}-tert-butoxycarbonylamino)phenylacetate

To a solution of **Intermediate 2A** (305mg, 0.52mmol) in MeOH (5ml) was added methyl propiolate (70 μ l, 0.78mmol). The mixture was heated at 80 °C for 3h. The reaction mixture was concentrated *in vacuo* and the residue was purified by column chromatography (30% EtOAc/ heptane). Yield= 200mg (60%). LCMS purity 80%, m/z 640 [M+H]⁺.

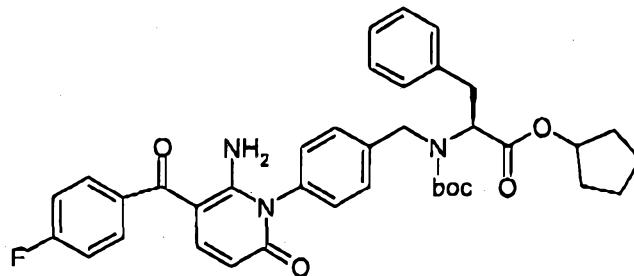
The following compounds were produced in a similar fashion:

Intermediate 3B Cyclopentyl (S)-{(4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridinyl-1-yl]benzyl}-tert-butoxycarbonylamino)phenylacetate

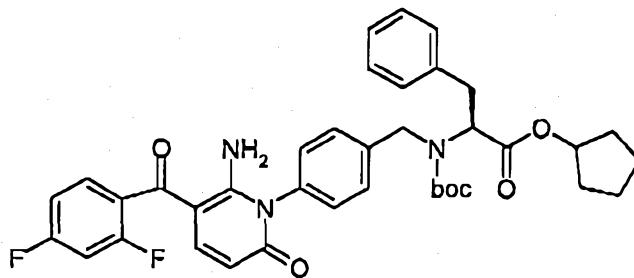

From **Intermediate 2D**, LCMS purity 71%, m/z 658 [M+H]⁺.

Intermediate 3C Cyclopentyl (S)-{(4-[6-Amino-5-(3-methyl-4-fluorobenzoyl)-2-oxo-2H-pyridinyl-1-yl]benzyl}-tert-butoxycarbonylamino)phenylacetate

27 Sep 2012


2007246869

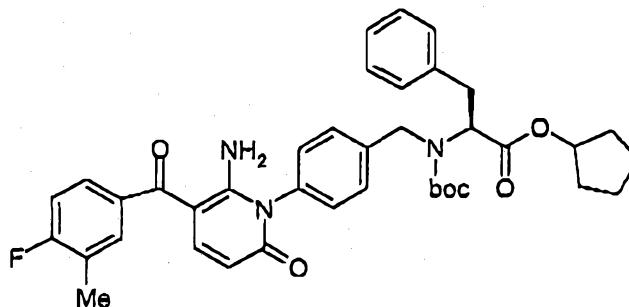
43


From **Intermediate 2G**, LCMS purity 73%, m/z 654 [M+H]⁺.

Intermediate 3D Cyclopentyl (S)-2-((4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzyl)-tert-butoxycarbonylamino)-3-phenylpropionate

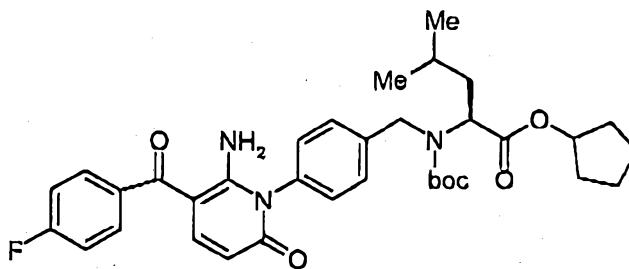
From **Intermediate 2B**, LCMS purity 64%, m/z 654 [M+H]⁺.

Intermediate 3E Cyclopentyl (S)-2-((4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzyl)-tert-butoxycarbonylamino)-3-phenylpropionate

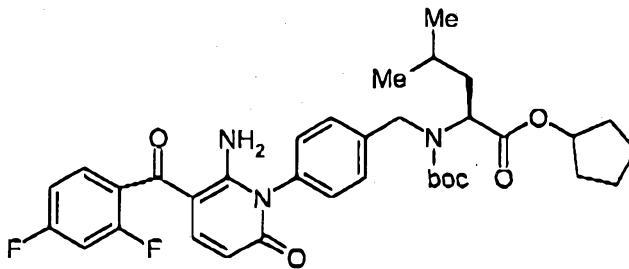

From **Intermediate 2E**, LCMS purity 59%, m/z 672 [M+H]⁺.

Intermediate 3F Cyclopentyl (S)-2-((4-[6-Amino-5-(3-methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzyl)-tert-butoxycarbonylamino)-3-phenyl proponate

27 Sep 2012


2007246869

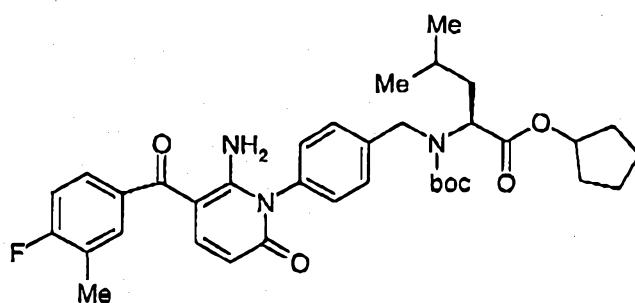
44


From **Intermediate 2H**, LCMS purity 87%, m/z 668 [M+H]⁺.

Intermediate 3G Cyclopentyl (S)-2-((4-(6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl)benzyl)-tert-butoxycarbonylamino)-4-methylpentanoate

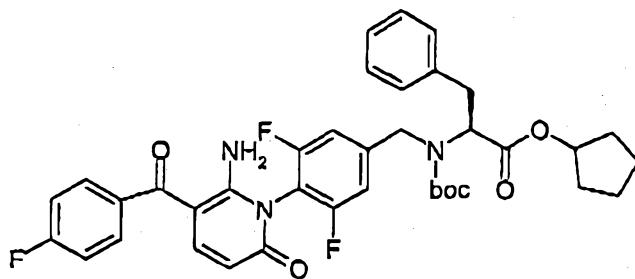
From **Intermediate 2C**, LCMS purity 82%, m/z 620 [M+H]⁺.

Intermediate 3I Cyclopentyl (S)-2-((4-(6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl)benzyl)-tert-butoxycarbonylamino)-4-methylpentanoate

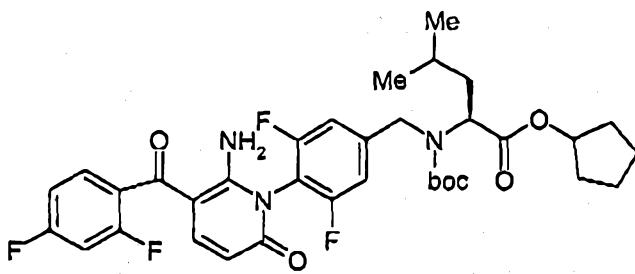


From **Intermediate 2F**, LCMS purity 84%, m/z 638 [M+H]⁺.

Intermediate 3J Cyclopentyl (S)-2-((4-(6-Amino-5-(3-methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl)benzyl)-tert-butoxycarbonylamino)-4-methylpentanoate


2007246869 27 Sep 2012

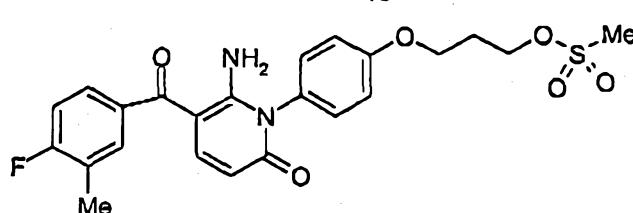
45


From **Intermediate 2I**, LCMS purity 90 %, m/z 634 [M+H]⁺.

Intermediate 3K Cyclopentyl (S)-2-((4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorobenzyl)-tert-butoxycarbonylamino)-3-phenyl propionate

From **Intermediate 2L**, LCMS purity 92%, m/z 690 [M+H]⁺.

Intermediate 3L Cyclopentyl (S)-2-((4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorobenzyl)-tert-butoxycarbonylamino)-4-methyl pentanoate


From **Intermediate 2M**, LCMS purity 92%, m/z 674 [M+H]⁺.

Intermediate 4A Methanesulfonic acid 3-((4-amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl)phenoxy)propyl ester

27 Sep 2012

2007246869

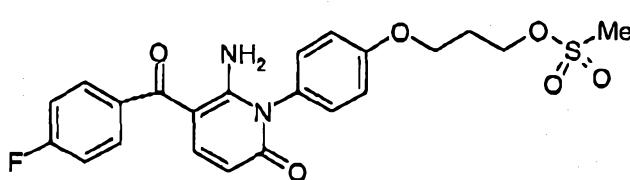
46

To a suspension of 6-Amino-5-(4-fluoro-3-methyl-benzoyl)-1-[4-(3-hydroxy-propoxy)-phenyl]-1H-pyridin-2-one (100mg, 0.25mmol) in anhydrous DCM (1ml) at 0 °C was added methanesulfonyl chloride (21.5µl, 0.28mmol) followed by Et₃N (70µl, 0.50mmol). The reaction mixture was allowed to warm up to RT and stirred for 10-20min to completion, monitored by TLC (5% MeOH/ DCM). The reaction mixture was diluted with DCM (10ml), washed with 10% citric acid (5ml), followed by sat aq NaHCO₃ (5ml) and water (5ml). The DCM layer was dried (Na₂SO₄), filtered and concentrated *in vacuo*. Yield= 105mg (88%). LCMS purity = 79% m/z= 475 [M+H]⁺. This material was used in the next step without further purification.

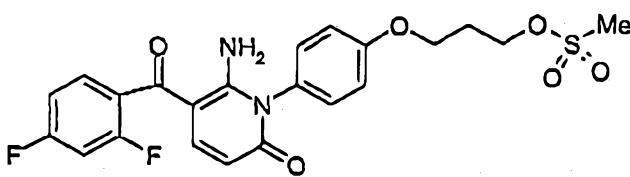
The alcohol used as starting material was prepared as follows:

The 6-Amino-5-(4-fluoro-3-methyl-benzoyl)-1-[4-(3-hydroxy-propoxy)-phenyl]-1H-pyridin-2-one was prepared as shown below.

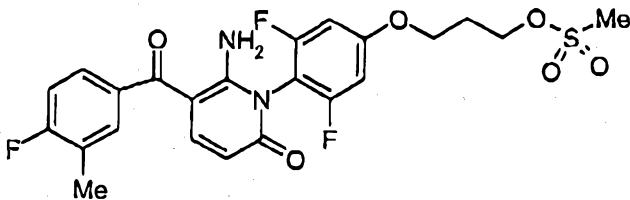
A mixture of 6-Amino-5-(4-fluoro-3-methyl-benzoyl)-1-[4-hydroxy-phenyl]-1H-pyridin-2-one [WO 03/076405] (0.80g, 2.37mmol), 3-bromo-1-propanol (0.23 ml, 2.60mmol), K₂CO₃ (1.37g, 9.46mmol), NaI (0.73g, 4.86mmol) in acetone (20ml) was heated at 70 °C for 18h under N₂. The reaction mixture was concentrated under reduced pressure, suspended in water (20ml) and the resulting solid was filtered and washed with ether (0.5ml). Yield= 0.8g (85%). LCMS purity= 96%, m/z 397 [M+H]⁺


The following methanesulphonate intermediates were prepared in a similar manner to Intermediate 4A using methods described in WO 03/076405 for the synthesis of the corresponding 4-hydroxyphenyl intermediates.

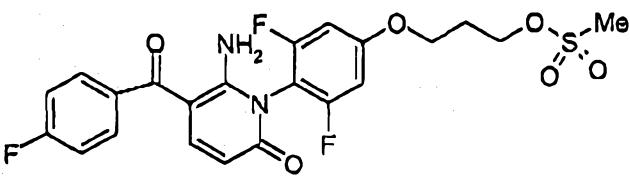
Intermediate 4B Methanesulfonic acid 3-[4-[6-amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy]propyl ester


27 Sep 2012

2007246869


47

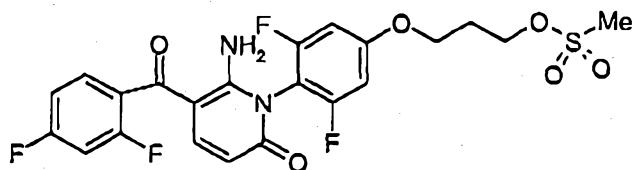
LCMS purity 66%, m/z 461 [M+H]⁺.


Intermediate 4C Methanesulfonic acid 3-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propyl ester

LCMS purity 88%, m/z 479 [M+H]⁺.

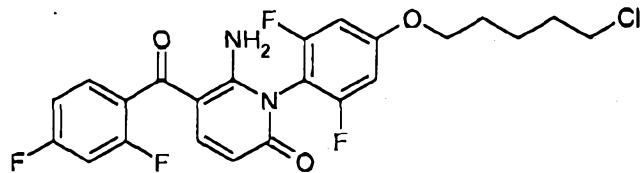
Intermediate 4D Methanesulfonic acid 3-(4-[6-amino-5-(4-fluoro-3-methyl-benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propyl ester

LCMS purity 51%, m/z 511 [M+H]⁺.


Intermediate 4E Methanesulfonic acid 3-(4-[6-amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propyl ester

LCMS purity 72%, m/z 497 [M+H]⁺.

Intermediate 4F Methanesulfonic acid 3-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propyl ester

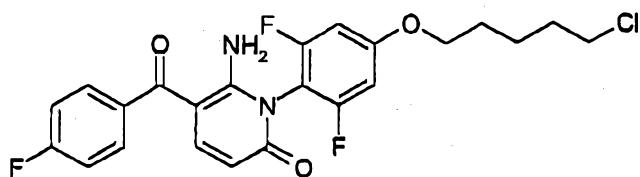

2007246869 27 Sep 2012

48

LCMS purity 81%, m/z 515 [M+H]⁺.

The following intermediates were prepared by direct alkylation of the 4-hydroxyphenyl intermediates (described within WO03/076405) with 1-bromo-5-chloropentane.

Intermediate 4G 6-Amino-1-(4-[(5-chloropentyl)oxy]-2,6-difluorophenyl)-5-(2,4-difluoro-benzoyl)pyridin-2(1H)-one


To a solution of 6-amino-5-(2,4-difluorobenzoyl)-1-(2,6-difluoro-4-hydroxyphenyl)-pyridin-2(1H)-one (300 mg, 0.79 mmol) in acetone (6 ml) under an atmosphere of nitrogen was added 1-bromo-5-chloropentane (0.115 ml, 0.87 mmol, 1.1 eq), sodium iodide (238 mg, 1.59 mmol, 2 eq) and potassium carbonate (438 mg, 3.17 mmol, 4 eq). The mixture was heated at 70°C for 16 hours, before being allowed to cool to room temperature and partitioned between EtOAc (50 ml) and water (50 ml). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (30 % EtOAc in heptane) afforded a 3:2 mixture of the title compound and 6-amino-1-(4-[(5-iodopentyl)oxy]-2,6-difluorophenyl)-5-(2,4-difluorobenzoyl)pyridin-2(1H)-one (142 mg) which was used without further purification.

LC/MS: m/z 483, 575 [M+H]⁺.

2007246869 27 Sep 2012

49

Intermediate 4H 6-Amino-1-[4-[(5-chloropentyl)oxy]-2,6-difluorophenyl]-5-(4-fluoro-benzoyl)pyridin-2(1H)-one

To a solution of 6-amino-5-(2,4-fluorobenzoyl)-1-(2,6-difluoro-4-hydroxyphenyl)-pyridin-2(1H)-one (200 mg, 0.56 mmol) in anhydrous DMF (6 ml) under an atmosphere of nitrogen was added 1-bromo-5-chloropentane (0.088 ml, 0.67 mmol, 1.2 eq) and potassium carbonate (115 mg, 0.83 mmol, 1.5 eq). The mixture was heated at 40°C for 19 hours, before being allowed to cool to room temperature and diluted with EtOAc (20 ml). The solution was washed with water (3 x 20 ml) and brine (20 ml). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (20-40 % EtOAc in heptane) afforded the title compound as a yellow solid (104 mg) which was used without further purification.

LC/MS: m/z 465 [M+H]⁺. ¹H NMR (300 MHz, CD₃OD) δ: 7.60 (2H, m), 7.53 (1H, d, J=9.4 Hz), 7.33 (2H, m), 7.05 (2H, m), 5.72 (1H, d, J=9.8 Hz), 4.11 (2H, t, J=6.3 Hz), 3.68 (2H, t, J=6.5 Hz), 1.84-1.77 (4H, m), 1.56 (2H, m).

Intermediate 4J Methanesulfonic acid 2-[4-[6-amino-5-(4-fluoro-benzoyl)-2-oxo-2H-pyridin-1-yl]-phenyl]-ethyl ester

To a suspension of 6-Amino-5-(4-fluoro-3-methyl-benzoyl)-1-[4-(2-hydroxy-ethyl)-phenyl]-1H-pyridin-2-one (150mg, 0.43mmol) in anhydrous DCM (3ml) at 0 °C was added methanesulfonyl chloride (34μl, 0.47mmol) followed by Et₃N (120μl, 0.85mmol). The reaction mixture was allowed to warm up to RT and stirred for 24 hours to completion. The reaction mixture was diluted with DCM (10ml), washed with 10% citric acid (5ml), followed by sat aq NaHCO₃ (5ml) and water (5ml). The DCM layer was dried (MgSO₄), filtered and concentrated *in vacuo*. Yield= 183mg (crude). LCMS purity = 85%

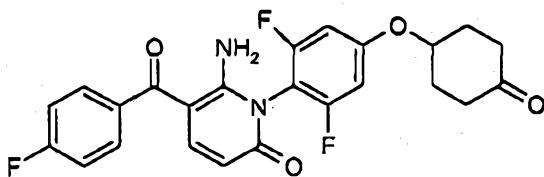
m/z= 431 [M+H]⁺. This material was used in the next step without further purification.

The alcohol used as starting material was prepared as follows:

Acetic acid 2-{4-[6-amino-5-(4-fluoro-benzoyl)-2-oxo-2H-pyridin-1-yl]-phenyl}-ethyl ester (300mg) was dissolved in water (5ml) and conc HCl (5ml) and heated to 100 °C for 1 hour. The reaction was then cooled, diluted with 10ml water and filtered. The resulting solid was then dried under reduced pressure to give 264mg of product, m/z= 353 [M+H]⁺.

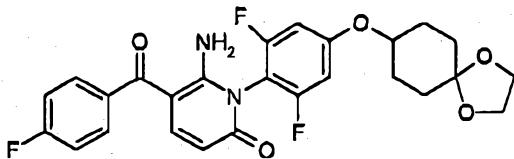
The acetic acid 2-{4-[6-amino-5-(4-fluoro-benzoyl)-2-oxo-2H-pyridin-1-yl]-phenyl}-ethyl ester used as starting material was prepared as follows:

A solution of propiolic acid (270μl, 4.39mmol) and CDI (712mg, 4.34mmol) in THF (13ml) was warmed from 0 °C to RT and stirred for 1.5 hours. To this solution was added acetic acid 2-(4-[(3-(4-fluoro-phenyl)-3-oxo-propionimidoyl]-amino)-phenyl]-ethyl ester (1g, 2.92mmol) in THF (6ml) and the reaction heated to 80 °C for a period of 2 hours maximum. After cooling and evaporation under reduced pressure, the crude residue was sonicated with methanol (7ml) before filtration, washing with a minimum amount of methanol. An off-white solid was collected (350mg crude).


The acetic acid 2-(4-[(3-(4-fluoro-phenyl)-3-oxo-propionimidoyl]-amino)-phenyl]-ethyl ester used as starting material was prepared as follows:

3-(4-Fluoro-phenyl)-3-oxo-thiopropionimidic acid 4-chloro-phenyl ester (1g, 2.9mmol) and 4-aminophenethyl alcohol (418mg, 3.08mmol) were dissolved in acetic acid (5ml) and heated to 80 °C for a period of 24 hours. The reaction was cooled to RT and evaporated under reduced pressure. The crude residue was partitioned between DCM and Na₂CO₃. The DCM layer was further washed with brine and dried over MgSO₄ before evaporation under reduced pressure. The product was isolated (1g crude) as a 3:1 mixture of the acetylated product : alcohol. This was taken through unpurified into the above cyclisation reaction. Product m/z= 343 [M+H]⁺, alcohol m/z= 301 [M+H]⁺.

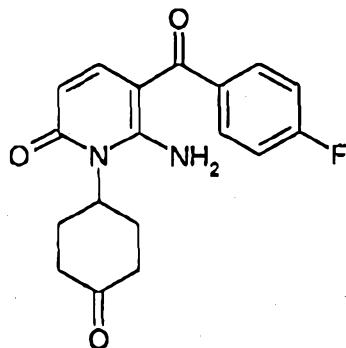
Intermediate 5 6-Amino-1-[2,6-difluoro-4-(4-oxo-cyclohexyloxy)phenyl]-5-(4-fluorobenzoyl)-1H-pyridin-2-one


2007246869 27 Sep 2012

51

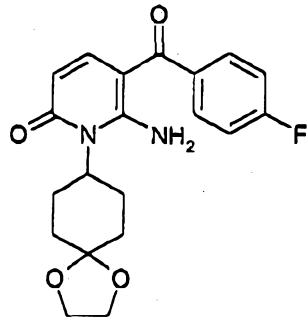
To a solution of 6-amino-1-[4-(1,4-dioxa-spiro[4.5]dec-8-yloxy)-2,6-difluoro-phenyl]-5-(4-fluorobenzoyl)-1H-pyridin-2-one (0.55g, 1.10mmol) in 1,4-dioxane (10ml) was added 2M aq HCl (5ml) at room temperature. Stirring was continued for 18h. Upon completion of reaction the reaction mixture was diluted with water (10ml) before evaporation of dioxane under reduced pressure. The residual aqueous solution was extracted with EtOAc (2 x 10ml). The combined organic layers were dried (Na_2SO_4), filtered and concentrated to dryness under reduced pressure to give the desired ketone as a white solid (0.43g, 86%). LCMS purity 98%, m/z 457 [$\text{M}+\text{H}$]⁺, ¹H NMR (400 MHz, CDCl_3), δ : 2.05-2.15 (2H, m), 2.25-2.45 (4H, m), 2.55-2.70 (2H, m), 4.65-4.75 (1H, m), 5.85 (1H, d), 6.70-6.75 (2H, m), 7.05-7.15 (2H, m), 7.50-7.65 (3H, m),

The ketal used as starting material was prepared as follows:



To a stirred solution of 1,4-dioxa-spiro[4.5]decane-8-ol (0.5g, 1.45mmol) in THF (1.5ml) was added 6-Amino-1-(2,6-difluoro-4-hydroxyphenyl)-5-(4-fluorobenzoyl)-1H-pyridin-2-one (prepared by methods described in WO 03/076405) (0.5g, 1.39mmol) and triphenylphosphine (0.38g, 1.45mmol) at RT. Diisopropyl azodicarboxylate (0.29ml, 1.45mmol) was added dropwise and stirring was continued for 18h. The reaction mixture was evaporated to dryness and purified by column chromatography to afford the desired material as a white solid (0.55g, 79%). LCMS purity 99%, m/z 501 [$\text{M}+\text{H}$]⁺, ¹H NMR (400 MHz, CDCl_3), δ : 1.55-1.65 (2H, m), 1.75-2.00 (6H, m), 3.85-3.90 (4H, m), 4.35-4.40 (1H, m), 5.85 (1H, d), 6.10-6.20 (2H, m), 7.05-7.15 (2H, m), 7.45-7.60 (3H, m).

27 Sep 2012


2007246869

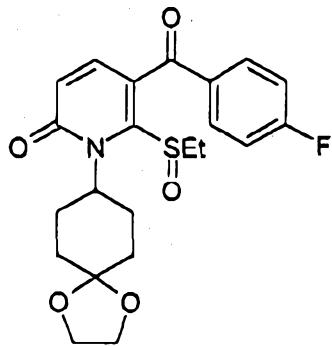
52

Intermediate 6 6-Amino-5-(4-fluorobenzoyl)-1-(4-oxo-cyclohexyl)-1H-pyridin -2-one

2M HCl (14ml) was added to a yellow solution of 6-Amino-1-(1,4-dioxa-spiro[4.5]dec-8-yl)-5-(4-fluorobenzoyl)-1H-pyridin-2-one (664mg, 1.78mmol) in 1,4-dioxane (60ml) at RT. The resultant yellow solution was stirred at RT for 24h and then diluted with H₂O (30ml) and concentrated *in vacuo* to remove the 1,4-dioxane giving a yellow crystalline solid. The solid was isolated by filtration, washed with H₂O and air dried giving a yellow crystalline solid. Yield = 479mg, 82%. LCMS purity 92%, m/z 329 [M+H]⁺, ¹H NMR (400 MHz, CDCl₃), δ: 1.90-2.30 (8H, m), 5.35 (1H, m), 5.65 (1H, d), 7.05-7.15 (2H, m), 7.30 (1H, d), 7.35-7.45 (2H, m), 11.45 (1H, s).

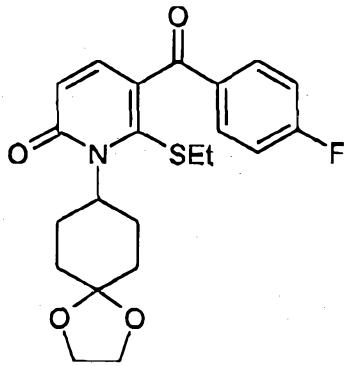
The pyridone acetal used as starting material in the above procedure was prepared as follows

Triethylamine was added (0.74ml, 5.31mmol) to a solution of 1-(1,4-Dioxa-spiro[4.5]dec-8-yl)-6-ethanesulfinyl-5-(4-fluorobenzoyl)-1H-pyridin-2-one (1.046g, 2.42 mmol) in 0.5M NH₃ in 1,4-dioxane (30ml) at RT under N₂. The resultant yellow solution was stirred at RT overnight and then concentrated *in vacuo* giving a yellow solid, which was triturated with TBME, isolated by filtration and washed with TBME giving a pale yellow solid. Yield = 802mg, 89%. LCMS purity 100%, m/z 373 [M+H]⁺, ¹H NMR (400 MHz, CDCl₃), δ: 1.90-


27 Sep 2012

2007246869

53


2.00 (6H, m), 2.60 (2H, m), 4.15 (4H, m), 5.90 (1H, d), 7.25 (2H, m), 7.55 (1H, d), 7.65 (2H, m).

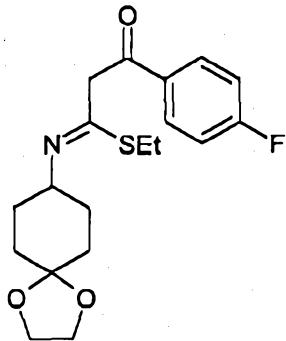
The sulphoxide used in the above procedure was prepared as follows

m-Chloroperbenzoic acid (583mg, 2.60mmol) was added in one portion to a yellow solution of 1-(1,4-Dioxaspiro[4.5]dec-8-yl)-6-ethylsulfanyl-5-(4-fluorobenzoyl)-1H-pyridin-2-one (986mg, 2.36mmol) in CH₂Cl₂ (30ml) at RT under N₂. The resultant yellow solution was stirred at RT overnight and then diluted with CH₂Cl₂ (25ml) and washed with sat. Na₂SO₃ (2 x 30ml), sat. NaHCO₃ (2 x 30ml), H₂O (30ml), dried (Na₂SO₄), filtered and concentrated *in vacuo* giving a light yellow oil. Yield = 1.046g, 102%. LCMS purity 96%, m/z 434 [M+H]⁺.

The sulphide used in the procedure above was prepared as follows

1-Chloro-N,N-2-trimethylpropenylamine (2.03ml, 15.34mmol) was added to a colourless solution of propiolic acid (0.94ml, 15.34mmol) in anhydrous THF (50ml) at 0°C under N₂. The resultant colourless solution was stirred at 0°C for 2h after which time a yellow solution of the N-(1,4-Doxa-spiro[4.5]dec-8-yl)-3-(4-fluorophenyl)-3-oxo-thiopropionimidic acid (4.667g, 12.79mmol) in anhydrous THF (50ml) was added over 5

27 Sep 2012

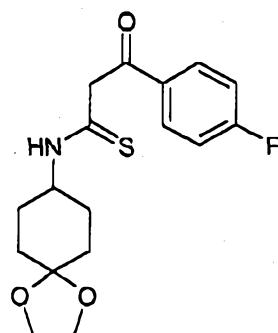

2007246869

54

min at 0°C. The resultant yellow solution was then allowed to warm to RT and stirred for 24h. The reaction mixture was concentrated *in vacuo* giving a dark brown oil, which was diluted with EtOAc (20ml) and allowed to stand at RT overnight giving a crystalline solid which was isolated by filtration and washed with heptane and TBME. Yield = 216mg.

The filtrate was concentrated *in vacuo* giving a brown solid which was dissolved in CH₂Cl₂ (100ml) and washed with sat. Na₂CO₃ (3 x 100ml), H₂O (2 x 100ml), dried (Na₂SO₄), filtered and concentrated *in vacuo* giving a brown oil. Purification by flash column chromatography (silica, 100% CH₂Cl₂ to 30% EtOAc/CH₂Cl₂) gave the cyclised product after trituration with TBME. Yield = 770mg. Overall yield = 986mg, 19%. LCMS purity 100%, m/z 418 [M+H]⁺.

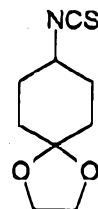
The thiopropionimidic acid used in the above procedure was prepared as follows:


K₂CO₃ (16.1g, 117mmol) was added to a solution of N-(1,4-Dioxaspiro[4.5]dec-8-yl)-3-(4-fluorophenyl)-3-oxo-thiopropionamide (18.8g, 55.7mmol) in acetone (200ml) at RT/N₂ followed by the ethyl iodide (6.68ml, 83.6mmol). The reaction mixture was stirred at RT/N₂ for 2h and then concentrated *in vacuo* giving a brown paste which was taken up in EtOAc (300ml) and washed with H₂O (250ml). The organic phase was separated and the aqueous phase was extracted with EtOAc (2 x 150ml). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo* a brown oil. Purification by flash column chromatography (silica, 15% EtOAc/Heptane) gave a yellow oil. Yield = 9.94g, 49%. LCMS purity 94%, m/z 366 [M+H]⁺.

27 Sep 2012

2007246869

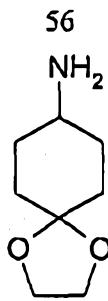
55


The thiopropionamide used in the above process was prepared as follows:

A solution of 4-fluoroacetophenone (6.76ml, 55.7mmol) in THF (50ml) was added slowly over 5 min to a stirred suspension of KO^tBu (6.56g, 58.5mmol) in THF (40ml) at 0°C. A solution of 8-isothiocyanato-1,4-dioxaspiro[4.5]decane (11.1g, 55.7mmol) in THF (30ml) was added at 0°C over 5 min and the resulting mixture was stirred at 0°C for 90 min.

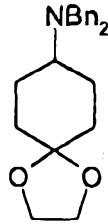
The reaction mixture was evaporated to dryness giving a dark brown solid which was used crude in the next stage. Yield = 18.8g, 100%. LCMS purity 55%, m/z 338 [M+H]⁺.

The isothiocyanate used in the above procedure was prepared as follows



Calcium carbonate (13.75g, 137.4mmol) was added to a solution of 1,4-dioxaspiro[4.5]dec-8-ylamine (13.5g, 85.9mmol) in CH₂Cl₂ (675ml) and H₂O (330ml) with vigorous stirring at RT. The thiophosgene (8.5ml, 111.6mmol) was added dropwise over 5 min and upon complete addition the reaction mixture was stirred at RT for 2h. The reaction mixture was diluted with H₂O (600ml) and extracted into CH₂Cl₂ (300ml). The organic phase was dried (Na₂SO₄), filtered and concentrated *in vacuo* giving the product. Yield = 8.5g, 50%. LCMS purity 47%, m/z 200 [M+H]⁺.

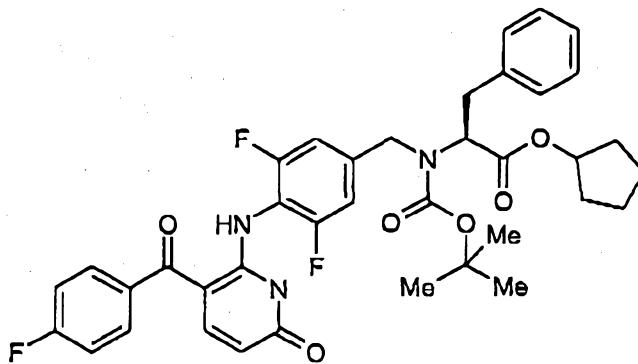
The cyclohexylamine used in the above process was prepared as follows:


27 Sep 2012

2007246869

10% $\text{Pd}(\text{OH})_2/\text{C}$ (1g) was added to a fine suspension of N,N -dibenzyl-N-1,4-dioxaspiro[4.5]dec-8-ylamine (21.13g, 62.7mmol) in EtOH (400ml) at RT. The resultant mixture was evacuated and purged three times with H_2 and then held under an atmosphere of H_2 (balloon) overnight. The reaction mixture was evacuated and purged three times with N_2 and then the catalyst was removed by filtration. The filtrate was concentrated *in vacuo* giving the amine as a colourless oil. Yield = 14.34g, 99%. LC-MS (ELS detection) purity 100%, m/z 158 $[\text{M}+\text{H}]^+$.

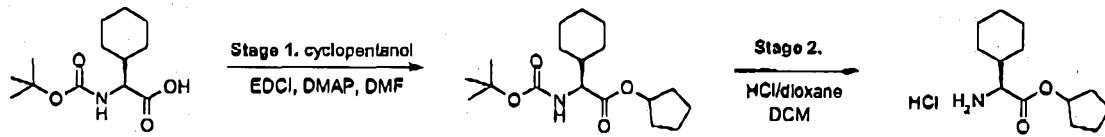
The dibenzylamine used in the above process was prepared as follows:

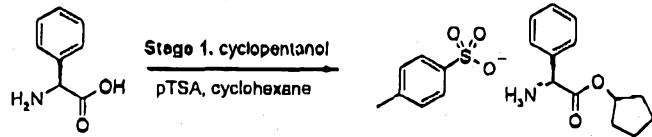


Dibenzylamine (27.8ml, 145mmol) was added to a solution of 1,4-dioxaspiro[4.5]decan-8-one (21.5g, 138mmol) in DCE (350ml) at RT under N_2 and stirred for 1h. Sodium triacetoxylborohydride (46.7g, 220mmol) was added portion wise over 10min and upon complete addition the reaction was stirred at RT/ N_2 overnight. Saturated NaHCO_3 (300ml) was added followed by DCM (300ml) and the reaction mixture was stirred for 30 min. The organic phase was separated and washed with NaHCO_3 (300ml), brine (300ml), dried (Na_2SO_4), filtered and concentrated *in vacuo* giving an oil which upon trituration with heptane gave a white solid which was isolated by filtration. Yield = 30.95g, 67%. LCMS purity 100%, m/z 338 $[\text{M}+\text{H}]^+$.

Intermediate 7 Cyclopentyl (S)-2-(tert-Butoxycarbonyl)-3,5-difluoro-4-[3-(4-fluorobenzoyl)-6-oxo-1,6-dihdropyridin-2-ylamino]benzyl]amino)-3-phenyl propionate

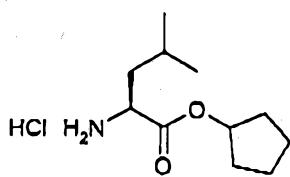
27 Sep 2012
2007246869

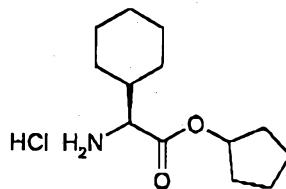

57


The pyridone was formed as a side product of the procedure described for the synthesis of Intermediate 3K. LCMS purity 80%, m/z 690 [M+H]⁺.

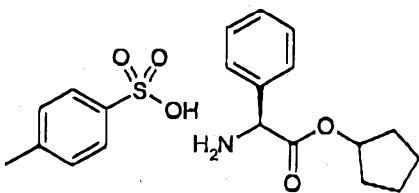
Preparation of aminoacid esters (Intermediates 8 to 16)

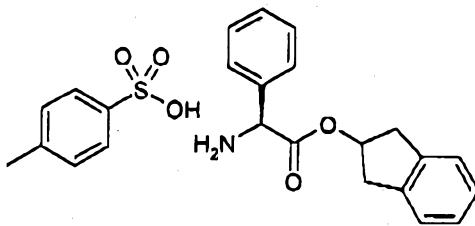
Route I. Used for the preparation of Intermediates 8, 9, 13, 14 and 15

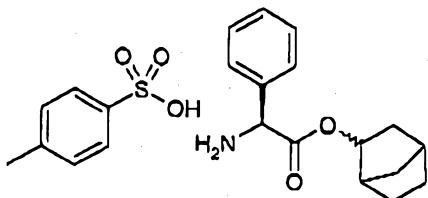

Route II. Used for the preparation of Intermediate 10, 11, 12 and 16

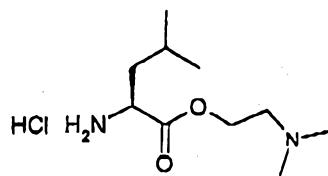

27 Sep 2012
2007246869

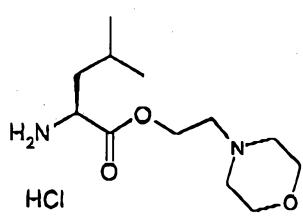
58

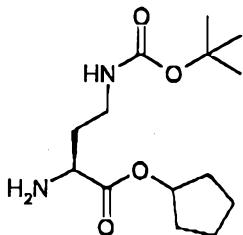

Intermediates prepared:

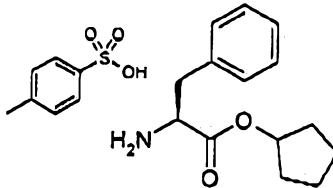

Intermediate 8


Intermediate 9


Intermediate 10


Intermediate 11


Intermediate 12


Intermediate 13

Intermediate 14

Intermediate 15

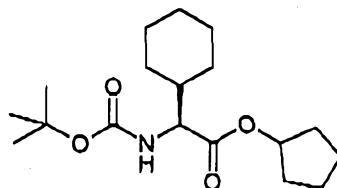
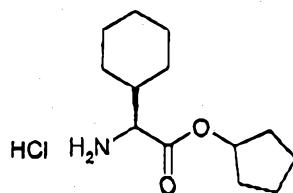

Intermediate 16

Figure 1


27 Sep 2012

2007246869

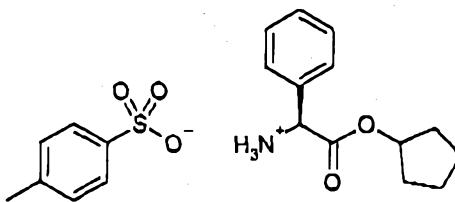
59

Synthesis of compounds outlined in Figure 1**Route 1 (exemplified for Intermediate 9)****Stage 1 – Ester formation**

To a solution of (S)-2-tert-butoxycarbonylamino-3-cyclohexyl-propionic acid (5g, 19.4mmol) in DMF (50ml) at 0°C was added cyclopentanol (8.8ml, 97.15mmol), EDCI (4.09g, 21.37mmol) and finally DMAP (237mg, 1.94mmol). The reaction mixture was warmed to RT and stirred for 18h. The DMF was removed *in vacuo* to give a clear oil. This was separated between water and EtOAc. The organic phase was dried (MgSO_4) and concentrated *in vacuo*. The crude extract was purified by column chromatography (25% EtOAC in heptane) to yield the desired product as a clear oil (14.87g, 55%). ^1H NMR (300 MHz, d_6 -DMSO) δ : 7.09 (1H, d), 5.08 (1H, t), 3.76 (1H, t), 1.50-1.85 (10H, br m), 1.39 (9H, s), 1.00-1.25 (9H, br m).

Stage 2 – Boc deprotection to yield cyclopentyl (2S)-amino(cyclohexyl)acetate hydrochloride (Intermediate 9)

Stage 1 product (14.87g, 45.69mmol) was dissolved in DCM (100ml) and treated with 4M HCl/dioxane (22.8ml, 91.38mmol) and the reaction mixture was stirred at RT for 24h. The crude mixture was concentrated under reduced pressure to give an orange oil. This was triturated with Et_2O to give a white precipitate. This was further washed with Et_2O to


2007246869 27 Sep 2012

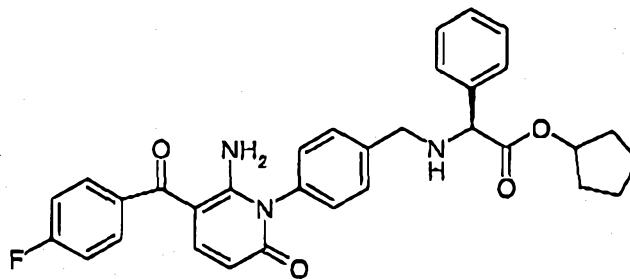
60

give the desired product as a white powder (7.78g, 65%). ^1H NMR (300MHz, d_6 -DMSO) δ ; 8.45 (3H, br s), 5.22 (1H, t), 3.28 (1H, d), 1.95-1.50 (10H, br m), 1.30-0.90 (9H, br m).

Route II (exemplified for Intermediate 10)

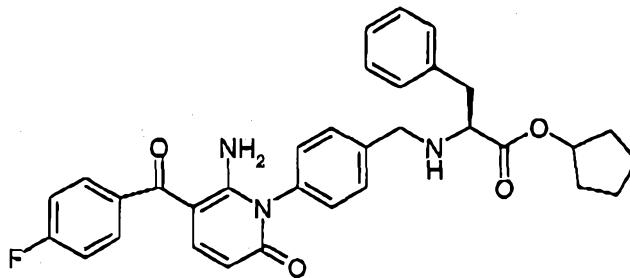
Stage 1 – Ester formation to yield (1S)-2-(cyclopentyloxy)-2-oxo-1-phenylethanaminium 4-methylbenzenesulfonate (Intermediate 10)

To a slurry of (S)-phenylglycine (5g, 33.1mmol) in cyclohexane (150ml) was added cyclopentanol (29.84ml, 331mmol) and *p*-toluene sulfonic acid (6.92g, 36.4mmol). The reaction was fitted with a Dean-Stark receiver and heated to 135°C for complete dissolution. After 12h, the reaction was cooled to RT leading to the precipitation of a white solid. The solid was filtered and washed with EtOAc before drying under reduced pressure to give the required product as a white powder (11.01g, 85%). ^1H NMR (300MHz, d_6 -DMSO) δ ; 8.82 (2H, br s), 8.73 (1H, br s), 7.47 (7H, m), 7.11 (2H, d), 5.25 (1H, br s), 5.18 (1H, m), 2.29 (3H, s), 1.87-1.36 (8H, m).


Intermediates 11 and 12 were prepared using 2-indanol and α -norborneol respectively, instead of cyclopentanol (via Route II). In a similar manner, intermediates 13 and 14 were prepared using dimethylaminoethanol and 4-(2-hydroxyethyl)-morpholine respectively (via Route I). Intermediate 15 was prepared via route I using commercially available Z-Dab(Boc)-OH (N- α -Z-N- γ -Boc-L-2,4-diaminobutyric acid).

The corresponding (R)-amino acid esters of the above intermediates can be prepared in a similar manner to shown above, starting from the relevant commercially available (R)-amino acids. In addition, the corresponding Leucine and Phenylglycine tert-butyl esters are commercially available and are used directly where appropriate.

27 Sep 2012


2007246869

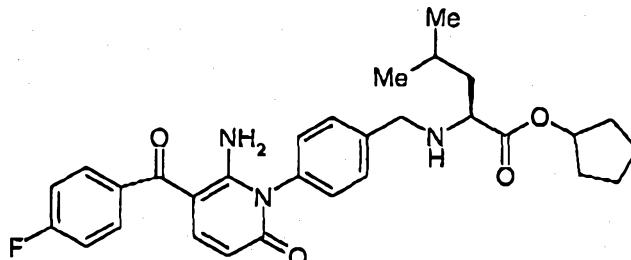
61

ExamplesExample 1 Cyclopentyl (S)-(4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}phenylacetate

A mixture of Intermediate 3A (80mg, 0.125mmol) in 20% TFA/DCM solution (5ml) was allowed to stir at RT for 1h. The reaction mixture was evaporated to dryness and purified by preparative HPLC to give the desired product, yield = 33mg (40%), LCMS purity= 100% m/z 540 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 1.21-1.82 (8H, m), 4.01-4.14 (2H, m), 5.11-5.21 (2H, m), 5.64 (1H, d), 7.21-7.54 (13H, m), 7.62 (1H, d), 10.16 (2H, br s).

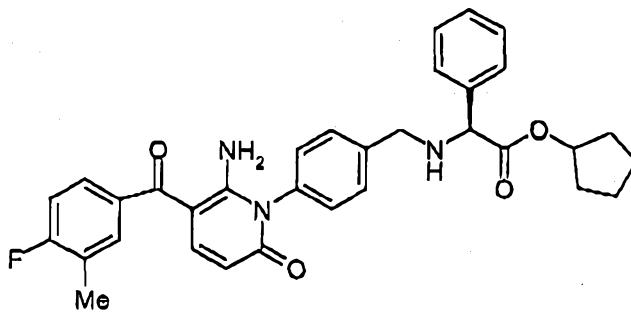
The following examples were prepared in a similar manner to Example 1.

Example 2 Cyclopentyl (S)-2-{4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino} -3-phenylpropionate

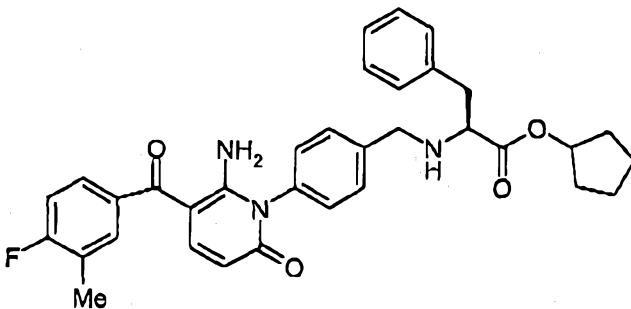

From the Intermediate 3D, LCMS purity 100%, m/z 554 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 1.22-1.83 (8H, m), 3.10 (1H, m), 4.45 (3H, m), 5.19 (1H, m), 5.85 (1H, d), 7.35-7.74 (14H, m), 7.82 (1H, br s), 9.96 (1H, br s).

27 Sep 2012

2007246869


62

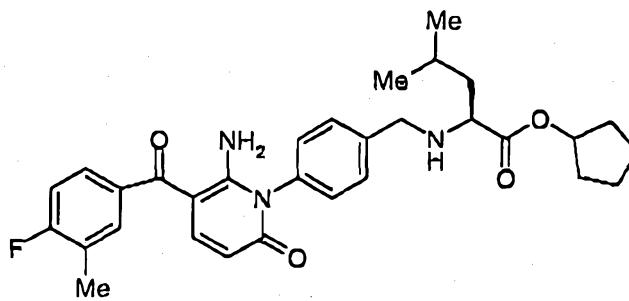
Example 3 Cyclopentyl (S)-2-{4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-4-methylpentanoate


From Intermediate 3G, LCMS purity 100%, m/z 520 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ: 1.10 (6H, m), 1.70-2.11 (11H, m), 4.14-4.53 (3H, m), 5.42 (1H, m, CH), 5.90 (1H, d), 7.49-7.91 (9H, m), 9.83 (2H, br s).

Example 4 Cyclopentyl (S)-{4-[6-Amino-5-(3-methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}phenylacetate

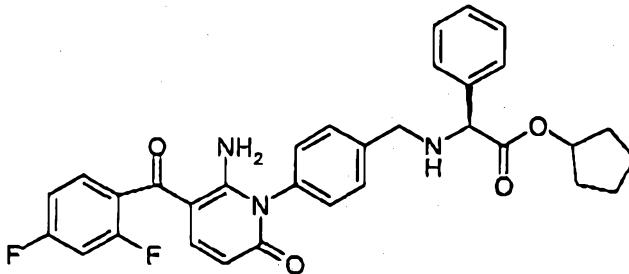
From Intermediate 3C, LCMS purity 97%, m/z 554 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.30-1.81 (8H, m), 2.25 (3H, s), 3.72 (2H, s), 4.34 (1H, s), 5.08 (1H, m), 5.70 (1H, d), 7.03-7.38 (10H, m), 7.46-7.61 (3H, m).

Example 5 Cyclopentyl (S)-2-{4-[6-Amino-5-(3-methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-3-phenylpropionate


27 Sep 2012

2007246869

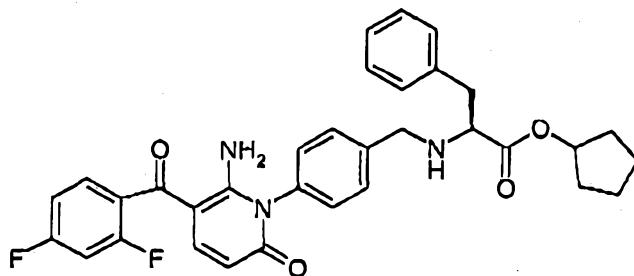
63


From Intermediate 3F. LCMS purity 100%, m/z 568 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 1.09-1.77 (8H, m), 2.30 (3H, s), 2.95 (1H, m), 3.14 (2H, s), 4.19-4.42 (3H, m), 5.02 (1H, m), 5.69 (1H, d), 7.19-7.51 (11H, m), 7.68 (2H, m), 9.79 (2H, br s).

Example 6 Cyclopentyl (S)-2-{4-[6-Amino-5-(3-Methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-4-methylpentanoate

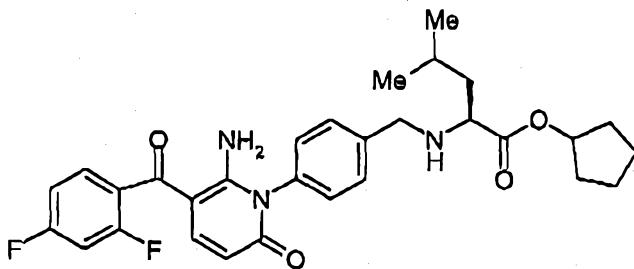
From Intermediate 3J. LCMS purity 100%, m/z 534 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 0.71 (6H, m), 1.32-1.70 (11H, m), 2.09 (3H, s), 3.72-4.14 (3H, m), 5.03 (1H, m), 5.50 (1H, d), 7.00-7.29 (6H, m), 7.46 (2H, m), 9.40 (2H, br s).

Example 7 Cyclopentyl (S)-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}phenylacetate


From Intermediate 3B. LCMS purity 100%, m/z 558 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 1.33-1.89 (8H, m), 3.71 (2H, m), 4.28 (1H, s), 5.04 (1H, m), 5.61 (1H, d), 6.91 (1H, br s), 7.18-7.60 (13H, m), 10.05 (1H, br s).

27 Sep 2012

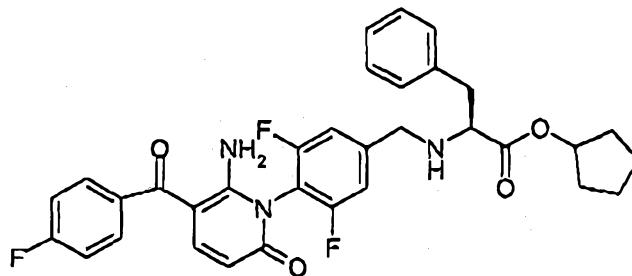
2007246869


64

Example 8 Cyclopentyl (S)-2-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-3-phenylpropionate

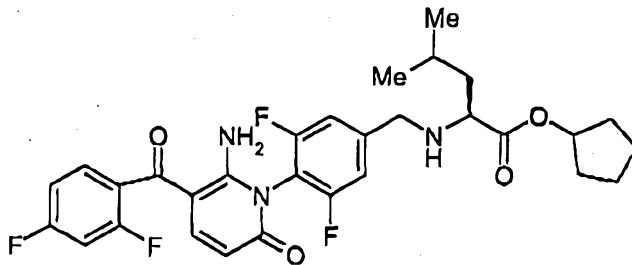
From Intermediate 3E. LCMS purity 100%, m/z 572 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 1.08-1.76 (8H, m), 2.95 (1H, t), 4.11-4.40 (3H, m), 4.98 (1H, m), 5.68 (1H, d), 6.89 (1H, br s), 7.13-7.50 (12H, m), 7.65 (1H, m), 9.64-10.12 (2H, br s).

Example 9 Cyclopentyl (S)-2-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-4-methylpentanoate

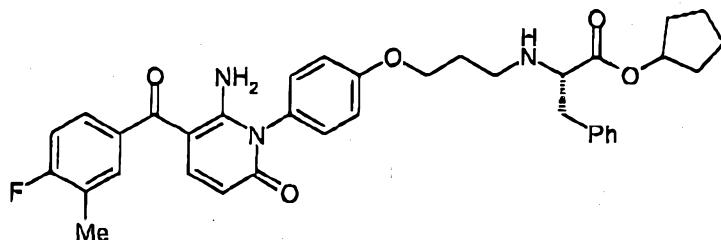


From Intermediate 3I. LCMS purity 100%, m/z 538 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 0.79 (6H, m), 1.39-1.78 (11H, m), 3.84-4.22 (3H, m), 5.10 (1H, m), 5.59 (1H, d), 6.79 (1H, br s), 7.03-7.18 (2H, m), 7.21-7.42 (4H, m), 7.56 (2H, m), 9.54 (1H, br s), 9.92 (1H, br s).

Example 10 Cyclopentyl (S)-2-{4-[6-Amino-5-(2,4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorobenzylamino}-3-phenylpropionate


2007246869 27 Sep 2012

65

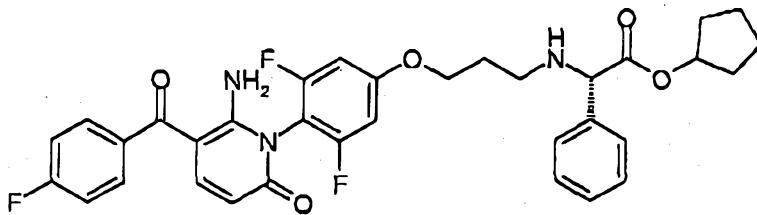

From Intermediate 3K. LCMS purity 94%, m/z 591 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 1.20-1.90 (10H, m), 3.10 (1H, m), 3.50-3.60 (2H, m), 4.40-4.50 (4H, m), 5.20 (1H, m), 5.90 (1H, d), 7.35-7.50 (7H, m), 7.65-7.70 (5H, m), 9.50 (1H, br)

Example 11 Cyclopentyl (S)-2-{4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorobenzylamino}-4-methylpentanoate

From Intermediate 3L. LCMS purity 96%, m/z 574 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 0.95-1.15 (6H, m), 1.65-2.05 (11H, m), 4.15-4.25 (1H, m), 4.35-4.45 (2H, m), 5.35-5.45 (1H, m), 5.85 (1H, d), 7.10-7.20 (2H, m), 7.45-7.55 (4H, m).

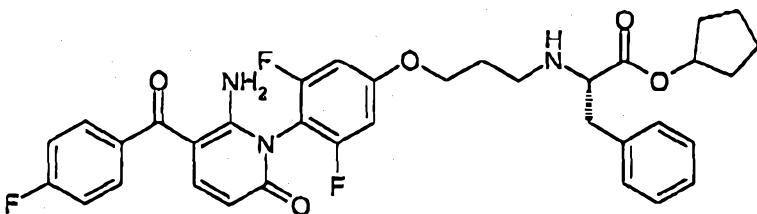
Example 12 Cyclopentyl (S)-2-(3-[4-Amino-5-(3-methyl-4-fluoro benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-3-phenyl propionate

To a mixture of L-phenylalanine cyclopentyl ester tosylate salt (Intermediate 16) (218mg, 0.54mmol), K₂CO₃ (192mg, 1.39mmol), NaI (108mg, 0.72mmol) was added a solution of mesylate Intermediate 4A (170mg, 0.35mmol) in THF (2ml). The reaction


27 Sep 2012
2007246869

66

mixture was diluted with DMF (2ml) and heated at 70 °C for 18h with stirring. The reaction mixture was cooled to RT, THF was removed by concentration under reduced pressure. The residue was diluted with EtOAc (20ml) and washed with water (10ml), dried (Na_2SO_4), filtered and evaporated to dryness. Purification by preparative HPLC afforded the desired product, yield= 57mg, 15%. LCMS purity 97%, m/z 612 [M+H]⁺, ¹H NMR (400 MHz, CD_3OD), δ : 1.30-2.00 (8H, m), 2.30 (2H, m), 3.10 (1H, m), 3.40 (1H, m), 4.25 (2 H, m), 4.40 (1H, m), 5.20 (1H, m), 5.85 (1H, d), 6.90 (2H, m), 7.10 (2H, d), 7.20-7.45 (7H, m), 7.65 (2H, m), 7.75 (1H, m).

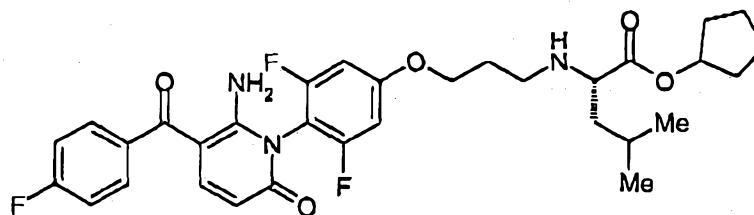

The following compounds were prepared in a similar manner

Example 13 Cyclopentyl (S)-(3-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino)phenylacetate

From Intermediate 4E and L-phenylglycine cyclopentyl ester tosylate salt (Intermediate 10), LCMS purity 96%, m/z 620 [M+H]⁺, ¹H NMR (400 MHz, CD_3OD), δ : 1.40-1.65 (5H, m), 1.80 (2H, m), 1.95 (1H, m), 2.30 (2H, m), 3.15 (1 H, m), 3.30 (1H, m), 4.25 (2H, m), 5.25 (1H, s), 5.40 (1H, m), 5.90 (1H, d), 6.90 (2H, d), 7.30 (2H, t), 7.55 – 7.60 (5H, m), 7.65 (2H, m) 7.75 (1H, d).

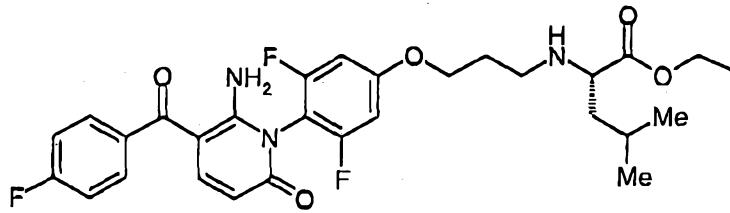
Example 14 Cyclopentyl (S)-(3-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino)phenylacetate

From Intermediate 4E and L-phenylalanine cyclopentyl ester tosylate salt (Intermediate 16), LCMS purity 97%, m/z 634 [M+H]⁺, ¹H NMR (400 MHz, CD_3OD), δ : 1.30-2.00 (8H,


27 Sep 2012

2007246869

67


m), 2.30 (2H, m), 3.10 (1H, m), 3.40 (1H, m), 4.25 (2H, m), 4.40 (1H, m), 5.20 (1H, m), 5.85 (1H, d), 6.90 (2H, m), 7.10 (2H, d), 7.20-7.45 (7H, m), 7.65 (2H, m), 7.75 (1H, m).

Example 15 Cyclopentyl (S)-2-(3-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxyphenoxy)propylamino)-4-methyl pentanoate

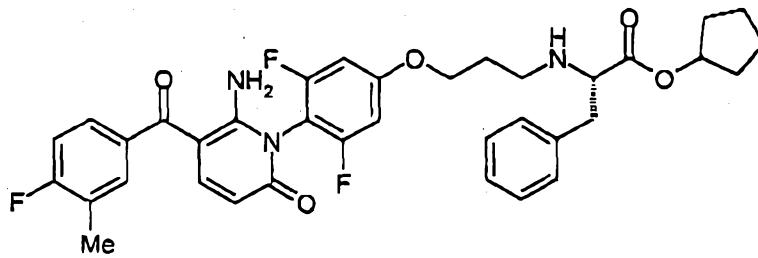
From Intermediate 4E and L-leucine cyclopentyl ester (Intermediate 8), LCMS purity 96%, m/z 600 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.10 (6H, m), 1.70-2.0 (12H, m), 2.30 (2H, m), 4.10 (1H, m), 4.25 (2H, m), 4.40 (1H, m), 5.40 (1H, m), 5.85 (1H, d), 6.90 (2H, m), 7.10 (2H, d), 7.60 (2H, m), 7.65 (2H, m), 7.75 (1H, m).

Example 16 Ethyl N-(3-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl)-L-leucinate

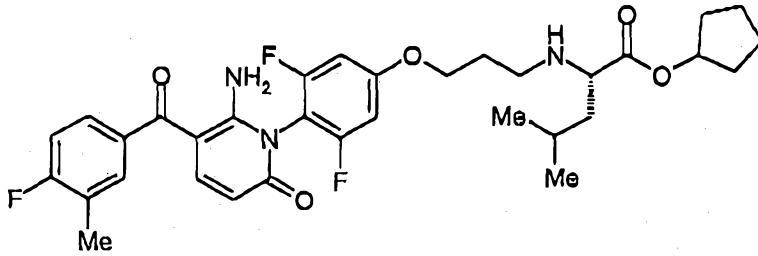


From Intermediate 4E and L-leucine ethyl ester LCMS purity 98%, m/z 560 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.10-1.20 (6H, m), 1.45-1.55 (3H, t), 1.65-1.85 (2H, m), 1.90-2.00 (1H, m), 2.15-2.30 (2H, m), 2.85-3.05 (2H, m), 3.55 (1H, m), 4.35-4.50 (4H, m), 6.00 (1H, d), 7.10 (1H, d), 7.45-7.55 (1H, m), 7.80-7.85 (1H, m), 7.95 (1H, d).

Example 17 Cyclopentyl (S)-(3-[4-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino) phenylacetate


2007246869 27 Sep 2012

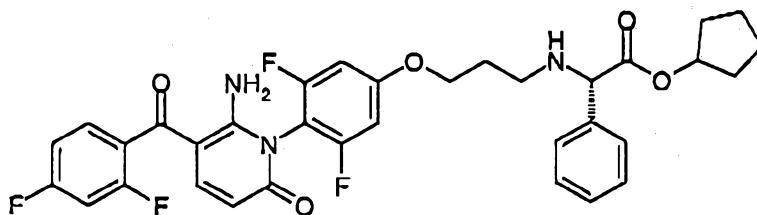
68


From Intermediate 4D and L-phenylglycine cyclopentyl ester tosylate salt (Intermediate 10), LCMS purity 100%, m/z 634 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 1.20-1.80 (8H, m), 2.0 (2H, m), 2.20 (3H, m), 2.80-3.00 (2H, m), 4.10 (2H, m), 5.10 (1H, m), 5.30 (1H, s), 5.60 (1H, d), 6.95 (1H, d), 7.20 (1H, m), 7.30 (1H, m), 7.40-7.50 (8H, m), 9.65 (1H, m).

Example 18 Cyclopentyl (S)-2-(3-[4-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino)-3-phenylpropionate

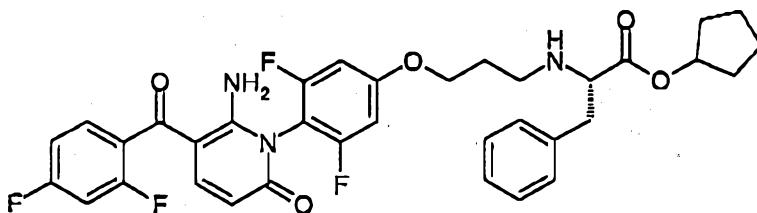
From Intermediate 4D and L-phenylalanine cyclopentyl ester tosylate salt (Intermediate 16), LCMS purity 97%, m/z 648 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.20-1.90 (9H, m), 2.25 (2H, m), 2.35 (3H, s), 3.15 (1H, m), 3.45 (1H, m), 4.25 (2H, m), 4.40 (1H, d), 5.20 (2H, m), 5.82 (1H, d), 6.95 (2H, m), 7.20 (1H, m), 7.30-7.50 (7H, m), 7.75 (1H, d).

Example 19 Cyclopentyl (S)-2-(3-[4-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino)-4-methylpentanoate



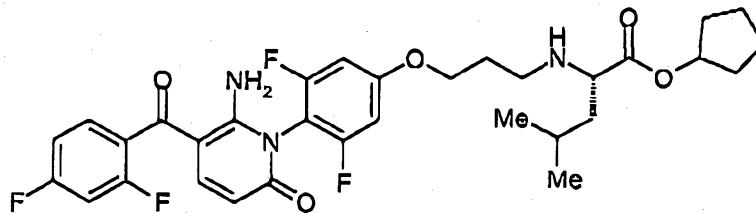
2007246869 27 Sep 2012

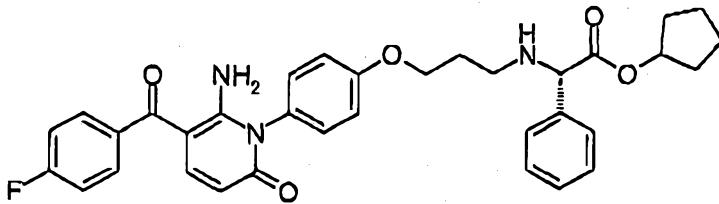
69


From Intermediate 4D and L-leucine cyclopentyl ester (Intermediate 8), LCMS purity 100%, m/z 614 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 0.90 (6H, m), 1.60-1.70 (10H, m), 1.90 (2H, m), 2.15 (2H, m), 2.30 (3H, s), 3.00-3.20 (2H, m), 4.10 (1H, s), 4.20 (2H, m), 5.25 (1H, m), 5.70 (1H, d), 7.05 (1H, d), 7.25 (1H, m), 7.40 (1H, m), 7.50 (1H, m), 7.60 (1H, d).

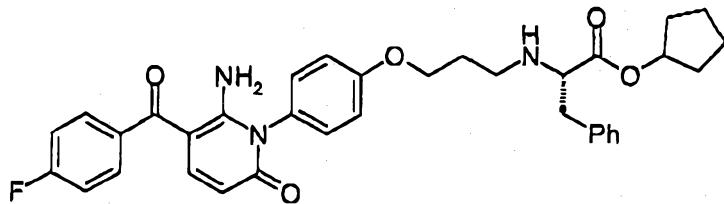
Example 20 Cyclopentyl (S)-(3-[4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)phenyl acetate

From Intermediate 4F and L-phenylglycine cyclopentyl ester tosylate salt (Intermediate 10), LCMS purity 91%, m/z 638 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 1.50-2.10 (8H, m), 2.30 (2H, m), 3.10-3.25 (2H, m), 4.33 (2H, m), 5.40 (1H, m), 5.56 (1H, m), 5.90 (1H, d), 7.20 (1H, d) 7.40-7.75 (9H, m), 9.85 (2H, m).


Example 21 Cyclopentyl (S)-2-(3-[4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}-propylamino)-3-phenyl propionate


From Intermediate 4F and L-phenylalanine cyclopentyl ester tosylate salt (Intermediate 16), LCMS purity 100%, m/z 652 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 1.10-1.80 (9H, m), 2.15 (2H, m), 2.95-3.20 (2H, m), 4.20 (2H, m), 4.40 (1H, m), 5.10 (1H, m), 5.75 (1H, d), 7.06 (2H, d), 7.25-7.58 (9H, m), 9.34 (2H, m).

2007246869 27 Sep 2012


70

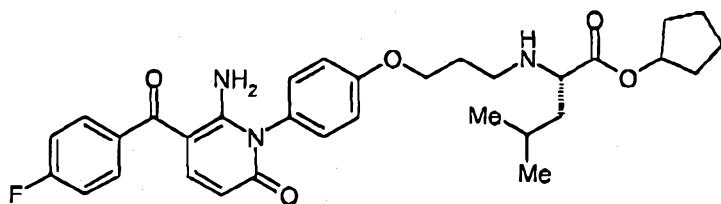
Example 22 Cyclopentyl (S)-2-(3-[4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)-4-methyl pentanoate

From Intermediate 4F and L-leucine cyclopentyl ester (Intermediate 8), LCMS purity 87%, m/z 618 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 1.0 (6H, m), 1.75 (9H, m), 1.95 (2H, m), 2.20 (2H, m), 3.10-3.30 (2H, m), 4.16 (1H, m), 4.26 (2H, m), 5.33 (1H, m), 5.80 (1H, d), 7.15 (2H, d), 7.40-7.65 (4H, m), 9.13- 9.25 (2H, m).

Example 23 Cyclopentyl (S)-(3-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-phenoxy}propylamino)phenylacetate

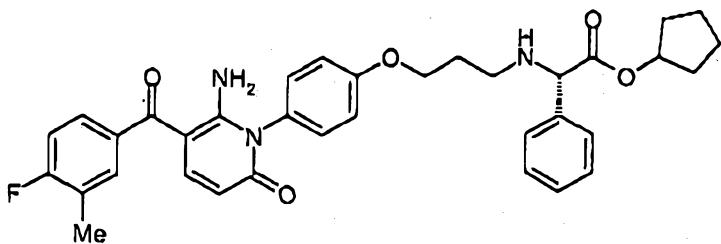
From Intermediate 4B and L-phenylglycine cyclopentyl ester tosylate salt (Intermediate 10), LCMS purity 95%, m/z 584 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.25-1.55 (5H, m), 1.60-1.85 (3H, m), 2.15 (2H, m), 3.00 (1H, m), 3.15 (1H, m), 4.05 (2H, m), 5.10 (1H, s), 5.25 (1H, m), 5.70 (1H, d), 7.00 (2H, m), 7.15 (4H, m), 7.40-7.50 (7H, m), 7.55 (1H, d).

Example 24 Cyclopentyl (S)-2-(3-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy}propylamino)-3-phenylpropionate


27 Sep 2012

2007246869

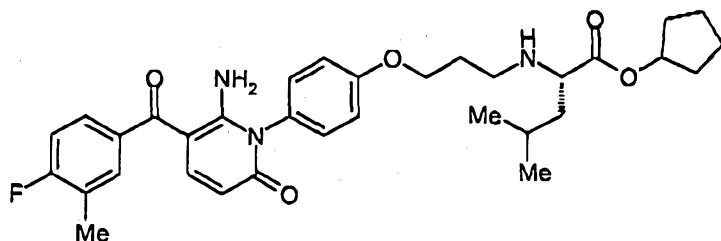
71


From Intermediate 4B and L-phenylalanine cyclopentyl ester (Intermediate 16), LCMS purity 93%, m/z 598 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 1.50-2.10 (8H, m), 2.50 (2H, m), 3.35-3.40 (1H, m), 3.55-3.70 (2H, m), 4.40-4.50 (2H, m), 4.60 (1H, m), 5.40-5.45 (1H, m), 6.05-6.10 (1H, d), 7.40-7.65 (11H, m), 7.85 (2H, m), 7.90 (1H, m).

Example 25 Cyclopentyl (S)-2-(3-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-4-methylpentanoate

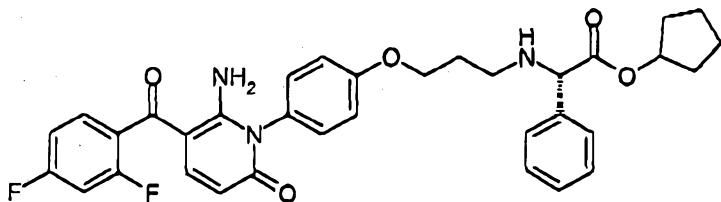
From Intermediate 4B and L-leucine cyclopentyl ester (Intermediate 8), LCMS purity 97%, m/z 564 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ : 0.90 (6H, m), 1.60-1.75 (10H, m), 1.90 (2H, m), 2.15 (2H, m), 3.10-3.30 (2H, m), 4.10 (1H, m), 4.15 (2H, m), 5.30 (1H, m), 5.70 (1H, d), 7.15 (2H, d), 7.30 (2H, d), 7.35 (2H, t), 7.50 (1H, d), 7.55 (1H, m), 9.05-30 (2H, m).

Example 26 Cyclopentyl (S)-(3-[4-[6-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl-phenoxy)propylamino)phenylacetate

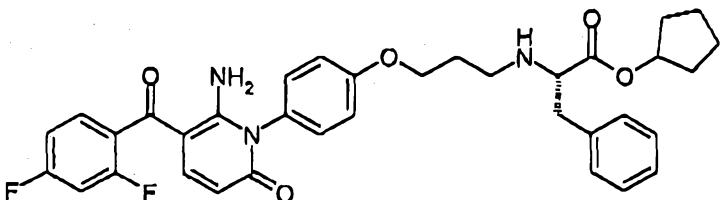


From Intermediate 4A and L-phenylglycine cyclopentyl ester tosylate salt (Intermediate 10), LCMS purity 95%, m/z 598 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ : 1.30-2.20 (10H, m), 2.30 (3H, m), 2.90-3.10 (2H, m), 4.15 (2H, m), 5.20 (1H, m), 5.30 (1H, m), 5.70 (1H, d), 7.10 (2H, d), 7.25-7.40 (5H, m), 7.40-7.50 (3H, m), 7.55 (5H, m), 9.70 (2H, m).

2007246869 27 Sep 2012


72

Example 27 Cyclopentyl (S)-2-(3-[4-[6-Amino-5-(4-fluoro-3-methyl benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-4-methylpentanoate

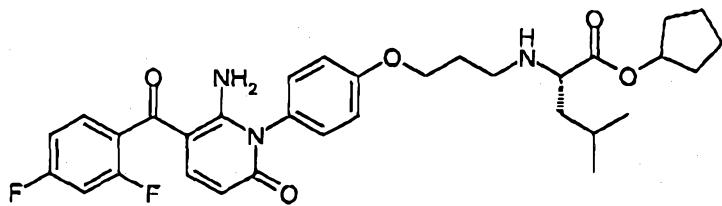

From Intermediate 4A and L-leucine cyclopentyl ester (Intermediate 8), LCMS purity 89%, m/z 578 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 0.95 (6H, m), 1.55-2.25 (12H, m), 2.30 (3H, m), 2.75-3.30 (2H, m), 4.15 (3H, m), 5.25 (1H, m), 5.70 (1H, d), 7.15 (2H, d), 7.30-7.40 (4H, m), 7.40 – 7.50 (2H, m).

Example 28 Cyclopentyl (S)-(3-[4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-phenoxy)propylamino)phenyl acetate

From Intermediate 4C and L-phenylglycine cyclopentyl ester tosylate salt (Intermediate 10), LCMS purity 99%, m/z 602 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 1.35-2.15 (10H, m), 2.90-3.10 (2H, m), 4.10 (2H, m), 5.25 (1H, m), 5.40 (1H, m), 5.70 (1H, d), 7.10 (2H, d), 7.25-7.30 (4H, m), 7.40-7.50 (2H, m), 7.55 (5H, m), 9.70 (2H, m).

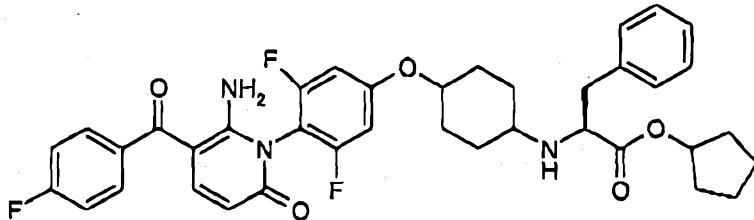
Example 29 Cyclopentyl (S)-2-(3-[4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-3-phenyl propionate

From Intermediate 4C and L-phenylalanine cyclopentyl ester tosylate salt (Intermediate 16), LCMS purity 99%, m/z 616 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 1.10-1.80 (8H,


27 Sep 2012

2007246869

73

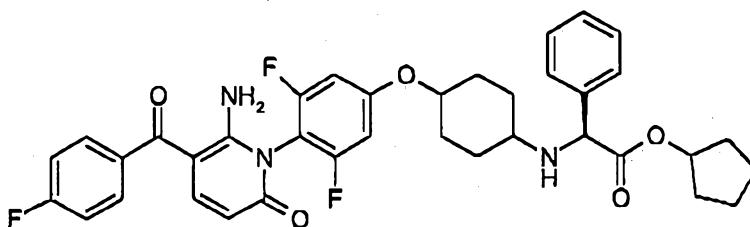

m), 2.20 (2H, m), 2.95 (1H, m), 3.10-3.30 (2H, m), 3.40 (2H, m), 4.20 (2H, m), 4.40 (1H, m), 5.05 (1H, m), 5.70 (1H, d), 7.15 (2H, d), 7.20-7.55 (11H, m), 9.70 (2H, m).

Example 30 Cyclopentyl (S)-2-(3-[4-Amino-5-(2,4difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-4-methyl pentanoate

From Intermediate 4C and L-leucine cyclopentyl ester (Intermediate 8), LCMS purity 99%, m/z 582 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 0.95 (6H, m), 1.65-2.15 (13H, m), 3.10-3.20 (2H, m), 4.15 (3H, m), 5.30 (1H, m), 5.70 (1H, d), 7.15 (2H, d), 7.25-7.55 (6H, m), 9.24 (2H, m)

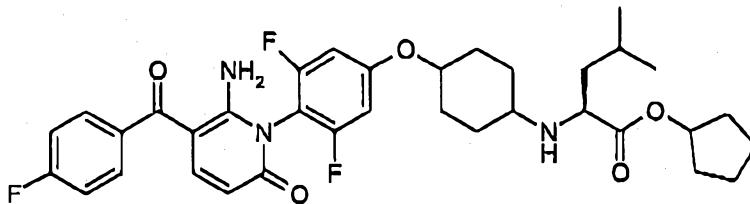
Example 31 Cyclopentyl (S)-2-(4-[4-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]3,5-difluorophenoxy)cyclohexylamino)-4-methylpentanoate trifluoroacetate

A suspension of Intermediate 5 (120mg, 0.263mmol) and L-Phenylalanine cyclopentyl ester tosylate salt (Intermediate 16) (98mg, 0.263mmol) in MeOH (1.2ml) was allowed to stir at RT for 1h before addition of NaCNBH₃ (66mg, 1.05mmol). Stirring was continued at RT for 18h. Upon completion of reaction the reaction mixture was concentrated to dryness and partitioned between EtOAc (10ml) and water (10ml). The organic layer was dried (Na₂SO₄), filtered and concentrated to dryness under reduced pressure and was purified by preparative HPLC. This gave the desired product as a TFA salt. Yield= 37mg (18%).


LCMS purity 97%, m/z 674 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.10-2.20 (16H, m), 2.35-2.45 (1H, m), 2.70-3.00 (2H, m), 3.50-3.55 (1H, m), 4.25-4.35 (1H, m), 4.95-5.05 (1H, m), 5.70 (1H, d), 6.75 (2H, dd), 7.05-7.25 (7H, m), 7.45-7.55 (2H, m), 7.65 (1H, d)

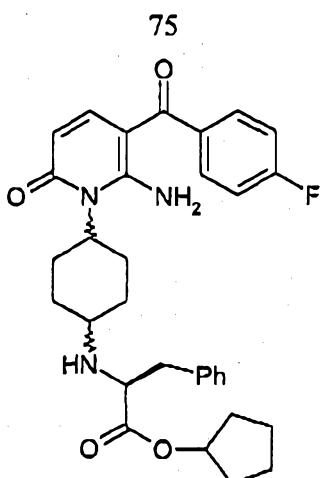
2007246869 27 Sep 2012

74

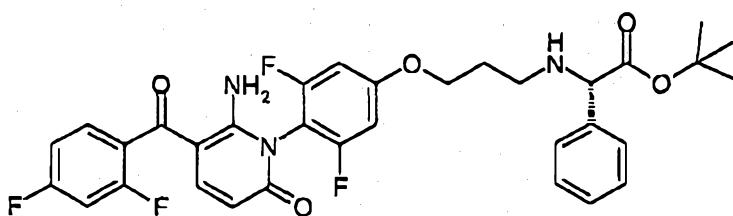

The following examples were prepared in a similar manner:

Example 32 Cyclopentyl (2S)-[(4-[4-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)cyclohexyl]amino](phenyl)acetate

From Intermediate 5 (120mg, 0.263mmol) and L-phenylglycine cyclopentyl ester (Intermediate 10). LCMS purity 97%, m/z 660 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 1.30-1.80 (14H, m), 1.90-2.05 (2H, m), 2.35-2.50 (1H, m), 4.35-4.45 (1H, m), 4.50-4.60 (1H, m), 5.05-5.10 (1H, m), 5.70 (1H, d), 6.75-6.85 (2H, m), 7.10-7.15 (2H, m), 7.20-7.35 (5H, m), 7.45-7.55 (2H, m), 7.55-7.60 (1H, m).


Example 33 Cyclopentyl (S)-2-[4-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)cyclohexylamino]-4-methylpentanoate

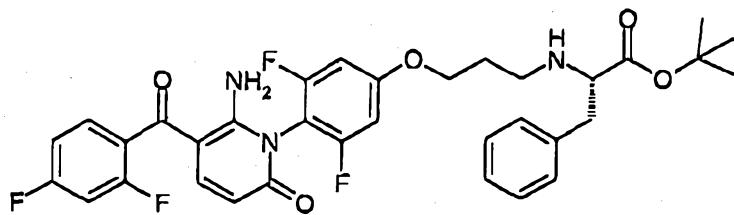
From Intermediate 5 (120mg, 0.263mmol) and L-Leucine cyclopentyl ester (Intermediate 8). LCMS purity 100%, m/z 640 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 0.95-1.05 (6H, m), 1.50-2.00 (16H, m), 2.10-2.35 (3H, m), 3.15-3.20 (1H, m), 4.00-4.15 (1H, m), 4.40 and 4.75 (0.5H each, m), 5.25-5.35 (1H, m), 5.75 (1H, d), 6.85-6.95 (2H, m), 7.15-7.25 (2H, m), 7.55-7.65 (2H, m), 7.65-7.70 (1H, m).


Examples 34 and 35 Cyclopentyl (S)-2-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]cyclohexyl amino]-3-phenylpropionate

2007246869 27 Sep 2012

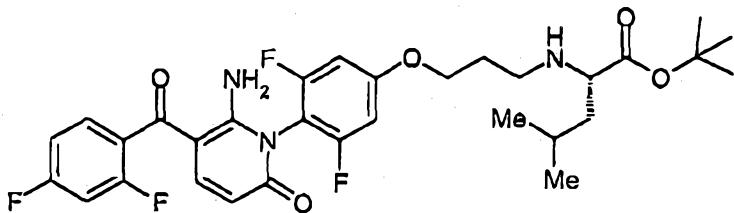
Intermediate 6 (50mg, 0.15mmol) was added to a colourless solution of L-phenylalanine cyclopentyl ester (89mg, 0.38mmol) in MeOH (10ml) at RT/N₂ and stirred at RT for 1h. AcOH glacial was added dropwise to adjust the pH to 6 followed by the NaCNBH₃ (38mg, 0.61mmol). The resultant colourless solution was stirred at RT overnight and then carefully quenched with sat. NaHCO₃ (20ml) and extracted into CH₂Cl₂ (3 x 15ml). The combined organic phases were washed with 2M HCl (2 x 20ml), brine (20ml), dried (Na₂SO₄), filtered and concentrated *in vacuo* giving a cream coloured solid. Purification by flash column chromatography (silica, gradient elution 40-100% EtOAc/ heptane) gave the desired material, separable as two isomers, isomer 1 (**Example 34**) as a white solid (Yield = 39mg, 47%) LCMS purity 100%, m/z 546 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.40-2.05 (16H, m), 2.85-3.10 (3H, m), 3.60-3.70 (1H, m), 4.55-4.65 (1H, m), 5.10-5.20 (1H, m), 5.70 (1H, d), 7.15-7.40 (7H, m), 7.45-7.50 (1H, m), 7.50-7.60 (2H, m) and isomer 2 (**Example 35**) LCMS purity 97%, m/z 546 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.25-1.85 (12H, m), 1.95-2.20 (2H, m), 2.45-2.95 (4H, m), 3.00-3.10 (1H, m), 3.65-3.75 (1H, m), 4.55-4.65 (1H, m), 5.05-5.15 (1H, m), 5.65 (1H, d), 7.20-7.35 (7H, m), 7.40-7.50 (1H, m), 7.50-7.60 (2H, m) as a colourless film (Yield = 15mg, 18%).

Example 36 tert-Butyl (S)-(3-{4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)phenyl acetate



2007246869 27 Sep 2012

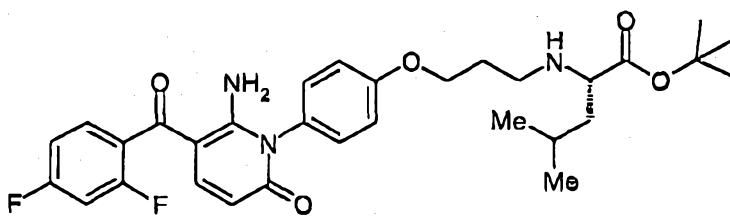
76


From Intermediate 4F and L-phenylglycine *tert*-butyl ester, LCMS purity 93%, m/z 626 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 1.30 (9H, s), 2.15 (2H, m), 3.00-3.15 (2H, m), 4.06 (2H, m), 5.02 (1H, s), 5.70 (1H, d), 6.75 (2H, d), 7.02 (2H, m), 7.30-7.50 (7H, m).

Example 37 *tert*-Butyl (S)-2-(3-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}-propylamino)-3-phenyl propionate

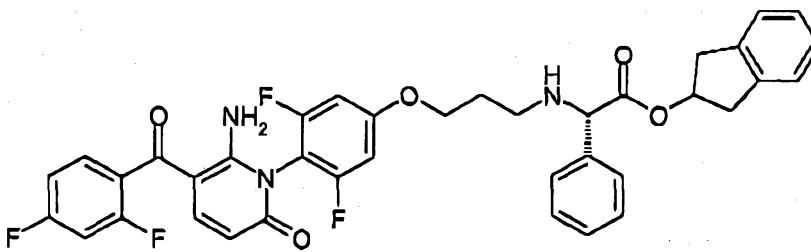
From Intermediate 4F and L-phenylalanine *tert*-butyl ester. LCMS purity 97%, m/z 640 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 1.25 (9H, s), 2.16 (2H, m), 3.00 (1H, dd), 3.15-3.25 (2H, m), 3.35 (1H, dd), 4.10 (2H, m), 4.20 (1H, m), 5.71 (1H, d), 6.79 (2H, d), 7.02 (2H, t), 7.20-7.30 (5H, m), 2H (2H, m).

Example 38 *tert*-Butyl (S)-2-(3-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)-4-methyl pentanoate

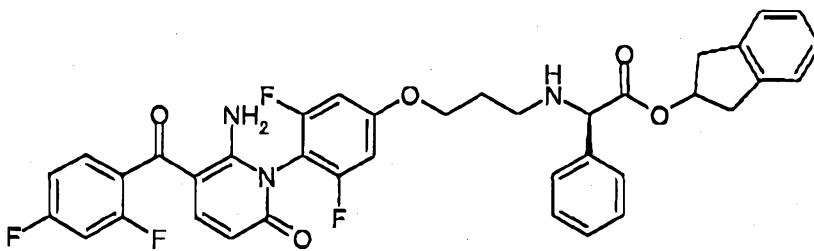

From Intermediate 4F and L-leucine *tert*-butyl ester, LCMS purity 97%, m/z 606 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 0.95 (6H, m), 1.41 (9H, s), 1.61 (1H, m), 1.75 (2H, m), 2.15 (2H, m), 3.22-3.25 (2H, m), 3.88 (1H, m), 4.13 (2H, m), 4.20 (1H, m), 5.40 (1H, s), 5.75 (1H, d), 6.85 (2H, d), 7.00 (2H, t), 7.40 (2H, m).

Example 39 *tert*-Butyl (S)-2-(3-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy}propylamino)-4-methyl pentanoate

27 Sep 2012


2007246869

77


From Intermediate 4C and L-leucine tert-butyl ester, LCMS purity 91%, m/z 570 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 0.95 (6H, m), 1.45 (9H, s), 1.65 (1H, m), 2.15 (2H, m), 3.15-3.30 (2H, m), 3.85 (1H, m), 4.15 (2H, m), 5.75 (1H, d), 7.00-7.20 (6H, m), 7.35 (2H, m).

Example 40 2,3-Dihydro-1H-inden-2-yl (2S)-[3-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl]amino[phenyl] acetate

From Intermediate 4F and L-phenylglycine indanyl ester (Intermediate 11), LCMS purity 96%, m/z 686 [M+H]⁺, ¹H NMR (300 MHz, CD₃OD), δ: 7.55-7.47 (2H, m), 7.46-7.31 (5H, m), 7.22-7.10 (6H, m), 6.85 (2H, d, J=9.6 Hz), 5.82 (1H, d, J=9.6 Hz), 5.57-5.51 (1H, m), 4.37 (1H, s), 4.13 (1H, t, J=6.0 Hz), 3.32-3.21 (2H, m), 3.05-2.98 (1H, m), 2.80-2.63 (3H, m), 2.05-1.97 (2H, m).

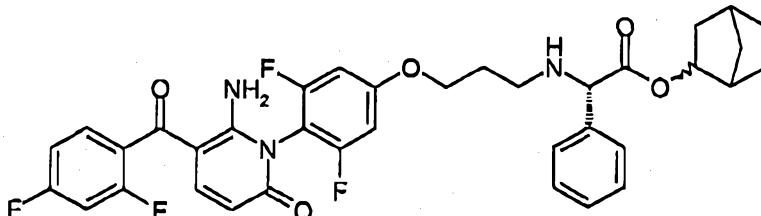
Example 41 2,3-dihydro-1H-inden-2-yl (2R)-[3-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl]amino[phenyl]acetate

From Intermediate 4F and D-phenylglycine indanyl ester, LCMS purity 94%, m/z 686 [M+H]⁺, ¹H NMR (300 MHz, CD₃OD), δ: 7.56-7.47 (2H, m), 7.38-7.31 (5H, m), 7.28-7.14 (6H, m), 6.85 (2H, d, J=9.6 Hz), 5.82 (1H, d, J=9.6 Hz), 5.57-5.52 (1H, m), 4.37


27 Sep 2012

2007246869

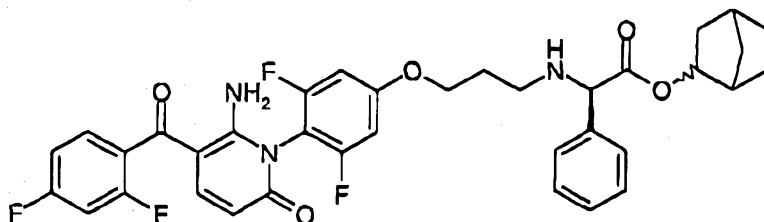
78


(1H, s), 4.13 (1H, t, $J=6.0$ Hz), 3.31-3.21 (2H, m), 3.09-2.99 (1H, m), 2.78-2.64 (3H, m), 2.06-1.99 (2H, m).

Example 42 Cyclopentyl (2R)-[(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl]amino](phenyl)acetate

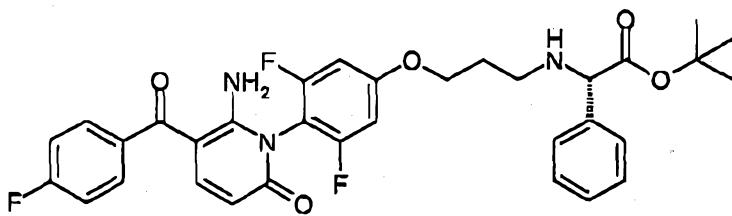
From Intermediate 4F and D-phenylglycine cyclopentyl ester, LCMS purity 95%, m/z 638 $[M+H]^+$.

Example 43 Bicyclo[2.2.1]hept-2-yl (2S)-[(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl]amino](phenyl)acetate

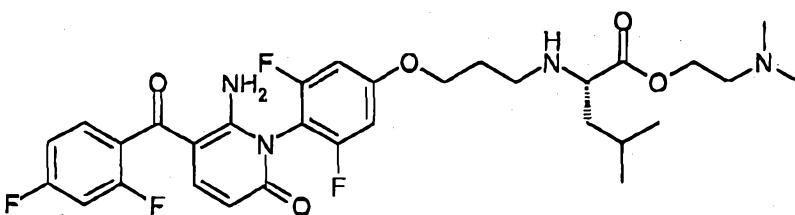


From Intermediate 4F and L-phenylglycine norbornyl ester (Intermediate 12), LCMS purity 97%, m/z 664 $[M+H]^+$, ^1H NMR (300 MHz, CD_3OD), δ : 7.50-7.21 (7H, m), 7.02 (2H, t, $J=8.6$ Hz), 6.75 (2H, d, $J=9.6$ Hz), 5.70 (1H, d, $J=9.6$ Hz), 4.50 (1H, d, $J=6.6$ Hz), 4.32-4.26 (1H, m), 4.05 (2H, t, $J=5.9$ Hz), 2.71-2.56 (2H, m), 2.24-1.90 (4H, m), 1.64-1.06 (8H, m).

Example 44 Bicyclo[2.2.1]hept-2-yl (2R)-[(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl]amino](phenyl)acetate


2007246869 27 Sep 2012

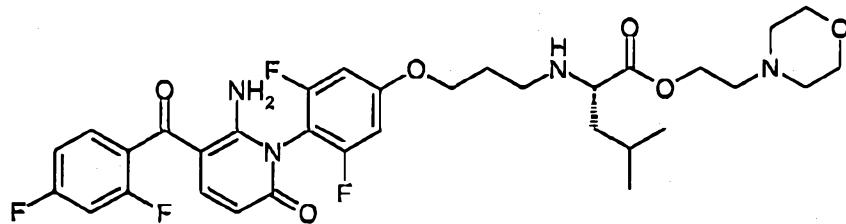
79


From Intermediate 4F and D-phenylglycine norbornyl ester, LCMS purity 98%, m/z 664 [M+H]⁺, ¹H NMR (300 MHz, CD₃OD), δ: 7.42-7.17 (7H, m), 7.00 (2H, t, J=8.6 Hz), 6.74 (2H, d, J=9.1 Hz), 5.69 (1H, d, J=9.8 Hz), 4.49 (1H, d, J=6.8 Hz), 4.32-4.26 (1H, m), 4.03 (2H, t, J=6.0 Hz), 2.70-2.52 (2H, m), 2.18-1.86 (4H, m), 1.63-0.92 (8H, m).

Example 45 tert-Butyl (S)-(3-(4-[6-Amino-5-(4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino)phenyl acetate

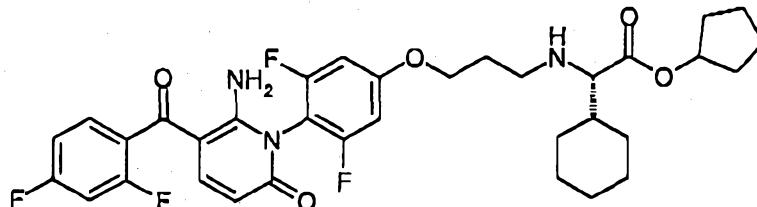
From Intermediate 4E and L-phenylglycine tert-butyl ester, LCMS purity 100%, m/z 608 [M+H]⁺, ¹H NMR (300 MHz, CD₃OD), δ: 7.55-7.47 (3H, m), 7.30-7.21 (6H, m), 7.09 (1H, t, J=8.7 Hz), 6.61 (2H, d, J=9.3 Hz), 5.81 (1H, d, J=9.6 Hz), 4.18 (1H, s), 4.03 (2H, t, J=6.0 Hz), 2.75-2.69 (1H, m), 2.65-2.58 (1H, m), 1.96-1.88 (1H, m), 1.96-1.88 (2H, m), 1.32 (9H, s)

Example 46 2-(Dimethylamino)ethyl N-(3-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl)-L-leucinate


From Intermediate 4F and Intermediate 13, LCMS purity 90%, m/z 621 [M+H]⁺, ¹H NMR (300 MHz, DMSO), δ: 10.18 (1H, br s), 9.50 (1H, br s), 7.57 (1H, q, J=7.8Hz), 7.39 (2H, m), 7.37-7.15 (3H, m), 7.04 (2H, m), 5.73 (1H, d, J=9.6Hz), 4.59-4.46 (2H, m), 4.21

2007246869 27 Sep 2012

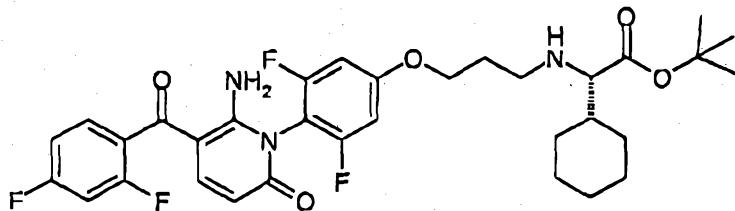
80


(2H, t, $J=9.0\text{Hz}$), 4.11 (1H, m), 3.14 (2H, m), 2.86 (6H, s), 2.14 (2H, m), 1.74 (2H, m), 0.92 (8H, m).

Example 47 2-Morpholin-4-ylethyl N-(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl)-L-leucinate

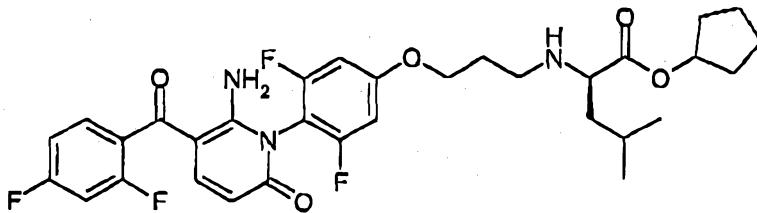
From Intermediate 4F and Intermediate 14, LCMS purity 90%, m/z 621 [M+H]⁺, ¹H NMR (300 MHz, DMSO), δ : 7.57 (1H, q, $J=7.5\text{ Hz}$), 7.40 (2H, m), 7.26-7.17 (3H, m), 7.06 (2H, d, $J=10.8\text{ Hz}$), 5.74 (1H, d, $J=9.9\text{ Hz}$), 4.53 (2H, m), 4.21 (4H, m), 3.80 (4H, m), 3.37 (2H, m), 3.17 (4H, m), 2.15 (2H, m), 1.75 (3H, m), 0.94 (6H, br s).

Example 48 Cyclopentyl (2S)-[(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl)amino](cyclohexyl)acetate

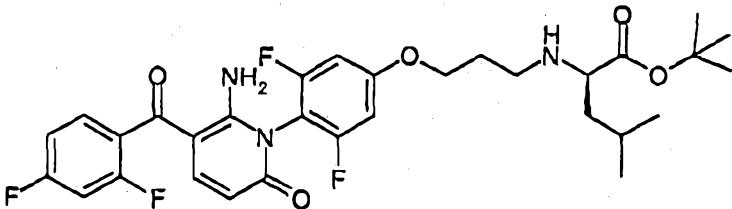


From Intermediate 4F and L-cyclohexylglycine cyclopentyl ester (Intermediate 9), LCMS purity 95%, m/z 664 [M+H]⁺, ¹H NMR (300 MHz, DMSO), δ : 9.15 (1H, br s), 8.95 (1H, br s), 7.62-7.52 (1H, m), 7.46-7.31 (2H, m), 7.27-7.20 (1H, m), 7.05 (2H, d, $J=10.2\text{Hz}$), 5.74 (1H, d, $J=9.6\text{Hz}$), 5.30-5.25 (1H, m), 4.20 (2H, t, $J=5.7\text{Hz}$), 4.10-3.95 (1H, m), 3.25 -2.95 (2H, m), 2.20-2.07 (2H, m), 2.00-1.50 (15H, m), 1.30-1.00 (4H, m), 0.95-0.75 (1H, m)

Example 49 tert-Butyl (2S)-[(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl)amino](cyclohexyl)acetate


2007246869 27 Sep 2012

81

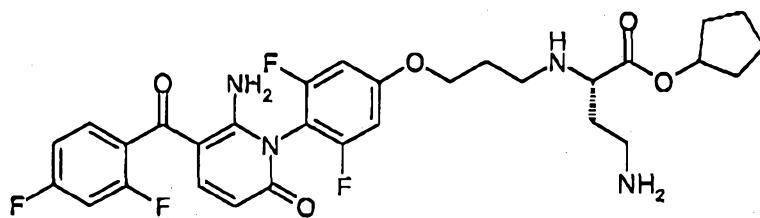

From Intermediate 4F and L-cyclohexylglycine tert-butyl ester, LCMS purity 95%, m/z 632 [M+H]⁺, ¹H NMR (300 MHz, DMSO), δ : 9.10 (1H, br s), 8.85 (1H, brs), 7.62-7.52 (1H, m), 7.45-7.31 (2H, m), 7.28-7.20 (1H, m), 7.06 (2H, d, J=10.2Hz), 5.74 (1H, d, J=9.6Hz), 4.20 (2H, t, J=5.9Hz), 3.95-3.85 (1H, m), 3.25-2.95 (2H, m), 2.20-2.07 (2H, m), 2.00-1.60 (6H, m), 1.51 (9H, s), 1.35-1.07 (4H, m), 1.00-0.85 (1H, m).

Example 50 Cyclopentyl N-(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl)-D-leucinate

From Intermediate 4F and D-Leucine cyclopentyl ester, LCMS purity 95%, m/z 618 [M+H]⁺, ¹H NMR (300 MHz, DMSO), δ : 10.10 (1H, br s), 9.40-9.10 (2H, m), 8.15 (1H, br s), 7.62-7.52 (1H, m), 7.47-7.31 (2H, m), 7.28-7.12 (1H, m), 7.07 (2H, d, J=10.5Hz), 5.73 (1H, d, J=9.6Hz), 5.30-5.20 (1H, m), 4.25-4.00 (3H, m), 3.30-3.00 (2H, m), 2.20-2.00 (2H, m), 1.95-1.80 (2H, m), 1.75-1.55 (10H, m), 1.00-0.90 (6H, m).

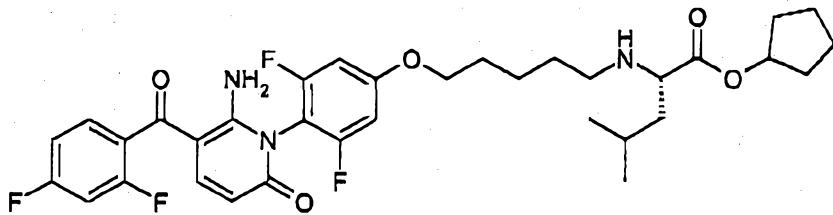
Example 51 tert-Butyl N-(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl)-D-leucinate

27 Sep 2012


2007246869

82

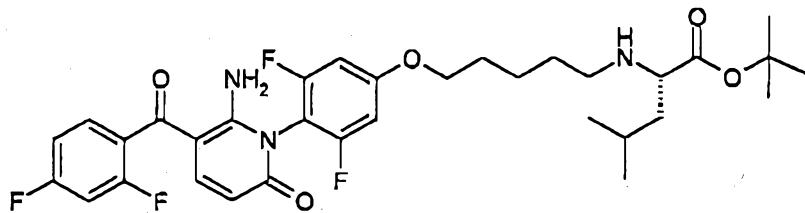
From Intermediate 4F and D-Leucine tert-butyl ester, LCMS purity 95%, m/z 606


[M+H]⁺, ¹H NMR (300 MHz, DMSO), δ : 9.30-9.00 (2H, m), 7.62-7.52 (1H, m), 7.47-7.32 (2H, m), 7.28-7.12 (1H, m), 7.06 (2H, d, J =10.2Hz), 5.73 (1H, d, J =9.6Hz), 4.20 (2H, t, J =5.7Hz), 3.99 (1H, br s), 3.25-2.95 (2H, m), 2.20-2.05 (2H, m), 1.80-1.60 (3H, m), 1.49 (9H, s), 0.95 (6H, d, J =4.8Hz).

Example 52 Cyclopentyl (2S)-4-amino-2-[(3-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl)amino]butanoate

From Intermediate 4F and Intermediate 15, LCMS purity 90%, m/z 605 [M+H]⁺, ¹H NMR (300 MHz, CD₃OD), δ : 7.46 - 7.55 (2H, m), 7.12 (2H, t, J =8.7 Hz), 6.93 (2H, d, J =9.6 Hz), 5.81 (1H, d, J =9.6 Hz), 5.37 - 5.44 (1H, m), 4.20 - 4.31 (4H, m), 3.33 - 3.42 (1H, m), 2.25 - 2.49 (4H, m), 1.91-2.08 (2H, m), 1.65 - 1.89 (7H, m).

Example 53 Cyclopentyl N-(5-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}pentyl)-L-leucinate

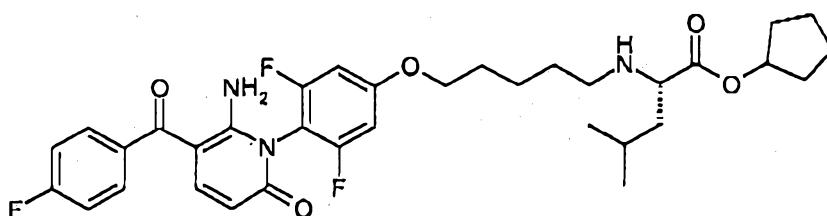

From Intermediate 4G. To a solution of 6-Amino-1-[(4-chloropentyl)oxy]-2,6-difluorophenyl-5-(2,4-difluorobenzoyl)pyridin-2(1H)-one (138mg, 0.29mmol) in anhydrous DMF (3ml) under an atmosphere of nitrogen was added cyclopentyl L-leucinate (Intermediate 8) (284mg, 1.43mmol, 5 eq), sodium iodide (86mg, 0.57mmol, 2eq) and *N,N*-diisopropylethylamine (0.052ml, 0.29mmol, 1eq). The mixture was heated at 90°C for 16 hours, before being allowed to cool to room temperature and diluted with EtOAc (25ml). The solution was washed with water (2 x 25ml) and brine (25ml). The

2007246869 27 Sep 2012

83

organic layer was dried over MgSO_4 , filtered and concentrated under reduced pressure. Purification by column chromatography (3-4 % MeOH in DCM) followed by preparative HPLC afforded the title compound as a cream coloured solid (96mg, 52% yield). LC/MS: m/z 646 $[\text{M}+\text{H}]^+$. ^1H NMR (300 MHz, CD_3OD) δ : 7.56-7.47 (2H, m), 7.13 (2H, m), 6.88 (2H, m), 5.82 (1H, d, $J=9.8$ Hz), 5.23 (1H, t, $J=4.1$ Hz), 4.11 (2H, t, $J=6.3$ Hz), 3.28 (1H, m), 2.61-2.51 (2H, m), 1.95-1.41, (17H, br m), 0.98-0.93 (6H, m).

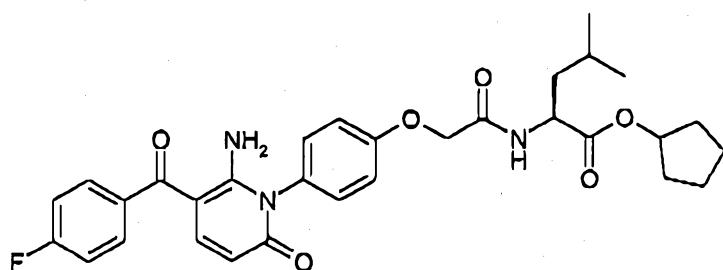
Example 54 *tert*-Butyl *N*-(5-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2*H*)-yl]-3,5-difluorophenoxy}pentyl)-L-leucinate


From **Intermediate 4G**. To a solution of 6-Amino-1-{4-[(5-chloropentyl)oxy]-2,6-difluorophenyl}-5-(2,4-difluorobenzoyl)pyridin-2(1*H*)-one (96mg, 0.20mmol) in anhydrous DMF (3ml) under an atmosphere of nitrogen was added *tert*-butyl L-leucinate hydrochloride (198mg, 0.99mmol, 5eq), sodium iodide (60mg, 0.40mmol, 2eq) and *N,N*-disopropylethylamine (0.072ml, 0.40mmol, 2eq). The mixture was heated at 90°C for 20 hours, before being allowed to cool to room temperature and diluted with EtOAc (20ml). The solution was washed with water (2 x20ml) and brine (20ml). The organic layer was dried over MgSO_4 , filtered and concentrated under reduced pressure. Purification by column chromatography (1-3 % MeOH in DCM) followed by preparative HPLC afforded the title compound as a white solid (23mg, 18% yield).

LC/MS: m/z 634 $[\text{M}+\text{H}]^+$. ^1H NMR (300 MHz, CD_3OD) δ : 7.56-7.47 (2H, m), 7.14 (2H, m), 6.89 (2H, m), 5.81 (1H, d, $J=9.6$ Hz), 4.11 (2H, t, $J=6.2$ Hz), 3.19 (1H, m), 2.60-2.53 (2H, m), 1.89-1.84 (2H, m), 1.72-1.41 (16H, m), 0.96 (6H, m).

Example 55 Cyclopentyl *N*-(5-{4-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2*H*)-yl]-3,5-difluorophenoxy}pentyl)-L-leucinate

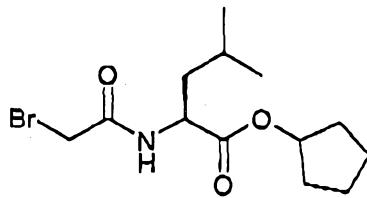
2007246869 27 Sep 2012


84

From Intermediate 4H. To a solution of 6-amino-1-{(5-chloropentyl)oxy}-2,6-difluorophenyl)-5-(4-fluorobenzoyl)pyridin-2(1H)-one (99 mg, 0.21 mmol) in anhydrous DMF (3 ml) under an atmosphere of nitrogen was added cyclopentyl L-leucinate (Intermediate 8) (212 mg, 1.06 mmol, 5 eq), sodium iodide (64mg, 0.43mmol, 2eq) and *N,N*-diisopropylethylamine (0.039ml, 0.21mmol, 1eq). The mixture was heated at 90°C for 20 hours, before being allowed to cool to room temperature and diluted with EtOAc (25ml). The solution was washed with water (2 x 25ml) and brine (25ml). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (2 % MeOH in DCM) followed by preparative HPLC afforded the title compound as a yellow solid (64mg, 48% yield).

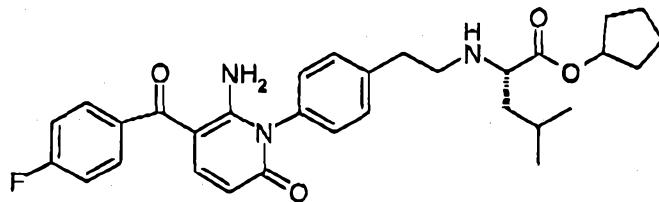
LC/MS: m/z 628 [M+H]⁺. ¹H NMR (300 MHz, CD₃OD) δ: 7.71 (1H, d, J=9.6 Hz), 7.62 (2H, m), 7.26 (2H, m), 6.89 (2H, m), 5.81 (1H, d, J=9.6 Hz), 5.23 (1H, t, J=5.3 Hz), 4.11 (2H, t, J=6.4 Hz), 3.28 (1H, m), 2.55 (2H, m), 1.91-1.48 (17H, m), 0.98-0.93 (6H, m).

Example 56 Cyclopentyl N-(4-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl]phenoxy)acetyl)-L-leucinate


LC/MS: m/z 564 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 8.47 (1H, d, J=7.7 Hz), 7.56 (2H, m), 7.45 (1H, d, J=9.6 Hz), 7.38-7.24 (4H, m), 7.15 (2H, m), 5.69 (1H, d, J=9.8 Hz), 5.09 (1H, t, J=5.3 Hz), 4.63 (2H, m), 4.31 (1H, m), 1.84-1.79 (2H, m), 1.66-1.53 (9H, m), 0.92-0.86 (6H, m).

2007246869 27 Sep 2012

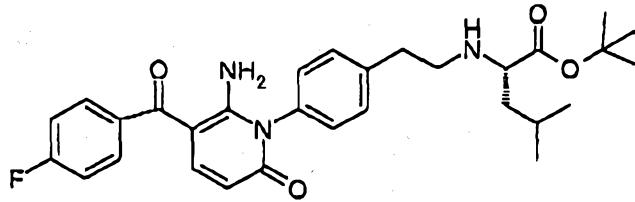
85


To a solution of 6-amino-5-(4-fluorobenzoyl)-1-(4-hydroxyphenyl)pyridin-2(1*H*)-one [WO 03/076405] (100mg, 0.31mmol) in anhydrous DMF (3ml) under an atmosphere of nitrogen was added cyclopentyl *N*-(bromoacetyl)-L-leucinate (109ml, 0.34mmol, 1.1eq) and potassium carbonate (51mg, 0.37mmol, 1.2eq). The mixture was heated at 40C for 16 hours, before being allowed to cool to room temperature and added to water (20 ml). The mixture was extracted with EtOAc (3 x 15ml), and the combined extracts washed with water (2 x 40ml) and brine (40ml). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (2-3 % MeOH in DCM) followed by trituration with minimal MeOH afforded the title compound as a white solid (91mg, 52% yield).

The cyclopentyl *N*-(bromoacetyl)-L-leucinate was synthesised from cyclopentyl L-leucinate in one step, the details of which are outlined below.

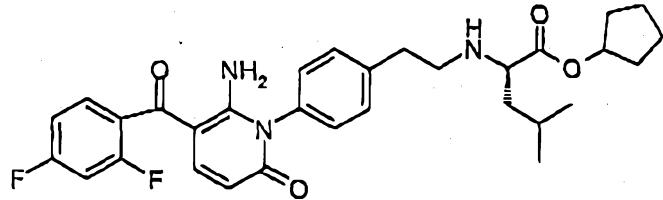
To a solution of cyclopentyl L-leucinate (Intermediate 8) (568mg, 2.84mmol) in DCM (6ml) was added triethylamine (0.24ml, 2.84mmol, 1eq) and bromoacetyl chloride (1.44ml, 3.13mmol, 1.1eq) dropwise. The mixture was stirred at room temperature for 20 hours, diluted with DCM (50ml) and washed with water (50ml) and brine (50ml). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to afford a crude mixture containing the title compound (902mg) that was used without further purification. LC/MS: m/z 320/322 [M+H]⁺.

Example 57 Cyclopentyl N-[2-(4-{6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2*H*)-yl}phenyl]ethyl]-L-leucinate


2007246869 27 Sep 2012

86

From Intermediate 4J and L-Leucine cyclopentyl ester (Intermediate 8), LC/MS: m/z 534 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 8.47 (1H, d, J=7.7 Hz), 7.56 (2H, m), 7.45 (1H, d, J=9.6 Hz), 7.38-7.24 (4H, m), 7.15 (2H, m), 5.69 (1H, d, J=9.8 Hz), 5.09 (1H, t, J=5.3 Hz), 4.63 (2H, m), 4.31 (1H, m), 1.84-1.79 (2H, m), 1.66-1.53 (9H, m), 0.92-0.86 (6H, m).

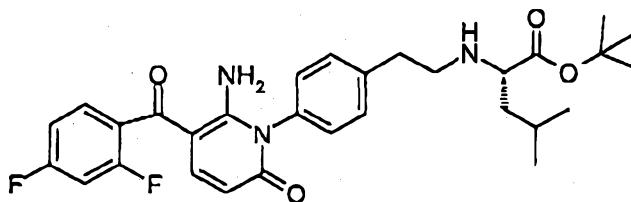

The following examples were synthesised in a similar manner:

Example 58 tert-Butyl N-[2-(4-(6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl)phenyl]ethyl]-L-leucinate

From Intermediate 4J and L-Leucine tbutyl ester. LC/MS: m/z 522 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 9.40-9.10 (2H, m), 7.59-7.44 (5H, m), 7.38-7.30 (4H, m), 5.71 (1H, d, J=9.6Hz), 4.00 (1H, br s), 3.40-3.28 (1H, m), 3.25-3.15 (1H, m), 3.10-3.00 (2H, m), 1.80-1.70 (3H, m), 0.96 (6H, d, J=5.1Hz).

Example 59 Cyclopentyl N-[2-(4-(6-amino-5-[(2,4-difluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl)phenyl]ethyl]-L-leucinate

Example 59 was synthesised via a similar route to Example 57 using 3-(2,4-difluorophenyl)-3-oxo-thiopropionimidic acid 4-chloro-phenyl ester. LC/MS: m/z 552 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 10.07 (1H, br s), 9.35 (2H, br s), 7.55-6.95 (8H, m),


27 Sep 2012

2007246869

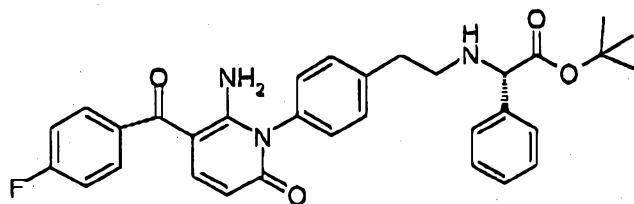
87

5.72 (1H, d, $J=9.9$ Hz), 5.27 (1H, t, $J=5.7$ Hz), 4.15-4.00 (1H, m), 3.41-3.15 (2H, m), 3.10-3.00 (2H, m), 1.96-1.80 (2H, m), 1.78-1.55 (9H, m), 0.95 (6H, d, $J=5.1$ Hz).

Example 60 tert-Butyl N-[2-(4-(6-amino-5-[(2,4-difluorophenyl)carbonyl]2-oxopyridin-1(2H)-yl)phenyl]ethyl]L-leucinate

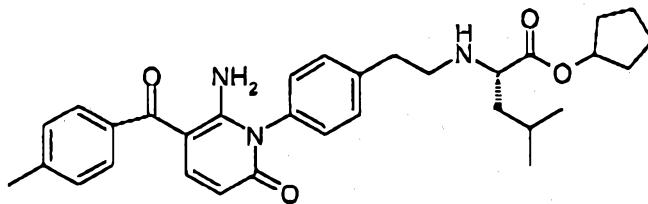
Example 60 was synthesised via a similar route to Example 57 using 3-(2,4-difluorophenyl)-3-oxo-thiopropionimidic acid 4-chloro-phenyl ester. LC/MS: m/z 540 $[M+H]^+$. 1 H NMR (300 MHz, DMSO-d₆) δ : 10.07 (1H, br s), 9.30 (2H, br s), 7.55-6.94 (8H, m), 5.72 (1H, d, $J=9.6$ Hz), 4.05-3.93 (1H, m), 3.40-3.10 (2H, m), 3.08-3.00 (2H, m), 1.80-1.65 (3H, m), 1.50 (9H, s), 0.96 (6H, d, $J=5.1$ Hz).

Example 61 Cyclopentyl (2S)-{[2-(4-(6-amino-5-[(4-fluorophenyl)carbonyl]2-oxopyridin-1(2H)-yl)phenyl]ethyl}amino}(phenyl) ethanoate

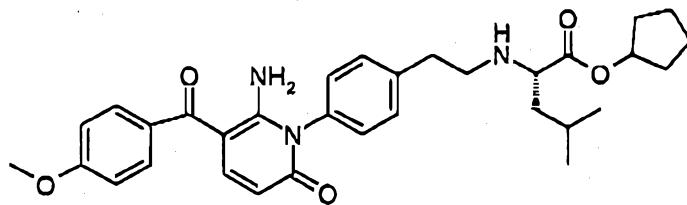


From **Intermediate 4J** and L-Phenylglycine cyclopentyl ester (**Intermediate 10**). LC/MS: m/z 554 $[M+H]^+$. 1 H NMR (300 MHz, CDCl₃) δ : 10.35 (1H, br s), 7.60-7.13 (14H, m), 5.91 (1H, d, $J=10.2$ Hz), 5.22-5.14 (1H, m), 4.36 (1H, s), 3.00-2.85 (4H, m), 2.16 (1H, br s), 1.99-1.43 (8H, m).

Example 62 tert-Butyl (2S)-{[2-(4-(6-amino-5-[(4-fluorophenyl)carbonyl]2-oxopyridin-1(2H)-yl)phenyl]ethyl}amino}(phenyl) ethanoate


2007246869 27 Sep 2012

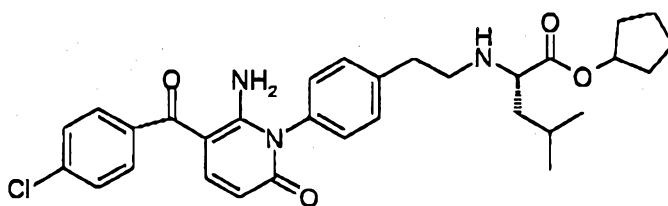
88


From Intermediate 4J and L-Phenylglycine tbutyl ester. LC/MS: m/z 542 [M+H]⁺. ¹H NMR (300 MHz, CDCl₃) δ: 10.30 (1H, br s), 7.51-7.45 (3H, m), 7.38 (2H, d, J=6.9Hz), 7.27-7.04 (9H, m), 5.82 (1H, d, J=9.6Hz), 4.20 (1H, s), 2.86-2.75 (4H, m), 2.04 (1H, br s), 1.31 (9H, s).

Example 63 Cyclopentyl N-[2-(4-amino-5-[(4-methylphenyl)carbonyl]pyridin-1(2H)-yl]phenyl]ethyl-L-leucinate

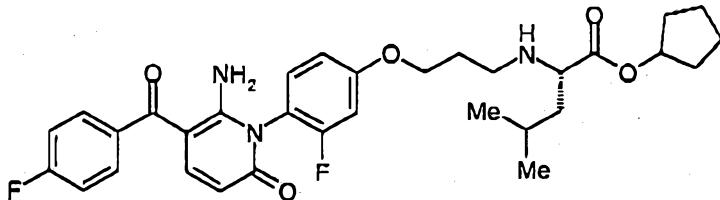
Example 63 was prepared by similar methodology to Example 59 using 3-(4-methyl-phenyl)-3-oxo-thiopropionimidic acid 4-chloro-phenyl ester, prepared by a similar method used for Intermediate 4J. LC/MS: m/z 530 [M+H]⁺. ¹H NMR (300 MHz, CDCl₃) δ: 7.65 (1H, d, J=9.9Hz), 7.47 (4H, m), 7.26 (4H, m), 5.89 (1H, d, J=9.9Hz), 5.20 (1H, m), 3.25 (1H, t, J=7.2Hz), 2.87 (4H, m), 2.44 (3H, s), 1.99-1.53 (9H, m), 1.42 (2H, t, J=6.3Hz), 0.91 (6H, m).

Example 64 Cyclopentyl N-[2-(4-(4-methoxyphenyl)-5-[(4-methoxyphenyl)carbonyl]pyridin-1(2H)-yl]phenyl]ethyl-L-leucinate



2007246869 27 Sep 2012

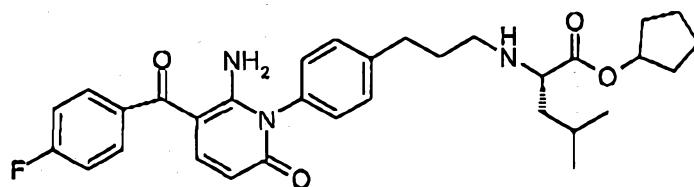
89


Example 64 was prepared by similar methodology to Example 59 using 3-(4-methoxy-phenyl)-3-oxo-thiopropionimidic acid 4-chloro-phenyl ester, prepared by a similar method used for Intermediate 4J. LC/MS: m/z 546 [M+H]⁺. ¹H NMR (300 MHz, CDCl₃) δ: 7.67 (1H, d, J=9.9Hz), 7.55 (2H, d), 7.46 (2H, d), 7.24 (2H, d, J=8.4Hz), 6.98 (2H, d, J=6.9 Hz), 5.90 (1H, d, J=9.6 Hz), 5.18 (1H, m), 3.88 (3H, s), 3.24 (1H, t, J=7.2 Hz), 2.87 (4H, m), 1.97-1.53 (9H, m), 1.43 (2H, t), 0.90 (6H, m).

Example 65 Cyclopentyl N-[2-(4-amino-5-[(4-chlorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl]phenyl)ethyl]-L-leucinate

Example 65 was prepared by similar methodology to Example 59 using 3-(4-chloro-phenyl)-3-oxo-thiopropionimidic acid 4-chloro-phenyl ester, prepared by a similar method used for Intermediate 4J. LC/MS: m/z 551 [M+H]⁺. ¹H NMR (300 MHz, CDCl₃) δ: 7.40 (7H, m), 7.16 (2H, d, J=8.4Hz), 5.82 (1H, d, J=9.9 Hz), 5.11 (1H, m), 3.17 (1H, t, J=7.5 Hz), 2.78 (4H, m), 1.92-1.43 (9H, m), 1.35 (2H, t), 0.82 (6H, dd).

Example 66 Cyclopentyl N-[3-(4-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl]-3-fluorophenoxy)propyl]-L-leucinate


Example 66 was prepared by similar methodology to Example 25 using 6-Amino-5-(4-fluoro-3-methyl-benzoyl)-1-[2-fluoro-4-hydroxy-phenyl]-1H-pyridin-2-one [WO 03/076405]. LCMS purity 97%, m/z 582 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 7.57 (2H, m), 7.48 (1H, d, J=9.6Hz), 7.34 (3H, m), 7.10 (1H, dd, J=11.9, 2.3Hz), 7.00 (1H, dd, J= 9.7, 2.3Hz), 5.70 (1H, d, J=9.6Hz), 5.12 (1H, m), 4.11 (2H, t, J=6.2Hz), 3.14 (1H,

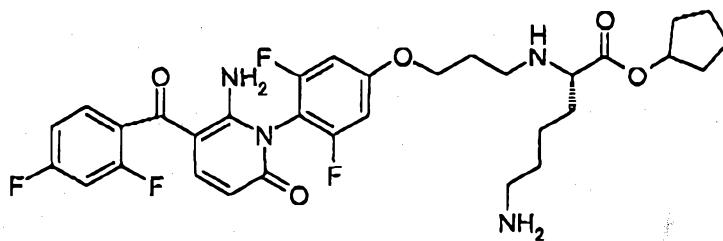
2007246869 27 Sep 2012

90

m), 2.68 (1H, m), 1.98 (1H, m), 1.88-1.82 (4H, m), 1.67-1.57 (7H, m), 0.88 (6H, t, J=7.2Hz).

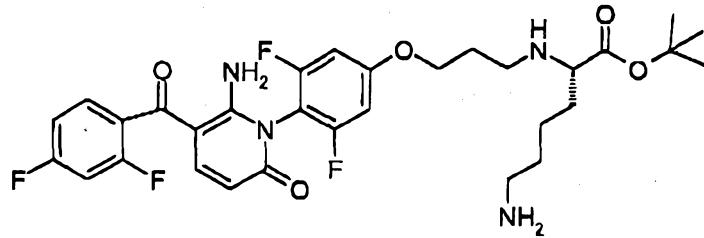
Example 67 Cyclopentyl N-[3-(4-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl]phenyl]propyl]-L-leucinate

Example 61 was synthesised via a similar route to Example 57 using 3-(4-Amino-phenyl)-propan-1-ol. LC/MS: m/z 548 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 9.13 (2H, br s), 7.59-7.52 (2H, m), 7.50-7.42 (3H, m), 7.39-7.25 (4H, m), 5.70 (1H, d, J=9.6Hz), 5.28-5.24 (1H, m), 4.04 (1H, br s), 3.35-2.85 (2H, m), 2.80-2.70 (2H, m), 2.10-1.80 (4H, m), 1.75-1.55 (10H, m), 0.93 (6H, d, J=3.4Hz).


The 3-(4-Amino-phenyl)-propan-1-ol was synthesised in a one step process from 4-nitro cinnamyl alcohol as shown below:

To a solution of 4-nitro cinnamyl alcohol (2g, 11.1mmol) in methanol (30ml) under a nitrogen atmosphere was added Raney Nickel (2ml slurry in water). The reaction was then exposed to hydrogen gas and stirred under a hydrogen atmosphere for 12 hours for complete reaction. The reaction mixture was filtered through Celite, washing with methanol and ethyl acetate. The filtrate was then concentrated under reduced pressure before purification by column chromatography (8:2 EtOAc:Hexane) to give the required product (1.68g, 95%) as a yellow solid.

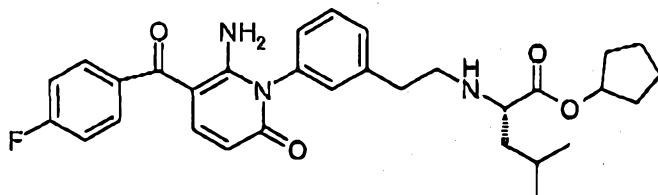
Example 68 Cyclopentyl N²-[3-(4-amino-5-[(2,4-difluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy]propyl]-L-lysinate


2007246869 27 Sep 2012

91

Example 68 was synthesised via a similar route to **Example 52** using L-Lysine(Z)-cyclopentyl ester. LC/MS: m/z 633 [M+H]⁺. ¹H NMR (300 MHz, CD₃OD) δ: 7.45 - 7.54 (2H, m), 7.12 (2H, t, J=8.6 Hz), 6.93 (2H, d, J=9.8 Hz), 5.81 (1H, d, J=9.8 Hz), 5.33 - 5.40 (1H, m), 4.25 (2H, t, J=5.1 Hz), 4.10 - 4.16 (1H, m), 2.96 (2H, t), 2.27 - 2.35 (2H, m), 1.63 - 2.12 (16H, m).

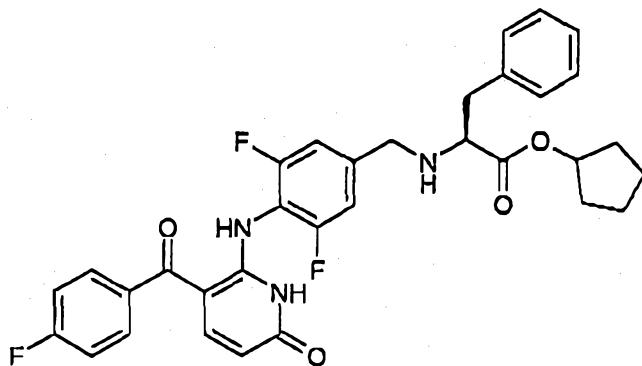
Example 69 tert-Butyl N²-[3-(4-(6-amino-5-[(2,4-difluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl)-3,5-difluorophenoxy)propyl]-L-lysinate


Example 69 was synthesised via a similar route to **Example 52** using L-Lysine(Z)-t-butyl ester. LC/MS: m/z 621 [M+H]⁺. ¹H NMR (300 MHz, CD₃OD) δ: 7.48 (2H, dd, J=9.7, 2.7 Hz), 7.12 (2H, t, J=8.6 Hz), 6.88 (2H, d, J=9.2 Hz), 5.81 (1H, d, J=9.6 Hz), 4.18 (2H, t, J=6.2 Hz), 3.15 (1H, t, J=6.6 Hz), 2.76 - 2.87 (3H, m), 2.68 (1H, dt, J=11.5, 6.9 Hz), 1.97 - 2.05 (4H, m), 1.64 (4H, dt, J= 6.1 Hz), 1.01 (9H, s).

Example 70 Cyclopentyl N-[2-(3-(6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl)phenyl]ethyl]-L-leucinate

27 Sep 2012

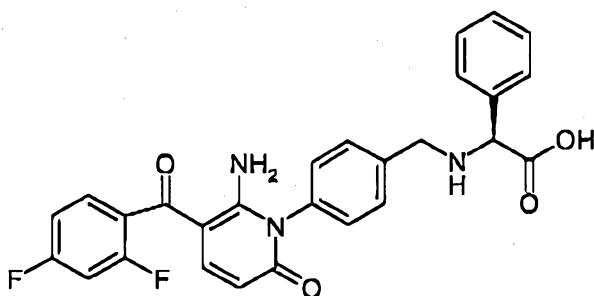
2007246869


92

Example 70 was synthesised using similar methodology to Intermediate 4J (instead using 3-aminophenethyl alcohol) and L-Leucine cyclopentyl ester (Intermediate 8).

LC/MS: m/z 534 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 9.40-9.00 (2H, m), 7.65-7.44 (5H, m), 7.38-7.11 (4H, m), 5.72 (1H, d, J=9.9Hz), 5.30-5.20 (1H, m), 4.10-4.00 (1H, m), 3.45-3.15 (2H, m), 3.10-3.00 (2H, m), 1.95-1.80 (2H, m), 1.75-1.55 (9H, m), 9.93 (6H, d, J=4.8Hz).

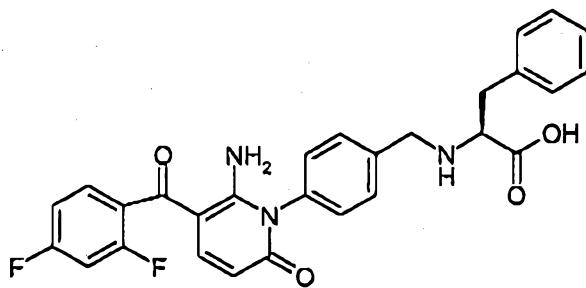
Example 71 Cyclopentyl (S)-2-(3,5-Difluoro-4-[3-(4-fluorobenzoyl)-6-oxo-1,6-dihydro pyridin-2-ylamino]benzylamino)-3-phenylpropionate


A solution of Intermediate 7 (20mg) in 20% TFA/ DCM (0.5ml) was allowed to stand at RT for 1h. Upon completion the reaction mixture was evaporated to dryness by blowing under a gentle flow of N₂. DCM (0.5ml) was added and was blown under N₂. Drying under N₂ was continued overnight. Yield =20mg, 98%.

LCMS purity 96%, m/z 590 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 0.75 -1.33 (8H, m), 2.90 (1H, m), 3.50 (2H, m), 4.25 (3H, m), 4.93 (1H, m), 5.70, (1H, m), 5.98 (1H, m), 7.15-7.62 (11H, m), 9.7 (1H, br s), 10.42 (0.5H brs)

Example 72 (S)-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}phenylacetic acid

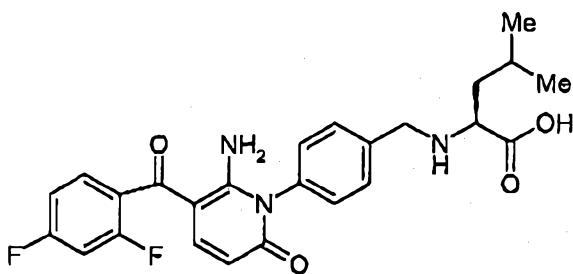
2007246869 27 Sep 2012


93

To a solution of Example 7 (100mg, 0.179mmol) in THF (1ml) and MeOH (0.5ml) was added 2M NaOH (aq, 1ml). The mixture was allowed to stir at RT for 3h, evaporated to near dryness, acidified using dropwise addition of 1M HCl and extracted with EtOAc (5ml). EtOAc layer was concentrated *in vacuo* to give the crude acid. LCMS shows 80% product m/z = 490 $[M+H]^+$ and 20% impurity m/z 470 $[M+H]^+$. Purification by preparative HPLC afforded the desired product. Yield= 34mg, 31%). LCMS purity 100%, m/z 490 $[M+H]^+$, 1H NMR (400 MHz, DMSO), δ : 3.64 (2H, m, CH_2), 4.06 (1H, s, CH), 5.50 (1H, d, Ar), 6.75 (1H, br s, NH), 6.96 (13H, m, Ar), 9.84 (1H, br s, NH).

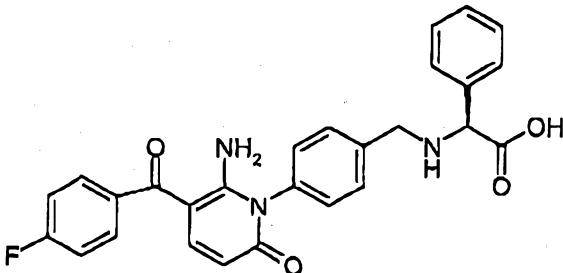
The following compounds were prepared in a similar manner:

Example 73 (S)-2-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-3-phenylpropionic acid

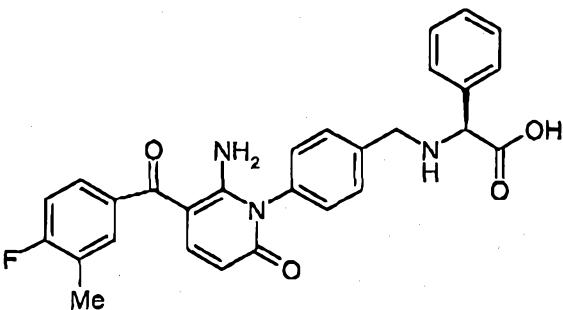


From Example 8, LCMS purity 99%, m/z 504 $[M+H]^+$, 1H NMR (400 MHz, DMSO), δ : 2.96-3.09 (3H, m), 3.81 (1H, d), 3.98 (1H, d), 5.76 (1H, d), 7.00 (1H, br s), 7.22-7.40 (9H, m), 7.41-7.61 (4H, m), 10.11 (1H, br s).

Example 74 (S)-2-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-4-methylpentanoic acid


2007246869 27 Sep 2012

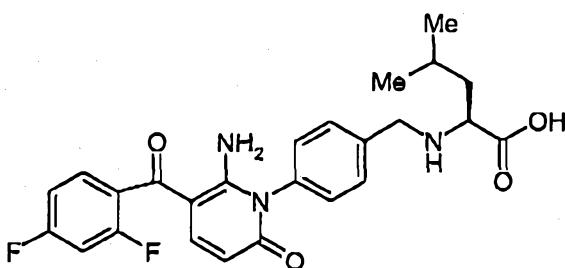
94


From Example 9, LCMS purity 91%, m/z 470 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 0.71 (6H, m), 1.40 (2H, m), 1.60 (1H, m), 3.44 (1H, m), 3.89 (2H, s), 5.49 (1H, d), 6.70 (1H, br s), 6.94-7.08 (2H, m), 7.14-7.33 (4H, m), 7.46 (2H, m), 9.86 (1H, br s).

Example 75 (S)-{4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}phenylacetic acid

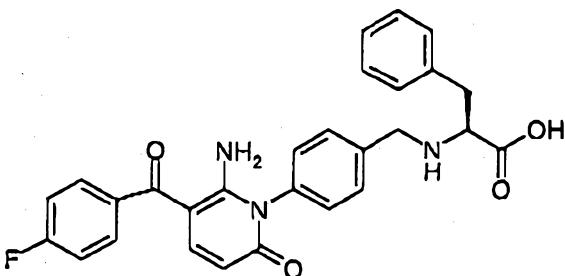
From Example 1, LCMS purity 100%, m/z 472 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 4.13 (1H, d), 4.22 (1H, d), 5.18 (1H, s), 5.73 (1H, d), 7.30-7.61 (13H, m), 7.73 (1H, d), 10.09 (2H, br s).

Example 76 (S)-{4-[6-Amino-5-(3-methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}phenylacetic acid

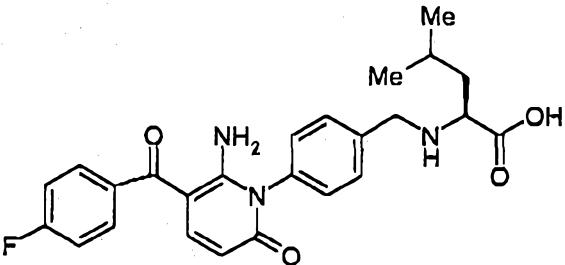

From Example 4, LCMS purity 86%, m/z 486 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 2.20 (3H, s), 3.98 (1H, d), 4.06 (1H, d), 5.07 (1H, s), 5.62 (1H, d), 7.12-7.50 (12H, m), 7.61 (1H, d), 9.90 (2H, br s).

27 Sep 2012

2007246869

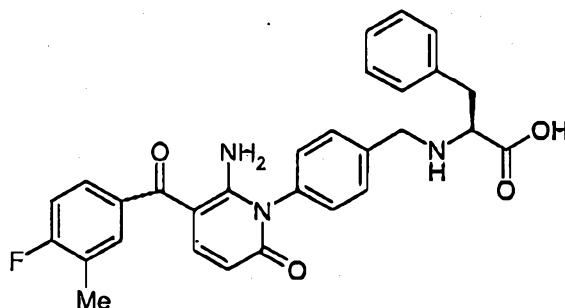

95

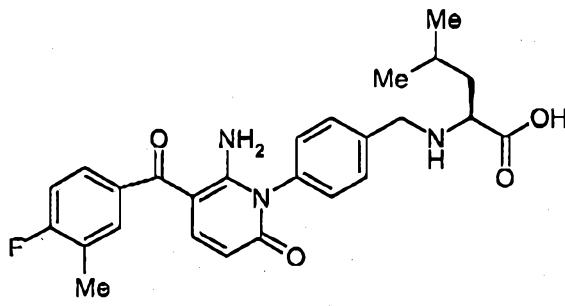
Example 77 (S)-2-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-4-methylpentanoic acid


From **Example 9**. LCMS purity 91%, m/z 470 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 0.71 (6H, m), 1.40 (2H, m), 1.60 (1H, m), 3.44 (1H, m), 3.89 (2H, s), 5.49 (1H, d), 6.70 (1H, br s), 6.94-7.08 (2H, m), 7.14-7.33 (4H, m), 7.46 (2H, m), 9.86 (1H, br s).

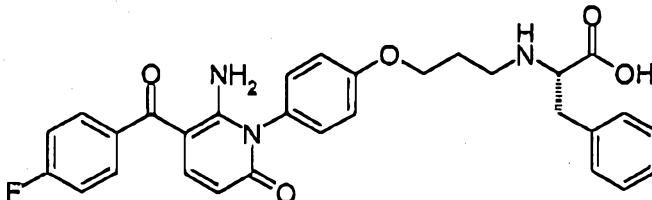
Example 78 (S)-2-{4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-3-phenylpropionic acid

From **Example 2**. LCMS purity 100%, m/z 486 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 3.00 (2H, m), 3.98 (3H, m), 5.65 (1H, d), 7.15-7.34 (11H, m), 7.40 (1H, d), 7.51 (2H, m).


Example 79 (S)-2-{4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino}-4-methylpentanoic acid


From **Example 3**. LCMS purity 100%, m/z 452 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 0.81 (6H, m), 1.51 (2H, m), 1.72 (1H, m), 3.95 (2H, m), 5.61 (1H, d), 7.21-7.30 (4H, m), 7.39 (1H, d), 7.48 (2H, m), 7.52 (2H, m).

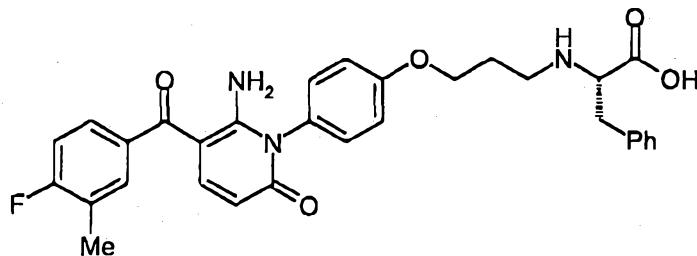
2007246869 27 Sep 2012


96

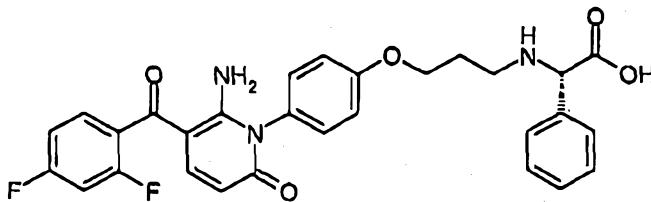
Example 80 (S)-2-(4-[6-Amino-5-(3-methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino)-3-phenylpropionic acid

From Example 5, LCMS purity 100%, m/z 500 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 2.33 (3H, s), 2.90-3.07 (3H, m), 3.76 (1H, d), 3.92 (1H, d), 5.72 (1H, d), 7.20-7.42 (9H, m), 7.49 (4H, m).

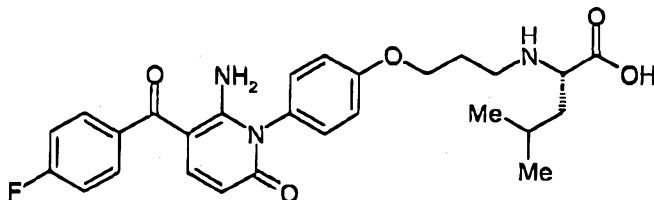
Example 81 (S)-2-(4-[6-Amino-5-(3-Methyl-4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]benzylamino)-4-methylpentanoic acid


From Example 6, LCMS purity 98%, m/z 500 [M+H]⁺.

Example 82 Cyclopentyl (S)-2-(3-[4-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-3-phenylpropionic acid


From Example 24, LCMS purity 93%, m/z 530 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ : 1.90 (2H, m), 2.80-2.90 (2H, m), 3.00 (2H, m), 3.40 (1H, m), 4.05 (2H, m), 5.70 (1H, d), 7.10 (1H, d), 7.20 (2H, d), 7.30 (5H, m), 7.35 (1H, d), 7.45 (1H, d), 7.60 (1H, d).

2007246869 27 Sep 2012


97

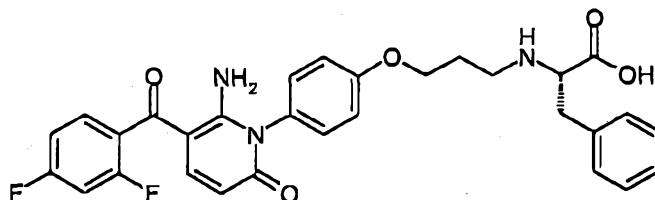
Example 83 (S)-2-(3-[4-[6-Amino-5-(3-methyl-4-fluoro benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-3-phenyl propionic acid

From Example 12, LCMS purity 96%, m/z 544 $[M+H]^+$, 1H NMR (400 MHz, d_6 -DMSO), δ : 2.30 (2H, m), 2.40 (3H, s), 3.30 (1H, m), 4.30 (2H, m), 4.45 (1H, m), 5.85 (1H, d), 5.40 (1H, m), 5.85 (1H, d), 7.25 (2H, d), 7.40-7.55 (9H, m), 7.60-7.70 (2H, m).

Example 84 (S)-3-[4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-phenoxy)propylamino)phenyl acetic acid

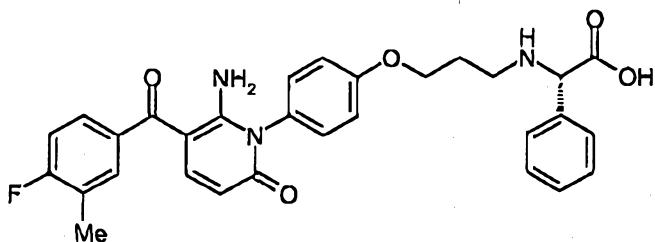
From Example 28, LCMS purity 82%, m/z 534 $[M+H]^+$, 1H NMR (400 MHz, CD_3OD), δ : 2.25 (2H, m), 3.10 (1H, m), 3.25 (1H, m), 4.20 (1H, m), 5.83 (1H, d), 7.15 – 7.60 (13H, d).

Example 85 (S)-2-(3-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-4-methylpentanoic acid

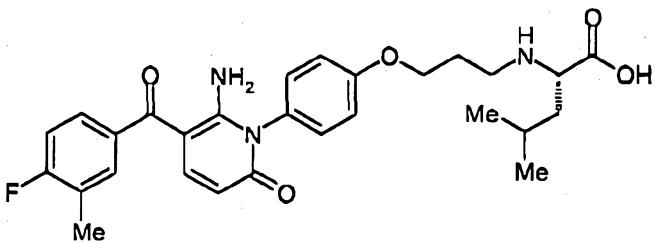

From Example 25, LCMS purity 100%, m/z 496 $[M+H]^+$, 1H NMR (400 MHz, d_6 -DMSO), δ : 1.00 (6H, m), 1.75-1.90 (3H, m), 2.30 (2H, m), 3.10-3.30 (2H, m), 4.00 (1H, m), 4.25 (2H, m), 5.85 (1H, d), 5.40 (1H, m), 5.85 (1H, d), 7.20 (2H, d), 7.30 (2H, d), 7.40 (2H, t), 7.55 (1H, m), 7.65 (2H, m).

27 Sep 2012

2007246869


98

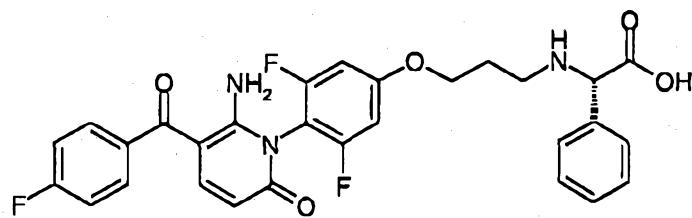
Example 86 (S)-2-(3-(4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-3-phenyl propionic acid


From **Example 29**. LCMS purity 100%, m/z 548 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 2.15 (2H, m), 3.15-3.30 (3H, m), 3.35 (1H, m), 4.10 (2H, m), 4.20 (1H, m), 5.65 (1H, d), 7.15 (2H, d), 7.20-7.35 (11H, m)

Example 87 (S)-(3-(4-[6-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)phenylacetic acid

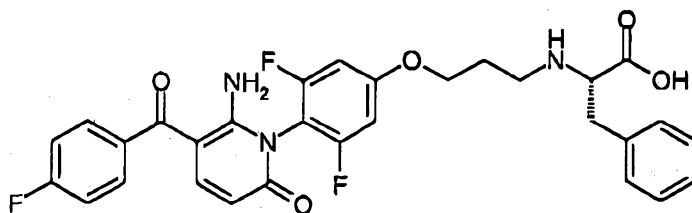
From **Example 26**. LCMS purity 95%, m/z 530 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 2.15 (3H, s) -2.35 (2H, m), 2.85 (2H, m), 3.05 (2H, m), 4.10 (2H, m), 5.25 (1H, m), 5.70 (1H, d), 4.25 (2H, m), 5.85 (1H, d), 5.40 (1H, m), 5.85 (1H, d), 7.10 (2H, d), 7.25 (2H, d), 7.3 (1H, d), 7.35 (1H, m), 7.40-7.55 (5H, m), 7.60 (2H, m).

Example 88 (S)-2-(3-(4-[6-Amino-5-(4-fluoro-3-methyl benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy)propylamino)-4-methylpentanoic acid

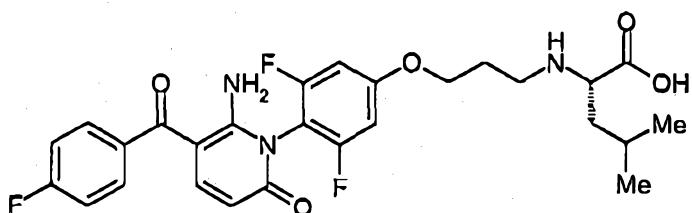

27 Sep 2012

2007246869

99


From Example 27, LCMS purity 94%, m/z 510 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ : 0.90 (6H, br s), 1.65-1.80 (3H, m), 2.1-2.30 (3H, s+2H, m), 3.0-3.20 (2H, m), 3.90 (1H, m), 4.15 (2H, m), 5.65 (1H, d), 7.15 (2H, d), 7.20-7.30 (3H, m), 7.30 (1H, m), 7.40 (1H, d), 7.45 (2H, s).

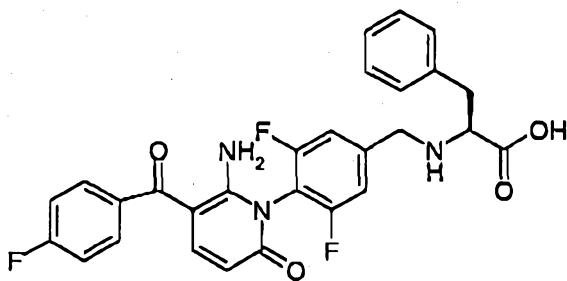
Example 89 (S)-(3-(4-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl)-3,5-difluorophenoxy)propylamino)phenylacetic acid


From Example 13, LCMS purity 91%, m/z 552 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ : 2.10-2.25 (2H, br m), 2.80 (1H, m), 3.00 (1H, m), 4.15 (2H, d), 5.20 (1H, s), 5.70 (1H, d), 5.65 (1H, d), 6.95 (2H, d), 7.30 (2H, t), 7.30 (1H, m), 7.40 -7.60 (8H, m).

Example 90 (S)-(3-(4-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl)-3,5-difluorophenoxy)propylamino)phenylacetic acid

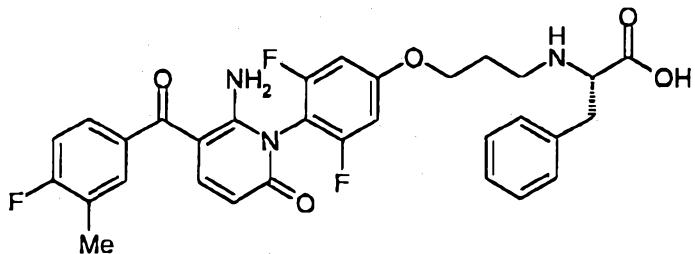
From Example 14, LCMS purity 98%, m/z 566 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ : 2.35 (2H, m), 3.1-3.3 (3H, m), 3.50 (1H, m), 4.25-4.40 (3H, m), 5.80 (1H, d), 5.70 (1H, d), 7.10 (2H, d), 7.30 -7.45 (7H, m), 7.60-7.70 (3H, m).

Example 91 (S)-2-(3-(4-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl)-3,5-difluorophenoxy)phenoxy)propylamino)-4-methyl pentanoic acid


27 Sep 2012

2007246869

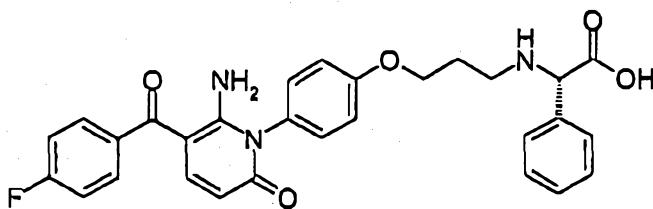
100


From Example 15, LCMS purity 92%, m/z 532 $[M+H]^+$, ^1H NMR (400 MHz, d_6 -DMSO), δ : 0.95 (6H, m), 1.8 (3H, m), 2.30 (2H, m), 3.10-3.25 (2H, m), 3.95 (1H, m), 4.25 (2H, m), 5.80 (1H, d), 7.10 (2H, m), 7.40 (2H, m), 7.60 (1H, m), 7.65 (2H, m).

Example 92 (S)-2-[4-[6-Amino-5-(2,4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorobenzylamino]-3-phenylpropionic acid

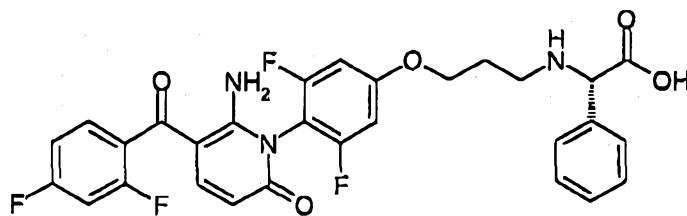
From Example 10, LCMS purity 95%, m/z 522 $[M+H]^+$, ^1H NMR (400 MHz, CD_3OD), δ : 3.30 (2H, m), 4.15 (1H, m), 4.25 (2H, m), 5.75 (1H, d), 7.15-7.35 (9H, m), 5.20 (1H, m), 5.90 (1H, d), 7.35-7.50 (9H, m), 7.55 (2H, m), 7.65 (1H, d).

Example 93 (S)-2-(3-[4-[6-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy]propylamino)-3-phenylpropionic acid

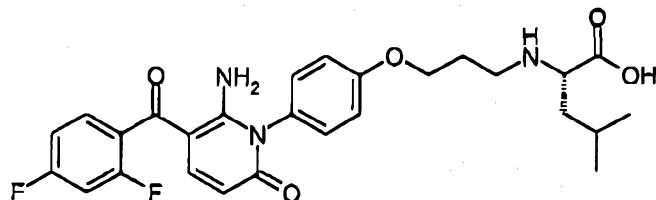

From Example 18, LCMS purity 92%, m/z 580 $[M+H]^+$, ^1H NMR (400 MHz, d_6 -DMSO), δ : 2.30 (2H, m), 2.40 (3H, s), 3.15-3.35 (4H, m), 3.50 (1H, m), 4.30 (2H, m), 4.35 (1H, m), 5.80 (1H, d), 7.10 (2H, m), 7.35-7.50 (7H, m), 7.55 (1H, m), 7.65 (1H, m).

Example 94 (S)-(3-[4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-phenoxy]propylamino)phenylacetic acid

27 Sep 2012


2007246869

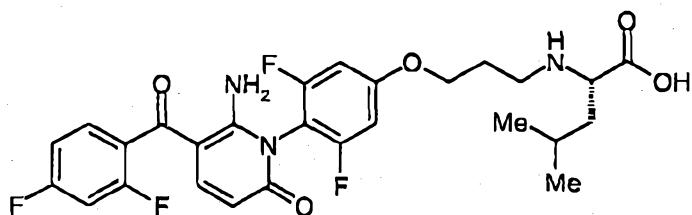
101


From Example 23, LCMS purity 87%, m/z 516 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 2.25 (2H, m), 2.80 (1H, m), 3.10 (1H, m), 4.15 (2H, m), 5.30 (1H, s), 5.75 (2H, d), 7.15 (2H, d), 7.25 (2H, d), 7.40 (2H, t), 7.50-7.70 (7H, m).

Example 95 (S)-(3-{4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)phenyl acetic acid

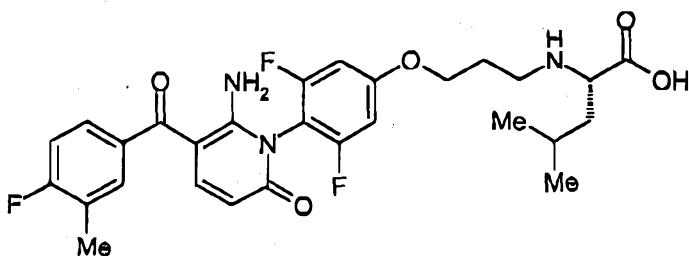
From Example 20, LCMS purity 84%, m/z 570 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 2.30 (2H, m), 2.90 (1H, m), 3.15 (1H, m), 4.23 (2H, m), 5.32 (1H, s), 5.85 (1H, d), 7.10 (2H, d), 7.50 (3H, m), 7.60-7.65 (6H, m).

Example 96 (S)-2-(3-{4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]phenoxy}propylamino)-4-methyl pentanoic acid

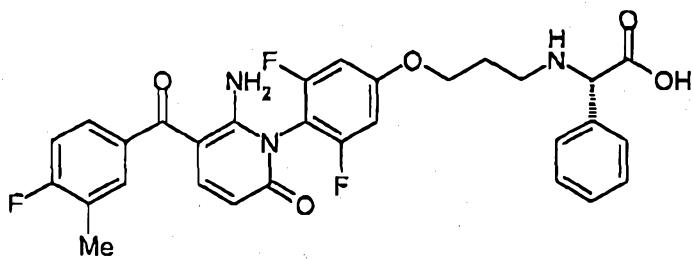

From Example 30, LCMS purity 93%, m/z 514 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 0.95 (6H, m), 1.85 (3H, m), 2.30 (2H, m), 3.15-3.22 (2H, m), 3.99 (1H, m), 4.21 (2H, m), 5.77 (1H, d), 7.20 (2H, d), 7.30 (4H, m), 7.45 (1H, m), 7.55 (1H, m).

Example 97 (S)-2-(3-{4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)-4-methyl pentanoic acid

27 Sep 2012

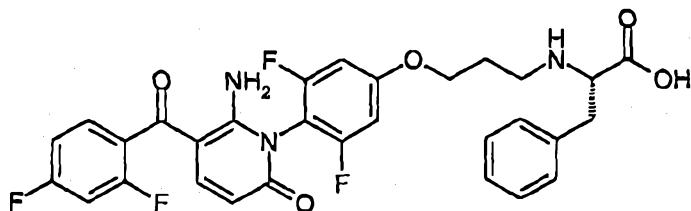

2007246869

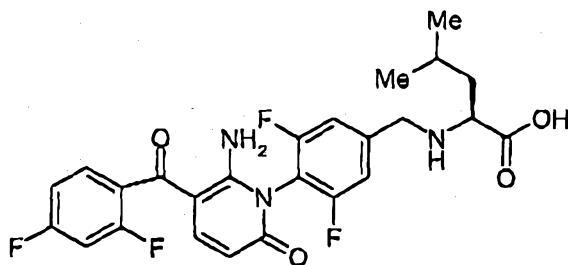
102


From Example 22, LCMS purity 88%, m/z 550 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 0.80-0.95 (6H, m), 1.50-1.85 (3H, m), 1.95-2.10 (2H, m), 2.95-3.05 (2H, m), 3.75-3.85 (1H, m), 4.05-4.15 (2H, m), 5.65 (1H, d), 7.00 (1H, d), 7.10-7.20 (1H, m), 7.25-7.30 (1H, m), 7.30-7.40 (1H, m), 7.45-7.55 (1H, m), 7.80-8.25 (1H, br s), 9.90-10.20 (1H, br s).

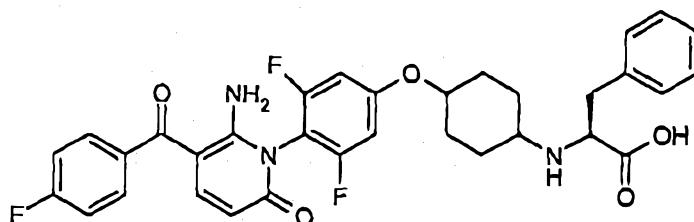
Example 98 (S)-2-(3-{4-[6-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)-4-methylpentanoic acid

From Example 19, LCMS purity 93%, m/z 546 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 0.95-1.05 (6H, m), 1.55-1.75 (2H, m), 1.80-1.90 (1H, m), 2.10-2.25 (2H, m), 2.35 (3H, s), 3.00-3.15 (2H, m), 3.70 (1H, m), 4.15-4.30 (2H, m), 5.80 (1H, d), 7.10 (1H, d), 7.25-7.35 (1H, m), 7.40-7.45 (1H, m), 7.50-7.55 (1H, m), 7.55-7.65 (1H, m), 8.90-10.70 (2H, br s).


Example 99 (S)-(3-{4-[6-Amino-5-(4-fluoro-3-methylbenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino) phenylacetic acid


From Example 17, LCMS purity 100%, m/z 566 [M+H]⁺, ¹H NMR (400 MHz, d₆-DMSO), δ: 2.05-2.20 (2H, m), 2.30 (3H, s), 2.75-3.05 (2H, m), 4.05-4.20 (2H, m), 4.65-4.85 (1H, m), 5.70 (1H, d), 7.00 (1H, d), 7.25-7.35 (1H, m), 7.35-7.60 (8H, m).

27 Sep 2012
2007246869


103

Example 100 (S)-2-(3-{4-[6-Amino-5-(2,4-difluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}-propylamino)-3-phenyl propionic acid

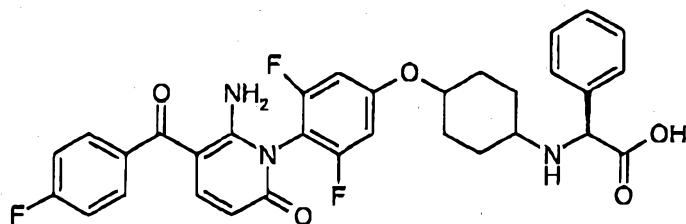
From Example 21. LCMS purity 100%, m/z 584 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ : 2.05-2.15 (2H, m), 3.00-3.10 (3H, m), 4.00-4.25 (4H, m), 5.75 (1H, d), 7.05 (1H, d), 7.25-7.50 (8H, m), 7.55-7.65 (1H, m).

Example 101 (S)-2-{4-[6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorobenzylamino}-4-methylpentanoic acid

From Example 11. LCMS purity 92%, m/z 506 [M+H]⁺, ¹H NMR (400 MHz, MeOD), δ : 0.85-1.05 (6H, m), 1.65-1.85 (3H, m), 3.95-4.05 (1H, m), 4.25-4.35 (2H, m), 5.75 (1H, d), 6.90 (1H, d), 7.00-7.10 (2H, m), 7.35-7.45 (4H, m).

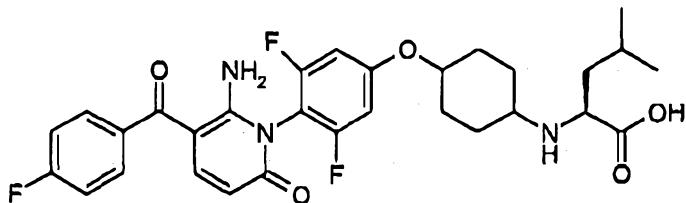
Example 102 (S)-2-(4-{6-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl}-3,5-difluorophenoxy)cyclohexylamino)-4-methylpentanoic acid

From Example 31. LCMS purity 91%, m/z 606 [M⁺+H], ¹H NMR (400 MHz, CD₃OD), δ : 1.55-2.55 (8H, m), 3.20-3.40 (2H, m), 4.25-4.35 (1H, m), 4.45-4.55 (1H, m), 4.85-4.95


27 Sep 2012

2007246869

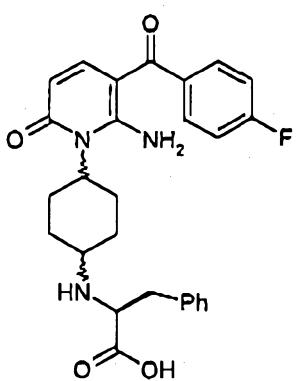
104


(1H, m), 5.95 (1H, d), 6.95-7.10 (2H, m), 7.35-7.55 (6H, m), 7.70-7.80 (2H, m), 7.80-7.85 (1H, d).

Example 103 (2S)-[(4-(4-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl)-3,5-difluorophenoxy)cyclohexyl]amino](phenyl)acetic acid

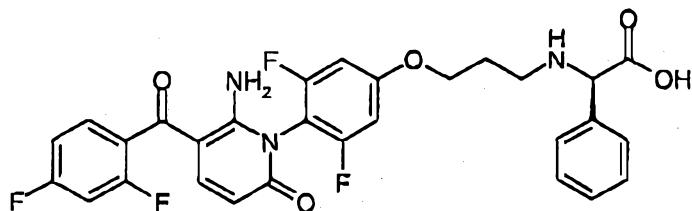
From Example 32. LCMS purity 89%, m/z 592 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 1.60-1.75 (2H, m), 1.80-1.95 (2H, m), 2.00-2.15 (2H, m), 2.15-2.30 (2H, m), 3.05-3.20 (1H, m), 4.65-4.75 (1H, m), 4.75-4.80 (1H, m), 5.80 (1H, d), 6.85-6.95 (2H, m), 7.20-7.30 (2H, m), 7.40-7.50 (3H, m), 7.55-7.65 (4H, m), 7.65-7.70 (1H, m).

Example 104 N-(4-(4-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl)-3,5-difluorophenoxy)cyclohexyl-L-leucine

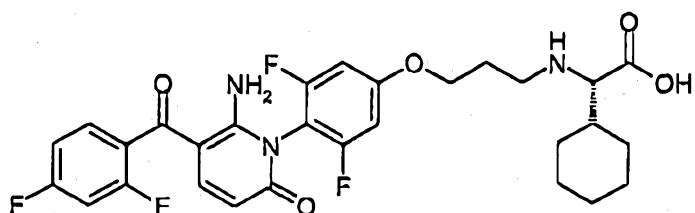


From Example 33. LCMS purity 93%, m/z 572 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ : 0.85-1.00 (6H, m), 1.45-2.00 (9H, m), 2.05-2.25 (3H, m), 3.05-3.15 (1H, m), 3.60-3.75 (1H, m), 4.30 and 4.65 (0.5H each, m), 5.70 (1H, d), 6.75-6.85 (2H, m), 7.10-7.15 (2H, m), 7.45-7.55 (2H, m), 7.55-7.65 (1H, m).

Example 105 (S)-2-(4-Amino-5-(4-fluorobenzoyl)-2-oxo-2H-pyridin-1-yl)cyclohexyl amino)-3-phenylpropionic acid


2007246869 27 Sep 2012

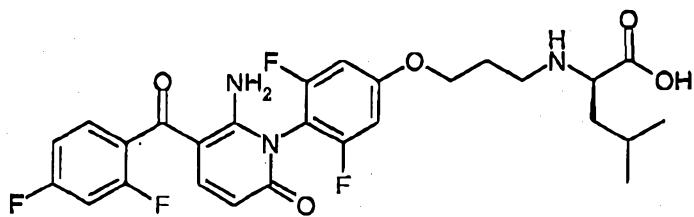
105


From Example 34. LCMS purity 98%, m/z 478 [M+H]⁺, ¹H NMR (400 MHz, CD₃OD), δ: 1.55-1.85 (4H, m), 1.95-2.20 (2H, m), 2.30-2.75 (2H, m), 3.15-3.20 (1H, m), 3.25-3.35 (2H, m), 4.05-4.15 (1H, m), 5.60 (1H, d), 7.05-7.15 (2H, m), 7.15-7.35 (5H, m), 7.35-7.45 (3H, m).

Example 106 (R)-(3-[4-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino)phenyl acetic acid

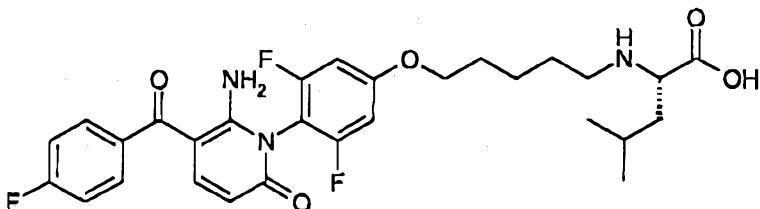
From Example 42. LCMS purity 88%, m/z 570 [M+H]⁺, ¹H NMR (400 MHz, DMSO), δ: 2.05-2.20 (2H, m), 2.75-2.95 (2H, m), 4.10-4.20 (2H, m), 4.30-4.50 (1H, m), 5.75 (1H, d), 7.00-7.10 (2H, m), 7.20-7.30 (1H, m), 7.35-7.50 (7H, m), 7.55-7.65 (1H, m).

Example 107 (2S)-[(3-[4-aminophenoxy)-2-oxo-2H-pyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl]amino(cyclohexyl)acetic acid


27 Sep 2012

2007246869

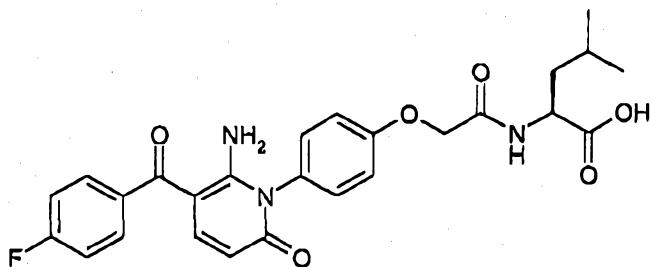
106


From Example 48, LCMS purity 95%, m/z 576 [M+H]⁺, 1H NMR (300 MHz, DMSO), δ : 10.16 (1H, br s), 8.78 (1H, br s), 8.12 (1H, br s), 7.62-7.53 (1H, m), 7.47-7.32 (2H, m), 7.27-7.21 (1H, m), 7.07 (2H, d, J=10.2Hz), 5.74 (1H, d, J=9.6Hz), 4.19 (2H, t, J=5.7Hz), 3.85-3.75 (1H, m), 3.15-3.00 (2H, m), 2.20-2.05 (2H, m), 1.95-1.60 (6H, m), 1.40-0.90 (5H, m).

Example 108 N-(3-[4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl)-D-leucine

From Example 50, LCMS purity 90%, m/z 550 [M+H]⁺, 1H NMR (300 MHz, DMSO), δ : 7.63-7.52 (1H, m), 7.46-7.32 (2H, m), 7.28-7.10 (1H, m), 7.06 (2H, d, J=10.2Hz), 5.73 (1H, d, J=9.9Hz), 4.25-4.15 (2H, m), 3.90-3.80 (1H, m), 3.20-3.00 (2H, m), 2.20-2.05 (2H, m), 1.80-1.55 (3H, m), 0.98-0.90 (6H, m).

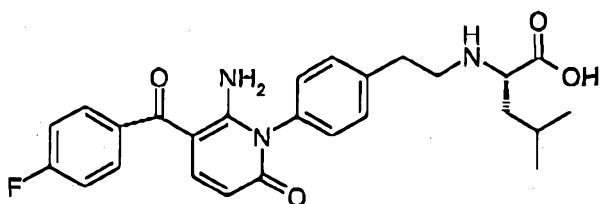
Example 109 N-(5-[4-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}pentyl)-L-leucine


From Example 55. To a solution of cyclopentyl N-(5-[4-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}pentyl)-L-leucinate (33mg, 0.05mmol) in THF (1ml) and water (1ml) was added LiOH (25mg, 1.05mmol, 20eq). The mixture was stirred at room temperature for 16 hours, before being heated at 80 °C for 10 hours. The mixture was concentrated under reduced pressure and water (5 ml) added. The pH was adjusted to 7 using 1M HCl and the aqueous layer extracted with 1-butanol (3 x 5ml). The combined organic extracts were concentrated under reduced pressure. The solid

2007246869 27 Sep 2012

107

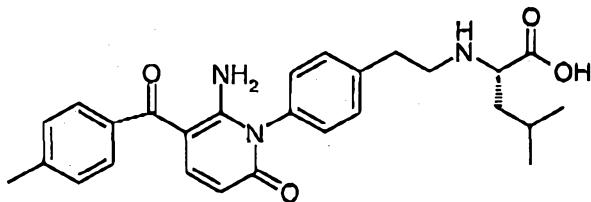
residue was triturated with Et_2O , collected by filtration and purified by preparative HPLC to provide the title compound as a white solid as the mono-TFA salt (7mg, 24% yield). LC/MS: m/z 560 [M+H] $^+$. ^1H NMR (300 MHz, DMSO-d_6) δ : 7.62-7.51 (3H, m), 7.34 (2H, m), 7.05 (2H, m), 5.72 (1H, d, $J=9.8$ Hz), 4.09 (2H, t, $J=5.7$ Hz), 3.23 (1H, m), 2.80 (2H, m), 1.79-1.43 (9H, m), 0.89 (6H, t, $J=6.7$ Hz).


Example 110 N-({4-[6-Amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl]phenoxy}-acetyl)-L-leucine

From **Example 56**. To a solution of cyclopentyl *N*-(4-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2H)-yl]phenoxy)acetyl)-L-leucinate (35mg, 0.06mmol) in THF (1ml) and water (1ml) was added LiOH (30mg, 1.24mmol, 20eq). The mixture was stirred at room temperature for 16 hours, concentrated under reduced pressure and water (5ml) added. The pH was adjusted to 7 using 1M HCl and the aqueous layer extracted with 1-butanol (3 x 5ml). The combined organic extracts were concentrated under reduced pressure. The solid residue was triturated with Et_2O , filtered and dried under reduced pressure to provide the title compound as a cream solid (11mg, 36% yield).

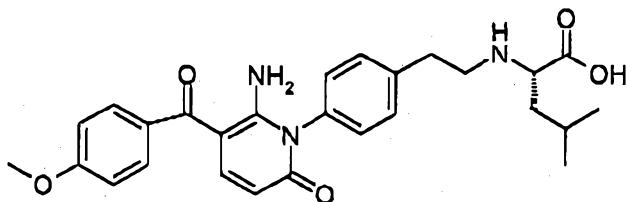
LC/MS: m/z 496 [M+H] $^+$. ^1H NMR (300 MHz, DMSO-d_6) δ : 7.58-7.53 (3H, m), 7.43 (1H, d, $J=9.6$ Hz), 7.36-6.98 (6H, m), 5.68 (1H, d, $J=9.6$ Hz), 4.58 (2H, s), 3.90 (1H, m), 1.67-1.31 (3H, m), 0.86 (6H, m).

Example 111 N-[2-(4-[6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl]phenyl)ethyl]-L-leucine



2007246869 27 Sep 2012

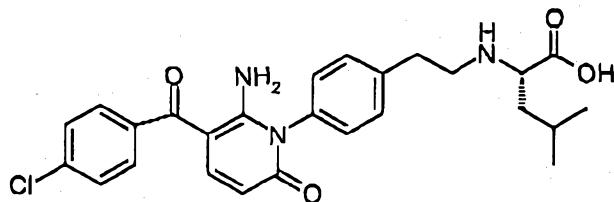
108


From Example 58. LC/MS: m/z 466 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 8.21 (1H, br s), 7.60-7.44 (4H, m), 7.39-7.30 (4H, m), 5.76-5.69 (1H, m), 4.00-3.85 (1H, m), 3.10-2.95 (2H, m), 1.85-1.60 (3H, m), 1.30-1.10 (2H, m), 0.95 (6H, d, J=6Hz).

Example 112 N-[2-(4-(6-amino-5-[(4-methylphenyl)carbonyl]-2-oxopyridin-1(2H)-yl)phenyl]ethyl]-L-leucine

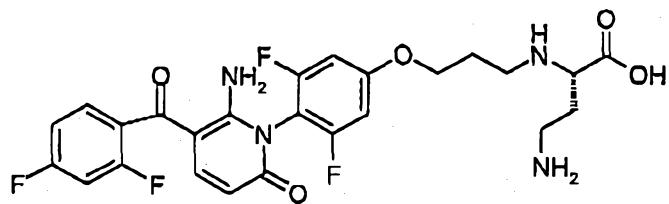
From Example 63. LC/MS: m/z 462 [M+H]⁺. ¹H NMR (300 MHz, CD₃OD) δ: 7.69 (1H, d, J=9.6Hz), 7.53 (2H, d, J=7.2 Hz), 7.45 (2H, d, J=8.1 Hz), 7.34 (2H, d, J=7.8 Hz), 7.25 (2H, d, J=8.4 Hz), 5.80 (1H, d, J=9.6 Hz), 3.15 (1H, m), 3.02-2.75 (4H, m), 2.45 (3H, s), 1.73 (1H, m), 1.56-1.22 (2H, m), 0.96 (6H, dd).

Example 113 N-[2-(4-(6-amino-5-[(4-methoxyphenyl)carbonyl]-2-oxopyridin-1(2H)-yl)phenyl]ethyl]-L-leucine

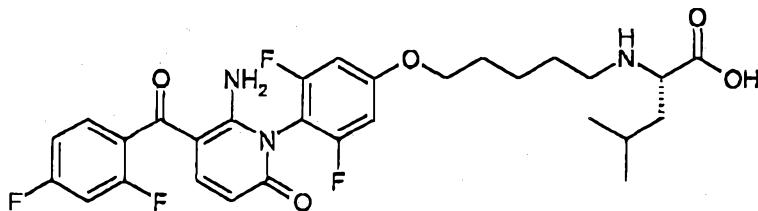

From Example 64. LC/MS: m/z 478 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 7.28 (2H, d, J=8.7Hz), 7.15 (2H, d, J=8.1Hz), 7.04 (1H, d, J=9.3 Hz), 6.89 (4H, m), 4.87 (1H, d, J=9.3Hz), 3.78 (1H, m), 3.41 (3H, s), 2.75 (2H, m), 1.78 (1H, m), 1.24 (2H, m), 0.86 (6H, t).

Example 114 N-[2-(4-(6-amino-5-[(4-chlorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl)phenyl]ethyl]-L-leucine

27 Sep 2012


2007246869

109


From Example 65. LC/MS: m/z 482 [M+H]⁺. ¹H NMR (300 MHz, CD₃OD) δ: 7.16 (1H, d), 7.52 (6H, m), 7.23 (2H, d), 6.82 (1H, d), 3.15 (1H, t), 1.74 (1H, m), 1.44 (2H, m), 0.93 (6H, dd).

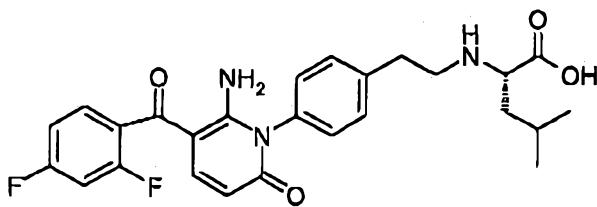
Example 115 (2S)-4-amino-2-[(3-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}propyl)amino]butanoate

From Example 52. LC/MS: m/z 537 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 7.52 - 7.75 (2H, m), 7.30 - 7.48 (2H, m), 7.20 - 7.29 (1H, m), 7.09 (2H, d, J=9.7 Hz), 4.23 (1H, t, J=6.1 Hz), 4.07 - 4.17 (2H, m), 2.14 - 2.32 (2H, m), 1.22 - 1.41 (6H, m), 0.88 (4H, t, J=7.3 Hz)

Example 116 N-(5-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}pentyl)-L-leucine

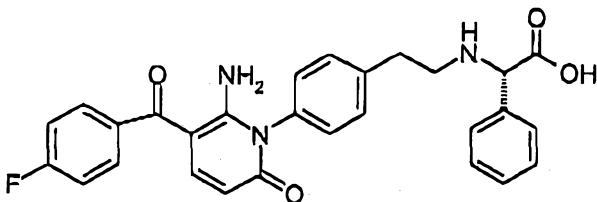
From Example 54. To a solution of *tert*-butyl N-(5-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy}pentyl)-L-leucinate (21mg, 0.04mmol) in DCM (2.5ml) was added TFA (2.5ml). The mixture was stirred at room temperature for 20 hours, before concentrating under reduced pressure. The residue was dissolved in minimal MeOH and azeotroped with 1:1 toluene/DCM three times. The title compound was afforded as a cream coloured solid as the mono-TFA salt (21mg, 92% yield).

27 Sep 2012


2007246869

110

LC/MS: m/z 634 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 10.14 (1H, br s), 8.21 (1H, br s), 7.57 (1H, m), 7.46 (1H, m), 7.34 (1H, dd, J=9.6, 2.4 Hz), 7.21 (1H, m), 7.06 (2H, d, J=10.2 Hz), 5.73 (1H, d, J=9.9 Hz), 4.10 (2H, t, J=5.7 Hz), 3.40 (1H, m), 2.84 (2H, t, J=6.6 Hz), 1.79-1.48 (9H, m), 0.90 (6H, t, J=6.3 Hz).


The following examples were prepared in a similar manner:

Example 117 N-[2-(4-{6-amino-5-[(2,4-difluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl}phenyl)ethyl]L-leucine

From Example 60. LC/MS: m/z 484 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 10.06 (1H, br s), 9.17 (2H, br s), 7.55-6.94 (8H, m), 5.72 (1H, d, J=9.6Hz), 4.05-3.93 (1H, m), 3.40-3.10 (3H, m), 1.85-1.65 (4H, m), 0.95 (6H, d, J=5.7Hz).

Example 118 (2S)-{[2-(4-{6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl}phenyl)ethyl]amino}(phenyl)ethanoic acid

From Example 62. LC/MS: m/z 486 [M+H]⁺. ¹H NMR (300 MHz, DMSO-d₆) δ: 9.80 (2H, br s), 7.70-7.20 (14H, m), 5.70 (1H, d, J=9.6Hz), 5.24 (1H, s), 3.20-2.90 (4H, m).

Measurement of biological activities

p38 MAP Kinase activity

2007246869 27 Sep 2012

111

The ability of compounds to inhibit p38 MAP a Kinase activity was measured in an assay performed by Upstate (Dundee UK). In a final reaction volume of 25 μ L, p38 MAP Kinase a (5-10 mU) is incubated with 25mM Tris pH 7.5, 0.002 mM EGTA, 0.33 mg/mL myelin basic protein, 10mM MgAcetate and [g-33p-ATP] (specific activity approx. 500cpm/pmol, concentration as required). The reaction is initiated by the addition of the MgATP mix. After incubation for 40 minutes at room temperature, the reaction is stopped by the addition of 5 μ L of a 3% phosphoric acid solution. 10 μ L of the reaction is then spotted onto a P30 filtermat and washed three times for 5 minutes in 75 mM phosphoric acid and once in methanol prior to drying and scintillation counting.

Duplicate data points are generated from a 1/3 log dilution series of a stock solution in DMSO. Nine dilutions steps are made from a top concentration of 10 μ M, and a 'no compound' blank is included. The standard radiometric filter-binding assay is performed at an ATP concentration at, or close to, the Km. Data from scintillation counts are collected and subjected to free-fit analysis by Prism software. From the curve generated, the concentration giving 50% inhibition is determined and reported.

LPS-stimulation of THP-1 cells

THP-1 cells were plated in 100 μ l at a density of 4×10^4 cells/well in V-bottomed 96 well tissue culture treated plates and incubated at 37°C in 5% CO₂ for 16hrs. 2hrs after the addition of the inhibitor in 100 μ l of tissue culture media, the cells were stimulated with LPS (*E coli* strain 005:B5, Sigma) at a final concentration of 1 μ g/ml and incubated at 37°C in 5% CO₂ for 6hrs. TNF- α levels were measured from cell-free supernatants by sandwich ELISA (R&D Systems #QTA00B).

LPS-stimulation of human whole blood

Whole blood was taken by venous puncture using heparinised vacutainers (Becton Dickinson) and diluted in an equal volume of RPMI1640 tissue culture media (Sigma). 100 μ l was plated in V-bottomed 96 well tissue culture treated plates. 2hrs after the addition of the inhibitor in 100 μ l of RPMI1640 media, the blood was stimulated with LPS (*E coli* strain 005:B5, Sigma) at a final concentration of 100ng/ml and incubated at 37°C in 5% CO₂ for 6hrs. TNF- α levels were measured from cell-free supernatants by sandwich ELISA (R&D Systems #QTA00B)

IC50 values were allocated to one of three ranges as follows:

27 Sep 2012

2007246869

112

Range A: IC50 < 100nM

Range B: 100nM < IC50 <1000nM

Range C: IC50 >1000nM

Results Table

Example	Inhibitor activity versus p38 MAPK α	Inhibitor activity versus THP-1 TNF α release	Inhibitor activity versus human whole blood TNF α release
1	B	C	NT
2	B	C	NT
3	B	C	C
4	B	C	NT
5	B	C	NT
6	B	C	NT
7	A	C	NT
8	A	B	NT
9	A	B	C
10	A	B	NT
11	A	B	C
12	A	B	NT
13	A	A	NT
14	A	A	NT
15	A	A	C
16	A	A	NT
17	A	A	NT
18	A	A	NT
19	A	A	C
20	A	A	B
21	A	A	C
22	A	A	B
23	A	B	NT
24	A	B	NT

2007246869 27 Sep 2012

113

25	A	B	C
26	A	B	NT
27	B	B	C
28	A	A	NT
29	A	B	NT
30	A	A	NT
31	A	A	NT
32	A	A	NT
33	A	A	NT
34	B	C	NT
35	B	C	NT
36	A	A	C
37	A	B	NT
38	A	A	C
39	A	B	NT
40	A	A	NT
41	B	A	C
42	A	A	B
43	A	A	NT
44	B	A	NT
45	A	A	NT
46	B	A	B
47	A	A	B
48	A	A	C
49	A	B	C
50	A	A	NT
51	A	A	NT
52	A	A	B
53	A	A	B
54	A	A	NT
55	B	A	NT
56	B	C	NT
57	B	A	B

2007246869 27 Sep 2012

114

58	B	A	B
59	B	A	B
60	B	A	NT
61	B	A	NT
62	B	B	NT
63	C	A	NT
64	C	B	NT
65	B	A	NT
66	B	B	NT
67	B	B	C
68	NT	NT	NT
69	NT	NT	NT
70	NT	NT	NT
71	A	C	NT
72	A	NT	NT
73	A	NT	NT
74	A	NT	NT
75	B	NT	NT
76	B	NT	NT
77	A	NT	NT
78	B	NT	NT
79	B	NT	NT
80	A	NT	NT
81	B	NT	NT
82	A	NT	NT
83	A	NT	NT
84	A	NT	NT
85	A	NT	NT
86	C	NT	NT
87	B	NT	NT
88	A	NT	NT
89	A	NT	NT
90	A	NT	NT

2007246869 27 Sep 2012

115

91	A	NT	NT
92	A	NT	NT
93	A	NT	NT
94	A	NT	NT
95	A	NT	NT
96	A	NT	NT
97	A	NT	NT
98	A	NT	NT
99	A	NT	NT
100	A	NT	NT
101	A	NT	NT
102	A	NT	NT
103	A	NT	NT
104	A	NT	NT
105	B	NT	NT
106	A	NT	NT
107	A	NT	NT
108	A	NT	NT
109	A	NT	NT
110	B	NT	NT
111	B	NT	NT
112	NT	NT	NT
113	NT	NT	NT
114	NT	NT	NT
115	NT	NT	NT
116	A	NT	NT
117	A	NT	NT
118	A	NT	NT

Broken Cell Carboxylesterase Assay

Any given compound of the present invention wherein R₁ is an ester group may be tested to determine whether it meets the requirement that it be hydrolysed by intracellular esterases, by testing in the following assay.

Preparation of cell extract

U937 or Hut78 tumour cells ($\sim 10^9$) were washed in 4 volumes of Dulbeccos PBS (~ 1 litre) and pelleted at 525 g for 10 min at 4°C. This was repeated twice and the final cell pellet was resuspended in 35 ml of cold homogenising buffer (Trizma 10 mM, NaCl 130 mM, CaCl₂ 0.5 mM pH 7.0 at 25°C). Homogenates were prepared by nitrogen cavitation (700 psi for 50 min at 4°C). The homogenate was kept on ice and supplemented with a cocktail of inhibitors at final concentrations of:

Leupeptin 1 μ M

Aprotinin 0.1 μ M

E64 8 μ M

Pepstatin 1.5 μ M

Bestatin 162 μ M

Chymostatin 33 μ M

After clarification of the cell homogenate by centrifugation at 525 g for 10 min, the resulting supernatant was used as a source of esterase activity and was stored at -80°C until required.

Measurement of ester cleavage

Hydrolysis of esters to the corresponding carboxylic acids can be measured using the cell extract, prepared as above. To this effect cell extract (~30 μ g / total assay volume of 0.5 ml) was incubated at 37°C in a Tris- HCl 25 mM, 125 mM NaCl buffer, pH 7.5 at 25°C. At zero time the ester (substrate) was then added at a final concentration of 2.5 μ M and the samples were incubated at 37°C for the appropriate time (usually 0 or 80 min). Reactions were stopped by the addition of 3 x volumes of acetonitrile. For zero time samples the acetonitrile was added prior to the ester compound. After centrifugation at 12000 g for 5 min, samples were analysed for the ester and its corresponding carboxylic acid at room temperature by LCMS (Sciex API 3000, HP1100 binary pump, CTC PAL). Chromatography was based on an AceCN (75x2.1mm) column and a mobile phase of 5-95 % acetonitrile in water /0.1 % formic acid.

Rates of hydrolysis are expressed in pg/mL/min.

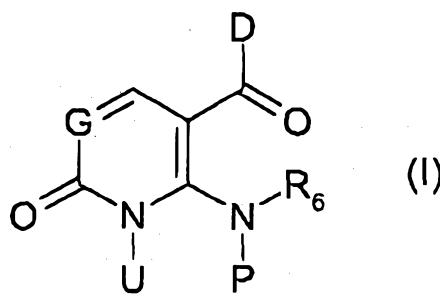
27 Sep 2012

2007246869

117

Table 1 presents data showing that several amino acid ester motifs, conjugated to various intracellular enzyme inhibitors by several different linker chemistries are all hydrolysed by intracellular carboxyesterases to the corresponding acid.

Structure of amino acid ester conjugate	R	Linker	Hydrolysis Rate Range U937 Cells (pg/mL/min)	Preparation of amino ester conjugate
		$-\text{CH}_2\text{CH}_2\text{O}-$	100-1000	WO2006117552
		$-(\text{CH}_2)_3\text{O}-\text{C}_6\text{H}_4-\text{CH}_2\text{NHCH}_2-$	1000-50000	WO2006117548
		$-\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2\text{NHCH}_2-$	>50000	WO2006117549
		$-\text{CH}_2\text{CH}_2\text{O}-$	>60000	WO2006117567
		$-\text{CH}_2\text{CH}_2\text{O}-$	1000-50000	WO2006117567
		$-\text{CH}_2-$	1000-50000	WO2006117567
		$-\text{CO}-$	>50000	WO2006117567
		$-\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2\text{NHCH}_2-$	>50000	WO2006117549
		$-\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2\text{NHCH}_2-$	>50000	WO2006117549


Table 1

2007246869 27 Sep 2012

118

The claims defining the invention are as follows:

1. A compound of formula (I):

wherein:

G is $-N=$ or $-CH=$

D is an optionally substituted mono- or bi-cyclic aryl or heteroaryl radical having 5 - 13 ring members;

R6 is hydrogen or optionally substituted C₁-C₃ alkyl;

P represents hydrogen and U represents a radical of formula (IA); or U represents hydrogen and P represents a radical of formula (IA);

wherein

A represents an optionally substituted divalent mono- or bicyclic carbocyclic or heterocyclic radical having 5 - 13 ring members;

z is 0 or 1;

Y is a bond, $-C(=O)-$, $-S(=O)_2-$, $-C(=O)NR_3-$, $-C(=S)NR_3$, $-C(=NH)NR_3$ or $-S(=O)_2NR_3-$ wherein R₃ is hydrogen or optionally substituted C₁-C₆ alkyl;L¹ is a divalent radical of formula $-(Alk^1)_m(Q)_n(Alk^2)_p-$ wherein

27 Sep 2012

2007246869

119

m, n and p are independently 0 or 1,

Q is (i) an optionally substituted divalent mono- or bicyclic carbocyclic or heterocyclic radical having 5 - 13 ring members, or (ii), in the case where both m and p are 0, a divalent radical of formula $-X^2-Q^1-$ or $-Q^1-X^2-$ wherein X^2 is $-O-$, $S-$ or NR^A- wherein R^A is hydrogen or optionally substituted C_1-C_3 alkyl, and Q^1 is an optionally substituted divalent mono- or bicyclic carbocyclic or heterocyclic radical having 5 - 13 ring members,

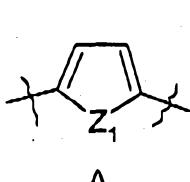
Alk¹ and Alk² independently represent optionally substituted divalent C_3-C_7 cycloalkyl radicals, or optionally substituted straight or branched, C_1-C_6 alkylene, C_2-C_6 alkenylene, or C_2-C_6 alkynylene radicals which may optionally contain or terminate in an ether ($-O-$), thioether ($-S-$) or amino ($-NR^A-$) link wherein R^A is hydrogen or optionally substituted C_1-C_3 alkyl; and

X¹ represents a bond; $-C(=O)-$; or $-S(=O)_2-$; $-NR_4C(=O)-$, $-C(=O)NR_4-$, $-NR_4C(=O)NR_5-$, $-NR_4S(=O)_2-$, or $-S(=O)_2NR_4-$ wherein R_4 and R_5 are independently hydrogen or optionally substituted C_1-C_6 alkyl;

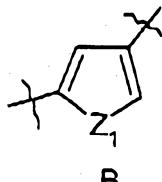
R₁ is a carboxylic acid group ($-COOH$), or an ester group which is hydrolysable by one or more intracellular esterase enzymes to a carboxylic acid group; and

R₂ is the side chain of a natural or non-natural alpha amino acid.

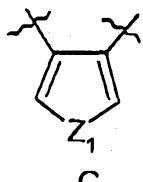
2. A compound as claimed in claim 1 wherein D is optionally substituted phenyl, or pyridinyl.

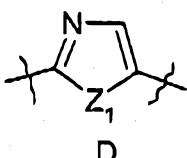

3. A compound as claimed in claim 1 or claim 2 wherein R₆ is hydrogen or methyl.

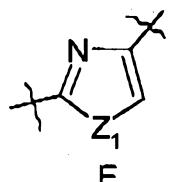
4. A compound as claimed in any one of the preceding claims wherein P is hydrogen and U is a radical of formula (IA) as defined in claim 1.

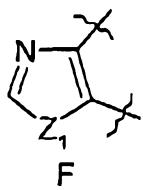

2007246869 27 Sep 2012

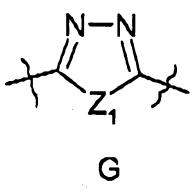
120

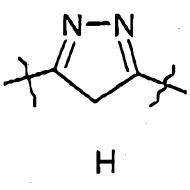

5. A compound as claimed in any one of the preceding claims wherein A is optionally substituted 1,4 phenylene or selected from those of formulae A-X, optionally

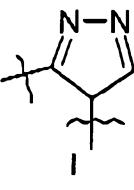

A

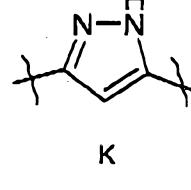

B

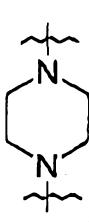

C

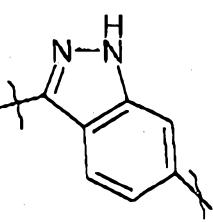

D


E

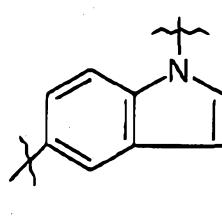

F

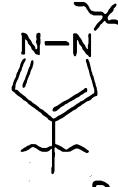

G

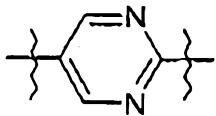

H

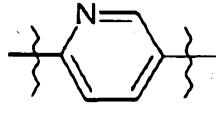

I

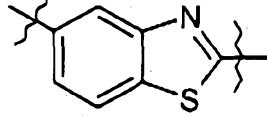

K

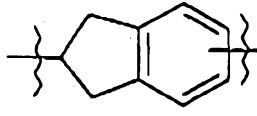

L


M

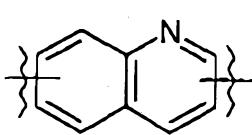

N


O

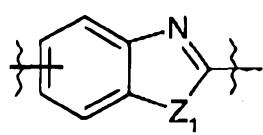

P


Q

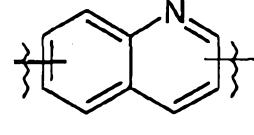
R

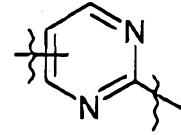


S



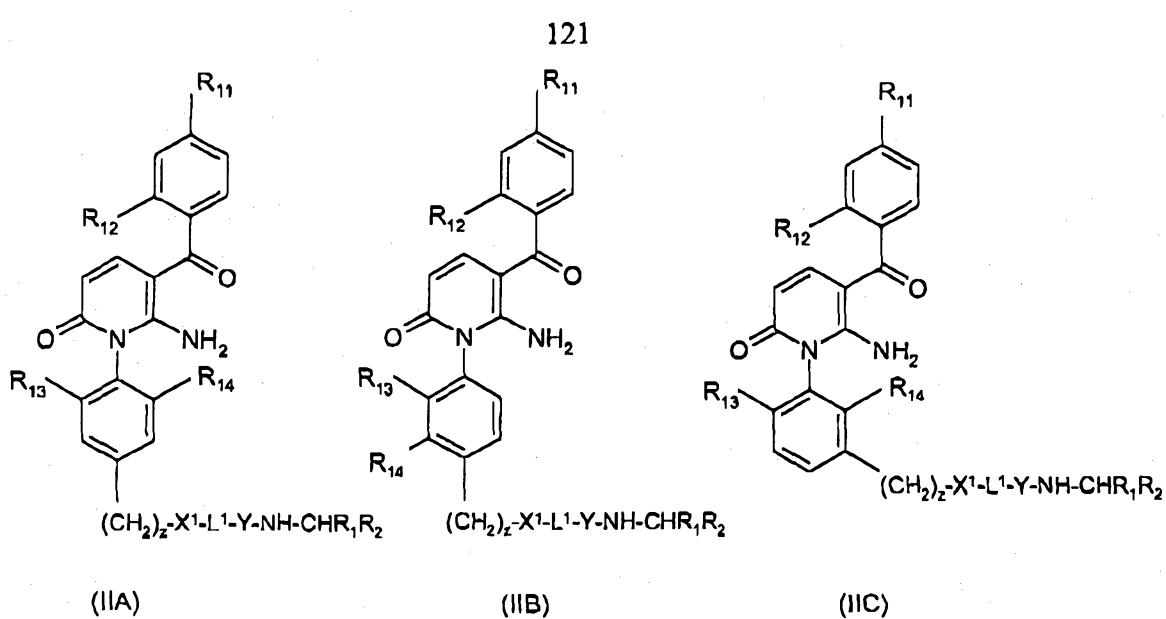
T


substituted:


U

V

W



X

wherein Z_1 is NH, S or O.

6. A compound as claimed in claim 1 which has formula (IIA), (IIB) and (IIC):

2007246869 27 Sep 2012

wherein $R_{11} = F$, $R_{12} = H$, $R_{13} = H$ and $R_{14} = H$; or

$R_{11} = F$, $R_{12} = F$, $R_{13} = H$ and $R_{14} = H$; or

$R_{11} = F$, $R_{12} = H$, $R_{13} = F$ and $R_{14} = F$; or

$R_{11} = F$, $R_{12} = F$, $R_{13} = F$ and $R_{14} = F$; or

$$R_{11} = F, R_{12} = F, R_{13} = F \text{ and } R_{14} = H$$

and wherein z , X^1 , L^1 , Y , R^1 and R^2 are as defined in claim 1.

7. A compound as claimed in any one of the preceding claims wherein

(a) z is 0, and/or

(b) Y is $-\text{C}(=\text{O})$, $-\text{S}(=\text{O})_2-$, $-\text{C}(=\text{S})-\text{NR}_3$, $-\text{C}(=\text{NH})-\text{NR}_3$ or $-\text{S}(=\text{O})_2\text{NR}_3-$ wherein R_3 is hydrogen or $\text{C}_1\text{-C}_6$ alkyl, or Y is a bond.

8. A compound as claimed in any one of the preceding claims wherein, in the

radical L¹, Alk¹ and Alk², when present, are selected from -CH₂-,-CH₂CH₂-,-

$\text{CH}_2\text{CH}_2\text{CH}_2^-$, and divalent cyclopropyl, cyclopentyl and cyclohexyl radicals, and/or

wherein, in the radical L^1 , m and p are 0; n and p are 0 and m is 1; or m , n and p are all

8

9. A compound as claimed in any one of the preceding claims wherein the radical

-Y-L¹-X¹-[CH₂]_z- is selected from -C(=O)-, -C(=O)NH-, -(CH₂)_v- , -(CH₂)_vO-,

-C(=O)-(CH₂)_v- , -C(=O)-(CH₂)_vO- , -C(=O)-NH-(CH₂)_w- , -C(=O)-NH-(CH₂)_wO-

27 Sep 2012

2007246869

122

wherein v is 1, 2, 3 or 4 and w is 1, 2 or 3.

10. A compound as claimed in any one of claims 1 to 7 wherein the radical $-Y-L^1-X^1-[CH_2]_z-$, is $-CH_2-$, $-CH_2CH_2-$, $-CH_2CH_2CH_2-$, $-CH_2CH_2CH_2CH_2-$, $-CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2CH_2O-$, $-CH_2CH_2CH_2CH_2O-$, $-C(=O)-CH_2-$, $-C(=O)-CH_2O-$, $-C(=O)-NH-CH_2-$, or $-C(=O)-NH-CH_2O-$.

11. A compound as claimed in any one of the preceding claims wherein R_1 is an ester group of formula $-(C=O)OR_{14}$ wherein R_{14} is $R_8R_9R_{10}C-$ wherein

(i) R_8 is hydrogen or optionally substituted $(C_1-C_3)alkyl-(Z^1)_a-[(C_1-C_3)alkyl]_b-$ or $(C_2-C_3)alkenyl-(Z^1)_a-[(C_1-C_3)alkyl]_b-$ wherein a and b are independently 0 or 1 and Z^1 is $-O-$, $-S-$, or $-NR_{11}-$ wherein R_{11} is hydrogen or $(C_1-C_3)alkyl$; and R_9 and R_{10} are independently hydrogen or $(C_1-C_3)alkyl$;

(ii) R_8 is hydrogen or optionally substituted $R_{12}R_{13}N-(C_1-C_3)alkyl-$ wherein R_{12} is hydrogen or $(C_1-C_3)alkyl$ and R_{13} is hydrogen or $(C_1-C_3)alkyl$; or R_{12} and R_{13} together with the nitrogen to which they are attached form an optionally substituted monocyclic heterocyclic ring of 5- or 6- ring atoms or bicyclic heterocyclic ring system of 8 to 10 ring atoms, and R_9 and R_{10} are independently hydrogen or $(C_1-C_3)alkyl$;

(iii) R_8 and R_9 taken together with the carbon to which they are attached form an optionally substituted monocyclic carbocyclic ring of from 3 to 7 ring atoms or bicyclic carbocyclic ring system of 8 to 10 ring atoms, and R_{10} is hydrogen.

12. A compound as claimed in claim 11 wherein R_{14} is methyl, ethyl, n- or iso-propyl, n-, sec- or tert-butyl, cyclohexyl, allyl, phenyl, benzyl, 2-, 3- or 4-pyridylmethyl, N-methylpiperidin-4-yl, tetrahydrofuran-3-yl or methoxyethyl.

13. A compound as claimed in claim 11 wherein R_{14} is cyclopentyl.

2007246869 27 Sep 2012

123

14. A compound as claimed in any one of the preceding claims wherein R_2 is hydrogen.
15. A compound as claimed in any one of claims 1 to 13 wherein R_2 is phenylethyl, tert-butoxymethyl, cyclohexylmethyl, pyridin-3-ylmethyl, sec-butyl, tert-butyl, 1-benzylthio-1-methylethyl, 1-methylthio-1-methylethyl, or 1-mercaptop-1-methylethyl.
16. A compound as claimed in any one of claims 1 to 13 wherein R_2 is phenyl, benzyl, iso-butyl, cyclohexyl or t-butoxymethyl.
17. A compound as claimed in any one of claims 1 to 10 wherein R_1 is an ester group of formula $-(C=O)OR_{14}$ wherein R_{14} is cyclopentyl, and R_2 is phenyl, benzyl, iso-butyl, cyclohexyl or t-butoxymethyl.
18. A compound as claimed in claim 1 selected from the group consisting of:

Example 20 Cyclopentyl (S)-(3-{4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy}propylamino)phenyl acetate;

Example 22 Cyclopentyl (S)-2-(3-{4-[6-Amino-5-(2,4-difluoro benzoyl)-2-oxo-2H-pyridin-1-yl]-3,5-difluorophenoxy)propylamino)-4-methyl pentanoate;

Example 42 Cyclopentyl (2R)-[(3-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl]amino](phenyl)acetate;

Example 47 2-Morpholin-4-ylethyl N-(3-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl)-L-leucinate;

Example 46 2-(Dimethylamino)ethyl N-(3-{4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2H)-yl]-3,5-difluorophenoxy)propyl)-L-leucinate;

Example 57 Cyclopentyl N-[2-(4-{6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2H)-yl}phenyl)ethyl]-L-leucinate;

27 Sep 2012

2007246869

124

Example 53 Cyclopentyl *N*-(5-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2*H*)-yl]-3,5-difluorophenoxy)pentyl)-L-leucinate;

Example 67 Cyclopentyl *N*-[3-(4-[6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2*H*)-yl]phenyl)propyl]-L-leucinate;

Example 52 Cyclopentyl (2*S*)-4-amino-2-[(3-(4-[6-amino-5-(2,4-difluorobenzoyl)-2-oxopyridin-1(2*H*)-yl]-3,5-difluorophenoxy)propyl]amino]butanoate;

Example 55 Cyclopentyl *N*-(5-(4-[6-amino-5-(4-fluorobenzoyl)-2-oxopyridin-1(2*H*)-yl]-3,5-difluorophenoxy)pentyl)-L-leucinate;

Example 59 Cyclopentyl *N*-[2-(4-[6-amino-5-[(2,4-difluorophenyl)carbonyl]-2-oxopyridin-1(2*H*)-yl]phenyl)ethyl]-L-leucinate;

Example 60 *tert*-Butyl *N*-[2-(4-[6-amino-5-[(2,4-difluorophenyl)carbonyl]-2-oxopyridin-1(2*H*)-yl]phenyl)ethyl]-L-leucinate;

Example 61 Cyclopentyl (2*S*)-{[2-(4-[6-amino-5-[(4-fluorophenyl)carbonyl]-2-oxopyridin-1(2*H*)-yl]phenyl)ethyl]amino}(phenyl) ethanoate;

Example 63 Cyclopentyl *N*-[2-(4-[6-amino-5-[(4-methylphenyl)carbonyl]-2-oxopyridin-1(2*H*)-yl]phenyl)ethyl]-L-leucinate; and

Example 65 Cyclopentyl *N*-[2-(4-[6-amino-5-[(4-chlorophenyl)carbonyl]-2-oxopyridin-1(2*H*)-yl]phenyl)ethyl]-L-leucinate.

19. A compound as claimed in any one of the preceding claims which is in the form of a pharmaceutically acceptable salt.

20. A pharmaceutical composition comprising a compound as claimed in any one of the preceding claims, together with a pharmaceutically acceptable carrier.

2007246869 27 Sep 2012

125

21. The use of a compound as claimed in any one of claims 1 to 19 in the preparation of a composition for inhibiting the activity of a p38 MAP kinase enzyme *in vitro* or *in vivo*.
22. The use of a compound as claimed in any one of claims 1 to 19 in the preparation of a composition for the treatment of autoimmune or inflammatory disease
23. A method of inhibiting the activity of a p38 MAP kinase enzyme comprising contacting the enzyme with an amount of a compound as claimed in any one of claims 1 to 19 effective for such inhibition.
24. A method for the treatment of autoimmune or inflammatory disease which comprises administering to a subject suffering such disease an effective amount of a compound as claimed in any one of claims 1 to 19.
25. The use as claimed in claim 22 or method as claimed in claim 24 wherein the disease is psoriasis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, chronic obstructive pulmonary disease, asthma, multiple sclerosis, diabetes, atopic dermatitis, graft versus host disease, or systemic lupus erythematosus.
26. The use as claimed in claim 22 or method as claimed in claim 24 wherein the disease is rheumatoid arthritis.