PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

			` ,
(51) International Patent Classification 5:		(11) International Publication Number:	WO 93/21160
C07D 231/20, 231/18 A01N 43/50	A1	(43) International Publication Date:	28 October 1993 (28.10.93)
1			

(51) International Patent C07D 231/20, 23		A1	(11) International Publication Number:	WO 93/21160
A01N 43/50		AI	(43) International Publication Date:	28 October 1993 (28.10.93)
(21) International Applica (22) International Filing				(72) Inventor; and (75) Inventor/Applicant (for US only Lawrence [US/US]; 204 Va DE 19702 (US).	v): FINKELSTEIN, Bruce, lley Stream Drive, Newark,
(30) Priority data: 07/867,843	13 April 1992 (13.04.92)	Į	US	(74) Agents: COSTELLO, James, A mours and Company, Leg 1007 Market Street, Wilming	al/Patent Records Center.
(60) Parent Application of (63) Related by Conf	r Grant tinuation			(81) Designated States: AU, BB, BC	G. BR. CA CZ FI HII IP

07/867,843 (CIP) 13 April 1992 (13.04.92)

(71) Applicant (for all designated States except US): DUNLENA PTY. LTD. [AU/AU]; 168 Walker Street, North Sydney, NSW (AU).

(81) Designated States: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, KZ, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, MI, MB, SN, TD, TG). ML, MR, SN, TD, TG).

Published

With international search report.

(54) Title: ARTHROPODICIDAL PYRAZOLE SULFONATES

(57) Abstract

US Filed on

Arthropodicidal compounds having the formula R1-SO₂-O-Q where R1 and Q are as defined in the text, compositions containing said compounds and use of the compounds to control arthropods.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		-	· · · · · · · · · · · · · · · · · · ·		
ΑŤ	Austria	FR	France	MR	Mauritania
AU -	Australia	GA.	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinca	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	.JP	Japan	ŔŬ	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
. CG	Congo	-	of Korca	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	KZ.	Kazakhstan	SN	Senegal
CM	Cameroon	Li	Liechtenstein	SU	Soviet Union
cs	Czechoslovakia	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	1.0	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine -
DK	Denmark	MG	Madagascar	us	United States of America
ES	Spain	Ml.	Mali	VN	Viet Nam
FI	Finland	MN	Mongolia		

10

15

20

1

TITLE ARTHROPODICIDAL PYRAZOLE SULFONATES

U.S. Patent 3,966,574 discloses insecticidal sulfonates that contain a heteroaromatic ring having three heteroatoms. U.S. Patent 4,791,127 discloses insecticidal thiazole sulfonates and Jacobsen, et al., *Pest. Sci.*, (1990), 29, 96-100 discloses insecticidal oxazole sulfonates. Arthropodicidal pyrazole sulfonates of Formula I have hitherto been unknown.

SUMMARY OF THE INVENTION

This invention pertains to compounds of Formula I, including all geometric and stereoisomers, agriculturally suitable salts thereof, agricultural compositions containing them and their use for the control of arthropods and nematodes in both agronomic and nonagronomic environments. The compounds are

$$R^1 - SO_2 - O - Q$$

Ι

wherein:

Q is selected from the group

PCT/US93/01271

5

15

20

25

2

G is selected from the group S, S(=O), S(=O)₂, C=S and C=O; R¹ is selected from the group C_1 – C_3 alkyl and C_1 - C_3 haloalkyl; R² is selected from the group C_1 – C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 – C_6

alkenyl and C_2 – C_6 alkynyl each of which can be optionally substituted with R^5 ; or R^2 is selected from the group C_1 – C_6 haloalkyl, $N(R^7)R^8$, C_3 - C_6 cyclohaloalkyl, C_2 – C_6 haloalkenyl, C_2 – C_6 haloalkynyl, C_4 - C_7 cycloalkylalkyl and C_4 – C_7 cycloalkylalkyl

substituted with R^6 ;

R³ and R⁴ are independently selected from the group H, C₁–C₆ haloalkyl, C₁–C₆ alkoxy, C₁–C₆ haloalkoxy, C₁–C₆ alkylthio, C₁–C₆ haloalkylthio, C₃–C₆ cyclohaloalkyl, C₂–C₆ haloalkenyl, C₂–C₆ haloalkynyl, C₄–C₇ cycloalkylalkyl, C₁–C₆ alkylsulfinyl, C₁–C₆ haloalkylsulfinyl, C₁–C₆ haloalkylsulfinyl, C₁–C₆ haloalkylsulfonyl, C₂–C₆ alkoxycarbonyl, C₂–C₆ alkylcarbonyl, formyl, halogen, OH, NO₂, N(R¹⁴)R¹⁵, C(O)N(R¹⁴)R¹⁵, CN and phenyl optionally substituted with W; C₁–C₆ alkyl; C₃–C₆ cycloalkyl; C₂–C₆ alkenyl; C₂–C₆ alkynyl; wherein each of C₁–C₆ alkyl, C₃–C₆ cycloalkyl, C₂–C₆ alkenyl and C₂–C₆ alkynyl can be optionally substituted with R¹³;

 R^5 and R^{13} are independently selected from the group CN, SCN, NO_2 , OR^9 , SR^9 , $S(O)R^9$, SO_2R^9 , $OC(O)R^9$, OSO_2R^9 , $Si(R^9)(R^{10})(R^{11})$, CO_2R^9 , $C(O)N(R^9)R^{10}$, $C(O)R^9$, $N(R^9)R^{10}$ and phenyl optionally substituted with R^{12} ;

 R^6 is selected from the group halogen, CN and C_1 - C_2 alkyl;

	R' is selected from the group C_1 - C_6 alkyl optionally substituted with R^{10} ,
	C ₃ -C ₆ cycloalkyl optionally substituted with R ¹⁹ , and C ₄ -C ₇
	cycloalkylalkyl optionally substituted with R ¹⁹ ;
	R ⁸ is selected from the group H, CN, C ₁ -C ₆ haloalkyl and C ₁ -C ₆ alkyl
5	optionally substituted with CN;
	R^7 and R^8 can be taken together to form -(CH ₂) ₂ -, -(CH ₂) ₃ -, -(CH ₂) ₄ -,
	-(CH ₂) ₅ - or -CH ₂ CH ₂ -O-CH ₂ CH ₂ -;
	R^9, R^{10} and R^{11} are independently selected from the group C_1 - C_3 alkyl and
	C ₁ -C ₃ haloalkyl;
10	R ¹² and W are independently selected from the group halogen, C ₁ -C ₂ alkyl,
	C ₁ -C ₂ haloalkyl, C ₁ -C ₂ alkoxy, C ₁ -C ₂ haloalkoxy, C ₁ -C ₂ alkylthio,
	C_1 - C_2 haloalkylthio, C_1 - C_2 alkylsulfinyl, C_1 - C_2 haloakylsulfinyl,
	C_1 - C_2 alkylsulfonyl, C_1 - C_2 haloalkylsulfonyl, NO_2 and CN ;
	R ¹⁴ and R ¹⁵ are independently selected from the group H, C ₁ -C ₆ alkyl,
15	C ₁ -C ₆ haloalkyl, C ₂ -C ₆ alkylcarbonyl, C ₂ -C ₆ alkoxycarbonyl, C ₁ -C ₆
	alkylsulfonyl and C(O)N(R ¹⁷)R ¹⁸ ; or
	R^{14} and R^{15} can be taken together to form -(CH ₂) ₂ -, -(CH ₂) ₃ -, -(CH ₂) ₄ -,
	-(CH ₂) ₅ - or -CH ₂ CH ₂ -O-CH ₂ CH ₂ -;
	R^{16} is selected from the group 1 to 5 halogens, CN, C_1 - C_2 alkoxy, C_1 - C_2
20	alkylthio, C_1 - C_2 alkylsulfonyl and C_3 - C_6 trialkylsilyl;
	R ¹⁷ and R ¹⁸ are independently selected from the group H and C ₁ -C ₃ alkyl;
	and
	R ¹⁹ is selected from the group 1 to 5 halogens, C ₁ -C ₃ alkyl, CN, C ₁ -C ₂
	alkoxy, C_1 - C_2 alkylthio, C_1 - C_2 alkylsulfonyl and C_3 - C_6 trialkylsilyl.
25	
	Preferred compounds A are those compounds of Formula I wherein:
	G is selected from the group $S(=0)_2$ and $C=0$
	R^1 is selected from the group CH_3 and $ClCH_2$;
	R^2 is selected from the group C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6
30	alkenyl, C_2 - C_6 haloalkenyl and $N(R^7)R^8$;
	R^3 and R^4 are independently selected from the group H, C_1 - C_2
	alkyl, C_1 - C_2 haloalkyl, C_1 - C_2 alkoxy, $N(R^{14})R^{15}$ and
	halogen; and

10

15

20

30

35

 R^{14} and R^{15} are independently selected from the group H and C_1 - C_6 alkyl.

Preferred Compounds B are compounds of Preferred A wherein Q is Q-1.

Preferred Compounds C are compounds of Preferred A wherein Q is Q-2.

Preferred Compounds D are compounds of Preferred A wherein Q is Q-3.

Some of the compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active than the others and how to separate said stereoisomers. Accordingly, the present invention comprises mixtures, individual stereoisomers, and optically active mixtures of compounds of Formula I as well as agriculturally suitable salts thereof.

In the above recitations, the term "alkyl" used either alone or in compound word such as "haloalkyl", denotes straight or branched alkyl such as methyl, ethyl, *n*-propyl, isopropyl, or the different butyl, pentyl or hexyl isomers. Alkoxy denotes methoxy and ethoxy. Alkenyl denotes straight or branched chain alkenes such as vinyl, 1-propenyl, 2-propenyl and the different butenyl, pentenyl and hexenyl isomers. Cycloalkylalkyl denotes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl attached to a straight or branched C₁-C₄ alkylene group. The term "trialkylsilyl" denotes silicon with three alkyl substituents. The term"Alkoxy" denotes methoxy, ethoxy, *n*-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers.

The term "alkoxycarbonyl" denotes CH₃OC(=O), CH₃CH₂OC(=O),

CH₃CH₂CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy-, pentoxy- or
hexyloxycarbonyl isomers. The term "alkylcarbonyl" denotes CH₃C(=O),

CH₃CH₂C(=O), CH₃CH₂CH₂C(=O), (CH₃)₂CHC(=O) and the different butyl-,
pentyl- or hexylcarbonyl isomers.

The term "alkylsulfonyl" denotes CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. The term "alkylsulfinyl" denotes CH₃S(O) and CH₃CH₂S(O).

The term "halogen", either alone or in compound words such as "haloalkyl", denotes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl" said alkyl may be partially or fully

substituted with halogen atoms, which may be the same or different. Examples of haloalkyl include CH_2CH_2F , CF_2CF_3 and CH_2CHFCl . The terms "haloalkenyl" and "haloalkynyl" are defined analogously to the term "haloalkyl".

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 7. For example, C₂ alkoxycarbonyl designates C(O)OCH₃ and C₃ alkoxycarbonyl designates C(O)OCH₂CH₃.

DETAILS OF THE INVENTION

Compounds of Formula I can be prepared by reaction of the corresponding hydroxypyrazole (1) with the appropriate sulfonyl halide and a base such as triethylamine or pyridine in a solvent such as dichloromethane or tetrahydrofuran as shown in Equation 1. It is known to one skilled in the art that the hydroxy compounds (1) may exist as the pyrazolone tautomer. In Equations 1-8 R¹, R², R³, R⁴ and G are as previously defined.

15 Equation 1

HO - Q

$$R^1$$
 - SO₂ - halogen

 R^1 - SO₂ - O - Q

base

A general review for the synthesis of hydroxypyrazoles can be found in Wiley, et at., The Chemistry of Hetrocyclic Compounds, Pyrazolones, Pyrazolidones and Derivatives:, Vol. 20, Wiley, New York, (1964). More specifically, the hydroxy pyrazoles 1 wherein Q is Q-1 can be prepared from the appropriate β-dicarbonyl compound 2 or a synthetic equivalent such as acetylenic ester or α-oxodithioketene acetal and the appropriate hydrazide

25 (3, wherein G is C=O), thiohydrazide (3, wherein G is C=S), sulfonylhydrazide

(3, wherein G is C=O), thiohydrazide (3, wherein G is C=S), sulfonylhydrazide (3, wherein G is S(=O)₂), sulfinylhydrazide (3, wherein G is S(=O), or sulfenylhydrazide (3, wherein G is S), in the presence of base as shown in Equation 2. The synthesis of the compounds 3 is known.

Equation 2

$$R^3$$
 R^4
O-alkyl + R^2 -G-NHNH₂
 R^3
 R^4
OH
 R^3
 R^4
OH
 R^3
 R^4
 $R^$

The hydroxy pyrazoles 1 wherein Q is Q-2 can be prepared from alkoxy compounds 4 by treatment with iodotrimethylsilane or aqueous acid such as hydrobromic acid in acetic acid as shown in Equation 3.

Equation 3

10

15

The compounds of Formula 4 can be prepared by treatment of an alkoxypyrazole 5 with the appropriate acid chloride, sulfonyl chloride, sulfinylchloride or sulfenyl chloride (6) and base as shown in Equation 4. The compounds of Formula 4 wherein G is C=S can be prepared from the compounds of Formula 4 wherein G is C=O by treatment with a thiation reagent such as P_2S_5 or 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide. The synthesis of 4-alkoxypyrazoles is known to one skilled in the art. (For instance see: Pluempe, H. and Schegk, E., Arch. Pharm., 300, 704, (1967).

Equation 4

$$R^3$$
 O-alkyl

 R^4 + R^2 - G - Cl

 R^4 + R^5 - G - Cl

 R^4 + R^4 + R^5 - G - Cl

5 The hydroxy pyrazoles 1 wherein Q is Q-3 can be prepared by cyclization of β-oxohydrazides (7) with a base such as sodium ethoxide in a solvent such as ethanol as shown in Equation 5. The compounds of Formula 7 are prepared by known methods.

Equation 5

10

Alternatively, compounds of Formula I wherein Q is Q-1 or Q-3 can be prepared by reaction of a pyrazole sulfonate 8 with a compound of Formula 6 and base as shown in Equation 6. The ratio of products obtained will depend on the nature of the R³ and R⁴ groups. In some instances, only one product will be obtained.

Equation 6

The compounds of Formula 8 can be prepared by the reaction of a hydroxypyrazole 9 with a sulfonyl halide and base as shown in Equation 7. The synthesis of compounds of Formula 9 is known.

Equation 7

10

Analogously, compounds of Formula I wherein Q is Q-2 can be prepared from pyrazole sulfonates of Formula 10 which in turn can be prepared from hydroxy pyrazoles of Formula II as shown in Equation 8.

15 Equation 8

$$R^3$$
 R^4
 R^4

10

20

25

30

35

9

EXAMPLE 1

<u>Preparation of 3-Methyl-1-(propylsulfonyl)-</u>

1H-pyrazol-5-ol Methanesulfonate (Ester)

Intermediate 1

3-Methyl-1-(propylsulfonyl)-1H-pyrazol-5-ol

To a solution of 10 g (72 mmol) of 1-propanesulfonic acid, hydrazide in 150 mL of ethanol was added 9.2 mL (72 mmol) of ethyl acetoacetate and 27 mL (72 mmol) of a 2.68 M solution of sodium ethoxide in ethanol. The reaction mixture was refluxed overnight. After cooling, the solvent was removed with a rotary evaporator. The residue was taken up in water, acidified and extracted with dichloromethane. After drying with sodium sulfate, the solvent was removed with a rotary evaporator to give the product (11.36 g) as an orange solid. ¹H NMR (CDCl₃): d 0.94 (t, 3), 1.62 (m, 2), 2.10 (s, 3), 3.46 (t, 2), 5.2 (br, 1).

3-Methyl-1-(propylsulfonyl)-1H-pyrazol-

5-ol, Methanesulfonate (Ester)

To a solution of 1 g (4.9 mmol) of 3-methyl-1-(propylsulfonyl)-1H-pyrazol-5-ol in 50 mL of dichloromethane at 0°C was added 0.96 mL (6.9 mmol) of triethylamine followed by 0.56 mL (6.9 mmol) of methanesulfonyl chloride. The reaction mixture was allowed to stand at room temperature overnight.

Dichloromethane was added. The organic layer was washed with water, dried (sodium sulfate) and the solvent was removed with a rotary evaporator. The residue was purified by flash chromatography to give 0.79 g of the title compound as a yellow oil. ^{1}H NMR (CDCl₃): δ 1.08 (t, 3), 1.62 (m, 2), 2.31 (s, 3), 3.33 (s, 3), 3.43 (t, 2), 6.12 (s, 1).

EXAMPLE 2

Preparation of 5-Methyl-1-(propylsulfonyl)-1H-pyrazol-3-ol Methanesulfonate (Ester)

1 5 of Weddingsdifonate (Ester

Intermediate 1

5-Methyl-1H-pyrazol-3-ol Methanesulfonate (Ester)

To a solution of 10 g (102 mmol) of 2,4-dihydro-3H-pyrazol-3-one in 250 mL of dichloromethane at 0°C was added 15.6 mL (112 mmol) of triethylamine followed by 8.7 mL (112 mmol) of methanesulfonyl chloride dropwise. The reaction mixture was stirred overnight at room temperature. It was washed with water, dried (Na₂SO₄) and the solvent was removed with a rotary evaporator. The residue was purified by flash chromatography (45-60%)

10

15

20

ethyl acetate in hexanes as eluant) to afford 4.98 g of the title compound as a white solid (m.p. 104-106°C) 1 H NMR (CDCl₃) δ 2.32 (s,3), 3.28 (s,3), 5.94 (s,1) 9.6 (br,1).

5-Methyl-1H (propylsulfonyl)-1H-pyrazol-3-ol Methanesulfonate (Ester)

To a solution of 1.70 g (9.6 mmol) of 5-methyl-1H-pyrazol-3-ol, methanesulfonate (ester) in 50 mL of dichloromethane at 0°C was added 1.87 mL (13.4 mmol) of triethylamine followed by 1.5 mL (13.4 mmol) of propanesulfonyl chloride. The reaction mixture was stirred overnight at room temperature. An additional 0.67 mL of triethylamine was added. The reaction mixture was cooled in an ice bath of 0.54 mL of propanesulfonyl chloride was added. It was stirred at room temperature for 4 h. Water was added. The organic layer was dried (Na₂SO₄) and the solvent was removed with a rotary evaporator. The residue was purified by flash chromatography (30% ethyl acetate in hexanes as eluant) to afford 2.15 g of the title compound as a white solid (m.p. 84-85°C) 1 H NMR (CDCl₃) δ 1.4 (t,3), 1.77 (m,2), 2.54 (s,3) 3.34 (s,3), 3.45 (m,2), 6.10 (s,1).

By applying the procedures of Examples 1 and 2 and Equations 1 through 8, one skilled in the art can prepare the compounds in Tables 1 through 3. In the following Tables, abbreviations for G, various alkyl chains and rings have been used with the following corresponding definitions.

 $iPr = isopropyl = CH(CH_3)_2$ nPr = n-propyl = $CH_2CH_2CH_3$ cPr = cylopropyl = CH(CH₂)₂ $iBu = isobutyl = CH_2CH(CH_3)_2$ sBu = s-butyl = $CH(CH_3)CH_2CH_3$ 25 tBu = tert-butyl = C(CH₃)₃nBu = n-butyl = $(CH_2)_3CH_3$ iAm = isoamyl = CH₂CH₂CH(CH₃)₂ $Ph = phenyl = C_6H_5$ $cPrCH_3 = 2$ -cyclopropylmethyl = $CH(CHCH_3)CH_2$ 30 $SO_2 =$ Ĩ 0 CO = C = 0

Table 1

$G=SO_2$, $R^1=CH_3$,	G=SO ₂ , R ¹ =CH ₃ ,	G=CO, R ¹ =CH ₃ ,	G=CO, R ¹ =CH ₃ ,
R^3 =CH ₃ , R^4 =H,	$R^3=H, R^4=H,$	R^3 =CH ₃ , R^4 =H,	$R^3=H, R^4=H,$
$\underline{\mathbf{R}}^2$ =	$\underline{\mathbb{R}}^2$ =	$\underline{\mathbf{R}^2} =$	<u>R</u> ² =
CH ₃	CH ₃	CH ₃	CH ₃
C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅
nPr	nPr	nPr	nPr
iPr	iPr _	iPr	iPr
cPr	cPr	сРт	сРг
nBu	nBu	nBu	nBu
iBu	iBu	iBu	iBu
tBu ¯	tBu	tBu	tBu
sBu	sBu	sBu	sBu
iAm -	iAm	iAm	iAm
CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂
CH ₂ C≡CH	CH ₂ C≡CH	CH ₂ C≡CH	CH ₂ C≡CH
CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI
$CH_2CH_2C(F)=CF_2$	CH ₂ CH ₂ C(F)=CF ₂	CH ₂ CH ₂ C(F)=CF ₂	CH ₂ CH ₂ C(F)=CF ₂
CH ₂ cPr	CH ₂ cPr	СН2сРт	CH ₂ cPr
N(H)iPr	N(H)iPr	N(H)iPr	N(H)iPr
N(H)sBu	N(H)sBu	N(H)sBu	N(H)sBu

$G=SO_2$, $R^1=CH_3$, $R^2=nPr$,		G=CO, R ¹ =CH ₃ , R ² =N(H)iPr,	
$\underline{\mathbb{R}^3} =$	$\underline{R}^4 =$	<u>R</u> ³ =	<u>R</u> ⁴ =
н	CO ₂ CH ₃	н	CO ₂ CH ₃
H	$CO_2C_2H_5$	H	$CO_2C_2H_5$
H	C(O)CH ₃	H	C(O)CH ₃
H	CN	H	CN
CH ₃	CH ₃	CH ₃	CH ₃
CH ₃	CO ₂ CH ₃	CH ₃	CO ₂ CH ₃
CH ₃	C(O)CH ₃	CH ₃	C(O)CH ₃
CH ₃	CN	CH ₃	CN
CF ₃	H	CF ₃	H
OCH ₃	H	OCH ₃	H
OCH ₃	CH ₃	OCH ₃	CH ₃
OCF ₂ H	H	OCF ₂ H	H
SCH ₃	H	SCH ₃	Н
SCH ₃	CO ₂ CH ₃	SCH ₃	CO ₂ CH ₃
Cl	H	CI	H
F	H	F	H

Table 2

$G=SO_2$, $R^1=CH_3$,	$G=SO_2$, $R^1=CH_3$,	G=CO, R ¹ =CH ₃ ,	G=CO, R ¹ =CH ₃ ,
$R^{3}=CH_{3}, R^{4}=H,$	R^3 =H, R^4 =H,	R^3 =CH ₃ , R^4 =H,	R ³ =H, R ⁴ =H,
$\underline{\mathbf{R}^2} =$	$\underline{\mathbb{R}}^2 =$	$\underline{\mathbf{R}^2} =$	<u>R</u> ² =
CH ₃	CH ₃	CH ₃	CH ₃
C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅
nPr	nPr	nPr	nPr
iPr	iPr	iPr	iPr
cPr	сРт	сРт	cPr
nBu	nBu	nBu	nBu
iBu	iBu	iBu	iBu
tBu	tBu	tBu	tBu
sBu	sBu	sBu	sBu
iAm	iAm	iAm	iAm
CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂
CH ₂ C≡CH	CH ₂ C≡CH	CH ₂ C≡CH	CH ₂ C≡CH
CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI
$CH_2CH_2C(F)=CF_2$	$CH_2CH_2C(F)=CF_2$	CH ₂ CH ₂ C(F)=CF ₂	CH ₂ CH ₂ C(F)=CF ₂
CH ₂ cPr	СН ₂ сРг	СН2сРт	СН2сРг
N(H)iPr	N(H)iPr	N(H)iPr	N(H)iPr
N(H)sBu	N(H)sBu	N(H)sBu	N(H)sBu

G=SO ₂ , R ¹ =CH ₃ , R ² =nPr,		G=CO, R ¹ =CH ₃ , R ² =N(H)iPr,	
$\underline{\mathbb{R}^3} =$	<u>R</u> ⁴ =	<u>R</u> ³ =	<u>R</u> ⁴ =
H	CO ₂ CH ₃	H	CO ₂ CH ₃
H .	CO ₂ C ₂ H ₅	H	$CO_2C_2H_5$
H	C(O)CH ₃	H	C(O)CH ₃
H	CN	H	CN
CH ₃	CH ₃	CH ₃	CH ₃
CH ₃	CO ₂ CH ₃	CH ₃	CO ₂ CH ₃
CH ₃	C(O)CH ₃	CH ₃	C(O)CH ₃
CH ₃	CN	CH ₃	CN
CF ₃	Н	CF ₃	H
OCH ₃	H .	OCH ₃	H
OCH ₃	CH ₃	OCH ₃	CH ₃
OCF ₂ H	H	OCF ₂ H	H
SCH ₃	H	SCH ₃	H
SCH ₃	CO ₂ CH ₃	SCH ₃	CO ₂ CH ₃
CI ·	H	CI	Н
F	H	F	${f H}$.

Table 3

$$R^1$$
— SO_2 — O
 R^4
 R^3
 R^3
 R^4
 R^3

$G=SO_2$, $R^1=CH_3$,	G=SO ₂ , R ¹ =CH ₃ ,	G=CO, R ¹ =CH ₃ ,	G=CO, R ¹ =CH ₃ ,
R^3 =CH ₃ , R^4 =H,	$R^3=H, R^4=H,$	R^3 =CH ₃ , R^4 =H,	$R^3=H, R^4=H,$
$\underline{\mathbf{R}}^2$ =	$\underline{\mathbf{R}^2} =$	<u>R</u> ² =	$\underline{\mathbf{R}^2} =$
CH ₃	CH ₃	CH ₃	CH ₃
C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅
nPr	nPr	nPr	nPr
iPr	iPr	iPr	iPr
cPr	сРт	сРт	сРг
nBu	nBu	nBu	nBu
iBu	iBu	iBu	iBu
tBu	tBu	tBu	tBu
sBu	sBu	sBu	sBu
iAm	iAm	iAm	iAm
CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂
CH ₂ C≡CH	CH ₂ C≡CH	CH ₂ C≡CH	CH ₂ C≡CH
CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI
$CH_2CH_2C(F)=CF_2$	CH ₂ CH ₂ C(F)=CF ₂	CH ₂ CH ₂ C(F)=CF ₂	CH ₂ CH ₂ C(F)=CF ₂
CH ₂ cPr	СН2сРг	CH ₂ cPr	CH ₂ cPr
N(H)iPr	N(H)iPr	N(H)iPr	N(H)iPr
N(H)sBu	N(H)sBu	N(H)sBu	N(H)sBu
CH ₂ SCH ₃	CH ₂ SCH ₃	N(CH ₃)iPr	N(CH ₃)iPr
CH ₂ Si(CH ₃) ₃	CH ₂ Si(CH ₃) ₃	N(H)cPr	N(H)cPr
CH ₂ CN	CH ₂ CN	N(CH ₃)C ₂ H ₅	N(CH ₃)C ₂ H ₅
$CH_2S(O)_2CH_3$	CH ₂ S(O) ₂ CH ₃	N(H)CH(CH ₃)CH ₂ CN	N(H)CH(CH ₃)CH ₂ CN

G=SO ₂ , R ¹ =CH ₃ , R ² =nPr,		G=CO, R ¹ =CH ₃ , R ² =N(H)iPr	
$\underline{\mathbb{R}^3} =$	<u>R</u> ⁴ =	<u>R</u> ³ =	<u>R</u> ⁴ =
Н	CO ₂ CH ₃	H	CO ₂ CH ₃
H	$CO_2C_2H_5$	Н	$CO_2C_2H_5$
H	C(O)CH ₃	H	C(O)CH ₃
H	CN	н	CN
CH ₃	CH ₃	CH ₃	CH ₃
CH ₃	CO ₂ CH ₃	CH ₃	CO ₂ CH ₃
CH ₃	C(O)CH ₃	CH ₃	C(O)CH ₃
CH ₃	CN	CH ₃	CN
CF ₃	H	CF ₃	H · ·
OCH ₃	H	OCH ₃	H
OCH ₃	CH ₃	OCH ₃	CH ₃
OCF ₂ H	н	OCF ₂ H	H
SCH ₃	H	SCH ₃	H
SCH ₃	CO ₂ CH ₃	SCH ₃	CO ₂ CH ₃
Cl	Н	CI	H
F	H	F	H

10

Formulation/Utility

Compounds of this invention will generally be used in formulation with an agriculturally suitable carrier comprising a liquid or solid diluent or an organic solvent. Useful formulations include dusts, granules, baits, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates, dry flowables and the like, consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up 100 weight percent.

	Weight Percent			
	Active Ingredient	<u>Diluent</u>	Surfactant	
Wettable Powders	25-90	0-74	1-10	
Oil Suspensions, Emulsions, Solutions, (including Emulsifiable Concentrates)	5-50	40-95	0-15	
Dusts Granules, Baits and Pellets	1-25 0.01-99	70-99 5-99.99	0-5 0-15	
High Strength Compositions	90-99	0-10	0-2	

15

20

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents and solvents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth, etc.

Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer mill or fluid energy mill. Water-dispersible granules can be produced by agglomerating a fine powder composition; see for example, Cross et al., *Pesticide Formulations*,

- Washington, D.C., 1988, pp 251-259. Suspensions are prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147–148, *Perry's Chemical Engineer's Handbook*, 4th Ed.,
- McGraw-Hill, New York, (1963), pages 8–57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can also be prepared as taught in DE-3,246,493.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10–41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, (1961), pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are worked up in conventional ways. Compound numbers refer to compounds in Index Table A.

Example A

25	Wettable Powder	
	Compound 1	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
30	montmorillonite (calcined)	23.0%.
	Example B	•
	Granule	-
	Compound 1	10.0%
	attapulgite granules (low volative	-

25

30

35

	matter, 0.71/0.30 mm; U.S.S. No.	
	25-50 sieves)	90.0%.
	Example C	
	Extruded Pellet	
5	Compound 1	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.
10	Example D	
	Emulsifiable Concentrate	
	Compound 1	20.0%
	blend of oil soluble sulfonates	
-	and polyoxyethylene ethers	10.0%
15	isophorone	70.0%.

The compounds of this invention exhibit activity against a wide spectrum of foliar-feeding, fruit-feeding, seed-feeding, aquatic and soil-inhabiting arthropods (term "arthropod" includes insects, mites and nematodes) which are pests of growing and stored agronomic crops, forestry, greenhouse crops, ornamentals, nursery crops, stored food and fiber products, livestock, household, and public and animal health. Those skilled in the art will appreciate that not all compounds are equally effective against all pests. Nevertheless, all of the compounds of this invention display activity against pests that include: eggs, larvae and adults of the Order Lepidoptera; eggs, foliar-feeding, fruit-feeding, root-feeding, seed-feeding larvae and adults of the Order Coleoptera; eggs, immatures and adults of the Orders Hemiptera and Homoptera; eggs, larvae, nymphs and adults of the Order Acari; eggs, immatures and adults of the Orders Thysanoptera, Orthoptera and Dermaptera; eggs, immatures and adults of the Order Diptera; and eggs, junveniles and adults of the Phylum Nemata. The compounds of this invention are also active against pests of the Orders Hymenoptera, Isoptera, Phthiraptera, Siphonoptera, Blattaria, Thysanaura and Pscoptera; pests belonging to the Class Arachnida and Phylum Platyhelminthes. The compounds are particularly active against southern corn rootworm (Diabrotica undecimpunctata howardi), aster leafhopper (Mascrosteles fascifrons), boll weevil (Anthonomus grandis), twospotted spider mite (Tetranychus urticae), fall armyworm (Spodoptera

10

15

20

25

30

35

frugiperda), black bean aphid (Aphis fabae), tobacco budworm (Heliothis virescens), rice water weevil (Lissorhoptrus oryzophilus), rice leaf beetle (Oulema oryzae), whitebacked planthopper (Sogatella furcifera), green leafhopper (Nephotettix cincticeps), brown planthopper (Nilaparvata lugens), small brown planthopper (Laodelphax striatellus), rice stem borer (Chilo suppressalis), rice leafroller (Cnaphalocrocis medinalis), black rice stink bug (Scotinophara lurida), rice stink bug (Lagynotomus elongatus), rice bug (Leptocorisa chinensis), slender rice bug (Cletus puntiger), and southern green stink bug (Nezara viridula). See WO 90/10623 and WO 92/00673 for more detailed pest descriptions.

Compounds of this invention cart also be mixed with one or more other insecticides, fungicides, nematocides, bactericides, acaricides, semiochemicals, repellants, attractants, pheromones, feeding stimulants or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Examples of other agricultural protectants with which compounds of this invention can be formulated are: insecticides such as avermectin B, monocrotophos, carbofuran, tetrachlorvinphos, malathion, parathion—methyl, methomyl, chlordimeform, diazinon, deltamethrin, oxamyl, fenvalerate, esfenvalerate, permethrin, profenofos, sulprofos, triflumuron, diflubenzuron, methoprene, buprofezin, thiodicarb, acephate, azinphosmethyl, chlorpyrifos, dimethoate, fipronil, flufenprox, fonophos, isofenphos, methidathion, methamidophos, phosmet, phosphamidon, phosalone, pirimicarb, phorate, terbufos, trichlorfon, methoxychlor, bifenthrin, biphenate, cyfluthrin, fenpropathrin, fluvalinate, flucythrinate, tralomethrin, metaldehyde and rotenone; fungicides such as carbendazim, thiuram, dodine, maneb, chloroneb, benomyl, cymoxanil, fenpropidine, fenpropimorph, triadimefon, captan, thiophanatemethyl, thiabendazole, phosethyl-Al, chlorothalonil, dichloran, metalaxyl, captafol, iprodione, oxadixyl, vinclozolin, kasugamycin, myclobutanil, tebuconazole, difenoconazole, diniconazole, fluquinconazole, ipconazole, metconazole, penconazole, propiconazole, uniconzole, flutriafol, prochloraz, pyrifenox, fenarimol, triadimenol, diclobutrazol, copper oxychloride, furalaxyl, folpet, flusilazol, blasticidin S, diclomezine, edifenphos, isoprothiolane, iprobenfos, mepronil, neo-asozin, pencycuron, probenazole, pyroquilon, tricyclazole, validamycin, and flutolanil; nematocides such as aldoxycarb, fenamiphos and fosthietan; bactericides such as oxytetracyline, streptomycin and tribasic copper sulfate; acaricides such as binapacryl, oxythioquinox,

15

20

25

30

chlorobenzilate, dicofol, dienochlor, cyhexatin, hexythiazox, amitraz, propargite, tebufenpyrad and fenbutatin oxide; and biological agents such as Bacillus thuringiensis and baculovirus.

In certain instances, combinations with other arthropodicides having a similiar spectrum of control but a different mode of action will be particularly advantageous for resistance management.

Arthropod pests are controlled and protection of agronomic crops, animal and human health is achieved by applying one or more of the compounds of this invention, in an effective amount, to the environment of the pests including the agronomic and/or nonagronomic locus of infestation, to the area to be protected, or directly on the pests to be controlled. A preferred method of application is by spraying. Alternatively, granular formulations of these compounds can be applied to the plant foliage or the soil. Other methods of application include direct and residual sprays, aerial sprays, systemic uptake, baits, eartags, boluses, foggers, fumigants, aerosols, and many others. The compounds can be incorporated into baits that are consumed by the arthropods or in devices such as traps and the like.

The compounds of this invention can be applied in their pure state, but most often application will be of a formulation comprising one or more compounds with suitable carriers, diluents, and surfactants and possibly in combination with a food depending on the contemplated end use. A preferred method of application involves spraying a water dispersion or refined oil solution of the compounds. Combinations with spray oils, spray oil concentrations, spreader stickers, adjuvants, and synergists and other solvents such as piperonyl butoxide often enhance compound efficacy.

The rate of application required for effective control will depend on such factors as the species of arthropod to be controlled, the pest's life cycle, life stage, its size, location, time of year, host crop or animal, feeding behavior, mating behavior, ambient moisture, temperature, and the like. Under normal circumstances, application rates of about 0.01 to 2 kg of active ingredient per hectare are sufficient to control pests in agronomic ecosystems, but as little as 0.001 kg/hectare may be sufficient or as much as 8 kg hectare may be required. For nonagronomic applications, effective use rates will range from about 1.0 to 50 mg/square meter but as little as 0.1 mg/square meter may be sufficient or as much as 150 mg/square meter may be required.

The following Tests demonstrate the control efficacy of compounds of this invention on specific pests. The pest control protection afforded by the compounds is not limited, however, to these species. See Index Tables A and B for compound descriptions.

Index Table A

5	Compound	<u>G</u>	<u>R</u> 1	<u>R</u> 2	<u>R</u> 3	<u>R</u> 4	m.p. (°C)
	1	so_2	CH ₃	CH ₃	CH ₃	H	129-130
	2	so_2	CH ₃	nPr	CH ₃	H	oil ^a
	3	so_2	CH ₃	iBu	CH ₃	H	oilb
	4	CO	CH ₃	N(H)iPr	CH ₃	H	oil ^c
10	5	so_2	CH ₃	n Pr	CH ₃	CH ₃	oil ^d
	6	so_2	CH ₃	nBu	CH ₃	H	oile
	7	so_2	CH ₃	$N(CH_3)_2$	CH ₃	H	oil^f
	9	so_2	CH ₃	nPr	сн ₃ осн ₂	H	oil ^g
	10	CO	CH ₃	C_2H_5	CH ₃	H	74.5-77.5
15	12	so_2	CH ₃	nPr	C_2H_5	H	oil ^h
	14	CO	CH ₃	C_2H_5	CH ₃	H	51-53
	16	so_2	CH ₃	CH ₂ Ph	CH ₃	H	119-122
	17	so_2	CH ₃	nPr	CH ₃	Br	oil ⁱ
	18	CO	CH ₃	N(H)iPr	CH ₃ S(O) ₂ NH	H	139-142
20	19	C=S	CH ₃	$N(H)C_2H_5$	CH ₃	H	47-49
	20	CO	CH ₃	N(H)iPr	NH ₂	H	oil ^j
	35	SO ₂	CH ₃	nPr	C(O)OC ₂ H ₅	H	89-90
	47	SO_2	CH ₃	n Pr	Ph	H	80-82
	51	CO	CH ₃	N(H)iPr	Ph	H	141-144

25

a $\,^{1}\mathrm{H}\,\mathrm{NMR}$ reported in Example 1

 $[^]b$ $^1{\rm H}$ NMR (CDCl $_3)$ δ 1.10 (d,6), 2.31 (s,3), 2.33 (m,l) 3.33 (s,3), 3.35 (m,2) 6.12 (s,1)

 $^{^{\}text{c}^{\text{-}}}$ $^{\text{l}}\text{H}$ NMR (CDCl}_{3}) δ 1.27 (d,6), 2.24 (s,3), 3.38 (s,3), 4.02 (m,1), 6.07 (s,1), 6.9 (br,1)

 $^{^{\}rm d}$ $^{\rm 1}H$ NMR (CDCl $_{\rm 3})$ δ 1.05 (1,3), 1.82 (q,2), 2.02 (s,3), 2.24 (s,3), 3.38 (m,2), 3.40 (s,3)

- ^e 1 H NMR (CDCl₃) δ 0.93 (t,3), 1.44 (m,2), 1.78 (m,2), 2.31 (s,3), 3.33 (s,3), 3.42 (m,2), 6.12 (s,1)
- ^f ¹H NMR (CDCl₃) δ 2.28 (s,3), 3.00 (s,6), 3.29 (s,3), 6.08 (s,1)
- $g = {}^{1}H \text{ NMR (CDCl}_{3}) \delta 1.15 \text{ (t,3)}, 2.02 \text{ (m,2)}, 3.36 \text{ (s,3)}, 3.42 \text{ (s,3)}, 3.46 \text{ (m,2)}, 4.45 \text{ (s,2)}, 6.33 \text{ (s,1)}$
- 5 h HNMR (CDCl₃) δ 1.05 (t,3), 1.14 (t,3), 2.00 (m,2), 2.66 (q,2), 3.39 (s,3), 3.45 (m,2), 6.14 (s,1)
 - i 1 H NMR (CDCl₃) δ 1.17 (t,3), 2.11 (m,2), 2.32 (s,3), 3.81 (s,3), 3.58 (m,2)
 - $\label{eq:cdcl3} i \quad ^{1}\text{H NMR (CDCl}_{3}) \ 1.24 \ (d,6), \ 3.85 \ (s,3), \ 3.89 \ (br,2), \ 4.02 \ (m,1), \ 5.71 \ (s,1), \ 6.76 \ (br,1)$

Index Table B

10

				and the second s			
	<u>Cmpd^r</u>	<u>G</u>	<u>R</u> 1	<u>R</u> ²	<u>R</u> 3	<u>R</u> 4	m.p. (°C)
-	8	CO 、	CH ₃	N(H)iPr	NH_2	H	142-144
15	11	CO	CH ₃	N(H)iPr	H	H	90-91
	13	SO_2	CH ₃	nPr	NH ₂	H	72-73
	15	CO	CH ₃	C_2H_5	CH ₃	H	50-51
	21	SO_2	CH ₃	nPr	CH ₃	H	85-86
	22	SO_2	CH ₃	CH ₃	H	H	93-96
20	23	C=S	CH ₃	N(H)iPr	NH ₂	H	101-102
	24	SO_2	CH ₃	nPr	H	H	oil^k
	25	SO ₂	CH ₃	nPr	H	CH ₃	62-64
	26	CO	CH ₃	N(H)iPr	CH ₃	H	140-141
	27	SO ₂	nPr	nPr	CF ₃	H	40-43
25	28	SO_2	CH ₃	nPr	CF ₃	H	55-57
	29	SO ₂	CH ₃	iPr	CH ₃	H	28-30
	30	SO ₂	CH ₃	nBu	CH ₃	H	oil^l
	31	SO ₂	CH ₃	C ₂ H ₅	CH ₃	H	36-39
	32	SO ₂	CH ₃	nPr	SCH ₃	H	66-67
30	33	SO ₂	CH ₂ Cl	nPr	CH ₃	H	56-57

	34	SO_2	CH ₃	nPr	C(O)OC ₂ H ₅	H	116-119
	36	SO_2	CH ₃	iBu	CH ₃	H	oil^m
	37	CO	CH ₃	N(H)sBu	H	H	67-68
	38	SO_2	CH ₃	iBu	H	H	oil^n
5	39	SO_2	CH ₃	CH ₂ Ph	CH ₃	H	128-129
	40	SO_2	CH ₃	nPr	CH ₃	CH ₃	94-96
	41	SO_2	CH ₃	CH ₃	H	Br	137-138
	42	SO_2	CH ₃	nPr	C_2H_5	H	67-68
	43	SO_2	CH ₃	iPr	H	H	45-46
10	44	SO_2	CH ₃	CH ₂ CH ₂ C(F)=CF ₂	CH ₃	H	oilo
	45	SO_2	CH ₃	iBu	SCH ₃	H	oil^p
	46	SO ₂	CH ₃	nPr	Ph	H	75-78
	48	SO_2	CH ₃	nPr	сРт	H	55-56
	49	CO	CH ₃	N(H)cPrCH ₃	H	H	90-91
15	50	CO	CH ₃	N(H)iPr	Ph	H	137-138
	52	SO_2	CH ₃	$CH_2CH_2C(F)=CF_2$	H	H	oilq

r cmpd = Compound

- 20 k H NMR (CDCl₃) δ 1.04 (t,3), 1.78 (m,2), 3.37 (s,3) 3.44 (m,2), 6.37 (d,1), 7.99 (d,1)
 - ¹ ¹H NMR (CDCl3) δ 0.93 (t,3), 1.40 (m,2), 1.70 (m,2), 3.34 (s,3), 3.43 (m,2), 6.08 (s,1)
 - m ¹H NMR (CDCl₃) δ 1.08 (d,6), 2.11 (m,1), 2.55 (s,3), 3.32 (d,2), 3.34 (s,3), 6.08 (s,1)
 - ⁿ ¹H NMR (CDCl₂) δ 1.08 (d,6), 2.11 (m,2), 3.32 (d,2), 3.34 (s,3), 6.37 (s,1), 8.00 (s,1)
 - ° 1 H NMR (CDCl₃) δ 2.32 (s,3), 2.83 (m,2), 3.34 (s,3), 3.67 (m,2), 6.15 (s,1)
- 25 $p^{-1}H NMR (CDCl_3) \delta 1.09 (d,6), 2.23 (m,1), 2.51 (s,3), 3.31 (d,2), 3.36 (s,3), 6.05 (s,1)$
 - ^q ¹H NMR (CDCl₂) δ 3.83 (m,2), 3.37 (s,3), 3.73 (m,2), 6.32 (s,1), 7.76 (s,1)

TEST A

Fall Armyworm

Test units, each consisting of a H.I.S. (high impact sytrene) tray with 16 cells were prepared. In 12 of the cells is placed wet filter paper and approximately 8 cm² of lima leaf, in the other 4 cells is a 0.5 cm layer of wheat germ diet. Fifteen to twenty third instar larvae of fall armyworm (*Spodoptera frugiperda*) were placed in a 8 ounce (230 mL) plastic cup. Solutions of each of

the test compounds in 75/25 acetone/distilled water solvent were sprayed into the tray and cup. Spraying was accomplished by passing the tray and cup, on a conveyor belt, directly beneath a flat fan hydraulic nozzle which discharged the spray at a rate of 0.5 pounds of active ingredient per acre (about 0.55 kg/ha) at 30 psi (207 kPa). The insects were transferred into the tray (one insect per cell). The trays were covered and held at 27°C and 50% relative humidity for 48 h after which time readings were taken on the 12 cells with lima leaves. The 4 remaining cells were read at 7 days for a delayed toxicity reading. Of the compounds tested, the following gave mortality levels of 80% or higher: 24.

10

15

20

25

30

5

TEST B

Southern Corn Rootworm

Units consisting of an 8-ounce (230 mL) plastic cup containing 1 one-inch square of a soybean-wheatgerm diet were prepared. The test units were sprayed as described in TEST A with individual solutions of the test compounds. After the spray on the cups had dried, five second-instar larvae of the southern corn rootworm (*Diabrotica undecimpunctata howardi*) were placed into each cup. The cups were then covered and held at 27°C and 50% relative humidity for 48 h, after which time mortality readings were taken. Of the compounds tested, the following gave mortality levels of 80% or higher: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17*, 21*, 22, 24, 25, 26, 29*, 30*, 31*, 32, 33, 36, 37, 38*, 39, 40, 41, 42, 43*, 44, 45*.

* Compound sprayed at a rate of 0.13 kg/ha.

TEST C

Boll Weevil

Five adult boll weevils (*Anthonomus grandis*) were placed into each of a series of 9-ounce (260 mL) cups. The test units were sprayed as described in TEST A with individual solutions of the below-listed compounds. Each cup was then covered with a vented lid and held at 27°C. and 50% relative humidity for 48 h, after which time mortality readings were taken. Of the compounds tested, the following gave mortality levels of 80% or higher: 11, 13, 22, 24, 25, 32, 36, 38, 41, 43*, 45*.

* Compound sprayed at a rate of 0.13 kg/ha.

10

20

25

30

TEST D

Aster Leafhopper

Test units were prepared from a series of 12-ounce (350 mL) cups, each containing oat (*Avena sativa*) seedlings in a 1-inch (2.5 cm) layer of sterilized soil and a 1/2 inch layer of sand. The test units were sprayed as described in TEST A with individual solutions of the compounds. After the oats had dried from the spraying, between 10 and 15 adult aster leafhoppers (*Mascrosteles fascifrons*) were aspirated into each of the cups covered and vented lids. The cups were held at 27°C and 50% relative humidity for 48 h, after which time mortality readings were taken. Of the compounds tested, the following gave mortality levels of 80% or higher: 1, 2, 3, 4, 7, 10, 21*, 22, 24, 25, 29*, 30, 31*, 32, 33, 36, 37, 38*, 40, 42, 43*, 44, 45*.

* Compound sprayed at a rate of 0.13 kg/ha.

TEST E

15 Black Bean Aphid

Individual nasturtium leaves were infested with 10 to 15 aphids (all stages of *Aphis fabae*) and sprayed with their undersides facing up as described in TEST A. The leaves were then set in 3/8-inch (0.94 cm) diameter vials containing 4 mL of sugar water solution and covered with a clear plastic 1-ounce (29 mL) portion cup to prevent escape of aphids that drop from the leaves. The test units were held at 27°C and 50% relative humidity for 48 h, after which time mortality readings were taken. Of the compounds tested, the following resulted in greater than or equal to 80% mortality at 1000 ppm: 22, 25, 32, 33, 36, 38, 41, 42, 45*.

* Compound sprayed at a rate of 0.13 kg/ha.

TEST F

Two-Spotted Spider Mite

One inch squares (2.54 cm) of kidney bean leaves that had been infested on the undersides with 25 to 30 adult mites (*Tetranychus urticae*) were sprayed with their undersides facing up on a hydraulic sprayer with a solution of the test compound (acetone/distilled water 75/25 solvent). Spraying was accomplished by passing the leaves, on a conveyer belt, directly beneath a flat fan hydraulic nozzle which discharged the spray at a rate of 0.5 pounds of active ingredient per acre (about 0.55 kg/ha) at 30 psi (207 kPa). The leaf squares were then placed

10

15

20

25

30

underside-up on a square of wet cotton in a petri dish and the perimeter of the leaf square was tamped down onto the cotton with forceps so that the mites cannot escape onto the untreated leaf surface. The test units were held at 27°C and 50% relative humidity for 48 h, after which time mortality readings were taken. Of the compounds tested, the following resulted in greater than or equal to 80% mortality: 4, 22, 24, 25, 36, 38*, 41, 43*.

* Compound sprayed at a rate of 0.13 kg/ha.

TEST G

Contact Activity Against Green Leafhopper Nymphs

Three rice (Oryza sativa) seedlings, 1.5 leaf stage and about 10 cm tall, are transplanted into a 1/2 oz. (14 mL) plastic cup containing Kumiai Brown artificial soil. Seven milliliters of distilled water is then added to the cup. The test chemical is prepared by first dissolving the chemical in acetone and then adding water to produce a final test concentration of 75:25 (acetone:water). Four plastic cups, each cup serving as a replicate, are then placed on a spray chamber turntable. The cups are sprayed for 45 seconds with 50 mL of the chemical solution at a pressure of 2.0 kg/cm² with air atomizing spray nozzles. The turntable completes 7.5 rotations during the 45 second spray interval. After chemical application, treated cups are held in a vented enclosure to dry for about 2 h. After drying, the cups are placed into conical shaped test units and the surface of the soil covered with 2 to 3 mm of quartz sand. Eight to ten 3rd-instar nymphs of the green leafhopper (Nephotettix cincticeps) are transferred into the test units using an aspirator. The test units are held at 27°C and 65% relative humidity. Counts of the number of live and dead nymphs are taken at 24 and 48 h post-infestation. Insects which cannot walk are classified as dead. Of the compounds tested, the following gave mortality levels of 80% or higher at 48 h at 100 ppm: 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 21, 22, 24, 25.

TEST H

Contact Activity Against Brown Planthopper Nymphs

Three rice (*Oryza sativa*) seedlings, 1.5 leaf stage and about 10 cm tall are transplanted into a 1/2 oz. (14 mL) plastic cup containing Kumiai Brown artificial soil. Seven milliliters of distilled water is then added to the cup. The test chemical is prepared by first dissolving the chemical in acetone and then adding water to produce a final test concentration of 75:25 (acetone:water). Four plastic

cups, each cup serving as a replicate, are then placed on a spray chamber turntable. The cups are sprayed for 45 seconds with 50 mL of the chemical solution at a pressure of 2.0 kg/cm² with air atomizing spray nozzles. The turntable completes 7.5 rotations during the 45 second spray interval. After chemical application, treated cups are held in a vented enclosure to dry for about 2 h. After drying, the cups are placed into conical shaped test units and the surface of the soil covered with 2 to 3 mm of quartz sand. Eight to ten 3rd-instar nymphs of the brown planthopper (*Nilaparvata lugens*) are transferred into the test units using an aspirator. The test units are held at 27°C and 65% relative humidity. counts of the number of live and dead nymphs are taken at 24 and 48 h post-infestation. Insects which cannot walk are classified as dead. Of the compounds tested, the following gave mortality levels of 80% or higher at 48 h at 100 ppm: 2, 3, 4, 5, 7, 8, 11, 12, 13, 17, 21, 22, 23, 24, 25, 26.

TEST 1

15 Solution Systemic Activity Against Green Leafhopper Nymphs

5

10

20

25

30

The test chemical is added directly into 10 mL of distilled water and dissolved completely. This chemical solution is poured into a conical shaped test unit. Three rice seedlings are then positioned in the unit by a notched sponge disk. The sponge disk allows complete immersion of the seedling root systems in the chemical solution, while the aerial portion of the plant is isolated above the solution. The sponge also prevents the test nymphs from accidentally contacting the test solution. A 7 to 10 mm space, between the surface of the chemical solution and the bottom of the sponge disk, prevents accidental chemical contamination of the sponge. The rice seedlings are allowed to absorb the chemical from the solution for 24 h in a growth chamber held at 27°C and 65% relative humidity. Eight to ten 3rd-instar nymphs of the green leafhopper (Nephotettix cincticeps) are transferred into the test units using an aspirator. The infested units are held under the same temperature and humidity conditions described above. Counts of the number of live and dead nymphs are taken at 24 and 48 h post-infestation. Inspects which cannot walk are classified as dead. Of the compounds tested, the following gave mortality levels of 80% or higher at 48 h at 100 ppm: 2, 3, 5, 7, 11, 12, 13, 17, 21.

TEST J

Solution Systemic Activity Against Brown Planthopper Nymphs

The test chemical is added directly into 10 mL of distilled water and dissolved completely. This chemical solution is poured into a conical shaped test unit. Three rice seedlings are then positioned in the unit by a notched sponge 5 disk. The sponge disk allows complete immersion of the seedling root systems in the chemical solution, while the aerial portion of the plant is isolated above the solution. The sponge also prevents the test nymphs from accidentally contacting the test solution. A 7 to 10 mm space, between the surface of the chemical solution and the bottom of the sponge disk, prevents accidental chemical 10 contamination of the sponge. The rice seedlings are allowed to absorb the chemical from the solution for 24 h in a growth chamber held at 27°C and 65% relative humidity. Eight to ten 3rd-instar nymphs of the brown planthopper (Nilaparvata lugens) are transferred into the test units using an aspirator. The infested units are held under the same temperature and humidity conditions 15 described above. Counts of the number of live and dead nymphs are taken at 24 and 48 h post-infestation. Inspects which cannot walk are classified as dead. Of the compounds tested, the following gave mortality levels of 80% or higher at 48 h at 100 ppm: 2, 3, 5, 7, 11, 12, 13, 21.

CLAIMS:

1. A compound of the formula

$$R^1-SO_2-O-Q$$

Т

5 wherein:

Q is selected from the group

$$R^3$$
 R^4
 R^4
 R^3
 R^4
 R^4

10

15

G is selected from the group S, S(=O), S(=O)₂, C=S and C=O;

R¹ is selected from the group C₁-C₃ alkyl and C₁-C₃ haloalkyl;

R² is selected from the group C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₂-C₆

alkenyl and C₂-C₆ alkynyl each of which can be optionally substituted with R⁵; or R² is selected from the group C₁-C₆ haloalkyl, N(R⁷)R⁸, C₃-C₆ cyclohaloalkyl, C₂-C₆ haloalkenyl, C₂-C₆

haloalkynyl, C₄-C₇ cycloalkylalkyl and C₄-C₇ cycloalkylalkyl substituted with R⁶;

Q-3

10

15

20

25

- R^3 and R^4 are independently selected from the group H, C_1 – C_6 haloalkyl, C_1 – C_6 alkoxy, C_1 – C_6 haloalkoxy, C_1 – C_6 alkylthio, C_1 – C_6 haloalkylthio, C_3 – C_6 cyclohaloalkyl, C_2 – C_6 haloalkenyl, C_2 – C_6 haloalkynyl, C_4 - C_7 cycloalkylalkyl, C_1 - C_6 alkylsulfinyl, C_1 – C_6 haloalkylsulfinyl, C_1 – C_6 haloalkylsulfonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6 alkylcarbonyl, formyl, halogen, OH, NO₂, N(R¹⁴)R¹⁵, C(O)N(R¹⁴)R¹⁵, CN and phenyl optionally substituted with W; C_1 - C_6 alkyl; C_3 - C_6 cycloalkyl; C_2 - C_6 alkenyl; wherein each of C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl and C_2 - C_6 alkynyl can be optionally substituted with R¹³;
 - R^5 and R^{13} are independently selected from the group CN, SCN, NO_2 , OR^9 , SR^9 , $S(O)R^9$, SO_2R^9 , $OC(O)R^9$, OSO_2R^9 , $Si(R^9)(R^{10})(R^{11})$, CO_2R^9 , $C(O)N(R^9)R^{10}$, $C(O)R^9$, $N(R^9)R^{10}$ and phenyl optionally substituted with R^{12} ;

R⁶ is selected from the group halogen, CN and C₁-C₂ alkyl;

- R^7 is selected from the group C_1 - C_6 alkyl optionally substituted with R^{16} , C_3 - C_6 cycloalkyl optionally substituted with R^{19} , and C_4 - C_7 cycloalkylalkyl optionally substituted with R^{19} ;
- R^8 is selected from the group H, CN, C_1 - C_6 haloalkyl and C_1 - C_6 alkyl optionally substituted with CN;
 - R^7 and R^8 can be taken together to form -(CH₂)₂-, -(CH₂)₃-, -(CH₂)₄-, -(CH₂)₅- or -CH₂CH₂-O-CH₂CH₂-;
 - $\rm R^9, R^{10}$ and $\rm R^{11}$ are independently selected from the group $\rm C_1\text{-}C_3$ alkyl and $\rm C_1\text{-}C_3$ haloalkyl;
 - R^{12} and W are independently selected from the group halogen, C_1 – C_2 alkyl, C_1 – C_2 haloalkyl, C_1 – C_2 alkoxy, C_1 – C_2 haloalkoxy, C_1 – C_2 alkylthio, C_1 - C_2 haloalkylthio, C_1 - C_2 haloalkylsulfinyl, C_1 - C_2 haloalkylsulfonyl, C_1 - C_2 haloalkylsulfonyl, C_1 - C_2 haloalkylsulfonyl, C_1 - C_2 haloalkylsulfonyl, C_2 - C_2 haloalkylsulfonyl, C_3 - C_2 - C_3 - C_2 - C_3 -
- 30 R^{14} and R^{15} are independently selected from the group H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_1 - C_6 alkylsulfonyl and $C(O)N(R^{17})R^{18}$; or
 - R^{14} and R^{15} can be taken together to form -(CH₂)₂-, -(CH₂)₃-, -(CH₂)₄-, -(CH₂)₅- or -CH₂CH₂-O-CH₂CH₂-;

- R^{16} is selected from the group 1 to 5 halogens, CN, C_1 - C_2 alkoxy, C_1 - C_2 alkylsulfonyl and C_3 - C_6 trialkylsilyl;
- R^{17} and R^{18} are independently selected from the group H and $C_1\text{-}C_3$ alkyl; and
- 5 R¹⁹ is selected from the group 1 to 5 halogens, C₁-C₃ alkyl, CN, C₁-C₂ alkylthio, C₁-C₂ alkylsulfonyl and C₃-C₆ trialkylsilyl.

2. A compound according to Claim 1

wherein:

- G is selected from the group $S(=O)_2$ and C=O
 - R¹ is selected from the group CH₃ and ClCH₂;
 - R^2 is selected from the group C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl and $N(R^7)R^8$;
 - R^3 and R^4 are independently selected from the group H, C_1 - C_2 alkyl, C_1 - C_2 haloalkyl, C_1 - C_2 alkoxy, $N(R^{14})R^{15}$ and halogen; and
 - ${\rm R}^{14}$ and ${\rm R}^{15}$ are independently selected from the group H and ${\rm C}_1\text{-}{\rm C}_6$ alkyl.
 - 3. A compound according to Claim 2 wherein Q is Q-1.

20

15

- 4. A compound according to Claim 2 wherein Q is Q-2.
- 5. A compound according to Claim 2 wherein Q is Q-3.
 - 6. An arthropodicidal composition comprising an arthropodicidally effective amount of a compound according to any one of Claims 1 to 5 and a carrier therefor.

30

7. A method for controlling arthropods comprising applying to them or to their environment an arthropodicidally effective amount of a compound according to any one of Claims 1 to 5.

International Application No

I. CLASSIFICATION OF ST	JBJECT MATTER (if several classification sy	mbols apply, indicate all) ⁶	
According to International P	atent Classification (IPC) or to both National Cl	assification and IPC	
Int.Cl. 5 CO7D23	1/20; C07D231/18;	A01N43/50	
II. FIELDS SEARCHED			
	Minimum Docume	ntation Searched ⁷	
Classification System		Classification Symbols	
Int.Cl. 5	C07D		
	Documentation Searched other to the Extent that such Documents a	than Minimum Documentation re Included in the Fields Searched ⁸	
	ERED TO BE RELEVANT ⁹		Relevant to Claim No.13
Category O Citation	of Document, 11 with indication, where appropris	ite, of the relevant passages 14	RECYALL TO CIRIE NO.23
KAISH 28 Ma	0 182 603 (NIPPON KAYAKU A) y 1986 age 49 - page 51; claims	KABUSHIKI	1-7
KAISH 6 May	0 220 857 (NIPPON KAYAKU IA) 1987 Page 61 - page 65; claims	KABUSHIKI	1-7
21 Se	629 482 (DUPONT DE NEMOUR eptember 1949 age 1 - page 2	S)	1-5
31 00	631 269 (DUPONT DE NEMOUR tober 1949 bage 1 - page 2		1-5
		-/	
"E" earlier document but filing date "L" document which is cited to est citation or other spe "O" document referring other means "P" document published later than the priori	ne general state of the art which is not particular relevance published on or after the international throw doubts on priority claim(s) or ublish the publication date of another cial reason (as specified) to an oral disclosure, use, exhibition or prior to the international filing date but	"T" later document published after the interns or priority date and not in conflict with the cited to understand the principle or theory invention "X" document of particular relevance; the claim cannot be considered novel or cannot be involve an inventive step "Y" document of particular relevance; the claim cannot be considered to involve an inventive document is combined with one or more of ments, such combination being obvious to in the art. "&" document member of the same patent fan	he application but y underlying the imed invention considered to imed invention tive step when the other such docu- o a person skilled
IV. CERTIFICATION	of the Tutaments I Count	Data of Molling of this International Sec.	rch Report
	on of the International Search	Date of Mailing of this International Search	
International Searching Auth	ority DPEAN PATENT OFFICE	Signature of Authorized Officer LUYTEN H.W.	

International Application No

III. DOCUME	ENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)							
Category D	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.						
4	EP,A,O 100 476 (BAYER) 15 February 1984 see claims EP,A,O 245 944 (NIPPON KAYAKU KABUSHIKI KAISHA) 19 November 1987 cited in the application	1-7						
A	see page 62 - page 63; claims & US,A,4 791 127 (KATO SHOICHI ET. AL.) PESTICIDE SCIENCE vol. 29, no. 1, 1990, BARKING, UK pages 95 - 100 NIELS JACOBSON ET. AL. cited in the application	1-7						

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9301271 SA 70165

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

11/0

11/05/93

Patent document cited in search report	Publication date		Patent family member(s)	
EP-A-0182603	28-05-86	JP-A- JP-A- US-A-	61268668 61118367 4652574	28-11-86 05-06-86 24-03-87
EP-A-0220857	06-05-87	JP-A- JP-A- EP-A- US-A- US-A-	62265264 62081377 0245944 4950679 4791127	18-11-87 14-04-87 19-11-87 21-08-90 13-12-88
GB-A-629482		None		
GB-A-631269		None		
EP-A-0100476	15-02-84	DE-A- AU-A- JP-A-	3228340 1732883 59033294	09-02-84 02-02-84 23-02-84
EP-A-0245944	19-11-87	JP-A- EP-A- US-A- US-A-	62265264 0220857 4950679 4791127	18-11-87 06-05-87 21-08-90 13-12-88