SHOW JUMPING COMPETITION

Applicant: JUMPINGCLASH, Madrid (ES)

Inventors: Daniel Entrecanales Domecq, Madrid (ES); Pablo Marquez Galobardes, Madrid (ES)

Assignee: JUMPINGCLASH, Madrid (ES)

Appl. No.: 13/710,997

Filed: Dec. 11, 2012

Publication Classification

Int. Cl. A63K 3/00 (2006.01)

US, Cl. CPC A63K 3/00 (2013.01)
USPC 273/440

ABSTRACT

A method of conducting a horse jumping competition comprising enrolling a number of participants in the competition, determining whether a number of the participants is a predetermined positive integer exponentiation base, dividing competitors into competitor groups based on the predetermined positive integer exponentiation base, judging each competitor group in a horse jumping contest based on predetermined criteria, determining a winner of each competitor group and eliminating a loser of each competitor group, declaring a tournament winner, in a final round, and advancing the winner of each competitor group to a next round, in a non-final round.

1. A number of competitors enroll in competition

2. Determine whether the number of competitors is of a predetermined exponentiation base

3. Divide competitors into n-competitor groups

4. Each n-competitor group competes

5. A winner is determined from each n-competitor group

6. Another round?

7. Tournament winner declared
Fig. 3

A number of competitors enroll in competition

Determine whether the number of competitors is of a predetermined exponentiation base

Divide competitors into n-competitor groups

Each n-competitor group competes

A winner is determined from each n-competitor group

Another round? Yes

No

Tournament winner declared
SHOW JUMPING COMPETITION

FIELD OF THE INVENTION

[0001] The present invention relates generally to a show jumping competition and, more particularly, to a show jumping competition in which competitors engage in elimination duels to advance to the next round.

BACKGROUND OF THE INVENTION

[0002] Several competitive sports involve horse jumping. In particular, show jumping, hunter, and the cross-country phase of the equestrian discipline of eventing all involve horse jumping.

[0003] Show jumping, also known as stadium jumping, open jumping or jumpers, is a type of English riding equestrian event. Other English riding events include dressage, eventing, hunters and equitation. Show jumping includes various obstacles that must be navigated by the rider and horse.

[0004] Hunter is a branch of competitive horseback riding that is judged based on the horse's performance, soundness, conformation, suitability or manners. Horses may also be judged on fluid movement and correct jumping style.

[0005] The cross-country phase of the equestrian discipline of eventing is an endurance test proving the speed, endurance and jumping ability of a horse.

[0006] Presently, however, the above equestrian events are not particularly attractive to lay members of the public (i.e., a person not involved in the equestrian world) or to possible sponsors and the media at large.

[0007] Current horse jumping competition events are rather uninteresting. Specifically, there are no eliminations during the competition so spectators are somewhat disinterested throughout the competition. Indeed, it is often hard for a layperson to tell whether a horse is navigating the course well.

[0008] Moreover, currently, a thorough understanding of the sport is required to enjoy it.

SUMMARY OF THE INVENTION

[0009] In view of the foregoing, it is an object of the present invention to provide a competition that is more interesting both to long-time horse jumping enthusiasts as well as laypeople. One of the ways the present invention makes horse jumping more interesting is by providing for regular eliminations of competitors.

[0010] To achieve the foregoing and other objects, an embodiment of the present invention entails a method of conducting a horse jumping competition comprising the steps of enrolling a number of participants in the competition, determining whether a number of the participants is a predetermined positive integer exponentiation base, dividing competitors into competitor groups based on the predetermined positive integer exponentiation base, judging each competitor group in a horse jumping contest based on predetermined criteria, determining a winner of each competitor group and eliminating a loser of each competitor group, declaring a tournament winner, in a final round, and advancing the winner of each competitor group to a next round, in a non-final round.

[0011] Various other objects, advantages and features of the present invention will become readily apparent to those of ordinary skill in the art from the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The following detailed description, given by way of example and not intended to limit the present invention, will best be appreciated in conjunction with the accompanying drawings, wherein like reference numerals denote like elements and parts, in which:

[0013] FIG. 1 illustrates a horse negotiating an uphill bank obstacle;

[0014] FIG. 2 illustrates a horse negotiating a corner obstacle; and

[0015] FIG. 3 is a schematic flow diagram that shows in general terms the process for conducting a horse jumping competition in accordance with the present invention.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

[0016] The present invention brings show jumping into the twenty-first century. As will be described, the present invention is a new process for conducting a horse jumping competition.

[0017] Horse jumping is a competition in which the horse, controlled by a rider, is required to negotiate (e.g., jump over) various obstacles and is then judged based on various criteria. The judging criteria includes, but is not limited to, horse disobedience, errors on the course, falls, and time faults. Horse disobedience includes a refusal or crossing tracks (i.e., circling) in front of an obstacle.

[0018] Judging may also be based on points and time. That is, results are based on the scores obtained and the time taken to complete the course. The competitor who gets the lowest number of points in the fastest time is the winner. However, if there is a tie, competitors who have tied on points take part in a jump-off on the same obstacle course, applying the "points and time" method.

[0019] Each knockdown means a certain number of seconds (for example, 4 seconds) is added onto the total time taken. The competitor who has the fastest time once the penalties have been added up is the winner.

[0020] The penalty system may also include the following penalties: knocking down an obstacle—4 faults; knocking down an obstacle in a speed and handiness contest—4 seconds; first disobedience—4 faults; second disobedience—elimination; fall of rider, horse or both—elimination; exceeding allowed time—1 fault for every 4 seconds (or fraction thereof) over.

[0021] Errors on course include jumping obstacles in the wrong order, jumping an obstacle in the wrong direction, not jumping over a particular obstacle, jumping from a standstill.

[0022] Other criteria include performance, soundness, conformation, suitability or manners, fluid movement, correct jumping style, speed, endurance and jumping ability of a horse.

[0023] Obstacles include, but are not limited to: Arrowhead, Bank, Bounce, Brush Fence, Bullfinch, Coffin, Combinations, Corner, Ditch, Drop Fence, Log Fence, Normandy Bank, Oxer, Rolltop, Shark’s Teeth, Skinny, Stone Wall, Sunken Road, Table, Trakehner and Water. Some obstacles may be more difficult than others.

[0024] Referring now to the drawings, FIGS. 1 and 2 illustrate several examples of horses navigating obstacles. In particular, FIG. 1 illustrates a horse negotiating an uphill bank obstacle.
A bank obstacle requires jumps that are steps up or steps down from one level to another. These can be single jumps or built as a staircase of multiple banks. Banks may be uphill or downhill. Uphill banks require large amounts of impulsion (although not speed) from the horse. Both types of banks require that a rider be centered over the horse and down banks require the rider to lean back.

FIG. 3 is a schematic flow diagram that shows in general terms the process for conducting a horse jumping competition in accordance with the present invention. More specifically, FIG. 3 illustrates a method for conducting a horse jumping competition, where riders compete against one another in one-on-one (or one-on-one-on-one, etc.) duels/contests that are part in an eliminator, pyramid-type competitive structure.

When one competitor wins in a particular round, that competitor advances to the next round, whereas the losing competitor is eliminated. Thus, spectators will find this competition exciting since there is a competitor advancing or being eliminated on a regular basis throughout the tournament. That is, even if spectators fail to understand the intricacies of the sport (e.g., judging criteria and application thereof), they can still root for and bet on a particular competitor in every duel in every round.

Initially, in step 301, a certain number of competitors enroll in the competition. In step 303, a determination is made of whether the number of the participants is a predetermined positive integer exponentiation base, for example, a power of 2 (i.e., a base 2 exponentiation). That is, whether the number of participants is in the form of \(2^n \) where \(n \) is a positive integer. For example, \(2^1, 2^2, 2^3, 2^4, \) and \(2^5 \), corresponding to \(2, 4, 8, 16, \) and 32 competitors, respectively, would be in the above form. This is useful because, in light of the duel or one-on-one nature of the tournament, it ensures that each competitor takes part in the same number of rounds, and that after every round, the number of participants is halved (or divided by 2, etc. depending on the base). Optionally, a qualifying stage may be held first to eliminate some competitors.

As mentioned above, an alternative embodiment may have \(n \)-competitor “duels,” instead of \(2 \)-competitor duels. For example, each duel may be between 3 competitors, \(2 \) of which would be eliminated after the “duel” and 1 would advance to the next round. In this example, the competitions would be in the form of \(3 \), instead of \(2 \). For example, \(3^1, 3^2, 3^3, 3^4, \) and \(3^5 \), corresponding to \(3, 9, 27, 81, \) and 243 competitors, respectively, would be in the above form. As mentioned above, the base (e.g., 2 or 3, etc.) would be a predetermined integer.

In step 303, it is determined that the number of competitors is in the above exponentiated form (of a predetermined base), the process proceeds to step 305.

However, if, in step 303, it is determined that the number of competitors is not in the above form, special measures must be taken. Specifically, preliminary rounds may be held in order to eliminate some competitors. For example, if, in a 2-competitor duel tournament (base 2), where the number of competitors must be a power of 2, the number of competitors is 10 (2 more than 8, a power of 2), several (or all) riders may be forced to participate in preliminary rounds to eliminate, for example, 2 of the competitors and make the number of competitors competing in the tournament a power of 2 (e.g., 8).

Another option if, in step 303, it is determined that the number of competitors is not in the above form (or if there are too many competitors), is to allow the more prestigious and/or better and/or more experienced and/or more popular competitors to advance to the later rounds automatically. This may apply to either the rider and/or the horse. A combination of the two approaches may also be used.

In step 305, once it is determined that the number of competitors is in the above exponentiated form, competitors are divided into 2-competitor groups to compete against one another (assuming a power of 2 tournament). That is, competitors are divided into groupings based on their predetermined positive integer exponentiation base. Thus, for example, if the total number of competitors is 8, they would be segregated into 4 2-competitor groups. For example, if the competitors were A, B, C, D, E, F, G, and H, the competitor groups could be, for example, A-B, C-D, E-F and G-H. The groups could be assigned randomly or based on known skill level, experience or popularity (based on the rider and/or the horse).

When a non-random assignment method is used, the differences between the riders may be maximized or minimized. That is, one method would be to assign skilled and/or experienced and/or popular competitors (or other similar characteristics) with other such competitors. However, another option is to assign skilled and/or experienced and/or popular competitors with competitors who are not skilled and/or experienced and/or popular (thus rewarding and making it more likely that better competitors advance).

In the case of assigning skilled and/or experienced and/or popular competitors with other such competitors, one method to accomplish this would be to minimize the maximum difference (of skill and/or experience and/or popularity) between each pair of competitors. Another option would be to minimize the average difference between each pair of competitors. Yet another option would be to pair the best with the worst, the second best with the second worst, and so on. That is, pairing competitors in order.

Similarly, in the case of assigning skilled and/or experienced and/or popular competitors with competitors who are not skilled and/or experienced and/or popular, one method to accomplish this would be to maximize the maximum difference between competitors. Another option would be to maximize the average difference between competitors. Yet another option would be to pair the best with the worst, the second best with the second worst, and so on. Once the competitors are divided, the process proceeds to step 307.

In step 307, each n-competitor (e.g., 2-competitor) group competes against each other competitor in the n-competitor group. That is, for example, each of groups A-B, C-D, E-F and G-H competes. The competitions may be consecutive or concurrent (simultaneous).

In step 309, a winner is determined in each competitor group. That is, judges will judge the performance of the competitors in each “duel” and choose a winner. Instead of a single duel, a round may have multiple duels between competitors; for example, best out of 3.

Once a winner is chosen, the loser is eliminated. Thus, in this example, 4 competitors would remain. For example, A, D, E and G may remain in the competition.

Optionally, after each round, consolation rounds may be held to determine the placement of the losing eliminated competitors.

In step 311, if there is not a single winner remaining (i.e., the last round), the winners (for example, A, D, E and G) continue to the next round.
[0042] At this point, the processing loops back to step 303. Since the next round has better competitors, the competition may be made more difficult by, for example, using more difficult obstacles, placing the obstacles closer together, distracting the horses and/or riders during the competition, etc.

[0043] Although non-first rounds would generally have the proper exponentiation of competitors, if a competitor drops out, there may not be a proper exponentiation. In this case, in a non-first round (or in a first round before which a competitor drops out), a previously eliminated competitor with the highest score would take the place of the competitor who dropped out. In a first round, in the case of a competitor drop-out, a competitor with the best non-advancing score from the qualifying round (or previous round(s), if not a first round, immediately previous or otherwise) would be chosen to take the place of the competitor who dropped out. However, if a competitor is in the middle of competing in a match and fails to continue for any reason, this will not be considered a dropout. Instead, the competitor will simply lose the match and be eliminated.

[0044] In this example, the processing would repeat two more times as 2 of A, D, E and G are eliminated and 2 advance. For example in an A-E and D-G match, A could win and G could win, while E and D could be eliminated, setting up a final round between A and G. A and G would then compete in a final round and a tournament for, for example G, would be declared, in step 313, ending the processing and the tournament.

[0045] Thus, the tournament as described above, including regular eliminations, is much more entertaining to laypeople and in-depth knowledge of horse jumping is not required to enjoy such tournament.

[0046] An additional discussion of various features described herein and additional other features of the present invention is set forth in the attached Appendix A, which is incorporated herein by references.

[0047] Having described the present invention including various features and variations thereof, it is intended that the appended claims be interpreted as including the embodiments described herein, the alternatives mentioned above, and all equivalents thereto.

What is claimed is:

1. A method of conducting a horse jumping competition, the method comprising:
 enrolling a number of participants in the competition;
 determining whether a number of the participants is a predetermined positive integer exponentiation base;
 dividing competitors into competitor groups based on the predetermined positive integer exponentiation base;
 judging each competitor group in a horse jumping contest based on predetermined criteria;
 determining a winner of each competitor group and eliminating a loser of each competitor group;
 declaring a tournament winner, in a final round; and
 advancing the winner of each competitor group to a next round, in a non-final round.

2. The method of claim 1, wherein the predetermined positive integer exponentiation base is 2.

3. The method of claim 1, wherein a round contains more difficult obstacles than a previous round.
4. The method of claim 1, wherein a round contains obstacles placed closer together than a previous round.
5. The method of claim 1, further comprising obstacles, wherein the obstacles include at least one of Arrowhead, Bank, Bounce, Brush Fence, Bullfence, Coffin, Combinations, Corner, Ditch, Drop Fence, Log Fence, Normandy bank, Oxer, Rolltop, Shank’s Teeth, Skinny, Stone Wall, Sunken Road, Table, Trakehner and Water.
6. The method of claim 1, wherein a consolation round is held following each round to determine the placement of each of the losers in relation to one another.
7. The method of claim 1, further comprising:
 holding a qualifying stage to eliminate at least one of the number of participants in the competition.
8. The method of claim 7, further comprising:
 allowing more prestigious or better or more experienced or more popular competitors to advance to later rounds automatically without competing in the qualifying stage.
9. The method of claim 1, wherein dividing the competitors into the competitor groups comprises:
 randomly assigning the competitors into the competitor groups.
10. The method of claim 1, wherein dividing the competitors into the competitor groups comprises:
 assigning skilled or experienced or popular competitors with other such competitors.
11. The method of claim 1, wherein dividing the competitors into the competitor groups comprises:
 assigning skilled or experienced or popular competitors with competitors who are not skilled or experienced or popular.
12. The method of claim 10, wherein assigning the skilled or the experienced or the popular competitors with other such competitors comprises minimizing a maximum difference in skill or experience or popularity between the competitors in each competitor group.
13. The method of claim 10, wherein assigning the skilled or the experienced or the popular competitors with other such competitors comprises minimizing a maximum difference in skill or experience or popularity between the competitors in each competitor group.
14. The method of claim 11, wherein assigning the skilled or the experienced or the popular competitors with other such competitors comprises minimizing an average difference in skill or experience or popularity between the competitors in each competitor group.
15. The method of claim 11, wherein assigning the skilled or the experienced or the popular competitors with other such competitors comprises minimizing an average difference in skill or experience or popularity between the competitors in each competitor group.

* * * * *