8/141852 A1 I AT 0O 00O OO

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 November 2008 (27.11.2008)

lﬂfb A0 0000

(10) International Publication Number

WO 2008/141852 Al

(51) International Patent Classification:
GOGF 9/46 (2006.01)

(21) International Application Number:
PCT/EP2008/052937

12 March 2008 (12.03.2008)
English
English

(22) International Filing Date:
(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/751,571 21 May 2007 (21.05.2007) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504
Us).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DESAI, Saurabh
[US/US]; 15808 Pumpkin Ridge Drive, Austin, TX 78717
(US). DUBEY, Niteesh, Kumar [IN/US]; 2 Rochambaeu
Drive, Apt. A, Yorktown Heights, NY 10598 (US). JANN,
Joefon [US/US]; 213 Barnes Street, Ossining, NY 10562

(74)

(81)

(34)

(US). PATTNAIK, Pratap [US/US]; 213 Barnes Street,
Ossining, NY 10562 (US). SHANKAR, Ravi [IN/US];
2600 Gracy Farms Lane, #218, Austin, TX 78758 (US).
VADDAGIRI, Murali [IN/IN]; 435 Second Cross, OMBR
Layout, Bhuvanagiri, Bangalore 560 033 (IN).

Agent: SEKAR, Anita; IBM United Kingdom Limited,
Intellectual Property Law, Hursley Park, Winchester,
Hampshire SO21 2IN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: A FRAMEWORK FOR MANAGING ATTRIBUTES OF OBJECTS

Operating System 304

Kernal 324

=
Client | 202

Object
E
Altribute
an

Otject
e
b
38

User 318

Attribule
4
ot

Obje
210
Attriute
Fat)

Figure 3

(57) Abstract: A computer implemented method, computer program product, and system for managing objects. Responsive to
& receiving a find-rule method, and a path-rule table, wherein the path-rule table contains a set of paths, wherein each path references
& an object, wherein a file system locates the object using the path, and wherein the object has at least one attribute not known to
the file system, a path-rule table identifier is created. The path-rule table is associated with the path-rule table identifier to form
an associated path-rule table. The find-rule method is associated with the path-rule table identifier to form an associated find-rule
method. The path-rule table identifier, the associated path-rule table, and the associated find-rule method are stored. The path-rule

table identifier is returned.



WO 20087141852 A1 NI DA 00 000001000 00 0

FR, GB, GR,HR, HU, IE, IS, IT, LT, LU, LV, MC, MT,NL,  Published:
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, —  with international search report
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

A FRAMEWORK FOR MANAGING ATTRIBUTES OF OBJECTS

FIELD OF THE INVENTION

The present invention relates generally to data processing systems and in particular to
a method, computer program product, and apparatus for managing objects. Still more
particularly, the present invention provides a computer implemented method, apparatus, and

computer program product for a framework for managing objects.

BACKGROUND OF THE INVENTION

An object in a computer is an item which can be accessed, such as, for example, a
file, a device, or a command. In a computer, the computer’s operating system keeps track of
objects. The operating system may control each user’s access to specific objects in the
computer. For example, a format command in a kernel may be used to format a storage
device, erasing all data stored on the storage device. To prevent the loss of important
objects, the kernel may prevent specific users from accessing the important objects.
Typically, an operating system allows a system administrator to specify an access rule for an
object. The access rule specifies the level of access each user has to the object. An access
rule is specified using an attribute of the object known to the operating system. Thus, the
kernel must know the object’s attribute to control the level of access. If the object has an
attribute and the kernel is not aware of the attribute, the attribute cannot be used to specify

the access rule for the object.

DISCLOSURE OF THE INVENTION

The illustrative embodiments described herein provide a computer implemented
method, computer program product, and apparatus for managing attributes for objects. A
path-rule table containing a set of entries is stored in a location accessible by an operating
system. The set of entries in the path-rule table specifies associations between objects and

attributes of the objects. The path-rule table is associated with an identifier. When a request



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

to access an object is received from an entity, the type of the object is identified. The
identifier is used to identify the path-rule table for the type of object. Access to the object is
then selectively provided based on an attribute associated with the object in the path-rule

table.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the
appended claims. The invention itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood by reference to the following
detailed description of an illustrative embodiment when read in conjunction with the

accompanying drawings, wherein:

Figure 1 depicts a pictorial representation of a network of data processing systems in

accordance with an illustrative embodiment;

Figure 2 is a block diagram of a data processing system in which illustrative

embodiments may be implemented;

Figure 3 is a block diagram of using a framework in accordance with an illustrative

embodiment;

Figure 4 is a block diagram of an exemplary path-rule table in accordance with an

illustrative embodiment;

Figure 5 is a flowchart for creating a path-rule table in accordance with an

illustrative embodiment;

Figure 6 is a flowchart of finding a rule in a path-rule table in accordance with an

illustrative embodiment; and



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

Figure 7 is a flowchart of an exemplary find-rule method in accordance with an

illustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference now to the figures and in particular with reference to Figures 1-2,
exemplary diagrams of data processing environments are provided in which illustrative
embodiments may be implemented. It should be appreciated that Figures 1-2 are only
exemplary and are not intended to assert or imply any limitation with regard to the
environments in which different embodiments may be implemented. Many modifications to

the depicted environments may be made.

Figure 1 depicts a pictorial representation of a network of data processing systems in
which illustrative embodiments may be implemented. Network data processing system 100
is a network of computers in which the illustrative embodiments may be implemented.
Network data processing system 100 contains network 102, which is the medium used to
provide communications links between various devices and computers connected together
within network data processing system 100. Network 102 may include connections, such as

wire, wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect to network 102 along
with storage unit 108. In addition, clients 110, 112, and 114 connect to network 102.
Clients 110, 112, and 114 may be, for example, personal computers or network computers.
In the depicted example, server 104 provides data, such as boot files, operating system
images, and applications to clients 110, 112, and 114. Clients 110, 112, and 114 are clients
to server 104 in this example. Servers 104 and 106 provide processes for managing object
attributes, such as file, device, or command attributes. These processes may manage local
objects, or objects distributed across network 102. Network data processing system 100 may

include additional servers, clients, and other devices not shown.

In the depicted example, network data processing system 100 is the Internet with

network 102 representing a worldwide collection of networks and gateways that use the



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate
with one another. At the heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host computers, consisting of thousands of
commercial, governmental, educational and other computer systems that route data and
messages. Of course, network data processing system 100 also may be implemented as a
number of different types of networks, such as for example, an intranet, a local area network
(LAN), or a wide arca network (WAN). Figure 1 is intended as an example, and not as an

architectural limitation for the different illustrative embodiments.

With reference now to Figure 2, a block diagram of a data processing system is
shown in which illustrative embodiments may be implemented. Data processing system 200
is an example of a computer, such as server 104 or client 110 in Figure 1, in which computer
usable program code or instructions implementing the processes may be located for the

illustrative embodiments.

In the depicted example, data processing system 200 employs a hub architecture
including a north bridge and memory controller hub (NB/MCH) 202 and a south bridge and
input/output (I/O) controller hub (SB/ICH) 204. Processing unit 206, main memory 208, and
graphics processor 210 are coupled to north bridge and memory controller hub 202. Processing
unit 206 may contain one or more processors and even may be implemented using one or more
heterogeneous processor systems. Graphics processor 210 may be coupled to the NB/MCH
through an accelerated graphics port (AGP), for example.

In the depicted example, local area network (LAN) adapter 212 is coupled to south
bridge and I/O controller hub 204 and audio adapter 216, keyboard and mouse adapter 220,
modem 222, read only memory (ROM) 224, universal serial bus (USB) and other ports 232,
and PCI/PCle devices 234 are coupled to south bridge and 1/O controller hub 204 through bus
238, and hard disk drive (HDD) 226 and CD-ROM 230 are coupled to south bridge and I/O
controller hub 204 through bus 240. PCI/PCle devices may include, for example, Ethernet
adapters, add-in cards, and PC cards for notebook computers. PCI uses a card bus controller,
while PCle does not. ROM 224 may be, for example, a flash binary input/output system
(BIOS). Hard disk drive 226 and CD-ROM 230 may use, for example, an integrated drive



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

electronics (IDE) or serial advanced technology attachment (SATA) interface. A super I/O
(S10) device 236 may be coupled to south bridge and 1/0 controller hub 204.

An operating system runs on processing unit 206 and coordinates and provides control
of various components within data processing system 200 in Figure 2. The operating system
may be a commercially available operating system such as Microsoft” Windows® XP
(Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both). An object oriented programming system, such as the Java'™ programming
system, may run in conjunction with the operating system and provides calls to the operating
system from Java™ programs or applications executing on data processing system 200. Java™™

and all Java™-based trademarks are trademarks of Sun Micros stems, Inc. in the United States,
Y

other countries, or both.

Instructions for the operating system, the object-oriented programming system, and
applications or programs are located on storage devices, such as hard disk drive 226, and may
be loaded into main memory 208 for execution by processing unit 206. The processes of the
illustrative embodiments may be performed by processing unit 206 using computer
implemented instructions, which may be located in a memory such as, for example, main

memory 208, read only memory 224, or in one or more peripheral devices.

The hardware in Figures 1-2 may vary depending on the implementation. Other
internal hardware or peripheral devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in addition to or in place of the
hardware depicted in Figures 1-2. Also, the processes of the illustrative embodiments may

be applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200 may be a personal digital
assistant (PDA), which is generally configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-generated data. A bus system may be
comprised of one or more buses, such as a system bus, an 1/0 bus and a PCI bus. Of course
the bus system may be implemented using any type of communications fabric or architecture

that provides for a transfer of data between different components or devices attached to the



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

fabric or architecture. A communications unit may include one or more devices used to
transmit and receive data, such as a modem or a network adapter. A memory may be, for
example, main memory 208 or a cache such as found in north bridge and memory controller
hub 202. A processing unit may include one or more processors or CPUs. The depicted
examples in Figures 1-2 and above-described examples are not meant to imply architectural
limitations. For example, data processing system 200 also may be a tablet computer, laptop

computer, or telephone device in addition to taking the form of a PDA.

In a computer operating system, the lowest-level portion of the operating system is
called a kernel. One part of the kernel is called the file system. The file system is used to
locate objects in the computer. An object is any item referenced by a path, such as a file, a

command, or a device.

An operating system on a computer may have one or more sub-systems. Each sub-
system is a set of related software components for performing a specific purpose. For
example, a computer may have a security sub-system which restricts access to important
files, commands, and devices. A sub-system uses the kernel to access objects using the path
of the object. The kernel associates a set of attributes with each object, such as, for example,

the date and time the object was last modified.

A sub-system may associate one or more attributes with a set of objects, and the file
system may not be aware of these attributes. The sub-system may have a need to manage
the set of objects in the file system using at least one attribute of the set of objects which is
not known to the file system. The illustrative embodiments recognize a need for managing a

set of objects in the file system independent of the attributes known to the file system.

Figure 3 is a block diagram of using a framework in accordance with an illustrative
embodiment. In using a framework for managing objects 300, client 302 is a computer, such
as client 110 in Figure 1. An operating system, operating system 304, runs on client 302.
Operating system 304 contains objects 306, 308, and 310. Operating system 304 may be a
UNIX®-based operating system, such as, for example, Advanced Interactive eXecutive

(AIX®) from International Business Machines (IBM®). Objects 306-310 are cach objects



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

which may be in a computer, such as, for example, commands, files, and devices. Each
object has an attribute. Object 306 has attribute 312, object 308 has attribute 314, and object
310 has attribute 316. User 318, and process 320 use operating system 304 to access objects

306-310 and perform various actions.

Operating system 304 contains various functional components, including sub-system
322, and kernel 324. Sub-system 318 is a component of operating system 304. For
example, sub-system 318 may be used to implement an access control mechanism for
objects 306-310 to control whether user 318, and process 320 can access objects 306-310.
Kernel 324 has several components, including file system 326, and framework 328. User

318, process 320, and sub-system 302 may use file system 326 to access objects 306-310.

For example, assume sub-system 322 uses file system 326 to access objects 306-310.
If file system 326 is aware of attributes 312-316 of objects 306-310, then sub-system 322
may manage objects 306-310 using attributes 312-316. For example, sub-system 322 may
set attribute 312 to indicate that file system 326 should not allow user 318 to access object
306. However, if sub-system 322 wishes to associate attributes 312-316 with objects 306-
310, and file system 326 is not aware of attributes 312-316, then sub-system 322 needs a
means for managing the attributes 312-316 of objects 306-310. In this situation, kernel 324
provides framework 328 for managing attributes 312-316 of objects 306-310, independent of
file system 326. Framework 328 may be used by more than one file system in operating

system 304.

Framework 328 allows sub-system 322 to manage attributes 312-316 of objects 306-
310, regardless of whether file system 326 is aware of attributes 312-316. Sub-system may
use framework 328 to manage attributes 312-316 of objects 306-310 cven when file system
326 is aware of attributes 312-316.

To use framework 328, sub-system 322 first asks framework 328 to create a path-rule
table, in this example, path-rule table 330. Path-rule table 330 contains a set of entries,
where a set is one or more entries. Each entry in path-rule table 330 contains at least two

fields, path 332, and rule 334. Path 332 is an absolute path to an object. Rule 334 is



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

meaningful to sub-system 322, and is used by sub-system 322 to decide whether to perform
an action. For example, sub-system 322 may perform one or more actions such as setting a

privilege level, setting an access level, and creating a checksum based on rule 334.

To create a path-rule table, sub-system 322 sends request 336 to framework 328,
requesting framework 328 to create path-rule table 330. In this example, request 336 is a
create request which asks framework 328 to create a path-rule table. In request 336, sub-
system 322 specifies various information, such as the size and the contents of the path-rule
table. For example, sub-system 322 may specify the number of entries to be created in the
path-rule table, as well as a set of paths, and a set of rules in request 336. A set of paths is
one or more paths, and a set of rules is one or more rules. Each entry in the path-rule table
has one path, and one rule. When an object referenced by an absolute path in the path-rule
table is accessed, the sub-system may use the rule associated with the absolute path to

perform an action.

Framework 328 receives request 336 and creates path-rule table 330 using the
information contained in request 336. For example, framework 328 creates a set of entries in
path-rule table 330, and using the information contained in request 336, adds each path in the

set of paths, and each rule in the set of rules, to each entry in path-rule table 330.

Sub-system 322 may optionally specify additional information in request 336. For
example, sub-system 322 may specify pointer 338 in request 336. Pointer 338 is a pointer to
a root directory. The root directory referenced by pointer 338 is used as a reference point for
cach absolute path in path-rule table 330. Sub-system 322 may also specify the maximum

size of each absolute path in path 332 in the information in request 336.

Framework 328 also provides a set of one or more find-rule methods. In this
example, framework 328 provides three find-rule methods, methods 342, 344, and 346. For
a given path, the find-rule method finds the absolute path in the path-rule table which refers
to the same object as the given path refers to. In request 336, sub-system 322 also specifies

the find-rule method which the sub-system wishes to use with the path-rule table. For



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

example, sub-system 322 may specify in request 336 that framework 328 use method 342
with the path-rule table.

Thus, when framework 328 receives request 336 from sub-system 322, framework
328 creates path-rule table 330, and stores the set of paths, and the set of rules in path-rule
table 330. Each entry in path-rule table 330 contains one path, path 332, and one rule, rule
334. Framework 328 associates a find-rule method, find-rule method 348, with path-rule
table 330. Find-rule method 348 identifies the specific method from table 340 chosen by
sub-system 322 for use with path-rule table 330. Framework 328 then returns identifier 350
to sub-system 322.

Sub-system 322 may use identifier 350 to request framework 328 to perform a
variety of operations. For example, sub-system 322 may use identifier 350 to request
framework 328 to delete path-rule table 330, add one or more entries in path-rule table 330,
and change find-rule method 348 to a different method.

Each find-rule method varies in the technique the find-rule method uses to match an
object referenced by a given path with the object referenced by a path in path-rule table 330.
For example, when using a path-rule table to manage a level of security for an object,
different find-rule methods may be created based on the level of security, and the level of
performance desired. Typically, when finding a set of rules for a given path in the path-rule
table using a given find-rule method, the greater the level of security, the longer it takes to
find the set of rules for the given path using the find-rule method. In this example, the find-
rule method balances the need for fast performance with the need for greater security. One
find-rule method may provide lower security with fast performance, while another find-rule

method may provide may provide higher security with faster performance.

When user 318, or process 320 accesses an object, such as object 306, the object is
accessed using a path. When the object is accessed using the path, sub-system 322
determines whether the object has an associated rule. Sub-system 322 sends a find request
to framework 328, asking framework 328 to determine if object 306 has an associated rule in

path-rule table 330. Sub-system 322 sends the path for the object accessed, and identifier



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

10

350 to framework 328. For clarity, the path given by sub-system 322 to framework 328 is
called the given path.

Upon receiving the find request, framework 328 uses identifier 350 to find the path-
rule table, and find-rule method associated with identifier 350. In this example, framework
328 uses identifier 350 to find path-rule table 330, and find-rule method 348. Framework
328 uses find-rule method 348 to determine if the object referenced by the given path is also
referenced by a path in the path-rule table. If find-rule method 348 finds the path, such as
path 332, in the path-rule table which refers to the object in the given path, find-rule method
returns rule 334 associated with path 332 in the path-rule table.

Thus, rule 334 is returned to sub-system 322 in response to the find request of sub-
system 322 to determine whether path of the object accessed has a rule in path-rule-table
330. Sub-system 322 may then perform an action using rule 334. For example, if sub-
system 322 is a security sub-system, sub-system 322 may use rule 334 to determine whether
user 318, and process 320 have the privileges necessary to access the object.

Figure 4 is a block diagram of an exemplary path-rule table in accordance with an
illustrative embodiment. Exemplary path-rule table 400 is an example of a path-rule table,
such as path-rule table 326 in Figure 3, in a Unix-based operating system, such as Advanced
Interactive eXecutive (AIX®). Exemplary path-rule table 400 contains three entries. Each
entry has an absolute path, and an access rule. In this example, each path in paths 402, 404,
and 406 is an absolute path for commands. In another embodiment, each path in the path-
rule table may contain an absolute path for a device, and a file. Rule 408 is a rule for
determining the access level for path 402. Similarly, rule 410 is a rule for determining the
access level for path 404. Additionally, rule 412 is a rule for determining the access level for

path 406.

Figure 5 is a flowchart for creating a path-rule table in accordance with an
illustrative embodiment. The process in Figure 5 is executed by a framework, such as
framework 328 in Figure 3. The process begins when a create request to create a path rule
table is received (step 502). For example, the request to create the path-rule table may be

sent by a sub-system, such as sub-system 322 in Figure 3. The request contains the number



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

11

of entries for the path-rule table, and a set of paths, and a set of rules. Optionally, the request

may also contain a pointer to a root directory.

A path-rule table is created with the requested number of entries, and the set of paths,
and the set of rules are stored in the path-rule table, resulting in each entry in the path-rule
table having a path, and a rule (step 504). An identifier for the path-rule table is created, and
the identifier is associated with the selected find-rule method, and the path-rule table (step
506). In step 506, optionally, the pointer to the root directory is stored with the path-rule
table. The framework returns the identifier (step 508). Typically, a sub-system, such as sub-
system 322 in Figure 3 receives the identifier to the path-rule table created by the

framework.

Figure 6 is a flowchart of finding a rule in a path-rule table in accordance with an
illustrative embodiment. The process in Figure 6 is executed by a framework, such as
framework 328 in Figure 3. The process begins when a find request is received containing a
path for an object, and an identifier (step 602). The identifier is an identifier for a path-rule
table, such as identifier 350 in Figure 3. The identifier is used to find the path-rule table,
and the find-rule method associated with the identifier (step 604). The find-rule method is
used to determine if there is a path in the find rule table that references the same object the
given path references (step 606). A determination is made as to whether the find-rule
method found a path in the path-rule table (step 608). If the answer in step 608 is “yes”,
because the find-rule method did not find a path, then the rule corresponding to the path in
the path-rule table is returned (step 610), and the process ends. If the answer is “no”, and the
find-rule method did not find a path, then a “not found in table” return code is returned (step

612), and the process ends.

Figure 7 is a flowchart of an exemplary find-rule method in accordance with an
illustrative embodiment. The process in Figure 7 is an example of a find-rule method. The
flowchart in Figure 7 is executed by a find-rule method in a framework, such as method 342
in Figure 3. The process begins when a find request to find a rule for a path, a path, and an

identifier are received (step 702). The given path may be a relative, or an absolute path. An



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

12

absolute path is retrieved from an entry in the path-rule table (step 704). The path-rule table
may be a path-rule table, such as path-rule table 330 in Figure 3.

A determination is made whether the absolute path from the entry in path-rule table
has the same basename as the resolved basename (step 706). The basename is the name of
the object referenced by the path. For example, in path “/usr/doc/text”, “text” is the
basename of the path. If the answer in step 706 is “yes”, because the absolute path from the
entry in path-rule table has the same basename as the resolved basename, then a
determination is made whether the identity of the physical file system vnode of the given
path is identical to the identity of the physical file system vnode of the absolute path (step
708). In a Unix-based operating system, each active file, each current directory, each
mounted-on file, text file, and the root has a unique vnode. Thus, a vnode uniquely

identifies each object.

If the answer in step 708 is “yes”, then the rule corresponding to the path in the path-
rule table is retrieved, and returned (step 710). For example, framework 322 retrieves the
rule corresponding to the given path in the path-rule table, and returns the rule to sub-system
322. If the answer in step 708 is “no”, then a determination is made whether all absolute
paths in the path-rule table have been retrieved. If the answer in step 714 is “yes”, because
all absolute paths have been retrieved from the path-rule table, then a “path not found” return
code is returned (step 714), and the process ends. If the answer in step 714 is “no”, because
all absolute paths in the path-rule table have not been retrieved, then the process returns to

step 704 and retrieves an absolute path from an entry in the path-rule table.

Thus, the illustrative embodiments described herein provide a computer implemented
method, apparatus, and computer program product for accessing an object in a set of objects.
Responsive to receiving a path-rule table containing a set of entries, a table identifier is
created, wherein the table identifier is used to identify the path-rule table. A rule finder is
received, wherein the rule finder is used to identify the rule in the path-rule table for

accessing the object.



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

13

The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of some possible implementations of systems, methods and
computer program products according to various embodiments. In this regard, each block in
the flowchart or block diagrams may represent a module, segment or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may

sometimes be executed in the reverse order, depending upon the functionality involved.

The invention can take the form of an entirely hardware embodiment, an entirely
software embodiment or an embodiment containing both hardware and software elements.
In a preferred embodiment, the invention is implemented in software, which includes but is

not limited to firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a computer program product
accessible from a computer-usable or computer-readable medium providing program code
for use by or in connection with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer readable medium can be any
tangible apparatus that can contain, store, communicate, propagate, or transport the program

for use by or in connection with the instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include
compact disk — read only memory (CD-ROM), compact disk — read/write (CD-R/W) and
DVD.

A data processing system suitable for storing and/or executing program code will

include at least one processor coupled directly or indirectly to memory elements through a



10

15

20

WO 2008/141852 PCT/EP2008/052937

14

system bus. The memory elements can include local memory employed during actual
execution of the program code, bulk storage, and cache memories which provide temporary
storage of at least some program code in order to reduce the number of times code must be

retrieved from bulk storage during execution.

Input/output or I/O devices (including but not limited to keyboards, displays,
pointing devices, etc.) can be coupled to the system either directly or through intervening 1/O

controllers.

Network adapters may also be coupled to the system to enable the data processing
system to become coupled to other data processing systems or remote printers or storage
devices through intervening private or public networks. Modems, cable modem and

Ethernet cards are just a few of the currently available types of network adapters.

The description of the present invention has been presented for purposes of
illustration and description, and is not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will be apparent to those of ordinary
skill in the art. The embodiment was chosen and described in order to best explain the
principles of the invention, the practical application, and to enable others of ordinary skill in
the art to understand the invention for various embodiments with various modifications as

are suited to the particular use contemplated.



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

15

CLAIMS

1. A method for managing attributes for objects, the method comprising:

storing a path-rule table comprising a set of entries associated with a location
accessible by an operating system, wherein the set of entries in the path-rule table specifies
associations between objects and attributes of the objects;

associating the path-rule table with an identifier;

responsive to a request from an entity to access an object, identifying a type of the
object;

using the identifier to identify the path-rule table for the type of object; and

selectively providing access to the object in accordance with an attribute associated

with the object in the path-rule table.

2. The method of claim 1, wherein storing a path-rule table further comprises:
creating the identifier for the path-rule table; and
receiving a rule finder, wherein the rule finder is used to identify the attribute in the

path-rule table for accessing the object.

3. The method of claim 1, wherein selectively providing access to the object in
accordance with an attribute associated with the object in the path-rule table further
comprises:

determining a level of access to the object using the path-rule table in accordance
with the entity; and

providing the entity the level of access to the object.

4. The method of claim 3, wherein the level of access specifies an authorization or a
privilege.
5. The method of claim 1, wherein a type of object comprises one of a command, a

device, or a file.

6. The method of claim 1, wherein a path-rule table is stored for each type of object.



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

16

7. The method of claim 1, wherein an entry in path-rule table comprises an absolute
path for an object and an associated attribute, wherein the absolute path identifies a location

of the object, and wherein the attribute identifies a level of access for the object.

8. The method of claim 1, wherein the path-rule table is provided by the operating

system to a kernel.

9. A data processing system for managing attributes for objects, the data processing
system comprising:

a bus;

a storage device connected to the bus, wherein the storage device contains computer
usable code;

at least one managed device connected to the bus;

a communications unit connected to the bus; and

a processing unit connected to the bus, wherein the processing unit executes the
computer usable code to store a path-rule table comprising a set of entries in a location
accessible by an operating system, wherein the set of entries in the path-rule table specifies
associations between objects and attributes of the objects; associate the path-rule table with
an identifier; identify, in response to a request from an entity to access an object, a type of
the object; use the identifier to identify the path-rule table for the type of object; and
selectively provide access to the object in accordance with an attribute associated with the

object in the path-rule table.

10.  An apparatus for managing attributes for objects, the apparatus comprising:

means for storing a path-rule table comprising a set of entries associated with a
location accessible by an operating system, wherein the set of entries in the path-rule table is
operable to specify associations between objects and attributes of the objects;

means for associating the path-rule table with an identifier;

means, responsive to a request from an entity to access an object, for identifying a
type of the object;

means for using the identifier to identify the path-rule table for the type of object; and



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

17

means for selectively providing access to the object in accordance with an attribute

associated with the object in the path-rule table.

11.  The apparatus of claim 10, wherein the means for storing a path-rule table further
comprises:

means for creating the identifier for the path-rule table; and

means for receiving a rule finder, wherein the rule finder is operable to be used to

identify the attribute in the path-rule table for accessing the object.

12.  The apparatus of claim 10, wherein the means for selectively providing access to the
object in accordance with an attribute associated with the object in the path-rule table further
comprises:

means for determining a level of access to the object using the path-rule table in
accordance with the entity; and

means for providing the entity the level of access to the object.

13.  The apparatus of claim 12, wherein the level of access is operable to specify an

authorization or a privilege.

14.  The apparatus of claim 10, wherein a type of object comprises one of a command, a

device, or a file.

15.  The apparatus of claim 10, wherein a path-rule table is operable to be stored for each
type of object.
16.  The apparatus of claim 10, wherein an entry in path-rule table comprises an absolute

path for an object and an associated attribute, wherein the absolute path is operable to
identify a location of the object, and wherein the attribute is operable to identify a level of

access for the object.

17.  The apparatus of claim 10, wherein the path-rule table is operable to be provided by

the operating system to a kernel.



10

15

20

25

30

WO 2008/141852 PCT/EP2008/052937

18

18. A computer program product for managing attributes for objects, the computer
program product comprising:

a computer usable medium having computer usable program code tangibly embodied
thereon, the computer usable program code comprising:

computer usable program code for storing a path-rule table comprising a set of
entries in a location accessible by an operating system, wherein the set of entries in the path-
rule table specifies associations between objects and attributes of the objects;

computer usable program code for associating the path-rule table with an identifier;
and

computer usable program code for identifying, in response to a request from an entity
to access an object, a type of the object;

computer usable program code for using the identifier to identify the path-rule table
for the type of object; and

computer usable program code for selectively providing access to the object in

accordance with an attribute associated with the object in the path-rule table.

19. The computer program product of claim 18, wherein the computer usable program
code for storing a path-rule table further comprises:
computer usable program code for creating the identifier for the path-rule table; and
computer usable program code for receiving a rule finder, wherein the rule finder is

used to identify the attribute in the path-rule table for accessing the object.

20. The computer program product of claim 18, wherein the computer usable program
code for selectively providing access to the object in accordance with an attribute associated
with the object in the path-rule table further comprises:

computer usable program code for determining a level of access to the object using
the path-rule table in accordance with the entity; and

computer usable program code for providing the entity the level of access to the

object.

21.  The computer program product of claim 20, wherein the level of access specifies an

authorization or a privilege.



10

15

WO 2008/141852 PCT/EP2008/052937

19

22.  The computer program product of claim 18, wherein a type of object is one of a

command, a device, or a file.

23. The computer program product of claim 18, wherein a path-rule table is stored for

cach type of object.

24.  The computer program product of claim 18, wherein an entry in path-rule table
comprises an absolute path for an object and an associated attribute, wherein the absolute
path identifies a location of the object, and wherein the attribute identifies a level of access

for the object.

25.  The computer program product of claim 18, wherein the path-rule table is provided

by the operating system to a kernel.



- WO 2008/141852 PCT/EP2008/052937

116

Figure 1

112

Figure 2

Processing Unit
200 206

L

Graphics : :: : : :
Processor NB&CH Maszﬂ?mory "‘Audio sIo
210 Adapter 23§
Bus 240 Sgog Bus 238
CD- USB and Keyboard ’
HDD ROM { L Other P&C‘:if and Mouse Modem ROM
226 230 LAN . Ports 233 Adapter 222 224
A"Zi‘:,fef 232 234 220




PCT/EP2008/052937

WO 2008/141852

¢ ainbi

216

BIEasn

juai)

0t
]33
gy
17
[+
poyiaw
__GEa:ﬂU_ O_PTUC_n—
— 1] %4
poyien ielao
E2 7
poylenN
. (133 (143
FEE any ZEE uied 190 \ anquIy
o TT o1qe} a|nr-yied
PoylonN
80t
palao
[:744
Nlomotues
Zie
- gy
waishs-qng
143
waysks oy 90¢
_. 7T Jeusdy R0

Y€ E.zmxm buyjesadg




PCT/EP2008/052937

WO 2008/141852

3/6

OiP ainy

BO¥ 2Ny

Sd9 dsd=sbetzoes
NMOHD 5d Ad’'O O¥d Ad’'X o¥d Ad=-saTadejeuur

Jaumo - oo [qo 8] - XTe=ayinessasde

0¥ wied

umoyo /UTq/Isn/

548 dsd=sbe1joes
ain 0s Ad‘oodd OV Ad'da¥ Qv ad=satadegeuut

sbueyo - 9101 A3 TINDS8 * XTB=81[INP8880DEL

0¥ wied

o1o0IyYD /UuTg/Isn/

5dd dsd=ebeigoes
aIn ns Ad'INOOW 5S4 Ad’M DVd Ad=sariadejeuut

qunou* 20euew g3 * XTe=8ylneggaoor

junow/urgs/Iasn/ | - 7oy yed

MY 553NV

ped 21njosqy

 aInbi4



WO 2008/141852 PCT/EP2008/052937

L 16

Receive a request to create a path-rule table. The request
contains the number of entries in the path-rule table, a set
of paths, a set of rules, and selects a find-rule method for
use with the table
502

Create a path-rule table with the requested number of
entries, and store the set of paths, and the sets of rules in’
the path-rule table, resulting in each entry in the path-rule

table having a path, and a rule
504

Create an identifier for the path-rule table, and associate
the identifier with the selected find-rule method, the path-
rule table
506

v

Return the
identifier

508

Figure 5



WO 2008/141852

576

request containing
a path for an
object, and an
identifier
602

Use identifier to
find associated
path-rule table and
find-rule method

604

l

Use find-rule method to determine if
there is a path in the find rule table that
references the same object the given
path references

606

PCT/EP2008/052937

Did find-rule
method find 8 path?
£08

‘Return “not found
in table” return
code
§12

YES

'

Retumn the rule for
the path
£10

Figure 6



WO 2008/141852

( Begin ’

-Receive a find ruke request tofind 2.
rule for a path, and an identifier.
Resolve basename of the given path.
The given path may be a relative or
absolute path, and refer to a symbolic
link, or7% hard link

Retrieve an
absolute path from

PCT/EP2008/052937

Figure 7

anentry inthe |(¢—
path-rule table

704

Does the absolute path
om the entry in path-rule table have the samé
- basename as the resolved basename?
706

YES

Is the identity of the
physical file system vnode of the
given path identical to the ientity of the physical
file system vnode of the absolute path?
708

YES
. 4

Retrieve the rule in
the entry and
return the rule

710

NO—

Have all absolute
paths in the path-rule table been
retrieved?
112

YES

Return “path not
found” return code
714

End



~International application No

" INTERNATIONAL SEARCH REPORT -

- PCT/EP2008/052937

A. CLASSIFICATION OF SUBJECf MATTER |

INV. GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbots)

GO6F HOA4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electroni_c data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X MARK G. SOBELL: "A Practical Guide to Red 1-25
Hat Linux - Chapter The Linux Filesystem >

ACLs: Access Control Lists" [Online]

27 June 2006 (2006-06-27), PRENTICE HALL

, XP002486070

Retrieved from the Internet:
URL:http://proquest.safaribooksonline.com/
0132280272/ch061evlsec7>

[retrieved on 2008-06-27]

the whole document .

A US 4 525 780 A (BRATT RICHARD G [US] ET

AL) 25 June 1985 (1985-06-25) :
the whole document

See patent family annex.

D Further documents are listed in the continuation of Box C.

* Special categories of cited documents : , . . -
“T* later document published after the international filing date

or priority date and not in conflict with the application but

*A® document defining the general state of the an which is not
considered to be of particular relevance :

'E® earlier document but published on or after the international
filing date

*L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

'O" document referring to an oral disclosure, use, exhibition or
other means

*P*" document published prior to the international filing date but
later than the priority date claimed

cited to understand the principle or theory underlying the
invention

*X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
me'l]ﬂs, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

27 June 2008

Date of mailing of the intemational search report

25/07/2008

Name and mailing address of the ISA/
European Patent Office. P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Mihlenbrock, Martin

Form PCT/ISA/210 (second shest) (April 2005)




INTERNATIONAL SEARCH REPORT ‘

" Information on patent tamily members

International appiication No

PCT/EP2008/052937
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 4525780 A 25-06-1985 NONE

Form PCT/ISA/210 (patent family annex) (Aprii 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report

