（19）中华人民共和国国家知识产权局

（12）发明专利申请

（10）授权公告号 CN 103468955 B
（45）授权公告日 2016.09.07

（21）申请号 201310363492.6
（22）申请日 2013.08.20
（65）同一申请的已公布的文献号
 申请公布号 CN 103468955 A
（43）申请公布日 2013.12.25

（73）专利权人 东营方圆有色金属有限公司
 地址 257091 山东省东营市渊河路99号

（72）发明人 崔志祥 王志 宋永丽

（74）专利代理机构 山东济南齐鲁科技专利事务所公司 37108
 代理人 宋永丽

（51）Int.Cl.
C22B 7/00 (2006.01)

（54）发明名称
一种废杂铜冶炼工艺

（57）摘要
一种废杂铜冶炼工艺，加料机通过炉体前端一侧的加料口向精炼炉连续给料，天然气和氧气通过喷枪从底部喷入，同时气体鼓入对熔池的搅动，为固态废杂铜熔化、氧化提供良好的传热传质条件，废杂铜熔化氧化后由加料口相对前端一侧的放料口间断放出，通过行车吊运至还原炉还原后浇铸成阳极板，生成的渣渣由放料口放出，通过骤冷塔回收的烟气可重新回精炼炉炼制，循环往复，提高熔炼效率，降低能耗；解决废杂铜冶炼过程中烟气的环保问题。

废杂铜原料
上料机上料
熔化氧化
烟气骤冷

烟气收尘
还原浇铸
尾气排放

阳极板
尾气排放
1. 一种废杂铜冶炼工艺，废杂铜通过起重机吊到备料机上，备料机根据主控要求通过推杆将块料逐次推给链轨式加料机，其特征在于：加料机通过炉体端面一侧的加料口向精炼炉连续给料，天然气和氧气通过喷枪从底部喷入，同时气体鼓入对熔池的搅动，废杂铜熔化氧化以后由加料口相对端面一侧的放铜口间断放出，通过行车吊运至还原炉还原后浇铸成阳极板，生成的炉渣由放渣口放出，通过骤冷塔回收，重新返回精炼炉冶炼，待 Pb、Zn 富集过高时开路处理，废杂铜原料的铜质量百分比含量为不小于80%，精炼炉内的富氧浓度为 50%~98%，天然气与氧气的体积比为 0.5，精炼炉内的氧压为 0.4~0.6MPa，熔池内的温度为 1230~1250℃，炉渣中 Fe / SiO₂ 为 1.6~1.8，骤冷塔烟气出口温度为 180~185℃，烟灰主要成分为 Cu、Fe、Pb、Zn。
一种废杂铜冶炼工艺

技术领域

[0001] 本发明属于有色金属领域，涉及一种废杂铜的冶炼工艺。

背景技术

[0002] 废杂铜因其良好的再生利用特性，一直是铜的冶炼和加工的重要原料。在“城市矿产”中，再生铜是来源广以及数量大的有色金属资源之一。2010年中国再生铜产量占原生铜产量的比例约为30%，随着国民经济各领域用铜量不断增加，再生铜产业的比重将会逐步上升。但是目前再生铜冶炼技术发展有限，废杂铜冶炼均采用单炉周期作业。单炉100吨以上冶炼炉冶炼周期通常为24小时以上，冶炼周期长，环保条件差。现在废杂铜冶炼80%采用热风炉单炉作业，主要靠焦炭燃料燃烧放热，通过炉内空气传热到熔化固体废料，传热效率差，能耗高。而较先进的废杂铜冶炼工艺，如倾动炉、卡尔多炉等冶炼工艺，引进费用高，结构复杂，且尽量解决上述热效率低，冶炼周期长，单系列冶炼规模小等问题。

发明内容

[0003] 本发明的目的在于避免现有技术的不足，而提供一种废杂铜冶炼工艺。

[0004] 本发明的技术方案是：一种废杂铜冶炼工艺，废杂铜通过起吊机吊到车料机上，车料机根据主控要求通过推杆将车料逐次推给链式机，加料机通过炉体端面一侧的加料口向精炼炉连续加料，天燃气和氧气通过喷枪从底部喷入，同时气体鼓入对熔池的搅动，废杂铜熔化氧化以后由加料口相对端面一侧的放铜口间断放出，通过行车吊运至还原炉还原后转转成铜极板，生成的炉渣由放渣口放出，通过静电塔回收，重新返回精炼炉冶炼，待Pb，Zn富集达标时开路处理，所述的废杂铜料中的铜质量百分比含量为不小于80%；所述的精炼炉内的富氧浓度为50%～98%；所述的天燃气与氧气的体积比为0.5；所述的精炼炉内的氧压为0.4～0.6MPa；所述的熔池内的温度为1230～1250℃；所述的炉渣中Fe/SiO2为1.6～1.8；所述的静电塔烟气出口温度为180～185℃，烟灰主要成分为Cu,Fe,Pb,Zn。

[0005] 与现有技术相比，本发明具有以下突出优点：

[0006] 1. 本发明解决了现有技术单炉周期作业（熔化-氧化-还原-浇铸）造成的生产条件不连续性。连续投料、连续熔化可使生产规模大于现有同等规模设备的1倍以上，产能显著增大；连续的烟气可以保证烟气后续处理设备的最小化购置，烟气处理条件更好；

[0007] 2. 现有废杂铜冶炼技术均采用烧嘴从上面对炉膛空气加热，通过热辐射和对流来加热熔化固态废铜，传热介质是空气。本发明采用氧气和天然气从炉底部直接喷入熔池，在熔池内发生剧烈的化学反应，放出大量的热量，加热已经熔化的铜熔池，通过热传导和对流来加热熔池中未熔化的铜，传热介质是空气。而铜的导热性远大于空气，热效率提高，能耗降低；

[0008] 3. 本发明由于在熔化和氧化阶段实现连续性，可保证冶炼炉采用持续负压，防止烟气从炉体各管口逸散，环保条件好于现有周期性作业工艺。由于烟气连续性好，在烟气处理时可更好的将低品位废杂铜冶炼烟气中的有效成分回收，将二噁英无害化，尾气达标排放。
放：

4. 本发明将废杂铜冶炼周期中用时较短的还原和浇铸功能集中在现有回转式阳极炉内，充分利用了现有回转式阳极炉对热态铜处理的良好效果。两炉搭配，彻底解决废杂铜冶炼过程中烟气的环保问题。

附图说明

图1为本发明的流程图。

具体实施方式

下面结合附图对本发明进行详细的描述。

一种废杂铜冶炼工艺，废杂铜通过起重吊机吊到备料机上，备料机根据主控要求通过推杆将块料逐次推给链轨式加料机，加料机通过炉体端面一侧的加料口向精炼炉连续给料，天然气和氧气通过喷枪从底部喷入，同时气体鼓入对熔池的搅动，为固态废杂铜熔化、氧化提供良好的传热传质条件，废杂铜熔化氧化以后由加料口相对端面一侧的放铜口间断放出，通过行车吊运还原炉还原后浇铸成阳极板，生成的炉渣由放渣口放出，通过骤冷塔回收的烟灰主要成分是Cu、Fe、Pb、Zn等元素，可重新返回精炼炉冶炼，待Pb、Zn富集过高时开路处理。

其中，原料组成为：

<table>
<thead>
<tr>
<th>成分</th>
<th>实例一</th>
<th>实例二</th>
<th>实例三</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu%</td>
<td>大于95%</td>
<td>大于85%</td>
<td>大于80%</td>
</tr>
<tr>
<td>Zn%</td>
<td>0.5%-2%</td>
<td>0.5%-2%</td>
<td>2%-5%</td>
</tr>
<tr>
<td>Pb%</td>
<td>0.5%-1%</td>
<td>0.5%-2%</td>
<td>1%-3%</td>
</tr>
<tr>
<td>Fe%</td>
<td>0.02%-1%</td>
<td>0.1%-2%</td>
<td>1%-7%</td>
</tr>
</tbody>
</table>

技术条件为：
技术条件

<table>
<thead>
<tr>
<th>次数</th>
<th>实例一</th>
<th>实例二</th>
<th>实例三</th>
</tr>
</thead>
<tbody>
<tr>
<td>煤气浓度%</td>
<td>50%</td>
<td>95%</td>
<td>75%</td>
</tr>
<tr>
<td>天然气 / 氢气</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>氧压MPa</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>炉气温度℃</td>
<td>1250</td>
<td>1250</td>
<td>1230</td>
</tr>
<tr>
<td>炉气 Fe/SiO</td>
<td>1.83</td>
<td>1.60</td>
<td>1.65</td>
</tr>
<tr>
<td>熔融物温度℃</td>
<td>185</td>
<td>185</td>
<td>180</td>
</tr>
</tbody>
</table>

所得产品技术指标

<table>
<thead>
<tr>
<th>次数</th>
<th>实例一</th>
<th>实例二</th>
<th>实例三</th>
</tr>
</thead>
<tbody>
<tr>
<td>品位Ga%</td>
<td>99.5%</td>
<td>99.6%</td>
<td>99%</td>
</tr>
<tr>
<td>钢料收率%</td>
<td>98.87</td>
<td>98.00</td>
<td>96</td>
</tr>
<tr>
<td>炉渣熔合铜%</td>
<td>9.75</td>
<td>10.87</td>
<td>5.30</td>
</tr>
<tr>
<td>处理能力 t/h</td>
<td>50</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>