WO 2005/106710 A1 |0 |00 000 0 00O O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
10 November 2005 (10.11.2005)

AT OO0

(10) International Publication Number

WO 2005/106710 A1l

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/EP2005/051624

(22) International Filing Date: 13 April 2005 (13.04.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/838,837 4 May 2004 (04.05.2004) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504
(US).

(71) Applicant (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41 North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72)
(75)

(74)

(81)

Inventors; and

Inventors/Applicants (for US only): HENDERSON,
Roderick, Charles [US/US]; 1805 Kelly Glenn Drive,
Apex, North Carolina 27502 (US). LI, Yongcheng
[CN/US]; 107 Olde Tree Drive, Cary, North Carolina
27511 (US). MCELROY, Thomas, Francis [US/US];
10311 Arrow Creek Drive, Apt # 108, Raleigh, North
Carolina 27617 (US).

Agent: MATHER, Belinda; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,

[Continued on next page]

(54) Title: METHODS, SYSTEMS, AND COMPUTER PROGRAM PRODUCTS FOR CLIENT SIDE PREFETCHING AND

CACHING OF PORTLETS

400
)
Client Side : Server Side
]
!
Portal View '
i
401 : Customization
\ Information
410 405 E 417 435
{
<415 f Portat
4191 Application
; Server
P ; 420
470 ‘ Portlet 5
Framework Assembler]
Portlets
460 430

1 \450\
Portlet Styte

Portlet
Views
- portal link
structure

465~ 455

Application
Code

(57) Abstract: Methods, systems, and computer
program products are provided for prefetching and
caching portal information in a client application
in a logically separated client/server computing
environment. Before a user requests a specific
portlet view to be displayed at the user’s web
browser, portlet information from a server is
prefetched. The portlet information may include
content data to be displayed in a portlet view,
meta data describing how the content data will be
displayed, and combinations of both content data
and meta data. The prefetching step is performed
on the client of the logically separated client/server
computing environment. The client stores the
prefetched portlet. Once the prefetched portlet
information has been stored, upon a user request
such as clicking on a link in a portlet view, the
method retrieves the stored portlet information and
displays the portlet information in a corresponding
portlet view. From the user’s perspective, the
portlet view may display new content information,
previously viewed content information in a
different format, or a combination of new content
information and old content information presented
in a different format.

WO 2005/106710 A1 I} H10 Y A0VYH0 AT 0000 0

PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, Published:

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, — with international search report
ZA, 7ZM, 7ZW. — before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations” appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, ning of each regular issue of the PCT Gagzette.

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

amendments

WO 2005/106710 PCT/EP2005/051624

[001]

[002]

[003]

Description

METHODS, SYSTEMS, AND COMPUTER PROGRAM
PRODUCTS FOR CLIENT SIDE PREFETCHING AND

CACHING OF PORTLETS
Technical Field

The present invention generally relates to improved methods, systems, and
computer program products for processing information, and more particularly, to ad-
vantageous methods, systems, and computer program products for prefetching and
caching of portlets in a networked computer environment.

Background Art

With the increase in the popularity of the “World Wide Web” (WWW), the use of
web browsers or browsers has become more common. For example, a web browser
available from Netscape, Inc., known as Netscape Navigator®, can provide a
convenient way to operate applications and view data via the web. Some of the ap-
plications available via the web can provide a high level of interaction with the user as
these applications may be written in native languages such as C or Java®. In particular,
applications written in these types of native languages can be specifically written to
require intensive user interaction. As the level of interaction between the user and the
application increases, so can the communication between the web browser and the ap-
plication. This increase in communication can decrease the available network
bandwidth resulting in response time delay of the application as perceived by the user.
For example, each time the user requests data which is managed by the application, the
user typically has to wait for a request to be sent over the web to the application, for
the application to retrieve the requested data, and for the application to reply with the
requested data.

In addition to the problems outlined above regarding generic applications, a new
type of environment, commonly referred to as the “emerging web desktop,” may cause
even greater problems similar to those discussed above. In particular, the emerging
web desktop can provide users with access to what is commonly referred to as a portal.
The portal can allow a user to access multiple applications through a single screen
displayed by the web browser. For example, some portals allow users to access ap-
plications that can show disparate data, such as weather, sports, stock information, or
the like, to a user on a single screen. Each of the disparate types of data is typically
controlled by a portlet. A portlet is computer code which adheres to interfaces and
behaviors specified in a portlet specification and executes in a portal application
server. Examples of a portlet specification include IBM’s portlet API and J ava™ Stan-

WO 2005/106710 PCT/EP2005/051624

[004]

[005]

[006]

[007]

[008]

dardization Request for the Java Portlet Specification defined by the Java Community
Process.

Much of the processing needed to manage the portal such as administration, cus-
tomization, and switching can place even greater demands on the bandwidth available
between the browser and the application. Such increased demands on the bandwidth
available may also translate in a decrease in the application’s response time from the
perspective of the user.

Among their other failings, conventional approaches including web browsers offer
limited optimization opportunities because of the granularity of information currently
cached. For example, one conventional approach can only cache uniform resource
locator (URLs) which refer to an entire hypertext markup language (HTML) page or
cache the entire HTML page itself on a client, where the entire HTML page typically
consumes the entire presentation area of the browser. Other conventional approaches
include server side caching which do not address response time delays between a client
and a server.

It is known to use a technology commonly referred to as XForms to address some
of the performance issues that arise when using a web browser to access data over the
web. In particular, XForms technology can treat the data to be presented in a web
browser separately from how the data will be presented. XForms technology, however,
does not address some of the issues discussed above that can arise when using a web
browser to access applications or data via the web.

Disclosure of Invention

Among its several aspects, due to the increasing demand placed on bandwidth and
response time requirements, the present invention recognizes that a need exists for
increasing the performance of existing web applications. The present invention also
recognizes that methods, systems, and computer program products are needed to
predict portlet information which will be consumed by a user and to retrieve that
portlet information before the user requests it. Further, the present invention recognizes
the value of offloading traditional portal server functions by providing systems,
methods, and computer program products which execute on a client, retrieve portlet in-
formation and cache portlet information in the client computer before the user requests
it.

{0008} According to one aspect of the present invention, a method is provided for
prefetching and caching portal information in a client application in a logically
separated client/server computing environment. Before a user requests a specific
portlet view to be displayed at the user’s web browser, the method prefetches portlet
information from a server. The portlet information includes content data to be

WO 2005/106710 PCT/EP2005/051624

[009]

[010]

[011]

[012]
[013]

[014]

[015]

[016]

[017]

displayed in a portlet view, meta data describing how the content data will be
displayed, or combinations of both content data and meta data. The prefetching step is
performed on a client side of the logically separated client/server computing en-
vironment. The client side stores the prefetched portlet. Once the prefetched portlet in-
formation has been stored, upon a user request such as clicking on a link in a portlet
view, the method retrieves the stored portlet information and displays the portlet in-
formation in a corresponding portlet view rather than retrieving the fetched in-
formation at the time the user requests it. Such prefetching takes place when the user is
not actively requesting new information to be retrieved from the server thus increasing
the application’s response time from the perspective of the user. Additionally, from the
user’s perspective, the portlet view may display new content information, previously
viewed content information in a different format, or a combination of new content in-
formation and old content information presented in a different format.

{0009} A more complete understanding of the present invention, as well as further
features and advantages of the invention, will be apparent from the following detailed
description and the accompanying drawings.

Brief Description of the Drawings

Fig. 1 is an illustration of an exemplary system in which the present invention may
be suitably implemented.

Fig. 2 is an illustration of an exemplary portal view that can be provided utilizing
embodiments according to the present invention.

Fig. 3A is a hierarchical diagram illustrating imbedded references within portlets.

Fig. 3B is a block diagram illustrating an exemplary portal link structure in
accordance with an embodiment of the present invention.

Fig. 3C is a block diagram illustrating an exemplary portlet link entry within the
portal link structure of Fig. 3B in accordance with an embodiment of the present
invention.

Fig. 4 is a block diagram illustrating the client/server interaction concerning the
portal link structure in accordance with an embodiment of the present invention.

Fig. 5 is a flowchart illustrating a process according to an embodiment of the
present invention.

Mode for the Invention

The present invention will now be described more fully with reference to the ac- -
companying drawings, in which several presently preferred embodiments of the
invention are shown. This invention may, however, be embodied in various forms and
should not be construed as limited to the embodiments set forth herein. Rather, these
embodiments are provided so that this disclosure will be thorough and complete, and

WO 2005/106710 PCT/EP2005/051624

[018]

[019]

[020]

[021]

will fully convey the scope of the invention to those skilled in the art

{0018} As will be appreciated by one of skill in the art, the present invention may
be embodied as methods, systems, or computer program products. Accordingly, the
present invention may take the form of a hardware embodiment, a software
embodiment or an embodiment combining software and hardware aspects.
Furthermore, the present invention may take the form of a computer program product
on a computer-usable storage medium having computer-usable program code
embodied in the medium. Any suitable computer readable medium may be utilized
including hard disks, CD-ROMs, optical storage devices, or magnetic storage devices.

{0019} Computer program code or “code” for carrying out operations according to
the present invention may be written in an object oriented programming language such
as JAVA®, Smalltalk, JavaScript®, Visual Basic®, TSQL, Perl, or in various other
programming languages. Software embodiments of the present invention do not
depend on implementation with a particular programming language. Portions of the
code may execute entirely on one or more systems utilized by an intermediary server.

{0020} The code may execute entirely on one or more servers, or it may execute
partly on a server and partly on a client within a client device or as a proxy server at an
intermediate point in a communications network. Regarding the former scenario, Fig. 1
is an illustration of an exemplary system 100 in which the present invention may be
suitably employed. The system 100 includes a client device such as a workstation
110A, a laptop computer 110B, a cell phone 110C, a handheld computer 110D, or any
other computer based device which can execute computer program code. The client
device may be connected to a server 120 over network 130 such as a LAN, WAN or
other intranet, or the connection may be made through the Internet via an Internet
service provider (ISP). It is understood that the present invention is not TCP/
IP-specific or Internet-specific. The present invention may be embodied using various
transport and data link protocols over various types of computer networks.

{0021} Embodiments according to the present invention can operate in a logically
separated client side/server side computing environment, sometimes referred to
hereinafter as a client/server environment. The client/server environment is a com-
putational architecture that involves a client process or client, a server process or
server, and the client requesting service from a server. In general, the client/server en-
vironment maintains a distinction between processes, although client and server
processes may operate on different machines or on the same machine. Accordingly, the
client and server sides of the client/server environment are referred to as being
logically separated as shown in Fig. 1. Usually, when client and server processes
operate on separate devices, each device can be customized for the needs of the
respective process. For example, a server process can execute on a system having large

WO 2005/106710 PCT/EP2005/051624

[022]

[023]

[024]

[025]

[026]

[027]

amounts of memory and disk space, whereas the client process often executes on a
system having a graphic user interface provided by high end video cards and large
screen displays.

{0022} A client may include a program, such as a web browser, that requests in-
formation, such as web pages or portlet views, from a server. Examples of clients
include browsers such as Netscape Navigator® and Internet Explorer®. Browsers
typically provide a graphical user interface for retrieving and viewing web pages, web
portals, portlets, applications, and other resources served by web servers.

{0023} A server may include a program that responds to requests from the client.
Some examples of servers are International Business Machines Corporation’s (IBM)
family of Lotus Domino® servers, IBM’s Websphere® servers, the Apache server, and
other suitable servers.

{0024} The clients and servers can communicate using a standard communications
mode, such as hypertext transport protocol (HTTP). According to the HTTP request/
response communications model, HTTP requests are sent from the client to the server
and HTTP responses are sent from the server to the client in response to an HTTP
request. In operation, the server waits for a client to open a connection and to request
information, such as a web page, portlet, or other like information. In response, the
server sends a copy of the requested information to the client, closes the connection to
the client, and waits for the next connection. It will be understood that the server can
respond to requests from more than one client.

{0025} The present invention is described below with reference to block diagrams
and flowchart illustrations of methods, systems and computer program products
according to embodiments of the present invention. It is understood that each block of
the block diagrams and flowchart illustrations, and combinations of blocks in the block
diagrams and a flowchart illustration, can be implemented by computer program code.
The computer program code may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus
to produce a machine, such that code, which execute via the processor of the computer
or other programmable data processing apparatus, create means for implementing the
functions specified in the block diagrams and/or flowchart block or blocks.

{0026} Computer program code or instructions may be stored in a computer
readable memory that can direct a computer or other programmable data processing
apparatus to function in a particular manner, such that the instructions stored in the
computer readable memory produce an article of manufacture including instruction
means which implement the function specified in the block diagrams or flowcharts.

{0027} The computer program code may be loaded onto a computer or other pro-
grammable data processing apparatus to cause a series of operational steps to be

WO 2005/106710 PCT/EP2005/051624

[028]

[029]

[030]

[031]

[032]

performed on the computer or other programmable apparatus to produce a computer
implemented process such that the instructions which execute on the computer or other
programmable apparatus provide steps for implementing the functions specified in the
block diagrams and/or flowchart block or blocks.

{0028} As used herein, the term “web site” can include a related collection of files
that includes a beginning file called a home page. From the home page, a visitor can
access other files and applications at the web site. A large web site may utilize a
number of servers, which may or may not be different and may or may not be geo-
graphically dispersed. For example, the web site of the International Business
Machines Corporation (http://www.ibm.com) consists of thousands of web pages and
files dispersed over multiple web servers in locations worldwide.

{0029} Although the present invention is described herein with reference to web
pages, web servers, and the like, it will be understood that the present invention can be
practiced with any computer displayable documents having information.

{0030} As is known to those skilled in the art, a web page is conventionally
formatted via a standard page description language such as HTML, which typically
contains text and can reference graphics, sound, animation, and video data. HTML
provides for basic document formatting and allows a web content provider to specify
anchors or hypertext links, typically manifested as highlighted text, to other servers.
When a user selects or activates a particular hypertext link, a browser running on the
user’s client device reads and interprets an address, called a uniform resource locator
(URL) associated with the hypertext link, connects the browser with a web server at
that address, and makes a request such as an HI'TP request for the file identified in the
hypertext link. The web server then sends the requested file to the client which
interprets and renders the web page for display. The term “user” as used herein can be
a software process or a human being.

{0031} A web browser can be used to view what is sometimes referred to as a web
portal or portal. As understood by those skilled in the art, web portals can operate
according to the same communication protocols described above in reference to clients
and servers where the client includes a web browser that views portal pages or portal
views and the server is sometimes referred to as a portal applications server that serves
requested information to the web browser.

{0032} A portal may cause display of a single presentation or view of information
from multiple sources, sometimes referred to as an aggregation of information. Portals
often include information such as calendars and todo lists, discussion groups, an-
nouncements and reports, news, stock quotes, searches, email and address books,
weather, maps, shopping, and the like, all of which may be provided to the portal by
different sources or applications. ”

WO 2005/106710 PCT/EP2005/051624

[033]

[034]

[035]

{0033} Much of the information provided by the portal can be customized by the
user. For example, some portals, such as, My Lycos®, can be customized to display
the weather forecast in a user’s area or display sports scores for the user’s favorite
teams. Moreover, the customization can include the look and feel of portal itself. For
example, some portals can be customized to be displayed using particular screen
themes.

{0034} A portal may also use profiling to present and customize content that
interests the user or to provide accurate demographic data for prospective advertisers
and to help them match ad content with likely sales prospects. Accordingly, portals,
and recently other web providers such as news services, frequently request that the user
complete a profile form. The profile form may request, for example, the user’s name,
gender, age, address, income bracket, employment, recreational activities, hobbies, and
the like. The data provided in the user profile may be used along with data mining such
as a technique for selecting contact information for a small segment of the population
from a large database of contact information, for example, to learn more about the user
and target the user for print, email, direct mail advertising, or the like. The user can
customize the portal page, to show information or transactions which is of interest to
the user. From a user’s perspective, a portlet is a content channel or application to
which the user can subscribe.

{0035} Portlets are Java® based web components executed on a server which
proeess requests and generate dynamic content. Portals use portlets as pluggable user
interface components that provide a presentation layer to information systems. Portlet
views correspond to visible active components a user of the portal sees within the
portal page. Similar to a window in a desktop computer, each portlet view is allocated
a portion of the client screen within the portal view where the relevant information is
displayed. The portlet generates content to be embedded into portal pages viewed by
the user. A portlet itself may have many portlet views where each view represents a
particular state of the portlet. A portlet may interact with data typically managed at a
server to lead to a transaction with a user. Each portlet view may correspond to a
different state of the transaction. For example, through a portlet, a user may sell stock.
One portlet view may represent the user’s brokerage account status displaying the
different stocks in which the user has a position. The portlet which controls the
transaction may transition the first portlet view to a second portlet view when the user
clicks on one of his stocks in his portfolio. The second portlet view would represent the
view that the user enters the number of shares to sell and the minimum sales price
acceptable by the user. A portlet view may be developed by any technology which
separates content generation from a user interface such as Sun Microsystem’s Java®
Server Pages technology.

WO 2005/106710 PCT/EP2005/051624

[036]

[037]

{0036} Fig. 2 is a schematic illustration of an exemplary portal view 200 displayed
by a web browser that can operate according to the present invention. As shown in Fig.
2, the portal view 200 includes multiple views of different information referred to as
portlet views. In particular, the portal view 200 includes three portlet views 205, 210,
and 215, which are related to the display of information related to stocks, weather, and
news, respectively. According to Fig. 2, portlet view 205 shows stock information that
is of interest to the user. Portlet view 205 can be customized to display information,
such as prices, of stocks, bonds, stock exchanges, and the like. Portlet view 210
displays weather information related to a particular geographic location of interest to
the user and can also be customized. Portlet view 215 shows news information of
interest to the user, which can also be customized. In operation, a user can create a
need for updated information for any of the portlets generating information shown in
portal view 200. For example, a user can request an updated stock quote via a portlet
corresponding to portlet view 205, request updated weather through a portlet cor-
responding to portlet view 210, and request information related to a particular item in
the latest news in a portlet corresponding to portlet view 215. Furthermore, the user,
through a portlet, can request different formats with which to display portlet views
205, 210, and 215. In any event, the request for updated information can create a need
to change some of the information displayed within at least one of the portlet views
205, 210, and 215.

{0037} Information such as markup and data relating to a portlet can be aggregated
for subsequent display by a client application, such as a web browser under the control
of additional application code. In particular, in a logically separated client side/server
side computing environment, information that is retained on the client side for display
by the web browser can be aggregated with information that is requested by the web
browser from a portal application server located on the server side of the environment.
Accordingly, the aggregation of the information to be displayed can be provided on the
client side rather than on the server side, thereby reducing the load on the portal ap-
plication server and reducing the required bandwidth allocated to the web browser. In
some embodiments, the web browser can be used to access a portal which supports
multiple portlets, each of which can be customized by a user to display desired in-
formation. During this aggregation of information, the web browser only requests the
information that is needed for an updated display of the portal associated with the
requested information and can avoid requesting information that is not needed for the
updated display. By avoiding requesting information that is not needed, the load on the
portal application server is further reduced. Methods and apparatus for aggregating in-
formation for display by a client application are detailed further in United States Ap-
plication Serial No. 10/464910 entitled “METHODS, SYSTEMS, AND COMPUTER

WO 2005/106710 PCT/EP2005/051624

[038]

[039]

[040]

PROGRAM PRODUCTS FOR PORTLET AGGREGATION BY CLIENT AP-
PLICATIONS ON A CLIENT SIDE OF A CLIENT/SERVER ENVIRONMENT”
filed on June 19, 2003 which is incorporated by reference herein in its entirety.

{0038} Embodiments according to the present invention provide techniques for
allowing the prefetching and subsequent caching of portlet information at a client ap-
plication, such as a web browser. In particular, the present invention provides a portal
link structure which defines a hierarchical relationship between portlet views. The
portal link structure contains references to each portlet view within a defined scope. A
reference may be a URL, a URL to another portlet, a dynamic link, or other suitable
reference which indicates how to access subsequently accessible portlet information
from within a portlet. The portal link structure may be initially created by the portal ap-
plication server and subsequently managed by a client. In some embodiments
according to the present invention, the portal link structure may be initially created and
managed at the client. The client updates the portal link structure by determining which
portlet references have been retrieved and which portlet reference is currently being
rendered as a portal view.

{0039} Fig. 3A is a hierarchical diagram 300 illustrating imbedded references
within portlet views 305, 310, and 315. Portlet views 305, 310, and 315 may, for
example, correspond to the portlet information rendered in portlet views 205, 210, and
215, respectively, in Fig. 2. In general, a reference also referred to as a link, upon
execution, accesses a particular portlet view. Reference 7 and reference 8 are contained
within portlet view 205. For example reference 7 may correspond to a server address
where more information concerning Ameriquest Mortage Company can be found on a
server connected in the network cloud 130. User access to such information would
typically be displayed by a user clicking on a highlighted link, such as the highlighted
link 220. Reference 8 may correspond to a dynamic link which utilizes a parameter to
be sent with a request to subsequently retrieve information such as stock quote 225.
Portlet view 310 contains references 9 and 10. Portlet view 315 contains references 11
and 12. References within a portlet view may be displayable to a user as discussed for
references 7 and 8, or may not be displayable to a user. A tree of references is defined
by iteratively determining each reference which is referred to within the information of
a portlet and then determining subsequent references from the portlet information
contained within each reference.

{0040} As discussed in greater detail below the present invention provides
techniques for composing the tree of references. The size and number of levels of the
tree of references are configurable by application code such as application code written
in javascript and stored on a server, but executed on a client. The application code and
its use of a framework for composing the tree of references will be described in more

WO 2005/106710 PCT/EP2005/051624

[041]

[042]

[043]

[044]

10

detail in connection with the discussion of Fig. 4.

{0041} Fig. 3B is a block diagram illustrating an exemplary portal link structure
330 in accordance with the present invention. The portal link structure 330 is a hi-
erarchical arrangement of portlet link entries such as portlet link entry P1 335 based on
the tree of references shown in Fig. 3A. The application code determines the number of
portlet link entries and the extent to which the portal link structure is completed. Typic
ally, there is a one-to-one relationship between a portlet link entry and each portlet
view generated by a portlet.

{0042} Portlet link entry P1 335 corresponds to portlet view 305. Since portlet view
305 refers to reference 7 as shown in Fig. 3A, portlet link entry P1 305 would be
linked to portlet link entry P7 337 which corresponds to the portlet view referenced by
reference 7. Thus, the referencing relationship between portlet link entries 335 and 337
is shown in Fig. 3B with portlet link entry 337 indented from portlet link entry 3335.

{0043} By arranging the portlet link entries within a hierarchical arrangement as
shown in Fig. 3B and tracking which portal views corresponding to a portlet link entry
are being rendered in a display, the portlet information likely to be needed may be
determined by the distances between the currently rendered portlet entries and the
nonrendered portlet entries. For example, the distance between P1 and P7 is one and
the distance between P1 and portlet link entry P13, a child of P7, would be two. If P1
was currently being displayed, P7 having only a distance of 1 would be more likely to
be prefetched than P13 because a user would typically click on reference 7 before
gaining access to reference 13. This hierarchical arrangement advantageously provides
a technique for predicting which portlet information would likely be requested by a
user.

{0044} Fig. 3C is a block diagram illustrating an exemplary portlet link entry 350
within the portal link structure 330. For the sake of clarity, portlet link entry 350 will
be described as the portlet link entry corresponding to portlet view 305 which is
rendered within portal view 200. The portlet link entry 350 contains fields 352, 354,
356, 358, 360, 362, and 364 having varying types. For the sake of simplicity, the field
types are not shown. It should be recognized by one skilled in the art that each field
may be implemented with various field types. The cacheable field 352, the portal ap-
plication server field 354, and the other portlet references field 356 generally contain
information concerning the content of the current portlet link entry. For example, the
cacheable field 352 contains an indication of whether the content associated with the
portal link entry is cacheable or not. Some factors used in making this determination
include whether the corresponding portlet view displays a dynamic result. A dynamic
result may occur when the portlet view prompts a user to interact with data to perform
a transaction. The portlet view referenced by the link which displays a dynamic result

WO 2005/106710 PCT/EP2005/051624

[045]

[046]

[047]

[048]

iR

would typically not be cacheable. For example, if a portlet view generated by a portlet
is a shopping application, the present invention would not cache the portlet view which
shows the products purchased through the portlet view to preclude confusing a user
who changes his or her mind during the transaction.

{0045} The portal application server field 354 contains an indication of the portal
application server which serves the portlet generating the portlet view corresponding to
the portal link entry. The other portlet refererences field 356 contains a list of portlet
references served by the same portal application server and is accessible through the
portlet view corresponding to this portlet link entry. The identification (ID) of the
document object model (DOM) tree node field 358 indicates the location within the
DOM which would be replaced by displaying the portlet view corresponding to this
portlet link entry. The DOM is a known platform and language neutral interface
specified by the W3C document object model standard that permits a script to access
and update the content, structure, and style of a document.

{0046} Using a DOM-supporting programming language, such as Javascript®, in-
formation within the portlet view can be manipulated. For example, a DOM reference
can be used to directly insert the requested information into an HTML page to be
displayed by the client. Another aspect of a DOM-supporting programming language is
the ability to access any component of a document, to update the content information
included in the document, and the ability to manipulate the information separately. For
example, a Javascript® script can be used to move an object from one part of a
document to another. For more information on the W3C document object model
standard, please refer to W3C Architecture Domain, available at
hitp://www.w3.org/DOM/.

{0047} The server identification (ID) for content field 360 contains a unique ID of
the content within the scope of the server. This ID provides the ability to retrieve the
associated content from the portal application server. The link to cached content field
362 contains the local link or unique identification in a cache to retrieve the specific
content from the local cache rather than the portal application server. Typically, this
field is unassigned until the content has been prefetched and stored in a local cache in a
client. The link to other portlet link entries field 364 contains a list of links to other
portlet link entries accessible by the current link entry. In other words, this link field
364 parallels the navigational relationship between portlet views which reference other
portlet views as described in Fig. 3A.

{0048} Fig. 4 is a block diagram illustrating the client/server interaction 400
utilizing the portal link structure in accordance with the present invention. According
to Fig. 4, a portal 400 on a client side operates with a portal application server 220 on a
server side in a logically separated client side/server side computing environment. The

WO 2005/106710 PCT/EP2005/051624

[049]

[050]

[051]

12

portal view 401 can be displayed by a client, such as a web browser, and includes
portlet views 405, 410, and 415 that can be displayed within the portal view 401. When
a user initially accesses a portal which results in displaying portal view 401, a request
is sent to a portal application server 420 to retrieve portlet views 405, 410, and 415 for
the client to render. The portlet application server 420 responds to the request for in-
formation 417 by accessing customization information 435 that can be associated with
the user of the portal view 401. The customization information 435 can also include in-
formation for customizing the particular portlet views 405, 410, and 415. For example,
customization information 435 for a particular portlet view can include a type of skin
or screen information associated with how the portlet is to appear in the portal view
corresponding to portal view 401. Furthermore, the customization information 435 can
include information associated with the type of information typically desired by the
user, such as a particular location associated with weather information that is displayed
in one of the portlet views, a particular stock fund shown in one of the portlet views, or
a particular sports teams of interest to the user.

{0049} The portal application server 420 also accesses a computer program or
portlet code 430 for each portlet view which will be delivered to the portal view 401 on
the client side. However, it is noted that one portlet may generate multiple portlet
views such that a one-to-many relationship may exist between a portlet and generated
portlet views. The portlet code 430 generates portlet information such as content
consumable by a user. The portlet information may optionally include presentation in-
formation which describes how the consumable content will be displayed. For
example, markup data such as data specified in extended markup language (XML)
contains meta data which describes the consumable content.

{0050} The portal application server 420 analyzes each of the portlet views which
would be delivered to the client for the initial view by the user. In this embodiment and
during this analysis, the portal application server 420 creates a portal link structure
containing portlet link entries as described in connection with Figs. 3A and 3B. The
portal link structure may also include meta data describing the portal information
referenced in the portal link structure. In a preferred embodiment of the present
invention, a framework 470 is provided to allow control of the analysis in building and
managing the portal link structure. For example, the framework 470 provides ap-
plication program utility functions to control breadth of analysis and the extent to
which a portal link structure is composed. The framework 470, when executed, would
advantageously coordinate the caching and prefetching of portlet information.

{0051} The portal application server 420 downloads a portlet assembler 445, the
portlet style 450, and the initial portlet views 405, 410, and 415, in a response 422 as
shown. The portlet style 450 contains schemes or a collection of style sheets or skins

WO 2005/106710 PCT/EP2005/051624

[052]

[053]

13

for the portlet views downloaded to the client side. Along with the portlet views, the
portal link structure may also be optionally downloaded in the form of meta data to the
client side. In some embodiments of the present invention, the analysis and the initial
creation of the portal link structure are performed on the client side after the initial
portlet views are downloaded. In any case, portal link structure is stored in memory on
the client side. Memory includes random access memory (RAM), disk, tape or any
other suitable storage medium.

{0052} The framework 470 also provides utilities for application code 465 to also
be downloaded. Such application code utilizes functions within the framework and
may include algorithms for determining the extent to which to build a portal link
structure. The application code may include algorithms to determine which portlet
views and how much of the portlet information is fetched before the user of the portal
requests the information and whether the fetched information contains consumable
content, meta data, or both. The term “prefetch” describes the process of fetching
portlet information before a user requests such portlet information. In a preferred
embodiment, the application code 465 is written using the Javascript® language, for
example, and fits within the portal architecture. Developing the application code 465 in
Javascript® advantageously allows code stored on the server to be executed on the
client without any additional software other than a web browser having a Javascript®
plug-in configured on the client. It should be recognized by one skilled in the art that
other programming languages may be used to develop the application code 465 as long
as the application code has access to functions of the framework.

{0053} The portlet assembler 445 is invoked on the client side and renders the
portlet view 455 containing portlet information in the portal view 401 as portlet view
405 on the client. The application code 465 also is invoked on the client side to
determine what portal information indicated by portlet link entries of the portal link
structure will be prefetched. Once this determination is performed, the portlet
assembler 445 in response to requests by the application code 465 initiates a prefetch
request 419 to the portal application server 420. The prefetch request 419 may suitably
include, for example, the reference of a portlet view contained in the portal link
structure which the client wants to prefetch. In some embodiments of the present
invention, the prefetch request 419 contains multiple portlet references in the portal
link structure. In some embodiments of the present invention, the prefetch request 419
contains parameters describing whether to fetch only consumable data corresponding
to the portlet view, meta data corresponding to the portlet view, or a combination of
both consumable data and meta data corresponding to the portlet view. Since a portlet
view is a portion of the viewable browser screen, all of this fetchable data is less than
an entire HTML page which consumes the entire viewable browser screen.

WO 2005/106710 PCT/EP2005/051624

[054]

[055]

[056]

[057]

[058]

14

{0054} In response to the prefetch request 419, the portal application server 420
accesses the corresponding portlets on the server side and depending on the prefeich
request retrieves the requested information from the portlets. Then, the portal ap-
plication server 420 downloads the requested information to the portlet assembler 445.
The portlet assembler 445 stores the downloaded information into memory in the form
of a cache 460. A cache may include any suitable computer readable medium including
hard disks, cache memory, CD-ROMs, optical storage devices, or magnetic storage
devices. When the portal user clicks on a link within a portlet view, for example, to
request addition information referenced within a portlet, the portlet assembler 445
refers to the portlet link entry associated with the additional information referenced and
checks whether the link to cached content field 362 contains valid data. If so, the
portlet assembler advantageously retrieves the requested information from the cache
460 and renders the additional information to the user in a portlet view without having
to indicate to the server that the user has navigated the website to those cached
locations. Otherwise, the portlet assembler requests the additional information from the
portal application server 420 utilizing the the server ID for content field 360.

{0055} Depending on the application code 465, the portlet assembler 445 would
typically analyze the contents of the newly rendered portlet information to determine if
there exists any references which require prefetching. If so, a prefetch request 419 s
made in the manner described above and the portal link structure is updated to reflect
the relationship between rendered and unrendered portlet views.

{0056} It should be recognized by one skilled in the art that a skeletal page having
minimal, if any, content could be initially downloaded before portlet views 405, 410,
and 415. In this aspect of the present invention, the framework 470 would download
the needed portlet information in background HTTP sessions, for example. The
framework 470 would then assemble the portal link structure based on the application
code 465 downloaded with the skeletal page. The application code 465 would use the
framework 470 to access the portal link structure meta data and use the meta data to
prefetch and populate a cache of portlet views.

{0057} When rendering portlet information to a user, the portlet assembler code
445 aggregates information stored on the client side with information requested from
the server side as discussed in further detail in United States Application Serial No.
10/464910 entitled “METHODS, SYSTEMS, AND COMPUTER PROGRAM
PRODUCTS FOR PORTLET AGGREGATION BY CLIENT APPLICATIONS ON
A CLIENT SIDE OF A CLIENT/SERVER ENVIRONMENT" filed on June 19, 2003.

{0058} Fig. 5 is a flowchart illustrating a process 500 according to the present
invention. As shown in Fig. 5, operations can begin at step 510 by providing ap-
plication code at the server side of a logically separated client side/server side

WO 2005/106710 PCT/EP2005/051624

[059]

[060]

[061]

[062]

[063]

15

computing environment. This application code is typically written in JavaScript and is
executed on the client side of the computing environment. The application code
contains a prefetch algorithm which controls the size and number of levels of a portal
link structure and the size and quality of data to prefetch from the server side. The ap-
plication code may specify a cache replacement policy such as to not replace portlet
link entries which are adjacent to a portlet link entry in the portal link structure, if the
portlet link entry is currently rendered as portlet view. The application code utilizes
framework code. The framework code provides utility functions to control breadth of
analysis, the extent to which a portal link structure is composed, and to prefetch and
cache portlet information.

{0059} At step 520, the process 500 analyzes references within portlet views to
complete the portal link structure. This analysis can be performed at either the server
side, at the client side, or on both sides of the computing environment. At step 525, the
application code and portal link structure are downloaded to the client side. At step
530, the client side invokes the application code to fetch portlet information relative to
references in the portlet link entries of the portal link structure before a user requests
such information. At step 540, the process 500 updates the portal link structure to
reflect references within the fetched portal information. If the server side performs the
analysis of step 520, the portal link structure would contain valid data on the first
iteration of this method.

{0060} In an alternative embodiment where the client performs step 520, the client
would receive an empty portal link structure and would populate the portal link entries
therein as in step 540 before step 530.

{0061} At step 550, the process 500 displays the fetched portal information upon
request of a user interfacing with the client side of the computing environment. After
step 550, the process 500 proceeds to step 530 for subsequent iterations of steps 530,
540, and 550. The process 500 ends when the user no longer wants to interface with
this portal.

{0062} Accordingly, in embodiments according to the present invention, a web ap-
plication’s response time as viewed by a user is improved by prefetching and caching
portlet information at the client side rather than on the server side of the logically
separated client side/server side computing environment.

{0063} Many alterations and modifications of the present invention may be made
by those having ordinary skill in the art, given the benefit of present disclosure,
without departing from the spirit and scope of the present invention. Therefore, it must
be understood that the illustrated embodiments have been set forth only for the
purposes of example, and that it should not be taken as limiting the present invention
as defined by the following claims. The following claims are, therefore, to be read to

WO 2005/106710 PCT/EP2005/051624

[064]

[065]

[066]

16

include not only the combination of elements which are literally set forth but all
equivalent elements for performing substantially the same function in substantially the
same way to obtain substantially the same result. The claims are thus to be understood
to include what is specifically illustrated and described above, what is conceptually
equivalent, and also what incorporates the inventive teachings of the present invention.

It will be understood by those skilled in the art that, although the present invention
has been described in relation to the preceding example embodiments, the invention is
not limited thereto and that there are many possible variations and modifications which
fall within the scope of the invention.

The scope of the present disclosure includes any novel feature or combination of
features disclosed herein. The applicant hereby gives notice that new claims may be
formulated to such features or combination of features during prosecution of this ap-
plication or of any such further applications derived therefrom. In particular, with
reference to the appended claims, features from dependent claims may be combined
with those of the independent claims and features from respective independent claims
may be combined in any appropriate manner and not merely in the specific com-
binations enumerated in the claims.

For the avoidance of doubt, the term “comprising”, as used herein throughout the

description and claims is not to be construed as meaning “consisting only of”.

WO 2005/106710 PCT/EP2005/051624

[001]

[002]

[003]

[004]

[005]

[006]

[007]

[008]

[009]

[010]

17

Claims

1. A method for performing caching operations in a client application in a
logically separated client/server computing environment, the method comprising:
prefetching, on a client of the logically separated client/server computing en-
vironment, portlet information from a server; storing the prefetched portlet in-
formation on a client computer; and displaying the prefetched portlet information
upon request of a user.

The method of claim 1 further comprising: determining which portlet in-
formation is prefetched.

The method of claim 2 wherein the determining step further comprises:
composing a portal link structure, the portal link structure comprising a hi-
erarchical arrangement of a plurality of portlet link entries, each portlet link entry
containing data describing a corresponding portlet view; tracking a current
portlet link entry as an entry whose corresponding portlet view is currently being
displayed; and determining a distance between the current portlet link entry and
another portlet link entry in the plurality of portlet link entries to determine
which corresponding portlet views should be prefetched.

The method of claim 1, 2 or 3 wherein the prefetching step further comprises:
requesting portlet information from a portal application server on the server.

The method of any preceding claim wherein the displaying step further
comprises: displaying the prefetched portlet information through a web browser.
The method of any preceding claim wherein the storing step further comprises:
storing the prefetched portlet information to a cache.

The method of any preceding claim further comprising: downloading framework
code to the client computer, the framework code providing utility functions for
performing, when executed on the client computer, the prefetching and storing
steps.

The method of any preceding claim wherein portlet information is less than an
HTML page.

The method of any preceding claim wherein the displaying step further
comprises: combining prefetched portlet information with portlet information
retrieved upon the user’s request.

A system for performing caching operations in a client application in a logically
separated client/server computing environment, the system comprising: means
for prefetching, on a client of the logically separated client/server computing en-
vironment, portlet information from a server; means for storing the prefetched
portlet information on a client computer; and means for displaying the prefetched

WO 2005/106710 PCT/EP2005/051624

[011]

[012]

[013]

[014]

[015]

[016]

[017]

[018]

[019]

18

portlet information upon request of the user.

The system of claim 10 further comprising: means for determining which portlet
information is prefetched.

The system of claim 11 wherein the determining means further comprises: means
for composing a portal link structure, the portal link structure comprising a hi-
erarchical arrangement of a plurality of portlet link entries, each portlet link entry
containing data describing a corresponding portlet view; means for tracking a
current portlet link entry as an entry whose corresponding portlet view is
currently being displayed; and means for determining a distance between the
current portlet link entry and another portlet link entry in the plurality of portlet
link entries to determine which corresponding portlet views should be
prefetched.

The system of claim 10, 11 or 12 wherein the prefetching means further
comprises: means for requesting portlet information from a portal application
server on the server.

The system of any of claims 10 to 13 wherein the displaying means further
comprises: means for displaying the prefetched portlet information through a
web browser.

The system of any of claims 10 to 14 wherein the storing means further
comprises: means for storing the prefetched portlet information to a cache.
The.system of any of claims 10 to 15 wherein the means for prefetching and the
means for storing are performed by framework code, the system further
comprising: means for downloading framework code to the client computer, the
framework code being executed on the client computer.

The system of any of claims 10 to 16 wherein portlet information is less than an
HTML page.

The system of any of claims 10 to 17 wherein the displaying means further
comprises: means for combining prefetched portlet information with portlet in-
formation retrieved upon the users request.

A computer program product for performing caching operations in a client ap-
plication in a logically separated client/server computing environment,
comprising: a computer readable medium having computer readable program
code embodied therein, the computer readable program product comprising: a
computer readable program code configured to prefetch, on a client of the
logically separated client/server computing environment, portlet information
from a server; a computer readable program code configured to store the
prefetched portlet information on a client computer; and a computer readable
program code configured to display the prefetched portlet information upon

WO 2005/106710 PCT/EP2005/051624

[020]

[021]

[022]

[023]

[024]

[025]

[026]

[027]

19

request of the user.

The computer program product of claim 19 further comprising: a computer
readable program code configured to determine which portlet information is
prefetched.

The computer program product of claim 20 wherein the computer readable
program code configured to determine which portlet information is prefetched
further comprises: a computer readable program code configured to compose a
portal link structure, the portal link structure comprising a hierarchical ar-
rangement of a plurality of portlet link entries, each portlet link entry containing
data describing a corresponding portlet view; a computer readable program code
configured to track a current portlet link entry as an entry whose corresponding
portlet view is currently being displayed; and a computer readable program code
configured to determine a distance between the current portlet link entry and
another portlet link entry in the plurality of portlet link entries to determine
which corresponding portlet views should be prefetched.

The computer program product of claim 19, 20 or 21 wherein the computer
readable program code configured to prefetch portlet information further
comprises: a computer readable program code configured to request portlet in-
formation from a portal application server on the server.

The computer program product of any of claims 19 to 22 wherein the computer
readable program code configured to display the prefetched portlet information
further comprises: displaying the prefetched portlet information through a web
browser.

The computer program product of any of claims 19 to 23 wherein the computer
readable program code configured to store the prefetched portiet information
further comprises: a computer readable program code configured to store the
prefetched portlet information to a cache.

The computer program product of any of claims 19 to 24 wherein the computer
readable program code configured to prefetch portlet information and the
computer readable program code configured to storing prefetched portlet in-
formation are combined into framework code, the computer program product
further comprising: a computer readable program code configured to download
framework code to the client computer.

The computer program product of any of claims 19 to 25 wherein portlet in-
formation is less than an HTML page.

The computer program product of any of claims 19 to 26 wherein the computer
readable program code configured to display prefetched portlet information
further comprises:

WO 2005/106710 PCT/EP2005/051624

20

[028] a computer readable program code configured to combine prefetched portlet in-

formation with portlet information retrieved upon the users request.

WO 2005/106710 PCT/EP2005/051624

1/5
Client \ Server
Side ! Side
110A i 100
1108 ; J/
Laptop Workstation §

computer x
Il

Cell phone

€

Hand held
computer

PCT/EP2005/051624

WO 2005/106710

2/5

F-(/4

siz ulxw
S3L0N0 159 g%\ T RETOUTOIER
95 WOl BJBQ "8S0[0 JoIBU |SOJB] JO 5B 818 SRy TINo7y SWRING «
N4 BN "SeNUW K210 . Mdlﬂd@dgg
SAYN pund fBriny sm 02 poAg(ep Msgc shap L uaysifoy 2&__%&” AV TS SR TN
) n
%6l 990t E.muw TSR 10 'sn yym JojsiBay 0y SABp / 9ABY NOA W PR
e\%w.Nn sLos mﬂ.ﬂwu JINI 9]) "1e)ugo Buiddoys
%00" 000 o IIm: NBIS 3344 &g Buiquieq epjoins
%Zve £Tos SKES KL B woyy uosied papunom
%6LTy LU0%e BERB 5o5dS *Sn yum soys|Bas | [©erenoEAe sojpaw fiesis
%lgee 6ver 9508l HYEREN 15N noA sBujlies esau} BABS 0} J8PIO U E
%965'te 660Lis BEBOSD yr | | -eBedno o sebueyd swos epew enry no, | | SMeN
oBueyn 9, ebupyy 1887 joquAs 13344 8 - sbujpes Inok eaug
SEGTORE O] fano sn BujAx 10§ nok yueiy) guﬂggﬁ
OANVINOD . . HdW 108[8 03§
JDVOLHON OHONPRRUSPA g ogy,q9
1S3N0ININY 581oU) §7'0€ Jejeworeg 100D
) BUPEIL B2 JH3H 1090 550880 ‘SZUQ
- |SBOIBAQ) 822l ﬁ
10 9y00s Ang ONIHLANY 4,18 Asuny
ONROped) | Bpoj,
/] Lt LG 1SOWTY Ang N AR DN
S] [} P e e
= Ofjood & JByRoMm

WHE PEE

/

g0z
¢ O

{
(e S00k7 / S00KTAR /

NIDOT| -sequay

* _mmmu _ _m_o_oo &55_ tafieg [ezis oq ofiusyg| [eop | [eroul 3 ppy| isexog _

<<
i1 iPa SERCTION SEUOSog SIS AR SO0 SVON wnuApt
© [Jopmeuyomsg

dBjy 9] SO 50047 v
dI NDIS | 's1esfy MEN 8

(124

WO 2005/106710 PCT/EP2005/051624
3/5
300 FIG. 3A
305 310 315
-ref7 -ref9 -ref 11
-ref8 -ref 10 -ref 12
ref 7 ref 8 ref 9 ref 10 ref 11 ref 12
ref13 ..
130 G.
Portal Link Structure 335
-P1 337
T FIG. 3C
-P8 35\‘: Portlet Link Entry 352
P2 - Cacheable 354
-P9 - Portal application server 356
- Other portlet references / 288
-P10 - 1D of DOM tree node
- Server 1D for content +360
-P3 - Link to cached content—___ | 40s
-P11 - Link to other portlet link entries |
| 364
P12

WO 2005/106710

4/5
oo FIG. 4
Client Side ; Server Side
Portal View :
1
401 ; Customization
\ Information
410 405 | 417 435
1]
i
415 ! Portat
419! Application
: Server
445~ i 420
470 Portlet E
Framework| Assembler]
Portlets
460 430
450
>
- Portlet Styte
Portlet
Views
- portal link
structure
465 455
Application
Code

PCT/EP2005/051624

WO 2005/106710

500

5/5

FIG. 5

Start

510

Provide application code at the server side of
a logically separated client side/server side
computing environment which govemns a
pre-fetch algorithm

520

Analyze references within portlet views
to complete a portal link structure

—525

Download the application code and portal link
structure to the client side of the computing
environment

) 530

Invoke the application code at the client side
of the logically separated environment to fetch
portiet information relative to references in the

portal link structure before a user requests
such information

540

Update the portal link structure to reflect
references within the fetched portlet
information

P 550

Upon request of a user, display the fetched
portlet information in a portlet view

PCT/EP2005/051624

Inter, al Application No

INTERNATIONAL SEARCH REPORT PCT/EP2005/051624

li. CLASSIFICATION OF SUBJECT MATTER

PC 7 GO6FL7/30

According to International Patent Classification {IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 067 565 A (HORVITZ ET AL) 1-28

23 May 2000 (2000-05-23)

abstract

column 1, line 7 - column 5, line 40
column 8, 1ine 31 - column 9, line 54
column 22, 1ine 34 - column 25, line 31
figure 6

X US 6 622 168 B1L (DATTA ANINDYA) 1-28
16 September 2003 (2003-09-16)
abstract

column 3, line 7 - colum 4, line 33
column 12, line 8 - column 18, line 16

———- .

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :
pecia gories ot el "T" later document published after the international filing date
or priority date and not in conflict with the application but

"A" document defining the general state of the art which is not cited to understand the principle or theory underlying the

considered to be of particular relevance

invention
"E" earlier document but published on or after the international "X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

which is cited to establish the publication date of another

citation or other special reason (as specified) Y" document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the

"Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but inthe art. .
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
12 July 2005 10. 10 2005
Name and mailing address of the I1SA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk T ! |

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, .
Fax: (+31-70) 340-3016 Dumitrescu, C

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Interm Application No

PCT/EPZ2005/051624

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

P.X

HESMER S: "Portlet development guide.
Working with the portlet API 1.1*"

-, 2 April 2002 (2002-04-02), XP002267927
page 6 - page 13

page 47 - page 48

LI FAN ET AL: "Web prefetching between
low-bandwidth clients and proxies:
potential and performance"

PERFORMANCE EVALUATION REVIEW, ASSOCIATION
FOR COMPUTING MACHINERY, NEW YORK, NY, US,
vol. 27, no. 1, 1 May 1999 (1999-05-01),
pages 178-187, XP002157516

ISSN: 0163-5999

the whole document

US 2005/060498 Al (CURTIS JOHN D)

17 March 2005 (2005-03-17)

abstract

paragraph [0026] - paragraph [0042]

1-28

1,2,4-6,
8-11,
13-15,

22-24,
26-28

1-28

Form PCT/ISA/210 {conlinuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

‘“Miformation on patent family members

Inter’.nal Application No

PCT/EP2005/051624
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6067565 A 23-05-2000 NONE
US 6622168 B1 16-09-2003 US 2004128618 Al 01-07-2004
US 2005060498 Al 17-03-2005 NONE

e o M e b b e s v e P et e e e e b e e e e R e e e e e N G R e M e e e A e et e e R M e e g e A

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

