Title: DRY CELL START-UP OF AN ELECTROLYTIC CELL FOR ALUMINUM PRODUCTION

Abstract: A method for starting up an electrolytic cell (20) for aluminum production having a cathode block (26) with an upper surface (32), the method comprising: disposing contact resistance material (46) over the upper surface (32) of the cathode block (26); lowering a plurality of anodes (28) to abut the contact resistance material (46); filling the electrolytic cell (20) and covering the anodes (28) with solid electrolyte material (72) comprising crushed electrolytic bath material, cryolite, or mixtures thereof; delivering electrical current to the anodes (28) to at least partially melt the solid electrolyte material (72) and raising the anodes (28) when a predetermined depth of molten electrolyte material has been reached.
Declarations under Rule 4.17:

- as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(i))
- as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(ii))

Published:

- with international search report (Art. 21(3))
DRY CELL START-UP OF AN ELECTROLYTIC CELL FOR ALUMINUM PRODUCTION

TECHNICAL FIELD

[0001] The technical field relates to the start-up of an electrolytic cell for producing aluminum, when starting up a new electrolytic cell which has never been in operation or after a shut-down and restart or a refurbishment of an electrolytic cell.

BACKGROUND

[0002] During operation of an electrolytic cell for aluminum production, the cathode block becomes damaged and will need to be replaced. This is a normal procedure which will typically take place after several years of operation. During rebuilding of an electrolytic cell which may typically take up to about one month and significant resources, the electrolytic cell is out of production. Regardless of the reason for the start-up of a cell, whether a rebuild or a new cell start-up, it is of interest to minimize the impact of any down time and to put a cell into operation as soon as possible.

[0003] Prior to putting an electrolytic cell into operation, the cathode block must be pre-heated, typically to a temperature of from about 800 to 900°C. This may be done in various ways, including for example, applying a granular conductive material like coke or graphite in rounds on the surface of the cathode beneath the anodes and applying power to the anodes to thereby transmit electrical current to the cathode block. The granular conductive material applied between the cathode and the anodes is often referred to as a contact resistance material. Coke or graphite may be selected to obtain the desired electrical resistance of a contact material so as to deliver more or less heat to the electrolytic cell.

[0004] In U.S. patent no. 7,485,215, a process is described in which the periphery of the electrolytic cell is filled with crushed electrolyte bath material and sodium carbonate. In addition, rock wool is applied against the upper surface and the outer surfaces of the anodes as well as over the central corridor of the electrolytic cell in order to minimize heat losses from the electrolytic cell during pre-heating of the
cathode block. The electrolytic cell is then energized so as to cause an electric
current to flow between the anodes and the cathode block.

[0005] Once the cathode is pre-heated, which may take place over a period of 36
to 48 hours, sufficient molten bath taken from other so-called donor cells which are
in operation, is added to the electrolytic cell for immersing the anodes and to raise
the anodes to operational levels without creating any open electrical circuits. Molten
bath obtained from donor cells is normally used despite the disturbances arising
from having to melt crushed bath from donor cells. However, this is not always an
option, particularly in "Greenfield" operations where donor cells are unavailable at
least until some electrolytic cells are put into operation. The molten electrolyte bath
becomes the conductor material between the anode and the cathode so the heat
up phase continues up to fourteen to thirty two hours and finally, after that heat-up
phase is complete, molten aluminum metal is added to cover the cathode surface
beneath the molten electrolyte bath. At this stage, a solid crust is formed on top of
the bath and the anodes may be covered with the usual additions of alumina, solid
granulated bath, and additives such as AIF3 and calcium to thermally isolate the
cell. Normal operation can begin with an optimal heat balance of the cell giving the
opportunity to reduce energy input.

[0006] In such a traditional cell start-up, five to twelve tons of molten electrolyte
bath from about ten donor cells are required, depending on the size of the
electrolytic cell. This is a very labor-intensive operation which not only is time
consuming but also monopolizes use of the crane to siphon and transport molten
electrolyte bath from donor cells to the start-up cell. This can be a problem in an
operating plant where the same crane is also needed to siphon metal and for
regular anode changing operations. In addition to the labor involved with liquid bath
transportation, more care is required to maintain the donor cells in operation which
is particularly challenging when starting up a "Greenfield" operation.

[0007] Previously, in some "Greenfield" operations, attempts were made to
start-up a new cell by applying a thin layer of cryolite to the upper surface of the
cathode block around the coke up to a height of about 5 to 10 centimeters (1.97 to
3.94 inches), in order to insulate the area surrounding the anodes and to direct the
heat generated from the coke towards the cathode block. These early attempts at
dry cell start-ups were fraught with problems and were subsequently abandoned by
the aluminum smelting community. As soon as any molten pools of cryolite would form, the molten material would settle in low areas of the cathode and subsequently freeze if the underlying cathode surface was not sufficiently preheated. Severe start-up problems would occur if the molten cryolite had settled beneath an anode, thereby electrically insulating the cathode and causing the anode to short-circuit. The resulting current distribution in the cell became so electrically unstable that aluminum refineries resorted to such dry start-up procedures only when absolutely necessary and only with the support of an expert team of operators and management personnel.

SUMMARY

[0008] According to a general aspect, there is provided a method for starting up an electrolytic cell for aluminum production, the electrolytic cell having a cathode block with an upper surface, the method comprising: disposing contact resistance material on said upper surface of the cathode block; lowering a plurality of anodes to abut the contact resistance material; filling the electrolytic cell to a height covering the anodes with solid electrolyte material, the solid electrolyte material comprising crushed electrolytic bath material, cryolite, or mixtures thereof; delivering electrical current to the anodes to at least partially melt the solid electrolyte material; and raising the anodes when a predetermined depth of molten electrolyte material has been reached.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Fig. 1 is a schematic cross-sectional view of an electrolytic cell after contact resistance material has been deposited on a cathode surface and the anodes have been lowered so that the contact resistance material lies therebetween;

[0010] Fig. 2 is a flowchart showing sequential steps for starting-up the dry electrolytic cell;

[0011] Fig. 3 is a schematic cross-sectional view of the electrolytic cell after a first layer of solid electrolyte material has been deposited over the cathode block around the anodes;

[0012] Fig. 4 is a plan view of the electrolytic cell of Fig. 3;
Fig. 5 is a schematic cross-sectional view of the electrolytic cell filled with solid electrolyte material covering the entire height of the anodes; and

Fig. 6 is a graph showing a voltage drop which occurs during a dry cell start-up after electrolyte material begins to melt.

It will be noted that throughout the appended drawings, like features are identified by like reference numerals.

DETAILED DESCRIPTION

Referring now to the drawings and, more particularly, referring to Fig. 1, there is shown an electrolytic cell 20 for aluminum production. The cell 20 has an outer shell 22 containing an internal lining 24 and a cathode block 26 located in the bottom of the cell 20. Anodes 28 are shown having an upper surface 30 and an opposed lower surface 44 (or contact surface).

Generally, the outer shell 22 is made of metal such as steel, the internal lining 24 generally includes blocks of refractory material, refractory lining paste and/or solidified bath, the cathode block 26 is a carbothermic cathode block, and the anodes 28 are made of carbonaceous material.

The anodes 28 are connected to an anode beam (not shown) through multipodes terminating in a plurality of anode studs 34, anode stems 36, and an anode frame (not shown). The anode frame is adapted to lower and raise the anodes 28 within the electrolytic cell 20.

Either for pre-heating the electrolytic cell 20 or during electrolysis, an electrical current flows through the aluminum electrolytic cell 20. The electrical current enters the cell 20 through the anodes 28 via the anode beam, the anode frame, the anode stems 36, and the attachment means including the anode studs 34. The electrical current then enters the cathode block 26 and is carried out of the cell 20 by current collector bars 40. The current collector bars 40 are typically made of steel and electrical conductors 42 are attached thereto to route the electrolysis current.

To start-up an electrolytic cell, the electrolytic cell 20 must be pre-heated. For pre-heating the electrolytic cell 20, a discontinuous layer of a granular contact resistance material 46 is deposited on an upper surface 32 of the cathode
The granular contact resistance material 4, 6 is deposited in contact surface areas at predetermined positions on said upper surface 32 of the cathode block 26. The contact resistance material 46 is placed in a discontinuous way on the cathode surface. These contact surface areas of contact resistance material 46 can be of different sizes and shapes. Furthermore, the number of contact surface areas can vary. The anodes 28 are then lowered onto the contact resistance material 46 so as to make intimate contact with the granular contact resistance material.

By way of example, graphite and/or coke can be used as contact resistance material 46 interposed between the lower surface 44 of the anodes 28 and the upper surface 32 of the cathode block 26. In an embodiment, the contact resistance material contains up to 100% coke, the remainder being essentially graphite. In another embodiment, the contact resistance material contains up to 70% coke and the remainder being essentially graphite. In another embodiment, the contact resistance material contains up to 50% coke and the remainder being essentially graphite. In a further embodiment, the contact resistance material contains up to 30% coke, the remainder being essentially graphite. The following table shows examples of contact resistance materials which may be used with the present method:

Table 1

<table>
<thead>
<tr>
<th>Pot #</th>
<th>Amperage</th>
<th>Start-up Voltage</th>
<th>Contact resistance material composition</th>
<th>Contact resistance material circumference</th>
<th>Kilowatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry start up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4058</td>
<td>358</td>
<td>5.5</td>
<td>Coke</td>
<td>160 mm (6.3 inches)</td>
<td>1969</td>
</tr>
<tr>
<td>2038</td>
<td>362</td>
<td>5.6</td>
<td>Coke</td>
<td>160 mm (6.3 inches)</td>
<td>2027</td>
</tr>
<tr>
<td>2136</td>
<td>358</td>
<td>5.2</td>
<td>Coke</td>
<td>160 mm (6.3 inches)</td>
<td>1862</td>
</tr>
<tr>
<td>Code</td>
<td>#</td>
<td>%</td>
<td>Material</td>
<td>Diameter (mm)</td>
<td>Diameter (inches)</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>----------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3015</td>
<td>386</td>
<td>5.73</td>
<td>Coke</td>
<td>200 mm</td>
<td>7.87 inches</td>
</tr>
<tr>
<td>1036</td>
<td>372</td>
<td>5.12</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>1033</td>
<td>370</td>
<td>5.7</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>1034</td>
<td>370</td>
<td>5.74</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>1017</td>
<td>370</td>
<td>5.54</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>1035</td>
<td>369</td>
<td>5.09</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>3011</td>
<td>387</td>
<td>5.27</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>2142</td>
<td>369</td>
<td>5.9</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>1099</td>
<td>369</td>
<td>5.08</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>4069</td>
<td>378</td>
<td>5.5</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>4002</td>
<td>378</td>
<td>4.72</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>3048</td>
<td>380</td>
<td>5.2</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
<tr>
<td>4036</td>
<td>380</td>
<td>5.2</td>
<td>Coke</td>
<td>160 mm</td>
<td>6.3 inches</td>
</tr>
</tbody>
</table>
When the electrolytic cell 20 is energized, electric current flows between the anodes 28 and the cathode block 26 through the contact resistance material 46.

Referring now to Fig. 2, there is shown a flowchart showing sequential steps for starting-up a dry electrolysis cell. The first step 50 includes the application of the contact resistance material 46 on the upper surface 32 of the cathode block 26 and lowering the anodes 28 as described above.

Then, in step 52, solid electrolyte material, which can be cryolite (Na3AlF6), crushed solid electrolyte bath material previously recovered from an operating electrolytic cell, or a combination thereof, including any desired additives such as AlF3, is applied around the anodes 28 and over the upper surface 32 of the cathode block 26. As shown in Fig. 3, an initial or first layer 70 of solid electrolyte
material 72 (Fig. 5) surrounds the anodes 28 but is not provided under the contact surface 44 of the anodes 28. The solid electrolyte material surrounds the periphery of the anodes 28 and covers the cathode upper surface 32, including the lateral corridors 37 (Fig. 4) defined between adjacent rows of anodes 28 and a central corridor 38 (Fig. 4). The distribution of solid electrolyte material on the cathode surface is best shown in the plan view of Fig. 4.

[0025] Either cryolite, crushed electrolyte bath material, or a combination thereof, referred in this application as solid electrolyte material, may be used to fill the entire depth of the electrolytic cell 20 and to cover the upper surface 30 of the anodes 28 as shown in Fig. 5. The solid electrolyte material 72 is characterized by, amongst others, a particle size distribution, a liquidus, a solidus and a melting point or melting range, i.e. the temperature difference between the solidus and liquidus temperatures. The solid electrolyte material 72 is selected with a combination of particle size distribution, solidus, liquidus and melting range which minimizes resolidification of melted electrolyte material during the start-up procedure and whose chemical composition is selected to minimize the melting temperature range and the solid fraction remaining once melting has begun. The melting temperature range of the solid electrolyte material is preferably from about 825 to about 950°C. Resolidification can occur when the melted material rises in the electrolytic cell 20 through crushed electrolyte bath material by capillarity and solidifies due to lower temperatures in upper zones of the electrolytic cell 20. If the particle size distribution is relatively coarse, heat losses in the electrolytic cell 20 during the start-up procedure are increased. On the other hand, if the particle size distribution is relatively fine, melted material can rise in the electrolytic cell 20 through the crushed material by capillarity. The solid electrolyte material preferably has the following particle size characteristics: a maximum particle size of about 15 mm (0.6 inches), less than about 10 wt% of the solid electrolyte material has a particle size of about 6 mm (0.24 inches) or more and less than about 30 wt% of the solid electrolyte material has a particle size of about 45 microns (0.002 inches) or less. Crushed material having higher liquidus and solidus requires more energy to melt while crushed material having a larger melting range can more easily resolidify. As mentioned above, the solid electrolyte material may contain cryolite with crushed electrolyte bath material. Preferably, the solid electrolyte material may contain a
total Al₂O₃ content of about 12 wt% or less and an alpha Al₂O₃ content of about 8 wt% or less. Having too much Al₂O₃ in the solid electrolyte material could cause the Al₂O₃ to settle at the bottom of the cell thereby insulating the cathode and overall decreasing the efficiency of the start-up method. The following table shows preferred ranges for the content of the solid electrolyte material as well as an example of a specific composition (column Example %):

Table 2:

<table>
<thead>
<tr>
<th>Solid electrolyte material content</th>
<th>Example</th>
<th>Preferred ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₃AlF₆</td>
<td>77.3</td>
<td>> 74.0 % min.</td>
</tr>
<tr>
<td>Excess AlF₃</td>
<td>11.3</td>
<td>< 13.5 % max.</td>
</tr>
<tr>
<td>CaF₂</td>
<td>5.9</td>
<td>< 6.5 % max.</td>
</tr>
<tr>
<td>Al₂O₃ alpha</td>
<td>2.5</td>
<td>< 6.0 % max.</td>
</tr>
<tr>
<td>Al₂O₃ Total</td>
<td>5.0</td>
<td>< 10 %</td>
</tr>
<tr>
<td>C</td>
<td>0.20</td>
<td>< 0.30 % max.</td>
</tr>
<tr>
<td>MgF₂</td>
<td>0.28</td>
<td>< 0.50 % max.</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.05</td>
<td>< 0.17 % max.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.06</td>
<td>< 0.17 % max.</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.01</td>
<td>< 0.04 % max.</td>
</tr>
<tr>
<td>LOI at 100 C</td>
<td>0.1</td>
<td>< 0.6 % max.</td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>0.1</td>
<td>< 0.2 %</td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.01</td>
<td>< 0.02 % max.</td>
</tr>
<tr>
<td>RATIO</td>
<td>1.09</td>
<td>1.04 to 1.14</td>
</tr>
</tbody>
</table>

[0026] In table 2, LOI refers to Loss of Ignition which is an indication of the moisture content. Ratio refers to the cryolithic ratio.
[0027] To complete the start-up procedure, solid electrolyte material 72 may be added to extend generally above the upper surface 30 of the anodes 28, opposed to the contact surface 44 to lower heat losses and prevent solidification of any liquefied electrolyte material, as indicated in step 55 and shown in Fig. 5. In other words, the electrolytic cell 20 is filled with solid electrolyte material 72 and the upper surface 30 of the anode 28 is covered by the solid electrolyte material 72. Usually, a crust would have formed on top of first layer 70. As such, solid electrolyte material 72 would have to be added by breaking the crust on top of first layer 70. In an embodiment, the solid electrolyte material 72 at least partially covers the multipodes or studs 34, i.e. the attachment elements that are anchored to the anode blocks 28 and that extend between the anode stems 36 and the anode blocks 28. In an embodiment, only the upper surfaces of the studs 34 are not covered by the solid electrolyte material 72. Covering the upper surface 30 of the anodes 28 and at least partially the studs 34 lowers the heat losses during the start-up procedure and minimizes resolidification of the liquefied electrolyte material. Thus, the depth of solid electrolyte material extending above the upper surface 30 of the anode 28 is variable.

[0028] In an embodiment, the solid electrolyte material 72 can be added to the electrolytic cell 20 in more than one step as indicated by step 55. Again, a crust would have usually formed on top of the solid electrolyte material 72. Additional solid electrolyte material is added by breaking this crust and pushing the additional solid electrolyte material into the melted electrolyte. In an embodiment, this operation is carried out periodically every hour until the entire height of the anodes is covered with electrolyte.

[0029] In step 54, the electrolytic cell 20 is energized and electrical current is delivered to the anodes 28. The cathode block 26 is heated by electric resistance heating by electrical current delivered to the anodes 28.

[0030] The solid electrolyte material 72 close to or adjacent to the cathode block 26 melts as energy is provided to the electrolytic cell 20. The depth of melted electrolyte material close to the cathode block 26 is monitored as shown in step 56. When a predetermined depth of electrolyte is melted, the anodes 28 may be raised
as shown in step 58. In an embodiment, for an electrolytic cell having typical
dimensions, the anodes 28 are raised when the melted electrolyte material reaches
a depth of at least about 30 centimeters (11.81 inches) above the cathode block 26.
The depth of the melted material can be measured every two to three hours during
the start-up procedure. Then, the anodes 28 are raised gradually until the contact
surfaces 44 of the anodes 28 reach a predetermined distance above the upper
surface 32 of the cathode block 26. Subsequently, as shown in step 60, alumina is
added to control anode effects. The alumina may be added between 2 to 5 hours
after raising the anodes.

[0031] In step 62, molten aluminum metal is added to stabilize the cell and avoid
over-heating. In step 64, the distance separating the anodes 28 from the
aluminum metal surface is adjusted to stabilize the electrolytic cell 20 and, in step
66, the electrolytic cell 20 is operated in a normal manner to produce aluminum by
electrolysis.

[0032] Referring again to Figs. 3 and 4, it will be shown that alternatives are
foreseen for carrying out steps 52 and 54. For instance and without being limitative,
the solid electrolyte material 72 can be added before, during, or after
preheating of the cathode block 26.

[0033] In the embodiment described above, the solid electrolyte material 72 is
added to the electrolytic cell 20 and covers the entire height of the anodes 28
before the electrolytic cell 20 is energized. Thus, before the electrolytic cell 20 is
energized, solid electrolyte material 72 is added around the anodes 28 until it at
least covers the upper surface 30 of the anodes 28 as shown in Fig. 5.

[0034] In an alternative embodiment, the electrolytic cell 20 is energized after the
contact resistance material 46 is disposed on the cathode block 26. Before the
cathode block 26 overheats, the electrolytic cell 20 is at least partially filled with the
solid electrolyte material 72 as will be described in more detail below. The
electrolytic cell 20 can be filled in a single step while in an alternative embodiment,
one or more successive layers of solid electrolyte material 72 can be loaded in the
electrolytic cell 20 until the upper surfaces 30 of the anodes 28 are covered with
solid electrolyte material as shown in Fig. 5.

[0035] In still another embodiment, the electrolytic cell 20 is energized after the
contact resistance material 46 is disposed on the cathode block 26 and a first layer 70 of solid electrolyte material 72 has been loaded into the cell which does not reach the upper surfaces 30 of the anodes 28, as shown in Fig. 3. Additional layer(s) of solid electrolyte material are added after the electrolytic cell 20 is energized until the upper surfaces 30 of the anodes 28 are covered with solid electrolyte material 72.

[0036] As will be described in more detail below with reference to Fig. 6, the upper surfaces 30 of the anodes 28 should be covered with solid electrolyte material before the material begins to melt (typically between 18 to 20 hours after initiating the cathode heating process) and the voltage of the electrolytic cell 20 begins to drop. This is done as a preventive action to avoid partial re-solidification of molten bath or cryolite and to ensure that enough heat will be kept in the cell to sustain melting of electrolyte material. When the electrolyte material begins to melt, the voltage in the cell drops because the molten electrolyte material has a greater conductivity than the contact resistance material 46 and the total energy input to the cell is reduced. Such a reduced voltage may potentially be insufficient to maintain the heat required to maintain electrolyte material in a molten state.

[0037] Now referring to Fig. 3, there is shown one embodiment in which a first layer 70 of solid electrolyte material 72 is loaded in the electrolytic cell 20. The first layer 70 of solid electrolyte material surrounds the anode blocks 28 and covers the entire surface of the cathode block 26 with the exception of the cathode surface 32 located below the anode blocks 28 and which surrounds the contact resistance material 46. The first layer 70 can be disposed after the electrolytic cell 20 has been energized or before energizing the electrolytic cell 20.

[0038] In the embodiment shown, the first layer 70 extends slightly above the contact surface 44 of the anode blocks 28. However, one skilled in the art will appreciate that the height of the first layer can vary from the embodiment shown in Fig. 3. In an embodiment, the first layer 70 has a thickness of about 5 cm (1.97 inches) and is added twelve hours after the beginning of the pre-heating procedure.

[0039] Following addition of the first layer 70 of solid electrolyte material, the electrolytic cell 20 is energized (or further energized) and, before the cell voltage
drops as shown in Fig. 6, an additional layer of solid electrolyte material 72 is added to the electrolytic cell 20. The additional layer of solid electrolyte material can extend above the upper surfaces 30 of the anodes 28, as shown in Fig. 5, or anywhere above the first layer 70. In other words, the height of the additional layer(s) is variable.

[0040] If the additional layer of solid electrolyte material does not extend above the upper surfaces 30 of the anode blocks 28, additional layer(s) of solid electrolyte material is/are added until the solid electrolyte material extends above the upper surfaces 30 of the anodes 28.

[0041] As shown in Fig. 5, the solid electrolyte material 72 at least partially covers the anode studs 34 to reduce heat loss during the start-up procedure. One skilled in the art will appreciate that the final height of the solid electrolyte material 72 is variable. Heat losses are reduced by increasing the total depth of the solid electrolyte material.

[0042] The thickness of the layer of solid electrolyte material to be added into the electrolytic cell is selected to maintain heat losses to an acceptable level and, thus, avoid re-solidification. According to some applications, it may not be necessary to fully embed the anodes 28 into the solid electrolyte material. For instance, the solid electrolyte material could extend to a height which is slightly less than that of the top surface 30 of the anodes 28 and still provide sufficient insulation.

[0043] As mentioned above, one skilled in the art will appreciate that the electrolytic cell 20 can be filled with solid electrolyte material, wherein the solid electrolyte material covers the entire height of the anodes 28 and extends above their upper surface 30, before energizing the electrolytic cell 20, as shown in Fig. 5.

[0044] If crushed solid electrolyte bath material is used instead of cryolite for the dry start up procedure, sodium carbonate can be added to the cell. The composition of the solid electrolyte material was discussed above.

[0045] With the dry cell start-up method described above, using crushed electrolytic bath or cryolite to immerse the anodes 28, the cathode block 26 is pre-heated for a period of about eighteen hours after which there is a gradual melting of the
electrolytic bath or the cryolite that takes place over a period of about thirty hours. When sufficient electrolytic bath or cryolite is in the liquid state and the molten layer has reached a depth of about 30 to 35 centimeters (11.81 to 13.78 inches), the anodes 28 may be raised gradually. When the anodes are initially lifted away from the contact resistance material 46, by a distance of about 5 cm, a molten pool enters the space separating the anodes from the cathode, thereby increasing the voltage drop between the anodes and the cathode because of increased resistance resulting from a combination of the molten electrolyte resistivity and the distance separating the anodes from the cathode. Since the anodes occupy a large volume, the depth of molten electrolyte material in the cell may decrease from about 30 cm (11.81 inches) to about 15 cm (5.91 inches) above the cathode surface. Accordingly, sufficient molten electrolyte material must be present to allow the anodes to be raised in order to maintain a minimum voltage required to continue to heat the cell and to melt the insulating cover of solid electrolyte material. If the anodes cannot be raised high enough in the molten pool to maintain voltage, there is a risk that the cell might cool down and some of the previously molten electrolyte material could freeze. Once the cathode temperature gradient is reached, about 24 to 32 hours later, molten metal is added to the electrolytic cell 20 to stabilize the cell and avoid over-heating. The anodes are then raised by a distance corresponding to about the additional height of the molten metal in the cell and regular operation may begin with alumina being fed to the operating cell to produce metal by electrolysis.

[0046] Advantageously, the above-described method allows one to more than double the number of electrolytic cells 20 that may be started up for a given period. These advantages result from reducing the work load for the crane which is normally the bottle neck for speeding up a smelter start-up process. The above method contributes to improve the safety and reliability of the start-up operation, while minimizing the start-up time of a cell.

[0047] Once the electrolytic bath or the cryolite begins to melt, the electrolytic bath or the cryolite melts in a more controlled manner so that the anodes 28 may be raised with minimal disruption to the current distribution in the electrolytic cell 20.

[0048] For the dry start-up procedure, one skilled in the art will appreciate that the anode stems 36 can be connected to the anode frame with flexible or roller
assemblies as is known in the art in order to adjust the distance separating a single or several anodes 28 from the cathode block 26 according to the amperage being drawn by the selected anode, particularly where there are local hot spots.

[0049] Several alternative embodiments and examples have been described and illustrated herein. The embodiments of the invention described above are intended to be exemplary only. A person of ordinary skill in the art would appreciate the features of the individual embodiments, and the possible combinations and variations of the components. A person of ordinary skill in the art would further appreciate that any of the embodiments could be provided in any combination with the other embodiments disclosed herein. It is understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein. Accordingly, while the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
CLAIMS:

1. A method for starting up an electrolytic cell for aluminum production, the electrolytic cell having a cathode block with an upper surface, the method comprising:
 - disposing contact resistance material on said upper surface of the cathode block;
 - lowering a plurality of anodes to abut the contact resistance material;
 - filling the electrolytic cell to a height covering the anodes with solid electrolyte material, the solid electrolyte material comprising crushed electrolytic bath material, cryolite, or mixtures thereof;
 - delivering electrical current to the anodes to at least partially melt the solid electrolyte material; and
 - raising the anodes away from the cathode block when a predetermined depth of molten electrolyte material has been reached.

2. A method as claimed in claim 1, wherein the contact resistance material is discontinuously disposed at predetermined positions on said upper surface of the cathode block.

3. A method as claimed in claim 1, wherein the anodes are raised gradually until the anodes reach a pre-determined height above the upper surface of the cathode block.

4. A method as claimed in claim 1, wherein the electrolytic cell is filled with the solid electrolyte material and the anodes are covered by the solid electrolyte material before electrical current is delivered to the cell.

5. A method as claimed in claim 1, wherein the electrolytic cell is filled with the solid electrolyte material and the anodes are covered by the solid electrolyte material after delivering electrical current to the anodes.

6. A method as claimed in claim 1, wherein the electrolytic cell is filled in at least two filling steps and the electrical current is continuously delivered to
the anodes following a first energization of the electrolytic cell.

7. A method as claimed in any one of claims 1-6, wherein the contact resistance material comprises crushed coke material, crushed graphite material or mixtures thereof.

8. A method as claimed in any one of claims 1-7, wherein the solid electrolyte material contains a total \(\text{Al}_2\text{O}_3 \) content of about 12% or less and an alpha \(\text{Al}_2\text{O}_3 \) content of about 8% or less.

9. A method as claimed in any one of claims 1-8, wherein the solid electrolyte material has a maximum particle size of about 15 mm (5.6 inches), less than about 10% of the solid electrolyte material has a particle size of about 6 mm (0.24 inches) or more and less than about 30% of the solid electrolyte material has a particle size of about 45 microns (0.002 inches) or less.

10. A method as claimed in any one of claims 1-9, wherein the predetermined depth of molten electrolyte material reached before raising the anodes is at least thirty centimeters (11.81 inches).

11. A method as claimed in any one of claims 1-10, further comprising:

 adding alumina to the electrolytic cell;

 adding molten metal proximate to the upper surface of the cathode block following raising the anodes; and

 adjusting a distance separating a lower surface of the anodes from an upper surface of a layer of the molten metal to stabilize the electrolytic cell.

12. A method as claimed in claim 1, wherein electrical current is delivered to the electrolytic cell before the electrolytic cell is at least partially filled with the solid electrolyte material.

13. A method as claimed in claim 1, wherein filling the electrolytic cell comprises entirely burying the anodes within the solid electrolyte material, the solid electrolyte material fully covering an upper surface of the anodes when lowered in abutment relationship with the contact resistance material disposed
on the top surface of the cathode block.

14. A method as claimed in claim 1, wherein anode studs project from respective upper surfaces of the anodes, and wherein filling the electrolytic cell comprises adding solid electrolyte material to extend above the upper surfaces of anodes such that the anode studs are at least partly buried in the solid electrolyte material when the anodes are lowered in intimate contact with the contact resistance material.

15. A method as defined in claim 1, further comprising monitoring the voltage of the electrolytic cell, and wherein filling the electrolytic cell comprises covering an upper surface of each of the anodes with the solid electrolytic material before the voltage drops below a predetermined value.
Applying contact resistance material in predetermined positions on the cathode surface and lowering the anodes

Adding solid electrolyte material to the electrolytic cell

Pre-heating the cathode block by electric resistance heating by delivering electrical current to the anodes

Is an entire height of the anodes covered with solid electrolyte material?

Yes

Predetermined depth of melted electrolyte material above the cathode surface reached?

Yes

Raising the anodes

Adding alumina

Molten metal is added

Adjusting the anode height above the metal surface

Producing aluminum by electrolysis

No

No
INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2012/000474

A. CLASSIFICATION OF SUBJECT MATTER

| IPC: | C25C3/06 (2006.01) | C25C7/06 (2006.01) |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- IPC: C25C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

- Canadian patent database, Epodoc, Scopus, Google.
- KW: start-up, greenfield, aluminium, electrolytic cell, melting.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 7485215 B2 (Jouaffre et al.) 3 February, 2009 (03-02-2009) Columns 2-3 and Figure 1</td>
<td>1-15</td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C.

[] See patent family annex.

- "*" Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

- Date of the actual completion of the international search: 03 August 2012 (03-08-2012)
- Date of mailing of the international search report: 17 August 2012 (17-08-2012)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, C14 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001-819-953-2476

Authorized officer
Randall Menard (819) 997-2760

Form PCT/ISA/210 (second sheet) (July 2009) Page 2 of 3
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Publication Date</th>
<th>Patent Family Member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA2496683C 15 November 2011 (15-11-2011)</td>
<td>CA2496683C 15 November 2011 (15-11-2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG23844A 17 October 2007 (17-10-2007)</td>
<td>EG23844A 17 October 2007 (17-10-2007)</td>
</tr>
</tbody>
</table>

