wo 2013/135145 A1 |[IN I 0F 000000 Y O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/135145 Al

19 September 2013 (19.09.2013) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/445 (2006.01) kind of national protection available). AE, AG, AL, AM,
. L . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/CN2013/072145 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
4 March 2013 (04.03.2013) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
201210067122.3 14 March 2012 (14.03.2012) CN
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant: TENCENT TECHNOLOGY (SHENZHEN) kind of regional protection available): ARIPO (BW, GH,
COMPANY LIMITED [CN/CNJ; Room 403, East Block GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
2, SEG Park, Zhenxing Road, Futian District, Shenzhen, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Guangdong 518044 (CN). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Tnventor: BIAN, Chao; Room 403, Fast Block 2, SEG EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Park, Zhenxing Road, Futian District, Shenzhen, Guang- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
doné 518044 (CN) ? ? ? TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
: ML, MR, NE, SN, TD, TG).
(74) Agent: BELJING SAN GAO YONG XIN INTELLEC- .
Published:

TUAL PROPERTY AGENCY CO., LTD.; A-1-102, He
Jing Yuan, Ji Men Li, Xueyuan Road, Haidian District,
Beijing, 100088 (CN).

with international search report (Art. 21(3))

(54) Title: APPLICATION PROGRAM STARTUP METHOD AND APPARATUS

Load, upon receiving an instruction for starting up an application program, prefetch

101

data corresponding to the application program, where the prefetch data includes a file - -7
block corresponding to a page lault occurred during a history startup process of the
application program

N

Load code of the application program to start up the application program

FIG. 1

102

(57) Abstract: The present invention, pertaining to the field of computer technologies, discloses an application startup method and
apparatus. The method includes: loading, upon receiving an instruction for starting up an application program, prefetch data corres -
ponding to the application program, where the prefetch data includes at least one file block corresponding to at least one page fault
occurred during a history startup process of the application program; and loading code of the application program to start up the ap -
plication program. The apparatus includes: a prefetch data loading module and a code loading module. According to the present in-
vention, the number of page faults occurred during the startup process of the application program because a process cannot be
mapped to a valid physical page when accessing a virtual page is greatly reduced. Further, since before the code of the application
program is loaded, instead of all file blocks during the initial startup of the application program, only the file block(s) corresponding
to page fault(s) is loaded, frequent memory page flipping and file flipping during the loading process of the application program are
mitigated, and startup speed and startup efficiency of the application program are improved.

10

15

20

25

WO 2013/135145 PCT/CN2013/072145

APPLICATION PROGRAM STARTUP METHOD AND APPARATUS

FIELD OF THE INVENTION
The present invention relates to the field of computer technologies, and in particular, to an

application program startup method and apparatus.

BACKGROUND OF THE INVENTION

With the rapid development of computer technologies, users may install various types of
application programs. An application program needs to be started up to use the functions thereof.

The startup process of an application program can be implemented by loading code of the
application program by a process. During the loading of the code, the process needs to access a
virtual page. When the accessed virtual page is mapped to a valid physical page in the physical
memory, the process loads the corresponding file blocks of the physical page; whereas when the
accessed virtual page is not mapped to a valid physical page in the physical memory, but is mapped
to a physical page in another state in the physical memory, a soft fault occurs, and the process needs
to load the corresponding file blocks from the physical memory. Further, when the accessed virtual
page is neither mapped to a valid physical page in the physical memory nor mapped to a physical
page in another state in the physical memory, a hard fault occurs, and the process needs to load the
corresponding file blocks from a disk file.

When a soft fault or a hard fault occurs, the process needs to load file blocks from different
positions in the physical memory and disk file. Therefore, during the loading of the file blocks by
the process, read/write positions of the magnetic head during disk read/write (I/O) are
noncontiguous, causing flipping of the magnetic head on the disk. Consequently, the speed of each
loading is greatly slowed and thus startup speed of the application program is slowed. Further, disk
read/write in the case of a hard fault is conducted on a on-demand basis, and the data corresponding
to a hard fault is only read in each disk read/write, with a smaller disk read-write size (16 KB of a
data page and 32 KB of a code page), which is far smaller than the disk read/write capability of

conducting one disk read/write. Accordingly, the disk read/write capability is not brought into full

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

play. Consequently, disk read/write efficiency in the case of a hard fault is low, and thus startup

efficiency of the application program is low.

SUMMARY OF THE INVENTION

To improve the startup speed of an application program, embodiments of the present invention
provide an application program startup method and apparatus. The technical solutions are as
follows:

An embodiment of the present invention provides an application program startup method,
where the method includes:

loading, upon receiving an instruction for starting up an application program, prefetch data
corresponding to the application program, where the prefetch data includes at least one file block
corresponding to at least one page fault occurred during a history startup process of the application
program; and

loading code of the application program to start up the application program.

Prior to loading, upon receiving an instruction for starting up an application program, prefetch
data corresponding to the application program, the method further includes:

analyzing the history startup process of the application program to obtain the prefetch data
corresponding to the application program during the history startup process.

The analyzing the history startup process of the application program to obtain the prefetch data
corresponding to the application program during the history startup process specifically includes:

obtaining at least one mapped file list loaded and the virtual address of the at least one page
fault occurred during the history startup process of the application program;

calculating the file offset corresponding to each virtual address according to the at least one
mapped file list and the at least one virtual address; and

combining, according to the file offset corresponding to each virtual address, file blocks
corresponding to the file offset corresponding to the at least one virtual address to obtain the
prefetch data corresponding to the application program.

The obtaining at least one mapped file list loaded and the virtual address of the at least one
page fault occurred during the history startup process of the application program specifically

includes:

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

obtaining at least one log file of the application program;

determining a time segment in the at least one log file from a startup time of a user interface
process to a foreground window display time as a predetermined startup time segment;

obtaining the mapped file list loaded by a process during the predetermined startup time
segment in the at least one log file; and

obtaining the virtual address of the at least one page fault occurred during the predetermined
startup time segment.

The combining, according to the file offset corresponding to each virtual address, file blocks
corresponding to the file offset corresponding to the at least one virtual address to obtain the
prefetch data corresponding to the application program specifically includes:

combining, according to the file offset corresponding to each virtual address, file blocks with
spacing between the file offsets corresponding to the at least one virtual address being smaller than
a predetermined number of bits to obtain the prefetch data corresponding to the application
program.

An embodiment of the present invention provides an application program startup apparatus,
where the apparatus includes:

a prefetch data loading module, configured to load, upon receiving an instruction for starting
up an application program, prefetch data corresponding to the application program, where the
prefetch data includes at least one file block corresponding to at least one page fault occurred
during a history startup process of the application program; and

a code loading module, configured to load code of the application program to start up the
application program.

The apparatus further includes:

a prefetch data obtaining module, configured to analyze the history startup process of the
application program to obtain the prefetch data corresponding to the application program during the
history startup process.

The prefetch data obtaining module includes:

an obtaining unit, configured to obtain at least mapped file list loaded and the virtual address
of the at least one page fault occurred during the history startup process of the application program;

an offset calculating unit, configured to calculate the file offset corresponding to each virtual

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

address according to the at least one mapped file list and the at least one virtual address; and

a prefetch data obtaining unit, configured to combine, according to the file offset
corresponding to each virtual address, file blocks corresponding to the file offset corresponding to
the at least one virtual address to obtain the prefetch data corresponding to the application program.

The obtaining unit includes:

a log obtaining subunit, configured to obtain at least one log file of the application program;

a time segment determining subunit, configured to determine a time segment in the at least one
log file from a startup time of a user interface process to a foreground window display time as a
predetermined startup time segment;

a mapped file list obtaining subunit, configured to obtain the mapped file list loaded by a
process during the predetermined startup time segment in the at least one log file; and

a virtual address obtaining subunit, configured to obtain the virtual address of the at least one
page fault occurred during the predetermined startup time segment.

The prefetch data obtaining unit is specifically configured to combine, according to the file
offset corresponding to each virtual address, file blocks between the file offsets corresponding to the
at least one virtual address with spacing being smaller than a predetermined number of bits to
obtain the prefetch data corresponding to the application program.

The technical solutions provided in the embodiments of the present invention achieve the
following beneficial effects:

During startup of an application program, by firstly loading at least one file block
corresponding to at least one page fault occurred during a history startup process of the application
program and then loading code of the application program, the number of page faults occurred
during the startup process of the application program because a process cannot be mapped to a valid
physical page when accessing a virtual page is greatly reduced since the prefect data includes the
file block(s) corresponding to the page fault(s) occurred during the history startup process of the
application program. Further, since before the code of the application program is loaded, instead of
all file blocks during the initial startup of the application program, only the file block(s)
corresponding to page fault(s) is loaded, frequent memory page flipping and file flipping during the
loading process of the application program are mitigated, and startup speed and startup efficiency of

the application program are improved.

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the technical solutions in the embodiments of the present
invention, the accompanying drawings for illustrating the embodiments are briefly described below.
Apparently, the accompanying drawings in the following description illustrate only some
embodiments of the present invention, and a person skilled in the art may derive other
accompanying drawings from these accompanying drawings without any creative efforts.

FIG. 1 is a flowchart of an application program startup method according to an embodiment of
the present invention;

FIG. 2 is a flowchart of an application program startup method according to an embodiment of
the present invention;

FIG. 3 is a schematic diagram of comparison between a startup time of an application program
in the prior art and a startup time using a application program startup method according to
embodiments of the present invention; and

FIG. 4 is a schematic structural diagram of an application program startup apparatus according

to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

To make the objectives, technical solutions, and advantages of the present invention clearer,
the following describes the embodiments of the present invention in detail below with reference to
the accompanying drawings.

Before the description of an application program startup method and apparatus provided in the
embodiments of the present invention, the following firstly defines key terms involved in the
present invention are defined as follows.

Page fault: includes soft fault and hard fault.

Mapped file: A file in the magnetic disk is mapped to a virtual address space and the file is
accessed in the same manner as a memory is accessed. The mapped file is referred to as a mapped
file. During startup of a process, EXE and DLL files are loaded by using the mapped file.

Disk I/0: Disk read and write.

FIG. 1 is a flowchart of an application program startup method according to an embodiment of

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

the present invention. Referring to FIG. 1, this embodiment includes:

101. loading, upon receiving an instruction for starting up an application program, prefetch
data corresponding to the application program, where the prefetch data includes at least one file
block corresponding to at least one page fault occurred during a history startup process of the
application program; and

102. loading code of the application program to start up the application program.

Alternatively, prior to loading, upon receiving an instruction for starting up an application
program, prefetch data corresponding to the application program, the method further includes:

analyzing the history startup process of the application program to obtain the prefetch data
corresponding to the application program during the history startup process.

Alternatively, the analyzing the history startup process of the application program to obtain the
prefetch data corresponding to the application program during the history startup process
specifically includes:

obtaining at least one mapped file list loaded and the virtual address of the at least one page
fault occurred during the history startup process of the application program;

calculating the file offset corresponding to each virtual address according to the at least one
mapped file list and the at least one virtual address; and

combining, according to the file offset corresponding to each virtual address, file blocks
corresponding to the file offset corresponding to the at least one virtual address to obtain the
prefetch data corresponding to the application program.

Alternatively, the obtaining at least one mapped file list loaded and the virtual address of the at
least one page fault occurred during the history startup process of the application program
specifically includes:

obtaining at least one log file of the application program;

determining a time segment in the at least one log file from a startup time of a user interface
process to a foreground window display time as a predetermined startup time segment;

obtaining the mapped file list loaded by a process during the predetermined startup time
segment in the at least one log file; and

obtaining the virtual address of the at least one page fault occurred during the predetermined

startup time segment.

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

Alternatively, the combining, according to the file offset corresponding to the each virtual
address, file blocks corresponding to the file offset corresponding to the at least one virtual address
to obtain the prefetch data corresponding to the application program specifically includes:

combining, according to the file offset corresponding to each virtual address, file blocks with
spacing between file offsets corresponding to the at least one virtual address being smaller than a
predetermined number of bits to obtain the prefetch data corresponding to the application program.

According to the method provided in this embodiment, during startup of an application
program, by firstly loading at least one file block corresponding to at least one page fault occurred
during a history startup process of the application program and then loading code of the application
program, the number of page faults occurred during the startup process of the application program
because a process cannot be mapped to a valid physical page when accessing a virtual page is
greatly reduced since the prefect data includes the file block(s) corresponding to the page fault(s)
occurred during the history startup process of the application program. Further, since before the
code of the application program is loaded, instead of all file blocks during the initial startup of the
application program, only the file block(s) corresponding to page fault(s) is loaded, startup speed
and startup efficiency of the application program are improved.

FIG. 2 is a flowchart of an application program startup method according to an embodiment of
the present invention. The execution body of this embodiment is a terminal. The terminal may be a
personal computer (PC) or a mobile terminal. The mobile terminal may be a smart phone, a tablet
computer, a moving picture experts group audio layer III (MP3), a personal digital assistant (PDA),
or the like. Referring to FIG. 2, this embodiment specifically includes:

201. obtaining at least one log file of the application program.

A log file is a file containing system-related messages. Different log files record different
information. For example, some log files are used to record default system operations, whereas
some are used to record security information only. In step 201, the obtained log file of the
application program is used to record information related to startup and running of the application
program. The log file at least includes the startup information of the application program, where the
startup information includes information of page fault occurred during a history startup process of
an application program.

The log file obtained in step 201 may be based on event tracing for Windows (ETW). ETW is

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

a uniform mechanism for event tracing and recording provided by Windows. A user-mode
application program and a kernel-mode driver can both record events using ETW.

It should be noted that, in step 201, at least one log file is obtained, where the at least one log
file respectively corresponds to the startup information of at least one startup process of an
application program.

202. determining a time segment in the at least one log file from a startup time of a user
interface process to a foreground window display time as a predetermined startup time segment.

The startup time of a user interface process may be understood as the startup time of the
application program whereas the foreground window display time may be understood as the time
for loading the code of the application program. In this embodiment, description is given only using
determining the time segment in the at least one log file from the startup time of a user interface
process to the foreground window display time as the predetermined startup time segment as an
example. The predetermined startup time segment may also be shortened to a smaller range, which
may be specifically set by a person skilled in the art and is thus not further defined in this
embodiment.

203. obtaining at least one mapped file list loaded by a process during the predetermined
startup time segment in the at least one log file, where the mapped file list includes at least start
addresses and paths of the loaded files.

A mapped file list is a list of files loaded by the process during the predetermined startup time
segment of the application programs and recorded in the log file. The mapped file list includes at
least the start addresses and paths of the loaded files. For the application program, the files in the
mapped file list are loaded due to the page fault occurred during a startup process of the application
program. Therefore, after the mapped file list is obtained, it can be known that which files have
been loaded when the page fault occurred during the startup process of the application program, and
the specific paths of the loaded files.

It should be noted that, the mapped file list loaded by a process during a predetermined startup
time segment in each log file can be obtained while considering files loaded by the process during a
plurality of startup processes of an application program such that the subsequent combination and
loading prevent page faults from occurring during the startup of the application program at the

maximum.

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

204. obtaining the virtual address of the at least one page fault occurred during the
predetermined startup time segment.

The virtual address is an address of the virtual page accessed by a process during the startup
process of the application program. In step 204, after the virtual address of the page fault occurred
in a process during the predetermined startup time segment is obtained, it can be known which
virtual addresses are not mapped to valid physical addresses during the startup process of the
application program.

It should be noted that, because the page faults occurred during a plurality of startup processes
of an application program are not exactly the same, the plurality of startup processes of the
application program need to be analyzed to obtain the mapped file list loaded by a process and the
virtual address when the page fault occurs. In steps 201-204 of this embodiment, the process of
analyzing only a log file of a single startup and obtaining a mapped file list and a virtual address
when a page fault occurs is used as an example for detailed description. In practice, a plurality of
log files may be analyzed simultaneously and the mapped file list and the virtual address when a
page fault occurs may be obtained; or the plurality of log files is sequentially analyzed and the
mapped file list and the virtual address when the page fault occurs can be obtained. The plurality of
log files may be analyzed in multiple sequences, which may be specifically set by a person skilled
in the art and is not defined in this embodiment.

205. calculating the file offset of the file block corresponding to each virtual address according
to the files in the mapped file list and the virtual addresses corresponding to the page faults.

A person skilled in the art may learn that, for a single mapped file in a mapped file list, a
relative virtual address is obtained by subtracting the virtual address when a page fault occurs from
the start address of the mapped file, and the file offset of the file block is obtained by using the
relative virtual address. The relative virtual address is in piecewise linear relationship with the file
offset, and the piecewise linear relationship is set according to the mapped file (PE file format),
which is not detailed here any further.

206. combining, according to the file offset corresponding to each virtual address, file blocks
corresponding to the file offset corresponding to the at least one virtual address to obtain the
prefetch data corresponding to the application program.

Specifically, according to the file offset corresponding to each virtual address, file blocks

10

15

20

WO 2013/135145 PCT/CN2013/072145

corresponding to the file offset corresponding to each of the at least one virtual address are
combined to obtain the prefetch data corresponding to the application program.

Preferably, according to the file offset corresponding to each virtual address, file blocks with
spacing between file offsets corresponding to the at least one virtual address being smaller than a
predetermined number of bits are combined to obtain the prefetch data corresponding to the
application program.

Preferably, the predetermined number of bits may be 64 KB. If the spacing between two file
blocks is smaller than 64 KB, these two file blocks are combined. The corresponding prefetch data
is obtained by combining a plurality of file blocks. The predetermined number of bits may be any of
other values, which may be set by a person skilled in the art.

A person skilled in the art learns that the disk read/write caused by a hard fault reads only the
data corresponding to the hard fault, with the size of only 16 KB or 32 KB, which is far smaller
than the disk read/write capability of conducting one disk read/write. For example, the size of one
disk read/write reaches 2 MB Windows 7, and reaches 1 MB on Windows XP. Accordingly, the disk
read/write capability is not brought into full play, thereby greatly reducing disk read/write efficiency.
Therefore, in this embodiment, adjacent file blocks are combined so that the subsequent loading of
the prefetch data can be implemented by using a limited number of times of disk read/write. In this
way, disk read/write efficiency during the startup process of the application program is greatly
improved by loading the prefetch data before the code of the application program is loaded, that is,
startup speed and efficiency of the application program are improved.

Table 1 is an example of file blocks in a module combined during the startup process of an

application program.

Table 1
Range of File Offset Size (KB) Number of Pages Segment of File
Block
[400, 1183FF] 6964 1741 text
[873400, 8FO3FF] 500 125 text
[915400, 92C3FF] 92 23 text
[954400, 9F73FF] 652 163 text
[ASACO00, BF6BFF] 1456 364 .rdata

10

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

In Table 1, the range of file offset refers to a file offset range of file blocks before combination,
the size refers to the size of combined file block, the number of pages refers to the number of
combined pages, and the segment of the file refers to the segment to which the file belongs. It can
be seen from Table 1 that for files belonging to different segments, the size of the combined file
block (the size of one disc read/write) is far greater than the disk read/write size (16 KB or 32 KB)
each time a page fault occurs before file block combination. For example, as for pages in a file
offset range of [400, 1183FF], 1741 pages can be combined into 6964KB data. In this way, the
subsequent loading of the prefetch data can be completed by only one disk read/write, which, as
compared against the original 1741 times of disk read/write, greatly improves disk read/write
efficiency.

Preferably, the process of obtaining the prefetch data in steps 201-206 may be performed when
the system is idle or the application program is not started up. This effectively utilizes system
efficiency without affecting the running of other application programs in the system.

207: loading, upon receiving an instruction for starting up an application program, prefetch
data corresponding to the application program, where the prefetch data includes at least one file
block corresponding to at least one page fault occurred during a startup process of the application
program.

Through the loading in step 207, the file blocks in the prefetch data are all loaded by the
process into the physical memory. When an instruction for starting up an application program is
received, prefetch data corresponding to the application program is loaded before the application
program runs other code, and then step 208 is performed; when the application program actually
visits these pages, the page fault, especially the time consuming hard fault, will not occur, thereby
improving the startup speed.

Preferably, the prefetch data may be stored in a DB file; when the instruction for starting up the
application is received, the DB file is read to load the prefetch data corresponding to the application
program.

208: loading code of the application program to start up the application program.

A person skilled in the art may know that step 208 is similar to the loading method in the prior

art, which is not detailed here any further.

11

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

During the process of loading the code of the application program in step 208, the process
accesses a virtual page; when the accessed virtual page is mapped to a valid physical page in the
physical memory, the process loads corresponding file blocks corresponding to the physical page.
Since all file blocks corresponding to the page fault occurred during the history startup process of
the application program, no page fault will occur during the loading of the code of the application
program. Therefore, the number of page faults occurred during the startup process of the application
program because a process cannot be mapped to a valid physical page when accessing a virtual
page is greatly reduced, and disk read/write efficiency is greatly improved by consuming a small
amount of redundant data.

This embodiment differs from the prior art in that: by loading the prefetch data before the code
of the application program is loaded, the number of the page faults occurred during the startup
process of the application program because a process cannot be mapped to a valid physical page
when accessing a virtual page is greatly reduced since the prefetch data includes the file block(s)
corresponding to the page fault(s) occurred during the history startup process of the application
program. In this way, startup speed and startup efficiency of the application program are improved.

This embodiment further differs from the prior art in that: before the code of the application
program is loaded, instead of all file blocks during the initial startup of the application program,
only the file block(s) corresponding to page fault(s) is loaded, This refines the loading granularity.
By loading the prefetch data before the code of the application program is loaded, the number of the
page faults occurred during the startup process of the application program because a process cannot
be mapped to a valid physical page when accessing a virtual page is greatly reduced since the
prefect data includes the file block(s) corresponding to the page fault(s) occurred during the history
startup process of the application program. In this way, frequent memory page flipping and file
flipping during the loading process of the application program are mitigated, and startup speed and
startup efficiency of the application program are improved.

It should be noted that the application program startup method provided in this embodiment is
applicable to any application program, and requires no modification of existing code. The process
for obtaining the prefetch data in steps 201-206 in this embodiment is not limited to the startup
process of an application program, and is also applicable to any scenario of improving the

performance of an application program.

12

10

15

20

WO 2013/135145 PCT/CN2013/072145

Preferably, after steps 207-208 are performed, the application program is started up, and = on
the startup process of the application program can be tested to determine the effects created by
firstly loading the prefetch data and then loading the code of the application program. Because a
hard fault occurred during the startup process of the application program is the most time
consuming, the number of hard faults occurred during the startup process of the application
program is detected. If the number of hard faults is reduced or the hard faults disappear compared
with those in the history startup process, the prefetch data obtained through steps 201-206 includes
most pages to be accessed by the application program. Table 2 is a comparison between the number
of hard faults occurred in a main module on Windows 7 and that on Windows XP during the startup
process of an application program. It can be seen that the number of occurrences of hard faults is

greatly reduced or the hard faults disappear after the technical solutions of the present invention are

used.
Table 2
Number of hard faults on Number of hard faults on
Windows 7 Windows XP

Before 423 330
prefetching

After 35 0
prefetching

FIG. 3 is a schematic diagram of comparison between a startup time of an application program
in the prior art and a startup time using an application program startup method according to the
embodiments of the present invention. Referring to FIG. 3, the startup time T2 of an application
program in the prior art includes hard fault time and time for loading code of the application
program, the startup time T1 according to the application program startup method provided in the
embodiments of the present invention includes time for loading prefetch data and time for loading
code of the application program. T1 is far smaller than T2. The startup time according to the
application program startup method provided in the embodiments of the present invention does not
include the hard fault time, thereby greatly improving the startup speed.

According to the method provided in this embodiment, during startup of an application

13

10

15

20

WO 2013/135145 PCT/CN2013/072145

program, by firstly loading at least one file block corresponding to at least one page fault occurred
during a history startup process of the application program and then loading code of the application
program, the number of page faults occurred during the startup process of the application program
because a process cannot be mapped to a valid physical page when accessing a virtual page is
greatly reduced since the prefect data includes the file block(s) corresponding to the page fault(s)
occurred during the history startup process of the application program. Further, since before the
code of the application program is loaded, instead of all file blocks during the initial startup of the
application program, only the file block(s) corresponding to page fault(s) is loaded, frequent
memory page flipping and file flipping during the loading process of the application program are
mitigated, and startup speed and startup efficiency of the application program are improved. Further,
by combining adjacent file blocks, disk read/write efficiency is greatly enhanced.

To further describe the beneficial effects of the present invention, the following gives detailed
description with reference to the comparison between the application program startup process in the
prior art and the startup process using the application program startup method according to the
embodiments of the present invention.

Table 3 is a comparison between disk read/write parameters in a main module during the
startup process of an application program in the prior art and those during the startup process using

an application program startup method according to the embodiments of the present invention.

Table 3
Disk Read/Write Number of Disk Read/Write
Size (MB) Times of Disk | Time (ms)
Read/Write
Prior art 8.46 387 2013
Solution of the 12.094 54 207
present invention

It can be learned from the comparison between the parameters in Table 3 that, after the
technical solutions of the present invention are used, the time consumed by disk read/write in a
main module of the application program is reduced from 2013 ms to about 207 ms, the size of disk

read/write is increased from 8 MB to 12 MB, and the number of times of disk read/write is reduced

14

10

15

20

WO 2013/135145 PCT/CN2013/072145

from 387 to 54. Accordingly, the disk read/write size is increased by obtaining the prefetch data
through combining the file blocks, firstly loading the prefect data during startup of the application
program and then loading code of the application program. However, the number of times of disk
read/write and the disk read/write time are reduced, thereby reducing the total disk read/write time
during the startup process of the application program.

Table 4 is a comparison between a startup time of an application program in the prior art and a

startup time using an application program startup method according to embodiments of the present

invention.
Table 4
Time (seconds) Required for | Time (seconds) Required for Startup
Startup of an Application on | of an Application on Windows 7
Windows XP
Prior art 5.28 6.43
Solution of the 2.38 3.69
present invention

To reduce interference, the startup time refers to the startup time in a scenario where other
optimization techniques are not used. It can be learned from Table 4 that, after the technical
solutions of the present invention are used, on different operating systems, the startup time of an
application program is reduced by 50%—-60% as compared with the startup time according to the
prior art. For example, as compared with the prior art, the startup time of an application program is
reduced from 5.28s to 2.38s on a Windows XP environment, and is reduced from 6.43s to 3.69s on a
Windows 7 environment.

FIG. 4 is a schematic structural diagram of an application program startup apparatus according
to an embodiment of the present invention. Referring to FIG. 4, the apparatus includes:

a prefetch data loading module 401, configured to load, upon receiving an instruction for
starting up an application program, prefetch data corresponding to the application program, where
the prefetch data includes at least one file block corresponding to at least one page fault occurred
during a history startup process of the application program; Preferably, the prefetch data may be

stored in a DB file; when the instruction for starting up the application is received, the DB file is

15

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

read to load the prefetch data corresponding to the application program. and

a code loading module 402, configured to load code of the application program to start up the
application program.

The apparatus further includes:

a prefetch data obtaining module 403, configured to analyze the history startup process of the
application program to obtain the prefetch data corresponding to the application program during the
history startup process.

The prefetch data obtaining module 403 includes:

an obtaining unit, configured to obtain at least one mapped file list loaded and the virtual
address of the at least one page fault occurred during the history startup process of the application
program;

an offset calculating unit, configured to calculate the file offset corresponding to each virtual
address according to the at least one mapped file list and the at least one virtual address; A person
skilled in the art may learn that, for a single mapped file in a mapped file list, a relative virtual
address is obtained by subtracting the virtual address when a page fault occurs from the start
address of the mapped file, and the file offset of the file block is obtained by using the relative
virtual address. The relative virtual address is in piecewise linear relationship with the file offset,
and the piecewise linear relationship is set according to the mapped file (PE file format), which is
not detailed here any further. and

a prefetch data obtaining unit, configured to combine, according to the file offset
corresponding to each virtual address, file blocks corresponding to the file offset corresponding to
the at least one virtual address to obtain the prefetch data corresponding to the application program.

The obtaining unit includes:

a log obtaining subunit, configured to obtain at least one log file of the application program.
the obtained log file of the application program is used to record information related to startup and
running of the application program. The log file at least includes the startup information of the
application program, where the startup information includes information of page fault occurred
during a history startup process of an application program.

a time segment determining subunit, configured to determine a time segment in the at least one

log file from a startup time of a user interface process to a foreground window display time as a

16

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

predetermined startup time segment.The startup time of a user interface process may be understood
as the startup time of the application program whereas the foreground window display time may be
understood as the time for loading the code of the application program. In this embodiment,
description is given only using determining the time segment in the at least one log file from the
startup time of a user interface process to the foreground window display time as the predetermined
startup time segment as an example. The predetermined startup time segment may also be shortened
to a smaller range, which may be specifically set by a person skilled in the art and is thus not further
defined in this embodiment.

a mapped file list obtaining subunit, configured to obtain a mapped file list loaded by a process
during the predetermined startup time segment in the at least one log file. A mapped file list is a list
of files loaded by the process during the predetermined startup time segment of the application
programs and recorded in the log file. The mapped file list includes at least the start addresses and
paths of the loaded files. For the application program, the files in the mapped file list are loaded due
to the page fault occurred during a startup process of the application program. Therefore, after the
mapped file list is obtained, it can be known that which files have been loaded when the page fault
occurred during the startup process of the application program, and the specific paths of the loaded
files. It should be noted that, the mapped file list loaded by a process during a predetermined startup
time segment in each log file can be obtained while considering files loaded by the process during a
plurality of startup processes of an application program such that the subsequent combination and
loading prevent page faults from occurring during the startup of the application program at the
maximum. and

a virtual address obtaining subunit, configured to obtain the virtual address of the at least one
page fault occurred during the predetermined startup time segment. The virtual address is an
address of the virtual page accessed by a process during the startup process of the application
program. After the virtual address of the page fault occurred in a process during the predetermined
startup time segment is obtained, it can be known which virtual addresses are not mapped to valid
physical addresses during the startup process of the application program.

It should be noted that, because the page faults occurred during a plurality of startup processes
of an application program are not exactly the same, the plurality of startup processes of the

application program need to be analyzed to obtain the mapped file list loaded by a process and the

17

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

virtual address when the page fault occurs.

Preferably,The prefetch data obtaining unit is specifically configured to combine, according to
the file offset corresponding to each virtual address, file blocks with spacing between file offsets
corresponding to the at least one virtual address being smaller than a predetermined number of bits
to obtain the prefetch data corresponding to the application program. Preferably, the predetermined
number of bits may be 64 KB. If the spacing between two file blocks is smaller than 64 KB, these
two file blocks are combined. The corresponding prefetch data is obtained by combining a plurality
of file blocks. The predetermined number of bits may be any of other values, which may be set by a
person skilled in the art.

According to the apparatus provided in this embodiment, during startup of an application
program, by firstly loading at least one file block corresponding to at least one page fault occurred
during a history startup process of the application program and then loading code of the application
program, the number of page faults occurred during the startup process of the application program
because a process cannot be mapped to a valid physical page when accessing a virtual page is
greatly reduced since the prefect data includes the file block(s) corresponding to the page fault(s)
occurred during the history startup process of the application program. Further, since before the
code of the application program is loaded, instead of all file blocks during the initial startup of the
application program, only the file block(s) corresponding to page fault(s) is loaded, startup speed
and startup efficiency of the application program are improved.

It should be noted that, during application program startup, the application program startup
apparatus according to the above embodiments only is described by only using division of the
above functional modules for description. In practice, the functions may be assigned to different
functional modules for implementation as required. To be specific, the internal structure of the
apparatus is divided into different functional modules to implement all or part of the
above-described functions. In addition, the application program startup apparatus and the
application program startup method pertains to the same concept, where the specific
implementation is elaborated in the method embodiments, which is not be detailed herein any
further.

A person skilled in the art should understand that all or part steps of the preceding methods

may be implemented by hardware or hardware following instructions of programs. The programs

18

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

may be stored in a computer readable storage medium. The storage medium may be a read only
memory, a magnetic disk, or a CD-ROM.

An application program startup device according to an embodiment of the present invention.
the device is used for the application program startup method, where the device includes :

memory , and

one or more processors ,

the one or more processors are configured to perform functions as follows:

loading, upon receiving an instruction for starting up an application program, prefetch data
corresponding to the application program, wherein the prefetch data comprises at least one file
block corresponding to at least one page fault occurred during a history startup process of the
application program; and

loading code of the application program to start up the application program.

Preferably, the one or more processors are further configured to perform functions as follows:

analyzing the history startup process of the application program to obtain the prefetch data
corresponding to the application program during the history startup process.

Preferably, the one or more processors are further configured to perform functions as follows:

obtaining at least one mapped file list loaded and the virtual address of the at least one page
fault occurred during the history startup process of the application program;

calculating the file offset corresponding to each virtual address according to the at least one
mapped file list and the at least one virtual address; and

combining, according to the file offset corresponding to each virtual address, file blocks
corresponding to the file offset corresponding to the at least one virtual address to obtain the
prefetch data corresponding to the application program.

Preferably, the one or more processors are further configured to perform functions as follows:

obtaining at least one log file of the application program;

determining a time segment in the at least one log file from a startup time of a user interface
process to a foreground window display time as a predetermined startup time segment;

obtaining the mapped file list loaded by a process during the predetermined startup time
segment in the at least one log file; and

obtaining the virtual address of the at least one page fault occurred during the predetermined

19

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

startup time segment.

Preferably, the one or more processors are further configured to perform functions as follows:

combining, according to the file offset corresponding to each virtual address, file blocks with
spacing between file offsets corresponding to the at least one virtual address being smaller than a
predetermined number of bits to obtain the prefetch data corresponding to the application program.

According to the device provided in this embodiment, during startup of an application program,
by firstly loading at least one file block corresponding to at least one page fault occurred during a
history startup process of the application program and then loading code of the application program,
the number of page faults occurred during the startup process of the application program because a
process cannot be mapped to a valid physical page when accessing a virtual page is greatly reduced
since the prefect data includes the file block(s) corresponding to the page fault(s) occurred during
the history startup process of the application program. Further, since before the code of the
application program is loaded, instead of all file blocks during the initial startup of the application
program, only the file block(s) corresponding to page fault(s) is loaded, startup speed and startup

efficiency of the application program are improved.

A computer program embodied on a computer-readable medium for the application program
startup method according to an embodiment of the present invention, said program comprising:

a step of loading, upon receiving an instruction for starting up an application program, prefetch
data corresponding to the application program, wherein the prefetch data comprises at least one file
block corresponding to at least one page fault occurred during a history startup process of the
application program; and

a step of loading code of the application program to start up the application program.

Preferably, wherein prior to loading, upon receiving an instruction for starting up an
application, prefetch data corresponding to the application program, the method further comprises:

analyzing the history startup process of the application program to obtain the prefetch data
corresponding to the application program during the history startup process.

Preferably, wherein the analyzing history startup process of the application program to obtain
the prefetch data corresponding to the application program during the history startup process

specifically comprises:

20

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

obtaining at least one mapped file list loaded and the virtual address of the at least one page
fault occurred during the history startup process of the application program;

calculating the file offset corresponding to each virtual address according to the at least one
mapped file list and the at least one virtual address; and

combining, according to the file offset corresponding to each virtual address, file blocks
corresponding to the file offset corresponding to the at least one virtual address to obtain the
prefetch data corresponding to the application program.

Preferably, wherein the obtaining at least one mapped file list loaded and the virtual address of
the at least one page fault occurred during the history startup process of the application program
specifically comprises:

obtaining at least one log file of the application program;

determining a time segment in the at least one log file from a startup time of a user interface
process to a foreground window display time as a predetermined startup time segment;

obtaining the mapped file list loaded by a process during the predetermined startup time
segment in the at least one log file; and

obtaining the virtual address of the at least one page fault occurred during the predetermined
startup time segment.

Preferably, wherein the combining, according to the file offset corresponding to each virtual
address, file blocks corresponding to the file offset corresponding to the at least one virtual address
to obtain the prefetch data corresponding to the application program specifically comprises:

combining, according to the file offset corresponding to each virtual address, file blocks with
spacing between file offsets corresponding to the at least one virtual address being smaller than a
predetermined number of bits to obtain the prefetch data corresponding to the application program.

According to the computer-readable medium provided in this embodiment, during startup of an
application program, by firstly loading at least one file block corresponding to at least one page
fault occurred during a history startup process of the application program and then loading code of
the application program, the number of page faults occurred during the startup process of the
application program because a process cannot be mapped to a valid physical page when accessing a
virtual page is greatly reduced since the prefect data includes the file block(s) corresponding to the

page fault(s) occurred during the history startup process of the application program. Further, since

21

WO 2013/135145 PCT/CN2013/072145

before the code of the application program is loaded, instead of all file blocks during the initial
startup of the application program, only the file block(s) corresponding to page fault(s) is loaded,
startup speed and startup efficiency of the application program are improved.

Described above are merely preferred embodiments of the present invention, but are not
intended to limit the present invention. Any modification, equivalent replacement, or improvement
made without departing from the spirit and principle of the present invention should fall within the

protection scope of the present invention.

22

10

15

20

25

WO 2013/135145 PCT/CN2013/072145

CLAIMS

What is claimed is:

1. An application program startup method, comprising:

loading, upon receiving an instruction for starting up an application program, prefetch data
corresponding to the application program, wherein the prefetch data comprises at least one file
block corresponding to at least one page fault occurred during a history startup process of the
application program; and

loading code of the application program to start up the application program.

2. The method according to claim 1, wherein prior to loading, upon receiving an instruction for
starting up an application, prefetch data corresponding to the application program, the method
further comprises:

analyzing the history startup process of the application program to obtain the prefetch data

corresponding to the application program during the history startup process.

3. The method according to claim 2, wherein the analyzing history startup process of the
application program to obtain the prefetch data corresponding to the application program during the
history startup process specifically comprises:

obtaining at least one mapped file list loaded and the virtual address of the at least one page
fault occurred during the history startup process of the application program;

calculating the file offset corresponding to each virtual address according to the at least one
mapped file list and the at least one virtual address; and

combining, according to the file offset corresponding to each virtual address, file blocks
corresponding to the file offset corresponding to the at least one virtual address to obtain the

prefetch data corresponding to the application program.

4. The method according to claim 3, wherein the obtaining at least one mapped file list loaded
and the virtual address of the at least one page fault occurred during the history startup process of

the application program specifically comprises:

23

10

15

20

25

30

WO 2013/135145 PCT/CN2013/072145

obtaining at least one log file of the application program;

determining a time segment in the at least one log file from a startup time of a user interface
process to a foreground window display time as a predetermined startup time segment;

obtaining the mapped file list loaded by a process during the predetermined startup time
segment in the at least one log file; and

obtaining the virtual address of the at least one page fault occurred during the predetermined

startup time segment.

5. The method according to claim 3, wherein the combining, according to the file offset
corresponding to each virtual address, file blocks corresponding to the file offset corresponding to
the at least one virtual address to obtain the prefetch data corresponding to the application program
specifically comprises:

combining, according to the file offset corresponding to each virtual address, file blocks with
spacing between file offsets corresponding to the at least one virtual address being smaller than a

predetermined number of bits to obtain the prefetch data corresponding to the application program.

6. An application program startup apparatus, comprising:

a prefetch data loading module, configured to load, upon receiving an instruction for starting
up an application program, prefetch data corresponding to the application program, wherein the
prefetch data comprises at least one file block corresponding to at least one page fault occurred
during a history startup process of the application program; and

a code loading module, configured to load code of the application program to start up the

application program.

7. The apparatus according to claim 6, further comprising:
a prefetch data obtaining module, configured to analyze the history startup process of the
application program to obtain the prefetch data corresponding to the application program during the

history startup process.

8. The apparatus according to claim 7, wherein the prefetch data obtaining module comprises:

24

10

15

20

WO 2013/135145 PCT/CN2013/072145

an obtaining unit, configured to obtain at least one mapped file list loaded and the virtual
address of the at least one page fault occurred during the history startup process of the application
program;

an offset calculating unit, configured to calculate the file offset corresponding to each virtual
address according to the at least one mapped file list and the at least one virtual address; and

a prefetch data obtaining unit, configured to combine, according to the file offset
corresponding to each virtual address, file blocks corresponding to the file offset corresponding to

the at least one virtual address to obtain the prefetch data corresponding to the application program.

9. The apparatus according to claim 8, wherein the obtaining unit comprises:

a log obtaining subunit, configured to obtain at least one log file of the application program;

a time segment determining subunit, configured to determine a time segment in the at least one
log file from a startup time of a user interface process to a foreground window display time as a
predetermined startup time segment;

a mapped file list obtaining subunit, configured to obtain the mapped file list loaded by a
process during the predetermined startup time segment in the at least one log file; and

a virtual address obtaining subunit, configured to obtain the virtual address of the at least one

page fault occurred during the predetermined startup time segment.

10. The apparatus according to claim 8, wherein the prefetch data obtaining unit is specifically
configured to combine, according to the file offset corresponding to each virtual address, file blocks
with spacing between file offsets corresponding to the at least one virtual address being smaller than
a predetermined number of bits to obtain the prefetch data corresponding to the application

program.

25

WO 2013/135145 PCT/CN2013/072145

Load, upon receiving an instruction for starting up an application program, prefetch 101
data corresponding to the application program, where the prefetch data includes a file
block corresponding to a page fault occurred during a history startup process of the
application program

¥

102

Load code of the application program to start up the application program

FIG. 1

1/3

WO 2013/135145 PCT/CN2013/072145

. . .. f 201
Obtain at least one log file of the application program

N

Determine a time segment in the at least one log file from a f 202

startup time of a user interface process to a foreground window
display time as a predetermined startup time segment

¥

Obtain at least one mapped file list loaded by a process during f 203

the predetermined startup time segment in the at least one log

file, where the mapped file list includes at least start addresses
and paths of the loaded files

§\v

]] f 204
Obtain the virtual address of the at least one page fault occurred
during the predetermined startup time segment

¥

Calculate the file offset of the file block corresponding to each f 205
virtual address according to the files in the mapped file list and
the virtual addresses corresponding to the page faults

Combine file blocks corresponding to the file offset f 206
corresponding to the at least one virtual address to obtain the
prefetch data corresponding to the application program

¥
Load, upon receiving an instruction for starting up an f 207
application program, prefetch data corresponding to the
application program, where the prefetch data includes at least
one file block corresponding to at least one page fault occurred
during a startup process of the application program

¥

-~ | 208
Load code of the application program to start up the application
program

FIG. 2

2/3

WO 2013/135145

< Tl >

T2

PCT/CN2013/072145

Startup time of
an application in

the prior art

Startup time of an
application using an

application startup
method according to

embodiments of the
present invention

) Time for loading
Hard fault time prefetch data
FIG. 3
403
Prefetch data
obtaining
module 401
Prefetcl.l data Code loading
loading
module
module
FIG. 4

3/3

402

Time for loading code of
an application program

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2013/072145

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/445(2006.01)i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, WPI, EPODOC, IEEE: application, start, up, boot, program, prefetch, previous+, page, fault, history, process, load, virtual,
address, file, offset, log

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

(12.09.2012) claims 1-10

2007 (09.08.2007) description, paragraphs 17-41

document

document

PX (CN102662690A (TENCENT TECHNOLOGY SHENZHEN CO..LTD.) 12 Sep. 2012

Y [US2007/0185933A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 09 Aug.
Y IWO2004/057479A2 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 08 Jul.
2004 (08.07.2004) description, page 2, line 9 to page 11, line 8, claim 1

A WO02011/061948A1 (UBIQUITOUS CORPORATION) 26 May 2011 (26.05.2011) the whole

A CN1889737A (HUAWEI TECHNOLOGIES CO..LTD.) 03 Jan. 2007 (03.01.2007) the whole

[Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:
“A” document defining the general state of the art which is not

considered to be of particular relevance

“E” earlier application or patent but published on or after the
international filing date

“L” document which may throw doubts on priority claim (S) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or
other means

“P” document published prior to the international filing date

but later than the priority date claimed

“T> later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X” document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such
documents, such combination being obvious to a person

skilled in the art

“& “document member of the same patent family

Date of the actual completion of the international search
16 May 2013 (16.05.2013)

Date of mailing of the international search report

13 Jun. 2013 (13.06.2013)

IName and mailing address of the ISA/CN

The State Intellectual Property Office, the PR.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088

[Facsimile No. 86-10-62019451

Authorized officer
WANGWei
Telephone No. (86-10)62413176

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATTIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2013/072145
Patent Documents referred Publication Date Patent Family Publication Date
in the Report
CN102662690A 12.09.2012 None
US 2007/0185933 Al 09.08.2007 CN 101013427 A 08.08.2007
WO 2004/057479 A2 08.07.2004 US 2004/0123044 A1 24.06.2004
AU 2003288458 Al 14.07.2004
EP 1573555A2 14.09.2005
CN 1726477 A 25.01.2006
DE 60333483E 02.09.2010
US 2007/0294483 A 20.12.2007
AT 475140 T 15.08.2010
WO 2011/061948 Al 26.05.2011 JP 2011107925 A 02.06.2011
EP 2503458 A1 26.09.2012
US 2012/0254499 A1 04.10.2012
CN 102687113 A 19.09.2012
CN 1889737 A 03.01.2007 None

Form PCT/ISA /210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report

