PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: (11) International Publication Number: WO 00/36751
HO3M 7/42 Al

(43) International Publication Date: 22 June 2000 (22.06.00)

(21) International Application Number: PCT/US99/29003 | (81) Designated States: JP, European patent (AT, BE, CH, CY, DE,

(22) International Filing Date: 7 December 1999 (07.12.99)

(30) Priority Data:

09/211,532 14 December 1998 (14.12.98) US

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Building 4, Redmond, WA 98052-6399
(Us).

(72) Inventors: CHEN, Wei-ge; 24635 S.E. 37th Street, Issaquah,
WA 98029 (US). LEE, Ming—Chieh; 5558 166th Place S.E.,
Bellevue, WA 98006 (US).

(74) Agent: WIGHT, Stephen, A.; Klarquist, Sparkman, Campbell,
Leigh & Whinston, LPP, Suite 1600, One World Trade
Center, 121 S.W. Salmon Street, Portland, OR 97204 (US).

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: CODE BOOK CONSTRUCTION FOR VARIABLE TO VARIABLE LENGTH ENTROPY ENCODING

(57) Abstract

A method of constructing a code book for groupings
of symbols drawn from an alphabet, in which variable-sized
groups of symbols are each assigned a variable length code
based on probability of occurrence of symbol groupings.
Code book entries are added by tentatively extending the
high probability groupings with symbols from the alphabet.
Code book size is restrained by identification of identify
high probability symbol groupings, such that low probability
groupings are combined into a single code book entry.
Probability of occurrence for each entry is tracked. Extension
and combination is repeated until a code book of predetermined
size is reached. [Each code book entry is assigned an
entropy-type code according to the probability associated with
each book entry.

Prepare
Trivial
Grouping

f 300

Count |/~ 802
Probability of
Groupings
i
Choose Most
Probable

Grouping

J+-Yes
306

J No

%
Extend Most
Probable
Grouping
|

Y.

Compute
Probability

!

Keep Most
Probable
Extension

1

Collapse
Less
Probable
Extensions

304-\

Split

308

f 318
310f

312f

314 —[

316 /]

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
T
UA
uG
us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/36751 ‘ PCT/US99/29003

Code Book Construction for
Variable to Variable Length Entropy Encoding

Field of the Invention

The invention generally relates to data compression, and more specifically

relates to a form of entropy coding.

Background

In a typical coding environment, input data is encoded by an encoder,
transmitted over a communication channel (or simply stored), and decoded by a decoder.
During encoding, an input signal is typically pre-processed, sampled, converted,
compressed or otherwise manipulated into a form for transmission or storage. After
transmission or storage, the decoder attempts to reconstruct the original input.

One fundamental limitation of this simple model is that a given
communication channel has a certain capacity or bandwidth. Consequently, it is
frequently necessary to reduce the information content of input data in order to allow it to
be reliably transmitted, if at all, over the communication channel. When the input signal is
composed of symbols having equally likely probability of occurring, then an optimal
encoding is to use equal length code words, where each bit of an n-bit code allows
distinguishing among 2" equally probable input possibilities. Thus, a single bit (i.e., single
entry code book) can distinguish two possibilities, two bits can distinguish four
possibilities, etc.

But, it is not typical that an input stream has equal probability of receiving
any particular message. In practice, due to semantic or syntactic structure in the input,
certain messages are more likely than others. The objective of entropy coding is to take
advantage of such data correlation and minimize the average length of the code words
among expected inputs having certain highly probable inputs. When one message is more
likely than others, a shorter code book entry is used for probable messages, and longer
entries for the less probable.

Over time, tremendous effort has been invested in developing lossless and
lossy compression techniques for reducing the size of data to transmit or store. One
popular lossless technique is known as Huffman encoding, which is a particular form of
entropy encoding. Entropy encoding operates by assigning variable-length codes (e.g.,

code book entries) to fixed-sized blocks of input. That is, a random variable X, which is

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-2

known to take on values xi..xm with corresponding probability p1..pm, is mapped to an
entry within a set of code words {Y}. Each code word yi* in {Y} of length k, in turn,
consists of a finite sequence of code alphabet entries {A} = {ai1..as}. For simplicity, yi«
will be referenced simply as yi, with k implied. For digital applications, the code alphabet
is likely to be a series of binary digits {0, 1}, with code lengths measured in bits. itis
assumed code words are constructed so only a single scan of a compressed representation
needs to be inspected in order to reconstruct appropriate output. The difficulty in entropy
encoding the source signal depends on the number m of possible values X may take. For
small m, there are few possible messages, and therefore the code book for the messages
can be very small (e.g., only a few bits need to be used to unambiguously represent all
possible messages).

If it is known that a sender will provide a source signal containing one of
four messages xi..x4, having respective probabilities p1..ps of '/2, '/s, /s, and /16, one can
inefficiently represent the four possible messages with only two bits. However, this
wastes bandwidth since the unequal probabilities indicate data characteristics than can be
taken advantage of. A more efficient method, known as scalar Huffman encoding,
requires an average of fewer than 2 bits to encode each message. A short code book
entry is assigned to x1, since it is most probable, and increasingly longer codes for the less
probable inputs. One possible set of code book entries is assigning “1” to represent
message x1, “01” for message xz2, “000” for message xs, and “001"” for message xs. This
gives an average code length of 1.56 bits instead of 2 for encoding the random variable X
-- a significant savings.

The compression performance of this approach is limited virtue of each
source symbol being assigned a code word with an integer number of bits. Traditional
methods of overcoming this limitation include arithmatic coding and vector Huffman
coding. These methods group X's together into blocks or vectors which are themselves
treated as another source symbol. That is, instead of simply encoding each individual
message X, instead sequences of multiple X’s are encoded. Just as the individual symbol
encoding methods take advantage of a symbol’s frequency of occurrence in an input
stream, this latter approach of grouping symbols allows the encoder to take advantage of
dependencies between input symbols. Coding sequences of X’s produces further savings
as it is known from information theory studies that the entropy of a coherent series X1..Xn

is less than or equal to the sum of each individual X's entropy.

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-3-

Theoretically, vector Huffman coding can compress a coherent source
much more efficiently than scalar Huffman coding. The efficiency of vector Huffman
coding is only limited by practical concerns. In order to achieve higher compression ratios,
bigger vector dimensions are needed. Higher dimension, however, increases code book
sizes beyond practical limits. For example, for source symbols having 30 possible values,
a dimension of only 6 corresponds to a code book of 729 million entries.

Note also that the above examples of entropy coding are characterized as
fixed-to-variable length coding as the source symbols have fixed length and the code
words have variable length depending on the probability of the corresponding source
symbol. Another methods of entropy coding have been attempted which attempt the
opposite approach, where a variable number of source symbols are grouped together and
then translated into code words having equal length. When the source is composed of
independent X’s, and symbol groupings achieve equal probability, such a reverse scheme
is provably optimal. However, as with large dimension vector Huffman encoding, such
solutions require resources exceeding resources practically (if at all) available.
Additionally, for sources with data coherence, such as audio or visual data streams, this

variable-to-fixed length approach is not useful.

Summary

The invention relates to a method of assigning variable length codes to
variable length input sequences. In particular, entropy-type codes are assigned to probable
input sequences, thus allowing a particular input stream to be encoded in a compressed
format. When the invention is implemented in a resource-limited environment, it may be
configured so as to reduce the size of the code book required for performing encoding and
decoding. For example, variable length code words might only be assigned to inputs that
are highly probable, and where default codes can be assigned to less probable sequences.
The degree of probability required for assignment of a specific code to a specific input is
adjusted according to a desired code book size.

The input stream to encode can be of any data type, such as numbers,
characters, or a binary data stream which encodes audio, video or other types of data.
For simplicity, the input stream is referenced herein as a series of symbols, where each

“symbol” refers to the appropriate measurement unit for the particular input.

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-4 -

In particular, a code book is constructed for groupings of symbols, in
which variable-sized groups of symbols are each assigned a variable length code based on
probability of occurrence of symbol groupings. To construct the code book, possible
groupings of symbols are generated and compared against the probability of the generated
grouping occurring in exemplary input used to generate the code book. Such exemplary
input is assumed to approximate arbitrary input likely to be received and require encoding.
Note that the input may be used to drive generation of groupings, or all possible groupings
can be tested and compared against the exemplary input; it is assumed herein that the
groupings are input driven.

A data structure {or equivalent) may be used to track symbols
combinations (e.g., the groupings). This structure is used to associate the new symbol
with previously received symbols, so that arbitrarily long groupings of previously received
symbols are tracked. One possible configuration for the data structure is a tree-type data
structure, in which successive symbol groupings form new leaf nodes. These nodes may
contain an entire grouping or just the single symbol extension to a previous parent node.
In this latter configuration, the path from the root of the tree corresponds to a particular
grouping.

In order to start the grouping and probability assignments, preferably one
or more trivial groupings are selected, such as single symbol “groups” containing symbols
from the input alphabet. The probability of these initial groupings is evaluated to
determine the grouping most likely to occur as input, where such probability is necessarily
computed with respect to exemplary inputs. The most probable grouping is then
expanded with symbols from the alphabet to form tentative groupings. The probability of
these tentative groupings is then evaluated to identify the most probable tentative
expansions, and the least probable groupings combined into a single grouping.

The concept of a code book is to assign code words to symbol groupings.
In a resource limited environment, the invention can be configured so that code book size
is restricted. One method of doing so is avoiding assigning codes to all input sequences.
Instead, only probable input sequences are stored in the code book and assigned an
entropy-type code. Improbable sequences are represented in the code book as an input
sequence prefix followed by a special expansion character suffix. This suffix character
represents all possible input sequence extensions to the prefix. The prefix-suffix pairing

represents all possible input sequences beginning with the prefix that do not have an entry

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-5-

in the code book. Thus, after evaluating the tentative extensions, two code book entries
result, one for the most probable extension, and one to represent all other extensions
(again, assuming only keeping one most probable extension).

This process of expanding groupings and collapsing groupings is repeated
until the data structure has been filled to a predetermined capacity. However, even if the
code book has been filled to capacity, note that the input may be continued to be scanned
so that higher probability entries within the input displace less probable current entries.
The efficiency of this coding technique is only limited by the book size selected and the
typicality of the exemplary input. Once the code book has been created, each book entry
is assigned a entropy-type code, i.e., a code having a length inversely proportional to the

entry’s probability.

Brief Description of the Drawings

FIG. 1 is a block diagram of a computer system that may be used to
implement a variable to variable entropy encoding.

FIG. 2 shows a basic communication model.

FIG. 3 is a flowchart showing creation of a code book having variable
length entries for variable length symbol groupings.

FIGS. 4-10 illustrate creation of a code book pursuant to FIG. 3 for an

alphabet {A, B, C}.

Detailed Description

The invention has been implemented in an audio/visual codec. This is only
one example of how the invention may be implemented. The invention is designed to be
utilized wherever entropy-type coding may be utilized, and is applicable to compression of
any type of data. Briefly described, optimal entropy encoding requires excessive
resources, and the illustrated embodiments provide a nearly optimal encoding solution

requiring far fewer resources.

Exemplary Operating Environment

FIG. 1 and the following discussion are intended to provide a brief, general
description of a suitable computing environment in which the invention may be

implemented. While the invention will be described in the general context of computer-

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-6 -

executable instructions of a computer program that runs on a personal computer, those
skilled in the art will recognize that the invention also may be implemented in combination
with other program modules. Generally, program modules include routines, programs,
components, data structures, etc. that perform particular tasks or implement particular
abstract data types. Moreover, those skilled in the art will appreciate that the invention
may be practiced with other computer system configurations, including hand-heid devices,
multiprocessor systems, microprocessor-based or programmable consumer electronics,
minicomputers, mainframe computers, and the like. The illustrated embodiment of the
invention also is practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a communications
network. But, some embodiments of the invention can be practiced on stand alone
computers. In a distributed computing environment, program modules may be located in
both local and remote memory storage devices.

With reference to FIG. 1, an exemplary system for implementing the
invention includes a computer 20, including a processing unit 21, a system memory 22,
and a system bus 23 that couples various system components including the system
memory to the processing unit 21. The processing unit may be any of various
commercially available processors, including Intel x86, Pentium and compatible
microprocessors from Intel and others, the Alpha processor by Digital, and the PowerPC
from IBM and Motorola. Dual microprocessors and other multi-processor architectures
also can be used as the processing unit 21.

The system bus may be any of several types of bus structure including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a variety
of conventional bus architectures such as PCl, AGP, VESA, Microchannel, ISA and EISA,
to name a few. The system memory includes read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system (BIOS), containing the basic
routines that help to transfer information between elements within the computer 20, such
as during start-up, is stored in ROM 24.

The computer 20 further includes a hard disk drive 27, a magnetic disk
drive 28, e.g., to read from or write to a removable disk 29, and an optical disk drive 30,
e.g., for reading a CD-ROM disk 31 or to read from or write to other optical media. The
hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the

system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-7 -

an optical drive interface 34, respectively. The drives and their associated computer-
readable media provide nonvolatile storage of data, data structures, computer-executable
instructions, etc. for the computer 20. Although the description of computer-readable
media above refers to a hard disk, a removable magnetic disk and a CD, it should be
appreciated by those skilled in the art that other types of media which are readable by a
computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli
cartridges, and the like, may also be used in the exemplary operating environment.

A number of program modules may be stored in the drives and RAM 25,
including an operating system 35, one or more application programs {e.g., Internet
browser software) 36, other program modules 37, and program data 38.

A user may enter commands and information into the computer 20 through
a keyboard 40 and pointing device, such as a mouse 42. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing unit 21 through a serial port
interface 46 that is coupled to the system bus, but may be connected by other interfaces,
such as a parallel port, game port or a universal serial bus (USB). A monitor 47 or other
type of display device is also connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor, personal computers typically include other
peripheral output devices (not shown), such as speakers and printers.

The computer 20 is expected to operate in a networked environment using
logical connections to one or more remote computers, such as a remote computer 49.
The remote computer 49 may be a web server, a router, a peer device or other common
network node, and typically includes many or all of the elements described relative to the
computer 20, although only a memory storage device 50 has been illustrated in FIG. 1.
The computer 20 can contact the remote computer 49 over an Internet connection
established through a Gateway 55 (e.g., a router, dedicated-line, or other network link), a
modem 54 link, or by an intra-office local area network (LAN) 51 or wide area network
(WAN) 52. It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers may be used.

In accordance with the practices of persons skilled in the art of computer
programming, the present invention is described below with reference to acts and
symbolic representations of operations that are performed by the computer 20, unless

indicated otherwise. Such acts and operations are sometimes referred to as being

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-8-

computer-executed. It will be appreciated that the acts and symboli.cally represented
operations include the manipulation by the processing unit 21 of electrical signals
representing data bits which causes a resulting transformation or reduction of the
electrical signal representation, and the maintenance of data bits at memory locations in
the memory system (including the system memory 22, hard drive 27, floppy disks 29, and
CD-ROM 31) to thereby reconfigure or otherwise alter the computer system's operation,
as well as other processing of signals. The memory locations where data bits are
maintained are physical locations that have particular electrical, magnetic, or optical
properties corresponding to the data bits.

FIG. 2 shows a basic communication model. In a basic communication
model, there is a data source or sender 200, a communication channel 204, and a data
receiver 208. The source may be someone speaking on a telephone, over telephone
wires, to another person. Or, the source may be a television or radio broadcast
transmitted by wireless methods to television or radio receivers. Or, the source may be a
digital encoding of some data, whether audio, visual, or other, transmitted over a wired or
wireless communication link (e.g., a LAN or the Internet) to a corresponding decoder for
the information.

To facilitate transmission and receipt of the data, an encoder 202 is used
to prepare the data source for transmission over the communication channe! 204. The
encoder is responsible for converting the source data into a format appropriate for the
channel 204. For example, in the context of a common telephone call, one’s voice is
typically converted by the phone’s handset from voice sounds to analog impulses that are
sent as analog data to local telephone receiving equipment. This analog signal is then
converted into digital form, multiplexed with numerous other conversations similarly
encoded, and transmitted over a common line towards the receiver. Thus, in FIG. 2, the
channel 204 corresponds in large part to a common pathway shared by multiple senders
and receivers. At the receiving end 208, a decoder 206 is required to reverse the
encoding process so as to present sensible data to the receiver.

in order to optimize the data transmission, the encoder 202 is frequently
designed to utilize compression schemes for the transmission of the data. Compression is
desirable since, except for unusual circumstances, communication bandwidth is limited.
Therefore, for complex data sources, such as audio or video data, the source data needs

to be compressed to allow its transmission over conventional transmission paths.

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-9-

A particularly effective coding method is known as entropy encoding,
which utilizes a “code book” containing short code words that have been pre-assigned to
highly probable input data.

An effective coding method is entropy encoding. Such coders can
capitalize on the data coherency, and are particularly effective when symbols have non-
uniform probability distribution.

FIG. 3 is a flowchart showing a preferred method for generating a code
book. In particular, in contrast with prior art techniques, FIG. 3 illustrates how to create a
code book having variable length code assignments for variable length symbol groupings.
As discussed above, prior art techniques either require fixed-length codes or fixed blocks
of input. Preferred implementations overcome the resource requirements of large
dimension vector encoding, and the inapplicability of coding into words of equal lengths,
by providing an entropy based variable-to-variable code, where variable length code words
are used to encode variable length X sequences.

Let yi represent each source symbol group {x}, for 1 = j = N, having
probability Pi of occurring within the input stream (FIG. 2 channel 204}, and that each
group is assigned a corresponding code word having Li bits. it is presumed that each x; is
drawn from a fixed alphabet of predetermined size. The objective is to minimize the
equation L = .————Li*Pi .

] zA

Instead of finding a general solution to the problem, the problem is
separated into two different tasks. The first task is identification of a (sub-optimal)
grouping of a set of input symbols {x} through an empirical approach described below.
The second task is assigning a entropy-type code for the grouped symbols {yi}. Note that
it is known that if the source is not coherent (i.e., the input is independent or without
memory), any grouping that has the same configuration of {Ni} can achieve the same
coding efficiency. In this situation, the first task becomes inconsequential.

To perform the first task, an initial trivial symbol grouping 300 is prepared,
such as {yi} = {x}. This initial configuration assumes that an exemplary input stream is
being used to train creation of the code book. It is understood that a computer may be
programmed with software constructions such as data structures to track receipt of each

symbol from an input. Such data structures may be implemented as a binary-type tree

10

16

20

25

30

WO 00/36751 PCT/US99/29003

-10 -

structure, hash table, or some combination of the two. Other equivaient structures may
also be used.

After determining the trivial grouping, the probability of occurrence for
each yi is computed 302. Such probability is determined with respect to any exemplary
input used to train code book generation. As further symbols are added to the symbol
data structure, the probabilities are dynamically adjusted.

Next, the most probable grouping vyi is identified 304 (denoted as ymp). If
306 the highest probability symbol is a grouping of previously lower probability symbols,
then the grouping is split 308 into its constituent symbols, and processing restarted from
step 302. (Although symbols may be combined, the group retains memory of all symbols
therein so that symbols can be extracted.)

If the symbol is not a grouping, then processing continues with step 310,
in which the most probable grouping is then tentatively extended 310 with single symbol
extensions xi's. Preferably ymp is extended with each symbol from the X aiphabet is used.
However, a predictor can be used to only generate an extension set containing only
probable extensions, if the alphabet is very large and it is known many extensions are
unlikely. For example, such a predictor may be based on semantic or contextual meaning,
so that very improbable extensions can be ignored a priori.

The probability for each tentative expansion of ymp is then computed 312,
and only the most probable extension retained 314. The rest of the lower probability
extensions are collapsed together 316 as a combined grouping and stored in code book
with a special symbol to indicate a combined grouping. This wild-card symbol represents
any arbitrary symbol grouping having ymp as a prefix, but with an extension {suffix)
different from the most probable extension. That is, if ymp+ xmp is the most probable root
and extension, then the other less probable extensions are represented as ymp*, * # Xmp.
(Note that this discussion presumes, for clarity, serial processing of single-symbol
extensions; however, parallel execution of multiple symbol extensions is contemplated.)

Code book construction is completed by repeating 318 steps 302-316 until
all extensions have been made, or the number of code book entries reaches a
predetermined limit. The effect of repeatedly applying the above operations is to

automatically coliect symbol groupings having high correlation, so that inter-group

. o Li*P;
correlation is minimized. This minimizes the numerator of L = 24—1 while

Nij

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-11 -

simultaneously maximizing the length of the most probable yi so that the denominator of L
is maximized.

There are various techniques availabie for storing and manipulating the
code book. One structure for a code book is traversal and storage of a N-ary (e.g., binary,
tertiary, etc.) tree, where symbol groupings guide a traversal of the tree structure. Leaf
nodes of the tree represent the end of a recognized symbol sequence, where an entropy-
type code is associated with the sequence. Nodes can be coded in software as a
structure, class definition, or other structure allowing storage of a symbol or symbols
associated with the node.

Alternatively, the code book may be structured as a table having each
string of input symbol sorted by probability of occurrence, with highly probable input at
the top of the table. For large tables, the table can be sorted according to the first
symbol, i.e., all symbol series beginning with “A” are grouped together, followed by series
starting with “B”, etc. With this arrangement, all entries within the grouping are sorted
according to their probabilities of occurrence. The position of the beginning of each
section is marked/tracked so that a hash-type function (e.g., a look-up based on the first
symbol) can be used to locate the correct portion of the code book table. In this look-up
table approach to storing the code book, once the first symbol is hashed, look-up simply
requires a search of the corresponding table section until a matching entry is located.

FIGS. 4-10 illustrate creation of a code book pursuant to FIG. 3 for an
alphabet {A, B, C}. For this discussion, the code book is defined with respect to an
exemplary input stream “AAABBAACABABBAB”. As discussed above, one or
more exemplary inputs may be used to generate a code book that is then used by
encoders and decoders to process arbitrary inputs. For clarity, the code book is presented
as a tree structure, although it may in fact be implemented as a linear table, hash table,
database, etc. As illustrated, the tree is oriented left-to-right, where the left column (e.g.,
“A" and “X0") represents the top row of a tree-type structure, and successively indented
rows represent the “children” of the previous row’s node (e.g., in a top-down tree for FIG.
5, node “A” is a first-row parent node for a second-row middie-child node “B".).

In preparing the code cook, the general rule is to pick the most probable
leaf node, expand it, re-compute probabilities to determine the most probable leaf-node,
and then compact the remaining sibling nodes into a single Xn node (n=0..N, tracking

each time nodes have been combined). If it turns out that the most probable node is a

10

15

20

25

30

WO 00/36751 PCT/US99/29003

12

group node, then the group is split, probabilities recalculated, and the most probable
member node retained (i.e., the remaining group members are re-grouped). Processing
cycles until a stop state is reached, such as a code book having predetermined size.

FIG. 4 shows an initial grouping for the input stream “A AABBA A -

C AB ABB AB”. Aninitial parsing of the input shows probabilities of occurrence of A =
8/15, B = 6/15, and C=1/15. This initial trivial grouping can be created based on
different criteria, the simplest being having a first-level node for every character in the
alphabet. However, if the input alphabet is large, the trivial grouping may be limited to
some subset of symbols having highest probability, where the remaining symbols are
combined into an X grouping. FIG. 4 illustrates this technique by starting with only two
initial groups, group A 400 having probability 8/15, and group X0 402 having probability
7/15, where X0 represents all remaining low probability symbols in the alphabet, e.g., B
and C.

After preparing an initial trivial grouping, the leaf-node having highest
probability is selected for extension (see also FIG. 3 discussion regarding processing
sequence). Hence, as shown in FIG. b, group A 400 is tentatively expanded by each
character in the alphabet (or one may limit the expansion to some subset thereof as
described for creating the initial grouping). Probabilities are then recomputed with respect
to the input stream "/AAABBAACABABB A B” to determine values for the
tentative extensions A 406, B 408, and C 410. The result is nine parsing groups, where
“A A” appears 2/9, “A B” appears 4/9, and “A C" appears 0/9. Therefore, the most
probable extension “A B” is retained and the other extensions collapsed into X1 =A,C.
Note that although this discussion repeatedly recalculates all probabilities, a more efficient
approach is to retain probabilities and symbol associations for each node within the node,
and only computing information as necessary.

FIG. 6 shows the collapse into X1 412 for FIG. 5. Processing repeats with
identification of the node having highest probability, e.g., node B 408 at probability 4/9.

As shown in FIG. 7, this node 408 is tentatively extended with symbols A
414, B 416, C 418, and as discussed above, the tentative grouping with highest
probability is retained. After recalculating probabilities, the result is eight parsing groups in
which the symbol sequence “A B A” 414 appears once, “A B B” 416 appears once, and
“A B C” 418 does not appear at all. Since tentative extensions A 414 and B 416 have the

same probability of occurrence, a rule needs to be defined to choose which symbol to

10

156

20

25

30

WO 00/36751 PCT/US99/29003

-13-

retain. For this discussion, whenever there are equal probabilities, the highest row node
{e.g., the left-most child node in a top-down tree) is retained. Similarly, when there is a
conflict between tree rows, the left-most row’s node (e.g., the node closest to the root of
a top-down tree) is retained.

Note that the above described parsing of the exemplary input does not
account for the trailing two symbols “A B” of the input. As illustrated in FIG. 7, there is
no leaf corresponding to “A B” as that configuration was expanded into “A B A”, “A B B”,
and “A B C”. To compensate, code book entries can be created to account for such end
of input sequences, or the input having no entry can be escaped with a special character
and inserted in the encoded output stream. For example, a special symbol can be used to
indicate end of input, therefore implying how to handie the trailing characters on decoding.

Thus, as shown in FIG. 8, node A 414 is retained and nodes B 416 and C
418 are combined into node X2=B,C 420, having combined probability of 1/8 + 0/8.
Now, the next step is to expand the node currently having highest probability with respect
to the input stream. As shown, nodes X1=A,C 412 and X0=B,C 402 have the same
probability of occurrence (3/8). As discussed above, the highest node in the tree (X0 402)
is extended. (Although it is only necessary to be consistent, it is preferable to expand
higher level nodes since this may increase coding efficiency by increasing the number of
long code words.)

However, X0 402 is a combined node, so it must be split instead of
extended. FIG. 9 illustrates the result of splitting node X0 into its constituent symbols B
422 and C 424. Recalculating probabilities indicates that symbol sequences “A B A”
appears 1/8, “A B X2” appears 1/8, “A X1" appears 3/8, “B” 422 appears 2/8, and “C”
appears 1/8. Since this is a split operation, the split node having highest probability, e.g,
node B 422, is retained, and the remaining node(s) re-combined back into X0=C 424.

FIG. 10 shows the result of retaining high-probability node B 422. Note
that grouping X0 now only represents a single symbol “C”, After revising probabilities,
the node having highest probability must be identified and split or extended. As shown,
symbol sequence “A B A” appears 1/8, “A B X2" appears 1/8, “A X1” appears 3/8, “B”
appears 2/8, and “X0" appears 1/8. Therefore node X1 412, as a combined node, must
be split.

Splitting proceeds as discussed above, and processing the code book

cycles as illustrated in FIG. 3, with highest probability nodes being extended or split until a

10

WO 00/36751 PCT/US99/29003

-14 -

stop state is reached (e.g., the code book reaches a maximum size). Note that for the
FIG. 10 configuration, the average bits per input symbol, assuming factional bits under
ideal Huffman encoding of the leaf nodes, is approximately 0.8 bits/symbol (varies
depending on how the trailing input “A B” is handled). This represents a significant (about
10%) savings over previous lossless compression techniques, such as ideal scalar
Huffman encoding.

Having described and illustrated the principles of my invention with
reference to an illustrated embodiment, it will be recognized that the illustrated
embodiment can be modified in arrangement and detail without departing from such
principles. Accordingly, what is claimed as the invention is all such modifications as may

come within the scope and spirit of the following claims and equivalents thereto.

10

15

20

25

30

WO 00/36751 PCT/US99/29003

- 15 -

What is claimed is:

1. A method of constructing a code book for groupings of symbols
drawn from an alphabet, in which variable-sized groups of symbols are each assigned a
variable length code based on probability of occurrence of symbol groupings, comprising:

receiving symbols from an input;

storing in a data structure variable length symbol groupings defined by
contiguous symbols received from the input;

calculating a probability for the symbol groupings; and

assigning a variable length code for each symbol grouping, such code

having a length inversely proportional to the probability for each such grouping.

2. A method of constructing a code book according to claim 1,
comprising:

identifying a symbol grouping having high probability;

expanding the symbol grouping into tentative groupings by adding a new
symbol from the alphabet;

identifying a high probability tentative grouping;

combining all tentative groupings, except for the high probability tentative
grouping, into a combined grouping;

storing the high probability tentative grouping in the data structure; and

storing the combined grouping in the data structure.

3. A method according to claim 2, wherein if the symbol grouping
having high probability is a combined grouping, then splitting the combined grouping into
constituent symbols, identifying a constituent symbol having high probability, and re-

combining all constituent symbols except for the high probability constituent symbol.

4, A method according to claim 2, wherein all steps are repeated until

a code book having a predetermined number of entries is reached.

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-16 -

5. A method according to claim 4, wherein identification of high
probability is performed comparing probability of occurrence of each tentative grouping in

an exemplary input.

6. A method according to claim 2,

wherein the high probability tentative grouping is formed by the symbol
grouping having high probability, followed by a most probable extension, and

wherein the combined grouping is formed by the symbol grouping having
high probability, followed by a special extension corresponding to any extension different

than the most probable extension.

7. A method according to claim 6, wherein a combined grouping is
stored within a data structure having a dynamically allocable memory for storing each

symbol within the grouping.

8. A computer-readable medium storing computer-executable

programming for performing the steps recited in claim 3.

9. A computer-readable medium storing computer-executable

programming for performing the steps recited in claim 2.

10. A computer-readable medium storing computer-executable

programming for performing the steps recited in claim 6.

11. A method for creating a code book for compressing streaming data,
such streaming data being represented by a series of symbols which are collected into
variable length groupings of symbols that are each assigned a variable length code based
on probability of occurrence such groupings in a typical data source, the method
comprising:

storing such symbol groupings in a data structure having a dynamically
allocable memory for storing the symbol groupings, where the data structure has different
entropy codes assigned to each of a plurality of different input sequences;

identifying a symbol grouping having high probability;

10

15

20

25

30

WO 00/36751 PCT/US99/29003

17 -

expanding the symbol grouping into tentative groupings by adding a new
symbol from the alphabet;

identifying a high probability tentative grouping;

combining all tentative groupings, except for the high probability tentative
grouping, into a combined grouping;

storing the high probability tentative grouping in the data structure; and

storing the combined grouping in the data structure.

12. A method according to claim 11, wherein the data structure is

configured as a table having entries for storing each symbol grouping.

13. A method according to claim 11, in which the data structured is
configured as a tree having nodes containing symbols, and wherein each symbol grouping

is identified by a traversal path through the tree.

14. A method according to claim 11, further comprising the step of
splitting the combined grouping if the combined grouping has high probability, such
splitting comprising:

breaking apart the grouping into constituent symboils;

identifying a constituent symbol having high probability; and

re-combining all constituent symbols except for the high probability

constituent symbol.

15. The method of claim 11, wherein the streaming data is retrieved

from a non-volatile storage medium.

16. A system for constructing a code book for groupings of symbols
drawn from an alphabet, in which variable-sized groups of symbols are each assigned a
variable length code based on probability of occurrence of symbol groupings, comprising:

an input for receiving plural symbols;

a memory configured to contain a data structure for storing variable length
symbol groupings defined by contiguous symbols received from the input;

means for calculating a probability for the symbol groupings; and

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-18 -

means for assigning a variable length code for each symbol grouping, such

code having a length inversely proportional to the probability for each such grouping.

17. A system according to claim 16, the system further comprising

means for splitting a combined grouping into constituent symbols.

18. A system according to claim 16, further comprising:

means for identifying a symbol grouping having high probability;

means for expanding the symbol grouping into tentative groupings by
adding a new symbol from the alphabet;

means for identifying a high probability tentative grouping;

means for combining all tentative groupings, except for the high probability
tentative grouping, into a combined grouping;

means for storing the high probability tentative grouping in the data
structure; and

means for storing the combined grouping in the data structure.

19. A system according to claim 18, further comprising means for
splitting a combined grouping into constituent symbols if the combined grouping is the

symbol grouping having high probability.

20. A method of code book construction for encoding symbois of an
alphabet, in which symbols are stored in a memory storage and adaptively grouped
according to the probability of receiving such a symbol grouping from an input, such
storage containing shorter groupings defined by a symbol series of one or more symbols
from the alphabet, and longer groupings defined by extending the symbol series of a
shorter grouping with one or more characters from the alphabet, comprising:

forming an initial collection of shorter groupings;

selecting a shorter grouping;

defining longer groupings by extending the shorter grouping with extension
symbols;

computing a probability of receivihg each longer grouping from the input,

so as to identify high probability and low probability groupings; and

10

15

20

25

30

WO 00/36751 PCT/US99/29003

-19 -

combining each low probability grouping into a combined grouping having
the symbol series of the shorter grouping, and an expansion symbol representing any

extension series except those of each high probability grouping.

21. A computer readable medium having encoded thereon computer

executable statements for implementing the data structure of claim 20.

22. A method of code book construction for encoding symbols of an
alphabet, in which symbols are stored in a hierarchical memory storage and adaptively
grouped according to the probability of receiving such a symbol grouping from an input,
such hierarchy having an initial hierarchy level containing initial groupings, where all
groupings are defined by a symbol series of one or more symbols from the alphabet, and
the hierarchy having sub-levels containing at least one sub-grouping for a parent grouping,
each sub-grouping defined by extending the symbol series for the parent with one or more
characters from the alphabet, comprising:

creating a new sub-level of a previous level in the hierarchy;

selecting a parent grouping from the previous hierarchy level;

defining an extension set of symbols having plural elements, each element
defined by at least one symbol from the alphabet;

for each element of the extension set, defining a sub-group of the parent
grouping by extending the symbol series for the parent grouping with such set element;

computing, for each defined sub-group, a probability of receiving such sub-
group from the input;

identifying at least one high probability sub-group having a symbol series
defined by a base symbol series common to each subgroup and a high-probability
extension series of at least one symbol, where all other sub-groups are low probability;
and

combining each low probability sub-group into a combined grouping having
a combined symbol series represented by the base symbol series and a special symbol

representing any symbol series different from each high-probability extension series.

23. A computer readable medium having encoded thereon computer

executable statements for implementing the data structure of claim 22.

PCT/US99/29003

WO 00/36751
1/5
FIG. 1
PERSONAL COMPUTER| ___ 20
PROCESSING | -2t |
UNIT I I oPeERATING },/ 35
: | SYSTEM
2 g s
/ SYSTEM || APpLICATIONS —— *°
MEMORY | | L _ -7 N
23 —— 25 ”,w"’//| T 37
TR e P T
24 o . pata — 38
B ’ DATA
ROM Y broowAas |
/
/
/
32 <
»| nTeRFACE l»| HARD | A— 27
DRIVE
33 ~__| FLOPPY | | - 28
-1 INTERFACE | DRIVE o9
BEE
MoniToR — 7
34 ~L___ CD-ROM _
| INTERFACE [»| PAVE 5 40 |
: [oisk Mol a1 KEYBOARD
48
.| vibEO -
”| ADAPTER MOUSE
.
46 74 52\ 42 49
SERIAL 7 \ 8
— PORT
INTERFACE 4! MODEM > WAN - REMOTE
1 COMPUTER
,| NETWORK 1=~ >3 WOAN s
ADAPTER MEMORY
»| GaTEWAY |«] .| | STORAGE
—1
) 51 50

\
55

WO 00/36751

FIG. 2

2/5

Sender

f 200

A

Encoder

f 202

204

Decoder

f 206

l

Y

Receiver

f 208

PCT/US99/29003

WO 00/36751 PCT/US99/29003

3/5

FIG. 3

Prepare 300
Trivial
Grouping

h 4

Count |/ 302
Probability of
Groupings

A 4

Choose Most
304
\J Probable

Grouping
l

Split «Yes Combined
J No

\ 4
Extend Most 318
¥ Probable e
310 Grouping

l

Y

306

308

Compute
/| Probability
312

Keep Most
Probable
314 I Extension
Collapse
Less
316 -/| Probable
Extensions

WO 00/36751 PCT/US99/29003

4/5

FIG. 4
400 A 8/15 Expand
402 ::tXO=B,C 7115 '

FIG. 5

A

o A 2/9

jgg] \¥B 4/9 Keep
410 — ~C 0/9

X0

FIG. 6
408 \%B 4/9 Expand
412 — | X1=A,C 2/9

X0 3/9

FI1G. 7

A
_E&
414 — A 118 Keep

416 _,_A\T 1/8

2c 0/8
2/8
X0 3/8

WO 00/36751 PCT/US99/29003

5/5
A
B |
\:A 118
420 —— X2=B,C 1/8
412 —— X1 3/8
402 —f-xo '3/8 Split
A
B
\:A 1/8
X2=B,C 1/8
— X1 3/8
422 —1-8 218 Keep
402— o0 B 218
A
\B
| A 1/8
420 TN %xe 118
412 —— 4 3/8 Split
422 g b

INTERNATIONAL SEARCH REPORT

intes onal Application No

PCT/US 99/29003

A. CLASSIFICATION OF SUBJECT MATTER
TP S 0T /a2

According to intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 HO3M GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal PAJ

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 550 541 A (TODD CRAIG C) 1,16,
27 August 1996 (1996-08-27) 20-23
the whole document
A 2-15,
17-19
A EP 0 283 735 A (HAYES MICROCOMPUTER PROD) 1-23
28 September 1988 (1988~09-28)
page 2, line 17 -page 2, line 30
page 4, line 29 -page 4, line 44
- /...._
m Further documents are listed in the continuation of box C. E Patent family members are listed in annex.

° Special categories of cited documents :

T* later document published after the intemational filing date
of priority date and not in conflict with the application but

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 3402040, Tx. 31 651 epo nl,

"A" document defining the general state of the art which is not . by
considered to be of particular relevance ﬁ\ﬂve:n :% :nderstand the principle or theory underlying the
*E" earlier document but published on or after the international *X* document of particular relevance; the claimed invention
fiing date . cannot be considered novel or cannot be considered to
Lt dmg\hent whelgh ma)t(at{)\lri:hw tgoubt; loic?at griorétz! clafim(g% r?r involve an inventive step when the document is taken alone
vhich is cited to es 6 pubication daie of another "Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
0O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
*P" document published prior to the intemational filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual compietion of the intemational search Date of mailing of the international search report
9 May 2000 17/05/2000
Name and mailing address of the ISA Authorized officer

Fax: (+31-70) 340-3016 Fassnacht, C

Form PCTASA/210 (second sheet) (July 1892)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intes Jnal Application No

PCT/US 99/29003

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

P,X

PATENT ABSTRACTS OF JAPAN

vol. 1998, no. 01,

30 January 1998 (1998-01-30)

& JP 09 232968 A (KOKUSAI DENSHIN DENWA CO
LTD <KDD>),

5 September 1997 (1997-09-05)

abstract

-& US 5 883 589 A (WADA MASAHIRO ET AL)

16 March 1999 (1999-03-16)

PATENT ABSTRACTS OF JAPAN

vol. 012, no. 118 (E-600),

13 April 1988 (1988-04-13)

& JP 62 247626 A (FUJI PHOTO FILM CO LTD),
28 October 1987 (1987-10-28)

abstract

US 5 959 560 A (SAID AMIR ET AL)

28 September 1999 (1999-09-28)

column 6, line 47 —column 9, Tine 23

column 12, line 32 -column 12, line 67
column 15, line 28 -~column 16, line 22
figures 1-3

1-23

1-23

1,16,

n
T
N
w

Fom PCTASA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte.

onal Application No

PCT/US 99/29003 -

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5550541 A 27-08-1996 AT 182041 T 15-07-1999
AU 684013 B 27-11-1997
AU 2203695 A 23-10-1995
CA 2183352 A 12-10-1995
CN 1144583 A 05-03-1997
DE 69510662 D 12-08-1999
DE 69510662 T 13-01-2000
EP 0754374 A 22-01-1997
JP 9511372 T 11-11-1997
Wo 9527337 A 12-10-1995

EP 0283735 A 28-09-1988 us 4862167 A 29-08-1989
AU 8208287 A 25-08-1988
CA 1318035 A 18-05-1993
JP 1125028 A 17-05-1989

JP 09232968 A 05-09-1997 us 5883589 A 16-03-1999

JP 62247626 A 28-10-1987 NONE

US 5959560 A 28-09-1999 NONE

Form PCT/ASA/210 (patent family annex) (July 1982)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

