

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-529311

(P2004-529311A)

(43) 公表日 平成16年9月24日(2004.9.24)

(51) Int.Cl.⁷

F28D 7/16

F1

F28D 7/16

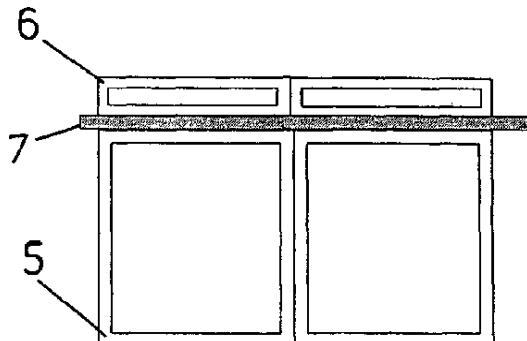
Z

テーマコード(参考)

3L103

審査請求 未請求 予備審査請求 有 (全 23 頁)

(21) 出願番号 特願2003-504031 (P2003-504031)
 (86) (22) 出願日 平成14年5月20日 (2002.5.20)
 (85) 翻訳文提出日 平成15年12月9日 (2003.12.9)
 (86) 國際出願番号 PCT/GB2002/002342
 (87) 國際公開番号 WO2002/101312
 (87) 國際公開日 平成14年12月19日 (2002.12.19)
 (31) 優先権主張番号 0114224.9
 (32) 優先日 平成13年6月9日 (2001.6.9)
 (33) 優先権主張國 英国(GB)


(71) 出願人 591175723
 エヌエヌシー リミテッド
 N N C L I M I T E D
 英国、ダブリュエイ16 8キュウゼット
 , チェシャー、ナツツファッド、シェルフ
 オード ロード、ブース ホール (番地
 なし)
 (74) 代理人 100086405
 弁理士 河宮 治
 (74) 代理人 100101454
 弁理士 山田 韶二
 (72) 発明者 デイビッド・ビクター・シャーウッド
 イギリス、ダブリュエイ13・Oピーエ
 ヌ、チエシャー、リム、マシー・ブルック
 ・レイン2エイ番

最終頁に続く

(54) 【発明の名称】熱交換器

(57) 【要約】

第一の流体用の第一の複数の導管(5)と、第二の流体用の第二の複数の導管(6)とを含む熱交換器。前記第一の導管(5)と第二の導管(6)は、この両者が熱伝導性の固体母材(7)により分離されるように形成される当該固体母材(7)内に埋め込まれる。隣接する第一(5)と第二の導管(6)間の間隙が、隣接する第一の導管(5)間の間隙、及び隣接する第二の導管(6)間の間隙よりもはるかに大きい。

【特許請求の範囲】**【請求項 1】**

第一の流体用の第一の複数の導管と、第二の流体用の第二の複数の導管とを含む熱交換器であって、

前記第一の導管と第二の導管は、この両者が熱伝導性の固体母材により分離されるように形成されて当該固体母材内に埋め込まれ、隣接する第一と第二の導管間の間隙が、隣接する第一の導管間の間隙、及び隣接する第二の導管間の間隙よりもはるかに大きい熱交換器。

【請求項 2】

隣接する第一の導管相互が接触し、及び／又は隣接する第二の導管相互が接触している、10請求項 1 にかかる熱交換器。

【請求項 3】

隣接する第一の導管相互間、及び／又は隣接する第二の導管相互間に金属薄片が配置されている、請求項 1 にかかる熱交換器。

【請求項 4】

前記第一の導管、及び／又は前記第二の導管の各々が矩形断面である、請求項 1、2、3 にかかる熱交換器。

【請求項 5】

前記固体母材が、前記第一と第二の導管間の板を形成し、各導管が前記板と接触している、20請求項 1 から 4 のいずれか一にかかる熱交換器。

【請求項 6】

前記固体母材が銅により構成されている、請求項 1 から 5 のいずれか一にかかる熱交換器。

【請求項 7】

前記第一の導管の各々、及び／又は前記第二の導管の各々が、ステンレス鋼で作られている、請求項 1 から 6 のいずれか一にかかる熱交換器。

【請求項 8】

少なくとも 1 つの導管が、前記固体母材が形成される間に当該固体母材に結合される、請求項 1 から 7 のいずれか一にかかる熱交換器。

【請求項 9】

前記第一の導管の各々、前記第二の導管の各々が、前記固体母材が形成される間に当該固体母材に結合される、請求項 8 にかかる熱交換器。

【請求項 10】

前記第一の導管が、前記第二の導管よりも大きな流れ領域を持って形成されている、請求項 1 から 9 のいずれか一にかかる熱交換器。

【請求項 11】

前記第一と第二の導管が、前記板に隣接してほぼ等しい表面積を有している、請求項 10 にかかる熱交換器。

【請求項 12】

添付の図 2、3、4～7 を参照して明細書中に記載された内容と同等の熱交換器。40

【請求項 13】

請求項 1 から 12 のいずれか一にかかる熱交換器を形成する方法であって、

前記第一の導管と第二の導管の間に配置された金属を前記第一と第二の導管に結合するため、高温平衡圧力技術を使用して前記第一の導管と第二の導管との間に固体母材が構成される方法。

【請求項 14】

前記固体母材が、当該固体母材が形成される間に少なくとも 1 つの導管の表面に結合される、請求項 13 にかかる方法。

【請求項 15】

前記固体母材が、当該固体母材の形成の間に第一と第二の導管の各々の表面に結合される50

、請求項 1 4 にかかる方法。

【請求項 1 6】

明細書に記載された内容とほぼ同等の熱交換器を形成する方法。

【発明の詳細な説明】

【技術分野】

【0 0 0 1】

本発明は熱交換器に関する。より具体的には、液体金属によって冷却する原子炉に使用される熱交換器に関するが、これに限定はされない。

【0 0 0 2】

原子炉本体では、液体金属の一次冷却液が使用されており、この一次冷却液からは、水との直接熱交換を行って蒸気を発生させるか、あるいは二次液体金属冷却液を使用した熱交換手段を利用するかにより熱を除去する必要がある。後者の場合、その後に二次熱交換器を使用して蒸気を発生させる。原子炉で使用される熱交換器は、大気への放射能汚染の恐れを含む過激な反応の原因となる液体金属と水／蒸気との接触を避けるため、極めて頑丈なものでなければならない。この液体金属と水／蒸気との過激な反応はまた、熱交換器内に圧力波を発生させ、反応による生成物は残余の冷却液循環路に多大の障害を及ぼし、熱交換器の修復を極めて困難にして修復ができるようになるまで長期間の閉鎖が余儀なくされる。

【0 0 0 3】

液体金属の一次冷却液（ナトリウム）と水／蒸気の間の直接の熱伝導を行う既存の熱交換器では、アレイ状に配列された円形断面のチューブが、固体の銅母材内に埋め込まれている。使用時に、前記チューブの一部がナトリウムを送り、一部が水／水蒸気を送る。この既存の熱交換器は円形断面のチューブを使用しているため、良好なパッキング部分を提供するための使用可能なチューブサイズと分配パターンの数とが制限されるという欠点を有する。加えて、円形断面のチューブを使用すると、チューブ間の空隙を埋めるために大量の銅が必要とされる。円形断面のチューブでは、チューブ同士が接触するとその接触点に形成される狭い隙間に銅を埋めることができないため、接触させることができない。このため、チューブ間の空間は一定の限度以下には狭くすることができない。

【0 0 0 4】

前記既存の埋め込み式熱交換器は、隣接するチューブ間に銅の連続した塊が形成されるところから、極めて信頼性が高いものの、安全にとって致命的な課題は、異なる液体であるナトリウムと水／水蒸気を送るチューブ間に銅の形成することである。したがって、既存の埋め込みチューブ式熱交換器では、必ずしも安全にとって致命的となる要求を満たしていない。

【0 0 0 5】

本発明の目的は、上述の問題を解消し、もしくは軽減することである。

【0 0 0 6】

本発明の第一の態様によれば、第一の流体用の第一の複数の導管と、第二の流体用の第二の複数の導管とを含む熱交換器が提供され、前記第一の導管と第二の導管とは、この両者が熱伝導性の固体の母材で仕切られるように当該母材内に埋め込まれ、隣接する第一と第二の導管間の間隙は、第一の導管間の間隙、及び第二の導管間の間隙よりもはるかに大きい。

【0 0 0 7】

隣接する第一の導管間は相互に接してもよく、及び／又は隣接する第二の導管間は相互に接してもよい。あるいは代替として、隣接する第一の導管間、及び／又は隣接する第二の導管間に金属薄片が配置されてもよい。

【0 0 0 8】

第一の導管及び／又は第二の導管の各々は、好ましくは矩形断面をしている。前記固体母材は、前記第一と第二の導管間で板状となり、各導管はこの板に接している。前記固体母材は、銅で構成することができる。第一の導管及び／又は各第二の導管の各々は、ステン

10

20

30

40

50

レス鋼で作ることができる。

【0009】

少なくとも1つの導管は、固体母材が形成される間に前記母材に結合される。好ましくは、第一の導管と第二の導管の各々は、固体母材が形成される間に前記母材に結合される。

【0010】

第一の導管は、第二の導管よりも大きな流れ領域を持って構成されてもよい。第一と第二の導管は、前記板に隣接してほぼ等しい表面積を有してもよい。

【0011】

本発明の第二の態様によれば、上述したような熱交換器を形成する方法が提供され、ここでは、前記第一の導管と第二の導管の間に高温平衡圧力 (hot isostatic pressure) 技術を用いて固体母材が形成され、第一の導管と第二の導管との間に配置された金属を前記第一及び第二の導管に結合している。

【0012】

前記固体母材は、当該固体母材が形成される間に少なくとも1つの導管の表面に結合され得る。好ましくは、前記固体母材は、当該固体母材を形成する間に前記第一及び第二の導管のそれぞれの表面に結合される。

【0013】

既存の熱交換器と本発明の実施の形態とにつき、例示目的で添付図面を参照して以下に説明する。

【0014】

図1は、アレイ状に配置された2つの個別のチューブセット2、3から構成される既存の熱交換器1を示している。チューブ2は、原子炉本体を冷却するために使用される液体金属冷却液(ナトリウム)を送り、チューブ3は、水を送る。チューブ2と3は、両チューブセットに機械的に結合された固体の銅母材4内に埋め込まれている。これによって前記2つのチューブセット2、3の内部同士の間では3つの障壁が形成されており、これらの障壁とは、チューブ2と3の管壁、及び銅母材4である。

【0015】

図1からも明らかなように、このチューブ2、3の配置ではチューブ間に大きな空隙が生じてあり、この空隙は銅で満たされねばならない。前記パイプは、空隙が狭くなるとパイプ間の小さな隙間への充填が困難となるため、相互に接触させることはできない。これが当該熱交換器の構造を高価なものとする原因である。加えて、3つの障壁の内、ナトリウムを送るチューブ2と水/蒸気を送るチューブ3との間だけが必要なもので、同一材料を送る2チューブ間には必要とされないものであるため、この構造はかなり無駄である。

【0016】

図2には、本発明にかかる改善された熱交換器が示されている。金属冷却液(ナトリウム)を送る矩形断面の3つのチューブ5が相互に隣接して設けられている。同様に、水/蒸気を送る矩形断面の4つのチューブ6が相互に隣接して設けられている。この2つのチューブのセット5、6の間に、2つのパイプのセット5、6と機械的に接合された銅板7が設けられている。これにより、ナトリウムを送るチューブ5と水/蒸気を送るチューブ6の内部同士の間で3つの障壁が形成されており、これらはチューブ5と6の壁、及び銅板7である。ナトリウムを送る2つのチューブ5の内部間、又は水/蒸気を送る2つのチューブ6の内部間には2つの障壁しかなく、これらの障壁はチューブ5、6の壁により形成されている。このように、安全を確保するために必要なところには追加の障壁が設けられるが、同一の材料を送る2チューブ間には設けられていない。本発明の好ましい実施の形態ではチューブ5、6がステンレス鋼で作られているが、他の適切な材料が使用されてもよい。

【0017】

銅板7の成形、及び銅板7とチューブ5、6の間の機械的結合は、高温平衡圧力(HIP: hot isostatic pressure)技術によって最適に達成され、これは各種方法によって実施可能である。1つの技術では、チューブ5が相互に接触して配置される。個体の銅板がこのチ

10

20

30

40

50

チューブ 5 の上に置かれ、同様にお互いに接触した水を送るチューブ 6 が、前記固体銅板の上に置かれる。このようにしてできたアセンブリを型内に配置し、前記銅板を 2 つのチューブセット 5、6 に結合するために H I P プロセスが使用され、これによって板 7 はチューブ 5、6 に結合される。

【 0 0 1 8 】

代替の技術では、板 7 を設けるためのスペースが、2 つのチューブセット 5、6 の間に形成される。この形成されたスペースにはその後、銅粉末が充填され、H I P プロセスが使用されて前記粉末をチューブ 5、6 の外部を固定する金属に変換する。

【 0 0 1 9 】

ナトリウムと水 / 蒸気を送る両チューブの間で第三の障壁として作用する銅板 7 の厚さは 10 、いずれかのチューブ 5、6 で発生する亀裂の伝播を阻止するのに十分な厚さであればよい。したがって本発明では、図 1 に示すような構造と比較し、熱交換器を形成するために必要な銅の量を大幅に低減することができる。予備的な計算によれば、図 1 に示す円形断面のパイプを使用する既存の熱交換器と、本発明にかかる熱交換器の鋼材の量が同様であるとして、銅の量を最大 57% も低減することができる。これは既存の構造と比較して全体で約 30% のコスト低減となる。

【 0 0 2 0 】

図 1 に示す既存の構造において、チューブ 3 と母材 4 の材料の差による異なる膨張の結果発生する銅母材 4 内の最大熱応力は、2 つの隣接するチューブ 3、又は 2 つの隣接するチューブ 2 の間で発生する。したがって、図 2 に示すような矩形構造を採用すると、隣接するナトリウムのチューブ 5、又は隣接する水 / 蒸気のチューブ 6 の間に銅は存在しないので銅内の最大応力のレベルが低減される。 20

【 0 0 2 1 】

図 2 に示す実施の形態では、ナトリウムを送るチューブ 5 が相互に接触し、水 / 蒸気を送るチューブ 6 が相互に接触しているが、実用上は銅の薄片を隣接するナトリウムを送るチューブ 5 の間、隣接する水 / 蒸気を送るチューブ 6 の間に設けることが良好である。

【 0 0 2 2 】

次に図 3 は、本発明にかかる代替の熱交換器の構造を示している。ここでは、蒸気を送るチューブ 6 が、銅板 7 に隣接して比較的広い表面積を持ち、比較的小さな断面面積を持って形成され、これによりその熱伝導能力を向上させるよう構成されている。蒸気を送るチューブ 6 は比較的小さな流れ面積を持って形成されるが、単純通過式の蒸気発生器の場合は、良好な流れ安定性を維持するために高い圧力降下を使用することができる。これに対し、ナトリウムを送るチューブ 5 は、比較的大きな流れ面積を有し、より低い圧力降下で操業される。これにより、熱伝導領域は流れ領域と独立し、圧力降下と表面積が使用状態に応じて適切に選択される。 30

【 0 0 2 3 】

本発明にかかる熱交換器を使用する設備につき、図 4 から図 7 を参照して以下に説明する。

【 0 0 2 4 】

図 4 は、本発明にかかる熱交換器を含んだ冷却システムの全体像を示している。ナトリウムを送るチューブは垂直に配置され、ヘッダ 8 に導通する。水を送る一連のチューブ 9 が図の下方から装置に入る。チューブ 9 は、装置内でナトリウムのチューブと垂直方向に平行に走るチューブに接続され、その後、このチューブは、装置から出るチューブ 10 に接続されて多数の U 字状ループを形成する。これにより、それぞれナトリウムのチューブと水のチューブの配列を持つ下方モジュール 11 と上方モジュール 12 とが形成され、各々のモジュールは、例えば結合部 13 での溶接などによって適切に一体にされる。チューブ 14 は、上部ヘッダ 8 の下でモジュール 12 から出る。各チューブ 14 は、モジュール 11 と 12 を通過する各チューブ 10 と各チューブ 9 にそれぞれ接続される。 40

【 0 0 2 5 】

使用時、水は一連のチューブ 9 を通って装置内に入り、垂直方向に上向きに流れる。水は 50

装置を通過する間に高温のナトリウムによって加熱され、蒸気を発生し、この蒸気はU字状のチューブ10を通って下方モジュール11を通過し、継続して上方モジュール12に入り、ここで高温のナトリウムによって更に加熱される。この蒸気は、一連のチューブ14を通って装置から出る。

【0026】

次に図5において、蒸気のチューブ15の6本の平行な直線状アレイが設けられ、下方モジュール11内の各アレイは、8本のチューブを含むことが分かる。チューブ15の各アレイの間に、ナトリウムを送るチューブ16のアレイ（図5には各アレイに1つのみのチューブが描かれている）が設けられている。水／蒸気を送るチューブ15の各アレイと、ナトリウムを送るチューブ16の各アレイの対向面には銅板17が設けられている。

10

【0027】

図6は、図5の線6-6の断面が示されている。水／蒸気を送り、下方モジュール11を通過して垂直方向に上向きに進む矩形断面の各パイプ15は、円形断面のパイプ10に接続されていることがわかる。パイプ10は溶接結合部13を通過しておらず、したがって各パイプ16の全直径回りに溶接を施すためのアクセスを可能としている。

【0028】

最後に図7には、図4から図6に示すチューブのレイアウトを示している。これらチューブは、2つの比較的大きな断面のナトリウム用チューブ16が、4つの比較的小さな断面の水／蒸気用チューブ15に沿うように配置されている。板17は、この2つのチューブの列の間に設けられる。したがって、図6の下方モジュール11を通って表示されているチューブは、図7に示すような12のモジュールから作られている。

20

【0029】

板17は、チューブ15、16と機械的に結合されている。これは、全てのチューブ15が接触し、全てのチューブ16が接触するように型内にチューブ15、16を配置することにより達成される。チューブ15のアレイとチューブ16のアレイとの間に形成される空隙は、銅板又は銅粉末により埋められる。その後、HIPプロセスが使用され、前記チューブを上述したように前記母材に結合する。

【図面の簡単な説明】

【0030】

【図1】従来の熱交換器のチューブ構造を示す断面図である。

30

【図2】本発明にかかる熱交換器のチューブ構造を示す断面図である。

【図3】本発明にかかる熱交換機の他のチューブ構造を示す断面図である。

【図4】本発明にかかる熱交換器を使用したシステムの概要を示す図である。

【図5】図4の線5-5から見た側面図である。

【図6】図5の線6-6から見た断面図である。

【図7】図4から図6に示すシステムに使用される熱交換器のチューブ構造を示す断面図である。

【符号の説明】

【0031】

1. 热交換器、2、3. チューブ、4. 固体母材、5、6. チューブ、7. 銅板、8. ヘッダ、9、10. チューブ、11. 下方モジュール、12. 上方モジュール、13. 結合部、14、15、16. チューブ、17. 銅板、

40

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
19 December 2002 (19.12.2002)

PCT

(10) International Publication Number
WO 02/101312 A1(51) International Patent Classification⁵: F28D 7/00, F28F 1/04, 7/02

(21) International Application Number: PCT/GB02/02342

(22) International Filing Date: 20 May 2002 (20.05.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
014224.9 9 June 2001 (09.06.2001) GB

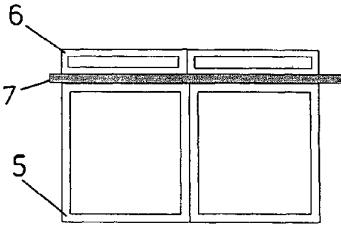
(71) Applicant: NNC LIMITED [GB/GB]; Booths Hall, Chelford Road, Knutsford, Cheshire, WA16 8QZ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SHERWOOD, David, Victor [GB/GB]; 2A Massey Brook Lane, Lynton, Cheshire WA13 0PN (GB).

(74) Agent: ALLMAN, Peter, John; Sussex House, 83-85 Mosley Street, Manchester M2 3LG (GB).

(81) Designated States (national): A11, AG, A12, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI1, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, IIR, IIU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AL, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SI, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published: with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HEAT EXCHANGER

WO 02/101312 A1

(57) Abstract: A heat exchanger comprising a plurality of first conduits (5) for a first fluid and a plurality of second conduits (6) for a second fluid. The first conduits (5) and the second conduits (6) are embedded in a heat conductive solid matrix (7) formed in-situ such that the first (5) and second (6) conduits are separated by the solid matrix (7). The spacing between adjacent first (5) and second conduits (6) is substantially greater than the spacing between adjacent first conduits (5) and the spacing between adjacent second conduits (6).

HEAT EXCHANGER

The present invention relates to a heat exchanger, particularly but not exclusively for use in a nuclear reactor that is cooled by liquid metal.

Liquid metal primary coolants are used in nuclear reactor cores, and there is a need to remove heat from such a primary coolant, either by direct heat exchange with water to generate steam, or by means of heat exchange with a secondary liquid metal coolant, which may then be used in a second heat exchanger to generate steam. The heat exchangers used in nuclear reactors must be extremely robust in order to prevent contact between the liquid metal and water/steam which would cause a violent reaction, potentially allowing radioactivity to escape to the atmosphere. Such a violent reaction between the liquid metal and water/steam would also create a pressure pulse in the heat exchanger, with the products formed from such a reaction causing considerable damage to the remainder of the coolant circuit, making repair of the heat exchanger very difficult and requiring a long shut down period to enable repairs to take place.

In one known heat exchanger for transferring heat directly between a liquid metal primary coolant (sodium) and water/steam, tubes of circular cross section arranged in an array are embedded in a solid copper matrix. In use, some of the tubes carry sodium, some water/steam. This known heat exchanger has the disadvantage that because tubes of circular cross section are used, the number of possible tube size and distribution patterns which give a good packing fraction is limited. Additionally, using tubes of circular cross section requires large volumes of copper to fill spaces between the tubes. Tubes of circular cross section can not be allowed to touch as narrow voids formed at the contact points are difficult to fill with copper. Thus the spacing between tubes cannot be reduced beyond a minimum limit.

Although the known embedded heat exchanger is highly reliable as a continuous body of copper is formed between any two adjacent tubes, the safety critical issue is the provision of a body of copper between tubes carrying different fluids, that is sodium

and water/steam. Accordingly some of the characteristics of the known embedded tube heat exchanger are not necessary to meet safety critical requirements.

It is an object of the present invention to obviate or mitigate the problems outlined above.

According to a first aspect of the present invention, there is provided a heat exchanger comprising a plurality of first conduits for a first fluid and a plurality of second conduits for a second fluid, wherein the first conduits and the second conduits are embedded in a heat conductive solid matrix formed insitu such that the first and second conduits are separated by the solid matrix, and the spacing between adjacent first and second conduits is substantially greater than the spacing between adjacent first conduits and the spacing between adjacent second conduits.

Adjacent first conduits may abut one another and/or adjacent second conduits may abut one another or alternatively a foil may be placed between adjacent first conduits and/or adjacent second conduits.

Each of the first conduits and/or each of the second conduits is preferably of rectangular cross-section. The solid matrix may define a plate between the first and second conduits, each conduit being in contact with the plate. The solid matrix may be formed of copper. Each of the first conduits and/or each of the second conduits may be formed of stainless steel.

At least one conduit may be bonded to the solid matrix during formation thereof. Preferably, each first conduit and each second conduit is bonded to the solid matrix during formation thereof.

The first conduits may be formed to have a larger flow area than the second conduits. The first and second conduits may have a substantially equal surface area adjacent the plate.

According to a second aspect of the present invention there is provided, a method of forming a heat exchanger as described above, wherein a solid matrix is formed between the first conduits and the second conduits using a hot isostatic pressure technique to bond metal placed between the first conduits and the second conduits to the first and second conduits.

The solid matrix may be bonded to the surface of at least one conduit during formation of the solid matrix. Preferably, the solid matrix is bonded to the surface of each of the first and second conduits during formation of the solid matrix.

A known heat exchanger, and embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is a cross-sectional view of a known heat exchanger tube arrangement;

Figures 2 and 3 are cross sectional views of alternative tube arrangements in a heat exchanger according to the present invention;

Figure 4 is an illustration showing an overview of a system in which a heat exchanger is in accordance with the invention is used;

Figure 5 is a side view on line 5-5 of figure 4;

Figure 6 is a cross-sectional view on line 6-6 of figure 5; and

Figure 7 is a cross sectional view of a heat exchanger tube configuration used in the system of figures 4 to 6.

Referring to figure 1, there is illustrated a known heat exchanger 1 comprising two separate sets of tubes 2, 3 arranged in an array. The tubes 2 carry a liquid metal coolant (sodium) that is used to cool a nuclear reactor core, whilst the tubes 3 carry

water. The tubes 2,3 are embedded in a solid copper matrix 4 that is mechanically bonded to both sets of tubes. Three barriers are thus created between the interior of the two sets of tubes 2, 3, the barriers being the walls of the tubes 2, 3 and the copper matrix 4.

It can be seen from figure 1 that this arrangement of tubes 2, 3 results in large gaps between tubes which must be filled with copper. The pipes can not be allowed to touch one another, so as to reduce the gaps, as the resultant small voids between pipes would be difficult to fill. This makes this heat exchanger configuration expensive. Additionally, as three barriers are required only between a tube carrying sodium 2 and a tube carrying water/steam 3 but not between two pipes carrying the same material, the arrangement has considerable redundancy.

Referring now to figure 2, there is illustrated an improved heat exchanger according to the present invention. Three tubes 5 of rectangular cross section carrying a metal coolant (sodium) are provided adjacent one another. Similarly, four tubes 6 of rectangular cross section carrying water/steam are provided adjacent one another. Between the two sets of tubes 5,6 there is provided a copper plate 7, which is mechanically bonded to the two sets of pipes 5,6. Three barriers are thus provided between the interiors of tubes 5 carrying sodium and tubes 6 carrying water/steam, the barriers being the walls of the tubes 5, 6 and the copper plate 7. Only two barriers are provided between the interior of any two tubes 5 carrying sodium or any two tubes 6 carrying water, these barriers being provided by the walls of the tubes 5, 6. Thus the additional barrier is provided where it is necessary to ensure safety, but not between two tubes carrying the same material. In a preferred embodiment of the present invention, tubes 5,6 are formed of stainless steel, although other suitable materials may be used.

The creation of the copper plate 7 and the mechanical bonding between the copper plate 7 and the tubes 5, 6 is best achieved by use of a hot isostatic pressure (HIP) technique that may be carried out in a number of ways. In one technique, tubes 5 are arranged such that they abut one another. A solid copper plate is then placed on top of

the tubes 5, and water carrying tubes 6, again in abutment, are placed on top of the solid copper plate. The resultant assembly is then arranged in a mould and a HIP process is used to bond the copper plate to the two sets of tubes 5,6 thereby forming the plate 7 bonded to the tubes 5,6.

In an alternative technique a space for the formation of the plate 7 is defined between the two sets of tubes 5,6. The defined space is then filled with powdered copper, and the HIP process is then used to convert the powder to metal which fuses with the outside of the tubes 5,6.

The thickness of the copper plate 7, acting as a third barrier between sodium and water/steam carrying tubes, needs only be sufficient to arrest any crack propagation that may emanate from one of the tubes 5,6. The present invention therefore greatly reduces the amount of copper necessary to form a heat exchanger as compared with the arrangement of figure 1. Preliminary calculations indicate that whilst steel content would be similar in the known heat exchanger using pipes of circular cross section of Figure 1 and a heat exchanger according to the present invention, the copper content may be reduced by as much as 57%. This leads to an overall cost saving of about 30%, relative to the known arrangement.

In the known arrangement of figure 1, highest thermal stresses in the copper matrix 4 caused by differential expansion of the different materials of the tubes 3 and the matrix 4 occur between two adjacent steam tubes 3 or two adjacent sodium tubes 2. Therefore, adopting a rectangular configuration as illustrated in figure 2, in which there is no copper between adjacent sodium tubes 5 or adjacent water/steam tubes 6, will reduce peak stress levels in the copper.

Although the illustrated embodiment of figure 2 shows tubes 5 carrying sodium in abutment and tubes 6 carrying water/steam in abutment, it may in practice be convenient to provide a thin copper foil between adjacent tubes 5 carrying sodium and adjacent tubes 6 carrying water/steam.

Referring now to figure 3, an alternative configuration for a heat exchanger according to the present invention is shown. Here tubes 6 carrying steam are formed such that they have a relatively large surface area adjacent the copper plate 7, and a relatively small cross sectional area, thereby increasing their heat transfer potential. Although the tubes 6 carrying steam are formed with a relatively small flow area, a higher pressure drop may be used to maintain good flow stability in the case of once-through steam generators. In contrast, the tubes 5 carrying sodium have a relatively large flow area, and operate with a lower pressure drop. Thus heat transfer area is independent of flow area, allowing pressure drop and surface area to be selected as appropriate to the application.

An installation using a heat exchanger according to the present invention will now be described with reference to figures 4 to 7.

Referring to figure 4, an overview of a cooling system incorporating the heat exchanger of the present invention is illustrated. Tubes carrying sodium are arranged vertically and communicate with headers 8. A series of tubes 9 carrying water enter the installation towards the bottom of the diagram. The tubes 9 are connected to tubes that run vertically parallel to the sodium tubes within the installation and which in turn are connected to tubes 10 that emerge from the installation, forming a number of U-shaped loops. This allows a lower module 11 and an upper module 12, each carrying an array of sodium tubes and water tubes, to be conveniently joined e.g. by welding at a joint 13. Tubes 14 emerge from the module 12 below the upper header 8. Each tube 14 is connected to a respective tube 10 and a respective tube 9 through the modules 11 and 12.

In use, water enters the installation through the series of pipes 9 and flows in a vertically upwards direction. The water is heated by the hot sodium as it passes through the installation generating steam which passes out of the lower module 11 through the U-shaped tubes 10, and continues into the upper module 12 where the

steam is heated further by hot sodium. The steam leaves the installation through the series of tubes 14.

Referring now to figure 5, it can be seen that six parallel linear arrays of steam tubes 15 are provided, each array in the lower module 11 comprising eight tubes. Between each array of tubes 15, an array of tubes 16 carrying sodium (only one tube in each array being illustrated in the view of figure 5) is provided. The interface of each array of tubes 15 carrying water/steam and each array of tubes 16 carrying sodium is provided by a copper plate 17.

Referring now to figure 6, a section on line 6-6 of figure 5 is shown. It can be seen that each pipe 15 of square cross section carrying water/steam and travelling in the vertically upwards direction through the lower module 11 is connected to a pipe 10 of round cross section. The pipes 10 do not pass through the welded joint 13, thereby allowing access about the full diameter of each pipe 16 to form a weld.

Referring finally to figure 7, the tube layout in the installation of figures 4 to 6 is shown. The tubes are arranged such that two relatively large cross section sodium tubes 16 are placed alongside four relatively small cross section water/steam tubes 15. A plate 17 is provided between the two rows of tubes. It can therefore be seen that the tubes illustrated travelling through the lower module 11 of figure 6 will in fact be made up of twelve modules as illustrated in figure 7.

The plates 17 are mechanically bonded to the tubes 15, 16. This is achieved by arranging the tubes 15, 16 in a mould such that all tubes 15 are in abutment and all tubes 16 are in abutment. A space defined between an array of tubes 15 and an array of tubes 16 is filled with a copper plate or powdered copper. A HIP process is then be used to bond the tubes to the matrix as described above.

CLAIMS

1. A heat exchanger comprising a plurality of first conduits for a first fluid and a plurality of second conduits for a second fluid, wherein the first conduits and the second conduits are embedded in a heat conductive solid matrix formed insitu such that the first and second conduits are separated by the solid matrix, and the spacing between adjacent first and second conduits is substantially greater than the spacing between adjacent first conduits and the spacing between adjacent second conduits.
2. A heat exchanger according to claim 1, wherein adjacent first conduits abut one another and/or adjacent second conduits abut one another.
3. A heat exchanger according to claim 1, wherein a foil is placed between adjacent first conduits and/or adjacent second conduits.
4. A heat exchanger according to claim 1, 2 or 3, wherein each of the first conduits and/or each of the second conduits is of rectangular cross-section.
5. A heat exchanger according to any preceding claim, wherein the solid matrix defines a plate between the first and second conduits, each conduit being in contact with the plate.
6. A heat exchanger according to any preceding claim, wherein the solid matrix is formed of copper.
7. A heat exchanger according to any preceding claim, wherein each of the first conduits and/or each of the second conduits is formed of stainless steel.
8. A heat exchanger according to any preceding claim, wherein at least one conduit is bonded to the solid matrix during formation thereof.

9. A heat exchanger according to claim 8, wherein each first conduit and each second conduit is bonded to the solid matrix during formation thereof.

10. A heat exchanger according to any preceding claim, wherein the first conduits are formed to have a larger flow area than the second conduits.

11. A heat exchanger according to claim 10 as dependant upon claim 5, wherein the first and second conduits have a substantially equal surface area adjacent to the plate.

12. A heat exchanger substantially as hereinbefore described with reference to figure 2, figure 3 or figures 4 to 7 of the accompanying drawings.

13. A method of forming a heat exchanger according to any preceding claim, wherein a solid matrix is formed between the first conduits and the second conduits using a hot isostatic pressure technique to bond metal placed between the first conduits and the second conduits to the first and second conduits.

14. A method according to claim 13, wherein the solid matrix is bonded to the surface of at least one conduit during formation of the solid matrix.

15. A method according to claim 14, wherein the solid matrix is bonded to the surface of each of the first and second conduits during formation of the solid matrix.

16. A method of forming a heat exchanger substantially as hereinbefore described.

WO 02/101312

PCT/GB02/02342

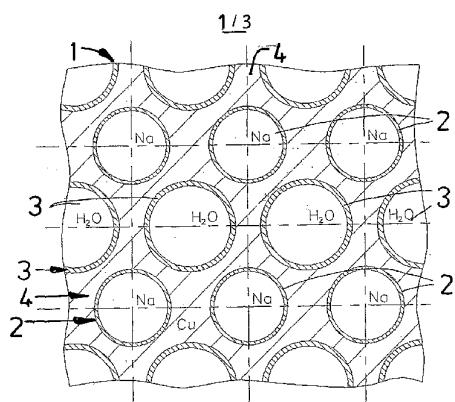


FIG. 1

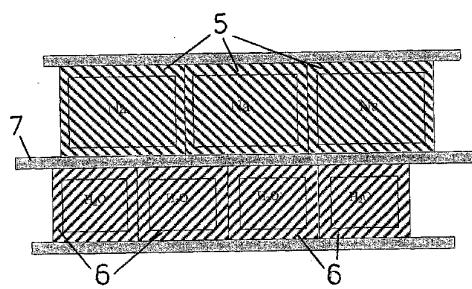


FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 02/101312

PCT/GB02/02342

2 / 3

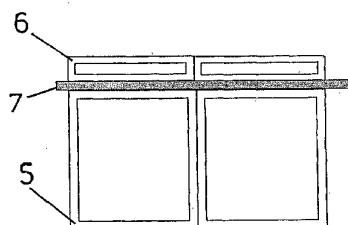


FIG. 3

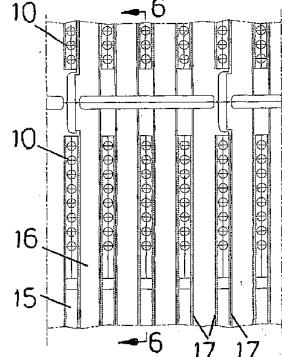


FIG. 5

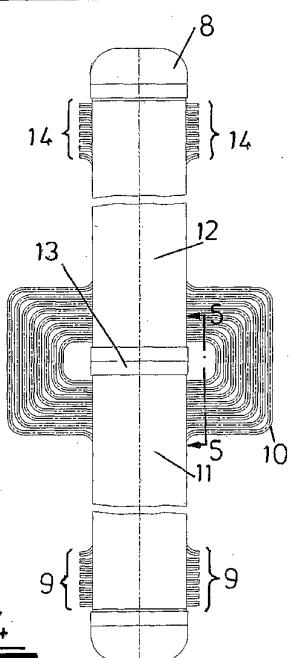
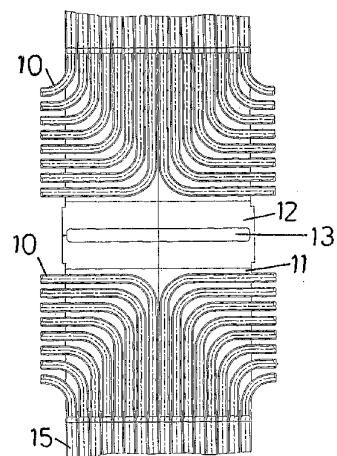
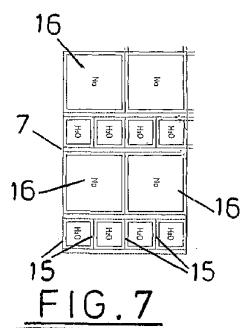




FIG. 4

SUBSTITUTE SHEET (RULE 26)

3 / 3FIG. 6FIG. 7

SUBSTITUTE SHEET (RULE 26)

【国際調査報告】

INTERNATIONAL SEARCH REPORT		Int'l. Application No. PCT/GB 02/02342
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 F28D7/00 F28F1/04 F28F7/02		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Maximum documentation searched (classification system followed by classification symbols) IPC 7 F28D F28F		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3 999 602 A (FEWELL THOMAS E ET AL) 28 December 1976 (1976-12-28) column 2, line 51 -column 4, line 27; figures 1,2,5 ---	1-16
P, A	GB 2 361 054 A (NMC LTD) 10 October 2001 (2001-10-10) page 3, line 9 -page 4, line 20; figures 1-5 ---	1-16
A	GB 885 292 A (ATOMIC ENERGY AUTHORITY UK) 20 December 1961 (1961-12-20) page 1, line 48 - line 74; figures 1-3 ---	1-16
A	US 5 309 637 A (MORIARTY MICHAEL P) 10 May 1994 (1994-05-10) column 2, line 45 -column 3, line 36; figures 1-6 ---	1-16 -/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents:		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the international filing date		
L document which may throw doubts on priority, claim(s) or validity of the claimed invention or which is cited in support of another citation or other special reason (p.s. specified)		
C document referring to an oral disclosure, use, exhibition or other means		
R document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date and which may throw doubts on the novelty of the claimed invention but cited to understand the principle of theory underlying the invention		
K document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
Y document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone or when it is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
S document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report	
16 September 2002	23/09/2002	
Name and mailing address of the ISA	Authorized officer	
European Patent Office, P.O. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 342-2030; Tx. 31 651 epc nl; Fax. (+31-70) 342-6316	Beltzung, F	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT		Inte r na tional Application No PCT/GB 02/02342
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 061 779 A (FERATON ANSTALT) 6 October 1982 (1982-10-06) page 3, line 21 -page 6, line 34; figures 1-9 -----	1-16
A	US 3 153 446 A (SHAW ROBERT H) 20 October 1964 (1964-10-20) column 1, line 52 -column 3, line 17; figures 1-4 -----	1-16
A	WO 94 10520 A (LEVEL ENERGIETECH BV ;VELTKAMP WESSEL BART (NL)) 11 May 1994 (1994-05-11) page 4, line 13 -page 7, line 24; figures 1-9 -----	1-16
A	DE 296 04 521 U (SGL TECHNIK GMBH) 20 June 1996 (1996-06-20) page 18, line 4 -page 25, line 13; figures 1-10 -----	1-16
1		

Form PCT/ISA/210 (continuation of amend sheet) (Aug 1996)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. Appl. No.
PCT/GB 02/02342

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 3999602	A	28-12-1976	CA	1037021 A1	22-08-1978	
			DE	2647653 A1	28-04-1977	
			FR	2328935 A1	20-05-1977	
			GB	1533899 A	29-11-1978	
			JP	52051152 A	23-04-1977	
GB 2361054	A	10-10-2001	NONE			
GB 885292	A	20-12-1961	NONE			
US 5309637	A	10-05-1994	NONE			
EP 0061779	A	06-10-1982	DE	3122947 A1	07-10-1982	
			DE	8117144 U1	26-11-1981	
			EP	0061779 A2	06-10-1982	
			JP	57166497 A	13-10-1982	
			NO	821079 A	01-10-1982	
US 3153446	A	20-10-1964	NONE			
WO 9410520	A	11-05-1994	NL	9201945 A	01-06-1994	
			AT	163226 T	15-02-1998	
			CA	2148716 A1	11-05-1994	
			DE	69316990 D1	19-03-1998	
			DE	69316990 T2	20-08-1998	
			DK	666973 T3	23-09-1998	
			EP	0666973 A1	16-08-1995	
			ES	2112513 T3	01-04-1998	
			WO	9410520 A1	11-05-1994	
			US	5725051 A	10-03-1998	
DE 29604521	U	20-06-1996	DE	29604521 U1	20-06-1996	

Form PCT/ISA/210 (patent family annex) (July 1995)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT, BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN, TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE, GH,GM,HR,HU, ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

F ターム(参考) 3L103 AA11 AA27 BB08 CC02 CC14 DD08