

DOMANDA DI INVENZIONE NUMERO	102021000029546
Data Deposito	23/11/2021
Data Pubblicazione	23/05/2023

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	32	В	5	02
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	32	В	5	06
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	32	В	5	08
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	32	В	5	26
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	32	В	7	02
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
С	04	В	35	52
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
С	04	В	35	83
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	16	D	65	12
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	16	D	69	02

Titolo

METODO PER REALIZZARE UNA PREFORMA FIBROSA IN CARBONIO E/O FIBRE DI UN PRECURSORE DEL CARBONIO DI ALTEZZA PREDETERMINATA E PREFORMA DIRETTAMENTE OTTENUTA DESCRIZIONE dell'invenzione avente per titolo:

"METODO PER REALIZZARE UNA PREFORMA FIBROSA IN CARBONIO E/O FIBRE DI UN PRECURSORE DEL CARBONIO DI ALTEZZA PREDETERMINATA E PREFORMA DIRETTAMENTE OTTENUTA"

5 a nome: Brembo SGL Carbon Ceramic Brakes S.p.A.

con sede in: Viale Europa, 2 - 24040 Stezzano (BG)

Inventori designati: Marco Orlandi, di nazionalità italiana

Guido Carnevali, di nazionalità italiana

Michael Marschall, di nazionalità tedesca

10

Campo dell'invenzione

La presente invenzione si riferisce ad un metodo per la realizzazione di una preforma fibrosa per dischi frenanti e la preforma fibrosa direttamente ottenuta.

Tecnica nota

20

25

I seguenti documenti descrivono alcuni esempi di metodi per realizzare una preforma o materiali sagomati per dischi frenanti: WO2019180550 e WO2016/199021.

Sommario dell'invenzione

Come è noto, in campo aeronautico e nel campo delle auto da corsa, gli impianti frenanti sono realizzati utilizzando componenti carbonio/carbonio (C/C), in particolare rotori/statori e freni a disco.

I componenti carbonio/carbonio sono costituiti da una matrice di carbonio in cui sono disposte fibre di rinforzo in carbonio.

Tipicamente, la fibra di carbonio o precursore di carbonio viene aggregata (da sola o con l'uso di leganti, ad esempio resine) per formare una struttura tridimensionale denominata "preforma".

I precursori del carbonio più utilizzati sono PAN, pitch e rayon.

La matrice carboniosa può essere ottenuta in vari modi, riconducibili essenzialmente a due categorie: per impregnazione di resina e/o pece della struttura fibrosa oppure per gas (CVI, "Chemical Vapor Impregnation or "Chemical Vapor Infiltration").

Può essere prevista la presenza di additivi, aggiunti in fasi specifiche del processo

produttivo, al fine di migliorare la producibilità intermedia o le caratteristiche del prodotto finale, quali coefficiente di attrito e/o resistenza all'usura.

Tra i vari metodi per la produzione di preforme in fibra di carbonio si possono citare:

- impregnazione e/o stampaggio di fibre corte (chop) con resine;
- 5 impregnazione e/o stampaggio di feltri tessuti o non tessuti con resine;
 - agugliatura di feltri non tessuti, eventualmente arricchiti con fibre continue;
 - agugliatura di fibre corte (chop);
 - agugliatura di tessuti carboniosi o precursori del carbonio;
 - cucitura di tessuti.

15

25

- Come è noto, alcune delle caratteristiche cruciali del disco freno finito, ottenuto a partire da una preforma in fibra di carbonio, dipendono fortemente dal modo in cui viene realizzata la preforma.
 - In particolare, caratteristiche quali resistenza/rigidezza a compressione lungo l'asse di rotazione Z del disco (ortogonale al piano del disco), resistenza al taglio rispetto al piano del disco e conducibilità termica lungo l'asse Z sono fortemente dipendenti dalla quantità e dalla distribuzione di fibre dirette lungo l'asse Z. Allo stesso tempo, la quantità, la distribuzione delle fibre e il numero di strati sul piano del disco influenzano fortemente caratteristiche finali come la resistenza alla flessione e la conducibilità termica sul piano e nello spessore del disco.
- La Richiedente ha notato che normalmente i metodi di produzione basati sull'impregnazione/stampaggio comportano la quasi totale assenza di fibre lungo l'asse Z, determinando valori molto modesti delle caratteristiche sopra descritte.
 - Tipicamente, questi metodi di produzione vengono adottati per il loro basso costo e semplicità di produzione, ma il risultato tecnico e qualitativo finale è decisamente scadente.
 - La Richiedente ha, inoltre, osservato che i metodi di produzione alternativi, come la cucitura, comportano una limitata presenza di fibre lungo l'asse Z, che peraltro non sono distribuite molto uniformemente.
- La Richiedente ha anche notato che i metodi come l'agugliatura consentono, invece, di distribuire le fibre in modo più efficace sull'asse Z.

La Richiedente ha notato che i metodi di agugliatura noti presentano una limitata possibilità di orientamento delle fibre lunghe nei piani ortogonali all'asse Z, tale limitazione si traduce in una limitata possibilità di ottimizzazione delle caratteristiche meccaniche della preforma attraverso il controllo di questo parametro.

Ad oggi, quindi, non esiste nella tecnica nota un metodo per la fabbricazione di preforme di fibre di carbonio che consenta di ottimizzare la distribuzione delle fibre lunghe sul piano principale della preforma in funzione delle caratteristiche meccaniche, ed in particolare di resistenza, che si vogliono ottenere sulla preforma stessa.

La Richiedente si è perciò posta il problema di realizzare una preforma ed un metodo per la fabbricazione di preforme di fibre di carbonio e/o fibre di un precursore del carbonio che presenti una orientazione controllata delle fibre lunghe nel piano principale della preforma.

10

15

In un primo aspetto, l'invenzione si riferisce pertanto ad un metodo per realizzare una preforma fibrosa di una altezza predeterminata in carbonio e/o fibre di un precursore del carbonio, comprendente:

- una fase a) di fornire almeno un primo strato di fibre di carbonio e/o fibre di un precursore di carbonio di forma discoidale comprendente una pluralità di fibre lunghe disposte sostanzialmente secondo una prima direzione di estensione individuata da una asse di estensione;
- una fase b) di sovrapporre un secondo strato di fibre di carbonio e/o fibre di un precursore di carbonio di forma discoidale secondo un asse di sovrapposizione predefinito comprendente una pluralità di fibre lunghe disposte sostanzialmente secondo una seconda direzione di estensione individuata da una direzione di estensione; detta fase di sovrapporre viene implementata in modo che vi sia uno scostamento angolare α
- 25 > 0 tra detta prima direzione di estensione e detta seconda direzione di estensione;
 - una fase c) di agugliare mediante almeno un dispositivo di agugliatura detto primo e detto secondo strato sovrapposto in una direzione di agugliatura sostanzialmente parallela a detto asse di sovrapposizione per disporre almeno parte delle fibre parallele all'asse di sovrapposizione;

- una fase d) di ripetere le fasi b,c fino ad ottenere un corpo pluristrato agugliato, di altezza predeterminata N.

Grazie a queste caratteristiche, la Richiedente ha verificato che la preforma realizzata con il metodo dell'invenzione presenta una distribuzione controllata di fibre lunghe nel piano principale della preforma, vale a dire un piano ortogonale all'asse di sovrapposizione, in modo da riuscire a controllare le caratteristiche meccaniche ed in particolare aumentare la resistenza meccanica della preforma stessa

Ai fini della presente invenzione, si applicano le seguenti definizioni:

5

10

20

25

30

Per "sottostrato di tessuto" si intende uno strato di materiale avente una disposizione ordinata delle fibre, in cui le fibre sono tutte disposte sostanzialmente sullo stesso piano. Per "sottostrato di non tessuto" si intende uno strato di materiale principalmente costituito da fibre corte disposte in modo casuale.

Per "fibra corta" si intende una fibra di lunghezza predefinita/discreta.

Per "fibra lunga" si intende una fibra di lunghezza predefinita/discreta, tipicamente una fibra lunga possiede una lunghezza, misurata lungo la sua estensione di almeno 200 mm. In questa descrizione, se non diversamente specificato, i termini "radiale", "assiale", "angolare" e "circonferenziale" saranno sempre intesi rispetto alla direzione di costruzione del corpo pluristrato individuata dall'asse Z.

La presente invenzione, in uno o più aspetti preferenziali, può comprendere una o più delle caratteristiche di seguito riportate.

Convenientemente, la fase b) viene implementata in modo che il secondo strato sia disposto in modo che le sue fibre lunghe presentino uno sfalsamento angolare di almeno 15° rispetto alle fibre lunghe del secondo strato.

Preferibilmente, detta fase a) comprende una sottofase a') di depositare almeno detto primo strato su un elemento di supporto traslabile configurato per essere posto sotto detta prima testa di agugliatura, il movimento di detto elemento di supporto per portare detto primo strato sotto detta prima testa di agugliatura individuando una direzione di avanzamento.

Preferibilmente, in detta sottofase a'), il primo strato è posto su detto elemento di supporto in modo da presentare le sue fibre lunghe disposte ortogonalmente alla

direzione di avanzamento.

5

10

20

Convenientemente, almeno il primo e il secondo strato di fibre di carbonio e/o fibre di un precursore di carbonio comprendono ciascuno almeno un primo sottostrato non tessuto ed almeno un secondo sottostrato accoppiati in modo che il primo sottostrato non tessuto sia sovrapposto al secondo sottostrato.

Vantaggiosamente, il secondo sottostrato comprende una pluralità di fibre lunghe unidirezionali presentanti una direzione di estensione individuata da un asse di estensione.

Preferibilmente, i primi sottostrati di non tessuto hanno una grammatura minore della grammatura dei secondi sottostrati.

Convenientemente, il metodo comprende una fase e) di determinare il numero n di strati di fibre di carbonio e/o fibre di un precursore di carbonio secondo un asse di sovrapposizione predefinito in modo da formare un primo corpo pluristrato di altezza predeterminata.

15 Convenientemente, il numero di fibre disposte per agugliatura durante la fasa c e/o parallelamente alla direzione di agugliatura è scelto in funzione della densità di fibre che si vuole ottenere all'interno della preforma fibrosa disposto parallelamente all'asse di sovrapposizione.

Preferibilmente, nella fase di agugliatura c) si controlla il numero medio di fibre da disporre parallelamente a detto asse di sovrapposizione per unità di superficie regolando la densità di agugliatura in funzione della dimensione e del numero delle barbe degli aghi, nonché del diametro delle fibre.

Convenientemente, il metodo può comprendere una fase f) di sagomatura della preforma fibrosa condotta per tranciatura di detto primo corpo pluristrato.

25 Preferibilmente, al fine di ridurre problematiche o indebolimenti strutturali nella preforma, almeno il primo e il secondo strato di fibre di carbonio e/o fibre di un precursore di carbonio sono realizzati, in pianta, in un pezzo unico.

In altri termini, gli strati di fibre di carbonio e/o fibre di un precursore di carbonio formanti la preforma non presentano porzioni di unione o cuciture.

30 Secondo un altro aspetto la presente invenzione concerne una preforma fibrosa di una

altezza predeterminata in carbonio e/o fibre di un precursore del carbonio, comprendente una pluralità di strati di fibre di carbonio e/o fibre di un precursore di carbonio di forma discoidale sovrapposti; ciascuno strato comprendendo una pluralità di fibre lunghe di carbonio e/o precursore di carbonio disposte secondo una direzione di estensione, almeno due strati di una stessa preforma fibrosa essendo disposti uno rispetto all'altro con le fibre lunghe reciprocamente ruotate di un predefinito angolo attorno al suddetto asse di sovrapposizione.

Convenientemente ciascuno strato comprende almeno un primo sottostrato non tessuto ed almeno un secondo sottostrato accoppiati in modo che il primo sottostrato non tessuto sia sovrapposto al secondo sottostrato.

Preferibilmente il secondo sottostrato comprende una pluralità di fibre lunghe unidirezionali presentanti una direzione di estensione individuata da un asse di estensione.

Vantaggiosamente almeno due strati di una stessa preforma fibrosa sono disposti l'uno rispetto all'altro con le fibre lunghe reciprocamente ruotate di un predefinito angolo α maggiore di o uguale a 15° attorno all'asse di sovrapposizione Z.

Vantaggiosamente, almeno due strati di una stessa preforma fibrosa sono realizzati, in pianta, in un pezzo unico.

Ulteriori caratteristiche e vantaggi dell'invenzione appariranno maggiormente dalla descrizione dettagliata di alcune forme di esecuzione preferite, ma non esclusive, di un metodo per realizzare una preforma fibrosa di altezza predeterminata in carbonio e/o fibre di un precursore del carbonio secondo la presente invenzione.

Breve descrizione dei disegni

5

10

15

20

25

Tale descrizione verrà esposta qui di seguito con riferimento agli uniti disegni, forniti a scopo solo indicativo e, pertanto non limitativo, nei quali:

- la figura 1 mostra una vista schematica in prospettiva, parzialmente sezionata, di una preforma secondo l'invenzione;
- la figura 2 è una vista in sezione della preforma di figura 1;
- la figura 3 è una vista schematica di alcune fasi del metodo per realizzare una preforma fibrosa di altezza predeterminata secondo l'invenzione;

- la figura 4 è una vista schematica della disposizione delle fibre a seguito dell'interazione degli aghi di un dispositivo di agugliatura con un sottostrato di non tessuto durante una fase di realizzazione della preforma stessa; e
- la figura 5 è una vista schematica di una prima forma di realizzazione di un ago per agugliatura, con due successivi ingrandimenti che illustrano le barbe dell'ago stesso.

Descrizione dettagliata di forme realizzative dell'invenzione

5

10

20

25

Con riferimento alle figure allegate, con 1 è complessivamente indicato una preforma fibrosa 1 ottenuta con il metodo secondo la presente invenzione.

In particolare, nella figura 1 è mostrata schematicamente una preforma 1 realizzata con il metodo secondo la presente invenzione.

La preforma 1, al termine del metodo di produzione, è formata da un corpo pluristrato 2' comprendente una pluralità di strati 3',3'',....,3ⁿ, sovrapposti l'uno sull'altro a formare una pila che si estende lungo un asse di sovrapposizione Z, ad esempio verticale come mostrato in figura 1.

Preferibilmente, ogni corpo pluristrato 2' è realizzato da n strati 3',3'',....,3ⁿ, preferibilmente identici per forma e dimensione.

Ciascuno strato 3',3'',....,3ⁿ, presenta una forma discoidale.

La preforma 1 di figura 1 e 2 comprende una pluralità di strati 3',3'',....,3ⁿ, preferibilmente n strati, di fibre di carbonio o precursore di fibre di carbonio, questi n strati essendo impilati lungo la direzione individuata dall'asse di sovrapposizione Z. Vantaggiosamente, una preforma fibrosa 1 secondo la presente invenzione può essere utilizzata nella realizzazione di dischi freno in C/C come struttura di rinforzo.

In tal caso, la preforma fibrosa 1 è sagomata in modo da avere forma cilindrica, con asse parallelo all'asse di sovrapposizione Z della pluralità di strati 3',3'',....,3ⁿ, di fibre di carbonio o precursore di fibre di carbonio.

In particolare, la preforma fibrosa 1 può avere uno spessore compreso tra 10 e 80 mm. In particolare, la preforma fibrosa 1 può avere sezione circolare secondo un piano ortogonale all'asse di sovrapposizione Z e può avere un diametro compreso tra 200 e 700mm.

In particolare, la preforma fibrosa ha una densità (apparente geometrica) compresa tra 0,4 e 0,7 g/cm3.

A puro titolo di esempio, almeno parte delle fibre di carbonio (preferibilmente tutte queste fibre) possono essere derivate da fibre di poliacrilonitrile ossidate. Ad esempio, tali fibre sono prodotte dalla società SGL Carbon SE con il nome commerciale Panox®. Preferibilmente, il numero di strati 3',3'',....,3ⁿ di fibre di carbonio o precursore di fibre di carbonio formanti una preforma fibrosa 1 finita di altezza N è compreso nell'intervallo 10-80, vantaggiosamente 25-45, ad esempio 30-40.

5

10

15

20

25

A titolo meramente esemplificativo, lungo la direzione individuata dall'asse Z di sovrapposizione, la preforma fibrosa 1 può avere uno spessore compreso tra circa 40-80 millimetri o più, precisamente pari a circa 40 millimetri.

Vantaggiosamente almeno due strati, preferibilmente tutti, di una stessa preforma fibrosa sono realizzati, in pianta, in un pezzo unico.

In atri termini, ciascuno strato 3',3'',....,3ⁿ componente la preforma fibrosa 1 è fornito, in pianta, in un pezzo unico, non risulta quindi essere assemblato attraverso cucitura o atro metodo di unione che potrebbe comportare degli indebolimenti strutturali nella preforma.

Preferibilmente, ciascuno strato 3',3'',....,3ⁿ componente la preforma fibrosa 1 è composto da due differenti sottostrati 5,6 accoppiati. Ciascun sottostrato 5 o 6 è realizzato in un pezzo unico.

In particolare, secondo una forma di realizzazione particolarmente vantaggiosa, ciascuno strato 3',3'',....,3ⁿ comprende uno o più sottostrati 6 di fibre in forma di non tessuto.

I sottostrati 6 in non tessuto comprendono fibre corte e possono essere ottenuti con qualsiasi tecnica adatta allo scopo. Preferibilmente, tali sottostrati sono ottenuti partendo da fibre in fiocco (staple fibres).

In alternativa, almeno una parte dei sottostrati 6 in non tessuto o tutti tali sottostrati 6 in non tessuto possono essere costituiti da fibre sottoforma di filamenti continui.

Preferibilmente, ciascuno strato 3',3'',....,3ⁿ comprende inoltre uno o più sottostrati 5 di fibre lunghe 21 disposte secondo una direzione di estensione e sostanzialmente sullo stesso piano.

Preferibilmente, le fibre lunghe 21 di uno stesso strato 3',3'',....,3ⁿ sono fibre unidirezionali, in altri termini giacciono tutte sostanzialmente nello stesso piano e presentano tutte le stessa direzione di estensione.

5

10

15

Alternativamente, le fibre lunghe 21 possono essere disposte in un tessuto, in questo caso nel seguito i sottostrati 5 verranno denominati sottostrati 5 in tessuto.

I sottostrati 5 in tessuto sono sottostrati di materiale avente una disposizione ordinata di fibre, in cui le fibre sono tutte disposte sostanzialmente sullo stesso piano.

Ciascun sottostrato 5 in tessuto ha uno sviluppo di tessitura parallelo al piano di sviluppo superficiale del sottostrato stesso. In particolare, i sottostrati 5 in tessuto possono avere una tessitura twill o una tessitura plain weave.

I sottostrati 5 in tessuto presenti in una preforma fibrosa 1 possono avere tutti lo stesso tipo di tessitura oppure avere differenti tipi di tessitura.

I sottostrati 5,6 di fibre (in tessuto, unidirezionali o in non tessuto) possono essere costituiti da fibre aventi le medesime caratteristiche oppure da miscele di fibre differenti. Le fibre possono variare come tipologia e caratteristiche sia all'interno dello stesso sottostrato 5 o 6 sia tra sottostrato e sottostrato.

20 Preferibilmente, i sottostrati 6 in non tessuto hanno una grammatura minore della grammatura dei sottostrati 5.

In particolare, i sottostrati 6 in non tessuto hanno ciascuno una grammatura compresa tra 50 e 500 g/m2. I sottostrati 5 hanno ciascuno una grammatura compresa tra 100 e 1000 g/m2.

Vantaggiosamente, almeno due dei sottostrati 5 dei vari strati 3',3'',3'''....3ⁿ, di una stessa preforma 1 possono essere disposti uno rispetto all'altro con le fibre lunghe reciprocamente ruotate di un predefinito angolo α attorno al suddetto asse di sovrapposizione Z.

Preferibilmente tutti i sottostrati 5 dei vari strati 3',3'',3'''....3ⁿ, di una stessa preforma 1 possono essere disposti uno rispetto all'altro con le fibre lunghe 21 reciprocamente ruotate di un predefinito angolo α attorno al suddetto asse di sovrapposizione Z.

Preferibilmente, ciascuno strato 3',3'',3'''....3ⁿ, di una stessa preforma 1 può presentare le proprie fibre lunghe 21, tutte disposte con uno sfalsamento angolare maggiore o uguale a 15° rispetto alle fibre lunghe 21 degli strati 3',3'',3'''....3ⁿ adiacenti secondo la direzione di sovrapposizione Z.

5

15

Nella stessa preforma le fibre lunghe 21 di ciascuno strato 3',3'',3'''....3ⁿ possono presentare un'orientazione differente da quelle degli strati rimanenti 3',3'',3'''....3ⁿ.

Nel caso dei sottostrati 5 in tessuto, la tessitura di un sottostrato 5 in tessuto può presentare uno sfalsamento angolare attorno all'asse di sovrapposizione Z di un predefinito angolo α, rispetto ai sottostrati successivi in una direzione coincidente o parallela all'asse di sovrapposizione Z.

Nel caso di sottostrati 5 in tessuto, sono le fibre lunghe 21 che realizzano la tessitura ad essere ruotate di un predefinito angolo α attorno al suddetto asse di sovrapposizione Z. In altri termini la tessitura di un sottostrato 5 in tessuto può presentare uno sfalsamento angolare attorno all'asse di sovrapposizione Z di un predefinito angolo α , rispetto ai sottostrati successivi in una direzione coincidente o parallela all'asse di sovrapposizione Z.

Vantaggiosamente, presentando i sottostrati 5 di tessuto dei vari strati 3',3'',3'''....3ⁿ, di una stessa preforma 1 disposti uno rispetto all'altro con le fibre lunghe 21 rispettivamente ruotate di un predefinito angolo α attorno al suddetto asse di sovrapposizione Z, ne consegue che anche gli strati stessi 3',3'',3'''....3ⁿ, presentano lo stesso sfalsamento angolare α attorno al suddetto asse di sovrapposizione Z. Lo sfalsamento angolare di due strati 3',3'',3'''....3ⁿ, successivi secondo la direzione Z è individuato dallo sfalsamento angolare delle fibre lunghe 21 dei sottostrati in essi contenuti.

Grazie al suddetto orientamento, è possibile massimizzare la distribuzione delle fibre sul piano principale della preforma 1 e quindi le proprietà meccaniche finali dei manufatti (in particolare dischi freno) che incorporano la preforma fibrosa 1 come struttura di rinforzo.

Una preforma 1 quale quella sopradescritta può essere realizzata con il metodo secondo un aspetto dell'invenzione.

Il metodo secondo un aspetto dell'invenzione prevede una fase (nel seguito denominata fase e) di determinare il numero n di strati di fibre di carbonio e/o fibre di un precursore di carbonio secondo un asse di sovrapposizione Z in modo da formare una preforma fibrosa 1 di altezza N.

In particolare, in questa fase, in funzione del disco frenante che si vuole produrre, viene determinata l'altezza N o spessore della preforma fibrosa 1 da realizzare ed in funzione di questa altezza N si ricava il numero n di strati di fibre di carbonio e/o fibre di un precursore di carbonio necessari.

10

Lo spessore degli n strati di fibre di carbonio e/o fibre di un precursore 1 di carbonio si assume essere sostanzialmente sempre lo stesso.

A titolo puramente esemplificativo, partendo dal disco frenante che si vuole realizzare, in particolare dotato di un determinato spessore determino un disco grezzo da lavorare, dalla dimensione del disco grezzo, sapendo che lo stesso sarà sottoposto ad almeno un trattamento termico e ad almeno un'operazione di densificazione, determino l'altezza della preforma fibrosa 1.

A titolo di esempio, per fare una preforma fibrosa 1 di carbonio da 43 mm potrebbe servire una preforma di carbonio preossidato da 50 mm (per passare da carbonio preossidato a carbonio c'è un trattamento termico di carbonizzazione con un ritiro di circa il 12%). Quindi per ottenere 43 mm dovrei partire da 50 mm. Ciascuno strato 3',3'',....,3ⁿ (in funzione della sua densità di partenza e della densità di agugliatura) potrebbe avere uno spessore nella preforma di circa 1,5 mm quindi per fare una preforma fibrosa 1 di carbonio da 43 mm potrebbero servire circa 33-34 strati 3',3'',....,3ⁿ.

La fase e) è svolta in qualsiasi momento, preferibilmente anche distante temporalmente, dalla produzione della preforma fibrosa 1.

Generalmente, la fase e) è implementata precedentemente alle fasi a)-d) del metodo per realizzare una preforma fibrosa 1 di una altezza predeterminata N in carbonio e/o fibre di un precursore del carbonio descritto nel seguito.

Nella figura 3 e 4 sono mostrate schematicamente alcune fasi di una prima forma di realizzazione del metodo per realizzare una preforma fibrosa 1 di altezza predeterminata N secondo l'invenzione.

Il metodo di produzione rappresentato in figura 3 inizia, quindi, preferibilmente con una fase a) di fornire almeno un primo strato 3' di fibre di carbonio e/o fibre di un precursore di carbonio di forma discoidale.

Il primo strato 3' comprende una pluralità di fibre lunghe 21 di fibre di carbonio e/o fibre di un precursore di carbonio disposte sostanzialmente nello stesso piano, denominato piano principale della preforma.

15

25

Le fibre lunghe 21 sono preferibilmente tutte parallele tra loro e disposte sostanzialmente secondo una direzione di estensione individuata da una direzione di estensione Y.

La fase a comprende inoltre una sottofase a') in cui il primo strato 3' viene disposto sopra ad un elemento di supporto 4 mobile, preferibilmente traslabile, configurato per trasportare gli strati 3',3'',....,3ⁿ, etc. di fibre di carbonio e/o fibre di un precursore di carbonio sotto il dispositivo di agugliatura 10.

Il movimento di detto elemento di supporto 4 per portare il primo strato 3', e successivamente i restanti strati, sotto il dispositivo di agugliatura individua una direzione di avanzamento indicata dalla freccia F in figura 3.

Preferibilmente il primo strato 3' è posto sull'elemento di supporto 4 in modo da presentare le sue fibre lunghe 21 disposte ortogonalmente alla direzione di avanzamento.

Preferibilmente, l'elemento di supporto mobile 4 si presenta formato dallo stesso materiale di cui sono composti gli strati 3',3''....,3ⁿ, etc..

Secondo una forma di realizzazione, l'elemento di supporto 4 presenta un'area, vale a dire un'estensione superficiale, maggiore dell'area di ciascuno strato 3',3''....,3ⁿ, etc..

Preferibilmente, la dimensione dell'elemento di supporto parallela alla direzione di avanzamento F degli strati 3',3'',....,3ⁿ, etc. è maggiore del diametro di ciascuno strato 3',3'',....,3ⁿ, etc..

Preferibilmente, la dimensione dell'elemento di supporto 4 parallela alla direzione di avanzamento degli strati 3',3'',....,3ⁿ, etc. è maggiore di almeno il 10% del diametro di ciascuno strato 3',3'',....,3ⁿ, etc..

5

10

15

20

25

30

estensione Y.

Viene quindi implementata la fase b) in cui il primo strato 3' di fibre di carbonio e/o fibre di un precursore di carbonio viene sovrapposto da almeno un secondo strato 3'' di fibre di carbonio e/o fibre di un precursore del carbonio di forma discoidale secondo un predefinito asse di sovrapposizione Z.

La forma del secondo strato 3", discoidale, è sostanzialmente identica a quella del primo strato 3".

Preferibilmente, come maggiormente chiaro dal seguito anche le forme dei successivi strati sovrapposti a formare il corpo pluristrato 2' saranno sostanzialmente identiche a quelle del primo 3' e del secondo strato 3''.

Preferibilmente, il primo 3' ed il secondo 3'' strato di fibre di carbonio e/o fibre di un precursore di carbonio sono sostanzialmente uguali anche per dimensione e materiale. Nella fase b) il secondo strato 3'' discoidale che comprende una pluralità di fibre lunghe 21 disposte sostanzialmente secondo una direzione di estensione individuata da un asse Y viene sovrapposto al primo strato 3' secondo un asse di sovrapposizione predefinito Z ed in modo che vi sia uno scostamento angolare $\alpha > 0$ tra la prima direzione di estensione X delle fibre lunghe 21 del primo strato 3' e la seconda direzione di

Preferibilmente, lo scostamento angolare α viene misurato in senso orario a partire dalla prima direzione di estensione X delle fibre lunghe 21 del primo strato 3'.

In questo modo le fibre lunghe 21 dei due strati presentano un'orientazione differente. Preferibilmente la fase b è implementata in modo che il secondo strato 3" sia disposto in modo che la seconda direzione Y delle sue fibre lunghe 21 presentino uno sfalsamento angolare di almeno 15° rispetto alla prima direzione X delle fibre lunghe 21 di detto primo strato 3".

Nella forma di realizzazione mostrata nelle figure il primo 3' ed il secondo 3'' strato e ciascuno degli strati successivamente sovrapposti sono formati da due differenti sottostrati 5,6 accoppiati.

In particolare, sempre con riferimento alla forma di realizzazione mostrata nelle figure, il primo 3' ed il secondo 3'' strato e ciascuno degli strati successivamente sovrapposti sono formati da uno o più sottostrati 6 di fibre in forma di non tessuto ed uno o più sottostrati 5 comprendente delle fibre lunghe 21.

5

15

20

25

I sottostrati 6 in non tessuto comprendono fibre corte e possono essere ottenuti con qualsiasi tecnica adatta allo scopo.

Preferibilmente, tali sottostrati 6 sono ottenuti partendo da fibre in fiocco (staple fibres). I sottostrati 5 comprendono invece delle fibre lunghe 21 unidirezionali in altri termini giacenti tutte sostanzialmente nello stesso piano e presentanti nello stesso sottostrato tutte la stessa direzione di estensione.

Il metodo continua quindi con una fase c) di agugliare, tramite almeno un primo dispositivo di agugliatura 10 ad aghi, il primo 3' e il secondo strato 3'' sovrapposti, secondo una direzione di agugliatura sostanzialmente parallela all'asse di sovrapposizione Z, in modo da disporre almeno una parte delle fibre parallelamente all'asse di sovrapposizione Z.

Con l'espressione "disposizione parallela all'asse di costruzione Z" si intende un orientamento prevalente e non ci si vuole limitare a disposizioni in cui le fibre sono perfettamente parallele a tale asse.

Nella suddetta fase c) di agugliatura è il primo sottostrato 6 in non tessuto di ciascuno strato 3',3'' ad incontrare gli aghi 11 del primo dispositivo di agugliatura 10 in modo da impedire agli aghi 11 di impegnare direttamente le fibre dei sottostrati 5 sottostanti.

Le fibre 20 che vengono ad essere disposte parallelamente al suddetto asse di sovrapposizione Z appartengono quindi ai sottostrati 6 di fibre in forma di non tessuto. Nella Figura 4 è mostrata schematicamente la disposizione delle fibre a seguito dell'interazione degli aghi 11 di un dispositivo di agugliatura 10 con uno o più sottostrati 6 di non tessuto e uno o più sottostrati 5.

Più in dettaglio con 20 sono indicate le fibre che provengono da uno strato di non tessuto e sono state spostate nei sottostrati di tessuto 5 sottostanti tramite agugliatura.

Con 21 sono schematicamente indicate le fibre che formano i sottostrati 5 di tessuto.

Vantaggiosamente, i sottostrati 5,6 di fibre utilizzati per realizzare la preforma fibrosa 1 in accordo al metodo secondo la presente invenzione non sono resinati per:

- evitare di ostacolare l'agugliatura (in presenza di resina gli aghi 11 del primo dispositivo di agugliatura 10 tenderebbero a sporcarsi e ci sarebbe un rischio elevato di frequenti blocchi di impianto); e
- non limitare la "mobilità" delle fibre 20.

5

15

20

25

Terminata la fase c), vengono ripetute le fasi b) e c), per un numero predeterminato di volte, fino ad ottenere un precorpo pluristrato agugliato 2' di altezza pari all'altezza predeterminata N.

Ai fini della presente descrizione la ripetizione delle fasi b e c, per un numero predeterminato di volte, fino ad ottenere un precorpo pluristrato agugliato 2' pari all'altezza predeterminata N, individua la fase d).

Durante la fase d) ogni ulteriore strato 3''',3ⁿ sovrapposto presenta la stessa forma, discoidale, e la stessa dimensione degli strati 3' o 3''.

Ciascun ulteriore strato 3''',....3ⁿ sovrapposto comprende delle fibre lunghe 21, preferibilmente contenute in un sottostrato 5 accoppiato ad un sottostrato 6 comprendente delle fibre corte 20.

Durante la fase d) ciascun ulteriore strato 3''',....3ⁿ viene sovrapposto a quello precedentemente depositato, in modo che le sue fibre lunghe 21 presentino uno sfalsamento angolare rispetto alle fibre lunghe 21 dello strato appena depositato.

Preferibilmente, durante la fase d) ciascun ulteriore strato 3",....3" viene sovrapposto al precedente, in modo che le sue fibre lunghe 21 presentino uno sfalsamento angolare di almeno 15° rispetto alle fibre lunghe 21 dello strato appena depositato.

Preferibilmente lo sfalsamento tra ogni strato 3',3'',....,3ⁿ, etc. e quello direttamente sottostante, vale a dire quello appena precedentemente depositato è misurato in senso orario.

Al termine del processo il corpo pluristrato 2' di altezza N può presentare tutti gli strati 3',3'',...,3ⁿ con una differente orientazione delle fibre lunghe 21, o due o più strati con la stessa orientazione delle fibre lunghe 21.

Il corpo pluristrato 2 viene tipicamente sottoposto ad ulteriori lavorazioni al fine di ottenere un disco frenante.

5

10

15

20

25

A titolo di esempio, sagomatura, carbonizzazione e grafitizzazione, sono descritti nel seguito.

Vantaggiosamente, il metodo secondo la presente invenzione può comprendere una fase f) di sagomatura condotta ritagliando i sottostrati 5,6 di fibre di carbonio e/o fibre di un precursore di carbonio, i singoli strati o gli strati sovrapposti ed agugliati a formare un corpo pluristrato. La fase di sagomatura potrebbe essere implementata con una lama guidata da un plotter, per tranciatura o con altri metodi noti al tecnico del ramo e per questo non ulteriormente descritti.

Come già detto, le fibre possono essere in carbonio oppure in un precursore del carbonio (preferibilmente PAN, pece, o rayon).

Grazie al metodo secondo la presente invenzione, è possibile realizzare una preforma fibrosa 1 controllando la distribuzione tridimensionale delle fibre al suo interno ed in particolare disponendo le fibre 21 lunghe di ogni strato in modo controllato, preferibilmente reciprocamente sfalsato angolarmente al fine di ottimizzare le caratteristiche meccaniche della preforma stessa.

Infatti, la disposizione delle fibre sui piani definiti dai sottostrati 5 (tra loro paralleli) è controllabile scegliendo opportunamente il tipo di tessuto e la disposizione di ogni strato 3',3'',...,3^{n,} etc. angolarmente rispetto allo strato sottostante 3',3'',...,3^{n,} etc. e non viene alterata dall'azione di agugliatura 10 grazie alla presenza dei sottostrati 6 di non tessuto che svolgono in tal senso una funzione di schermo dall'azione degli aghi. La disposizione delle fibre ortogonalmente ai piani definiti dai sottostrati 5 di fibre è controllabile regolando i parametri operativi del processo di agugliatura e le caratteristiche dei sottostrati 6 di non tessuto di ciascuno strato 3',3'',3''',... 3ⁿ, etc. di fibre di carbonio e/o fibre di un precursore di carbonio.

Assumendo che il piano principale della preforma fibrosa 1 sia definito da un piano parallelo agli strati 3',3'',....,3ⁿ di fibre di carbonio e/o fibre di un precursore di carbonio, grazie al metodo secondo la presente invenzione è quindi possibile distribuire in modo controllato le fibre sia parallelamente a tale piano principale tramite i sottostrati

5, sia ortogonalmente ad esso grazie all'azione di agugliatura che orienta almeno una parte delle fibre dei sottostrati 6 di non tessuto ortogonalmente a tale piano.

Nella figura 5 è mostrato schematicamente un ago 11 di un agugliatore 10.

5

15

Gli aghi 11 di ciascun agugliatore sono preferibilmente tutti identici tra loro e sono dotati ciascuno di una o più cavità 12, dette barbe, atte ad impegnare una o più fibre 20.

Più in dettaglio, le barbe 12 sono conformate in modo da impegnare e tirare le fibre quando l'ago 11 penetra nello strato, ma non per impegnare e tirare le fibre quando l'ago sale ed esce dallo strato di fibre.

La forma delle barbe è studiata appositamente per svolgere questa funzione.

Le barbe si ottengono nella zona di lavoro dell'ago, cioè la porzione di ago che penetra nello strato di fibre e che può quindi agire sulle fibre.

Operativamente, la fibra 20 che è stata spostata nella fase di discesa dell'ago rimane nella posizione in cui è stata posta dall'ago stesso, e non è interessata dal movimento di salita dell'ago stesso.

L'ago, uscendo dallo strato di fibre, esce senza trascinare con esso le fibre.

Vantaggiosamente, le suddette fasi di agugliatura vengono eseguite tenendo conto sia del numero e della dimensione delle barbe 12 che del diametro della fibra e del peso dei suddetti sottostrati 6 di fibre non tessuto che costituiscono le porzioni superiori dei differenti strati 3',3'',...,3n di fibre di carbonio e/o fibre di un precursore di carbonio. In altre parole, le suddette fasi c) di agugliatura sono condotte in modo tale che per tutto lo svolgimento delle fasi di agugliatura stessa gli aghi 11 penetrino negli strati 3',3'',...,3n di fibre di carbonio e/o fibre di un precursore di carbonio e le barbe si riempiano solo di fibre appartenenti ai sottostrati 6 di non tessuto.

In altre parole ancora, le fasi c) di agugliatura sono condotte in modo tale che la quantità di fibre disponibili nei sottostrati 6 di fibre in non tessuto sia non inferiore (superiore o al più pari) alla quantità di fibre trasferibile dagli aghi 11 parallelamente alla direzione di agugliatura.

Vantaggiosamente, densità e orientamento delle fibre disposte in detti uno o più sottostrati 5 sono scelti in funzione della densità e dell'orientamento delle fibre che si vuole avere nella preforma fibrosa 1 su piani ortogonali all'asse di sovrapposizione Z, cioè paralleli al piano principale della preforma 1 e ortogonali allo spessore della preforma stessa.

5

10

20

Preferibilmente, nelle fasi c) di agugliatura il numero medio di fibre da disporre parallelamente al suddetto asse di sovrapposizione Z per unità di superficie è controllato regolando la densità di agugliatura (stitch 10 density) in funzione delle dimensioni e del numero di barbe 12 degli aghi 11, nonché in funzione del diametro delle fibre e della grammatura dei sottostrati 6 di fibre in non tessuto che costituiscono la porzione superiore di ciascuno strato 3',3'',....,3n di fibre di carbonio e/o fibre di un precursore di carbonio.

15 Come già detto i sottostrati 6 di fibre in non tessuto fungono infatti da schermo e sono destinati a fornire le fibre da disporre lungo l'asse di sovrapposizione Z.

Grazie al trovato, è possibile avere una distribuzione controllata preferibilmente delle fibre lunghe 21 di tutti gli strati che costituiscono il corpo pluristrato 2, a vantaggio dell'omogeneità di resistenza meccanica sostanzialmente per tutta l'altezza della preforma.

Diverse modifiche possono essere apportate alle forme realizzative descritte nel dettaglio, rimanendo comunque nell'ambito di protezione dell'invenzione, definito dalle seguenti rivendicazioni.

RIVENDICAZIONI

1. Metodo per realizzare una preforma fibrosa (1) di una altezza predeterminata (N) in carbonio e/o fibre di un precursore del carbonio, comprendente:

- una fase a) di fornire almeno un primo strato (3') di fibre di carbonio e/o fibre di un precursore di carbonio di forma discoidale comprendente una pluralità di fibre lunghe (21) disposte sostanzialmente secondo una prima direzione di estensione individuata da un asse di estensione (X);

5

10

15

20

25

30

- una fase b) di sovrapporre un secondo strato (3") di fibre di carbonio e/o fibre di un precursore di carbonio di forma discoidale secondo un asse di sovrapposizione predefinito (Z) comprendente una pluralità di fibre lunghe (21) disposte sostanzialmente secondo una seconda direzione di estensione individuata da un asse di estensione (Y); detta fase b) di sovrapporre viene implementata in modo che vi sia uno scostamento angolare $\alpha > 0$ tra detta seconda direzione di estensione e la direzione di estensione dello strato sottostante;

- una fase c) di agugliare mediante almeno un dispositivo di agugliatura (10) detto primo (3') e detto secondo (3'') strato sovrapposto in una direzione di agugliatura sostanzialmente parallela a detto asse di sovrapposizione (Z) per disporre almeno parte delle fibre parallele all'asse di sovrapposizione (Z),

- una fase d) di ripetere le fasi b-c fino ad ottenere un corpo pluristrato agugliato (2'), di altezza predeterminata (N).

- 2. Metodo per realizzare una preforma (1) fibrosa in carbonio e/o fibre di un precursore del carbonio secondo la rivendicazione 1, caratterizzato dal fatto che la detta fase b è implementata in modo che il secondo strato (3'') sia disposto in modo che le sue fibre lunghe (21) presentino uno sfalsamento angolare di almeno 15° rispetto alle fibre lunghe (21) di detto primo strato (3').
- 3. Metodo per realizzare una preforma (1) fibrosa in carbonio e/o fibre di un precursore del carbonio secondo la rivendicazione 1, caratterizzato dal fatto che almeno detto primo (3') e secondo (3'') strato di fibre di carbonio e/o fibre di un precursore di carbonio comprendono ciascuno almeno un primo sottostrato (6) non tessuto ed almeno un secondo sottostrato (5) accoppiati in modo che il primo sottostrato (6) non tessuto sia

sovrapposto al secondo sottostrato (5).

5

10

15

20

25

- 4. Metodo per realizzare una preforma (1) fibrosa in carbonio e/o fibre di un precursore del carbonio secondo la rivendicazione 1, caratterizzato dal fatto che detto secondo sottostrato (5) comprende una pluralità di fibre lunghe (21) unidirezionali presentanti una direzione di estensione individuata da un asse di estensione.
- 5. Metodo per realizzare una preforma fibrosa (1) in carbonio e/o fibre di un precursore del carbonio secondo una qualsiasi delle rivendicazioni da 1 a 4, caratterizzato dal fatto che detta fase a) comprende una sottofase a') di depositare almeno detto primo strato (3') su un elemento di supporto (4) traslabile e configurato per essere posto sotto detto dispositivo di agugliatura (10), il movimento di detto elemento di supporto (4) per portare detto primo strato (3') sotto detto dispositivo di agugliatura individuando una direzione di avanzamento (F).
- 6. Metodo per realizzare una preforma fibrosa in carbonio e/o fibre di un precursore del carbonio secondo la rivendicazione 5, caratterizzato dal fatto che detto primo strato (3') è posto su detto elemento di supporto (4) in modo da presentare le sue fibre lunghe (21) disposte ortogonalmente alla detta direzione di avanzamento (F).
- 7. Metodo per realizzare una preforma fibrosa in carbonio e/o fibre di un precursore del carbonio secondo una qualsiasi delle precedenti rivendicazioni da 1 a 6, caratterizzato dal fatto che i detti primi sottostrati (6) di non tessuto hanno una grammatura minore della grammatura dei secondi sottostrati (5).
- 8. Metodo per realizzare una preforma fibrosa in carbonio e/o fibre di un precursore del carbonio secondo una qualsiasi delle rivendicazioni da 1 a 7, caratterizzato dal fatto di comprendere una fase e) di determinare il numero n di strati di fibre di carbonio e/o fibre di un precursore di carbonio sovrapposti secondo un asse di sovrapposizione predefinito (Z) in modo da formare un primo corpo pluristrato (2') di altezza N.
- 9. Metodo per realizzare una preforma (1) fibrosa in carbonio e/o fibre di un precursore del carbonio secondo una qualsiasi delle precedenti rivendicazioni, caratterizzato dal fatto che almeno detto primo (3') e secondo (3'') strato di fibre di carbonio e/o fibre di un precursore di carbonio sono realizzati, in pianta, in un pezzo unico.

10. Preforma fibrosa (1) di una altezza predeterminata (N) in carbonio e/o fibre di un precursore del carbonio, comprendente una pluralità di strati (3',3'',....,3ⁿ) di fibre di carbonio e/o fibre di un precursore di carbonio di forma discoidale sovrapposti; ciascuno strato (3',3'',....,3ⁿ) comprendendo una pluralità di fibre lunghe (21) di carbonio e/o precursore di carbonio disposte secondo una direzione di estensione, almeno due strati (3',3'',3'''....3ⁿ,) di una stessa preforma fibrosa (1) essendo disposti uno rispetto all'altro con dette fibre lunghe (21) reciprocamente ruotate di un predefinito angolo α attorno al suddetto asse di sovrapposizione (Z).

5

10

15

20

- 11. Preforma fibrosa (1) secondo la rivendicazione 10, caratterizzato dal fatto che ciascuno strato (3',3'',....,3ⁿ) comprende almeno un primo sottostrato (6) non tessuto ed almeno un secondo sottostrato (5) accoppiati in modo che il primo sottostrato (6) non tessuto sia sovrapposto al secondo sottostrato (5).
- 12. Preforma fibrosa (1) secondo la rivendicazione 11, caratterizzato dal fatto che detto secondo sottostrato (5) comprende una pluralità di fibre lunghe (21) unidirezionali presentanti una direzione di estensione individuata da un asse di estensione.
- 13. Preforma fibrosa (1) secondo una qualsiasi delle rivendicazioni da 10 a 12, caratterizzato dal fatto che detti almeno due strati $(3',3'',3'''....3^n)$, di una stessa preforma fibrosa (1) sono disposti l'uno rispetto all'altro con dette fibre lunghe (21) reciprocamente ruotate di un predefinito angolo α maggiore di o uguale a 15° attorno al suddetto asse di sovrapposizione (Z).
- 14. Preforma fibrosa (1) secondo una qualsiasi delle rivendicazioni da 10 a 13, caratterizzato dal fatto che detti almeno due strati (3',3",3"....3"), di una stessa preforma fibrosa (1) sono realizzati, in pianta, in un pezzo unico.

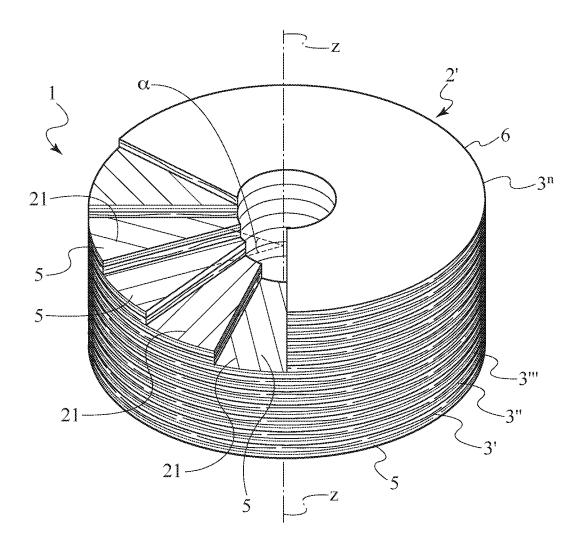


Fig. 1

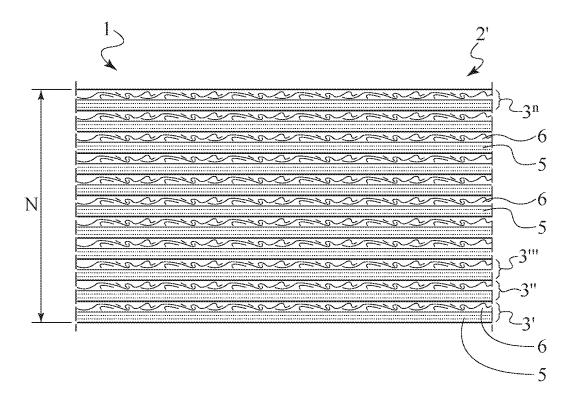


Fig. 2

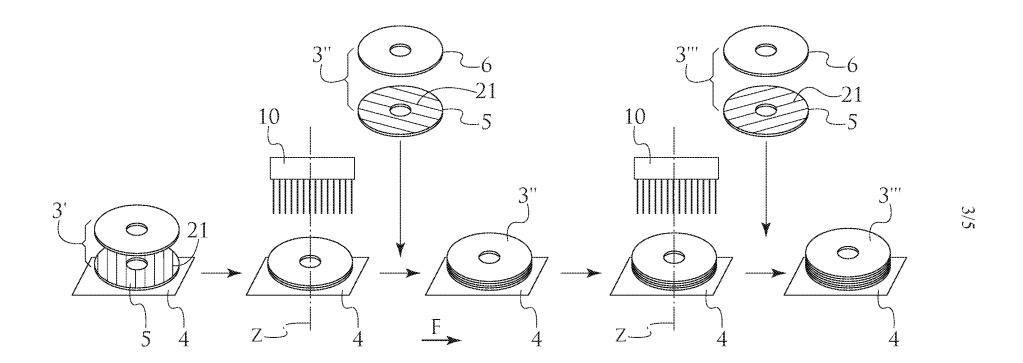


Fig. 3

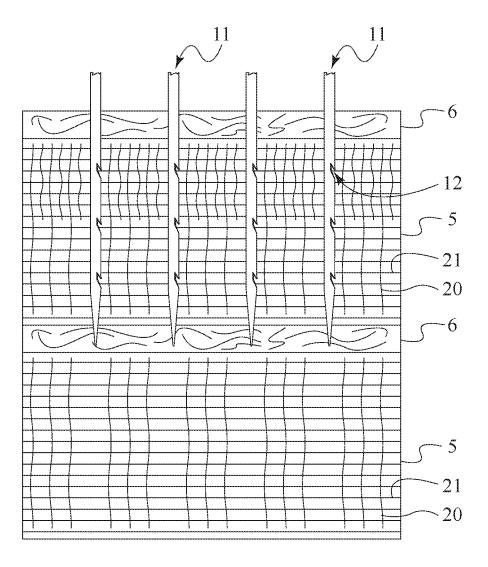


Fig. 4

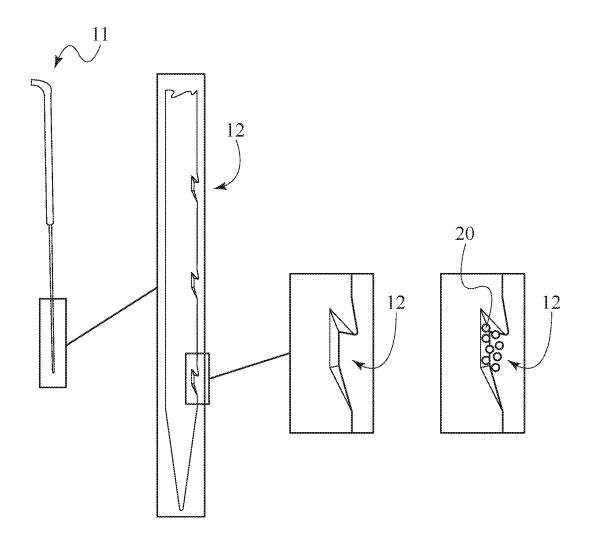


Fig. 5