
(19) United States
US 20050097251A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0097251A1
Regis

(54) SYSTEM AND METHOD FOR ARBITRATION
OF A PLURALITY OF PROCESSING
MODULES

(75) Inventor: Robert T. Regis, Huntington, NY (US)

Correspondence Address:
VOLPE AND KOENIG, PC.
DEPT. ICC
UNITED PLAZA, SUITE 1600
30 SOUTH 17TH STREET
PHILADELPHIA, PA 19103 (US)

(73) Assignee: InterDigital Technology Corporation,
Wilmington, DE

(21) Appl. No.: 10/996,494

(22) Filed: Nov. 23, 2004

Related U.S. Application Data

(63) Continuation of application No. 10/166,216, filed on
Jun. 10, 2002, now Pat. No. 6,823,412, which is a
continuation of application No. 09/079,600, filed on
May 15, 1998, now Pat. No. 6,405,272, which is a
continuation of application No. 08/671,221, filed on
Jun. 27, 1996, now Pat. No. 5,754,803.

CUCC
DMA Ctir
Chip Sol
Seriall/O
Parallel I/O
Comm. ProC.
intr Ctir

(43) Pub. Date: May 5, 2005

Publication Classification

(51) Int. Cl. ... G06F 13/00
(52) U.S. Cl. .. 710/113

(57) ABSTRACT

Method and apparatus for an arbitrated high Speed control
data bus System providing high Speed communications
between microprocessor modules in a complex digital pro
cessing environment. The System features a simplified hard
ware architecture featuring fast FIFO queuing, TTL CMOS
compatible level clocking Signals, Single bus master arbi
tration, Synchronous clocking, DMA, and unique module
addressing for multiprocessor Systems. The System includes
a parallel data bus with Sharing bus masters residing on each
processing module decreeing the communication and data
transfer protocol. Bur arbitration is performed over a dedi
cated, independent, Serial arbitration line. Each requesting
module competes for access to the parallel data bus by
placing the address of the requesting module on the arbi
tration line and monitoring the arbitration line for collisions,
eliminating the need for both bus request and bus grant
Signals.

- - - - - - - - - - - - -

SRAM DRAM

512KB 8MB

30 Address &
38 AO Data Bus

:
Transmit Receive trol
FFO E. Contr

2O

-

US 2005/0097251A1

apooap J?Su!

Japeau

Patent Application Publication May 5, 2005 Sheet 1 of 17

ËE?, BEET) CD?E??) LEBIH), ??????EDEL?

US 2005/0097251A1 Patent Application Publication May 5, 2005 Sheet 4 of 17

US 2005/0097251A1 Patent Application Publication May 5, 2005 Sheet 5 of 17

N

CN Yo

a

US 2005/0097251A1 Patent Application Publication May 5, 2005 Sheet 6 of 17

OH|H BAI3038

I
I
I

-- cy

o
w

||MOM

May 5, 2005 Sheet 7 of 17 US 2005/0097251A1 Patent Application Publication

LdmBHEINITXI 09

WOTTOTESH
99

XTOTSngTSH
0

US 2005/0097251A1

spueuuuuo Ope3}}
?uusuel L \ue!S (auop wwd)

Patent Application Publication May 5, 2005 Sheet 9 of 17

€ 4344/18 Z da??ng | u???ng

US 2005/0097251A1

a6essaw ?O pu3 - 3UOCl

O-||-|| ??uuSuell

JOSS33) Old

Patent Application Publication May 5, 2005 Sheet 10 of 17

09

US 2005/0097251A1

OOITTÒ 09989

98 ||

Patent Application Publication May 5, 2005 Sheet 11 of 17

£8 98

0OITNO 09289

US 2005/0097251A1

LSETTOETH LIWSN\/8HL HVBTC)

LHV LS
9/08

Patent Application Publication May 5, 2005 Sheet 12 of 17

LIWX 18VLS

Patent Application Publication May 5, 2005 Sheet 13 of 17 US 2005/0097251A1

FG.9

BUS
NO BUS ACTIVITY ARBITRATE
ACTIVITY

NO BUS
ACTIVITY

BUS
ACTIVITY

BUS
ACTIVITY

ACTVITY
BUS

ACTIVITY

NO BUS
ACTIVITY

BUS
ACTIVITY

NO BUS
ACTVTY

Patent Application Publication May 5, 2005 Sheet 14 of 17 US 2005/0097251A1

FIG 1 O

FIFp READEN

CLEAR
ARBITRATE

FF,
SET FIFO TO
READ ENABLE

DATABIT 6

NO MATCH
CLEAR ARB FF

NO MATCH
DATA . CLEAR ARB FF

NO MATCH
CLEAR

NOMATCH ARB
FF CLEAR ARB FF

NO MATCH
CLEAR ARB FF

DATA DATA
BT BIT
4. 2

Patent Application Publication May 5, 2005 Sheet 15 of 17 US 2005/0097251A1

F.G. 1

CLEAR SEZE
CLEARXMIT EN
CLEAR XMIT REQ

TRANSMT ENABLE

CLEAR FIFO,
READ ENABLE

F.G. 12

Patent Application Publication May 5, 2005 Sheet 16 of 17 US 2005/0097251A1

FG.13

BUS
ACTIVE

Patent Application Publication May 5, 2005 Sheet 17 of 17 US 2005/0097251A1

FG.14

CLEAR STORED DATA

RECEIVER
READY

US 2005/0097251A1

SYSTEMAND METHOD FOR ARBTRATION OF A
PLURALITY OF PROCESSING MODULES

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 10/166,216 filed on Jun. 10, 2002;
which is a continuation of U.S. patent application Ser. No.
09/079,600, filed on May 15, 1998, which issued on Jun. 11,
2002 as U.S. Pat. No. 6,405,272; which is a continuation of
U.S. patent application Ser. No. 08/671,221, filed on Jun. 27,
1996, which issued on May 19, 1998 as U.S. Pat. No.
5,754,803, all of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. This invention relates generally to a system for
transferring data between a data processing module and a
plurality of data processing modules. More particularly, the
invention relates to a high-Speed data communication SyS
tem which transfers information between different digital
processing modules on a shared parallel bus.
0004 2. Description of the Related Art
0005 For communication within a digital device, such as
between a CPU (central processing unit), memory, periph
erals, I/O (input/output) devices, or other data processors, a
communication bus is often employed. As shown in FIG. 1,
a communication bus is a set of Shared electrical conductors
for the exchange of digital words. In this manner, commu
nication between devices is simplified, thereby obviating
Separate interconnections.
0006. A communication bus typically contains a set of
data lines, address lines for determining which device
should transmit or receive, and control and Strobe lines that
Specify the type of command is executing. The address and
Strobe lines communicate one-way from a central processing
unit. Typically, all data lines are bidirectional.
0007 Data lines are asserted by the CPU during the write
instruction, and by the peripheral device during read. Both
the CPU and peripheral device use three-state drivers for the
data lines.

0008. In a computer system where several data process
ing devices exchange data on a shared data bus, the two
normal states of high and low voltage (representing the
binary 1's and 0's) are implemented by an active voltage
pullup. However, when Several processing modules are
eXchanging data on a data bus, a third output State, open
circuit, must be added So that another device located on the
bus can drive the same line.

0009 Three-state or open-collector drivers are used so
that devices connected to the bus can disable their bus
drivers, Since only one device is asserting data onto the bus
at a given time. Each bus System has a defined protocol for
determining which device asserts data. A bus System is
designed So that, at most, one device has its drivers enabled
at one time with all other devices disabled (third state). A
device knows to assert data onto the bus by recognizing its
own address on the control lines. The device looks at the
control lines and asserts data when it sees its particular
address on the address lines and a read pulse. However, there

May 5, 2005

must be Some external logic ensuring that the three-State
devices sharing the same lines do not talk at the same time
or bus contention will result.

0010 Bus control logic or a Abus master(o) executes code
for the protocol used to arbitrate control of the bus. The bus
master may be part of a CPU or function independently.
More importantly, control of the bus may be granted to
another device. More complex buS Systems permit other
devices located on the bus to master the bus.

0011 Data processing systems have processors which
execute programmed instructions Stored in a plurality of
memory locations. As shown in FIG. 1, the processed data
is transferred in and out of the System by using I/O devices
onto a bus, interconnecting with other digital devices. AbuS
protocol, or handshaking rules delineate a predetermined
Series of Steps to permit data exchange between the devices.
0012 To move data on a shared bus, the data, recipient
and moment of transmission must be specified. Therefore,
data, address and a Strobe line must be specified. There are
as many data lines as there are bits in a word to enable a
whole word to be transferred simultaneously. Data transfer
is synchronized by pulses on additional strobe bus lines. The
number of address lines determines the number of addres
Sable devices.

0013 Communication buses are either synchronous or
asynchronous. In a Synchronous bus, data is asserted onto or
retrieved from the bus Synchronously with Strobing Signals
generated by the CPU or elsewhere in the system. However,
the device Sending the data does not know if the data was
received. In an asynchronous bus, although handshaking
between communicating devices assures the Sending device
that the data was received, the hardware and Signaling
complexity is increased.
0014. In most high-speed, computationally intensive
multichannel data processing applications, digital data must
be moved very rapidly to or from another processing device.
The transfer of data is performed between memory and a
peripheral device via the bus without program intervention.
This is also known as direct memory access (DMA). In
DMA transfers, the device requests access to the bus via
Special bus request lines and the bus master arbitrates how
the data is moved, (either in bytes, blocks or packets), prior
to releasing the bus to the CPU.
0015. A number of different types of bus communication
Systems and protocols are currently in use today to perform
data transfer. As shown in the table of FIG. 2, various
methods have been devised to manipulate data between
processing devices. Data communication buses having pow
erful SDLC/HDLC (synchronous/high-level data link con
trol) protocols exist, along with Standardized parallel trans
mission Such as Small computer System interface (SCSI) and
carrier-Sense multiple-access/collision-detection (CSMA/
CD)(Ethernet) networks. However, in specialized, high
Speed applications, a simplified data communication bus is
desired.

0016. Accordingly, there exists a need for a simplified
data processing System architecture to optimize data and
message transfer between various processor modules resid
ing on a data bus.

SUMMARY OF THE INVENTION

0017 Method and apparatus for an arbitrated high speed
control data bus System is provided which allows high Speed

US 2005/0097251A1

communication between microprocessor modules in a more
complex digital processing environment. The System fea
tures a simplified hardware architecture featuring fast FIFO
(first-in/first-out) queing, TTL CMOS (complimentary
metal-oxide Silicon) compatible level clocking signals,
Single bus master arbitration, Synchronous clocking, DMA,
and unique module addressing for multiprocessor Systems.
The present invention includes a parallel data bus with
Sharing bus masters residing on each processing module
controlling the communication and data transfer protocols.
The high-speed intermodule communication bus (HSB) pro
vides between various microprocessor modules. The data
bus is Synchronous and completely bidirectional. Each pro
cessing module that communicates on the bus will have the
described bus control architecture. The HSB comprises, in
one embodiment, eight shared parallel data lines for the
eXchange of digital data, and two independent lines for
arbitration and clock signals. The need for explicit bus
request or grant Signals is eliminated. The HSB can also be
configured as a Semi-redundant System, duplicating data
lines while maintaining a Single component level. The bus is
driven by three-State gates with resistor pullupS. Serving as
terminators to minimize signal reflections.
0.018 To move data on the HSB, each processing module
Specifies the data, the recipient, and the moment when the
data is valid. Only one message Source, known as the bus
master, is allowed to drive the bus at any given time. Since
the data flow is bidirectional, the bus arbitration scheme
establishes a protocol of rules to prevent collisions on the
data lines when a given processing module microprocessor
is executing instructions. The arbitration method depends on
the detection of collisions present only on the arbitration bus
and uses State machines on each data processing module to
determine bus status. Additionally, the arbitration method is
not daisy chained, allowing greater System flexibility. The
State machines located on each processing module are the
controlling interface between the microprocessor used
within a given processing module and the HSB. The cir
cuitry required for the interface is comprised of a transmit
FIFO, receive FIFO, miscellaneous directional/bidirectional
Signal buffers and the Software code for the State machines
executed in an EPLD (erasable programmable logic device).
0.019 Objects and advantages of the system and method
will become apparent to those skilled in the art after reading
the detailed description of the preferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

0020 FIG. 1 is a block diagram of a typical, prior art data
communication bus.

0021)
0022 FIG. 3 is a simplified block diagram of the pre
ferred embodiment.

0023 FIGS. 4A-4E, taken together, is an electrical sche
matic of the preferred embodiment.
0024
DMA

FIG. 2 is a table of prior art data bus architectures.

FIG. 5 is a block diagram of the message transmit

0.025 FIG. 6 is a block diagram of the message receive
DMA

0026
System.

FIG. 7 is a block diagram of the digital processor

May 5, 2005

0027 FIG. 8 is a general flow diagram of the transmit
instruction.

0028 FIG. 9 is a state diagram of the inquiry phase.
0029 FIG. 10 is a state diagram of the arbitrate phase.
0030 FIG. 11 is a state diagram of the transmit phase.
0031 FIG. 12 is a general flow diagram of the receive
instruction.

0032 FIG. 13 is a state diagram of the delay phase.
0033 FIG. 14 is a state diagram of the receive phase.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0034) The preferred embodiment will be described with
reference to the drawing figures where like numerals repre
Sent like elements throughout.
0035) The high-speed intermodule bus (HSB) 20 of the
present invention is shown in simplified form in FIG. 3. The
preferred embodiment comprises a bus controller 22, a
transmit FIFO 24, a receive FIFO 26, an eight bit parallel
data bus 28 and a serial arbitration bus 50. The ends of the
bus 28 are terminated with a plurality of resistive dividers to
minimize Signal reflections. An internal 8 bit address and
data bus 30 couples the transmit 24 and receive 26 FIFOs
and bus controller 22 to a CPU 32 and DMA controller 33
located on a given processor module 34. The internal
address and data bus 30 also permits communication
between the CPU 32 and bus controller 22 and various
memory elements such as PROM36, SRAM38, and DRAM
40 required to Support the applications of the data processing
module 34.

0036) The HSB 20 is a packetized message transfer bus
System. Various processor modules 34 can communicate
data, control and Status messages via the present invention.
0037. The HSB 20 provides high speed service for a
plurality of processor modules 34 with minimum delay. The
message transfer time between modules is kept short along
with the Overhead of accessing the data buS 28 and queuing
each message. These requirements are achieved by using a
moderately high clock rate and a parallel data bus 28
architecture. Transmit 24 and receive 26 FIFOs are used to
Simplify and Speed up the interface between a processor
module 34 CPU 32 and the data bus 28.

0038 Referring to FIGS. 4A-4E, a common clock signal
(HSBCLK) 42, shown in FIG. 4A, comprising a TTL
compatible CMOS level signal with a frequency nominally
12.5 MHz and a duty cycle of approximately 50% synchro
nizes all HSB20 components and executions. The clock 42
pulse may originate in any part of the complete digital
System and its origination is beyond the Scope of this
disclosure.

0.039 The parallel data bus 28 (HSB DAT) lines 0-7,
FIG. 4E, provides 8 bidirectional TTL compatible CMOS
level signals. Only one message Source, the bus controller or
master 22, is allowed to drive the bus 28 at any one time. A
bus arbitration scheme determines which out of a plurality of
processing module may become bus master and when.
0040. The relationship of the data 28 and control signal
transitions to the clock 42 edges are important to recovering

US 2005/0097251A1

the data reliably at a receiving module. Data is clocked out
from a transmitting module 24 onto the data bus 28 with the
negative or trailing edge of the clock Signal 42. The data is
then clocked on the positive or leading edge of the clock
Signal 42 at an addressed receiving module. This feature
provides a Sufficient Setup and hold time of approximately
40 ns without violating the minimum Setup time for octal
register 60.

0041. Before data can be transmitted on the data bus 28,
the bus controller 22 must obtain permission from the
arbitration bus 50, FIG. 4D, to prevent a possible data
collision. The message Source must win an arbitration from
a potential multiplicity of processor module 34 acceSS
requests. The winner is granted temporary bus mastership
for Sending a single message. After the transfer of data is
complete, buS mastership is relinquished, thereby permitting
bus 28 access by other processor modules 34.
0042. No explicit bus request and grant signals are
required with the serial arbitration method of the present
invention. The preferred method eliminates complex Signal
ing and Signal lines, along with the requisite centralized
priority encoder and usual granting mechanism. The arbi
tration method is not daisy chained So that any processor
module location on the buS 28 may be empty or occupied
without requiring a change to address wiring.

0043. In the present invention, the open-collector arbi
tration bus 50 permits multiple processing modules 34 to
compete for control of the data bus 28. Since no processing
module 34 in the digital System knows a priori if another
processing module has accessed the arbitration buS 50,
modules within the HSB system may drive high and low
level logic Signals on the HSB Simultaneously, causing
arbitration collisions. The collisions occur without harm to
the driving circuit elements. However, the collisions provide
a method of determining bus activity.

0044) The arbitration bus 50 includes pullup resistors
connected to a regulated Voltage Source to provide a logic 1
level. The arbitration bus driver 52, FIG. 4D, connects the
arbitration bus 50 to ground to drive a logic 0 level. This
results in a logic 1 only when no other processing module 34
drives a logic 0. The arbitration bus 50 will be low if any
processing module 34 arbitration bus 50 driver 52 asserts a
logic 0.

0.045. As known to those familiar with the art, the con
nection is called AWired-ORG) Since it behaves like a large
NOR gate with the line going low if any device drives high
(DeMorgan=S theorem). An active low receiver inverts a
logic 0 level, producing an equivalent OR gate. Using
positive-true logic conventions yields a Awired-AND,G)
using negative logic yields a Awired-OR.G. This is used to
indicate if at least one device is driving the arbitration bus
50 and does not require additional logic. Therefore, if a
processing module 34 asserts a logic 1 on the arbitration bus
50 and monitors a logic 0, via buffer 53 on monitor line 55
(BUS ACT N), the processing module 34 bus controller 22
determines that a collision has occurred and that it has lost
the arbitration for access.

0046) The arbitration method depends on the detection of
collisions and uses state machines 46 and 48, FIG. 4A,
within the bus controller 22 on each processing module 34
to determine arbitration bus 50 status as arbitration pro

May 5, 2005

ceeds. All transitions on the arbitration bus 50 are synchro
nized to the bus clock 42. Each processor module 34 has a
unique programmed binary address to present to the arbi
tration bus 50. The device address in the current embodi
ment is six bits, thereby yielding 63 unique processing
module 34 identifications.

0047. Each processing module 34 bus controller 22
located on the HSB 20 monitors, (via a buffer 53), and
interrogates, (via a buffer 52), the arbitration bus
(HSBI ARB1 N) 50. Six or more high level signals clocked
indicate that the bus is not busy. If a processing module 34
desires to Send a message, it begins arbitration by Serially
shifting out its own unique six bit address onto the arbitra
tion bus 50 starting with the most significant bit. Collisions
will occur on the arbitration bus 50 bit by bit as each bit of
the six bit address is shifted out and examined. The first
detected collision drops the processing module 34 wishing
to gain access out of the arbitration. If the transmit State
machine 46 of the sending module 34 detects a collision it
will cease driving the arbitration bus 50, otherwise it pro
ceeds to shift out the entire six bit address. Control of the
data bus 28 is achieved if the entire address shifts out
Successfully with no errors.
0048. A priority scheme results since logic O’s pull the
arbitration bus 50 low. Therefore, a processor module 34
Serially shifting a String of logic OS that constitute its
address will not recognize a collision until a logic 1 is
shifted. Addresses having leading Zeroes effectively have
priority when arbitrating for the bus 50. As long as bus 28
traffic is not heavy, this effect will not be significant.
0049. In an alternative embodiment, measures can be
taken to add equity between processor modules 34 if
required. This can be done by altering module arbitration
ID=S or the waiting period between messages.
0050. Once a processor module 34 assumes bus master
ship it is free to send data on the data bus 28. The bus
controller 22 enables its octal bus transceiver (driver) 60 and
transmits at the clock 42 rate. The maximum allowed
message length is 512 bytes. Typically, messages will be 256
bytes or shorter. After a Successful arbitration, the arbitration
bus 50 is held low by the transmitting processor module 34
during this period as an indication of a busy arbitration bus
50.

0051. Once the data transfer is complete, the bus con
troller 22 disables its octal bus transceiver (drivers) 60 via
line 54 (HSBA EN N) and releases the arbitration bus 50
to high. Another arbitration anywhere in the System may
then take place.
0052 An alternative embodiment allows bus 28 arbitra
tion to take place Simultaneous with data transfer improving
on data throughput throughout the digital System. In the
preferred embodiment, the delay is considered insignificant
obviating the added complexity.

0053. The bus controller 22 is required to control the
interface between the processing module 34 microprocessor
32 and the HSB20 and between the HSB and the bus (data
bus 28 and arbitration bus 50) signals. In the preferred
embodiment the bus controller 22 is an Altera 7000 series
EPLD (erasable programmable logic device). The 8 bit
internal data bus 30 interfaces the bus controller 22 with the
processor module 34 CPU 32. The processor module 34

US 2005/0097251A1

CPU 32 will read and write directly to the bus controller 22
internal registers via the internal data bus 30. The bus
controller 22 monitors the arbitration bus 50 for bus status.
This is necessary to gain control for outgoing messages and
to listen and recognize its address to receive incoming
messages. The bus controller 22 monitors and controls the
data FIFO=S 24 and 26, DMA controller 33, and bus buffer
enable 54.

0.054 The components used in the preferred embodiment
are shown in Table 1.

TABLE 1.

MANU- ELE
OTY FACTURER PART NUMBER DESCRIPTION MENT

1 IDT, or IDTA2O2LA-50 1Kx9 Receive FIFO 24
Samsung KM7SCO2AJSO

1 IDT, or IDTA204LA-50 4Kx9 Transmit 26
Samsung KM7SCO4AJSO FIFO

1 TI, or SN74ABT125 Quad tristate 58
TI SN74BCT125 driver

3 TI, or SN74ABT245 TTL Octal Buffers 60
TI SN74BCT245

1 Altera 7128E erasable 22
programmable
logic device

0.055 Address decoding and DMA gating are required
and are performed by the bus controller 22. The bus con
troller 22 also contains a number of internal registers that
can be read or written to. The CPU 32 communicates with
and instructs the bus controller 22 over the 8 bit internal data
buS 30.

0056 Loading the transmit FIFO 24 is handled by the bus
controller 28, DMA and address decoding circuits contained
within the bus controller 22. Gaining access to the bus 28
and unloading the FIFO 24 is handled by the transmit state
machine.

0057. On power up the bus controller 22 receives a
hardware reset 56. The application Software running on the
processor module 34 CPU 32 has the option of resetting the
bus controller 22 via a write Strobe if the application requires
a module reset. After a reset, the bus controller 22 monitors,
at input BUS ACT, the arbitration bus 50 on line 55 to
determine bus activity and to sync with the data bus 28.

0.058 After a period of inactivity, the bus controller 22
knows that the buS 28 is between messages and not busy. A
processor module 34 can then request control of the bus via
arbitration. If no messages are to be sent, the bus controller
22 continues to monitor the arbitration bus 50.

0059) The processor module CPU 32 writes messages
into the transmit FIFO 24 at approximately 20 MBps. The
DMA controller, a Motorola 68360 33 running at 25 MHz
will be able to DMA the transmit FIFO 24 at approximately
12.5 MBps. Since only one message is allowed in the
transmit FIFO 24 at any one time, the CPU 32 must buffer
additional transmit messages in its own RAM 40. Since the
maximum allowable message length is 512 bytes with
anticipated messages averaging 256 bytes, a FIFO length of
1 KB is guaranteed not to overflow. Once a message has
been successfully sent, the transmit FIFO 24 flags empty and
the next message can be loaded.

May 5, 2005

0060 A typical 256 byte message sent by a processing
module 34 CPU 32 at 12.5 MBps will take less than 21 usec
from RAM 40 to transmit FIFO 24. Bus arbitration should
occupy not more than 1 usec if the bus is not busy. Total
elapsed time from the loading of one transmit message to the
next is approximately 43 to 64 uSec. Since not many
messages can queue during this period, circular RAM buff
erS are not required.

0061. As shown in FIGS. 5 and 7, during DMA transfers,
the DMA controller 33 disables the processor module 34
CPU 32 and assumes control of the internal data bus 30. The
DMA transfer is brought about by the processor module 34
or by a request from another processor module 134. The
other processor 134 successfully arbitrates control of the
data bus 28 and signals the processor module CPU 32. The
CPU 32 gives permission and releases control of bus 30. The
processor module CPU 32 signals the DMA controller 33 to
initiate a data transfer. The DMA controller 33 generates the
necessary addresses and tracks the number of bytes moved
and in what direction. A byte and address counter are a part
of the DMA controller 33. Both are loaded from the pro
cessor module CPU 32 to setup the desired DMA transfer.
On command from the CPU 32, a DMA request is made and
data is moved from RAM memory 40 to the transmit FIFO
24.

0062 Data transferred on the bus 28 is monitored by each
processing module 34 located on the bus 28. Each bus
controller 22 in the entire processor System contains the
destination addresses of all devices on the bus 28. If a match
is found, the input to that receiving processing module 34
FIFO 26 is enabled. Since multiple messages may be
received by this FIFO 26, it must have more storage than a
transmit FIFO 24. The receive FIFO 26 has at a minimum 4
KBx9 of storage. This amount of storage will allow at least
16 messages to queue within the receive FIFO 26 based on
the message length of 256 bytes. A message burst from
multiple Sources could conceivably cause multiple messages
to temporarily congest the receive FIFO 26. The receiving
module CPU 32 must have a suitable message throughput
from the receive FIFO 26 or else a data overflow will result
in lost information. DMA is used to automatically transfer
messages from the receive FIFO 26 to RAM 40. The transfer
time from the receive FIFO 26 to RAM 40 is typically 21
AlSec.

0063. When a message is received by the bus controller
22, a request for DMA service is made. Referring to FIG. 6,
the DMA controller 33 generates a message received hard
ware interrupt (DMADONE) and signals processor module
CPU 32 that it has control of the internal bus 30. An interrupt
routine updates the message queue pointer and transferS the
contents of receive FIFO 26 to RAM memory 40. The DMA
controller 33 is then readied for the next message to be
received and points to the next available message buffer.
This continues until all of the contents of the receive FIFO
26 are transferred. An end of message signal is sent by the
receive FIFO 26 to the DMA controller 33 via the bus
controller 22. The processor module 34 CPU 32 then regains
control of the internal communication bus 30.

0064. The total elapsed time that it takes for a source to
destination message transfer is approximately 64 to 85 usec.
As shown in FIG. 7, the time is computed from when a
processor module 34 starts to Send a message, load its

US 2005/0097251A1

transmit FIFO 24, arbitrate and acquire the data bus 28,
transfer the data to the destination receive FIFO 126, bus the
message to the CPU 132, and then finally transfer the
message into RAM 140 of the recipient module 134. The
actual throughput is almost 200 times that of a 8 KBps time
slot on a PCM highway.

0065 Controlling the HSB 20 requires two state
machines; one transmitting information 70, the other receiv
ing information 72. Both State machines are implemented in
the bus controller 22 as programmable logic in the form of
Altera=S MAX--PLUS II, Version 6.0 state machine syntax.
0.066 Any arbitrary state machine has a set of states and
a set of transition rules for moving between those States at
each clock edge. The transition rules depend both on the
present State and on the particular combination of inputs
present at the next clock edge. The Altera EPLD 22 used in
the preferred embodiment contains enough register bits to
represent all possible States and enough inputs and logic
gates to implement the transition rules.
0067. A general transmit program flow diagram 70 for the
transmit state machine is shown in FIG. 8. Within the
general flow diagram 70 are three State machine diagrams
for the inquire 74, arbitrate 76, and transmit 78 phases of the
transmit State machine.

0068. The processor module CPU 32 initiates the inquire
phase 74. As shown in FIG. 9, eight states are shown along
with the transition rules necessary for the bus controller 22
to Sense bus activity. After initiation, a transmit request is
forwarded to the bus controller 22 to see if there is bus
activity. The bus controller 22 monitors the arbitration bus
50 for a minimum of 7 clock cycles. Six internal bus
controller addresses are examined for collisions. If no col
lisions are detected, a request to arbitrate is made on the
inactive bus.

0069. As shown in FIG. 10, the arbitrate request sets a
flip-flop 80 and begins Sending out a unique identifier
followed by six address bits on the arbitration line (HSBI
ARB1 N) 50. A collision is detected if any of the bits
transmitted are not the same as monitored. If the Six bits are
successfully shifted onto the bus 28, then that particular bus
controller 22 has bus mastership and Seizes the bus. A
transmit FIFO 24 read enable is then set. If any one of the
bits suffers a collision, the arbitration bus 50 is busy and the
processor module 34 Stops arbitrating.
0070 Referencing FIG. 11, the transmit FIFO 24 read
enable sets a flip-flop 82 and initiates a transmit enable. The
contents of transmit FIFO 24 are output through the bus
controller 22, through octal bus transceiver 60, onto the data
buS 28. The data is transmitted until an end of message flag
is encountered. Once the transmit FIFO 24 is emptied, a
clear transmit request Signal is output, returning the bus
controller 22 back to monitoring the bus 28.
0071. The state machine for controlling the receive FIFO
26 is similarly reduced into two State machines. AS Shown in
FIG. 12, a general flow diagram is shown for controlling the
receive FIFO 26.

0072 Referencing FIG. 13, the bus controller 22 moni
tors the arbitration bus 50 for a period lasting seven clock
cycles. Bus activity is determined by the reception of a
leading start bit from another processor module 34 bus

May 5, 2005

controller 22. If after seven clock cycles the bus has not been
Seized, a receive alert Signal is input to receive flip-flop 89.
0073. As shown in FIG. 14, the bus controller 22 exam
ines the first bit of data transmitted and compares it with its
own address. If the first data bit is the unique identifier for
that bus controller 22, data is accumulated until an end of
message flag is encountered. If the first data bit is not the
unique identifier of the listening bus controller 22, the bus
controller 22 returns to the listening State.
0074 There are two embodiments for the Software to
transmit messages. The first embodiment will allow waiting
an average of 50 usec to Send a message Since there are no
System interrupts performed. This simplifies queuing and
unqueuing messages. The Second embodiment assumes that
messages are being Sent fast, the operating System is fast and
preemptive, System interrupts are handled quickly, and
idling of the processor 32 is not allowed while messaging.
0075 Upon completion of the transmit DMA, data bus 28
arbitration must take place. After the data bus 28 has been
Successfully arbitrated, the bus controller 22 may release the
transmit FIFO 24 thereby placing the contents on the data
buS 28. An empty flag Signals a complete transfer to the bus
controller 22 and processor module 34 CPU 32.
0076 While specific embodiments of the present inven
tion have been shown and described, many modifications
and variations could be made by one skilled in the art
without departing from the Spirit and Scope of the invention.
The above description serves to illustrate and not limit the
particular form in any way.

What is claimed is:
1. A method for controlling access to a data bus which is

shared by a plurality of data processing modules, the method
comprising:

providing an arbitration bus independent from the data
bus,

placing a unique address of the data processing module bit
by bit on the arbitration bus, while monitoring the
arbitration bus Simultaneously, wherein the data pro
cessing module stops placing its address when a bit
different from its own address bit is detected on the
arbitration bus;

asserting the data bus when the data processing module
Succeeds to place and detect all the bits of its own
address on the arbitration bus, and

withholding the arbitration bus until data transfer is
completed.

2. The method of claim 1 further comprising a step of
monitoring the arbitration bus for a predetermined duration
before placing the address on the arbitration bus, whereby
the data processing module places its own address only if the
arbitration bus is not busy.

3. The method of claim 2 wherein the data processing
module monitors the arbitration bus for a period equal to the
length of the address of the data processing module.

4. The method of claim 1 wherein the address of the
plurality of data processing modules are prioritized.

5. The method of claim 1 wherein the address of the data
processing module is a binary code.

US 2005/0097251A1

6. An apparatus for transferring data through a data bus,
the apparatus comprising:

a data bus,
an arbitration bus, and
a plurality of data processing modules, each data process

ing module comprising a bus controller for placing a
unique address of the data processing module in Series
on the arbitration bus while detecting occurrence of
collision on the arbitration bus Simultaneously,
whereby the data processing module withholds the data
buS if the data processing module Succeeds to place all
the bits of its own address on the arbitration bus without
collision.

May 5, 2005

7. The apparatus of claim 6 wherein the bus controller of
the data processing module monitors the arbitration bus for
a predetermined duration before placing the address on the
arbitration bus, whereby the data processing module places
its own address only if the arbitration bus is not busy.

8. The apparatus of claim 7 wherein the data processing
module monitors the arbitration bus for a period equal to the
length of the address of the data processing module.

9. The apparatus of claim 6 wherein the address of the
plurality of data processing modules are prioritized.

10. The apparatus of claim 6 wherein the address of the
data processing module is a binary code.

