
(19) United States
US 20080114698A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0114698 A1
S.HEAR et al. (43) Pub. Date: May 15, 2008

(54) SYSTEMS AND METHODS USING
CRYPTOGRAPHY TO PROTECT SECURE
COMPUTING ENVIRONMENTS

(75) Inventors: VICTOR H. S.HEAR, Alamo, CA (US);
W. OLINSIBERT, Lexington, MA
(US); DAVID M. VAN WIE, Eugene,
OR (US)

Correspondence Address:
FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER
LLP
901 NEW YORKAVENUE, NW
WASHINGTON, DC 20001-4413 (US)

(73) Assignee: Intertrust Technologies Corporation

(21) Appl. No.: 11/978,962

(22) Filed: Oct. 29, 2007

Related U.S. Application Data

(63) Continuation of application No. 1 1/842,136, filed on
Aug. 21, 2007, which is a continuation of application
No. 1 1/454,072, filed on Jun. 14, 2006, which is a
continuation of application No. 09/925,072, filed on
Aug. 6, 2001, now Pat. No. 7,120,802, which is a
continuation of application No. 09/678.830, filed on

Oct. 4, 2000, now Pat. No. 6,292,569, which is a con
tinuation of application No. 08/689,754, filed on Aug.
12, 1996, now Pat. No. 6,157,721.

Publication Classification

(51) Int. Cl.
G06Q 30/00 (2006.01)

(52) U.S. Cl. .. 705/67
(57) ABSTRACT
Secure computation environments are protected from bogus
or rogue load modules, executables and other data elements
through use of digital signatures, seals and certificates issued
by a verifying authority. A verifying authority—which may
be a trusted independent third party—tests the load modules
or other executables to Verify that their corresponding speci
fications are accurate and complete, and then digitally signs
the load module or other executable based on tamper resis
tance work factor classification. Secure computation environ
ments with different tamper resistance work factors use dif
ferent verification digital signature authentication techniques
(e.g., different signature algorithms and/or signature verifi
cation keys)—allowing one tamper resistance work factor
environment to protect itself against load modules from
another, different tamper resistance work factor environment.
Several dissimilar digital signature algorithms may be used to
reduce Vulnerability from algorithm compromise, and Sub
sets of multiple digital signatures may be used to reduce the
Scope of any specific compromise.

US 2008/O114698 A1 Patent Application Publication May 15, 2008 Sheet 1 of 15

sula|qoud ºsmeº ue0 saInpow peon „snfiog, un aml?bajaq u - sol-l

Patent Application Publication May 15, 2008 Sheet 2 of 15 US 2008/O114698 A1

US 2008/O114698 A1

80 ||

-pa???uam uaag seH ?Inp0W pæ01|| aºs 01 SH22||0 II 'a npow peon w sasn luaulu01|nua ?uissanoid papalola alojaa e ºsol-1

Patent Application Publication May 15, 2008 Sheet 3 of 15

Patent Application Publication May 15, 2008 Sheet 4 of 15 US 2008/O114698 A1

Executable No. X5198
created 6/26/96 by
David VanWie of
intertrust Technologies
Corp..does the following: 112

FIG. 4
Certifying Load Module by

Checking it Against its DOCumentation

Patent Application Publication May 15, 2008 Sheet 5 of 15 US 2008/O114698 A1

LOAD MODULE

54

116

106

PRIVATE
KEY

FIG. 5
Creating a Certifying

Digital Signature

US 2008/O114698 A1 Patent Application Publication May 15, 2008 Sheet 6 of 15

- 80!-1NHWNOBIAN=5) NISSEROOBld C15, 10E; 1O8d ,

NABX OITEmd .. » ×º

Patent Application Publication May 15, 2008 Sheet 7 of 15 US 2008/O114698 A1

Patent Application Publication May 15, 2008 Sheet 8 of 15 US 2008/0114698 A1

FIG. 8 Same load Module Can Be
Distributed with Multiple Signatures

F.G. 8A Different Processing Environments Can Have
Different Subsets of Keys

108(1)

Patent Application Publication May 15, 2008 Sheet 9 of 15 US 2008/O114698 A1

FG. 9 Load Module Can Have Several
Independently Signed Portions

54

106(1)

106(2)
f

106(3)

Patent Application Publication May 15, 2008 Sheet 10 of 15 US 2008/O114698 A1

FIG. 1 OA Assurance Levell
Software-Based

Protected Processing Environment

F.G. 1 OB Assurance Level II
Software and Hardware-Based

Protected Processing Environment

FIG. OC Assurance Level ill
Hardware-Based

Protected Processing Environment

Patent Application Publication May 15, 2008 Sheet 11 of 15 US 2008/O114698 A1

FIG. 11A Level
Digital Signature

FIG. 11B Level Il
Digital Signature

54

106(1)

CD II 4.

F.G. 1 1 C Level II
Digital Signature

106(II (III)

ODI

Patent Application Publication May 15, 2008 Sheet 12 of 15 US 2008/O114698 A1

S.

Patent Application Publication May 15, 2008 Sheet 13 of 15 US 2008/O114698 A1

Patent Application Publication May 15, 2008 Sheet 14 of 15 US 2008/O114698 A1

C
()
yn

g
L

Patent Application Publication May 15, 2008 Sheet 15 of 15 US 2008/O114698 A1

Aprovider of F G. 4
AExecutables 502

MAKE LMAND
SPECIFICATION(S)

SUBMIT TOVERIFYING 504
AUTHORITY

verifying ESMASN. " Authority ECIF (S)
GENERATE

NEW

508 SPECIFICATION(S)?
N N RESET

GENERATE
NEW

SPECIFICATION(S)?
Y

GENERATE NEW
N SPECIFICATION(S)

54

516

DIGITALLY SIGN LM TO
INDICATE APPROVAL

512
51 B

REJECT LM 8,
DETERMINE RETURN TO PROVIDER
DISTRIBUTION

520

DSTRIBUTE

US 2008/0114698 A1

SYSTEMS AND METHODS USING
CRYPTOGRAPHY TO PROTECT SECURE

COMPUTING ENVIRONMENTS

CROSS REFERENCE TO RELATED
APPLICATION

0001. This is a continuation of application Ser. No.
1 1/842,136, filed Aug. 20, 2007, which is a continuation of
application Ser. No. 1 1/454,072, filed Jun. 14, 2006, which is
a continuation of application Ser. No. 09/925,072, filed Aug.
6, 2001, now U.S. Pat. No. 7,120,802, which is a continuation
of application Ser. No. 09/678,830, filed Oct. 4, 2000, now
U.S. Pat. No. 6,292,569, which is a continuation of applica
tion Ser. No. 08/689,754, filed Aug. 12, 1996, now U.S. Pat.
No. 6,157.721, all of which are incorporated herein by refer
CCC.

0002 This application is also related to application Ser.
No. 08/388,107, filed 13 Feb. 1995, abandoned, which is also
incorporated herein by reference.

FIELD OF THE INVENTION(S)
0003. This invention relates to computer security, and
more particularly to secure and/or protected computer execu
tion environments. Still more specifically, the present inven
tion relates to computer security techniques based at least in
part on cryptography, that protect a computer processing
environment against potentially harmful computer
executables, programs and/or data; and to techniques for cer
tifying load modules such as executable computer programs
or fragments thereof as being authorized for use by a pro
tected or secure processing environment.

BACKGROUND AND SUMMARY OF THE
INVENTION(S)

0004 Computers have become increasingly central to
business, finance and other important aspects of our lives. It is
now more important than ever to protect computers from
“bad” or harmful computer programs. Unfortunately, since
many of our most critical business, financial and governmen
tal tasks now rely heavily on computers, dishonest people
have a great incentive to use increasingly Sophisticated and
ingenious computer attacks.
0005 Imagine, for example, if a dishonest customer of a
major bank could reprogram the bank’s computer so it adds to
instead of Subtracts from the customer's account—or diverts
a penny to the customer's account from anyone else’s bank
deposit in excess of S10,000. If successful, such attacks
would not only allow dishonest people to steal, but could also
undermine Society's confidence in the integrity and reliability
of the banking system.
0006 Terrorists can also try to attack us through our com
puters. We cannot afford to have harmful computer programs
destroy the computers driving the greater San Francisco met
ropolitan air traffic controller network, the New York Stock
Exchange, the life Support systems of a major hospital, or the
Northern Virginia metropolitan area fire and paramedic emer
gency dispatch service.
0007 There are many different kinds of “bad” computer
programs, which in general are termed "Trojan horses' -
programs that cause a computer to act in a manner not
intended by its operator, named after the famous wooden

May 15, 2008

horse of Troy that delivered an attacking army disguised as an
attractive gift. One of the most notorious kinds is so-called
“computer viruses’ “diseases” that a computer can "catch'
from another computer. A computer virus is a computer pro
gram that instructs the computer to do harmful or spurious
things instead of useful things—and can also replicate itself
to spread from one computer to another. Since the computer
does whatever its instructions tell it to do, it will carry out the
bad intent of a malicious human programmer who wrote the
computer virus program—unless the computer is protected
from the computer virus program. Special 'anti-virus' pro
tection software exists, but it unfortunately is only partially
effective—for example, because new viruses can escape
detection until they become widely known and recognized,
and because Sophisticated viruses can escape detection by
masquerading as tasks the computer is Supposed to be per
forming.
0008 Computer security risks of all sorts including the
risks from computer viruses—have increased dramatically as
computers have become increasingly connected to one
another over the Internet and by other means. Increased com
puter connectivity provides increased capabilities, but also
creates a host of computer security problems that haven’t
been fully solved. For example, electronic networks are an
obvious path for spreading computer viruses. In October
1988, a university student used the Internet (a network of
computer networks connected to millions of computers
worldwide) to infect thousands of university and business
computers with a self-replicating "worm” virus that took over
the infected computers and caused them to execute the com
puter virus instead of performing the tasks they were Sup
posed to perform. This computer virus outbreak (which
resulted in a criminal prosecution) caused widespread panic
throughout the electronic community.
0009 Computer viruses are by no means the only com
puter security risk made even more significant by increased
computer connectivity. For example, a significant percentage
of the online electronic community has recently become com
mitted to a new "portable' computer language called JavaTM
developed by Sun Microsystems of Mountain View, Calif.
Java was designed to allow computers to interactively and
dynamically download computer program code fragments
(called “applets’) over an electronic network such as the
internet, and execute the downloaded code fragments locally.
Java's "download and execute' capability is valuable because
it allows certain tasks to be performed locally on local equip
ment using local resources. For example, a users computer
could run a particularly computationally or data-intensive
routine—relieving the provider's computer from having to
run the task and/or eliminating the need to transmit large
amounts of data over the communications path.
0010 While Java’s “download and execute' capability
has great potential, it raises significant computer security
concerns. For example, Java applets could be written to dam
age hardware, Software or information on the recipient com
puter, make the computer unstable by depleting its resources,
and/or access confidential information on the computer and
send it to someone else without first getting the computer
owner's permission. People have expended lots of time and
effort trying to solve Java's security problems. To alleviate
Some of these concerns, Sun MicroSystems has developed a
Java interpreter providing certain built-in security features
Such as:

US 2008/0114698 A1

0011 a Java verifier that will not let an applet execute
until the verifier verifies the applet doesn’t violate cer
tain rules,

0012 a Java class loader that treats applets originating
remotely differently from those originating locally,

0013 a Java security manager that controls access to
resources such as files and network access, and

0014 promised to come soon—the use of digital signa
tures for authenticating applets.

0.015 Numerous security flaws have been found despite
these techniques. Moreover, a philosophy underlying this
overall security design is that a user will have no incentive to
compromise the security of her own locally installed Java
interpreter—and that any Such compromise is inconsequen
tial from a system security standpoint because only the user's
own computer (and its contents) are at risk. This philoso
phy—which is typical of many security system designs—is
seriously flawed in many useful electronic commerce con
texts for reasons described below in connection with the
above-referenced Ginter et al. patent specification.
0016. The Ginter et al. specification describes a “virtual
distribution environment” comprehensively providing over
all systems and wide arrays of methods, techniques, struc
tures and arrangements that enable secure, efficient electronic
commerce and rights management, including on the Internet
or other “Information Super Highway.”
0017. The Ginteret al. patent disclosure describes, among
other things, techniques for providing a secure, tamper resis
tant execution spaces within a “protected processing environ
ment' for computer programs and data. The protected pro
cessing environment described in Ginter et al. may be
hardware-based, software-based, or a hybrid. It can execute
computer code the Ginter et al. disclosure refers to as “load
modules. See, for example, Ginter et al. FIG. 23 and corre
sponding text. These load modules—which can be transmit
ted from remote locations within secure cryptographic wrap
pers or “containers' are used to perform the basic
operations of the “virtual distribution environment. Load
modules may contain algorithms, data, cryptographic keys,
shared secrets, and/or other information that permits a load
module to interact with other system components (e.g., other
load modules and/or computer programs operating in the
same or different protected processing environment). For a
load module to operate and interact as intended, it must
execute without unauthorized modification and its contents
may need to be protected from disclosure.
0018. Unlike many other computer security scenarios,
there may be a significant incentive for an owner of a Ginter
et al. type protected processing environment to attack his or
her own protected processing environment. For example:

0019 the owner may wish to “turn off payment mecha
nisms necessary to ensure that people delivering content
and other value receive adequate compensation; or

0020 the owner may wish to defeat other electronic
controls preventing him or her from performing certain
tasks (for example, copying content without authoriza
tion); or

0021 the owner may wish to access someone else’s
confidential information embodied within electronic
controls present in the owners protected processing
environment; or

May 15, 2008

0022 the owner may wish to change the identity of a
payment recipient indicated within controls such that
they receive payments themselves, or to interfere with
commerce; or

0023 the owner may wish to defeat the mechanism(s)
that disable some or all functions when budget has been
exhausted, or audit trails have not been delivered.

0024 Security experts can often be heard to say that to
competently do their job, they must “think like an attacker.”
For example, a Successful home security system installer
must try to put herself in the place of a burglar trying to break
in. Only by anticipating how a burglar might try to break into
a house can the installer Successfully defend the house against
burglary. Similarly, computer security experts must try to
anticipate the sorts of attacks that might be brought against a
presumably secure computer system.
0025. From this “think like an attacker viewpoint, intro
ducing a bogus load module is one of the strongest possible
forms of attack (by a protected processing environment user
or anyone else) on the virtual distribution environment dis
closed in the Ginter et al. patent specification. Because load
modules have access to internal protected data structures
within protected processing environments and also (at least to
an extent) control the results brought about by those protected
processing environments, bogus load modules can (putting
aside for the moment additional possible local protections
Such as addressing and/or ring protection and also putting
aside system level fraud and other security related checks)
perform almost any action possible in the virtual distribution
environment without being subject to intended electronic
controls. Especially likely attacks may range from Straight
forward changes to protected data (for example, adding bud
get, billing for nothing instead of the desired amount, etc.) to
wholesale compromise (for example, using a load module to
expose a protected processing environments cryptographic
keys). For at least these reasons, the methods for validating
the origin and Soundness of a load module are critically
important.

0026. The Ginter et al. patent specification discloses
important techniques for securing protected processing envi
ronments against inauthentic load modules introduced by the
computer owner, user, or any other party, including for
example:

0027 Encrypting and authenticating load modules
whenever they are shared between protected processing
environments via a communications path outside of a
tamper-resistant barrier and/or passed between different
virtual distribution environment participants;

0028. Using digital signatures to determine if load mod
ule executable content is intact and was created by a
trusted source (i.e., one with a correct certificate for
creating load modules);

0029 Strictly controlling initiation of load module
execution by use of encryption keys, digital signatures
and/or tags;

0030 Carefully controlling the process of creating,
replacing, updating or deleting load modules; and

0031 Maintaining shared secrets (e.g., cryptographic
keys) within a tamper resistant enclosure that the owner
of the electronic appliance cannot easily tamper with.

US 2008/0114698 A1

0032. Although the Ginter et al. patent specification com
prehensively solves a host of load module (and other) security
related problems, any computer system—no matter how
secure—can be "cracked” if enough time, money and effort is
devoted to the project. Therefore, even a very secure system
such as that disclosed in Ginter et al. can be improved to
provide even greater security and protection against attack.
0033. The present invention provides improved tech
niques for protecting secure computation and/or execution
spaces (as one important but non-limiting example, the pro
tected processing environments as disclosed in Ginter et al)
from unauthorized (and potentially harmful) load modules or
other “executables' or associated data. In one particular pre
ferred embodiment, these techniques build upon, enhance
and/or extend in certain respects, the load module security
techniques, arrangements and systems provided in the Ginter
et al. specification.
0034. In accordance with one aspect provided by the
present invention, one or more trusted verifying authorities
validate load modules or other executables by analyzing and/
or testing them. A verifying authority digitally “signs and
"certifies' those load modules or other executables it has
Verified (using a public key based digital signature and/or
certificate based thereon, for example).
0035 Protected execution spaces such as protected pro
cessing environments can be programmed or otherwise con
ditioned to accept only those load modules or other
executables bearing a digital signature/certificate of an
accredited (or particular) verifying authority. Tamper resis
tant barriers may be used to protect this programming or other
conditioning. The assurance levels described below are a
measure or assessment of the effectiveness with which this
programming or other conditioning is protected.
0.036 A web of trust may stand behind a verifying author

ity. For example, a verifying authority may be an independent
organization that can be trusted by all electronic value chain
participants not to collaborate with any particular participant
to the disadvantage of other participants. A given load module
or other executable may be independently certified by any
number of authorized verifying authority participants. If a
load module or other executable is signed, for example, by
five different verifying authority participants, a user will have
(potentially) a higher likelihood of finding one that they trust.
General commercial users may insist on several different
certifiers, and government users, large corporations, and
international trading partners may each have their own unique
“web of trust' requirements. This “web of trust' prevents
value chain participants from conspiring to defraud other
value chain participants.
0037. In accordance with another aspect provided by this
invention, each load module or other executable has specifi
cations associated with it describing the executable, its opera
tions, content, and functions. Such specifications could be
represented by any combination of specifications, formal
mathematical descriptions that can be verified in an auto
mated or other well-defined manner, or any other forms of
description that can be processed, Verified, and/or tested in an
automated or other well-defined manner. The load module or
other executable is preferably constructed using a program
ming language (e.g., languages such as Java and Python)
and/or design/implementation methodology (e.g., Gypsy,
FDM) that can facilitate automated analysis, validation, veri
fication, inspection, and/or testing.

May 15, 2008

0038 A verifying authority analyzes, validates, verifies,
inspects, and/or tests the load module or other executable, and
compares its results with the specifications associated with
the load module or other executable. A verifying authority
may digitally sign or certify only those load modules or other
executables having proper specifications—and may include
the specifications as part of the material being signed or
certified.

0039. A verifying authority may instead, or in addition,
selectively be given the responsibility for analyzing the load
module and generating a specification for it. Such a specifi
cation could be reviewed by the load module’s originator
and/or any potential users of the load module.
0040 A verifying authority may selectively be given the
authority to generate an additional specification for the load
module, for example by translating a formal mathematical
specification to other kinds of specifications. This authority
could be granted, for example, by a load module originator
wishing to have a more accessible, but verified (certified),
description of the load module for purposes of informing
other potential users of the load module.
0041 Additionally, a verifying authority may selectively
be empowered to modify the specifications to make it accu
rate—but may refuse to sign or certify load modules or other
executables that are harmful or dangerous irrespective of the
accuracy of their associated specifications. The specifications
may in some instances be viewable by ultimate users or other
value chain participants—providing a high degree of assur
ance that load modules or other executables are not subvert
ing the system and/or the legitimate interest of any participant
in an electronic value chain the system Supports.
0042. In accordance with another aspect provided by the
present invention, an execution environment protects itself by
deciding based on digital signatures, for example—which
load modules or other executables it is willing to execute. A
digital signature allows the execution environment to test
both the authenticity and the integrity of the load module or
other executables, as well permitting a user of Such
executables to determine their correctness with respect to
their associated specifications or other description of their
behavior, if such descriptions are included in the verification
process.

0043. A hierarchy of assurance levels may be provided for
different protected processing environment security levels.
Load modules or other executables can be provided with
digital signatures associated with particular assurance levels.
Appliances assigned to particular assurance levels can protect
themselves from executing load modules or other executables
associated with different assurance levels. Different digital
signatures and/or certificates may be used to distinguish
between load modules or other executables intended for dif
ferent assurance levels. This strict assurance level hierarchy
provides a framework to help ensure that a more trusted
environment can protect itself from load modules or other
executables exposed to environments with different work
factors (e.g., less trusted or tamper resistant environments).
This can be used to provide a high degree of security com
partmentalization that helps protect the remainder of the sys
tem should parts of the system become compromised.
0044. For example, protected processing environments or
other secure execution spaces that are more impervious to

US 2008/0114698 A1

tampering (such as those providing a higher degree of physi
cal security) may use an assurance level that isolates it from
protected processing environments or other secure execution
spaces that are relatively more Susceptible to tampering (Such
as those constructed solely by Software executing on a general
purpose digital computer in a non-secure location).

0045. A verifying authority may digitally sign load mod
ules or other executables with a digital signature that indicates
or implies assurance level. A verifying authority can use
digital signature techniques to distinguish between assurance
levels. As one example, each different digital signature may
be encrypted using a different verification key and/or funda
mentally different encryption, one-way hash and/or other
techniques. A protected processing environment or other
secure execution space protects itself by executing only those
load modules or other executables that have been digitally
signed for its corresponding assurance level.

0046. The present invention may use a verifying authority
and the digital signatures it provides to compartmentalize the
different electronic appliances depending on their level of
security (e.g., work factor or relative tamper resistance). In
particular, a verifying authority and the digital signatures it
provides isolate appliances with significantly different work
factors—preventing the security of high work factor appli
ances from collapsing into the security of low work factor
appliances due to free exchange of load modules or other
executables.

0047 Encryption can be used in combination with the
assurance level scheme discussed above to ensure that load
modules or other executables can be executed only in specific
environments or types of environments. The secure way to
ensure that a load module or other executable can't execute in
a particular environment is to ensure that the environment
doesn’t have the key(s) necessary to decrypt it. Encryption
can rely on multiple public keys and/or algorithms to trans
port basic key(s). Such encryption protects the load module or
other executable from disclosure to environments (or assur
ance levels of environments) other than the one it is intended
to execute in.

0.048. In accordance with another aspect provided by this
invention, a verifying authority can digitally sign a load mod
ule or other executable with several different digital signa
tures and/or signature schemes. A protected processing envi
ronment or other secure execution space may require a load
module or other executable to present multiple digital signa
tures before accepting it. An attacker would have to “break”
each (all) of the several digital signatures and/or signature
schemes to create an unauthorized load module or other
executable that would be accepted by the protected process
ing environment or other secure execution space. Different
protected processing environments (secure execution spaces)
might examine different Subsets of the multiple digital signa
tures—so that compromising one protected processing envi
ronment (secure execution space) will not compromise all of
them. As an optimization, a protected processing environ
ment or other secure execution space might verify only one of
the several digital signatures (for example, chosen at random
each time an executable is used)—thereby speeding up the
digital signature verification while still maintaining a high
degree of security.

May 15, 2008

BRIEF DESCRIPTION OF THE DRAWINGS

0049. These and other features and advantages provided in
accordance with this invention may be better and more com
pletely understood by referring to the following detailed
description of example preferred embodiments in conjunc
tion with the drawings, of which:
0050 FIG. 1 illustrates how defective or bogus load mod
ules can wreak havoc in the electronic community;
0051 FIG. 2 shows an example verification authority that
protects the electronic community from unauthorized load
modules;
0052 FIG. 3 shows how a protected processing environ
ment can distinguish between load modules that have been
approved by a verifying authority and those that have not been
approved;
0053 FIG. 4 shows an example process averifying author
ity may perform to authenticate load modules;
0054 FIG. 5 shows how a verifying authority can create a
certifying digital signature;
0055 FIG. 6 shows how a protected processing environ
ment can securely authenticate a verifying authority's digital
signature to guarantee the integrity of the corresponding load
module;
0056 FIG. 7 shows how several different digital signa
tures can be applied to the same load module;
0057 FIG. 8 shows how a load module can be distributed
with multiple digital signatures;
0058 FIG. 8A shows how key management can be used to
compartmentalize protected processing environments;
0059 FIG. 9 shows how a load module can be segmented
and each segment protected with a different digital signature;
0060 FIGS. 10A-10C show how different assurance level
electronic appliances can be provided with different crypto
graphic keys for authenticating verifying authority digital
signatures:
0061 FIGS. 11A-11C show how a verifying authority can
use different digital signatures to designate the same or dif
ferent load modules as being appropriate for execution by
different assurance level electronic appliances;
0062 FIGS. 12, 13 and 13 A show how assurance level
digital signatures can be used to isolate electronic appliances
or appliance types based on work factor and/or tamper resis
tance to reduce overall security risks; and
0063 FIG. 14 shows example overall steps that may be
performed within an electronic system (such as, for example,
a virtual distribution environment) to test, certify, distribute
and use executables.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

0064 FIG. 1 shows how defective, bogus and/or unautho
rized computer information can wreak havoc within an elec
tronic system 50. In this example, provider 52 is authorized to
produce and distribute “load modules’54 for use by different
users or consumers 56. FIG. 1 shows "load module'54 as a
complicated looking machine part for purposes of illustration

US 2008/0114698 A1

only; the load module preferably comprises one or more
computer instructions and/or data elements used to assist,
allow, prohibit, direct, control or facilitate at least one task
performed at least in part by an electronic appliance Such as a
computer. For example, load module 54 may comprise all or
part of an executable computer program and/or associated
data (“executable'), and may constitute a sequence of instruc
tions or steps that bring about a certain result within a com
puter or other computation element.
0065 FIG. 1 shows a number of electronic appliances 61
Such as, for example, a set top box or home media player 58,
a personal computer 60, and a multi-media player 62. Each of
appliances 58, 60, 62 may include a secure execution space.
One particular example of a secure execution space is a “pro
tected processing environment'108 of the type shown in
Ginteretal. (see FIGS. 6-12) and described in associated text.
Protected processing environments 108 provide a secure
execution environment in which appliances 58, 60, 62 may
securely execute load modules 54 to perform useful tasks. For
example:

0.066 Provider 52 might produce a load module 54a for
use by the protected processing environment 108A
within set top box or home media player 58. Load mod
ule 54a could, for example, enable the set top box/home
media player 58 to play a movie, concert or other inter
esting program, charge users 56a a “pay per view fee,
and ensure that the fee is paid to the appropriate rights
holder (for example, the film studio, concert promoter or
other organization that produced the program material).

0067 Provider 52 might produce another load module
54b for delivery to personal computer 60’s protected
processing environment 108B. The load module 54b
might enable personal computer 60 to perform a finan
cial transaction, Such as, for example, home banking, a
stock trade or an income tax payment or reporting.

0068 Provider 52 could produce a load module 54c for
delivery to multi-media player 62's protected process
ing environment 108c. This load module 54c might
allow user 56c to view a particular multi-media presen
tation while preventing the user from making a copy of
the presentation—or it could control a portion of a trans
action (e.g. a meter that records usage, and is incorpo
rated into a larger transaction involving other load mod
ules associated with interacting with a multi-media
piece). (AS described in the Ginter et al. specification,
load modules associated with the financial portion of a
transaction, for example, may often be self contained
and independent).

0069 FIG. 1 also shows an unauthorized and/or disrepu
table load module provider 64. Unauthorized provider 64
knows how to make load modules that look a lot like the load
modules produced by authorized load module provider
52 but are defective or even destructive. Unless precautions
are taken, the unauthorized load module 54d made by unau
thorized producer 64 will be able to run on protected process
ing environments 108 within appliances 58, 60 and 62, and
may cause serious harm to users 56 and/or to the integrity of
system 50. For example:

0070 unauthorized provider 64 could produce a load
module 54d that is quite similar to authorized load mod
ule 54a intended to be used by set top box or home media

May 15, 2008

player 58. The unauthorized load module 54d might
allow protected processing environment 108A within set
top box/home media player 58 to present the very same
program material—but divert Some or all of the user's
payment to unauthorized producer 64 thereby
defrauding the rights holders in the program material the
users watch.

0071. Unauthorized provider 64 might produce an
unauthorized version of load module 54b that could, if
run by personal computer 60’s protected processing
environment 108b, disclose the user 64b's bank and
credit card account numbers to unauthorized provider 64
and/or divert electronic or other funds to the unautho
rized provider.

0072 Unauthorized provider 64 could produce an
unauthorized version of load module 54c that could
damage the protected processing environment 108c
within multi media player 62-erasing data it needs for
its operation and making it unusable. Alternatively, an
unauthorized version of load module 54c could defeat
the copy protection provided by multi media player 62's
protected processing environment, causing the makers
of multi media programs to lose Substantial revenues
through unauthorized copying—or defeat or alter the
part of the transaction provided by the load module (e.g.,
billing, metering, maintaining an audit trail, etc.)

0.073 FIG. 2 shows how a verifying authority 100 can
prevent the problems shown in FIG.1. In this example, autho
rized provider 52 submits load modules 54 to verifying
authority 100. Verifying authority 100 carefully analyzes the
load modules 54 (see 102), testing them to make sure they do
what they are Supposed to do and do not compromise or harm
system 50. If a load module 54 passes the tests verifying
authority 100 subjects it to, a verifying authority may affix a
digital “seal of approval' (see 104) to the load module.
0074 Protected processing environments 108 can use this
digital 'seal of approval 106 (which may comprise one or
more "digital signatures') to distinguish between authorized
and unauthorized load modules 54. FIG. 3 illustrates how an
electronic protected processing environment 108 can use and
rely on a verifying authority's digital seal of approval 106. In
this example, the protected processing environment 108 can
distinguish between authorized and unauthorized load mod
ules 54 by examining the load module to see whether it bears
the seal of verifying authority 100. Protected processing envi
ronment 108 will execute the load module 54a with its pro
cessor 110 only if the load module bears a verifying authori
ty's seal 106. Protected processing environment 108 discards
and does not use any load module 54 that does not bear this
seal 106. In this way, protected processing environment 108
securely protects itself against unauthorized load modules 54
such as, for example, the defective load module 54d made by
disreputable load module provider 64.
0075 FIG. 4 shows the analysis and digital signing steps
102, 104 performed by verifying authority 100 in this
example. Provider 54 may provide, with each load module 54,
associated specifications 110 identifying the load module and
describing the functions the load module performs. In this
example, these specifications 110 are illustrated as a manu
facturing tag, but preferably comprises a data file associated
with and/or attached to the load module 54.

0076 Verifying authority 100 uses an analyzing tool(s)
112 to analyze and test load module 54 and determine

US 2008/0114698 A1

whether it performs as specified by its associated specifica
tions 110 that is, whether the specifications are both accu
rate and complete. FIG. 4 illustrates an analysis tool 112 as a
magnifying glass; Verifying authority 100 may not rely on
visual inspection only, but instead preferably uses one or
more computer-based software testing techniques and/or
tools to verify that the load module performs as expected,
matches specifications 110, is not a “virus.” and includes no
significant detectable “bugs” or other harmful functionality.
See for example Pressman, Software Engineering. A Practi
tioner's Approach (3d Ed., McGraw-Hill 1992) at chapters 18
and 19 (“Software Testing Techniques') (pages 595-661) and
the various books and papers referenced there. Although it
has been said that “testing can show only the presence of
bugs, not their absence. Such testing (in addition to ensuring
that the load module 54 satisfies its specifications 110) can
provide added degrees of assurance that the load module isn't
harmful and will work as it is Supposed to.
0077 Verifying authority 100 is preferably a trusted, inde
pendent third party Such as an impartial, well respected inde
pendent testing laboratory. Therefore, all participants in an
electronic transaction involving load module 54 can trust a
Verifying authority 100 as performing its testing and analysis
functions competently and completely objectively and impar
tially. As described above, there may be several different
verifying authorities 100 that together provide a “web of
trust'. Several different verifying authorities may each verify
and digitally sign the same load module increasing the like
lihood that a particular value chain participant will trust one
of them and decreasing the likelihood of collusion or fraud.
Electronic value chain participants may rely upon different
verifying authorities 100 to certify different types of load
modules. For example, one verifying authority 100 trusted by
and known to financial participants might verify load mod
ules relating to financial aspects of a transaction (e.g., bill
ing), whereas another verifying authority 100' trusted by and
known to participants involved in using the “information
exhaust” provided by an electronic transaction might be used
to Verify load modules relating to usage metering aspects of
the same transaction.

0078. Once verifying authority 100 is satisfied with load
module 54, it affixes its digital 'seal of approval'106 to the
load module. FIG. 4 illustrates the digital sealing process as
being performed by a stamp 114 but in the preferred
embodiment the digital sealing process is actually performed
by creating a “digital signature' using a well known process.
See Schneier, Applied Cryptography (2d Ed. John Wiley &
Sons 1996) at Chapter 20 (pages 483-502). This digital sig
nature, certificate or seal creation process is illustrated in FIG.
5.

0079. In the FIG. 5 process, load module 54 (along with
specifications 110 if desired) is processed to yield a “message
digest 116 using a conventional one-way hash function
selected to provide an appropriate resistance to algorithmic
attack. See, for example, the transformation processes dis
cussed in the Schneier text at Chapter 18, pages 429-455. A
one-way hash function 115 provides a “fingerprint’ (message
digest 116) that is unique to load module 54. The one-way
hash function transforms the contents of load module 54 into
message digest 116 based on a mathematical function. This
one-way hash mathematical function has the characteristic
that it is easy to calculate message digest 116 from load
module 54, but it is hard (computationally infeasible) to cal

May 15, 2008

culate load module 54 starting from message digest 116 and
it is also hard (computationally infeasible) to find another
load module 54" that will transform to the same message
digest 116. There are many potential candidate functions
(e.g., MD5, SHA), families of functions (e.g., MD5, or SHA
with different internal constants), and keyed functions (e.g.,
message authentication codes based on block ciphers such as
DES) that may be employed as one-way hash functions in this
scheme. Different functions may have different crypto
graphic strengths and weaknesses so that techniques which
may be developed to defeat one of them are not necessarily
applicable to others.

0080 Message digest 116 may then be encrypted using
asymmetric key cryptography. FIG. 5 illustrates this encryp
tion operation using the metaphor of a strong box 118. The
message digest 116 is placed into strong box 118, and the
strongbox is locked with a lock 120 having two key slots
opened by different (“asymmetrical) keys. A first key 122
(sometimes called the “private key) is used to lock the lock.
A second (different) key 124 (sometimes called the “public'
key) must be used to open the lock once the lock has been
locked with the first key. The encryption algorithm and key
length is selected so that it is computationally infeasible to
calculate first key 122 given access to second key 124, the
public key encryption algorithm, the clear text message digest
116, and the encrypted digital signature 106. There are many
potential candidate algorithms for this type of asymmetric
key cryptography (e.g., RSA, DSA, El Gamal, Elliptic Curve
Encryption). Different algorithms may have different crypto
graphic strengths and weaknesses so that techniques which
may be developed to defeat one of them are not necessarily
applicable to others.

0081. In this case the first key is owned by verifying
authority 100 and is kept highly secure (for example, using
standard physical and procedural measures typically
employed to keep an important private key secret while pre
venting it from being lost). Once message digest 116 is locked
into strong box 118 using the first key 122 the strong box can
be opened only by using the corresponding second key 124.
Note that other items (e.g., further identification information,
a time/date stamp, etc.) can also be placed within strong box
106.

0082 FIG. 6 shows how a protected processing environ
ment 108"authenticates' the digital signature 106 created by
the FIG. 5 process. Second key 124 and the one-way hash
algorithm are first securely provided to the protected process
ing environment. For example, a secure key exchange proto
col can be used as described in connection with FIG. 64 of the
Ginter et al. patent specification. Public key cryptography
allows second key 124 to be made public without compro
mising first key 122. However, in this example, protected
processing environment 108 preferably keeps the second key
124 (and, if desired, also the one-way hash algorithm and/or
its associated key) secret to further increase security.
0083 Maintaining “public” verification key 124 as a
secret within tamper resistant protected processing environ
ment 108 greatly complicates the job of generating bogus
digital signatures 106. If the attacker does not possess second
key 124, the difficulty of an algorithmic attack or cryptana
lytic attack on the verification digital signature algorithm is
significantly increased, and the attacker might be reduced to
exhaustive search (brute force) type attacks which would be

US 2008/0114698 A1

even less practical because the search trials would require
attempting to present a bogus load module 54 to protected
processing environment 108 which, after a few such
attempts is likely to refuse all further attempts. Keeping sec
ond key 124 secret also requires a multi-disciplinary attack:
an attacker must both (A) extract the secret from protected
processing environment 108, and (B) attack the algorithm. It
may be substantially less likely that a single attacker may
have expertise in each of these two specialized disciplines.
0084. In addition, maintaining the “public key within a
tamper-resistant environment forecloses the significant threat
that the owner of protected processing environment 108 may
himself attack the environment. For example, if the owner
could replace the appropriate “public' key 124 with his own
substitute public key, the owner could force the protected
processing environment 108 to execute load modules 54 of
his own design—thereby compromising the interests of oth
ers in enforcing their own controls within the owner's pro
tected processing environment. For example, the owner could
turn off the control that required him to pay for watching or
prohibited him from copying content. Since protected pro
cessing environment 108 can Supporta'virtual business pres
ence” by parties other than the owner, it is important for the
protected processing environment to be protected against
attacks from the owner.

0085. The load module 54 and its associated digital signa
ture 106 is then delivered to the protected processing envi
ronment 108. (These items can be provided together at the
same time, independently, or at different times.) Protected
processing environment 115 applies the same one way hash
transformation on load module 54 that a verifying authority
100 applied. Since protected processing environment 108
starts with the same load module 54 and uses the same one
way hash function 115, it should generate the same message
digest 116'.
0.086 Protected processing environment 108 then
decrypts digital signature 106 using the second key 124—i.e.,
it opens strongbox 118 to retrieve the message digest 116 a
verifying authority 100 placed in there. Protected processing
environment 108 compares the version of message digest 116
it obtains from the digital signature 106 with the version of
message digest 116' it calculates itself from load module 54
using the one way hash transformation 115. The message
digests 116, 116' should be identical. If they do not match,
digital signature 106 is not authentic or load module 54 has
been changed—and protected processing environment 108
rejects load module 54.
0087 FIG.7 shows that multiple digital signatures 106(1),
106(2), ... 106(N) can be created for the same load module
54. For example:

0088 one digital signature 106(1) can be created by
encrypting message digest 116 with a “private key
122(1),

0089 another (different) digital signature 106(2) can be
created by encrypting the message digest 116 with a
different “private' key 122(2), possibly employing a
different signature algorithm, and

0090 a still different digital signature 106(N) can be
generated by encrypting the message digest using a still
different “private key 122(N), possibly employing a
different signature algorithm.

May 15, 2008

0091 The public key 124(1) corresponding to private key
122(1) acts only to decrypt (authenticate) digital signature
106(1). Similarly, digital signature 106' can only be decrypted
(authenticated) using public key 124(2) corresponding to the
private 122(2). Public key 124(1) will not “unlock' digital
signature 106(2) and public key 124(2) will not “unlock”
digital signature 106(1).

0092. Different digital signatures 106(1), 106(N) can also
be made by using different one way hash functions 115 and/or
different encryption algorithms. As shown in FIG. 8, a load
module 54 may have multiple different types of digital sig
natures 106 associated with it. Requiring a load module 54 to
present, to a protected processing environment 108, multiple
digital signatures 106 generated using fundamentally differ
ent techniques decreases the risk that an attacker can Success
fully manufacture a bogus load module 54.

0093. For example, as shown in FIG. 8, the same load
module 54 might be digitally signed using three different
private keys 122, cryptographic algorithms, and/or hash algo
rithms. If a given load module 54 has multiple distinct digital
signatures 106 each computed using a fundamentally differ
ent technique, the risk of compromise is substantially low
ered. A single algorithmic advance is unlikely to result in
simultaneous Success against both (or multiple) crypto
graphic algorithms. The two digital signature algorithms in
widespread use today (RSA and DSA) are based on distinct
mathematical problems (factoring in the case of RSA, dis
crete logs for DSA). The most currently popular one-way
hash functions (MD4/MD5 and SHA) have similar internal
structures, possibly increasing the likelihood that a successful
attack against one would lead to a success against another.
However, hash functions can be derived from any number of
different block ciphers (e.g., SEAL, IDEA, triple-DES) with
different internal structures; one of these might be a good
candidate to complement MD5 or SHA.
0094 Multiple signatures as shown in FIG. 8 impose a
cost of additional storage for the signatures 106 in each pro
tected load module 54, additional code in the protected pro
cessing environment 108 to implement additional algorithms,
and additional time to verify the digital signatures (as well as
to generate them at Verification time). As an optimization to
the use of multiple keys or algorithms, an appliance 61 might
Verify only a Subset of several signatures associated with a
load module 54 (chosen at random) each time the load module
is used. This would speed up signature verification while
maintaining a high probability of detection. For example,
suppose there are one hundred “private” verification keys,
and each load module 54 carries one hundred digital signa
tures. Suppose each protected processing environment 108,
on the other hand, knows only a few (e.g., ten) of these
corresponding “public' verification keys randomly selected
from the set. A Successful attack on that particular protected
processing environment 108 would permit it to be compro
mised and would also compromise any other protected pro
cessing environment possessing and using precisely that
same set often keys. However, it would not compromise most
other protected processing environments—since they would
employ a different subset of the keys used by verifying
authority 100.

0.095 FIG. 8A shows a simplified example of different
processing environments 108(1), . . . , 108(N) possessing
different subsets of “public' keys used for digital signature

US 2008/0114698 A1

authentication—thereby compartmentalizing the protected
processing environments based on key management and
availability. The FIG. 8A illustration shows each protected
processing environment 108 having only one “public key
124 that corresponds to one of the digital signatures 106 used
to “sign” load module 54. As explained above, any number of
digital signatures 106 may be used to sign the load module
54—and different protected processing environment 108 may
possess any Subset of corresponding “public' keys.
0096 FIG.9 shows that a load module 54 may comprise
multiple segments 55(1), 55(2), 55(3) signed using different
digital signatures 106. For example:

0097 a first load module segment 55(1) might be signed
using a digital signature 106(1):

0098 a second load module segment 55(2) might be
digitally signed using a second digital signature 106(2):
and

0099 a third load module segment 55(3) might be
signed using a third digital signature 106(3).

0100 These three signatures 55(1), 55(2), 55(3) could all
be affixed by the same verifying authority 100, or they could
be affixed by three different verifying authorities (providing a
“web of trust'). (In another model, a load module is verified
in its entirety by multiple parties—ifa user trusts any of them,
she can trust the load module.) A protected processing envi
ronment 108 would need to have all three corresponding
“public keys 124(1), 124(2), 124(3) to authenticate the entire
load module 54 or the different load module segments
could be used by different protected processing environments
possessing the corresponding different keys 124(1), 124(2),
124(3). Different signatures 55(1), 55(2), 55(3) could be cal
culated using different signature and/or one-way hash algo
rithms to increase the difficulty of defeating them by cryp
tanalytic attack.
Assurance Levels

0101 Verifying authority 100 can use different digital
signing techniques to provide different “assurance levels' for
different kinds of electronic appliances 61 having different
“work factors” or levels of tamper resistance. FIGS. 10A-10C
show an example assurance level hierarchy providing three
different assurance levels for different electronic appliance
types:

0102 Assurance level I might be used for an electronic
appliance(s) 61 whose protected processing environ
ment 108 is based on software techniques that may be
Somewhat resistant to tampering. An example of an
assurance level I electronic appliance 61A might be a
general purpose personal computer that executes Soft
ware to create protected processing environment 108.

0.103 An assurance level II electronic appliance 61B
may provide a protected processing environment 108
based on a hybrid of Software security techniques and
hardware-based security techniques. An example of an
assurance level II electronic appliance 61B might be a
general purpose personal computer equipped with a
hardware integrated circuit secure processing unit
(“SPU) that performs some secure processing outside
of the SPU (see Ginter et al. patent disclosure FIG. 10
and associated text). Such a hybrid arrangement might
be relatively more resistant to tampering than a soft
ware-only implementation.

May 15, 2008

0104. The assurance level III appliance 61C shown is a
general purpose personal computer equipped with a
hardware-based secure processing unit 132 providing
and completely containing protected processing envi
ronment 108 (see Ginter et al. FIGS. 6 and 9 for
example). A silicon-based special purpose integrated
circuit security chip is relatively more tamper-resistant
than implementations relying on Software techniques for
Some or all of their tamper-resistance.

0105. In this example, verifying authority 100 digitally
signs load modules 54 using different digital signature tech
niques (for example, different “private keys 122) based on
assurance level. The digital signatures 106 applied by verify
ing authority 100 thus securely encode the same (or different)
load module 54 for use by appropriate corresponding assur
ance level electronic appliances 61.
0106 Assurance level in this example may be assigned to
a particular protected processing environment 108 at initial
ization (e.g., at the factory in the case of hardware-based
secure processing units). Assigning assurance level at initial
ization time facilitates the use of key management (e.g.,
secure key exchange protocols) to enforce isolation based on
assurance level. For example, since establishment of assur
ance level is done at initialization time, rather than in the field
in this example, the key exchange mechanism can be used to
provide new keys (assuming an assurance level has been
established correctly).
0107 Within a protected processing environment 108, as
shown in FIGS. 10A-10C, different assurance levels may be
assigned to each separate instance of a channel (see Ginter et
al., FIG. 15) contained therein. In this way, each secure pro
cessing environment and host event processing environment
(see Ginter et al., FIG. 10 and associated description) con
tained within an instance of a PPE 108 may contain multiple
instances of a channel, each with independent and different
assurance levels. The nature of this feature of the invention
permits the separation of different channels within a PPE 108
from each other, each channel possibly having identical,
shared, or independent sets of load modules for each specific
channel limited solely to the resources and services autho
rized for use by that specific channel. In this way, the security
of the entire PPE is enhanced and the effect of security
breaches within each channel is compartmentalized solely to
that channel.

0108. As shown in FIG. 11A-11C, different digital signa
tures and/or signature algorithms corresponding to different
“assurance levels' may be used to allow a particular execu
tion environment to protect itself from particular load mod
ules 54 that are accessible to other classes or “assurance
levels” of electronic appliances. As shown in FIGS. 11A
11C:

0.109. A protected processing environment(s) of assur
ance level I protects itself (themselves) by executing
only load modules 54 sealed with an assurance level I
digital signature 106(I). Protected processing environ
ment(s) 108 having an associated assurance level I is
(are) securely issued a public key 124(I) that can
“unlock” the level I digital signature.

0110. Similarly, a protected processing environment(s)
of assurance level II protects itself (themselves) by
executing only the same (or different) load module 54

US 2008/0114698 A1

sealed with a “Level II digital signature 106(II). Such a
protected processing environment 108 having an asso
ciated corresponding assurance level II possess a public
key 124(II) used to “unlock” the level II digital signa
ture.

0.111 A protected processing environment(s) 108 of
assurance level III protects itself (themselves) by
executing only load modules 54 having a digital signa
ture 106(III) for assurance level III. Such an assurance
level III protected processing environment 108 pos
sesses a corresponding assurance level 3 public key
124(III). Key management encryption (not signature)
keys can allow this protection to work securely.

0112 In this example, electronic appliances 61 of differ
ent assurance levels can communicate with one another and
pass load modules 54 between one another—an important
feature providing a scaleable virtual distribution environment
involving all sorts of different appliances (e.g., personal com
puters, laptop computers, handheld computers, television
sets, media players, set top boxes, internet browser appli
ances, Smart cards, mainframe computers, etc.) The present
invention uses verifying authority 100 and the digital signa
tures it provides to compartmentalize the different electronic
appliances depending on their level of security (e.g., work
factor or relative tamper resistance). In particular, Verifying
authority 100 and the digital signatures it provides isolate
appliances with significantly different work factors—pre
venting the security of high work factor appliances from
collapsing into the security of low work factor appliances due
to free exchange of load modules 54.
0113. In one example, verifying authority 100 may digi

tally sign identical copies of load module 54 for use by dif
ferent classes or “assurance levels of electronic appliances
61. If the sharing of a load module 54 between different
electronic appliances is regarded as an open communications
channel between the protected processing environments 108
of the two appliances, it becomes apparent that there is a high
degree of risk in permitting Such sharing to occur. In particu
lar, the extra security assurances and precautions of the more
trusted environment are collapsed into the those of the less
trusted environment because an attacker who compromises a
load module within a less trusted environment is then be able
to launch the same load module to attack the more trusted
environment. Hence, although compartmentalization based
on encryption and key management can be used to restrict
certain kinds of load modules 54 to execute only on certain
types of electronic appliances 61, a significant application in
this context is to compartmentalize the different types of
electronic appliances and thereby allow an electronic appli
ance to protect itself against load modules 54 of different
assurance levels.

0114 FIG. 12 emphasizes this isolation using the illustra
tive metaphor of desert islands. It shows how the assurance
levels can be used to isolate and compartmentalize any num
ber of different types of electronic appliances 61. In this
example:

0115 Personal computer 60(1) providing a software
only protected processing environment 108 may be at
assurance level I,

0116. Media player 400(1) providing a software-only
based protected processing environment may be at
assurance level II;

May 15, 2008

0.117 Server 402(1) providing a software-only based
protected processing environment may be at assurance
level III:

0118 Support service 404(1) providing a software-only
based protected processing environment may be at
assurance level IV:

0119 a Personal computer 60(2) providing a hybrid
Software and hardware protected processing environ
ment 108 may be at assurance level V:

0120 Media player 400(2) providing a hybrid software
and hardware protected processing environment may be
at assurance level VI;

0121 Server 402(2) providing a software and hardware
hybrid protected processing environment may be at
assurance level VII;

0.122 Support service 404(2) providing a software and
hardware hybrid protected processing environment may
be at assurance level VIII; and

0123 Personal computer 60(3) providing a hardware
only protected processing environment 108 may be at
assurance level IX;

0.124 Media plaver 400(3) providing a hardware-onl play p 9. y
protected processing environment may be at assurance
level X;

0125 Server 402(3) providing a hardware-only based
protected processing environment may be at assurance
level XI;

0.126 Support service 404(3) providing a hardware
only based protected processing environment may be at
assurance level XII.

0127. In accordance with this feature of the invention,
verifying authority 100 supports all of these various catego
ries of digital signatures, and system 50 uses key management
to distribute the appropriate verification keys to different
assurance level devices. For example, verifying authority 100
may digitally sign a particular load module 54 Such that only
hardware-only based server(s) 402(3) at assurance level XI
may authenticate it. This compartmentalization prevents any
load module executable on hardware-only servers 402(3)
from executing on any other assurance level appliance (for
example, Software-only protected processing environment
based support service 404(1)).
0128. To simplify key management and distribution,
execution environments having significantly similar work
factors can be classified in the same assurance level. FIG. 13
shows one example hierarchical assurance level arrangement.
In this example, less secure “software only” protected pro
cessing environment 108 devices are categorized as assur
ance level I, somewhat more secure “software and hardware
hybrid protected processing environment appliances are cat
egorized as assurance level II, and more trusted "hardware
only protected processing environment devices are catego
rized as assurance level III.

0129. To show this type of isolation, FIG. 13A shows three
example corresponding “desert islands.” Desert island I is
“inhabited' by personal computers 61A providing a soft
ware-only protected processing environment. The Software
only protected processing environment based personal com

US 2008/0114698 A1

puters 60(1) “inhabit desert island I are all of the same
assurance level—and thus will each authenticate (and may
thus each use) an assurance level I load module 54a. Desert
island II is “inhabited by assurance level II hybrid software
and hardware protected processing environment personal
computers 61B. These assurance level II personal computers
will each authenticate (and may thus each execute) an assur
ance level II load module 54b. Similarly, a desert island III is
“inhabited' by assurance level III personal computers 61C
providing hardware-only protected processing environments.
These assurance level III devices 61C may each authenticate
and execute an assurance level III load module 54C.

0130. The “desert islands” are created by the use of differ
ent digital signatures on each of load modules 54a, 54b, 54c.
In this example, all of the appliances 61 may freely commu
nicate with one another (as indicated by the barges—which
represent electronic or other communications between the
various devices. However, because particular assurance level
load modules 54 will be authenticated only by appliances 60
having corresponding assurance levels, the load modules can
not leave their associated “desert island' providing isola
tion between the different assurance level execution environ
ments. More specifically, a particular assurance level
appliance 61 thus protects itself from using a load module 54
of a different assurance level. Digital signatures (and/or sig
nature algorithms) 106 in this sense create the isolated “desert
islands' shown—since they allow execution environments to
protect themselves from "off island” load modules 54 of
different assurance levels.

0131. A load module or other executable may be certified
for multiple assurance levels. Different digital signatures may
be used to certify the same load module or other executable
for different respective assurance levels. The load module or
other executable could also be encrypted differently (e.g.
using different keys to encrypt the load module) based on
assurance level. If a load module is encrypted differently for
different assurance levels, and the keys and/or algorithms that
are used to decrypt such load modules are only distributed to
environments of the same assurance level, an additional mea
sure of security is provided. The risk associated with disclos
ing the load module or other executable contents (e.g., by
decrypting encrypted code before execution) in a lower assur
ance environment does not compromise the security of higher
assurance level systems directly, but it may help the attacker
learn how the load module or other executable works and how
to encrypt them—which can be important in making bogus
load modules or other executables (although not in certifying
them—since certification requires keys that would only
become available to an attacker who has compromised the
keys of a corresponding appropriate assurance level environ
ment). Commercially, it may be important for administrative
ease and consistency to take this risk. In other cases, it will not
be (e.g. provider sensitivities, government uses, custom func
tions, etc.)
0132 FIG. 14 shows an example sequence of steps that
may be performed in an overall process provided by these
inventions. To begin the overall process, a load module pro
vider 52 may manufacture a load module and associated
specifications (FIG. 14, block 502). Provider 52 may then
Submit the load module and associated specifications to veri
fying authority 100 for verification (FIG. 14, block 504).
Verifying authority 100 may analyze, test, and/or otherwise

May 15, 2008

validate the load module against the specifications (FIG. 14,
block 506), and determine whether the load module satisfies
the specifications.
0.133 If the load module is found to satisfy its specifica
tions, a verifying authority 100 determines whether it is
authorized to generate one or more new specifications for the
load module (FIG. 14, block 509). If it is authorized and this
function has been requested (“Y” exit to decision block 509),
a verifying authority generates specifications and associates
them with the load module (FIG. 14, block 514).
0134. If the load module fails the test (“N' exit to decision
block 508), verifying authority 100 determines whether it is
authorized and able to create new specifications correspond
ing to the actual load module performance, and whether it is
desirable to create the conforming specifications (FIG. 14,
decision block 510). If verifying authority 100 decides not to
make new specifications (“N' exit to decision block 510),
verifying authority returns the load module to provider 52
(block 512) and the process ends. On the other hand, if veri
fying authority 100 determines that it is desirable to make
new specifications and it is able and authorized to do so, a
verifying authority 100 may make new specifications that
conform to the load module (“Y” exit to decision block 510;
block 514).
0.135 A verifying authority 100 may then digitally sign
the load module 54 to indicate approval (FIG. 14, block 516).
This step 516 may involve applying multiple digital signa
tures and/or a selection of the appropriate digital signatures to
use in order to restrict the load module to particular “assur
ancelevels” of electronic appliances as discussed above. Veri
fying authority may then determine the distribution of the
load module (FIG. 14, block 518). This “determine distribu
tion' step may involve, for example, determining who the
load module should be distributed to (e.g., provider 52, Sup
port services 404, a load module repository operated by a
verifying authority, etc.) and/or what should be distributed
(e.g., the load module plus corresponding digital signatures,
digital signatures only, digital signatures and associated
description, etc.). Verifying authority 100 may then distribute
the appropriate information to a value chain using the appro
priate distribution techniques (FIG. 14, block 520).

1. A computer-readable medium comprising program
code, the program code being operable, when executed by an
electronic appliance comprising a protected processing envi
ronment that is resistant to tampering by users of the elec
tronic appliance, to cause the electronic appliance to perform
steps comprising:

receiving a first digital signature associated with a load
module;

receiving a second digital signature associated with the
load module:

authenticating the first digital signature using a first key:
and

conditionally executing the load module based at least in
part on a result of the authenticating step.

2. The computer-readable medium of claim 1, in which the
first digital signature is associated with a first part of the load
module, and the second digital signature is associated with a

US 2008/0114698 A1

second, different, part of the load module, the computer
readable medium further including program code that is oper
able, when executed by the electronic appliance, to cause the
electronic appliance to perform the step of

authenticating the second digital signature.
3. The computer-readable medium of claim 1, further

including program code that is operable, when executed by
the electronic appliance, to cause the electronic appliance to
perform steps comprising:

after performing the conditionally executing step, authen
ticating the second digital signature; and

conditionally executing the load module based, at least in
part, on a result of the step of authenticating the second
digital signature.

4. The computer-readable medium of claim 3, in which the
first digital signature is associated with a first part of the load
module, and the second digital signature is associated with a
second, different, part of the load module.

5. The computer-readable medium of claim 1, further
including program code that is operable, when executed by
the electronic appliance, to cause the electronic appliance to
perform the step of:

randomly selecting the first digital signature for authenti
cation from a set of digital signatures comprising at least
the first digital signature and the second digital signa
ture.

6. The computer-readable medium of claim 3, further
including program code that is operable, when executed by
the electronic appliance, to cause the electronic appliance to
perform the step of:

randomly selecting the second digital signature for authen
tication from a set of digital signatures comprising at
least the first digital signature and the second digital
signature.

7. The computer-readable medium of claim 1, in which the
first digital signature is generated by a first entity and the
second digital signature is generated by a second entity that is
different from the first entity, the computer readable medium
further including program code that is operable, when
executed by the electronic appliance, to cause the electronic
appliance to perform the step of:

authenticating the second digital signature.
8. The computer-readable medium of claim 1, further

including program code that is operable, when executed by
the electronic appliance, to cause the electronic appliance to
perform steps comprising:

securely receiving the first key, the first key comprising a
public key of a first entity; and

securely receiving a public key of a second entity, the
public key of the second entity being configured for use
in authenticating the second digital signature.

9. The computer-readable medium of claim 1, further
including program code that is operable, when executed by
the electronic appliance, to cause the electronic appliance to
perform the step of:

authenticating the second digital signature.
10. The computer-readable medium of claim 1, further

including program code that is operable, when executed by
the electronic appliance, to cause the electronic appliance to
perform the step of:

May 15, 2008

distributing the load module to a second electronic appli
aCC.

11. The computer-readable medium of claim 1, further
including the load module, the load module being operable,
when executed by the electronic appliance, to cause the elec
tronic appliance to perform at least one action selected from
the group consisting of

recording an aspect of usage of a piece of electronic con
tent, preventing a user of the electronic appliance from
making a copy of a piece of electronic content, charging
a user of the electronic appliance a fee for viewing a
piece of electronic content, enabling the electronic
appliance to playa piece of electronic content, and
enabling the electronic appliance to perform a financial
transaction.

12. A system comprising:
an electronic appliance comprising a protected processing

environment;
means for receiving a first digital signature associated with

a load module:
means for receiving a second digital signature associated

with the load module:
means for authenticating the first digital signature using a

first key; and
means for conditionally executing the load module based at

least in part on a result generated by the means for
authenticating the first digital signature;

wherein the protected processing environment is operable
to impede tampering by a user of the electronic appli
ance with at least the means for authenticating the first
digital signature and the means for conditionally execut
ing the load module.

13. The system of claim 12, in which the protected pro
cessing environment is operable to maintain the first key as a
secret from the user of the electronic appliance.

14. The system of claim 13, in which the first key comprises
a public key.

15. The system of claim 12, in which the first digital sig
nature is associated with a first part of the load module, and
the second digital signature is associated with a second, dif
ferent, part of the load module, the system further compris
1ng:

means for authenticating the second digital signature;
wherein the means for conditionally executing the load

module comprises means for conditionally executing
the load module based at least in part on a result gener
ated by the means for authenticating the second digital
signature.

16. The system of claim 15, in which the means for authen
ticating the second digital signature is configured to make use
of a second key that is different from the first key.

17. The system of claim 12, further comprising:
means for authenticating the second digital signature after

executing the load module at least a first time; and
means for conditionally executing the load module at least

a second time based, at least in part, on a result generated
by the means for authenticating the second digital sig
nature.

US 2008/0114698 A1 May 15, 2008
12

18. The system of claim 17, in which the first digital sig- 20. The system of claim 17, further comprising:
nature is associated with a first part of the load module, and - 0
the second digital signature is associated with a second, dif- means for randomly selecting the second digital signature
ferent, part of the load module. for authentication from a set of digital signatures com

19. The system of claim 12, further comprising: prising at least the first digital signature and the second
means for randomly selecting the first digital signature for digital signature.

authentication from a set of digital signatures compris- 21-25. (canceled)
ing at least the first digital signature and the second
digital signature. ck

