o
<
=N
W
e
(oM
o
)
~
' ¢)
&
—
(@]
g

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
10 March 2005 (10.03.2005)

PCT

(10) International Publication Number

WO 2005/022359 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/028313

(22) International Filing Date:
1 September 2004 (01.09.2004)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

10/653,506 2 September 2003 (02.09.2003) US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
Us
Filed on

10/653,506 (CON)
2 September 2003 (02.09.2003)

(71) Applicant (for all designated States except US): AU-
THENTURE, INC. [US/US]; 1958 Stratton Circle,
Walnut Creek, CA 94598 (US).

(74)

(81)

(84)

(72) Inventor; and
(75) Inventor/Applicant (for US only): MIZRAH, Len, L.

[US/US]; 157 Glasgow Lane, San Carlos, CA 94070 (US).

Agents: HAYNES, Mark, A. et al.; Haynes Beffel &
Wolfeld LLP, P.O. Box 366, Half Moon Bay, CA 94019
(Us).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US (patent), UZ, VC, VN, YU,
ZA, 7ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: COMMUNICATION SESSION ENCRYPTION AND AUTHENTICATION SYSTEM

3003
SERVER CLIENT
s) COMMUNICATION NETWORK (©)
(SUCH AS INTERNET) ﬁ
3001 3002
RECEIVED {R) SENT(S)
(Step 1: C requests a connection to S {protected login, URL, fink, efc.))4
S 3005 A R
-+(Slep 2: SRKi is sent to C; communication interface is established
06 A R (ENTERED}
—r»("tep 3: € enters user (host) name, user (host D) and server password on C side 4
3007 .4
—i—(_tep 4: User (or host) name hashed and enciypted with SRKi is sentto S
8, R 3008 A

tep o if user {or host} is validated, 8 sends to G DRK1 encrypted with SRKi;
decrypts DRK1 with SRKI and sends fo $ encrypted with DRK 1 hashed DRK1
5R 3009
ep 6: I received DRKT is correct, S sends to C DRK2 encrypted with DRKT,;
decrypts DRK2 with DRK1, and sends to S encrypted with DRK2 hashed DRK2
R 3010~

)4
RS

)4
R S

tep J TFreceived DRKj-1 is correct, S sends to € DRK| encrypted with DRK(j-1);
G decrypts DRK] with DRK(] 1) and sends to 8 encrypted with DRKj hashed DRKj
S,R 3012

8 R 3013 A -] }

(Step T W recaived from & DRKR-1 1s correct, S sends 10 C DRKN encrypted with the \
hashed user password as a key; € decrypts DRKn with the user password, stored at
1 € in step 3, and converted 1o its hash equivalent; then € sends to 8 hashed DRKn |4
encrypted with the user password, stored at € in step 3, and converted to its hash

quivalent, J
5 R 3014 - F RS
(Step n+1: If hashed DRKn received in step 3014, and decrypted with hashed user
password is carrect, $ sends to C DRKn encrypted with hashed server pagsword as
[+ a key; C decrypts DRKn with the server password, stored at C in step 3, and <]
converted to its hash equivalent; if hashed DRKrn is the same as DRKn from step
\3014, then € sends to § hashed DRKn encrypied with the hashed server password /
S 3015

(,tep r+2: If recaived from € DRKn is correctfwrong, then authentication signal golno\

encrypted with DRKn-1, is sent to €; C decrypts the go/ne signal with DRKn-1, stored
at G in step 3013, This completes C/S mutual authentication and the Final Secret Key
@SK) exchange according to the KEDIA algarithm. y

3016~
L 3004

(57) Abstract: An interactive mutual authentication
protocol, which does not allow shared secrets to pass
through untrusted communication media, integrates
an encryption key management system into the
authentication protocol, so that key management
becomes an essential part of the authentication protocol
itself. The system provides a secure distribution
of a secret session random key used in symmetric
cryptography. Successful exchange of this encryption
key allows for secure transit of the protocol data over
communication lines in encrypted form, permitting
explicit mutual authentication of the connected parties.
The post-authentication stage of the communication
session can use secure encryption for the data
exchange, since each party has already obtained the
secret session random key.

WO 2005/022359 A2

OO RO

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,

™™, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, 87, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BE, BJ, CE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
SN, TD, TG)

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

Communication Session Encryption And Authentication System

Inventor: Len L. Mizrah

BACKGROUND OF THE INVENTION

Field of the Invention:

[0001] The invention relates generally to security of authentication and data transmission
over untrusted communication media in client-server computer, network, and other architectures,

and more particularly to encryption key management systems and authentication protocols.

Description of the Related Art:

[0002] Electronic networks of interconnected devices and users continue to grow with
unprecédented rate. They have become foundations for vitally important infrastructures enabling e-
commerce, communications, corporate and government operations, healthcare, education, and other
important areas. This phenomenon was actively studied and commercialized during the last quarter
of the 20™ century, and there is every indication this activity will intensify well into the 21% century.
[0003] There are various parties involved in remote relationships over distributed
electronic networks. Most known representations are business-to-business (b2b), business-to-
consumers (b2c), and peer-to-peer (p2p), describing scaled-down to hardware devices
communication, for instance, peer router to peer router, or device-to-device (d2d). One of the
fundamental problems for continued growth of electronic networks and their efficient utilization is
establishing trust between remote counterparts in b2b, b2¢, d2d, and other interrelating over network
parties. It is common knowledge that computer network intruders (or intruding organizations) cause
ever-growing direct economic losses to enterprises and individual consumers. They significantly
undermine the progress in applying network technologies to certain areas, especially related to
parties having legal and financial responsibilities, and national security.

[0004] Trust to remote humans or devices, interacting over electronic networks, has two
components. The first component is identification and verification of the parties at the beginning of
the communication session (mutual authentication). The second component is associated with trust

to information transferred during the communication session over untrusted communication media

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

(communication lines). It includes the following specific requirements - confidentiality (none can
read the message except the intended recipient), integrity (none altered, tampered with, or modified
the message against the original), and non-repudiation (the sender can not deny the fact of having
sent the message).

[0005] Authentication and cryptography are key enabling technologies employed to satisfy
the security requirements listed above. Authentication factors are typically characterized as “what
user knows” (for instance, passwords, PINs), “what user has” (for instance, hardware token, smart
card), and “what user is” (particular biometric traits; for instance, fingerprints, voice patterns, etc.).
Passwords are the most ubiquitous over electronic networks as an authentication factor due to ease
of use, low cost and easy electronic deployment. Most of the strong (two-, or three-factor)
authentication systems are still using passwords or PINs as one of the system authentication factors.
[0006] However, passwords provide low security due to insufficient protection against
numerous known intruding attacks on databases where the passwords are residing, social
engineering attacks, videotaping or “shoulder surfing” attacks during password entry stages,
memory sniffing attacks, Trojan horse attacks, and network sniffing attacks. Perhaps, the latter are
the most dangerous attacks as a distributed electronic network (like Internet) has numerous access
points. There are authentication systems transmitting passwords in clear text (for instance, Password
Authentication Protocol (PAP) RFC 1334-2, Telnet, and FTP). Certainly, there is no protection at all
in such cases. More protected authentication systems transmit encrypted passwords over electronic
networks.

[0007] There are several approaches in transferring an encrypted password. The first one is
based on the one-way encryption — calculating the password’s hash value with one of the standard
hashing algorithms (for example, SHA-1 Secure Hash Algorithm, FIPS PUB 180-1, Secure Hash
Standard, 1995, April 17, or MD5 Message Digest Algorithms, RFC 1320 and RFC 1321, April
1992, by Ronald L. Rivest) at both client and server locations. The client trénsmits the hashed
password (of the user at the client platform) to the server, where it is compared with the password of
the same client (the same user at the client platform) from the database connected to the server
(typically, user passwords are already stored in password files in hashed form for database
protection; that is why there is no need to perform text-to-hash encryption operation). Unfortunately,
the progress in integrated circuit (ASIC, FPGA, etc.) design and manufacturing drastically reduced

protection of hashed passwords, as dictionary or brute force computer processing attacks became

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

extremely efficient. It is worthy to note that sometimes intercepting a hashed password is sufficient
enough to break the system without learning the actual password.

[0008] There are more sophisticated authentication systems based on Challenge-
Handshake Authentication Protocol (CHAP, for instance, RFC 1334-3, RFC 1934, RFC 2759) used
by Microsoft for Windows NT remote log-in. The server (the authenticator) sends the “challenge” to
the client (the peer), where the message gets encrypted using the client’s (the peer’s) password.
Actually, the “challenge” sent to the client platform is then encrypted at the client location three
times using the first seven bytes of the password’s hash value as the first DES key (Data Encryption
Standard and other known encryption algorithms used for data encryption and decryption described
in Bruce Schneier, Applied Cryptography, Second Edition, John Wiley and Sons, Inc., at pp. 233-
560, (1996)); the next seven bytes of the password’s hash value used as the second DES key, and the
remaining two bytes of the password’s hash value concatenated with five zero-filled bytes used as a
third DES key. Eventually, three 64-bit “responses” (the “challenge” encrypted with DES keys as
described above) are sent back to the server (the authenticator), where they are compared with the
similar outputs calculated at the server. If the values match, the authentication is acknowledged;
otherwise the connection should be terminated.

[0009] Passwords (client/server shared secrets) in CHAP never enter communication lines
in either form. This is a serious security advantage of this protocol. Also, CHAP prevents playback
attacks by using “challenges” of a variable value. The server (the authenticator) is in control of the
frequency and timing of the “challenge”. CHAP assumes that passwords are already known to the
client and the server, and are easily accessible during a CHAP session. However, frequent usage of
the same static encryption keys derived from a password on the client host, and applied to encrypt
even random “challenge” numbers sent in clear text to the client, raises some security concerns. It
provides ample opportunities for intruders, sniffing the network with the following offline computer
data processing attacks.

[0010] Various modifications of client/server authentication employing a
challenge/response protocol are disclosed in Bellovin et al., U.S. Pat. No. 5,241,599, Kung et al.,
U.S. Pat. No. 5,434,918, Pinkas, U.S. Pat. No. 5,841,871, Hellman, U.S. Pat. No. 5,872,917, Brown,
U.S. Pat. No. 6,058,480, Hoffstein at al., U.S. Pat. No. 6,076,163, Guthrie et al., U.S. Pat. No.
6,161,185, Jablon, U.S. Pat. No. 6,226,383, Swift et al., U.S. Pat. No. 6,377,691, Brown, U.S. Pat.
No. 6,487,667, Jerdonek, U.S. Pub. No. 2002/0095507. Some of these patents go beyond security of

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

just only an authentication process. They explore the opportunity of utilizing challenge/response
type protocols as a basis for an encryption key management system. This can extend security for the
entire communication session duration, allowing for encrypted data transmission between parties
once their mutual authentication is completed.

[0011] U.S. Pat. No. 5,434,918 and U.S. Pat. No. 6,377,691 applied client/server
authentication based on different modifications of a challenge/response protocol to exchange secret
keys (symmetric cryptography) between parties. There were attempts combining challenge/response
protocois with well-known encryption key management systems. For instance, U.S. Pat. No.
6,076,163 and U.S. Pub. No. 2002/0095507 disclose versions of a challenge/response protocol
utilizing an authentication and encryption key management system based on PKI (Public Key
Infrastructure (Hellman et al., U.S. Pat. No. 4,200,770, and Diffie at al., IEEE Transactions on
Information Theory, vol. IT-22, No. 6, Nov. 1976)), whereas U.S. Pat. No. 5,841,871 discloses a
version of a challenge/response protocol integrated with Kerberos (MIT, 1988; RFC 1510)) — the
authentication and encryption key management system. '

[0012] Another approach would be encrypting passwords (either text or hash) with a secret
key (symmetric cryptography) on the client side, before transmission, and then, decryp;r it on the
server side for comparison with the password stored in the server-connected database. Though it can
be a viable solution, there are several security requirements making this approach a very difficult
one to implement. The first issue is how to manage the session secret key distribution between the
client and the server. Otherwise, if the secret keys are statically preset at the client and the server
hosts, they become a security concern by themselves. Moreover, having static keys for numerous
communication sessions makes encrypted passwords vulnerable against offline computer data
processing attacks. There are protocols, not based on a challenge/response type mechanism, where
authentication credentials are distributed over communication lines with help of PKI. They were
disclosed in Kaliski, U.S. Pat. No. 6,085,320, Kausik, U.S. Pat. No. 6,170,058, Kaliski, U.S. Pat.
No. 6,189,098, Spies, U.S. Pat. No. 6,230,269 and Volger, U.S. Pat. No. 6,393,127. Despite
recognized scientific studies and long-time exposure, PKI and Kerberos authentication and
encryption key management systems have not experienced a wide industry acceptance due to their
complexity, cost, and mandatory requirements to trust artificial third parties (see, for instance,
Gartner QA-18-7301, 13 Nov, 2002, by V. Wheatman, Public-Key Infrastructure Q&A, anerPRO-
90693, 20 May, 2003, by Kristen Noakes-Fry, Public Key Infrastructure: Technology Overview;

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

USENIX, 91, Dallas, TX, “Limitations of the Kerberos Authentication System”, by Steven M.
Bellovin and Michael Merritt). SSL (Secure Socket Layer, based on PKI protocol developed by
Netscape Communications in 1994) is also known for its security deficiencies, high cost and
complexity in assuring “client browser” / “Web server” encrypted communication (see, for instance,
Gartner T-16-0632, 3 April, 2002, by J. Pescatore and V. Wheatman, and FT-178896, 15 August,
2002, by J. Pescatore). Hence, there is a significant interest in exploring other encryption key
management systems, similar to the challenge/response authentication protocols mentioned above,
for instance, Fielder, U.S. Pat. No. 6,105,133, Alegre, U.S. Pat. No. 6,199,113, and Venkatram,
U.S. Pat. No. 6,367,010.

[0013] Aspects of this invention are particularly concerned with security of authentication
systems and encrypted information exchange over distributed computer networks. Prior art
encrypted authentication protocol implementations based on PKI, SSL, and Kerberos exhibited
numerous security flaws and a prohibitive level of complexity and cost for various applications,
businesses and organizations. There is a substantial need for improved and more efficient encrypted
authentication protocols, addressing less complex infrastructures required, and less costly for
practical implementation encryption key management systems. These improved encrypted
authentication protocols should also include secure mutual authentication built into the protocols;
randomly generated session secret keys; new cryptographic algorithms allowing for scalable security
authentication and data encryption, and further allowing for variation based on the power of

computer and network resources.

SUMMARY OF THE INVENTION
[0014] In accordance with the present invention, there are two secrets uniquely shared by
either client/server pair, or authenticator/peer pair, and required for their mutual authentication. In
the preferred embodiments, both secrets will suffice for a “what user knows” type authentication
factor and either could be in a form of passwords or PINs, though other types of shared secrets can
be used. Like other challenge/response type authentication protocols, where shared secrets aré never
in transit over communication lines, the protocol of the present invention does not allow shared
secrets to pass through untrusted communication media. In order to avoid transmission of the shared
secrets, a new encryption key management system has been integrated into the authentication

protocol, becoming an essential part of the protocol itself.

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

[0015] The main function of this encryption key management system is a secure
distribution within either client/server pair, or authenticator/peer pair of a secret session random key
(the same secret key is used in symmetric cryptography to encrypt and then decrypt digital
information). Successful exchange of this encryption key enables secure resolution of two
fundamental tasks. First, it allows for secure transit of the protocol data over communication lines in
encrypted form, permitting explicit mutual authentication of the connected parties. Second, the post-
authentication stage of the communication session can use secure encryption for the data exchange,
since each party has already obtained the secret session random key.

[0016] A series of new algorithms has been developed in the present invention and built
into the new encryption key management system mentioned above. There is an algorithm (Time
Interplay Limited Session Random Key (SRK) Algorithm (TILSA)) for generating and eventually
obliterating arrays of session secret random keys. It starts long before the session begins and keeps
processing these arrays during each communication session and well beyond it. At the same time,
this algorithm allows concurrent communication between a number of client/server or
authenticator/peer pairs with the same keys in the generated arrays (the multi-threading technology).
[0017] Another algorithm (Key Encryption/Decryption Iterative Algorithm (KEDIA)) is
initialized, provided there is a request for connection. It initiates an iterative sequence of messages
from the server to the client and back to the server, each containing a consecutive session secret
random key, encrypted with the session secret random key preceding the encrypted one in the array,
and sent to the client in the previous message. The client can decrypt any following message and
obtain an intermediate session secret random key from the array, provided the client could decrypt
the previous message. The iterations continue until client/server (or authenticator/peer) mutual
authentication is completed, and the Final Secret Key (FSK) is exchanged between the parties. More
particularly, client/server (or authenticator/peer) authentication credentials and FSK eventual high
security are achieved by applying, during each cycle of key encryption at the server (and its
decryption at the client platform), either of Byte-Veil-Unveil (ByteVU), Bit-Veil-Unveil (BitVU), or
Byte-Bit-Veil-Unveil (BBVU) algorithms. Each of these algorithms disassembles message bytes, or
bits, or both bytes and bits in combination, together at the server and reassemble them at the client
according to a certain procedure, which is started with the pair’s shared secret. In other words, the
client/server or authenticator/peer pair employs their shared secret to first build the session “security

bridge” over the untrusted communication medium until “the bridge” is believed secure enough.

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

Then, the authentication credentials can be safely tested with ByteVU, BitVU, or BBVU algorithms

 at the respective counterparts for the final mutual authentication, enabling the communication

session. Otherwise, if the mutual authentication is not completed, the communication session is
terminated.

[0018] In one aspect of the invention, the client/server authentication protocol (Message
Encrypt/Decrypt Iterative Authentication (MEDIA) protocol, which includes the encryption key
management system described above), is highly resilient against session eavesdropping attacks,
replay attacks, man-in-the-middle attacks, online and offline computer-processing attacks (like a
dictionary attack or a brute force attack), and session hijacking attacks. Inability to successfully
complete the MEDIA protocol can be regarded as intrusion detection (if there are more than just a
few failed attempts from the same client caused by mistyping the entry data by a user on the client
platform, or inaccurately set up hardware authentication credentials).

[0019] In another aspect of the invention, the MEDIA protocol ends up with a FSK secret
key, which can be used beyond the client/server authentication protocol stage of the communication
session for encrypting data in transit and decrypting it upon arrival either to the server, or to the
client. Securify of FSK, and authentication credentials (client/server shared secrets) ate guarded by
five security tiers of the MEDIA authentication protocol and can be scaled with the client and server
platforms’ CPU power and the network throughput. In order to enhance security, FSK, as well as the
entire series of preceding FSK session iterative random secret keys of the MEDIA protocol, are
never transmitted over untrusted electronic communication media in their original form, or as their
hash equivalents.

[0020] In yet another aspect of the invention, the MEDIA protocol contains the encryption
key manégement system, integrated into the protocol, represented by TILSA, KEDIA and ByteVU,
BitVU, or BBVU algorithms. Their collective utilization assures randomly generated arrays of
session secret keys, having limited life time and enabling efficient key encrypt/decrypt iterative
messaging procedures, employing for each instance of iteration (each message encrypted on the
server and decrypted on the client) a shared secret (password, PIN, or pattern) known only to the
client and to the server. Moreover, the shared secrets (for instance, client and server passwords) are
never transmitted over untrusted communication media in any form.

[0021] In still another aspect of the invention, the five security tiers of the MEDIA

protocol provide for a message confidentiality (no one can read messages; this is increasingly true

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

with the increased number of SRK in the TILSA and the number of message iterations in the
KEDIA). Message integrity is preserved because, if an intruder altered or in some way tampered
with the message in the conversion array, potentially available to an intruder while it is in transit on
communication lines, then it will be impossible for ByteVU, BitVU, or BBVU algorithms to
reassemble the encrypted keys or authentication credentials, either at the client or at the server.
Message non-repudiation is guaranteed by the mutiial authentication mechanism (the fifth security
tier) — without exception only the client and the server know their shared secrets and respectively
could send a message.
[0022] In a further aspect of the invention, the post-authentication part of the MEDIA
session continued with FSK can also employ such message integrity control technique as encrypting
with FSK the message hash, before the message is encrypted with FSK. Then the message hash can
be decrypted with FSK on the receiving end, and compared with the same message, hashing it after
having the message decrypted with FSK.

BRIEF DESCRIPTION OF THE DRAWINGS
[0023] Additional objects, features, capabilities and advantages of the present invention
will be apparent from the following detailed description when read in conjunction with the
accompanying drawings in which:
[0024] FIG. 1 is a graphic illustration of the Time Interplay Limited SRK (Session
Random Key) Algorithm (TILSA) according to the present invention.
[0025] FIG. 2 is a graphic illustration of the Array of Data Encryption Keys (ADEK)
branch of the TILSA algorithm according to the present invention.
[0026] FIG. 3 is a graphic illustration of the Key Encryption/Decryption Iterative
Algorithm (KEDIA) accofding to the present invention.
[0027] FIG. 4 is a graphic illustration of the KEDIA typical message encryption at the
server and its decryption at the client applying one of Byte-Veil-Unveil (ByteVU), Bit-Veil-Unveil
(BitVU), or Byte-Bit-Veil-Unveil (BBVU) algorithms according to the present invention.
[0028] FIG. 5 is a block diagram of the Byte-Veil-Unveil (ByteVU) algorithm according
to the present invention. V
[0029] FIG. 6 is a block diagram of the Bit-Veil-Unveil (BitVU) algorithm according to

the present invention.

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

9
[0030] FIG 7 is a block diagram of the Byte-Bit-Veil-Unveil (BBVU) algorithm according
to the present invention.
[0031] FIG. 8A is the Message Encrypt/Decrypt Iterative Authentication (MEDIA)

protocol (the server side) according to the present invention.

[0032] FIG. 8B is the Message Encrypt/Decrypt Iterative Authentication (MEDIA)
protocol (the client side) according to the present invention.

[0033] FIG. 9 illustrates the Graphical User Interface (GUI) enabling client/server mutual
authentication at the client platform according to the MEDIA protocol, and a graphical illustration of
the distributed protected network resources, including the authentication server, and the user base

for which the MEDIA brotocol is used, according to the present invention.

DETAILED DESCRIPTION
[0034] According to fhe present invention, there are shared secrets (several secrets are
needed in strong authentication cases and also in a case of mutual authentication) between two
parties attempting to establish trust over untrusted electronic communication media. Shared secrets
are usually established during an account open procedure. Though the server password could be
shared by the plurality of users, it is assumed, without sacrificing any generality of the disclosed
authentication protocol, that the preferred embodiment of this invention is to provide a unique server
password for each user. Account set/reset online automated utilities would greatly facilitate
establishing uniquely personalized server and user passwords. Client/server or d2d
(authenticator/peer) communication sessions would be typical cases, though the client/server
protocol would remain the preferred embodiment. There are no limitations on the nature of the
shared secrets used. They could be “what user knows” secrets, for example, passwords, or “what
user has” secrets, i.e., tokens and smart cards, or, alternatively, “what user is” secrets, for example,
biometrics. However, the preferred embodiments would relate to secrets in the category of “what
user knows”. Also, there are no limitations on the network layer over which the authentication
protocol is established — it could be TCP/IP stack, IPsec, or other communication protocols.
Nevertheless, the preferred embodiments will assume HTTP (RFC 2068 Hypertext Transfer
Protocol — HTTP/1.1 January 1997). Also, the invention implies contemporary object-oriented
software technologies like Java, C++, and .NET, providing multi-threading, serialization, servlet and

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

10

applet techniques, library of cryptographic algorithms, GUI (Graphical User Interface) capabilities,
and connectors/drivers like JDBC to standard commercial databases.

[0035] FIG. 1 is a graphic illustration of the Time Interplay Limited SRK (Session
Random Key) Algorithm (TILSA) according to the present invention. Before any communication
session starts, the server-placed logic continuously and periodically generates (Session Random Key
Generator 1005) an array (Array of Session Keys (ASK) 1013) of Session Random Keys (SRK)
1011 — secret keys (symmetric cryptography). Each key has two different lifetimes. The first
lifetime (LT1) is the lifetime for establishing a client/server communication session, provided there
is a request from a client or plurality of clients (Client 1 1003, Client 2 1007, ..., Client N-1 1008,
and Client N 1009) during LT1 to initiate a communication session. Each client can establish a
communication link 1015, 1006, ..., 1016, 1017 to Web Server 1002 and Compute/Applications
Server 1001 through communication network 1004. The beginning of LT1 1014 is synchronized
with each SRK 1011 generation, placing it into ASK 1013.

[0036] For instance, in FIG. 1, SRK1 appears in ASK 1013 at the time mark “0 minute”,
and at the moment that time mark 1 minute LT1 of SRK1 has expired, though SRK1 remains inside
ASK 1013. SRK Generator 1005 at this moment generates SRK 2 and places it into ASK 1013. By
the time mark 2 minutes SRK 2 LT1 haé expired, even though SRK 2 remains inside ASK 1013.
Again, at this time SRK Generator 1005 generates and places into ASK 1013 SRK 3, which LT1
becomes expired at the 3 minutes mark. This procedure is periodically repeated as long as SRK
Generator 1005 is on. Client 1 1003 and Client N 1009 made a connection request during the time
interval between time mark 4 minutes and time mark 5 minutes, since SRK Generator 1005 began
generating SRK 1011 and filling them into ASK 1013. The only SRK 1011 not yet expired LT1 in
ASK 1013 during this time interval is SRK 5. Therefore, SRK 5 is used to establish communication
sessions with these clients. Similarly, Client 2 requested a communication session between time
mark 8 minutes and time mark 9 minutes, whereas Client N-1 requested a communication session
between time mark 1 minute and 2 minutes. Hence, the SRK 1011 used to establish these
communication sessions are, respectively, SRK 9 and SRK 2.

[0037] Once LT1 is expired, the server generates and places into ASK 1013 another SRK
1012, which LT1 is just started. SRK 1011 second life time LT2 defines the life time inside the
limited size ASK 1013. The maximum size of ASK 1013 can be characterized with the parameter

Nmax which indicates maximum number of SRK 1011 in ASK 1013 possible (for instance, Nmax =

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

11

5 in FIG. 1). Typically, LT1 <LT2, and in the most preferred embodiment LT1 can be derived as
LTI = LT2 / Nmax. Without sacrificing any generality limitations of TILSA, LT2 was chosen, for
example, to be equal to 5 minutes in FIG.1. Then, LT1 according to the formulae presented above, is
equal to 1 minute. After LT1 expired, for any given SRK 1011, the key has LT2-LT1 time
remaining to support communication session threads having been initiated during LT1. Once LT2
expired, SRK 1011 is removed from ASK 1013, effectively canceling any further participation of
this particular SRK 1011 in the parties’ communication session engagements. Certainly, each SRK
1011 can be used to originate multiple threads of communication sessions with each Session
Elapsed Time (SET) less or equal to LT2 - LT1. However, SET = LT2 - LT1 is the preferred
embodiment. Without sacrificing any generality limitations of TILSA, SET = 4 minutes in FIG. 1.
Taking SRKS in FIG. 1 as an example of any SRK 1011 genesis, one can note that SRK 5 is the last
key to fulfill ASK 1013 to its maximum size Nmax = 5, and SRK 5 appears inside ASK 1013 at the
4-minute mark, since SRK Generator 1005 began generating SRK 1011 and filling them into ASK.
1013. Then, during SRK 5 LT1 = 1 minute, the key can be engaged into initiating multiple
communication session threads with the clients requesting connections. From time mark 5 minutes,
and until time mark 9 minutes, SRKS5, in accordance with SET = 4 minutes, is kept inside ASK 1013
available to support communication session threads started during SRK 5 LT1. During this
particular time interval, from time mark 5 minutes to time mark 9 minutes, SRK 1, SRK 2, SRK 3,
and SRK 4 in ASK 1013 are being gradually replaced every minute by SRK6, SRK 7, SRK 8, and
SRK 9, respectively. Eventually, at time mark 9 minutes SRKS5 is canceled, ultimately being
replaced by SRK10.

[0038] This Time Interplay Limited SRK Algorithm (TILSA) is the first security tier of the
;cluthentication protocol, assuring supply of SRK 1011 to initiate any client/server communication
session. However, the time to initiate a session (approximately one minute, without sacrificing any
generality limitations of TILSA) and the time to continue the session authentication protocol
(possibly several minutes, without sacrificing any generality limitation of TILSA) are quite limited
for any given SRK 1011, thus hindering a possible intruding activity.

[0039] FIG. 2 is a graphic illustration of the Array of Data Encryption Keys (ADEK)
branch of the TILSA algorithm according to the present invention. The essential part of TILSA is
generating (Data Random Key Generator 2005) an array of Data Random Keys (DRK) 2013 — secret

keys to support the authentication session for any particular SRK 1011 starting a communication

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

12

session thread. This array of DRK (Array of Data Encryption Keys (ADEK) 2012) is regenerated
and specifically attributed to each SRK 1011, together and concurrently with originating any new
SRK 1011 with the logic located on the server side; explaining why there is no latency in the DRK
supply during a client/server encrypted authentication session. The number of DRK 2013 in ADEK
2012 is fixed, acting as a security parameter for the MEDIA authentication protocol being presented.
Each ADEXK 2012 can be used for a plurality of threads initiated with a particular SRK, to which this
ADEK 2012 belongs. The ADEK 2012 lifetime is limited and equal to the lifetime of the originated
SRK 1011 in ASK 1013, being LT2. Deleting SRK 1011 from ASK 1013 inevitably deletes ADEK
2013, corresponding to this SRK 1011.

[0040] Once the client requested a connection to the server supported by the user naﬁe of
the user on the client platform (or the client host name), a suitable SRK 1011, accompanied by LT1,
not yet expired, is sent to the client by the server. In the most preferred embodiment of this
invention, SRK 1011 is sent to the client in a compiled form (for example, as a class file). This is the
second security tier of the authentication protocol, in view of the fact that reengineering a compiled
key given a short SRK 1011 lifetime LT2 is a formidable task. Therefore, the first two security tiers
make SRK 1011 quite resilient to the on line attacks during the session time, because of i
incommensurate times to reengineer SRK 1011 versus SRK 1011 expiration time LT2. However,
SRK 1011 is still vulnerable against off line attacks and needs to be enhanced further to avoid any
loss of authentication credentials and the eventual session Final Secret Key (FSK).

[0041] ~ Since SRK 1011 is sent to the client as the ﬁrst message, the logic located on the
server and on the client sides generates a series of messages having been sent from the server to the
client, and back to the server with the following Key Encryption/Decryption Iterative Algorithm
(KEDIA). FIG. 3 is a graphic illustration of the Key Encryption/Decryption Iterative Algorithm
(KEDIA) according to the present invention. In step 1 3005, client 3002 sends a connection request
to server 3001 over communication network 3003. In step 2 3006, SRKi (with the currently active
LT1 — between time mark i-1 minutes and time mark i minutes) is sent to client 3002, and stored
there, initiating the communication interface. In step 3 3007, client 3002 enters the user name, the
user password, and the server password, if it is a user at the client platform 3002, or the host name,
the host ID, and the server password, if it is the client platform (the peer). In step 4 3008, the user
name (or the host name) is hashed, encrypted with SRKi and sent to server 3001, while the user

password (or the host ID) and the server password were not sent, remaining at client 3002,

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

13

[0042] In step 5 3009, server 3001 checks the validity of the user name (or the host name),
obtained in the step 4, through the database to which it is connected. The session is terminated, if the
user name (or the host name) is ﬁot valid. Otherwise, server 3001 in step 3009 sends DRK 1
encrypted with SRKi to client 3002, where DRK 1 is decrypted with SRKi, and stored at client
3002. During the same step 3009, client 3002 sends a DRK 1, which is converted to its hash
equivalent and encrypted with DRK 1, to server 3001. This message confirms to server 3001 that
client 3002 obtained and decrypted DRX 1, and it is ready for receiving another secret key. In step
6 3010, server 3010 first decrypts hashed DRK 1, received in step 5 from client 3002, with DRK 1.
If DRK 1 is correct, server 3001 sends DRXK 2 encrypted with DRK 1 to client 3002, where DRK 2
is decrypted with DRK 1, and stored at client 3002. Otherwise, the communication session is
terminated. During the same step 6 3010, client 3002 sends a DRK 2, converted to its hash
equivalent, and encrypted with DRK 2, to server 3001. This message confirms to server 3001 that
client 3002 obtained and decrypted DRK 2, and it is ready for receiving another secret key.

[0043] This iterative process continues up to step n 3014. Parameter n is actually the
maximum number of DRK 2013 in ADEK 2012 (FIG. 2), and should be chosen for any practical
implementation of this encrypted authentication protocol. Then, assuming DRKn-1 hash received
from client 3002 in the previous step n-1 is correct, server 3001, sends DRKn, encrypted with client
3002 hashed password (taken from server database 3004, as server 3001 knows from step 4 3008,
the identification of the client (or the user on the client platform)) to client 3002, where DRKn is
decrypted with the client 3002 password, stored at the client side in step 3. During the same step n,
client 3002 sends to server 3001 hashed DRKn encrypted with the client 3002 password, stc‘>.red at
client 3002 at step 3 and converted to its hash equivalent. Step n is an important first phase towards
client/server mutual authentication. Indeed, the client can decrypt DRKn only in the case where
client 3002 knows the user 3002 password. Then, client 3002 encrypts hashed DRKn with the client
3002 hashed password, as a secret key and sends it back to server 3001 in same step n 3014. Having
received DRKn encrypted with client 3001 password, server 3001 decrypts it with the client 3001
password, and, if it is correct, server 3001, in step n+1 3015, sends to client 3002 DRKn encrypted
with hashed server 3001 password as a key.

[0044] Certainly, client 3002, already aware of DRKn from the previous step n 3014,
compares the result of decrypting the last message with the server 3001 password, stored at client

3001 in step 3 3007, and converted to its hash equivalent, with DRKn. If they are the same, the

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

14

client is assured that the communication session is with the correct server, as only client 3002 and
server 3001 know the server 3001 password. Otherwise, the client 3002 terminates the
communication session, and intrusion detection is reported. Eventually, during same step n+1 3015,
client 3002 sends to server 3001 hashed DRKn encrypted with the server password, stored at client
3002, at step 3 3007, and converted to its hash equivalent. This message, transmitted back to server
3001, means that client 3002 has established trust to server 3001. In step nt2 3016, server 3001
decrypts hashed DRKn with the server password from the 3004 database connected to the server,
and compares the result with DRKn at server 3001. Depending on the comparison results, server
3001, during same step n+2 3016, sends to client 3002 the authentication signal “go/no” encrypted
with DRKn-1, stored at client 3002, at the step, prior to step 3014. This completes the client/server
mutual authentication and Final Secret Key (FSK) exchange according to the KEDIA algorithm.
[0045] One encryption/decryption algorithm used in an embodiment of the invention is the
Triple Data Encryption Standard block cipher algorithm. Triple-DES (3DES), based upon the Triple
Data Encryption Algorithm (TDEA), is described in FIPS 46-3. Other block cipher algorithms are
also suitable, including RC6, Blowfish/Twofish, Rijndael, and AES, See, Bruce Schneier, Applied
Cryptography, Second Edition, John Wiley and Sons, Inc., cited above.

[0046] In this form the KEDIA algorithm, described above as part of the authentication
communication protocol, is the third security tier, efficient against online and offline intruding
attacks. Among other factors, the secuxiity against online attacks is increaéed due to effectively
extending the time, needed by an intruder to decrypt the entire series of DRK 2013 in ADEK 2012,
whereas the ADEK 2012 life time is quite limited and is actually equal to LT2, the same as for SRK
1011, which originated this ADEK 2013. As mentioned above, the number of DRK 2013 in ADEK
2012 is the authentication protocol security parameter and can be chosen according fo the security
requirements, considering the actual system CPU and network resources. Security against offline
attacks is assured through the mutual client/server authentication utilizing shared secrets known only
to the client, and to the server. Moreover, the client supposed to perform a strong (two factors)
authentication, as the KEDIA algorithm requires the client to enter correctly the client (the user on
the client platform) password and the server password, unique to the client (the user on the client
platform). Important security feature of the KEDIA algorithm are (1) that client/server passwords

never enter communication lines in either form, (2) client/server pair performs mutual authentication

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

15

in steps n 3014, n+1 3015, and n+2 3016, and (3) client/server pair exchanges FSK enabling
transmitted data encryption during the post-authentication stage of the communication session.
[0047] In the case where an intruder intercepts the last message in step nt+2, and somehow
knows the format of the “go/no” authentication signals, a brute force computer processing attack
could be applied to uncover DRKn-1. However, the intruder would only gain limited access as
DRKn-1 is detached from client/server authentication credentials, and from DRKn (which is FSK in
this particular embodiment of the KEDIA algorithm).

[0048] Therefore, an offline attack is senseless, as the intruder going backward through
steps 3013, 3010, 3009, and 3008 could find DRKn-2 DRKn-3, ..., DRK 1, and eventually SRKi,
which are all only one-time session random keys, and they can not be reused. Certainly, the intruder
could further decrypt the user name; however, this is not regarded as a secret. The time DRKn-1,
operating during the client/server communication session, is excruciatingly small for attempting an
online computer processing attack. Even assuming this attack successful, all, the intruder could do is
to send to client 3002 an incorrect authentication signal, which will be visualized in the user’s
session GUI, but would never take effect in the actual system. This is because the authentication
signal “go/no” enables functionality through the server 3001 side logic.

[0049] The KEDIA algorithm security has been further significantly enhanced by ‘
integrating and synthesizing it with the Byte-Veil-Unveil (ByteVU) algorithm, the Bit-Veil-Unveil
(BitVU) algorithm, and the Byte-Bit-Veil-Unveil (BBVU) algorithm. All three algorithms are built
around the idea that every encrypted message in the client/server dialogue in the KEDIA algorithm
is a fixed byte size, relatively small (typically 16 bytes) message. The algorithms employ the fact
that the server already has identified who the client pretends to be, after receiving the user name (or
the host name) during the initial connection request. At this time, the server finds the password, or
another shared secret, corresponding to the user name (or the host name), in the server database
3004, connected to the server. Then, the server employs this information to disassemble only
message bytes, or only bits, or the combination thereof, inside a certain conversion array, making
their reassembling a highly improbable task, unless the client knows the shared secret. In this case,
the message, which is the encrypted key, is easily recovered and eventually decrypted with the
secret key, learned from the previous message.

[0050] FIG. 4 is a graphic illustration of the KEDIA algorithm. This is a typical message

encryption at the server and its decryption at the client, applying along with encryption and

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

16

decryption procedures one of Byte-Veil-Unveil (ByteVU), Bit-Veil-Unveil (BitVU), or Byte-Bit-
Veil-Unveil (BBVU) algorithms, according to the present invention. Step 6 3010 has been chosen as
a typical message example in the KEDIA algorithm. According to FIG. 3, during this step, server
3001 sends DRK 2 encrypted with DRK 1 to client 3002, where DRK 2 is decrypted with DRK 1,
received by client 3002 in the previous step 3009 from server 3001. In FIG. 4, step 3010 is split for
clarity into two parts 4001 and 4002, which are related to preparing the message at server 3001, and

treating the received message at client 3002, respectively. Blocks 4003, 4005, 4007, and 4009 depict

the process the message is going through, before it is sent to client 3002. DRK 2 (for instance, 16
bytes long, secret key to be used with a block-cipher encryption algorithm) is supplied by Server
DRK Generator 2005 (see FIG. 2) 4003. In the following step 4005, server 3001, already having
identified who claims to be the user on the client platform, (or what is the claimed client platform
host name), extracts the respective user password (or the client host ID) from the database 3004
attached to server 3001. Eventually, according to block 4007, server 3001 uses this information to
trigger operation of one of ByteVU, BitVU, or BBVU algorithms, having been chosen by a
particular security system, considering security requirements vs. cost trade-offs (time of operations,
CPU power of client/server platforms, and the network throughput). As a final result 4009, the
conversion array, containing disassembled DRK]j bytes, or bits, or the combination thereof, gets
encrypted with DRK 1, and sent to client 3002.

[0051] Part 4002 of step 3010, related to the received message treatment at client 3002, is
expanded by the series of blocks 4004, 4006, 4008, and 4010 in FIG. 4. According to block 4004,
client 3002 decrypts the conversion array with DRKj-1, stored by client 3002 from the previous
message 3011 from server 3001. Then, client 3002 supplies the user password (or the client host ID)
which was entered into the KEDIA algorithm at step 3 3007 (see FIG. 3), enabling reassembling of
DRK 2 from the decrypted conversion array 4006. As it is shown in block 4008, the operation is
triggered for one of ByteVU, BitVU, or the BBVU algorithms, having been chosen on the client side
the same one, as on the server side. Eventually, according to block 4008, either the message bytes,
or bits, or the combination thereof, get reassembled, and finally, as it is shown in block 4010, DRK
2 is reconstructed to its original form.

[0052] In compliance with FIG. 4, each message of the KEDIA algorithm employs
additional treatment as compared to the standard encryption/decryption operations. This treatment is

triggered by the client/server shared secret at the sending and receiving communication channel

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

17

ends. FIG. 5 is a block diagram of the Byte-Veil-Unveil (ByteVU) algorithm according to the
present invention. Block 5001 shows DRXK]j, where each byte is separated from a neighboring byte
with a vertical bar. Without sacrificing any generality of the ByteVU algorithm, DRKj is assumed to
be a 16-bytes key in FIG. 5. The user password (or the client host ID), supplied by server 3001 in a
hashed form, plays a seed role for Server Sequential Random Number Generator (SRNG) 5002.
SRNG 5002 generates a random sequence of integers, and it is the same sequence of integers, each
from 1 to 10, for any given seed. In other words, the password (or the client host ID) and the SRNG
sequence of integers are uniquely associated. Block 5005 introduces a conversion array which,
without sacrificing any generality limitations of ByteVU algorithm, has 16 equal sections 5006,
5007, 5008, 5009, and 5010, with 10 bytes per each section. FIG. 5 presents an exemplary case,
when SRNG 5002 generated 16 sequential integers 4, 9, ..., 2, and 7.

[0053] The first integer 4 is used by the logic located by the server 3001 to replace byte
rl,4 in the first section 5006 of conversion array 5005 by the first byte xh1 of DRKj in 5001.
Similarly, the second integer 9 is used by that same logic to replace byte 12,9 in the second section
5007 of conversion array 5005 by the second byte xh2 5012 of DRK]j in 5001.The same procedure is
applied to all integers in the sequence generated by SRNG 5002, until DRKj 15® byte xh15 in 5001
is replacing the 2nd byte r15,2 in the 15" section 5009 of conversion array 5005, and eventually
DRK;j 16™ byte xh16 in 5001 is replacing the 7% byte r16,7 in the 16™ section of conversion array
5005. Once all bytes of DRK]j are veiled in this manner inside conversion array 5005, the entire
conversion array 5005 is encrypted with DRKj-1, and the message is sent to client 3002. At client
3002, the encrypted conversion array is decrypted with DRKj-1, saved at client 3002, from the
previous server message (step 3011 in KEDIA, FIG. 3).

[0054] The next procedure, reversed as compared to the procedure described above on the
server 3001 side, is applied. The user password (or the client host ID) saved at the client platform in
step 3007 of the KEDIA algorithm (see FIG. 3) is supplied in a hashed form as a seed to Client
Sequential Random Number Generator (SRNG) 5003, identical to the one on the server 3001 side.
This password (or host ID) triggers SRNG 5003 to generate the same sequence of integers, as on
server 3001 side before 4, 9, ..., 2,. 7. Then, the logic placed on client 3002 used the first integer 4 to
extract DRK] first byte xh1 from the fourth position in first 10 bytes section 5006 of conversion
array 5005, and place it back in the 1% position of DRKj 5001. Consequently, the second integer 9 is

used to extract DRKj second byte from the 9™ position in 10 bytes section 5007 of conversion array

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

18

5005, and place it back into the 2 byte position of DRKj 5001. This procedure is going on, until,
eventually, the 15" byte of DRK;j xh15 is extracted from the 2™ byte position in 15™ 10 bytes
section 5009 of conversion array 5005, and placed back into 15® byte position of DRKj 5001 as well
as the 16™ byte of DRKj xh16 5011 extracted from the 7% byte position in 15® 10 bytes section 5010
of conversion array 5005, and placed back into 15" byte position of DRKj 5001. This completes the
reassembling procedure of the ByteVU algorithm to restore DRK] at client 3002.

[0055] A suitable sequential random number generator SRNG for use in embodiments of
the invention is a Java version of the well known "Lehmer generator." See, Park & Miller, “Random
Number Generators, Good Ones are Hard to Find,” Communications of the ACM, Vol. 31, No. 10,
(1988), pages 1192-1201.

[0056] FIG. 6 is a block diagram of the Bit-Veil-Unveil (BitVU) algorithm according to
the present invention. The BitVU algorithm is a natural extension of the ByteVU algorithm. Instead
of veiling bytes of DRK], the BitVU algorithm veils bits of DRKj. It is assumed, without sacrificing
any generality limitations of the BitVU algorithm, that DRK] bit size is 128 bits 6001. Each bit of
DRKj in 6001 is separated from a neighboring bit with a vertical bar. Server Sequential Random
Number Generator (SRNG) 6002 uses the user password (or the client host ID) supplied by the
server in a hashed form as a seed, allowing for the generation of a random series of 128 integers
with values ranging from 1 to 128 (for instance, 4, 127, ..., 4, 2), and each one pointing to a DRKj
consecutive bit veiled position in conversion array 6005, respective sections 6006, 6007, ..., 6008,
..., 6009, and 6010 of 128 bit size each. In other words, the password (or the client host ID) and the
SRNG 6002 sequence of integers are uniquely associated.

[0057] Block 6005 introduces a conversion array which, without sacrificing any generality
limitations of BitVU algorithm, has 128 equal sections 6006, 6007, ... , 6008, ..., 6009, and 6010,
with 128 bits per each section. FIG. 6 presents an exemplary case, when SRNG 6002 generated 128
sequential integers 4, 127, ... , 4, and 7. For this exemplary case disclosed in FIG. 6, the 1% bit of
DRXj 6001 yh1 is put into the 4® bit position of first section 6006 instead of 1,4 bit; then the 2 bit
of DRKj 6001 yh2 6012 is put into 127" bit position of second section 6007 instead of 12,127 bit,
and so on, until 127™ bit of DRKj 6001 is put into the 4™ position of 127 section 6009 instead of
r127,4 bit. Ultimately, the 128% bit of DRKj 6001 is put into the 2" bit position of the 128%™ section
6010 of conversion array 6005 instead of r128,2 bit. Once all bites of DRK] are veiled in this

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

19

manner inside conversion array 6005, the entire conversion array 6005 is encrypted with DRKj-1,
and the message is sent to client 3002.

[0058] At client 3002, the encrypted conversion array is decrypted with DRKj-1, saved at
client 3002, from the previous server message (step 3011 in the KEDIA algorithm, FIG. 3). Then the
procedure, a reversed one as compared to that which is described above for the BitVU algorithm on
server 3001 side, is applied. The user password (or the client host ID) saved at the client platform in
step 3007 of the KEDIA algorithm (see FIG. 3) is supplied in a hashed form as a seed to Client
Sequential Random Number Generator (SRNG) 6003, identical to the one on the server 3001 side.
This password (or host ID) triggers SRNG 6003 to generate the same sequence of integers as on
server 3001 side before, that is 4, 127, ..., 4, 2. Then, the logic placed on client 3002 used the first
integer 4 to extract DRKj 1% byte yh1 from the 4t position in 1% 128 bits section 6006 of conversion
array 6005, and placed it back in the 1% position of DRKj 6001. Consequently, the second integer
127 is used to extract DRKj 2° bit from the 127 position in 2°% 128 bits section 6007 of conversion
array 6005, and place it back into the 2™ bit position of DRKj 6001. This procedure continues until,
ultimately, the 127" bit of DRKj yh127 is extracted from the 4% bit position in 127 128 bits section
6009 of conversion array 6005, and placed back into 127™ bit position of DRKj 6001, as well as the
128" bit of DRKj yh128 6011 being extracted from the 2™ bit position in 128" 128 byte size section
6010 of conversion array 6005, and placed back into 128" bit position of DRKj 6001. This
completes the reassembling procedure of the BitVU algorithm to restore DRK] at client 3002.
[0059] FIG 7 is a block diagram of the Byte-Bit-Veil-Unveil (BBVU) algorithm according
to the present invention. Block 7001 shows DRX]j, where each byte is separated from a neighboring
byte with a vertical bar. Without sacrificing any generality limitations of the BBVU algorithm,
DRKj is assumed to be a 16-bytes key in FIG. 7. The user password (or the client host ID), supplied
by server 3001 in a hashed form, plays a seed role for Server Sequential Random Number Generator
(SRNG) 7002. SRNG 7002 generates a random sequence of 16 integers, and then the server’s
Sequential Direct Bit Position Scrambler (SDBPS) 7006 scrambles all bit positions in the veiled
byte 7010. SDBPS 7006 generates a random series of non-repeating eight digits within the range
from 1 to 8, for each of SRNG 7002 integers in the sequence. In other words, the password (or the
client host ID), the SRNG 7002 sequence of integers, and the series of digits generated by SDBPS

7006 are uniquely associated. Applying the same seed (the user password, or the server host ID, in a

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

20

hashed form) will result in the same sequence of integers generated by SRNG 7002, and the same
series of digits generated by SDBPS 7006 for each integer in the sequence.

[0060] Block 7006 introduces a conversion array which, without sacrificing any generality
limitations of the BBVU algorithm, has 16 sections similar to 7008, with 10 bytes per section.
Similarly to the ByteVU algorithm, each section will veil one byte of DRKj 7001 in a position,
respective to the particular integer value generated by SRNG 7002. For instance, the 1% byte of
DRKj 7001 xh1 occupies the 4™ byte position in section 7008, replacing r1,4 byte. FIG. 7 presents
an exemplary case, where the 1¥ DRKj byte xh1 has an 8-bit representation from the most
significant bit xh1,8 to the least significant bit xh1,1 7009, and chosen as 01011101 in FIG. 7 7009.
SRNG 7002 generated 16 sequential integers 4, ... , while SDBPS 7006 generated a series of eight
non-repeating digits 3, 1, 8, 5, 4, 2, 7, and 6 for the first integer 4 7011, and a similar series of digits
for the rest of the integers. Eventually, all bits of the 1 DRKj 7001 byte in 7008 occupy new bit
positions, consecutively specified in the SDBPS 7006 generated series of digits for the first integer
4. For a particular example in FIG. 7 7012, it is 01011011.The same process 7013 of scrambling bits
for each veiled byte of DRKj 7001 in conversion array 7007 is continued, until all bytes of DRK] are
veiled, and all bit positions of each veiled byte are scrambled. Then, the entire conversion array
7007 is encrypted with DRKj-1, and the message is sent to client 3002.

[0061] At client 3002, the encrypted conversion array is decrypted with DRKj-1, saved at
client 3002, from the previous server message (step 3011 in KEDIA, FIG. 3). Then the procedure, a
reversed one as compared to that which is described above for the BBVU algorithm on server 3001
side, is applied. The user password (or the client host ID), saved at the client platform in step 3007
of the KEDIA algorithm (see FIG. 3), is supplied in a hashed form as a seed to Client Sequential
Random Number Generator (SRNG) 7005 identical to the one on the server 3001 side. This
password (or host ID) triggers SRNG 7005 to generate the same sequence of integers as on server
3001 side before 4, Client Sequential Reverse Bit Position Scrambler (SRBPS) 7003 generates
the reversed series of digits for each integer, as compared to its server counterpart SDBPS 7006. For
instance, for the first integer 4, SRBPS 7003 generates the reversed series 2, 6, 1, 5, 4, 8, 7, and 3,
which allows the logic placed on client side 3002 to restore bits in the original order for the 1% byte
of DRKj — 2 means that the 2" bit of the scrambled byte will become the least significant bit in the
restored 1% DRKj byte, and so on, until 3, the last digit in the series, is reached, indicating that the

3" bit in the scrambled byte will become the most significant bit in the restored 1¥ byte. Meanwhile,

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

21

integer 4 points to the 4™ position in section 7008 of conversion array 7007, where the 1% DRK] byte
has been veiled. The same procedure continues, until all byes of DRKj 7001 and their respective bits
are returned to their original positions. This completes the reassembling procedure of the BBVU
algorithm to restore DRX] at client 3002.

[0062] At this time it is important to note that the ByteVU, BitVU, and BBVU algorithms,
disclosed above, require assessment of security of these algorithms against possible computer
processing attacks now and in the future. Table 1 below presents a summary of this assessment.
SRNG 5002, 5003 (FIG. 5), 600, 6003 (FIG. 6), and 7002, 7003 (FIG. 7) generate integers pseudo-
randomly, as well as SDBPS 7006 and SRBPS 7003 (FIG. 7). Hence, probabilities of veiling each
byte and bit inside a Conversion Array (CA) for each algorithm can be viewed as independent ones.
Best microprocessors achieved ~1 GHz clock rate barrier by the beginning of the 21% century.
Previously, forecésting allowed for at least 25 — 35 years, until the clock rate would reach ~ (100 —
1000) GHz. Thus, currently available ~1E10 instructions per second could reach ~ (1E12 - 1E13)
instructions per second in a distant future, (assuming microprocessor RISC pipelined architecture
with up to 10 stages per cycle). A very conservative assumption is made that the attacking
computers have 100% efficiency of their CPU utilization during an attack. In other words, testing
each possible combination of all bytes, bits, or the combination thereof , of a veiled message in CA
will consume only one microprocessor instruction.

[0063] Column 1001 in Table 1 presents particular geometries of CA chosen in each
algorithm for the assessment. Column 1002 gives the bit size of each algorithm CA for every
geometry selected in 1001. Column 1003 presents the total number of pseudo-random integers
generated by SRNG of each algorithm with respect to the geometries chosen in 1001. Column 1004
introduces probability models for each algorithm with respect to the geometries of CA chosen in
1001. Every position in 1004 gives probability to estimate the entire combination of veiled bytes,
bits, or the combination thereof, for each algorithm, under given geometry of CA in 1001. Column
1005 presents for each CA its transit time, given the slowest standard modem of 28.8 kbps (kilobits
per second) of contemporary networks (for example, the Internet). Column 1006 presents assessed
time, required for a brute force attack now and in a distant future, for each algorithm and their
respective geometries of CA chosen in 1001. Column 1007 presents an approximate time for one

advanced microprocessor (1GHZ /100GHz) instruction now, and in a distant future.

10

15

20

WO 2005/022359 PCT/US2004/028313

22
TABLE 1
1001 1002 1003 1004 1005 1006 1007
i ! ! ! ! ! !

CASize CATotal SRNG Probability CA Transit Brute Force CPU One
#ofrows Bit Size total# Model for CA Time Attack Time Instruction

vs. # of BB modem Now/Future Time, (S)
28.8 kbps Now/Future
ByteVU 16r/16 bytes 2048 bits 16 (1716716 71 milliSec. 58 y/7 months 1E-10/1E-12

BitVU 128r/2bits 256 bits 128 (1/2)M28 9 milliSec. 1E21y/ME19y 1E-10/1E-12

BBVU 16r/2bytes 256 bits 144 ((.5)(1/8)*8)*6 9 milliSec. 8E102y/8E100y 1E-10/1E-12

[0064] Summarizing the assessment results in Table 1, it can be noted that each of
ByteVU, BitVU, and BBVU algorithms give extremely high security now and in a distant future for
the respective geometries selected in 1001. At the same time, one CA message transit times 1005,
even for the slowest standard modems, are reasonable enough for the disclosed algorithms’ practical
utilization in the MEDIA protocol. Certainly, geometry parameters in 1001 can be regarded as
security parameters of the MEDIA protocol, and these parameter changes could allow for security
trade-offs vs. cost (CPU power of client/server or authenticator/peer platforms, and the network
throughput). Also, replacing slow modems by contemporary high-speed network connections, like
DSL, would significantly reduce message transit times in 1005.

[0065] The combination of the KEDIA algorithm and any one of ByteVU, BitVU, and
BBVU algorithms comprise the fourth security tier, which makes the encrypted authentication
protocol highly secure against online and offline attacks. The algorithms described above allow for
the encryption key management security to be scaled with CPU and network throughput resources.
During the encryption key distribution stage over communication lines, shared secrets never leave
the server, or the client. However, they are repeatedly employed for each iterative message
encryption/decryption by KEDIA and any of ByteVU, BitVU, or BBVU algorithms on the server
and the client platform as well. Only when the client and the server eventually have in their

possession the Final Secret Key (FSK) satisfying the required security level, then the server and the

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

23

client will perform mutual authentication in a way that neither of authentication credentials enter
communication lines in either form. The authentication session is denied, provided the parties’
mutual authentication is not successfully completed. This part of the encrypted authentication
protocol completes the client/server mutual authentication. At the same time, it is the final fifth
security tier of the encrypted authentication protocol.

[0066] FIG. 8A and FIG. 8B illustrate the server and the client side of the Message
Encrypt/Decrypt Iterative Authentication (MEDIA) protocol according to the present invention.
Without sacrificing any generality limitations of the MEDIA protocol, the exemplary case presented
in FIG. 8A and FIG. 8B is assuming HTTP communication protocol (RFC 2068 Hypertext Transfer
Protocol —- HTTP/1.1 January 1997), Java applet/servliet multi-threading object-oriented
communication technology, and a standard Web server technology. However, the MEDIA protocol
can be integrated into any other network communication protocol, and enabled with various object-
oriented technologies. The ByteVU algorithm has been included into the MEDIA protocol in FIG.
8A and FIG. 8B, though any of BitVU and BBVU algorithms could serve there equally well.

[0067] Messages sent to the client and received at the server are numbered in 8000. Key
functional message destinations on the server side are in 8001, and on the client side they are in
8016. For each message received at the server, its content description is in 8003, whereas for each
message received at the client, its content description is in 8014. Similarly, for each message sent
from the server, its content description is in 8002, whereas for each message sent from the client, its
content description is in 8015. The choice of any one of ByteVU, BitVU, or BBVU algorithms to be
used in the MEDIA protocol and the parameters of the respective conversion array are in 8006 for
the server side, and in 8010 for the client side. Seeds, having been used to trigger SRNG (Sequential
Random Number Generator), are in 8007 for the server side, and they are in 8009 for the client side.
Which direction a particular MEDIA message is sent towards, is in 8008. The ByteVU algorithm
conversion array parameters, chosen in FIG. 8A and FIG. 8B (10 sections with 25 bytes size of
each), give extremely high security protection against online and offline intruding attacks, even for
one MEDIA message as it was shown above. Therefore, it is practically justifiable to reduce
iterations in the KEDIA algorithm by limiting DRKn in FIG. 3 to DRK 2 only. It saves client/server
platforms CPU and network resources, while keeping a very high security level.

[0068] It is assumed, without sacrificing any generality of the MEDIA protocol, that for
this particular embodiment of the MEDIA protocol (FIG. 8A and FIG. 8B), the client is a user at the

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

24

client platform. The communication session begins with the user’s request (message 1) to the server
to reach a protected network resource, for example, a URL (Universal Resource Locator), a
protected link, a protected file, a protected directory, or another protected network resource. This
message initiates the MEDIA protocol on the server side. The server replies to the user (message 2),
sending SRK 1011 (see FIG. 1) over the communication line (the Internet) in a compiled class form,
which prevents any easy key reuse or reengineering, if it is intercepted by an intruder. The user
enters into the GUI (Graphical User Interface, designed into the applet and sent from the server to
the client in message 2 along with the SRK) the user name, the user password, and the server
password. The passwords stay stored at the client, while the user name gets encrypted with the SRK
and sent to the server in message 3.

[0069] The server (logic on the server side in this exemplary case could be implemented in
the Java servlet technology) replies in message 4 with DRK 1 2012 (FIG. 2) bytes veiled with the
ByteVU algorithm, triggered by the server, supplying the hashed password of the assumed user as a
seed. The resulting ByteVU conversion array is encrypted with the SRK and sent to the client. The
client, having known the SRK and the user password, entered into the GUI in the previous message
3, decrypts the conversion array and reassembles DRK 1 bytes. In message 5, from the client to the
server, hashed DRK 1 bytes are veiled with ByteVU algorithm, triggered by the user password,
stored at the client earlier in step 3 (FIG. 8B), and converted to its hash equivalent. Then, the
conversion array is encrypted with DRK 1 and sent to the server, which decrypts the conversion
array with DRK 1, and triggers ByteVU with the hashed password of the assumed user, taken from
the database attached to the server. If the hashed DRK 1 is correct, reassembled in this way, it is
actually the authentication signal from the client to the server, as nobody except the client knows the
user password used to trigger the ByteVU algorithm when receiving message 4, and sending
message 5.

[0070] If DRK 1 is incorrect, the MEDIA protocol is terminated by the server sending a
“no” authentication message (or an error message: “user password is incorrect”) to the client,
encrypted with SRK. Otherwise, the server sends to the client message 6 containing DRX 2, which
bytes are disassembled by the ByteVU algorithm, triggered by the user hashed password, used as a
seed for SRNG 5002 (FIG. 5). Then, the conversion array is encrypted with DRK 1 and sent to the
client, where it is decrypted with DRK 1 stored at the client from the previous message 5, and DRK
2 bytes get reassembled by the ByteVU algorithm, triggered by the user password, stored at the

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

25

client earlier in step 3 (FIG. 8B). The client replies to the server with message 7, sending to the
server hashed DRK 2, which bytes are veiled by the ByteVU algorithm, triggered by the user
password, stored at the client in the previous message 3, and converted to its hash equivalent. The
server decrypts message 7 from the client with DRK 2, and reassembles the hashed DRK 2 bytes
with the ByteVU algorithm, triggered by the user password, taken from the attached to the server
database, and converted to its hash equivalent. If DRK 2 is correct, the server sends to the client
message 8 with DRK 2, which bytes are disassembled with the ByteVU algorithm, triggered by the
server password. Otherwise, if DRK 2 is not correct, the MEDIA protocol is terminated. The
conversion array of the ByteVU algorithm in message 8 is encrypted with DRK 2 and sent to the
client.

[0071] The client, receiving message 8 from the server, decrypts it with DRK 2, and
reassembles the hashed DRK 2 bytes with the ByteVU algorithm, triggered by the server password,
stored on the client side in message 3. Then, the client compares the decrypted and reassembled
DRK 2 with DRK 2 from the previous message 6. If they are the same, it is viewed by the client as
the authentication signal from the server, because only the client and server share the server
password. Hence, it was the only server, which could send the last message 8 to the client. Now, as
the trust is established by the client to the server, the client sends to the server message 9 with
hashed DRX 2, which bytes are disassembled with the ByteVU algorithm, triggered by the server
password, stored on the client side in message 3, and converted to its hash equivalent. Eventually,
the conversion array of the ByteVU algorithm is encrypted with DRK 2 and sent to the server. The
server, having received message 9 from the client, decrypts it with DRK 2, and reassembles the
hashed DRK 2 bytes with the ByteVU algorithm, triggered by the hashed server password. If DRK 2
is correct, it is viewed by the server as a second authentication factor from the client (the client
confirmed the server password), in addition to the first factor, having been checked in the message 6
from the client (the client confirmed the user password).

[0072] This completes the mutual authentication of the client/server pair according to the
MEDIA protocol, and the server is now ready to make an authentication decision. In the end, the
server sends to the client message 10, which has either a “go” authentication signal, assuming DRK
2 in message 9 from the client was correct, or an error message: “the server password is incorrect”,
assuming DRK 2 in message 9 from the client was incorrect. Each signal byte is disassembled with

the ByteVU algorithm, triggered by the user password from the database, attached to the server, and

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

26

then the conversion array of the ByteVU algorithm is encrypted with DRK 1 and sent to the client in
message 10. Having received the message 10, the client decrypts it with DRX 1, stored at the client
platform during message 4, and reassembles the signal bytes with the ByteVU algorithm, triggered
by the user password, stored at the client side in message 3.

[0073] This effectively completes the entire MEDIA protocol of the client/server
communication session as presented in FIG. 8A and FIG. 8B. As one can see, authentication
credentials (the user password and the server password in this particular embodiment) have never
passed through communication lines in any form. Also, the client/server mutual authentication has
been completed within the MEDIA protocol, as well as the exchange of FSK (Final Secfet Key,
which is DRK 2 in this particular embodiment) having been performed within the client/server pair.
The server password and the user password enable secure mutual authentication, according to the
MEDIA protocol architecture. At the same time, they are both playing a role of a strong two-factor
authentication of the client at the server platform.

[0074] FIG. 9 illustrates the Graphical User Interface (GUI) enabling client/server mutual
authentication at the client platform according to the MEDIA protocol, and a graphical illustration of
the distributed protected network resources, including the authentication server, and the user base
the MEDIA protocol is used for, according to the present invention. This GUT has already been
mentioned or assumed along with the preferred embodiments of this invention, described herein, for
instance, in FIG. 3 step 3 3007, FIG. 8B messages 3, 5A, and 10 8016. The user on a client platform
9015, or 9021 in FIG. 9 is trying to reach a protected network destination 9020. It invokes the
MEDIA protocol through an interactive communication session between web server 9018, compute
server 9024, program logic 9017, and security and account databases 9022 and 9023, all located on
the server side, with GUI 9003 located on the client side. There are different means to implement
this scheme, for example, thick or thin software client, permanently placed on a client platform, or a
Java applet, loading GUI 9003, and its respective client-side logic into a browser. The latter case in
the preferred embodiment in FIG. 9 is assumed here. Also, the network, over which the
communication session is established, could be either only LAN (Local Area Network), or WAN
(Wide Area Network), or a combination of LAN and WAN together. In the particular embodiment
in FIG. 9, Internet 9019 is assumed as a preferred embodiment, enabling client/server dialogue

through communication links 9016.

10

15

20

25

30

WO 2005/022359 PCT/US2004/028313

27

[0075] GUI 9003 has several operation modes 9009: login session mode 9010, account set-
up mode 9011, user password reset mode 9012, and server password reset mode 9013. Login session
9010 is the default operation mode. The user enters the user name in window 9004, the user
password in window 9005, and the server password in window 9006. The user has a choice to enter
alphanumeric characters, or their echo dots for security reasons by toggling button 9014. The
session elapsed time clock 9007 visualizes this value to the user, and signals communication session
termination once the session time has expired. After the authentication credentials are all entered
into 9004, 9005, and 9006, the client indicates login button 9008, which completes step 3 3007 in
FIG. 3, or message 3 in FIG. 8B. Then the other steps of the MEDIA protocol are initiated. Stoplight
9001 turns yellow, when button 9008 is indicated, signaling the MEDIA protocol is in progress for
the first authentication factor (the user password) examination. Message 8 in FIG. 8B, having
arrived at the client, initiates stoplight 9001 to change color from red at the beginning of the session
to green, once it is checked by the client placed logic that DRK 2 delivered in the message 8 is
identical to DRK 2, delivered in message 6.

[0076] Similarly, stoplight 9002 turns from red to the yellow color right after stoplight

906 1 turned green, signaling that the MEDIA protocol is in progress for the second authentication
factor (the server password) examination. Indeed, once the client received message 10 in FIG. 8B,
stoplight 9002 turns green, signaling successful client/server mutual authentication, FSK exchange,
and completion of the MEDIA protocol. If the client received message SA from the server (FIG. 8A
and FIG. 8B), stoplight 9001 turns red, back from the yellow color, and the error message “the user
password is incorrect” appears in system window 9014, signaling the MEDIA protocol termination.
Also, if the client received authentication signal “no” in message 10 from the server (FIG. 8A and
FIG. 8B), stoplight 9002 turns red, back from the yellow color, and the error message “the server
password is incorrect” appears in system window 9014, signaling the MEDIA protocol termination.
[0077] Though, a server password unique to each user remains the preferred embodiment
of this invention, various business environments, or enterprise/organization/agency IT resource
configurations may require some modifications to the MEDIA protocol. The exemplary case would
be when users of all computer platforms logged-in from the same server in an isolated LAN
environment (or the same cluster of servers). Then the system administrator may preset the same
server password at all platforms, during each platform configuration and setup on the network. This

would require any user to enter only the user name, and the user password in GUI 9003 inside an

10

WO 2005/022359 PCT/US2004/028313

28

enterprise, organization, or agency. Alternatively, messages 8 and 9 in the MEDIA protocol (FIG. 9)
could be eliminated entirely for the above case, which effectively excludes the need for server
password to perform a user (a client platform) authentication and a session random key exchange.
However, any connection with servers and users outside the particular LAN perimeter would
probably require the reinstatement of server passwords for security reasons.

[0078] While the present invention is disclosed by reference to the preferred embodiments
and examples detailed above, it is to be understood that these examples are intended in an
illustrative rather than in a limiting sense. It is contemplated that modifications and combinations
will readily occur to those skilled in the art, which modifications and combinations will be within
the spirit of the invention and the scope of the following claims.

[0079] What is claimed is:

WO 2005/022359 PCT/US2004/028313

29

CLAIMS

1. A method for establishing a communication session on a communication medium between a
first data processing station and a second data processing station having access to the
communication medium, comprising:

receiving at the first station a request from the second station for initiation of a
communication session;

producing dynamic sets of session random symmetric encryption keys at the first station; and

after receiving said request, executing a plurality of exchanges of encrypted messages across
said communication medium to mutually authenticate the first station and the second station, and to

provide the encryption key to the second station for use in said communication session.

2. The method of claim 1, wherein during said plurality of exchanges, said first and second
stations use at least two shared secrets, which are shared between the first station and the second
station, or between the first station and a user at the second station, without exchanging messages

carrying said shared secrets via the communication medium.

3. The method of claim 1, including mutual authentication based on at least two shared secrets,
without exchanging messages carrying said shared secrets in any form via the communication

medium.

4. The method of claim 1, wherein said plurality of exchanges comprise interactive exchan;ges,
said interactive exchanges including a message from the first station to the second station and a
responsive message from the second station to the first station, where the responsive message
comprises information from the message from the first station derived using information derived

from a message in a previous exchange.

5. The method of claim 1, wherein producing an encryption key at the first station includes:
assigning a session random key in said first station, in response to a request received by said
first station during a session random key initiation interval for use in a first exchange of said

plurality of exchanges;

WO 2005/022359 PCT/US2004/028313

30

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges; and

wherein said plurality of exchanges includes at least one message carrying an encrypted
version of one of said plurality of intermediate data random keys to be accepted as said encryption

key upon said mutual authentication.

6. The method of claim 1, wherein producing an encryption key at the first station includes:

providing a buffer at the first station,;

generating keys and storing said keys in the buffer;

associating respective session random key initiation intervals with said keys stored in said
buffer;

using keys from said buffer as session random keys in response to requests received by said
first station during said respective session random key initiation intervals for use in a first exchange
of said plurality of exchanges;

removing keys from said buffer after expiry of the respective session random key lifetime in

the buffer.
7. The method of claim 6, wherein said buffer is managed as a circular buffer.

8. The method of claim 6, wherein a session random key lifetime in the buffer for said plurality
of exchanges has a value within which the plurality of exchanges can be completed in expected
circumstances, and said keys are removed from said buffer after a multiple M times said value of
session random key lifetime to engage into establishing a communication session, where M is less

than or equal to 10.

9. The method of claim 6, wherein a session random key lifetime in the buffer for said plurality
of exchanges has a value within which the plurality of exchanges can be completed in expected
circumstances, and said keys are removed from said buffer after a multiple M times said value, and
the session random key lifetime to engage into establishing a communication session is less than

about 90 second

10
11
12

WO 2005/022359 PCT/US2004/028313

31

10. The method of claim 1, wherein producing an encryption key at the first station includes:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;

wherein said plurality of exchanges includes a first message from the first station carrying
said session random key to the second station, where the second station returns a second message
carrying a shared parameter, which is shared between the first station and the second station, or
between the first station and a user at the second station, and encrypted using the session random
key; and

decrypting the shared parameter from said second message at the first station.

11. The method of claim 1, wherein producing an encryption key at the first station includes:
assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;
associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;
wherein said plurality of exchanges includes
a first exchange including sending a first message from the first station carrying said session
random key to the second station, where the second station returns a second message
carrying a shared parameter encrypted using the session random key, and decrypting
the shared parameter at the first station to validate the second station, or a user at the
second station; and
a second exchange including sending a further message from the first station to the second
station, the further message carrying a particular data random key from said plurality
of intermediate data random keys encrypted using the session random key, where the
second station returns another message carrying a hashed version of said particular
data random key encrypted using said particular encryption key to the first station,
and decrypting said hashed version 6f said particular data random key at the first

19

(o IR B e

O

HW

o O w N O

WO 2005/022359 PCT/US2004/028313

32

station using said particular data random key.

12. The method of claim 1, wherein producing an encryption key at the first station includes:

assigning, in said first station, a session random key for use within a session random key
injtiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges; and

after said request for initiation of a communication session, presenting to the second station a
user interface along with the session random key, said user interface including a prompt for entry of

a shared parameter and at least one shared secret.

13. The method of claim 1, wherein producing an encryption key at the first station includes:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges; and

after said request for initiation of a communication session, presenting to the second station a
user interface along with the session random key, said user interface including a prompt for entry of

a shared parameter and at least two shared secrets.

14. The method of claim 1, wherein producing an encryption key at the first station includes:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;

wherein said plurality of exchanges includes

a first exchange including sending a first message from the first station carrying said session

random key to the second station, where the second station returns a second message

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

WO 2005/022359 PCT/US2004/028313

33

carrying a shared parameter encrypted using the session random key, and decrypting
the shared parameter at the first station; and
a second exchange including sending a third message from the first station to the second
station, the third message carrying a particular data random key from said plurality of
intermediate data random keys encrypted using the session random key, where the
second station returns a fourth message carrying a hashed version of said particular
data random key encrypted using said particular data random key to the first station,
and decrypting said hashed version of said particular data random key at the first
station using said particular data random key;
and then executing at least one additional exchange in said plurality of exchanges,
where
said at least one additional exchange includes sending an additional message from the first
station to the second station carrying a next data random key from the plurality of
intermediate data random keys associated with said request, encrypted using a key
exchanged during a previously completed exchange in said plurality of exchanges,
where the second station decrypts said next data random key and returns a responsive
message carrying a hashed version of said next data random key encrypted using said
next data random key, and decrypting at the first station said hashed version of said

next data random key using said next data random key.

15. The method of claim 14, including during at least one of said additional exchanges,
producing said third message by first veiling the particular data random key using a first
conversion array seeded by a first shared secret and encrypting the veiled particular data random
key, where the second station decrypts and unveils said particular data random key using the first
shared secret, and where the second station produces said fourth message by veiling the hashed
version of the particular data random key using a second conversion array seeded by said first
shared secret and encrypting the veiled hashed version of the next data random key; and
decrypting and unveiling the hashed version of the particular data random key at the first

station.

16. The method of claim 14, including executing more than one of said additional exchanges.

WO 2005/022359 PCT/US2004/028313

34

17. The method of claim 14, including during at least one of said additional exchanges,

producing said additional message by first veiling the next data random key using a first
conversion array seeded by a shared secret and encrypting the veiled next data random key, where
the second station decrypts and unveils said next data random key using the shared secret, and
where the second station produces said responsive message by veiling the hashed version of the next
data random key using a second conversion array seeded by said shared secret and encrypting the
veiled hashed version of the next data random key; and

decrypting and unveiling the hashed version of the next data random key at the first station.

18. The method of claim 17, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Y byte positions in an order, and including

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a pseudorandom number having X values corresponding
with respective sections of said X sections, the X values each being between 1 and Y and identifying
one of said Y byte positions, and

placing a byte of said random key in each of said X sections at the one of said Y byte

positions identified by the corresponding one of said X values.

19. The method of claim 17, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Z bit positions in an order, and including

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a pseudorandom number having X values corresponding
with respective sections of said X sections, the X values each being between 1 and Z and identifying
one of said Z bit positions, and

placing a bit of said random key in each of said X sections at the one of said Z bit positions

identified by the corresponding one of said X values.

20. The method of claim 18, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Y byte positions in an order, each of said Y byte

positions including B bit positions in an order, and including

10
11
12
13
14

12
13

14

WO 2005/022359 PCT/US2004/028313

35

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a first pseudorandom number having X values
corresponding with respective sections of said X sections, the X values each being between 1 and Y
and identifying one of said Y byte positions,

using a random number generator seeded by said shared secret to produce a second
pseudorandom number having B values corresponding with respective bits in a byte of said random
key, the B values each being between 1 and B and identifying one of said B bit positions,

placing a byte, including B bits, of said random key in each of said X sections at the one of
said Y byte positions identified by the corresponding one of said X values, and

mapping the B bits of said byte of said random key to said B bit positions identified by the

corresponding one of said B values.

21. The method of claim 17, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Y byte positions in an order, each of said Y byte
positions including B bit positions in an order, and including

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a first pseudorandom number having X values
corresponding with respective sections of said X sections, the X values each being between 1 and Y
and identifying one of said Y byte positions,

using a random number generator to produce a second pseudorandom number having B
values corresponding with respective bits in a byte of said random key, the B values each being
between 1 and B and identifying one of said B bit positions,

placing a byte, including B bits, of said random key in each of said X sections at the one of
said Y byte positions identified by the corresponding one of said X values, and

mapping the B bits of said byte of said random key to said B bit positions identified by the

corresponding one of said B values.

22. The method of claim 17, including upon request for initiation of a communication session,
presenting to the second station a user interface for initiation of an authentication session including a
compiled version of the session random key and parameters for one or more conversion arrays, said

user interface including a prompt for entry of the shared parameter, and at least said shared secret.

10
11
12

13

23.

WO 2005/022359 PCT/US2004/028313

36

The method of claim 15, including upon request for initiation of a communication session,

presenting to the second station a user interface for initiation of an authentication session including a

compiled version of the session random key and parameters for one or more conversion arrays, said

user interface including a prompt for entry of the shared parameter, and at least said shared secret.

24,

25.

26.

The method of claim 14, including executing a further exchange including

sending a message from the first station to the second station carrying said encryption key
encrypted using a first shared secret to the second station, where the second station
returns a message carrying a hashed version of said encryption key encrypted using
said first shared secret, and decrypting said encryption key at the first station;

sending a message from the first station to the second station carrying said encryption key
encrypted using a second shared secret, where the second station decrypts said
encryption key, and returns a message to the first station carrying a hashed version of

the encryption key encrypted using said second shared secret.

The method of claim 14, including executing a further exchange including

sending a message from the first station to the second station carrying said encryption key
encrypted using a first shared secret to the second station, where the second station
returns a message carrying a hashed version of said encryption key encrypted using
said first shared secret, and decrypting said encryption key at the first station;

sending a message from the first station to the second station carrying said encryption key
encrypted using a second shared secret, where the second station decrypts said
encryption key, and returns a message to the first station carrying a hashed version of
the encryption key encrypted using said second shared secret; and

sending a message from the first station to the second station carrying an authentication
signal indicating success or failure of mutual authentication and establishment of the
encryption key, said authentication signal being encrypted using one of said

intermediate data random keys from a previous exchange.

A data processing apparatus, comprising:

10

WO 2005/022359 PCT/US2004/028313

37

a processor, a communication interface adapted for connection to a communication medium,
and memory storing instructions for execution by the data processor, the instructions including

logic to receive a request via the communication interface for initiation of a communication
session between a first station and a second station;

logic to provide ephemeral encryption keys at the first station; and

logic to execute after receiving said request, a plurality of exchanges of messages across said
communication medium to mutually authenticate the first station and the second station and to
provide one of said ephemeral encryption keys to the second station for use in said communication

session.

27. The apparatus of claim 26, wherein during said plurality of exchanges, said instructions
include logic requiring the first and second stations to use at least two shared secrets without

exchanging messages carrying said shared secrets via the communication medium.

28. The apparatus of claim 26, said instructions include logic for mutual authentication based on
at least two shared secrets without exchanging messages carryiing said shared secrets via the

communication medium.

29. The apparatus of claim 26, wherein said plurality of exchanges comprise interactive
exchanges, said interactive exchanges including a message from the first station to the second
station and a responsive message from the second station to the first station, where the responsive
message comprises information from the message from the first station derived using information

derived from a message in a previous exchange.

30. The apparatus of claim 26, wherein said logic to provide ephemeral encryption keys at the
first station includes:

logic that assigns a session random key in said first station, in response to a request received
during a session random key initiation interval for use in a first exchange of said plurality of
exchanges;

logic that associates, in said first station, a plurality of intermediate data random keys with

said request for use in said plurality of exchanges; and

10
11

WO 2005/022359 PCT/US2004/028313

38

wherein said plurality of exchanges includes at least one message carrying an encrypted
version of one of said plurality of intermediate data random keys to be accepted as said encryption

key upon said mutual authentication.

31. The apparatus of claim 26, wherein said logic to provide ephemeral encryption keys at the
first station includes instructions:

providing a buffer at the first station;

generating keys and storing said keys in the buffer;

associating respective session random key initiation intervals with said keys stored in said
buffer;

using keys from said buffer as session random keys in response to requests received by said
first station during said respective session random key initiation intervals for use in a first exchange
of said plurality of exchanges;

removing keys from said buffer after expiry of the respective session random key lifetime in
the buffer.

32. The apparatus of claim 31, wherein said buffer is managed as a circular buffer.

33. The apparatus of claim 31, wherein a session random key lifetime in the buffer for said
plurality of exchanges has a value within which the plurality of exchanges can be completed in
expected circumstances, and said keys are removed from said buffer after a multiple M times said
value session random key lifetime to engage into establishing a communication session, where M is

less than or equal to 10.

34, The apparatus of claim 31, wherein a session random key lifetime in the buffer for said
plurality of exchanges has a value within which the plurality of exchanges can beA completed in
expected circumstances, and said keys are removed from said buffer after a multiple M times said
value session random key lifetime to engage into establishing a communication session, and the
session random key lifetime to engage into establishing a communication session is less than about

90 second.

10
11

10
11
12
13
14
15
16
17
18
19

WO 2005/022359 PCT/US2004/028313

39

35. The apparatus of claim 26, wherein said logic to provide ephemeral encryption keys at the
first station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;

wherein said plurality of exchanges includes a first message from the first station carrying

said session random key to the second station, where the second station returns a second message

carrying a shared parameter encrypted using the session random key; and

decrypting the shared parameter from said second message at the first station.

36. The apparatus of claim 26, wherein said logic to provide ephemeral encryption keys at the
first station includes instructions:
assigning, in said first station, a session random key for use within a session rapdom key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;
associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;
wherein said plurality of exchanges includes
a first exchange including sending a first message from the first station carrying said session
random key to the second station, where the second station returns a second message
carrying a shared parameter encrypted using the session random key, and decrypting
the shared parameter at the first station to validate the second station; and
a second exchange including sending a further message from the first station to the second
station, the further message carrying a particular data random key from said plurality
of intermediate data random keys encrypted using the session random key, where the
second station returns another message carrying a hashed version of said particular
data random key encrypted using said particular encryption key to the first station,
and decrypting said hashed version of said particular data random key at the first

station using said particular data random key.

10

10

WO 2005/022359 PCT/US2004/028313

40

37. The apparatus of claim 26, wherein said logic to provide ephemeral encryption keys at the
first station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges; and

after said request for initiation of a communication session, presenting to the second station a
user interface along with the session random key, said user interface including a prompt for entry of

a shared parameter and at least one shared secret.

38. The apparatus of claim 26, wherein said logic to provide ephemeral encryption keys at the
first station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges; and

after said request for initiation of a communication session, presenting to the second station a
user interface along with the session random key, said user interface including a prompt for entry of

a shared parameter and at least two shared secrets.

39. The apparatus of claim 26, wherein said logic to provide ephemeral encryption keys at the
first station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;

wherein said plurality of exchanges includes

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

WO 2005/022359 PCT/US2004/028313

41

a first exchange including sending a first message from the first station carrying said session
random key to the second station, where the second station returns a second message
carrying a shared parameter encrypted using the session random key, and decrypting
the shared parameter at the first station; and

a second exchange including sending a third message from the first station to the second
station, the third message carrying a particular data random key from said plurality of
intermediate data random keys encrypted using the session random key, where the
second station returns a fourth message carrying a hashed version of said particular
data random key encrypted using said particular data random key to the first station,
and decrypting said hashed version of said particular data random key at the first
station using said particular data random key;

and then executing at least one additional exchange in said plurality of exchanges,
where

said at least one additional exchange includes sending an additional message from the first
station to the second station carrying a next data random key from the plurality of
intermediate data random keys associated with said request, encrypted using a key
exchanged during a previously completed exchange in said plurality of exchanges,
where the second station decrypts said next data random key and returns a responsive
message carrying a hashed version of said next data random key encrypted using said
next data random key, and decrypting at the first station said hashed version of said

next data random key using said next data random key.

40. The apparatus of claim 39, including logic executing during at least one of said additional
exchanges, including instructions

producing said third message by first veiling the particular data random key using a first
conversion array seeded by a first shared secret and encrypting the veiled particular data random
key, where the second station decrypts and unveils said particular data random key using the first
shared secret, and where the second station produces said fourth message by veiling the hashed
version of the particular data random key using a second conversion array seeded by said first

shared secret and encrypting the veiled hashed version of the next data random key; and

10

WO 2005/022359 PCT/US2004/028313

42

decrypting and unveiling the hashed version of the particular data random key at the first

station.

41. The apparatus of claim 39, including logic executing more than one of said additional

exchanges.

42. The apparatus of claim 39, including logic executing during at least one of said additional
exchanges, including instructions

producing said additional message by first veiling the next data random key using a first
conversion array seeded by a shared secret and encrypting the veiled next data random key, where
the second station decrypts and unveils said next data random key using the shared secret, and
where the second station produces said responsive message by veiling the hashed version of the next
data random key using a second conversion array seeded by said shared secret and encrypting the
veiled hashed version of the next data random key; and

decrypting and unveiling the hashed version of the next data random key at the first station.

43. The apparatus of claim 42, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Y byte positions in an order, and including instructions
generating one of the first and second conversion arrays using a randomi number generator
seeded by said shared secret to produce a pseudorandom number having X values corresponding
with respective sections of said X sections, the X values each being between 1 and Y and identifying
one of said Y byte positions, and
placing a byte of said random key in each of said X sections at the one of said Y byte

positions identified by the corresponding one of said X values.

44. The apparatus of claim 42, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Z bit positions in an order, and including instructions
generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a pseudorandom number having X values corresponding
with respective sections of said X sections, the X values each being between 1 and Z and identifying

one of said Z bit positions, and

~

11
12
13

14

11

12

WO 2005/022359 PCT/US2004/028313

43

placing a bit of said random key in each of said X sections at the one of said Z bit positions

identified by the corresponding one of said X values.

45. The apparatus of claim 42, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Y byte positions in an order, each of said Y byte
positions including B bit positions in an order, and including instructions

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a first pseudorandom number having X values
corresponding with respective sections of said X sections, the X values each being between 1 and Y
and identifying one of said Y byte positions,

using a random number generator seeded by said shared secret to produce a second
pseudorandom number having B values corresponding with respective bits in a byte of said random
key, the B values each being between 1 and B and identifying one of said B bit positions,

placing a byte, including B bits, of said random key in each of said X sections at the one of
said Y byte positions identified by the corresponding one of said X values, and '

mapping the B bits of saidA byte of said random key to said B bit positions identified by the

corresponding one of said B values.

46. The apparatus of claim 42, where the one of the first and second conversion arrays comprises
X sections, each of said X sections including Y byte positions in an order, each of said Y byte
positions including B bit positions in an order, and including instructions

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a first pseudorandom number having X values
corresponding with respective sections of said X sections, the X values each being between 1 and Y
and identifying one of said Y byte positions,

using a random number generator to produce a second pseudorandom number having B
values corresponding with respective bits in a byte of said random key, the B values each being
between 1 and B and identifying one of said B bit positions,

placing a byte, including B bits, of said random key in each of said X sections at the one of

said Y byte positions identified by the corresponding one of said X values, and

13
14

10

WO 2005/022359 PCT/US2004/028313

44

mapping the B bits of said byte of said random key to said B bit positions identified by the

corresponding one of said B values.

47. The apparatus of claim 42, including upon request for initiation of a communication session,
logic to present to the second station a user interface for initiation of an authentication session
including a compiled version of the session random key and parameters for one or more conversion
arrays, said user interface including a prompt for entry of the shared parameter, and at least said

shared secret.

48. The apparatus of claim 40, including upon request for initiation of a communication session,
logic to present to the second station a user interface for initiation of an authentication session
including a compiled version of the session random key and parameters for one or more conversion
arrays, said user interface including a prompt for entry of the shared parameter, and at least said

shared secret.

49. The apparatus of claim 39, including logic executing a further exchange including
instructions
sending a message from the first station to the second station carrying said encryption key
encrypted using a first shared secret to the second station, where the second station
returns a message carrying a hashed version of said encryption key encrypted using
said first shared secret, and decrypting said encryption key at the first station;
sending a message from the first station to the second station carrying said encryption key
encrypted using a second shared secret, where the second station decrypts said
encryption key, and returns a message to the first station carrying a hashed version of

the encryption key encrypted using said second shared secret.

50. The apparatus of claim 39, including logic executing a further exchange including
instructions
sending a message from the first station to the second station carrying said encryption key

encrypted using a first shared secret to the second station, where the second station

10
11
12
13
14

10
11
12

WO 2005/022359 PCT/US2004/028313

45

returns a message carrying a hashed version of said encryption key encrypted using
said first shared secret, and decrypting said encryption key at the first station;

sending a message from the first station to the second station carrying said encryption key
encrypted using a second shared secret, where the second station decrypts said
encryption key, and returns a message to the first station carrying a hashed version of
the encryption key encrypted using said second shared secret; and

sending a message from the first station to the second station carrying an authentication
signal indicating success or failure of mutual authentication and establishment of the
encryption key, said authentication signal being encrypted using one of said

intermediate data random keys from a previous exchange.

51. An article, comprising:

machine readable data storage medium having computer program instructions stored therein
for establishing a communication session on a communication medium between a first data
processing station and a second data processing station having access to the communication
medium, said instructions comprising:

logic to receive a request via the communication interface for initiation of a communication
session between the first station and the second station;

logic to provide ephemeral encryption keys at the first station; and

logic to execute after receiving said request, a plurality of exchanges of messages across said
communication medium to mutually authenticate the first station and the second station and to
provide one of said ephemeral encryption keys to the second station for use in said communication

session.

52. The article of claim 51, wherein during said plurality of exchanges, said instructions include
logic requiring the first and second stations to use at least two shared secrets without exchanging

messages carrying said shared secrets via the communication medium.

53. The article of claim 51, said instructions include logic for mutual authentication based on at
least two shared secrets without exchanging messages carrying said shared secrets via the

communication medium.

WO 2005/022359 PCT/US2004/028313

46

54, The article of claim 51, wherein said plurality of exchanges comprise interactive exchanges,
said interactive exchanges including a message from the first station to the second station and a
responsive message from the second station to the first station, where the responsive message
comprises information from the message from the first station derived using information derived

from a message in a previous exchange.

55. The article of claim 51, wherein said logic to provide ephemeral encryption keys at the first
station includes:

Jogic that assigns a session random key in said first station, in response to a request received
during a session random key initiation interval for use in a first exchange of said plurality of
exchanges;

logic that associates, in said first station, a plurality of intermediate data random keys with
said request for use in said plurality of exchanges; and

wherein said plurality of exchanges includes at least one message carrying an encrypted
version of one of said plurality of intermediate data random keys to be accepted as said encryption

key upon said mutual authentication.

56. The article of claim 51, wherein said logic to provide ephemeral encryption keys at the first
station includes instructions:

providing a buffer at the first station;

generating keys and storing said keys in the buffer;

associating respective session random key initiation intervals with said keys stored in said
buffer;

using keys from said buffer as session random keys in response to requests received by said
first station during said respective session random key initiation intervals for use in a first exchange
of said plurality of exchanges;

removing keys from said buffer after expiry of the respective session random key lifetimes in
the buffer.

57. The article of claim 56, wherein said buffer is managed as a circular buffer.

10

11

WO 2005/022359 PCT/US2004/028313

47

58. The article of claim 56, wherein a session random key lifetime in the buffer for said plurality
of exchanges has a value within which the plurality of exchanges can be completed in expected
circumstances, and said keys are removed from said buffer after a multiple M times said value of
session random key lifetime to engage into establishing a communication session, where M is less

than or equal to 10.

59. The article of claim 56, wherein a session random key lifetime in the buffer for said plurality
of exchanges has a value within which the plurality of eXchanges can be completed in expected
circumstances, and said keys are removed from said buffer after a multiple M times said value, and
the session random key lifetime to engage into establishing a communication session is less than

about 90 seconds.

60. The article of claim 51, wherein said logic to provide ephemeral encryption keys at the first
station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;

wherein said plurality of exchanges includes a first message from the first station carrying
said session random key to the second station, where the second station returns a second message
carrying a shared parameter encrypted using the session random key; and

decrypting the shared parameter from said second message at the first station.

61. The article of claim 51, wherein said logic to provide ephemeral encryption keys at the first
station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random

key initiation interval for use in a first exchange of said plurality of exchanges;

~l

10
11
12
13
14
15
16
17
18
19

WO 2005/022359 PCT/US2004/028313

48

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;

wherein said plurality of exchanges includes

a first exchange including sending a first message from the first station carrying said session
random key to the second station, where the second station returns a second message
carrying a shared parameter encrypted using the session random key, and decrypting
the shared parameter at the first station to validate the second station; and

a second exchange including sending a further message from the first station to the second
station, the further message carrying a particular data random key from said plurality
of intermediate data random keys encrypted using the session random key, where the
second station returns another message carrying a hashed version of said particular
data random key encrypted using said particular encryption key to the first station,
and decrypting said hashed version of said particular data random key at the first

station using said particular data random key.

62. The article of claim 51, wherein said logic to provide ephemeral encryption keys at the first
station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges; and

after said request for initiation of a communication session, presenting to the second station a
user interface along with the session random key, said user interface including a prompt for entry of

a shared parameter and at least one shared secret.

63. The article of claim 51, wherein said logic to provide ephemeral encryption keys at the first
station includes instructions:

assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random

key initiation interval for use in a first exchange of said plurality of exchanges;

13
14
15
16
17
18
19
20
21
22
23
24
25

WO 2005/022359 PCT/US2004/028313

49

associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges; and

after said request for initiation of a communication session, presenting to the second station a
user interface along with the session random key, said user interface including a prompt for entry of

a shared parameter and at least two shared secrets.

64. The article of claim 51, wherein said logic to provide ephemeral encryption keys at the first
station includes instructions:
assigning, in said first station, a session random key for use within a session random key
initiation interval in response to requests received by said first station during said session random
key initiation interval for use in a first exchange of said plurality of exchanges;
associating, in said first station, a plurality of intermediate data random keys with said
request for use in said plurality of exchanges;
wherein said plurality of exchanges includes
a first exchange including sending a first message from the first station carrying said session
random key to the second station, where the second station returns a second message
carrying a shared parameter encrypted using the session random key, and decrypting
the shared parameter at the first station; and
a second exchange including sending a third message from the first station to the second
station, the third message carrying a particular data random key from said plurality of
intermediate data random keys encrypted using the session random key, where the
second station returns a fourth message carrying a hashed version of said particular
data random key encrypted using said particular data random key to the first station,
and decrypting said hashed version of said particular data random key at the first
station using said particular data random key;
and then executing at least one additional exchange in said plurality of exchanges,
where
said at least one additional exchange includes sending an additional message from the first
station to the second station carrying a next data random key from the plurality of
intermediate data random keys associated with said request, encrypted using a key

exchanged during a previously completed exchange in said plurality of exchanges,

26
27
28

29

WO 2005/022359 PCT/US2004/028313

50

where the second station decrypts said next data random key and returns a responsive
message carrying a hashed version of said next data random key encrypted using said
. next data random key, and decrypting at the first station said hashed version of said

next data random key using said next data random key.

65. The article of claim 64, including logic executing during at least one of said additional
exchanges, including instructions

producing said third message by first veiling the particular data random key using a first
conversion array seeded by a first shared secret and encrypting the veiled particular data random
key, where the second station decrypts and unveils said particular data random key using the first
shared secret, and where the second station produces said fourth message by veiling the hashed
version of the particular data random key using a second conversion array seeded by said first
shared secret and encrypting the veiled hashed version of the next data random key; and

decrypting and unveiling the hashed version of the particular data random key at the first

station.

66. The article of claim 64, including logic executig more than one of said additional

exchanges.

67. The article of claim 67, logic executing during at least one of said additional exchanges,
including instructions

producing said additional message by first veiling the next data random key using a first
conversion array seeded by a shared secret and encrypting the veiled next data random key, where
the second station decrypts and unveils said next data random key using the shared secret, and
where the second station produces said responsive message by veiling the hashed version of the next
data random key using a second conversion array seeded by said shared secret and encrypting the
veiled hashed version of the next data random key; and

decrypting and unveiling the hashed version of the next data random key at the first station.

68. The article of claim 67, where the one of the first and second conversion arrays comprises X

sections, each of said X sections including Y byte positions in an order, and including instructions

10
11
12
13

14

WO 2005/022359 PCT/US2004/028313

51

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a pseudorandom number having X values corresponding
with respective sections of said X sections, the X values each being between 1 and Y and identifying
one of said Y byte positions, and

placing a byte of said random key in each of said X sections at the one of said Y byte

positions identified by the corresponding one of said X values.

69. The article of claim 67, where the one of the first and second conversion arrays comprises X
sections, each of said X sections including Z bit positions in an order, and including instructions
generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a pseudorandom number having X values corresponding
with respective sections of said X sections, the X values each being between 1 and Z and identifying
one of said Z bit positions, and
placing a bit of said random key in each of said X sections at the one of said Z bit positions

identified by the corresponding one of said X values.

70. The article of claim 68, where the one of the first and second conversion arrays comprises X
sections, each of said X sections including Y byte positions in an order, each of said Y byte
positions including B bit positions in an order, and including instructions

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a first pseudorandom number having X values
corresponding with respective sections of said X sections, the X values each being between 1 and Y
and identifying one of said Y byte positions,

using a random number generator seeded by said shared secret to produce a second
pseudorandom number having B values corresponding with respective bits in a byte of said random
key, the B values each being between 1 and B and identifying one of said B bit positions,

placing a byte, including B bits, of said random key in each of said X sections at the one of
said Y byte positions identified by the corresponding one of said X values, and

mapping the B bits of said byte of said random key to said B bit positions identified by the

corresponding one of said B values.

W w

N O

10
11
12
13
14

WO 2005/022359 PCT/US2004/028313

52

71. The article of claim 67, where the one of the first and second conversion arrays comprises X
sections, each of said X sections including Y byte positions in an order, each of said Y byte
positions including B bit positions in an order, and including instructions

generating one of the first and second conversion arrays using a random number generator
seeded by said shared secret to produce a first pseudorandom number having X values
corresponding with respective sections of said X sections, the X values each being between 1 and Y
and identifying one of said Y byte positions,

using a random number generator to produce a second pseudorandom number having B
values corresponding with respective bits in a byte of said random key, the B values each being
between 1 and B and identifying one of said B bit positions,

placing a byte, including B bits, of said random key in each of said X sections at the one of
said Y byte positions identified by the corresponding one of said X values, and

mapping the B bits of said byte of said random key to said B bit positions identified by the

corresponding one of said B values.

72. The article of claim 67, including upon request for initiation of a communicatidn session,
logic to present to the second station a user interface for initiation of an authentication session
including a compiled version of the session random key and parameters for one or more conversion
arrays, said user interface including a prompt for entry of the shared parameter, and at least said

shared secret.

73. The article of claim 65, including upon request for initiation of a communication session,
logic to present to the second station a user interface for initiation of an authentication session
including a compiled version of the session random key and parameters for one or more conversion
arrays, said user interface including a prompt for entry of the shared parameter, and at least said

shared secret.

74. The article of claim 64, including logic executing a further exchange including instructions
sending a message from the first station to the second station carrying said encryption key

encrypted using a first shared secret to the second station, where the second station

12

13

WO 2005/022359 PCT/US2004/028313

53

returns a message carrying a hashed version of said encryption key encrypted using
said first shared secret, and decrypting said encryption key at the first station;
sending a message from the first station to the second station carrying said encryption key
encrypted using a second shared secret, where the second station decrypts said
encryption key, and returns a message to the first station carrying a hashed version of

the encryption key encrypted using said second shared secret.

75. The article of claim 64, including logic executing a further exchange including instructions
sending a message from the first station to the second station carrying said encryption key
encrypted using a first shared secret to the second station, where the second station
returns a message carrying a hashed version of said encryption key encrypted using
said first shared secret, and decrypting said encryption key at the first station;
sending a message from the first station to the second station carrying said encryption key
encrypted using a second shared secret, where the second station decrypts said
encryption key, and returns a message to the first station carrying a hashed version of
the encryption key encrypted. using said second shared secret; and
sending a message from the first station to the second station carrying an authentication
signal indicating success or failure of mutual authentication and establishment of the encryption key,
said authentication signal being encrypted using one of said intermediate data random keys from a

previous exchange.

WO 2005/022359 PCT/US2004/028313

1710

D + V1002
| WWW SERVER

= E 1003

&
1015 s ?\e&“%\ CLIENT 1, SRK5
%’Q\Ogﬁw\“

5 ALY .
1004 | : IR e 1007
_ N e d -

fCLIENT - SERVER *

SESSION
RANDOM KEY
(SRK)
| GENERATOR

NETWORK (SUCH
AS INTERNET)

1005 e, — E g "CLIENT N-
ST , P ond minute
SRK T — 1012 MG (e
SRK1 ST 95 minyge | L
SRK1 = 1017
SRK2 TR P — NI

SRK?2 SRK6 7~
1010 {{sRrK3 SRK2 LY —
Wi SRK3 [sRK2 SRKB =g

N e I | e i, e | g pumes | EUCI

FIG. 1

WO 2005/022359

0o_o
=

SERVER

DRKA1

DRK2 DRKS

2010

PCT/US2004/028313

2/10

D L1002 : 1003
| Www SERVER s
' {}pﬁ?fioum‘r 1, SRK5
&
10157 Q\O‘%\&“ | 1007
CJ . - 4 "=“—=—;
e 1008 e
oW e ,‘/ CLIENT 2, SRK9
A 5@
o

1008

Q

G - -
Céfgf ngggam COMMUNICATION o =
NETWORK (SUCH S 1016 "1:]
KEY (DRK) AS INTERNET « =T
iiﬁ%@?fsg?(a ,) . . CLIENT R-1, SRK2
i / i durny
& CLIENT W ma,;ﬁ inuie
\ SESSION J oo 100
-~ L
¢ —

CLIENT N, SRK5

DRK;
DRKn

FIG. 2

WO 2005/022359 PCT/US2004/028313

3/10
3003
SERVER F CLIENT
(S) COMMUNICATION NETWORK " ()
(SUCH AS INTERNET) /—>
3001 3002
RECEIVED (R) SENT{(8)
->(Step 1: C requests a connection to S {protected login, URL, link, etc.) e
S 3006 A
—(Step 2: SRKi is sent to C; communication interface is established D
3006 A R (ENTERED)
—-(Step 3: € enters user (host) name, user (host ID) and server password on C side)+
R 3007 s
>{Step 4: User (or host) name hashed and encrypted with SRKiis sentto S Doz
8,R 3008 A R, 8
tep 5: If user (or host) is validated, S sends to C DRK1 encrypted with SRKi;)4
@decrypts DRK1 with SRKi and sends to $ encrypted with DRK1 hashed DRK1)
- 3009-A R,
@ep 8. If received DRK1 is correct, § sends to C DRK2 encrypted with DRK1; ,
decrypts DRK2 with DRK1, and sends to S encrypted with DRK2 hashed DRK2)“'
3010 A
......................................)+
S R 3011».}‘ R.8
tep J: If received DRKJ-1 is correct, S sends to C DRKj encrypted with DRK(j-1});

C decrypts DRK] with DRK(j-1) and sends to 8 encrypted with DRKj hashed DRK|)4'
SR 3012 A P R, S
i)4
5R 3013 A RS

tep n: If received from C DRKN-1 is correct, S sends to C DRKN encrypied with the
hashed user password as a key; € decrypts DRKn with the user password, stored at
C in step 3, and converted fo its hash equivalent; then € sends to § hashed DRKn
encrypted with the user password, stored at € in step 3, and converted to its hash
quivalent.

3014 A R, S
tep n+1: If hashed DRKn received in step 3014, and decrypted with hashed user ™\
password is correct, 8 sends to C DRKn encrypted with hashed server password as
-+ a key; C decrypts DRKn with the server password, stored at € in step 3, and 4
 converted to its hash equivalent; if hashed DRKn is the same as DRKn from step
014, then C sends to § hashed DRKn encrypted with the hashed server password. /
S 3015 - R

Step n+2: If received from € DRKn is correct/wrong, then authentication signal go!nc;\

encrypted with DRKn-1, is sent to C; C decrypts the go/no signal with DRKn-1, stored
at C in step 3013. This completes C/S mutual authentication and the Final Secret Key
(FSK) exchange according to the KEDIA algorithm. Y.

— 3016~
"’%\3@4 FIG. 3

WO 2005/022359 PCT/US2004/028313
4 /10
 — 3003

SERVER | | L CLIENT

(S) | COMMUNICATION NETWORK ‘ ©)

‘ (SUCH AS INTERNET) P

3001 3002

SENT(S) RECEIVED(R)

@t@p ©6: If received DRK1 is correct, 8 sends to C DRK2 encrypted with DRKT; C
ecrypts DRK2 with DRK1, and sends to S encrypted with DRK 2 hashed DRK2

s,k 30107 §
/Step 6: If received DRK1 is correct, S
- sends to C DRK2 encrypted with

\DRK1
4001 7 Jl,

RS
¢~ C decrypts DRK2 with DRKT, and

A

sends to 8 encryled with DRK2
\ hashed DRK2

b, 4002

DRK 2 supplied by Server DRK
Generator 2005 (FIG, 2)

Conversian array is decrypted with
DRK1 {block-cipher encryption/

decryption algorithm)

4003
-

4004

Server supplies the assumed user
password to enable bytes, bits, or
bytes & bits veiling in DRK2

Client supplies the user password
triggering bytes, or bits, or bytes & bits
reassembling in the conversion array

4005

4006

ki
ByteVU, Bitv¥U, or BBYU is applied to
veil either bytes, or bits, or bytes &

hits of DRK2

ByteVU, BitVU, or BBVU is
reassembling the coversion array,

decrypted before with DRK 1

40077

¥

4008

Conversion array, encrypied with
DRK1 (block-cipher encryption
algorithmy), is sent to client

DRK 2 is reconstructed fo its original

form, and C sends to 8 hashed DRKZ2,

treated with either ByteVU, BitvVU, or
BBVU; the final conversion array is

encrypted with DRK 2

40097

L ao1o

SERVER DATABASE

WO 2005/022359 PCT/US2004/028313

5/10

5001 DRI - 16 bytes

| xhil | xh2 | xh3 | xhd | xhS | xh6 |xh7] ... | xh14| xh15 | xh16]
| ¥

5002 -
D

f‘ 5003

1
A §
= i
zE ’
(o]

SERVER SEQUENTIAL RANDOM E -g’ CLIENT SEQUENTIAL RANDOM
NUMBER GENERATOR (SRNG) LS NUMBER GENERATOR (SRNG})
WITH USER PASSWORD AS A % % WITH USER PASSWORD AS A

SEED (SERVER SIDE) & m SEED (CLIENT SIDE)
— — = -
1 m o 4
} Yy !
i 5004 g 2 5005 :
| 5006 WW v ;
i .
[7 N
' ¥ BBVU conversion array section; length - 10 bytes @ !
| :
! [rl, 1 ri2 el 3 xht), 5] 01,6] v],7 | rl,8 [r1 911,10 H
I i
1 i
1 28 BBVU conversion array section; length - 10 bytes |
:.. u_:'EL:.--..__-_-_...........‘M“_..--_ uuuuuuuuuuuuu e @ :
212,223 (1241625 [12,6| 7 | 12.8 | xh2]12,10) |
5007 | T :
X 5012 i
// llllllllllllllllllllll RAPFIRFIRCERFARERENASS AEFAEFARCI S EAN E
5008 i
15% BBV conversion array section; length - 10 bytes @ i
1
/ [r15,1 | xh15|r15,3 |r154 ... | r15.7 | r15,8)| r15.9 115,10 | i
i
5009 i
16" BBYU conversion array section; length - 10 bytes @ i
¥ :
/ |r16] | r16,2 | r16.3 [...]rl6.6[xh16}rl6,8 |r16,9;]r16,i(}| :
\. ' il y, !
5010 i i
5011 // ! =

WO 2005/022359 PCT/US2004/028313

6001

N

602 7 !
v

6/10

DRKIi - 12% bits

| yhl | yh2{yh3|yhd | yh5 | yh6]yh7]...| yh126| yh127| yhi28 |

bl

eil”
hm)

1

' i
) f- 6003
i
]

SERVER SEQUENTIAL RANDOM
NUMBER GENERATOR. (SRNG})
WITH USER PASSWORD AS A

CLIENT SEQUENTIAL RANDOM
NUMBER GENERATOR (SRNG)
WITH USCER PASSWORD AS A

DRKI - "Byte-Bit-Vell-Uny
Conversion (BBVU Algorit

SEED (SERVER SIDE) SEED (CLIENT SIDE)
, — ; ’ T .
! e |
! 6004 3 6005 d

ettt el By~ N bbbt -
1 6006 v i
i) |
e : N\
! 1 BBVU conversion array section; length - 128 bits !
1 1
1
i [v1,1) r0.2 | v1,3 [¥h {715 ... 1,126 | 01,127 | 11,128 | |
) 1
1
; 2 BRYU conversion array sectior; length - 128 hits !
g : » '
A IO ST e e !
]/ (12,1 [12.2[12,3 [124125 [[12,126 yh2 {12,128 i
6007 T\\ . i
1
—_‘+- FABEFNEEPARERSFTIRIAREI S RAFFACFRARERIEAEY Y En 'Q'V'il"l'.GQVDl?'Q i
/ i
6008 |
127" BRVU conversion array section; length - 128 bits E
o 1
/ | 11271 {1127.2 [r127,3 | h127 [[127.5 }..o| 127,127 | £127,128 | i
|
6009 i
128" BBVU conversion array section; length - 128 bits !
|~ !
/ _|r128,1| yh128|rl28,3 || r128.126 | r128,127) r128,128 | E
\. 1 g :
6010 !
1

6011/5

WO 2005/022359

7110

PCT/US2004/028313

7001

N

DEKI - 16 bytes
]xiﬂ | xh2 | xh3 | xhd | xh5 | xh6 | xh7 |, shld |xhi5 [xhio]

7002 -j

(SERVER SEQUENTIAL RANDOM
NUMBER GEMERATOR (SRNG)
WITH USER’S PASSWORD
AS A SEED

1
.4

r"rSE}E{"«"ER SEQUENTIAL DIRECT h
BIT POSITION SCRAMBLER
(SDBPS) FOR EACH

\.

W,

VEILED DRKi BYTE

\. J/

RKi - “Byte-Bit-Veil-Unveil" Conversion
(BBYU Algorithm}

A
\

~ e

(" CLIENT SEQUENTIAL REVERSE)
BIT POSITION SCRAMBLER
(SRBPS) FOR EACH
VEILED DRKi BYTE
T
I
(" CLIENT SEQUENTIAL RANDOM
NUMBER GENERATOR (SRNG)
WITH USER'S PASSWORD

\ .

~

AS A SEED

7005 1

\. _/

i
1
]
]
1
L
[}

[ri,1]r12rl,3] x.[ﬂ |5

19 BBVU comfemon array section; length - 10 bytes
mmmmmmmmmm '1 Iﬂﬂ'”ﬂ”*ﬂ - o Mmm-‘mm“ﬁuwnﬂﬁ“

[r1,6]cl,7[r,8]rl,9]r],10]

TOG?/\(g
O

7008

DRKI tirst xh1 byte in binary bit representation:
|xh1,8 | xh1,7 | xh1,6 | xh1,5 [xh1.4 | xhl,3 | xhl,
__(for instance, 01011101)

7| xhl,1|

7009

!
Y

&ervm 8 bRNG senerates random sequence of 16 numbers from 1 to 10
fduc to ten positions in one BBVU conversion array scetion), and then the
sarver’s SBPS serambley all bit positions in the veiled byte,

7010

LY
Y

For instance, the 1% number generated by SRNG is 4 (DRKI 1* byte position
in the 1% BBVU conversion array section above), then 8BPS generates for
cach bit inside the DRKI ¥ byte new positions 3, 1,8,

5,42, 7.6

7011

New positions for cach bit from 1% to 8™ of xhl byte inside 15 BBVU
conversion array section are 11011100 for the example above.

7012

7013——j

FIG. 7

PCT/US2004/028313

WO 2005/022359

8/10

V8 Old

Relly UoIsIeAuoD) NASIAY - ¥9 ‘eseqele(- gp ‘JOAI8g - s ‘JudlD - 9

pajosioud - d ‘paysey - y ‘1esn - n ‘NOILYIINNNINOD - O ‘NOILJAYDAA - d ‘NOILJAYONI - 3
‘WyLoBY ISAUN-IoA-a1Ag,, - NASIAG Aoy uondAiouz oujewiwAg wopuey (ejeq) uoisses - (IYA) MHS

‘]0)RIBUSL) JaquInN wopuey [epusnbag - ONYS spusban —/108
INZITD 0} [plomssed-n-y [Gz ‘9L 's9A IMYa ou/ob sjo|ues/gp| 0l
H3AYAS 0} | piomssed-s-y | Gz ‘9l 'seA | YA Ha-y siejnes/gp| 6
IN3ITD 0} | piomssed-s-y | G ‘OL ‘SOA AN oAa sjejnes/dp| 8
J3AY3S 01 | piomssed-n-y | Gz ‘9L 'SOA | ZMMQA ZHa-y SEINESER A
INTTD 01 | piomssed-n-y | Gz 9} 'sdA IMYA A sje|Mes/gp| 9
1N3ITD 0} ou MHS ou SENEOENINE]
d3AAY3S o1 | piomssed-n-y | Gz ‘9l ‘sOA IMYd LMYa-y sjonles/gp| G
N3O 01 | piomssed-n-y [Gz ‘9] 's8A MYS IMHAd sie|nues/gp| b
H3INYAS 0} ou MHS swieu-n-y sje|Mes/gp| €
(pa|1dwo2)
INERPE] ou MHS SEINES Z
1Senbal
HINH3S 0} ou UuoIljoauuod 9 S MMV L
S3ALAG
‘SNOILD3S
ONIT-O | AIIS ONYS | ‘WO NASAG | A-A | A3 | aIAIFO3Y IN3S HIANY3S | #
i) -1 7 7 i) T T i) 7
8008 1008 9008 G008 008 €008 2008 1008 0008

(3QIS YIANIS - V Hed ‘uoneonusyiny [enjnjy paseg PIOMSSed ‘IMosyyoly JOADS - Jusl|D)
1020104d (VIQ3W) NOILYIILNIAHLNY JAILVETL LdAYOIAA/LJAYONT IOVSSIN

d8 Ol

Aelly uoisIanuo) NASMG - Y9 ‘19AI8S - 8 WBlD - 9
psjosjoid - d ‘paysey - Y ‘J8sn - n ‘NOILVYIINNWINOD - O ‘NOILJAYDAA - A ‘NOILJAYONT - 3
‘wyiobly leaun-ivA-aiAg, - NASIAG ‘A uondAious oupwWAS wopuey (ejeq) uoissag - (MHA) MUS

PCT/US2004/028313

WO 2005/022359

9/10

‘l0jelausan) Jaquunn wopuey _m_wCMBUmw - ONHS ..wv:mmm.._ ~—/108

oL | InD iedde ou/ob IMHUA]| G2 ‘9L 'seA |plomssed-n-y| I NJITD 01
6 Ay 2a Gz ‘9l ‘seA | piomssed-s-y | YIAYTS 0}
g |[oiboj jeidde 24a-y AUa | G2 ‘9l 'seA |piomssed-s-y | INITO 0}
L aHa-y 2Ha GZ ‘9l 's8A | piomssed-n-y | YIAYIS O}
9 | oibojje|dde Ha IMYA | G2 ‘9L 'seA |plomssed-n-y [INJITD O}

vS | INS 191dde abessow J0LId WS ou INERBY!

G IMYa-y IMYa GZ ‘9l 'seA [piomssed-n-y | YIAHIS 0}
¥ | 01b0| Jo|dde IMYd MYS | G2 9L ‘seA |plomssed-n-y | INTITO 0}

spiomssed-n

e iNo ieidde aweu-n-y ® -s ‘aweu-n | YHS ou HIAYTS O

(p9jidwo)

Z |21bojjedde MYS ‘IND ou INERBE

L | NYT/NYM | T8N /uli-d ou HIAYITS 0}
S31Ad
AIN3ITO A9 ‘SNOILD3S

INIITD 1N3S A3aAIFOTY | AIYIINT [AIMF|AIM-A| VO NASKG |d3IS ONYS| INITD

i)) i) 1 i) i) 1 i) T i)
0008 9108 GL08 7108 €108 ZL08 1108 0108 . 6008 8008

(3QIS IN3ITD - € Hed ‘UonednuayINy [enNjy Pased PIOMSSEd ‘2INjos)yDlY JOAISS - JUsHD)
1000.L0¥d (VIQ3W) NOILYDINIHLNY IAILYYALI LdAYOIA/LIAYONT IOVSSIN

WO 2005/022359 PCT/US2004/028313

10/10

C 9003 (/ 9004
L

o~
g 9001 user name: john_jones) 9005
“") user password: C‘ "X X X])4/
9002 9006
g .‘/) server password: (' @ . ¢ . ></
2014
system message: C server pcajrs;\ggrd s not)/
9014 9008
OPERATIONY) 009 2010 ECHO DDTS VS LoaiN
\ account set-up —
/—-———-,b user passward reset \
9012 server password reset

9011 9015
*\ 9013 9016

9019 =
Protected .7 Laptop PC
Network == { / a -}
R?S%‘E"e ~COMMUNICATION NETWORK ;” Cell Phone TV SET
ik, i, (SUCH AS INTERNET) , o
dB, ept.’) ~ F’DO Workstation

2022

9020 | prvm
9018 []_ =

/‘\9017 2021

8023

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

