(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(10) Internationale Veröffentlichungsnummer
PCT WO 03/054130 A2

(51) Internationale Patentklassifikation:
C11D 3/50,
17/00, B01J 13/02, A61L 9/01, 9/12, 9/04, A61K 9/16

(21) Internationales Aktenzeichen:
PCT/EP02/14050

(22) Internationales Anmeldedatum:

(25) Einreichungsstätte:

(26) Veröffentlichungsstätte:
Deutsch

(30) Angaben zur Priorität:

(72) Erfinder; und

(81) Bestimmungsstaaten (national): AU, BR, BY, CA, CN, CZ, DK, DE, DK, EE, ES, FI, FR, GB, GR, HU, ID, IL, IN, JP, KR, MX, NO, NZ, PL, RO, RU, SG, UA, US, UZ, VN, YU, ZA.

Veröffentlicht: ohne internationalen Rechenzentrum und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweischlüssel-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Titel: SCENTED POLYMER CAPSULES AND THE PRODUCTION THEREOF

(54) Bezeichnung: POLYMERE DUFTKAPSELN UND IHRE HERSTELLUNG

(57) Abstract: Disclosed are scented or perfumed matrix and/or depot systems in the form of polymer capsules, methods for the production thereof, and the use thereof, particularly in detergent and cleansing products, cosmetics, and body care products.

Polymere Duftkapseln und ihre Herstellung

Des weiteren ergibt sich beispielsweise bei Reinigungsmitteln, wie z.B. Universalreinigern, Badreinigern und insbesondere Fußbodenreinigern, häufig das Problem, daß deren Duft bei ihrer Anwendung oder unmittelbar danach sehr intensiv ist, aber der Duft nach kurzer Zeit jedoch kaum mehr wahrnehmbar ist. Ähnliche Probleme ergeben sich bei Textilien nach deren Wäsche: Der anfängliche intensive Duft klingt relativ rasch ab.

Aus diesem Grunde werden die Aktiv- und/oder Wirksubstanzen den Produkten oftmals in räumlich abgegrenzter, geschützter Form zugesetzt. Häufig werden empfindliche Substanzen in Kapseln verschiedener Größen eingeschlossen, auf
geeigneten Trägermaterialien adsorbiert oder chemisch modifiziert. Die Freisetzung kann dann mit Hilfe eines geeigneten Mechanismus aktiviert werden, beispielsweise mechanisch durch Scherung, oder diffusiv direkt aus dem Matrixmaterial erfolgen.

Oftmals sind auch Systeme wünschenswert, die sich als Verkapselungs-, Transport- oder Darreichungsvehikel – oft synonym auch als "Delivery-Systeme" oder "Carrier-Systeme" bezeichnet – eignen.

Weiterhin werden bei der Herstellung von duft- und/oder riechstoffbeladenen Kapseln nach dem Stand der Technik oftmals störende oder toxische, schlecht riechende oder aggressive Bestandteile in die Formulierung mit eingebracht. Oft werden die Verkapselungen unter aggressiven, die zu verkapselnden Aktiv- bzw. Wirkstoffe belastenden Bedingungen (hohe Temperaturen, lange Reaktionszeiten, Auftreten freier Radikale etc.) durchgeführt.

ionischen Charakter bei gleichzeitiger Wasser unlöslichkeit aufweisen, um ein Verklumpen der Polymer kapseln zu vermeiden.

Eine Aufgabe der vorliegenden Erfindung ist somit die Bereitstellung eines Matrix- bzw. Depotsystems in Form von Polymerkapseln mit gegenüber dem Stand der Technik verbesserten Eigenschaften, das insbesondere zur Verkapselung duft aktiver Komponenten geeignet ist, sowie entsprechender Herstellungsverfahren.

Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, ein System zur Verfügung zu stellen, das insbesondere bei der Verwendung in Wasch- oder Reinigungsmitteln einen langanhaltenden Duft erzeugt, ohne daß der Duft unmittelbar nach der Anwendung des Produktes unangenehm intensiv sein sollte.

Gegenstand gemäß einer ersten Ausführungsform der erfindungsgemäßen Polymerkapseln sind duft- bzw. riechstoffbeladene Matrix- und/oder Depotsysteme, die mindestens ein polymeres Träger- oder Matrixmaterial auf Basis von insbesondere wasser unlöslischen Cellulosen und/oder Cellulose derivaten umfassen, die mittlere Molekulargewichte von mehr als 30.000, vorzugsweise mehr als 35.000, besonders bevorzugt mehr als 40.000, aufweisen, wobei die Polymerkapseln außerdem mindestens eine duftaktive Komponente enthalten. Diese duftaktive Komponente kann insbesondere aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen ausgewählt sein. Darüber hinaus enthalten diese Polymerkapseln mindestens ein Tensid. Falls als Polymermaterial ein Cellulosedervat verwendet wird, so kann dieses beispielsweise ausgewählt sein aus der Gruppe von Alky cellulosen, insbesondere Ethylcellulose, und Celluloseestern, insbesondere Celluloseacetat und Celluloseacetatbutyrat.
Gegenstand gemäß einer zweiten Ausführungsform der erfindungsgemäßen Polymerkapseln sind duft- und/oder riechstoffbeladene Matrix- und/oder Depotsysteme, die mindestens ein polymeres Träger- oder Matrixmaterial auf Basis von insbesondere im wesentlichen wasserunlöslichen Polymeren mit einer mittleren Molekularmasse von mehr als 30.000, insbesondere von mehr als 35.000, vorzugsweise von mehr als 40.000, umfassen. Dabei enthalten diese Polymerkapseln mindestens eine duftaktive Komponente, die vorzugsweise aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen ausgewählt sein kann. Ferner enthalten diese Polymerkapseln mindestens ein Tensid. Das Polymer kann ein nichtionisches oder ein ionisches Polymer sein. Das Polymer kann darüber hinaus ein geblocktes und/oder statistisches Comonomer umfassen. Das Polymer kann insbesondere ausgewählt sein aus der Gruppe von Polyalkylen wie Polybutadien, Poly(butadien-co-acrylnitrilen), Polyisobutenen, Polyamiden, Polystyrolen, Polyisoprenen, Polycarbonaten, Polyestern, Polyacrylaten, Polyethacrylaten, Polyurethanen, Polydimethylsiloxanen, Polydiamylumaraten, Polybenzylvinylethern, Polyvinylalkoholen, Polyallylalkoholen, Polyvinylformaldehyden, Polyvinylbutyraldehyden, Poly(2-vinyl-4,7-dihydro-1,3-dioxepinen), Polyvinylmethylether, Polyvinylisopropylketonen, Polyvinylpivalen, Polyvinylacetacetaldehyden, Poly(p-formylstyrolen), Poly(vinylpyridinen), Poly(dimethylfulvenen), Poly(carbonyl-1-furfuryltrimethylenen), Polytetrahydrofuranen, Polyglutardialdehyde, Polyoxy carbonyloxhexamethylenen, Polyacrylonitrilen, Polyvinylalkoholacetaten, Polyvinylbutyracetalen, Polymilchsäuren und Polyoxymethylhexadeacylsilylenen. Das Polymer kann ionisch modifiziert sein. Vorzugsweise erfolgt diese ionische Modifizierung durch ionische Gruppen (z. B. Ammonium- bzw. Carboxylatfunktionen), durch Ppropfung bzw. durch Copolymerisation mit geeigneten ionischen Comonomeren. Dabei kann das Polymer auch ein ionisches Polymer sein, das gleichzeitig gegebenenfalls das Tensid darstellt oder umfaßt (z. B. Eudragit® RS und RL 100); damit ist insbesondere gemeint, daß die Funktion des Tensids somit im Polymer integriert ist, d. h. das ionische Polymer bringt die ionische Ladung ins System.

Gegenstand gemäß einer dritten Ausführungsform der erfindungsgemäßen Polymerkapseln sind duft- bzw. riechstoffbeladene Matrix- und/oder
Depotsysteme, die mindestens ein polymeres Träger- oder Matrixmaterial auf Basis eines ionischen Polymers umfassen. Im allgemeinen betragen die mittleren Molekulargewichte mehr als 30.000, vorzugsweise mehr als 35.000, besonders bevorzugt mehr als 40.000. Die Polymerkapseln umfassen zusätzlich mindestens eine duftaktive Komponente, die aus der Gruppe von Duft- und/ oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen ausgewählt sein kann. Diese Polymerkapseln können außerdem mindestens ein Tensid enthalten. Das Polymer kann ein geblocktes bzw. statistisches Comonomer umfassen. Darüber hinaus kann das Polymer ein ionisches Polymer bzw. ionisch modifiziert sein. Diese Modifikation kann beispielsweise durch ionische Gruppen, insbesondere Ammonium- und/oder Carboxylatfunktionen, durch Pfpfung und/oder durch Copolymerisation mit geeigneten ionischen Comonomeren erfolgen. Bei einer bevorzugten Variante der dritten Ausführungsform kann das ionische Polymer ein ammoniumfunktionalisiertes (Meth-)Acrylat-Copolymer, vorzugsweise ein Poly(ethylen-methylmethacrylat-trimethylammoniummethacrylat)-Copolymer, sein, wobei die stöchiometrischen Verhältnisse der einzelnen Monomereinheiten in dem Poly(ethylen-methylmethacrylat-trimethylammoniummethacrylat)-Copolymer 1 : 2 : 0,1 oder 1 : 2 : 0,2 (z. B. Eudragit® RS und RL 100) betragen können.

Die erfindungsgemäßen Polymerkapseln aller drei Ausführungsformen können zusätzlich Wasser enthalten. Ihre mittlere Teilchengröße kann in großen Bereichen variieren; die mittlere Teilchengröße kann im allgemeinen etwa 50 nm bis etwa 500 μm, insbesondere etwa 100 nm bis etwa 250 μm, vorzugsweise etwa 200 nm bis etwa 100 μm, betragen. Auch der Gehalt an duftaktiver(n) Komponente(n) in den erfindungsgemäßen Polymerkapseln aller drei Ausführungsformen kann in großen Bereichen variieren; er beträgt im allgemeinen 1 Gew.-% bis 60 Gew.-%, vorzugsweise 10 Gew.-% bis 50 Gew.-%, wobei diese Gewichtsangaben auf die Polymerkapseln bezogen sind. Der Gehalt an Tensid in den erfindungsgemäßen Polymerkapseln aller drei Ausführungsformen kann ebenfalls in großen Bereichen variieren; er beträgt im allgemeinen 0,01 Gew.-% bis 50 Gew.-%, bevorzugt ist allerdings ein Tensidgehalt von 0,1 Gew.-% bis 40 Gew.-%, wobei die Gewichtsangaben auf die erfindungsgemäßen Polymerkapseln der jeweiligen Ausführungsform bezogen sind.

vorliegenden Fall können diese Polymerkapseln bei allen drei Ausführungsformen teilchenförmige, insbesondere schwammartige Strukturen aus Polymer und duftaktiver Komponente ausbilden. Dabei kann die duftaktive Komponente insbesondere in homogener Verteilung über das Polymer vorliegen. Je nach Kompatibilität (Verträglichkeit) von Duftkomponente einerseits und Polymer andererseits erhält man einphasige oder zweiphasige Kapselsysteme. Verwendet man beispielsweise eine Duftkomponente, die mit dem Polymer nicht verträglich ist, erhält man nach Auftragung der Kapseln zu Filmen einen trüben, mikroskopisch zweiphasigen Film. Ist dagegen die Duftkomponente mit dem Polymer verträglich bzw. mischbar erhält man nach Auftragung der Kapseln zu Filmen einen klaren, homogenen, mikroskopisch einphasigen Film, d. h. die Duftkomponente ist dann wie ein Weichmacher homogen in das Polymer eingelagert.

Die in allen drei Ausführungsformen der erfindungsgemäßen Polymerkapseln vorhandenen Polymere und/oder duftaktive(n) Komponente(n) sind insbesondere im wesentlichen wasserunlöslich oder zumindest in wässriger Phase nur schwer löslich sein. Vorzugsweise sind die Polymere und/oder die duftaktive(n) Komponenten in einem solchen Fall in wässriger Phase zu weniger als 10 %, vorzugsweise zu weniger als 5 %, insbesondere zu weniger als 1 %, löslich. Wässrige Phase im Sinn der vorliegenden Erfindung meint auch solche Systeme, die beträchtliche Mengen an organischen Lösungsmitteln enthalten können, wobei jedoch der Wassergehalt nicht weniger als 50 % betragen sollte.

Die erfindungsgemäßen Polymerkapseln nach allen drei Ausführungsformen können ionische, d. h. kationische oder anionische, oder nichtionische Tenside (grenzflächenaktive Substanzen) enthalten. Je nach gewünschter Verwendung der Polymerkapseln werden unterschiedliche Tenside verwendet, um die Substantivität der resultierenden Kapseln zu steuern bzw. für die jeweilige Anwendung maßzuschneidern. So werden z. B. insbesondere kationische Tenside für die erfindungsgemäßen Polymerkapseln zum Einsatz in Weichspülmitteln verwendet, da positiv geladene bzw. kationisch modifizierte Kapseln sich leicht auf die negativ geladenen Fasern von Kleidungsstücken aufziehen lassen und somit eine gute Substantivität gegenüber diesen Fasern aufweisen. Erfindungsgemäß geeignete kationische Tenside können dabei
insbesondere ausgewählt sein aus der Gruppe von quartären Ammoniumverbindungen wie Dimethyldistearylammoniumchlorid (CTMA-Cl), Dodecytrimethylammoniumbromid, Didodecyl(dimethylammonium)bromid, Tridodecylmethylammoniumbromid; Tetradodecylammoniumbromid; Esterquats, insbesondere quaternierten Fettsäuretrialkanolaminestersalzen; Salzen langkettiger primärer Amine quaternären Ammoniumverbindungen wie Hexadecyltrimethylammoniumchlorid; Cetrimoniumchlorid oder Lauryldimethylbenzylammoniumchlorid. Demgegenüber eignen sich anionische Tenside vorzugsweise zur Verwendung in den erfindungsgemäßen Polymerkapseln zum Einsatz in Wasch- und Reinigungsmitteln. Erfindungsgemäß geeignete anionische Tenside können beispielsweise ausgewählt sein aus der Gruppe von Seifen; Alkylbenzolsulfonaten; Alkansulfonaten; Oleinsulfonaten; Alkylethersulfonaten; α-Methylestersulfonaten; Sulfofettsäuren; Alkylsulfaten wie Natriumdodecylsulfat (SDS); Fettalkoholethersulfaten; Glycerinethersulfonaten; Fettsäureethersulfonaten; Hydroxymischethersulfonaten; Monoglycerid(ether)sulfonaten; Fettsäureamid(ether)sulfonaten; Mono- und Dialkylsulfosuccinaten; Mono- und Dialkylsulfosuccinat-namen; Sulfotriglyceriden; Amidseifen; Ethercarbonsäuren und deren Salzen; Fettsäureisothionaten; Fettsäuresarcosinaten; Fettsäuretauriden; N-Acylamidiosäuren wie Acyllactylaten, Acyltartraten, Acylglutamatn und Acylaspartaten; Alkyloligoglucoisidsulfonaten; Proteinfettsäurekondensaten, insbesondere pflanzlichen Produkten auf Weizenbasis; Alkyl(ether)phosphatn. Insbesondere im Fall der Verwendung von ionischen Polymeren in den erfindungsgemäßen Polymerkapseln kann auch ein nichtionisches Tensid in den Polymerkapseln enthalten sein. Grundsätzlich ist es auch bei Verwendung nichtionischer Polymeren möglich, nichtionische Tenside, insbesondere zusätzlich zu ionischen Tensiden, einzusetzen. Die nichtionischen Tenside können beispielsweise ausgewählt sein aus der Gruppe von (i) nichtpolymeren nichtionischen Tensiden wie alkoxyiernierten, vorzugsweise ethoxylierten Fettalkoholen, Alkylphenolen, Fettaminen und Fettsäureamiden; alkoxyiernierten Triglyceriden, Mischethern und Mischformalnen; gegebenenfalls partiell oxidierten Alk(en)yloligoglykosiden; Glucoronsäurederivaten; Fettsäure-N-alkylglucamiden; Proteinhydrolysaten, insbesondere alkylmodifizierten Proteinhydrolysaten; niederer molekularen Chitosanverbindungen; Zuckerestern; Sorbitanestern; Aminoxiden; und (ii) polymeren nichtionischen Tensiden wie Fettalkohol-
polyglykolethern; Alkylphenolpolyglykolethern; Fettsäurepolyglykolestern; Fettsäureamidpolyglykolethern; Fettaminpolyglykolethern; Polyolfettsäureestern; Polysorbaten. Durch die Auswahl und Kombination von ionischen oder nichtionischen Polymeren mit geladenen, d. h. anionischen oder kationischen, oder ungeladenen, d. h. nichtionischen Tensiden, können "maßgeschneiderte" Polymerkapseln entstehen, die eine exakte, für die gewünschte Anwendung benötigte Ladung bzw. Substantivität aufweisen.

Gegenstand der vorliegenden Erfindung sind auch Herstellungsverfahren für die erfindungsgemäßen Polymerkapseln. Dabei kann zwischen der Ausführungsform des Emulgierverfahrens (erste Ausführungsform) und des Fällungsverfahrens (zweite Ausführungsform) differenziert werden.

Gemäß der ersten Ausführungsform erfolgt die Herstellung der erfindungsgemäßen Polymerkapseln durch das Emulgierverfahren. Dieses Verfahren zur Herstellung von duft- und/oder riechstoffbeladenen Matrix- und/oder Depotsystemen in Form von Polymerkapseln, die mindestens eine duftaktive Komponente enthalten, wie zuvor beschrieben, ist durch die folgenden Verfahrensschritte gekennzeichnet:
(a) Bereitstellung einer vorzugsweise homogenen Mischung, insbesondere Lösung oder Dispersion, die mindestens ein Polymer und mindestens eine duftaktive Komponente, insbesondere ausgewählt aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen enthält, mit einem mit Wasser im wesentlichen nichtmischbarem organischen Löse- oder Dispersionsmittel, insbesondere Alkanen wie Pentan oder Hexan (n-Hexan oder Cyclohexan) oder Ethylmethylketon oder Ethylacetat;

(b) Eintragung der unter (a) hergestellten Mischung in Wasser oder in eine wässrige Lösung oder umgekehrt;

(c) Herstellung einer Emulsion aus der unter (b) hergestellten Mischung in Gegenwart mindestens eines geeigneten Emulgators, insbesondere Tensids;

(d) Entfernen des organischen Lösemittels aus der unter (c) hergestellten Emulsion, so daß man duftbeladene Polymerkapseln in wässriger Dispersion erhält;

(e) gegebenenfalls Abtrennung der auf diese Weise erhaltenen Polymerkapseln.

Bei dieser ersten Ausführungsform kann die unter (a) hergestellte Mischung unter Rühren und/oder Erwärmung in Wasser oder in eine wässrige Lösung eingetragen werden. Gleichfalls kann auch Wasser oder eine wässrige Lösung in die unter (a) hergestellte Mischung unter Rühren und/oder Erwärmung eingetragen werden. Die in Schritt (c) durchgeführte Herstellung der Emulsion kann durch Einwirken von Scherkräften erfolgen. Hierbei handelt es sich beispielsweise um Hochdruckhomogenisierung oder um die Verwendung von Ultraturraxrührern bzw. Dispergierscheiben. Der Gehalt an Tensid in der in Schritt (c) hergestellten Emulsion kann in weiten Bereichen schwanken: Im allgemeinen beträgt der Tensidgehalt bis zu 10 Gew.-%, wobei sich die Gewichtsangabe auf die Emulsion bezieht. Entscheidend ist, daß ein ausreichender, im Einzelfall zu ermittelnder Gehalt an Tensid verwendet wird, so daß eine Abstoßung der sich bildenden Teilchen bzw. Tröpfchen erreicht wird. Gleichzeitig darf der Gehalt an Tensid aber
auch nicht zu groß sein, so daß es zu einem Auflösen des Polymers kommt. Auch der Gehalt an Polymer in der in Schritt (c) hergestellten Emulsion kann in großen Bereichen variieren; er beträgt im allgemeinen bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-%, wobei sich auch diese Gewichtsangaben auf die Emulsion beziehen. Der Gehalt an duftaktiver Komponente in der in Schritt (c) hergestellten Emulsion kann ebenfalls in großen Bereichen schwanken: Im allgemeinen beträgt er bis zu 10 Gew.-%, wobei sich die Gewichtsangabe auf die Emulsion bezieht. Die in Schritt (d) durchgeführte Entfernung des verwendeten Löse- oder Dispersionsmittel kann durch an sich bekannte, dem Fachmann geläufige Methoden erfolgen. Insbesondere handelt es sich hierbei um die Entfernung des Löse- oder Dispersionsmittels unter Vakuum, vorzugsweise in einem Rotationsverdampfer. Alternativ ist auch ein Verdampfen, insbesondere unter Atmosphärendruck, möglich, wobei sich hierfür vorzugsweise leicht flüchtige organische Löse- und Dispersionsmittel, wie z. B. n-Pentan, n-Hexan oder Cyclohexan, eignen. Insbesondere bei der Verwendung intensiv riechender Lösemittel (z. B. Ethylacetat) sollte die in Schritt (d) durchgeführte Entfernung bzw. Abtrennung des Lösemittels möglichst quantitativ erfolgen, damit die Wirkung der Duftkomponente von noch vorhandenem Lösemittel nicht beeinträchtigt wird. Lösemittel, die sich wenig mit Wasser mischen oder die sehr flüchtig sind, wie z. B. Alkane, sind in dieser Hinsicht daher besser geeignet.

Gemäß einer zweiten Ausführungsform erfolgt die Herstellung der duftaktiven Polymerkapseln durch das sogenannte Fällungsverfahren. Dieses Verfahren zur Herstellung von duft- und/oder riechstoffbeladenen Matrix- und/oder Depot systemen in Form von Polymerkapseln, die mindestens eine duftaktive Komponente enthalten, wie zuvor beschrieben, ist durch die folgenden Verfahrensschritte gekennzeichnet:

(a) Bereitstellung einer vorzugsweise homogenen Mischung, insbesondere Lösung oder Dispersion, die mindestens ein Polymer und mindestens eine duftaktive Komponente, insbesondere ausgewählt aus der Gruppe von Duft-
und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen, enthält, mit einem mit Wasser im wesentlichen mischbarem organischen Löse- oder Dispersionsmittel, insbesondere Aceton oder Alkohol;

(b) Eintragung der unter (a) hergestellten Mischung in Wasser oder in eine wäßrige Lösung, vorzugsweise unter Vertropfung und/oder Rühren, in Gegenwart eines geeigneten Tensids, so daß man duftbeladene Polymerkapseln in wäßriger Dispersion erhält;

(c) gegebenenfalls Abtrennung der auf diese Weise erhaltenen Polymerkapseln.

Bei dieser zweiten Ausführungsform kann die unter (a) hergestellte Mischung, insbesondere unter Rühren und/oder gegebenenfalls unter Erwärmung, langsam in Wasser oder in die wäßrige Lösung eingetragen werden. Vorzugsweise erfolgt das Eintragen der unter (a) hergestellte Mischung unter Vertropfen. Dadurch wird erreicht, daß sich ein feindisperser Niederschlag der erfindungsgemäßen Polymerkapseln bildet. Erfolgt die Zugabe der unter (a) hergestellten Mischung in Wasser oder die wäßrige Lösung zu schnell, so fallen die Polymerkapseln als grobe, zusammenhängende plastische Masse oder in Form größerer Partikel oder Flocken aus.

Gemäß einer besonders bevorzugten Variante der zweiten Ausführungsform kann bei dem erfindungsgemäßen Fallungsverfahren wie folgt verfahren werden: Ein Duftstoff wird zusammen mit einem Polymer in einem wassermischbaren organischen Lösungsmittel, z. B. Alkohol oder Aceton, gelöst. Das Polymer sollte dabei nicht wasserlöslich sein. Diese Lösung wird nun in eine ausreichende Menge Wasser eingetragen, wobei das Polymer ausfällt und den Duftstoff einschließt. Die entstehende Dispersion ist, gegebenenfalls unter Zusatz von Hilfsstoffen oder weiteren Filmbildnern, verfilmbar oder kann anderweitig weiterverarbeitet werden. Voraussetzung für dieses Verfahren ist, daß das Polymer beim Eintrag in das Fällungsmittel feindispers ausfällt. Dies ist nur bei sehr wenigen Polymeren der Fall, nämlich bei solchen, die in einem solchen Ausmaß ionische Gruppen tragen, daß sie zwar wasserunlöslich sind, aber

- Poly-1,3-butadiene (T),
- Poly-butadiene-co-acrylnitrile (A),
- Polyisobutene (T),
- allgemein Polyacrylate (T), außer z. B. Poly(2-hydroxyethylacrylate), das wasserlöslich ist,
- viele Polymethacrylate (T), z. B. isotaktisches und syndiotaktisches Polymethylmethacrylate, (T,A),
- Polydimethylitakonate (A,T),
- Polydiarylformate (T),
- Polybenzyvinylether (A),
- Polyvinylalkoholacetyle (A),
- Polyallylalcohol (T),
- Polyvinylformale (ES),
- Polyvinylbutyralacetale (E),
- Poly(2-vinyl-4,7-dihydro-1,3-dioxepine) (A),
- Polyvinylmethyketone (A, ES, T),
- Polymethylisopropenylketone (A),
- Polyvinylpivalate (A),
- Polyvinylacetylacetate (ES, T),
- ataktische Polystyrene (T),
- Poly(p-formylstyrene) (T),
- Poly(2-vinyl pyridine) (A),
- Polydimethylfulvene (A),
- Poly(carbonyl-1-furfuryltrimethylene) (A),
- Polytetrahydrofuran (T),
- Polyglutardialdehyde (T),
- Poly(oxycarbonyloxyhexamethylene) (A),
- Polyethylenadipate (T),
- Polymilchsäuren (A),
- Poly(oxydimethylhexadecylsilylene) (T).

In Aceton und Alkoholen, wie beispielsweise Ethanol, lösliche Polymere sind gegenüber Polymeren, die in Tetrahydrofuran oder Essigsäure löslich sind, bevorzugt.

Bei den erfindungsgemäßen Verfahren sowohl nach der ersten als auch nach der zweiten Ausführungsform kann in Schritt (a) die Bereitstellung der Mischung dadurch erfolgen, daß das Polymer und die duftaktive Komponente dem organischen Löse- oder Dispersionsmittel zugesetzt wird. Dieses Zusetzen kann vorzugsweise unter Rühren und gegebenenfalls unter Erwärmung mit der Maßgabe erfolgen, daß möglichst eine homogene Mischung entsteht.
Bei den erfindungsgemäßen Verfahren sowohl nach der ersten als auch nach der zweiten Ausführungsform kann die gegebenenfalls durchgeführte Abtrennung der duftbeladenen Polymerkapseln durch übliche, dem Fachmann an sich bekannte Methoden, erfolgen. Insbesondere handelt es sich hierbei um Sprühtrocknung unter schonenden Bedingungen, Ultrafiltration, Dialyse oder Gefriertrocknung (Lyophilisation). Im Fall größerer Partikel kann eine Abtrennung auch durch Zentrifugation erreicht werden.

Wird in den erfindungsgemäßen Verfahren sowohl nach der ersten als auch nach der zweiten Ausführungsform ein anionisches Tensid verwendet, so kann dieses z. B. ausgewählt sein aus der Gruppe von Seifen; Alkylenzolsulfonaten; Alkansulfonaten; Olefinsulfonaten; Alkylethersulfonaten; Glycerinethersulfonaten; α-Methylestersulfonaten; Sulfofettsäuren; Alkylsulfaten wie Natriumdodecylsulfat (SDS); Fettalkoholethersulfaten; Glycerinethersulfaten; Fettsäureethersulfaten; Hydroxymischethersulfaten; Monoglycerid(ether)sulfaten; Fettsäureamid- (ether)sulfaten; Mono- und Dialkylsulfosuccinaten; Mono- und Dialkyl-
sulfosuccinamaten; Sulfotriglyceriden; Amidseifen; Ethercarbonsäuren und deren Salzen; Fettsäureisothionaten; Fettsäuresarcosinaten; Fettsäuretauriden; N-Acylaminosäuren wie Acyllactylaten, Acyltartraten, Acyglutamat en und Acylaspartaten; Alkyloligosidosulfaten; Protein fettsäurekondensaten, insbesondere pflanzlichen Produkten auf Weizenbasis; Alkyl(ether)phosphaten. Wird jedoch ein kationisches Tensid verwendet, so kann dieses z. B. ausgewählt sein aus der Gruppe von quartären Ammoniumverbindungen wie Dimethyldistearylammoniumchlorid (CTMA-Cl), Dodecytrimethylammoniumbromid, Didodecyldimethylammoniumbromid, Tridodecylmethylammoniumbromid, Tetradodecylammoniumbromid; Esterquats, insbesondere quaternierten Fettsäuretrialkanolaminesteralzen; Salzen langkettiger primärer Amine quaternären Ammoniumverbindungen wie Hexadecyltrimethylammoniumchlorid; Cetrimoniumchlorid oder Lauryldimethylbenzylammoniumchlorid. Insbesondere bei der Verwendung von ionischen Polymeren kann ein nichtionisches Tensid in den Polymerkapseln enthalten sein; in diesem Fall kann das nichtionische Tensid z. B. ausgewählt sein aus der Gruppe von (i) nichtpolymeren nichtionischen Tensiden wie alkoxylierten, vorzugsweise ethoxylierten Fettalkoholen, Alkylphenolen, Fettaminen und Fettsäureamiden; alkoxylierten Triglyceriden, Mischethern und Mischformalen; gegebenenfalls partiell oxidierten Alk(eny)lologlykosiden; Glucoronsäurederivaten; Fettsäure-N-alkylglucamiden; Proteinhdrolysaten, insbesondere alkylmodifizierten Proteinhdrolysaten; niedermolekularen Chitosanverbindungen; Zuckerestern; Sorbitanestern; Aminoxiden; und (ii) polymeren nichtionischen Tensiden wie Fettalkoholpolyglykolethern; Alkylphenolpolyglykolethern; Fettsäurepolyglykolestern; Fettsäureamidpolyglykolethern; Fettaminopolyglykolethern; Polyolfettsäureestern; Polysorbaten.

Das in den erfindungsgemäßen Verfahren sowohl nach der ersten als auch nach der zweiten Ausführungsform verwendete Polymer kann ein nichtionisches oder ein ionisches Polymer sein. Gleichfalls kann das Polymer ein geblocktes und/oder statistisches Comonomer umfassen. Insbesondere kann das Polymer ausgewählt sein aus der Gruppe von Cellulosen und Cellulosedervativen wie Ethylcellulosen, Celluloseacetaten und Celluloseacetatbutyran, Polyalkylenen wie Polybutadienen, Poly(butadien-co-acrylnitrilen), Polyisobutenen, Polyamiden,
Polystyrolen, Polyisoprenen, Polycarbonaten, Polyestern, Polyacrylaten, Poly-
methacrylaten, insbesondere ammoniumfunktionalisierten Polymethacrylaten,
Polyurethanen, Polydimethylitakonaten, Polydiamylylumaraten, Polybenzyl-
vinylethern, Polyvinylalkoholen, Polyallylalkoholen, Polyvinylformalen, Polyvinyl-
butyraten, Poly(2-vinyl-4,7-dihydro-1,3-dioxepinen), Polyvinylmethylketonen, Poly-
methylisopropylketonen, Polyvinylpivalaten, Polyvinylacetacetaten, Poly(p-for-
mystyrolen), Poly(2-vinylpyridinen), Polydimethylfulvenen, Poly(carbonyl-1-
furfuryltrimethylhenen), Polytetrahydrofuranen, Poly(glutardialdehyde), Polyoxy-
carbonyloxyhexamethylenen, Polyethylenadipaten, Polyvinylalkoholacetaten,
Polyvinylbutyrhalacetalen, Polymilchsäuren und Polyoxyethylhexadecylsilylenen.

Ist das in den erfindungsgemäßen Verfahren sowohl nach der ersten als auch
nach der zweiten Ausführungsform verwendete Polymer ein ionisches Polymer, so
kann dieses gleichzeitig das Tensid darstellen bzw. umfassen. Damit ist
insbesondere gemeint, daß die Funktion des Tensids somit im Polymer integriert
ist, d. h. das ionische Polymer bringt die ionische Ladung ins System. Aufgrund
des ionischen Charakters des Polymers kann nämlich bereits die gewünschte
elektrostatische Abstoßung der Polymerkapseln gewährleistet sein. Darüber
hinaus kann das Polymer auch ionisch modifiziert sein. Diese Modifikation kann
beispielsweise durch ionische Gruppen, insbesondere Ammonium- und/oder
Carboxylatfunktionen, durch Pfpfung und/oder durch Copolymerisation mit
geeigneten ionischen Comonomeren erfolgen. Bei einer bevorzugten Variante der
beiden Ausführungsform kann das ionische Polymer ein ammonium-
funktionalisiertes (Meth-)Acrylat-Copolymer, vorzugsweise ein Poly(ethylen-
methacrylat-trimethylammoniummethylmethacrylat)-Copolymer sein, wobei
die stöchiometrischen Verhältnissen der einzelnen Monomereinheiten in dem
Poly(ethylen-methacrylat-trimethylammoniummethylmethacrylat)-Copolymer
1 : 2 : 0,1 oder 1 : 2 : 0,2 (z. B. Eudragit® RS und RL 100) betragen können.

Die in beiden Ausführungsformen der erfindungsgemäßen Verfahren verwendeten
Polymere und/oder duftaktiven Komponenten sollten vorzugsweise im
wesentlichen wasserunlöslich oder zumindest in der wäfrigen Phase nur schwer
löslich sein. Vorzugsweise sind die Polymere und/oder die duftaktive(n)
Komponente(n) in einem solchen Fall in der wäßrigen Phase zu weniger als 10 %, vorzugsweise zu weniger als 5 %, insbesondere zu weniger als 1 %, löslich.

Die mittlere Teilchengröße der durch die erfindungsgemäßen Verfahren nach beiden Ausführungsformen erhältlichen Polymerkapseln kann in großen Bereichen schwanken: Sie beträgt im allgemeinen etwa 50 nm bis etwa 500 \(\mu \text{m} \), insbesondere etwa 100 nm bis etwa 250 \(\mu \text{m} \), vorzugsweise etwa 200 nm bis etwa 100 \(\mu \text{m} \). Eine Steuerung der Teilchengröße ist durch Variation der Verfahrensparameter möglich (z. B. Variation des Tensidgehalts, der Gesamtkonzentration der Lösung bzw. Dispersion, Art und Konzentration des Polymers, Art und Konzentration der Duftkomponente etc.). In der ersten Ausführungsform, dem Emulgierverfahren, kann die Teilchengröße zusätzlich durch den Energieeintrag bei Bildung der Emulsion gesteuert werden. In der zweiten Ausführungsform, dem Fällungsverfahren, dagegen kann die Teilchengröße zusätzlich insbesondere durch die Tröpfchengröße und die Zutropfgeschwindigkeit im Verfahrensschritt (b) gesteuert werden.

In beiden Ausführungsformen des erfindungsgemäßen Verfahrens kann das Löse- oder Dispersionsmittel das Tensid darstellen bzw. umfassen. Dieses ist beispielsweise bei der Verwendung von Ölsäure als Lös- bzw. Dispersionsmittel und gleichzeitig als Tensid der Fall.

Gegenstand der vorliegenden Erfindung sind auch die nach den erfindungsgemäßen Verfahren herstellbaren, mit Duft- und/oder Riechstoff beladenen Polymerkapseln.

Weiterer Gegenstand der vorliegenden Erfindung sind auch Dispersionen, vorzugsweise wäßrige Dispersionen, welche die erfindungsgemäßen bzw. erfindungsgemäß herstellbaren Polymerkapseln enthalten. Der Gehalt an Polymerkapseln in diesen erfindungsgemäßen Dispersionen kann in weiten Bereichen variieren: Er beträgt im allgemeinen bis zu 20 %, insbesondere bis zu 15 %, vorzugsweise bis zu 10 %. Dabei sind die Gewichtsangaben auf die Dispersion bezogen. Die erfindungsgemäßen Dispersionen können z. B. in Form
von Wasch- und Reinigungsmitteln, Kosmetika oder Körperpflegemittel verwendet werden. Im Fall wässrige Dispersionen können diese variierende Anteile an organischem Lösungsmittel (insbesondere aus dem Herstellungsverfahren) enthalten, wobei jedoch ein Wasseranteil, bezogen auf die flüssige Phase, von 50% nicht überschritten werden sollte.

So können die erfindungsgemäßen bzw. erfindungsgemäß herstellbaren Polymerkapseln sowie die erfindungsgemäßen Dispersionen in der Waschmittel- und Reinigungsmittelindustrie bzw. in der Kosmetik- und Körperpflegeindustrie verwendet werden. Die Verwendung kann dabei beispielsweise als Delivery-System erfolgen, wobei die duftaktive(n) Komponente(n) insbesondere mit verlängerter oder verzögerter Freisetzung wirkt/wirken (sogenannter "Sustained-release-Effekt").

Die erfindungsgemäßen bzw. erfindungsgemäß herstellbaren Polymerkapseln und die erfindungsgemäßen Dispersionen können auch zur kontrollierten bzw. verzögerten Freisetzung von duftaktiven Komponenten verwendet werden.

Ein weitere Verwendung bzw. Anwendung der erfindungsgemäßen bzw. erfindungsgemäß herstellbaren Polymerkapseln und der erfindungsgemäßen Dispersionen ist ihre Auftragung als Beschichtung, Film bzw. Überzug. Dabei kann die Steuerung der Freisetzung der duftaktiven Komponente durch die Auswahl der Art der Zusammensetzung der Polymerkapseln, insbesondere durch die Auswahl der Art des Polymers und der Duftkomponente(n), erfolgen. Die Auftragung kann beispielsweise zur Herstellung von Trägeroberflächen mit Depothaltung von Duftkomponenten verwendet werden und dient somit zum Schutz und/oder zur Depothaltung von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen auf diesen Trägeroberflächen. Diese

Weiterer Gegenstand der vorliegenden Erfindung sind auch Oberflächen, insbesondere Oberflächen von inerten Trägermaterialien, auf die Filme, Überzüge, Schichten, Beschichtungen oder dergleichen der zuvor genannten Art aufgebracht sind. Wie zuvor beschrieben, handelt es sich hierbei insbesondere um Oberflächen mit Depotfunktion für duftaktive Komponenten bzw. mit kontrollierter und/oder verzögter Freisetzungsfunktion für duftaktive Komponenten, wie Duft- und/oder Riechstoffe, Duft- und/oder Riechstoffzubereitungen und Öle wie etherische Öle, Aromaöle, Parfümöle, Pflegeöle und Silikonöle.

Mit der vorliegenden Erfindung ist eine Vielzahl von Vorteilen verbunden. Um nur einige zu nennen, seien beispielhaft die folgenden genannt: Die Erfindung stellt - insbesondere bei der Ausführungsform des Fällungsverfahrens - ein mit sehr geringem technischen Aufwand durchführbares Verfahren zur Herstellung duftaktiver Polymerkapseln und Beschichtungen dar, welches die erfindungsgemäßen Dispersionen in verwendungsfertiger Form bereitstellt. Die erfindungsgemäßen Verfahren liefern also - neben den Polymerkapseln selbst - zugleich auch wäßrige Dispersionen, die sofort verwendet werden können. Die Verwendung dieser Polymerkapseln in Wasch-, Reinigungs- oder Nachbehandlungsmitteln sowie Kosmetika führt zu einem verlängerten Duftindruck gegenüber der Dosierung des reinen Parfümöls. Die Verwendung in Reinigern, insbesondere Bodenreinigern, führt zu einem duftaktiven Film auf den Substraten und damit zu einem verlängerten Duftindruck in den gereinigten

Weitere Ausgestaltungen, Abwandlungen und Variationen sowie Vorteile der vorliegenden Erfindung sind für den Fachmann beim Lesen der Beschreibung ohne weiteres erkennbar und realisierbar, ohne daß er dabei den Rahmen der vorliegenden Erfindung verläßt.

Die vorliegende Erfindung wird anhand der folgenden Ausführungsbeispiele veranschaulicht, welche die Erfindung jedoch keinesfalls beschränken.
Ausführungsbeispiele:

Beispiel 1: Verfahren zur Herstellung von riechstoffhaltigen Mikropartikeln

Es wird eine organische Phase aus Ethylacetat mit 0,1 Gew.-% n-Decan hergestellt, in die 5 Gew.-% wasserunlösliches Celluloseacetatbutyрат-Polymer sowie 1 Gew.-% Parfümöl gelöst werden. In die vorgelegte organische Phase wird unter Ultraturrax®-Behandlung die dreifache Menge einer wäßrigen Emulgatorlösung von 0,5 Gew.-% Dodecyltrimethylammoniumbromid eindispersiert. Es entsteht eine feindisperse Emulsion mit der wäßrigen Phase als äußere, kohärente Phase. Aus dieser Emulsion wird unter Vakuum das leichter flüchtige Lösungsmittel langsam abgezogen. Es verbleibt eine feindisperse, milchig-weiße Dispersion mit Partikelgrößen von weniger als 1 μm. In den Partikeln befinden sich also 16,6 % Parfümöl, der Gesamtgehalt an Parfüm in der Dispersion beträgt 0,33 %.

Beispiel 2: Gefällte Polyacrylat-Partikel

9,25 g einer 10%igen ethanolischen Lösung (wt/wt) von Eudragit RS® (Fa. Röhm) werden mit 0,75 g Parfümöl vermischt. Die Lösung wird unter Rühren in 90 g Wasser eingetragen. Dabei fallen feindisperse Polymerpartikel (< 1 μm) mit einem (berechneten) Parfümgehalt von ca. 45 % in den Partikeln bzw. 0,75 % in der gesamten Dispersion aus.

Wegen der kationischen Ladung der Partikel eignen sich diese Polymerkapseln insbesondere für eine Verwendung in Weichspülerrezepturen.

Beispiel 3: Anionisch stabilisierte, gefällte Ethylcellulose-Partikel

Es wird eine 1%ige acetonische Lösung (wt/wt) von Ethylcellulose (Typ EC N7, Fa. Hercules) hergestellt, in der 0,3 % Parfümöl gelöst werden. Die Lösung wird unter Rühren in die zehnfache Menge eines tensidhältigen wäßrigen Fällbades eingetragen (0,02 % Natriumdodecylsulfat (SDS) in Wasser (wt/wt)). Dabei fällt
die Ethylcellulose als feindisperser, riechstoffhaltiger Niederschlag aus (Partikelgrößen < 1 μm).

Die so hergestellten, anionisch stabilisierten Partikel eignen sich insbesondere zur Formulierung in anionisch basierten Reinigerrezepturen, wie in Beispiel 12 beschrieben. Sie können entweder durch Zentrifugation oder Filtration isoliert werden oder aber auch direkt z. B. zu einem Film weiterverarbeitet werden.

Die so erhaltene, feinteilige EC-Dispersion wird auf einem Glassubstrat durch Ausrakeln aufgetragen. Nach Eintrocknen des Lösemittels bleibt ein kohärenter Film zurück, der auch nach einigen Tagen noch eine Duftwirkung aufweist. Für die Praxis relevanter ist jedoch die im Beispiel 12 beschriebene Verarbeitung in einer Rezeptur für Reiniger für harte Oberflächen.

Beispiel 4: Kationisch stabilisierte, gefällte Ethylcellulosepartikel

Es wird eine 1%ige acetonische Lösung (wt/wt) von Ethylcellulose (Typ EC N7, Fa. Hercules) hergestellt, in der 0,6 % Parfümöl gelöst werden. Diese Lösung wird unter Rühren in die gleiche Menge einer 0,05%igen wässrigen Lösung von Dehyquat® A (Fa. Cognis) eingetragen. Auch hier entsteht ein feindisperser Niederschlag.

Die so hergestellten, kationisch stabilisierten Partikel eignen sich insbesondere zur Formulierung in kationisch basierten Rezepturen für Textilnachbehandlungsmittel, z. B. Weichspüler, wie in den Beispielen 8 bis 10 beschrieben. Sie können entweder durch Zentrifugation oder Filtration abgetrennt werden, aufkonzentriert oder aber auch direkt weiterverarbeitet werden.

Beispiel 5: Kationisch stabilisierte, gefällte riechstoffhaltige Acrylatpartikel

Es wird eine ethanolische Lösung von 1 % des Acrylat-Polymers Ultrahold® 2 (Fa. BASF), 1 % Didodecyldimethylammoniumbromid (DDMABr) und 0,4 % Parfümöl hergestellt. Ein Teil dieser Lösung wird unter Rühren in 9 Teile Wasser eingetragen. Man erhält einen feindispersen Niederschlag aus Polymerpartikeln.
mit einem Gehalt von 16,6 % Parfümöl. Wie bei den vorigen Beispielen können die parfümhaltigen Mikropartikel durch Zentrifugation oder Filtration gewonnen werden oder aber direkt weiterverarbeitet werden. Infolge der kationischen Stabilisierung eignet sich diese Dispersion besonders zur Weiterverarbeitung in Weichspülern.

Beispiel 6: Gefällte riechstoffhaltige Polyvinylacetatpartikel

Es wird eine ethanolische Lösung hergestellt, die 1 % Polyvinylacetat (Fa. Aldrich), 1 % Didodecyldimethylammoniumbromid (DDMABr) und 0,5 % Parfümöl enthält. Ein Teil dieser Lösung wird unter Rühren in 9 Teile Wasser eingetragen, wobei ein feinteiliger Niederschlag aus Partikeln mit einem Gehalt von 20 % Parfümöl ausfällt. Wie bei den vorigen Beispielen können die parfümhaltigen Mikropartikel durch Zentrifugation oder Filtration gewonnen werden oder aber direkt weiterverarbeitet werden. Infolge der kationischen Stabilisierung eignet sich diese Dispersion besonders zur Weiterverarbeitung in Weichspülern.

Beispiel 7: Geruchliche Beurteilung

Beispiel 8: Verwendung der Partikel aus Beispiel 1 in einer Weichspülerrezeptur

In 100 ml der Dispersion aus Beispiel 2 (entsprechend 0,33 g Parfümöl) werden 5,4 g Esterquat (Stepantex® VL 90) eingearbeitet, indem die Dispersion auf 40 °C erwärmt wird und der ebenfalls auf 40 °C temperierte Esterquat unter Rühren zugegeben wird.
Vergleich:
5,4 g Esterquat werden, wie oben beschrieben, in 100 ml Wasser dispergiert. Anschließend wird dieser Dispersion 0,33 g Parfümöl zugesetzt.

Diese Weichspülerrezepteuren werden anschließend in einer Waschmaschine getestet: 100 ml der jeweiligen Rezepteuren werden in die Weichspüler-Einspülkammern gegeben, so daß sie im letzten Spülgang dosiert werden. Die Trommelfüllung besteht aus 3,5 kg Frotteehandtüchern.

Beispiel 9: Verwendung der Partikel aus Beispiel 2 in einer Weichspülerrezeptur

In 100 ml der Dispersion aus Beispiel 2 (entsprechend 0,75 % Parfümöl) werden 5,4 g Esterquat (Stepantex® VL 90) eingearbeitet, indem die Dispersion auf 40 °C erwärmt wird und der ebenfalls auf 40 °C temperierte Esterquat unter Rühren zugegeben wird.

Vergleich:
5,4 g Esterquat werden, wie oben beschrieben, in 100 ml Wasser dispergiert. Anschließend wird dieser Dispersion 0,75 g Parfümöl zugesetzt.

Diese Weichspülerrezepteuren werden anschließend wie in Beispiel 8 in einer Waschmaschine getestet. 100 ml der jeweiligen Rezepteuren werden in die Weichspüler-Einspülkammern gegeben, so daß sie im letzten Spülgang dosiert werden. Die Trommelfüllung besteht wiederum aus 3,5 kg Frotteehandtüchern.

Nach der Entnahme der Wäsche aus der Maschine wird von dem Versuchspanel die mit der Rezeptur des Vergleichsbeispiels gespülten Textilien zunächst als
intensiver duftend eingestuft. Nach einem Tag und an jedem weiteren Tag ist der Duft der mit der erfindungsgemäßen Rezeptur weichgespülten Wäsche eindeutig intensiver als beim Vergleichsbeispiel.

Beispiel 10: Verwendung der Partikel aus Beispiel 4 in einer Weichspülerrezeptur

Die riechstoffhaltige EC-Dispersion aus Beispiel 4 wird zunächst mit Hilfe eines Membranfilters mit 250 nm Porendurchmesser um den Faktor 2 aufkonzentriert. Damit berechnet sich eine Parfümölkonzentration von 0,6 %. Geringe Verluste durch die Filtration sind nicht auszuschließen. In 100 ml dieser Dispersion (entsprechend 0,6 g Parfümöl) werden 5,4 g Esterquat (Stepantex® VL 90) eingearbeitet, indem die Dispersion auf 40 °C erwärmt wird und der ebenfalls auf 40 °C temperierte Esterquat unter Rühren zugegeben wird.

Vergleich:
5,4 g Esterquat werden, wie oben beschrieben, in 100 ml Wasser dispergiert. Anschließend wird dieser Dispersion 0,6 g Parfümöl zugesetzt.

Beispiel 11: Verwendung der Partikel aus Beispiel 5 und 6 in einer Weichspülerrezeptur

Diese Versuche werden analog zu Beispiel 10 durchgeführt, wobei die Dispersion mit Hilfe des Membranfilters so aufkonzentriert wird, daß sie (berechnet, ohne Berücksichtigung eventueller Verluste) 0,6 % Parfümöl enthält. Die Versuchsdurchführung sowie das Ergebnis entspricht den Beispielen 8 bis 10.
Beispiel 12: Verwendung der Partikel aus Beispiel 3 in einer Modellrezeptur eines Reinigers für harte Oberflächen

Dazu wird die Dispersion aus Beispiel 3 zunächst mit Hilfe eines Membranfilters (220 nm Porendurchmesser) aufkonzentriert, so daß die resultierende Dispersion einen Parfümölgehalt von 0,5 % aufweist. Zur Herstellung der Reiniger-Modellrezeptur werden 92 g dieser Dispersion 5 g lineares Alkybenzolsulfonat (Maranil®, Fa. Cognis) und 3 g Dehydol® LT7 (Fa. Cognis) zugesetzt. Als Vergleichsbeispiel wird einer gleich konzentrierten Tensidlösung 0,46 g Parfümöl zugesetzt. Die Vergleichsrezeptur weist von sich aus einen intensiveren Duft auf als die erfindungsgemäße Rezeptur, wobei der Duft der erfindungsgemäßen Rezeptur noch von einer leichten Aceton-Note überlagert ist.

Patentansprüche:

1. Duft- und/oder riechstoffbeladene Matrix- und/oder Depotsysteme in Form von Polymerkapseln, umfassend mindestens ein polymeres Träger- oder Matrixmaterial auf Basis von insbesondere wasserunlöslichen Cellulosen und/oder Cellulosedervaten, insbesondere mit mittleren Molekulargewichten von mehr als 30.000, vorzugsweise mehr als 35.000, besonders bevorzugt mehr als 40.000, wobei die Polymerkapseln außerdem mindestens eine duftaktive Komponente, insbesondere ausgewählt aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen, und mindestens ein Tensid enthalten.

2. Polymerkapseln nach Anspruch 1, dadurch gekennzeichnet, daß das Cellulosedervat ausgewählt ist aus der Gruppe von Alkylcellulosen, insbesondere Ethylcellulose, und Celluloseestern, insbesondere Celluloseacetat und Celluloseacetatbutyrat.

3. Duft- und/oder riechstoffbeladene Matrix- und/oder Depotsysteme in Form von Polymerkapseln, umfassend mindestens ein polymeres Träger- oder Matrixmaterial auf Basis von insbesondere wasserunlöslichen Polymeren mit einer mittleren Molekularmasse von mehr als 30.000, insbesondere von mehr als 35.000, vorzugsweise von mehr als 40.000, wobei die Polymerkapseln mindestens eine duftaktive Komponente, insbesondere ausgewählt aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen, und mindestens ein Tensid enthalten.

4. Polymerkapseln nach Anspruch 3, dadurch gekennzeichnet, daß das Polymer ein nichtionisches oder ein ionisches Polymer ist.

5. Polymerkapseln nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das Polymer ein geblocktes und/oder statistisches Comonomer umfaßt.

7. Polymerkapseln nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß das Polymer ionisch modifiziert ist, insbesondere durch ionische Gruppen, durch Pfpfung und/oder durch Copolymerisation mit geeigneten ionischen Comonomeren.

8. Polymerkapseln nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß das Polymer ein ionisches Polymer ist, welches gleichzeitig das Tensid darstellen oder umfassen kann.

9. Duft- und/oder riechstoffbeladene Matrix- und/oder Depotsysteme in Form von Polymerkapseln, umfassend mindestens ein polymeres Träger- oder Matrixmaterial auf Basis eines insbesondere wasserunlöslichen, ionischen Polymers, insbesondere mit mittleren Molekulargewichten von mehr als 30.000, vorzugsweise mehr als 35.000, besonders bevorzugt mehr als 40.000, wobei die Polymerkapseln außerdem mindestens eine duftaktive Komponente, insbesondere ausgewählt aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen, enthalten.
10. Polymerkapseln nach Anspruch 9, dadurch gekennzeichnet, daß die Polymerkapseln außerdem mindestens ein Tensid enthalten.

11. Polymerkapseln nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß das Polymer ein geblocktes und/oder statistisches Comonomer umfaßt.

12. Polymerkapseln nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das Polymer ein ionisches Polymer ist und/oder ionisch modifiziert ist, beispielsweise durch ionische Gruppen, wie Ammonium- und/oder Carboxylatfunktionen, durch Ppropfung und/oder durch Copolymerisation mit geeigneten ionischen Comonomeren.

13. Polymerkapseln nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß das ionische Polymer ein ammoniumfunktionalisiertes (Meth-)Acrylat-Copolymer, insbesondere ein Poly(ethylen-methylmethacrylat-trimethylammoniummethylmethacrylat)-Copolymer, ist, vorzugsweise mit stöchiometrischen Verhältnissen der einzelnen Monomereinheiten von 1 : 2 : 0,1 oder 1 : 2 : 0,2 (z. B. Eudragit® RS und RL 100).

14. Polymerkapseln nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Polymerkapseln Wasser enthalten.

15. Polymerkapseln nach einem der Ansprüche 1 bis 14, gekennzeichnet durch eine mittlere Teilchengröße von etwa 50 nm bis etwa 500 µm, insbesondere etwa 100 nm bis etwa 250 µm, vorzugsweise etwa 200 nm bis etwa 100 µm, aufweisen.

17. Polymerkapseln nach einem der Ansprüche 1 bis 16, gekennzeichnet durch einen Tensidgehalt von 0,01 Gew.-% bis 50 Gew.-%, insbesondere von 0,1 Gew.-% bis 40 Gew.-%, bezogen auf die Polymerkapseln.

18. Polymerkapseln nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Polymerkapseln aufgrund physikalischer und/oder chemischer Wechselwirkungen, insbesondere unter Netzwerkbildung, ausgebildet sind.

19. Polymerkapseln nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß sie in Form von teilchenförmigen, insbesondere schwammartigen Strukturen aus Polymer und duftaktiver Komponente vorliegen, insbesondere wobei die duftaktive Komponente in homogener Verteilung über das Polymer vorliegt.

20. Polymerkapseln nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß das Polymer und/oder die duftaktive Komponente im wesentlichen wasserunlöslich oder zumindest in wässriger Phase nur schwer löslich sind/ist, insbesondere wobei das Polymer und/oder die duftaktive Komponente in wässriger Phase zu weniger als 10 %, vorzugsweise zu weniger als 5 %, insbesondere zu weniger als 1 %, löslich sind/ist.

21. Polymerkapseln nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß das Tensid ein kationisches Tensid ist, das insbesondere ausgewählt sein kann aus der Gruppe von quartären Ammoniumverbindungen wie Dimethyldistearlammoniumchlorid (CTMA-Cl), Dodecyltrimethylammoniumbromid, Didodecyldimethylammoniumbromid, Tridodecylmethylammoniumbromid; Tetradoecylammoniumbromid; Esterquats, insbesondere quaternierten Fettsäuretrialkanolaminestersalzen; Salzen langkettiger primärer Amine quaternären Ammoniumverbindungen wie Hexadecyltrimethylammoniumchlorid; Cetrimoniumchlorid oder Lauryldimethylbenzylammoniumchlorid.
22. Polymerkapseln nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß das Tensid ein anionisches Tensid ist, das insbesondere ausgewählt ein kann aus der Gruppe von Seifen; Alkylbenzolsulfonaten; Alkansulfonaten; Olefinsulfonaten; Alkylethersulfonaten; Glycerinethersulfonaten; α-Methylestersulfonaten; Sulfosettsäuren; Alkylsulfaten wie Natriumdodecylsulfat (SDS); Fettalkoholethersulfaten; Glycerinethersulfaten; Fettsäureethersulfaten; Hydroxymischethersulfaten; Monoglycerid(ether)sulfaten; Fettsäureamid(ether)sulfaten; Mono- und Dialkylsulfosuccinaten; Mono- und Dialkylsulfosuccinamaten; Sulfo triglyceriden; Amidseifen; Ethercarbonsäuren und deren Salzen; Fettsäureisothionaten; Fettsäuresarcosinaten; Fettsäuretauriden; N-Acylaminosäuren wie Acylactylaten, Acyltartraten, Acylglutamaten und Acylaspartaten; Alkyloligogulosidsulfaten; Proteinfettsäurekondensaten, insbesondere pflanzlichen Produkten auf Weizenbasis; Alkyl(ether)phosphataten.

23. Polymerkapseln nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß das Tensid, insbesondere im Fall der Verwendung von ionischen Polymeren, ein nichtionisches Tensid ist, das ausgewählt sein kann aus der Gruppe von (i) nichtpolymeren nichtionischen Tensiden wie alkoxylierten, vorzugsweise ethoxylierten Fettalkoholen, Alkylphenolen, Fettaminen und Fettsäureamiden; alkoxylierten Triglyceriden, Mischethern und Mischformalaten; gegebenenfalls partiell oxidierten Alk(en)yloligoglykosiden; Glucuronsäurederivaten; Fettsäure-N-alkylglucamiden; Proteinhydrolysaten, insbesondere alkylmodifizierten Proteinhydrolysaten; niedermolekularen Chitosanverbindungen; Zuckerestern; Sorbitanestern; Aminoxiden; und (ii) polymeren nichtionischen Tensiden wie Fettalkoholpolyglykolether; Alkyl phenolpolyglykolether; Fettsäurepolyglykol estern; Fettsäureamidpolyglykol ether; Fettaminopolyglykol ether; Polyolefinsäureestern; Polysorbaten.

24. Polymerkapseln nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Polymerkapseln eine Oberflächenladung aufweisen.

25. Polymerkapseln nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Polymerkapseln ein Zeta-Potential aufweisen, insbesondere
wobei das Zeta-Potential der Polymerkapseln, dispergiert in wäßrigen Medien, größer als 10 mV, vorzugsweise größer 20 mV, besonders bevorzugt größer als 30 mV, ist.

26. Verfahren zur Herstellung von duft- und/oder riechstoffbeladenen Matrix- und/oder Depotsystemen in Form von Polymerkapseln, insbesondere nach den Ansprüchen 1 bis 25, mit mindestens einer duftaktiven Komponente, gekennzeichnet durch die folgenden Verfahrensschritte:

(a) Bereitstellung einer vorzugsweise homogenen Mischung, insbesondere Lösung oder Dispersion, die mindestens ein Polymer und mindestens eine duftaktive Komponente, insbesondere ausgewählt aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen, enthält, mit einem mit Wasser im wesentlichen nichtmischbarem organischen Lösemittel oder Dispersionsmittel, insbesondere Alkanen wie Pentan, Hexan (n-Hexan oder Cyclohexan) oder Ethylmethylketon und Ethylacetat;

(b) Eintragung der unter (a) hergestellten Mischung in Wasser oder in eine wäßrige Lösung oder umgekehrt;

(c) Herstellung einer Emulsion aus der unter (b) hergestellten Mischung in Gegenwart mindestens eines geeigneten Emulgators, insbesondere Tensids;

(d) Entfernen des organischen Lösemittels aus der unter (c) hergestellten Emulsion, so daß man duftbeladene Polymerkapseln in wäßriger Dispersion erhält;

(e) gegebenenfalls Abtrennung der auf diese Weise erhaltenen Polymerkapseln.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die unter (a) hergestellte Mischung unter Rühren und/oder Erwärmung in Wasser oder in die wässrige Lösung eingetragen wird oder umgekehrt.

28. Verfahren nach Anspruch 26 oder 27, dadurch gekennzeichnet, daß die in Schritt (c) durchgeführte Herstellung der Emulsion durch Einwirken von Scherkräften erfolgt, insbesondere durch Hochdruckhomogenisierung, mittels Ultraturraxrühren und/oder mittels Dispergierscheiben.

29. Verfahren nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, daß in der in Schritt (c) hergestellten Emulsion der Gehalt an Tensid bis zu 10 Gew.-% beträgt und/oder der Gehalt an Polymer bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-%, beträgt und/oder der Gehalt an duftaktiver Komponente bis zu 10 Gew.-% beträgt, wobei alle Gewichtsangaben auf die Emulsion bezogen sind.

30. Verfahren nach einem der Ansprüche 26 bis 29, dadurch gekennzeichnet, daß das Löse- oder Dispersionsmittel unter Vakuum, insbesondere in einem Rotationsverdampfer, oder durch Verdampfen, insbesondere unter Atmosphärendruck, entfernt wird.

31. Verfahren zur Herstellung von duft- und/oder riechstoffbeladenen Matrix- und/oder Depotsystemen in Form von Polymerkapseln, insbesondere nach den Ansprüchen 1 bis 25, mit mindestens einer duftaktiven Komponente, gekennzeichnet durch die folgenden Verfahrensschritte:

(a) Bereitstellung einer vorzugsweise homogenen Mischung, insbesondere Lösung oder Dispersion, die mindestens ein Polymer und mindestens eine duftaktive Komponente, insbesondere ausgewählt aus der Gruppe von Duft- und/oder Riechstoffen, Duft- und/oder Riechstoffzubereitungen und Ölen wie etherischen Ölen, Aromaölen, Parfümölen, Pflegeölen und Silikonölen, enthält, mit einem mit Wasser im wesentlichen mischbaren
organischen Löse- oder Dispersionsmittel, insbesondere Aceton oder Alkohol;

(b) Eintragung der unter (a) hergestellten Mischung in Wasser oder in eine wäßrige Lösung, vorzugsweise unter Vertropfung und/oder Rühren, in Gegenwart eines geeigneten Tensids, so daß man duftbeladene Polymerkapseln in wäßriger Dispersion erhält;

(c) gegebenenfalls Abtrennung der auf diese Weise erhaltenen Polymerkapseln.

32. Verfahren nach Anspruch 31, dadurch gekennzeichnet, daß die unter (a) hergestellte Mischung, insbesondere unter Rühren und/oder gegebenenfalls unter Erwärmung, langsam, insbesondere unter Vertropfung, in Wasser oder in die wäßrige Lösung eingetragen wird oder umgekehrt.

33. Verfahren nach Anspruch 26 bis 32, dadurch gekennzeichnet, daß in Schritt (a) die Bereitstellung der Mischung dadurch erfolgt, daß das Polymer und die duftaktive Komponente dem organischen Löse- oder Dispersionsmittel insbesondere unter Rühren, gegebenenfalls unter Erwärmung, zugesetzt werden.

34. Verfahren nach einem der Ansprüche 26 bis 33, dadurch gekennzeichnet, daß die gegebenenfalls durchgeführte Abtrennung der Polymerkapseln durch übliche Methoden erfolgt, insbesondere durch Sprühtrocknung unter schonenden Bedingungen, Ultrafiltration, Dialyse, Gefriertrocknung (Lyophilisation) oder Zentrifugation.

35. Verfahren nach einem der Ansprüche 26 bis 34, dadurch gekennzeichnet, daß das Tensid ein anionisches Tensid ist, das insbesondere ausgewählt sein kann aus der Gruppe von Seifen; Alkylbenzolsulfonaten; Alkansulfonaten; Olefinsulfonaten; Alkylethersulfonaten; Glycerinethersulfonaten; α-Methyl-estersulfonaten; Sulfotettsäuren; Alkylsulfaten wie Natriumdodecylsulfat (SDS); Fetalkoholethersulfaten; Glycerinethersulfaten; Fettsäureether-
sulfaten; Hydroxymischethersulfaten; Monoglycerid(ether)sulfaten; Fettsäureamid(ether)sulfaten; Mono- und Dialkylsulfosuccinaten; Mono- und Dialkylsulfosuccinamaten; Sulfo triglyceriden; Amidseifen; Ether carbonsäuren und deren Salzen; Fettsäureisothionaten; Fettsäuresarcosinaten; Fettsäuretauriden; N-Acylaminosäuren wie Acyllactylaten, Acyltartraten, Acyl glutamaten und Acylaspartaten; Alkyoligogulosidsulfaten; Protein fettsäurekondensaten, insbesondere pflanzlichen Produkten auf Weizenbasis; Alkyl(ether)phosphaten.

36. Verfahren nach einem der Ansprüche 27 bis 34, dadurch gekennzeichnet, daß das Tensid ein kationisches Tensid ist, das ausgewählt sein kann aus der Gruppe von quartären Ammoniumverbindungen wie Dimethyldistearylammoniumchlorid (CTMA-Cl), Dodecyltrimethylammoniumbromid, Didodecyldimethylammoniumbromid, Tridodecylmethylammoniumbromid, Tetradodecylammoniumbromid; Esterquats, insbesondere quaternierten Fettsäuretrialkanolaminestersalzen; Salzen langkettiger primärer Amine quaternären Ammoniumverbindungen wie Hexadecyltrimethylammoniumchlorid; Cetrimoniumchlorid oder Lauryldimethylbenzylammoniumchlorid.

37. Verfahren nach einem der Ansprüche 27 bis 34, dadurch gekennzeichnet, daß das Tensid, insbesondere im Fall der Verwendung von ionischen Polymeren, ein nichtionisches Tensid ist, das ausgewählt sein kann aus der Gruppe von (i) nichtpolymeren nichtionischen Tensiden wie alkoxyierten, vorzugsweise ethoxyierten Fettalkoholen, Alkylphenolen, Fettaminen und Fettsäureamiden; alkoxyierten Triglyceriden, Mischethern und Mischformaldehyde; gegebenenfalls partiell oxidierten Alk(en)yloligoglykosiden; Glucuronsäurederivaten; Fettsäure-N-alkylglu camiden; Proteinhydrolysaten, insbesondere alkylmodifizierten Proteinhydrolysaten; niedermolekularen Chitosanverbindungen; Zuckerestern; Sorbitanestern; Aminoxiden und (ii) polymeren nichtionischen Tensiden wie Fettalkoholpolyglykolethern; Alkylphenolpolyglykolethern; Fettsäurepolyglykolethern; Fettsäureamidpolyglykolethern; Fett aminopolyglykolethern; Polysorbiten.
38. Verfahren nach einem der Ansprüche 26 bis 37, dadurch gekennzeichnet, daß das Polymer ein nichtionisches oder ein ionisches Polymer ist.

39. Verfahren nach einem der Ansprüche 26 bis 38, dadurch gekennzeichnet, daß das Polymer ein geblocktes und/oder statistisches Comonomer umfaßt.

40. Verfahren nach einem der Ansprüche 26 bis 39, dadurch gekennzeichnet, daß das Polymer ausgewählt ist aus der Gruppe von Cellulosen und Cellulosederivaten wie Ethyldextrin, Celluloseacetaten und Celluloseacetatbutyrraten, Polyalkylen wie Polybutadienen, Poly(butadien-co-acrylnitritren), Polyisobutenen, Polyamiden, Polystyrolen, Polyisoprenen, Polycarbonaten, Polyeistern, Polyaerolaten, Polymethacrylaten, insbesondere ammoniumfunktionalisierten Polymethacrylaten, Polyurethanen, Polydimethylitkonaten, Polydiamyfumaraten, Polybenzylvinylethern, Polyvinylalkoholen, Polyallylalkoholen, Polyvinylformalen, Polyvinylbutyrraten, Poly(2-vinyl-4,7-dihydro-1,3-dioxepinen), Polyvinylmethylketonen, Polymethylisopropylketonen, Polyvinylpivalaten, Polynylactylacetaten, Poly(p-formylstyrolen), Poly(2-vinylpyridinen), Polydimethylfulvenen, Poly(carbonyl-1-furfuryltrimethylalkoholen), Polytetrahydrofuranen, Poly(glutardialdehyden), Polyoxycarbonyloxyhexamethylenen, Polyethylenadipaten, Polyvinylalkoholacetaten, Polyvinylbutyralacetaten, Polymilchsäuren und Polyoxymethylhexadeptsilylenen.

41. Verfahren nach einem der Ansprüche 26 bis 40, dadurch gekennzeichnet, daß das Polymer ein ionisches Polymer ist, welches gleichzeitig das Tensid darstellen oder umfassen kann.

42. Verfahren nach einem der Ansprüche 26 bis 41, dadurch gekennzeichnet, daß das Polymer ionisch modifiziert ist, beispielsweise durch ionische Gruppen, wie Ammonium- und/oder Carboxylatfunktionen, durch Pfropfung und/oder durch Copolymerisation mit geeigneten ionischen Comonomeren.

43. Verfahren nach einem der Ansprüche 26 bis 42, dadurch gekennzeichnet, daß das ionische Polymer ein ammoniumfunktionalisiertes (Meth-)Acrylat-
Copolymer, insbesondere ein Poly(ethylen-methylmethacrylat-trimethyl-
ammoniummethylmethacrylat)-Copolymer, ist, vorzugsweise mit stöchio-
metrischen Verhältnissen der einzelnen Monomereinheiten von 1 : 2 : 0,1
oder 1 : 2 : 0,2 (z. B. Eudragit® RS und RL 100).

44. Verfahren nach einem der Ansprüche 26 bis 43, dadurch gekennzeichnet,
daß das Polymer und/oder die duftaktive Komponente im wesentlichen
wasserunlöslich oder zumindest in der wässrigen Phase nur schwer löslich
sind/ist, insbesondere wobei das Polymer und/oder die duftaktive
Komponente in der wässrigen Phase zu weniger als 10 %, vorzugsweise zu
weniger als 5 %, insbesondere zu weniger als 1 %, löslich sind/ist.

45. Verfahren nach einem der Ansprüche 26 bis 44, dadurch gekennzeichnet,
daß die erhaltenen Polymerkapseln eine mittlere Teilchengröße von etwa 50
nm bis etwa 500 μm, insbesondere etwa 100 nm bis etwa 250 μm,
vorzugsweise etwa 200 nm bis etwa 100 μm, aufweisen.

46. Verfahren nach einem der Ansprüche 26 bis 45, dadurch gekennzeichnet, daß
das Löse- oder Dispersionsmittel das Tensid ist und/oder umfaßt,
insbesondere wobei das Löse- oder Dispersionsmittel und gleichzeitig das
Tensid Ölsäure ist.

47. Polymerkapseln, erhältlich nach dem Verfahren gemäß den Ansprüchen 26
bis 30 und 33 bis 46.

48. Polymerkapseln, erhältlich nach dem Verfahren gemäß den Ansprüchen 31
bis 46.

49. Dispersioen, insbesondere wässrige Dispersioen, enthaltend
Polymerkapseln nach den Ansprüchen 1 bis 25, 47 und 48.
50. Dispersionen nach Anspruch 49, gekennzeichnet durch einen Gehalt an Polymerkapseln bis zu 20 %, insbesondere bis zu 15 %, vorzugsweise bis zu 10 %, bezogen auf das Gewicht der Dispersion.

51. Dispersionen nach Anspruch 49 oder 50 in Form von Wasch- und Reinigungsmitteln, Kosmetika oder Körperpflegemittel.

52. Verwendung der Polymerkapseln nach den Ansprüchen 1 bis 25, 47 und 48 oder der Dispersionen nach den Ansprüchen 49 bis 51 in der Waschmittel- und Reinigungsmittelindustrie oder in der Kosmetik- und Körperpflegeindustrie.

53. Verwendung der Polymerkapseln nach den Ansprüchen 1 bis 25, 47 und 48 oder der Dispersionen nach den Ansprüchen 49 bis 51 als Delivery-Systeme, insbesondere im Bereich der Wasch- und Reinigungsmittel und/oder im Bereich der Kosmetik und Körperpflege, vorzugsweise mit verlängerter oder verzögerter Freisetzung der duftaktiven Komponente (Sustained-release-Effekt).

54. Verwendung der Polymerkapseln nach den Ansprüchen 1 bis 25, 47 und 48 oder der Dispersionen nach den Ansprüchen 49 bis 51 zur kontrollierten und/oder verzögerten Freisetzung von duftaktiven Komponenten.

55. Verwendung der Polymerkapseln nach den Ansprüchen 1 bis 25, 47 und 48 oder der Dispersionen nach den Ansprüchen 49 bis 51 zur Auftragung von Beschichtungen, Filmen und/oder Überzügen.

56. Verwendung nach einem der Ansprüche 52 bis 55, dadurch gekennzeichnet, daß die Steuerung der Freisetzung der duftaktiven Komponente durch die Auswahl der Art der Zusammensetzung der Polymerkapseln, insbesondere durch die Auswahl der Art und Menge des Polymers und/oder durch die Auswahl der Art und Menge der Duftkomponente, erfolgt.
57. Filme, Überzüge, Schichten und/oder Beschichtungen, erhältlich ausgehend von Polymerkapseln nach den Ansprüchen 1 bis 25, 47 und 48 und/oder ausgehend von den Dispersionen nach den Ansprüchen 49 bis 51.

58. Oberflächen, auf die Filme, Überzüge, Schichten und/oder Beschichtungen nach Anspruch 57 aufgebracht sind.