201271777580 A2 |1 000 00 AR OO

<

W

(43) International Publication Date
27 December 2012 (27.12.2012)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2012/177580 A2

(51
eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification: Not classified

International Application Number:
PCT/US2012/043038

International Filing Date:
18 June 2012 (18.06.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/163,730 20 June 2011 (20.06.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: FORTIER, Dominique; ¢/o Microsoft Corpor-
ation, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). MAILLET,
Steven; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). AASHEIM, Jered; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(84)

DZ, EC, EE, EG, ES, FI, GB, GD, GF, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: STORAGE MEDIA ABSTRACTION FOR UNIFORM DATA STORAGE

100
/_J
Storage Abstraction System
110 120 130 140
f_J /—J
Data Application Storage Location
Store(s) Interface Metadata Selection
Component Component Component
150 r_1J60 /—1]0 r_1)80
Storage Data Data
Policy Monitoring Transfer %aotqugﬁgﬁts
Component Component Component p
FIG. 1

(57) Abstract: A storage abstraction system is described herein that exposes storage from an operating system as a uniform storage
device and abstracts from applications the selection of a particular storage location and different properties of storage devices. The
application provides the data to store and some information about the application's goals for storing the data, and lets the operating
system route the data to the right place based on the data's characteristics. The operating system may choose to store data anywhere
from L2 cache to a cloud-based storage service and anything in between, based on information about the data's persistence require -
ments, expected usage, access frequency, security needs, and so forth. The system lets applications and users focus on expressing
their goals and needs for the data, and lets the operating system manage the hardware.



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

STORAGE MEDIA ABSTRACTION FOR UNIFORM DATA
STORAGE

BACKGROUND
[0001] A variety of devices exists in computer systems for storing data. Desktops,
servers, laptops, and other computing devices may include one or more hard drives for
storing large amounts of data. Hard drives may be configured for a variety of data access
purposes. For example, a server may use a redundant array of inexpensive disks (RAID)
configuration, a storage area network (SAN), or other technologies that improve storage
characteristics such as latency, fault tolerance, security, capacity, access time, and so on.
Laptops and mobile devices may include flash memory, and many computer systems use
flash-based memory today in the form of solid-state disks (SSDs). Computing systems
also have access to remote storage, such as cloud-based storage services from multiple
vendors, online backup solutions, remote datacenters provided within an organization, and
so forth.
[0002] Software applications can select from any of these devices when storing data.
An application may generate documents, configuration information, or other output that
the application stores by invoking one or more operating system storage application-
programming interfaces (APIs). These APIs typically involve the application explicitly
identifying a storage device on which to store data. For example, the operating system
may assign a letter or device path to each available storage device that the application
specifies along with a folder path within the drive at which to store output data produced
by the application. Users, too, become involved in managing data storage, and often
memorize where their documents are stored so that the user can inform the application or
another application where to find stored data items on the computer system. A user may
download a document or other data item with one application, telling the application
where to store the item, and then open the item with another application, telling that
application where to find the item. Thus, users and applications are heavily involved in
data management today.
[0003] Often the user (or administrator) is the only one that knows the configuration
of the computer system and the particular storage characteristics and benefits of each
storage device. For example, the user may know that a storage device identified by drive
letter C is an SSD, drive D is a RAID array, drive E is a SAN, and drive F is an optical
disk. The user may use his knowledge of each drive’s properties to decide where to store

data when using an application. For example, if the user wants a fast access time for the



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

data, he may choose to store it on the SSD. If the user wants to archive the data and does
not expect to access it frequently, he may burn the data to an optical disk using the optical
drive. If the user selects poorly, then the data may be more difficult or slower to access.
As data characteristics change, such as a file becoming less frequently accessed by the
user, it is up to the user to manually manage the data to delete it, move it to a different
storage device, and so forth. Operating systems provide programs and third parties
provide a significant number of utilities just for managing data stored by applications.
Data management is often a difficult and time-consuming task.

SUMMARY

[0004] A storage abstraction system is described herein that exposes storage from an
operating system as a uniform storage device and abstracts from applications the selection
of a particular storage location and different properties of storage devices. The application
provides the data to store and some information about the application’s goals for storing
the data, and lets the operating system route the data to the right place based on the data’s
characteristics. The operating system may choose to store data anywhere from L2 cache
to a cloud-based storage service and anything in between, based on information about the
data’s persistence requirements, expected usage, access frequency, security needs, and so
forth. The system lets applications and users focus on expressing their goals and needs for
data, and expects the operating system manage the hardware so the application and user
can refocus on using the data rather than becoming buried in the minutia of managing how
it is stored.

[0005] In some embodiments, the storage abstraction system provides an API
exposed to applications that abstracts the storage media away from the storage action.
When writing data, the operating system receives the contextual information, determines
available storage devices, and automatically selects a location at which to store the data.
The operating system provides a reference to the application for requesting the data in the
future, which may remain valid even if the data is subsequently moved to a new location.
The operating system may maintain an index of where data is stored so that references to
data can be resolved to data storage locations. The operating system may monitor data
over time and determine additional data characteristics. As data characteristics change,
the operating system may select a new location to which to transfer data, where the
application can still access the data using the provided references. Thus, the storage
abstraction system relieves applications and users from managing data placement and

automatically manages stored data to select the most appropriate storage medium.



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

[0006] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figure 1 is a block diagram that illustrates components of the storage
abstraction system, in one embodiment.

[0008] Figure 2 is a flow diagram that illustrates processing of the storage
abstraction system to store application data at an automatically selected location, in one
embodiment.

[0009] Figure 3 is a flow diagram that illustrates processing of the storage
abstraction system to monitor stored application data for changed data characteristics, in
one embodiment.

DETAILED DESCRIPTION

[0010] A storage abstraction system is described herein that exposes storage from an
operating system as a uniform storage device and abstracts from applications the selection
of a particular storage location and different properties of storage devices. In other words,
the storage abstraction system separates the application’s storage actions from the decision
of where to store data. The application provides the data to store and some information
about the application’s goals for storing the data, and lets the operating system route the
data to the right place based on the data’s characteristics. The operating system may
choose to store data anywhere from L2 cache to a cloud-based storage service and
anything in between, based on information about the data’s persistence requirements,
expected usage, access frequency, security needs, and so forth. Unlike storage today,
which is very device centric and relies heavily on application and user knowledge, the
storage abstraction system lets applications and users focus on expressing their goals and
needs for data, and expects the operating system manage the hardware like it was
originally designed to do. The application and user can refocus on using the rather than
becoming buried in the minutia of managing how it is stored.

[0011] In some embodiments, the storage abstraction system provides an API
exposed to applications that abstracts the storage media away from the storage action. For
example, the API may provide applications Write and Read functions, where the Write
function specifies contextual information about the data without specifying a data location,

and the Read function specifies an opaque reference to the data that does not identify a



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

specific location. When writing data, the operating system receives the contextual
information, determines available storage devices, and automatically selects a location at
which to store the data. The operating system provides a reference to the application for
requesting the data in the future, which may remain valid even if the data is subsequently
moved to a new location. The operating system may maintain an index of where data is
stored so that references to data can be resolved to data storage locations. The operating
system may monitor data over time and determine additional data characteristics. As data
characteristics change, the operating system may select a new location to which to transfer
data, where the application can still access the data using the provided references.

[0012] In some embodiments, the storage abstraction system receives a set of
policies configured by an administrator or other user that provides instructions for
characterizing data. The application itself and the user may also provide instructions for
characterizing the data. The policy determines which contextual information wins when
there is a conflict, and the system uses the policy to select an appropriate storage location
for received data. The system stores the data for later use (potentially with the data itself),
and begins monitoring the data usage patterns. Monitoring allows the system to detect
changes in data characteristics that may suggest a different storage location for the data.
The system may perform periodic batch processing to relocate data that is more suitably
stored at a different location. For example, the system may migrate data from a flash-
based disk drive to a traditional hard drive, from a hard drive to a cloud-based storage
service, or between any other storage locations. In some cases, the system may keep
multiple copies of data and determine which copy to use to satisfy any particular
application request. At any given time, the system matches characteristics of the available
storage such as latency, security, availability, reliability, retention capability, and size,
with the purpose of any given data item to determine suitable storage media for storing the
data. Thus, the storage abstraction system relieves applications and users from managing
data placement and automatically manages stored data to select the most appropriate
storage medium.

[0013] Figure 1 is a block diagram that illustrates components of the storage
abstraction system, in one embodiment. The system 100 includes one or more data stores
110, an application interface component 120, a storage metadata component 130, a
location selection component 140, a storage policy component 150, a data-monitoring
component 160, a data transfer component 170, and a data access component 180. Each

of these components is described in further detail herein.



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

[0014] The one or more data stores 110 store data received from one or more
applications and managed by the system. The data stores may include one or more
volatile memories, files, file systems, hard drives, flash-based memory devices, storage
arca networks, databases, cloud-based storage services, or other facilities for persisting
application data over time. The system 100 determines the data stores 110 available for
storing data and selects an appropriate data store for any given data item automatically on
behalf of an application or user. The system 100 selects a data store based on one or more
policies or goals for efficiently managing data without burdening the application or user
with that task.

[0015] The application interface component 120 provides an interface to one or
more applications for storing and accessing data used by the application. The interface
may include one or more APIs, user interfaces, or other channels for communicating
information to and from the system 100. The application interface component 120
receives from an application requests to store and access data and invokes other
components of the system 100 to complete the requests. For example, upon receiving a
reference from an application to access a previously stored data item, the application
interface component 120 may invoke the data access component 180 to locate and retrieve
the requested data.

[0016] The storage metadata component 130 receives information from an
application and automatically determines characteristics of data that the application
requests to be stored. The characteristics may include information describing how
frequently the application will access the data, priority of the data, recoverability of the
data, security expectations of the data, legal compliance requirements for the data, and so
forth. The data characteristics affect where the data can be stored and from which data
store the data can be most efficiently accessed. For example, health or business
information that cannot be exported under local laws may not be suitable for storage in a
cloud that includes servers in a foreign country. Frequently accessed data may be most
suitable for storage in a local, low latency device, while lower priority or less frequently
accessed data may be able to be efficiently stored remotely or in a higher latency storage
medium.

[0017] The location selection component 140 automatically selects a storage
medium on which and a location therein at which to store received application data based
on the determined data characteristics. The component 140 may enumerate and manage a

list of available storage devices, and may apply one or more policies or heuristics to select



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

an appropriate storage medium for a particular data item, based on the data items
characteristics, goals of the system, needs of an operating system, and so forth. For
example, if a storage medium is getting full or becoming heavily fragmented, the
component 140 may select a different storage medium for storing new data. As another
example, the system may factor in latency, security, or other considerations to select a
medium that will provide the user with an expected level of service for the data. For
example, a user would not expect long delays to access a document that the user
frequently accesses, but may accept a longer delay to access rarely used data. This can
allow the component 140 to select between remote and local storage as well as low latency
and high latency storage. The system 100 may also consider bandwidth costs of migrating
data. For example, small files may be placed farther away than large files because the
bandwidth used to retrieve them is less than a large file and therefore incurs lower cost.
[0018] The storage policy component 150 receives one or more policies that affect
the location and medium selected for storing received data. An administrator may
determine one or more policies for an organization that coincide with internal policies of
the organization, legal compliance under which the organization operates, or other
restrictions related to where data is stored. The system 100 may provide a user interface
through which the administrator or other users can configure preferences for how data is
stored. The system 100 may receive different policies for different types of data, based on
file types, the application that creates the data, where the data is created, a user that creates
the data, or any other criteria presented by the system 100.

[0019] The data-monitoring component 160 monitors stored data over time to
determine whether data characteristics change and whether the automatically selected
storage location remains an appropriate location for storing each data item. For example,
if once frequently accessed data is not accessed for a threshold period, then the component
160 may determine that the data can be moved to higher latency, cheaper cost storage or
even be deleted. Conversely, if data is accessed more frequently than originally expected,
the system may make the data more readily available by moving the data to a low latency,
local storage device or even keeping the data in memory or L2 cache. The data-
monitoring component 160 may provide feedback or generate a report to the user so that
the user can manage and monitor how the system 100 is making decisions related to the

user’s data.



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

[0020] The data transfer component 170 moves data originally stored at a first
location to a second location determined by the data-monitoring component 160. The data
transfer component 170 may move data due to changed characteristics of the data,
evolving needs of a computing device on which the system 100 operates (e.g., a disk
getting full or request to transfer data to a new computing device), bandwidth cost, or
other factors that affect the efficient placement of data. The data transfer component 170
may move data to the new location and lazily remove data from the old location to allow
applications to continue to access the data at both locations or to more efficiently utilize
resources of the computing device. Those of ordinary skill in the art will recognize
numerous existing technologies for efficient handling of data replication and movement
that can be used in conjunction with the system 100 described herein.

[0021] The data access component 180 provides access to applications to one or
more data items regardless of a storage location of the items that was previously
automatically selected by the system 100. The component 180 receives a reference to the
data from the application (e.g., a globally unique identifier (GUID)) and consults an index
or other data structure managed by the system 100 to determine where the data is presently
stored. The component 180 then accesses the data at the identified location and provides
the data to the application. The application can remain unaware of where the data is stored
and can avoid the burden of complex data management associated with computing
systems today.

[0022] The computing device on which the storage abstraction system is
implemented may include a central processing unit, memory, input devices (e.g., keyboard
and pointing devices), output devices (e.g., display devices), and storage devices (e.g.,
disk drives or other non-volatile storage media). The memory and storage devices are
computer-readable storage media that may be encoded with computer-executable
instructions (e.g., software) that implement or enable the system. In addition, the data
structures and message structures may be stored or transmitted via a data transmission
medium, such as a signal on a communication link. Various communication links may be
used, such as the Internet, a local area network, a wide area network, a point-to-point dial-
up connection, a cell phone network, and so on.

[0023] Embodiments of the system may be implemented in various operating
environments that include personal computers, server computers, handheld or laptop
devices, multiprocessor systems, microprocessor-based systems, programmable consumer

clectronics, digital cameras, network PCs, minicomputers, mainframe computers,



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

distributed computing environments that include any of the above systems or devices, set
top boxes, systems on a chip (SOCs), and so on. The computer systems may be cell
phones, personal digital assistants, smart phones, personal computers, programmable
consumer electronics, digital cameras, and so on.

[0024] The system may be described in the general context of computer-executable
instructions, such as program modules, executed by one or more computers or other
devices. Generally, program modules include routines, programs, objects, components,
data structures, and so on that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program modules may be combined or
distributed as desired in various embodiments.

[0025] Figure 2 is a flow diagram that illustrates processing of the storage
abstraction system to store application data at an automatically selected location, in one
embodiment.

[0026] Beginning in block 210, the system receives an application request to store
data generated by the application. The request may include a pointer to one or more bytes
of data, a data size, and one or more characteristics of the data. The characteristics may
identify an expected frequency of access of the data, how long the data will be needed
(e.g., temporary file versus permanent storage), whether the data is private or security
sensitive, any legal compliance restrictions associated with the data, and so on. The
system may receive the characteristics as one or more flags or other parameters to a
storage API provided by an operating system to the application.

[0027] Continuing in block 220, the system receives metadata that describes
characteristics of the data useful for determining where to store the data. As noted
previously, the system may receive the metadata with the request to store the data, or may
receive separate information describing the data. In some embodiments, the system
provides a backwards compatibility layer that allows existing applications to call
traditional file system APIs while another application or component provides metadata
describing data the application stores.

[0028] Continuing in block 230, the system automatically determines one or more
data characteristics in addition to the data characteristics received from the application.
For example, the system may note the application that provided the data, when the data
was received, how large the data is, information accessible from a knowledge base
describing typical behavior of the application, and so forth. The system uses the received

and determined data characteristics to create a complete picture of how the application will



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

use the stored data so that the system can select an appropriate location for the data from
among multiple available storage devices.

[0029] Continuing in block 240, the system identifies one or more potential storage
locations and properties of the identified locations at which the system can store the
application data. The system may invoke one or more operating system functions for
enumerating storage devices attached to the computing system on which the system is
running as well as receiving information describing external storage locations, such as
cloud-based data stores, remote databases, file shares, and so on. Even when there is only
a single storage device (e.g., a hard drive), the system still benefits the application by
unburdening the application from needing to understand the number of storage devices. In
the case of multiple storage devices, the system relieves the application (and user) from
complicated file management and selects where to store data on the application’s behalf.
The system can also leverage information known about multiple applications to manage
data more efficiently for the whole system than any single application would have the
information to do.

[0030] Continuing in block 250, the system automatically selects one of the potential
storage locations based on the data characteristics and storage location properties. The
system matches data characteristics and application expectations with storage location
properties. For example, if an application requests frequent access to a data item and a
particular storage location provides fast, low-latency access to stored items, then the
system may decide to store the data item at that storage location. The system may also
consider other properties not known to the application, such as available capacity of the
storage device, power consumed by the storage device, and so on. The system either does
not receive a storage location from the application or may ignore a location provided by
the application to select a location based on criteria chosen by the system.

[0031] Continuing in block 260, the system provides a reference to the application in
response to the storage request through which the application can access the data
regardless of the data’s location. The reference may include a GUID, hash key, or other
reference that the system can use to determine which data item the application is
requesting and to determine where the system is currently storing the underlying data
items. The system may include an index or other data structure for cataloging where data
items are stored and matching cach stored data item to a reference given to the application

for retrieving the data item. After block 260, these steps conclude.



10

15

20

25

30

WO 2012/177580 PCT/US2012/043038

[0032] Figure 3 is a flow diagram that illustrates processing of the storage
abstraction system to monitor stored application data for changed data characteristics, in
one embodiment.

[0033] Beginning in block 310, the system monitors a stored data item to identify
one or more data access characteristics that indicate how the data item is used. For
example, the system may observe frequency of access of the data, time of day that the data
is accessed, whether the data is ever updated after it is first written (e.g., write-once, read-
many (WORM) data), and so forth.

[0034] Continuing in block 320, the system updates stored metadata describing the
stored data item based on the identified data access characteristics. The system may track
metadata for each item stored by the system or for items that leverage automatic storage
location selection provided by the system. The metadata aggregates information known
by the system describing how cach data item is used so that the system can factor the
aggregate information into decisions related to managing the data.

[0035] Continuing in block 330, the system transfers the data to a new location
without informing an application that originally stored the data. The system separates
application knowledge of data that was stored from system knowledge of where data is
stored, so that the application can focus on the application’s context of the data and is
removed from managing how and where data is stored. The system manages how and
where data is stored on behalf of multiple applications and can manage data according to a
global or cross-application policy based on information technology (IT) policies or other
goals.

[0036] Continuing in block 340, the system receives an application request to access
the transferred data, wherein the application provides a reference to identify the data but
this reference does not include information indicating where the data is stored. The
system looks up the data’s location using the received reference and location information
managed by the system.

[0037] Continuing in block 350, the system determines the storage location of the
data based on the received reference. The storage location may include a particular
storage medium, storage device, and location within the storage device. For example, the
location may indicate a folder on a hard drive, a data reference for a cloud-based storage
service, or other storage location information. The system may include a local, remote, or

distributed index with which the system maps storage locations to data items so that data

10



10

15

20

25

WO 2012/177580 PCT/US2012/043038

items can be found upon request regardless of their location and without the application
knowing where the system previously placed or subsequently transferred the data.

[0038] Continuing in block 360, the system accesses the requested data at the
determined location and provides the requested data to the application. The system may
retrieve the data using file system APIs, a web service API for cloud storage, or using
other paradigms for accessing data. Regardless of where the data is stored or any unique
properties of the location where the data is stored, the storage abstraction system presents
a uniform interface for accessing data to the application, so the application is unburdened
from knowing about and managing differing device characteristics and access methods.
After block 360, these steps conclude.

[0039] In some embodiments, the storage abstraction system provides a storage
device of unlimited size to an application. Because applications today select a storage
device explicitly, the application can no longer store data to the device when the device
gets full. However, the system does not present any one storage device to the application
but rather provides a storage service that is available to the application to store potentially
unlimited amounts of data. As an application stores data, the system may place some data
on one storage device and other data on other storage devices, so that as the application’s
needs for storage space grow, the system can find and provide more and more storage to
the application. Ultimately, the system can extend storage over to a cloud or other
external storage so that the application does not run out of space. The system can also
handle peak or unusual but time sensitive application requests for extra storage by
identifying available external storage and providing the identified storage to the
application until the application returns to a normal level of storage needs.

[0040] From the foregoing, it will be appreciated that specific embodiments of the
storage abstraction system have been described herein for purposes of illustration, but that
various modifications may be made without deviating from the spirit and scope of the

invention. Accordingly, the invention is not limited except as by the appended claims.

11



WO 2012/177580 PCT/US2012/043038

CLAIMS
I/We claim:
L. A computer-implemented method to store application data at an
automatically selected location, the method comprising;:
receiving an application request to store data generated by the application;
receiving metadata describing characteristics of the data useful for
determining where to store the data;
automatically determining one or more data characteristics in addition to the
data characteristics received from the application;
identifying one or more potential storage locations and properties of the
identified locations at which the system can store the application data;
automatically selecting one of the potential storage locations based on the
data characteristics and storage location properties; and
providing a reference to the application in response to the storage request
through which the application can access the data regardless of the
data’s location,

wherein the preceding steps are performed by at least one processor.

2. The method of claim 1 wherein receiving the application request
comprises receiving one or more bytes of data, a data size, and one or more characteristics

of the data.

3. The method of claim 1 wherein receiving the application request
comprises receiving information identifying an expected frequency of access of the data

by the application.

4. The method of claim 1 wherein receiving the application request
comprises receiving information identifying how long the data will be needed by the

application.
5. The method of claim 1 wherein receiving the application request

comprises receiving information identifying whether the data is private, security sensitive,

or has legal compliance restrictions associated with the data.

12



WO 2012/177580 PCT/US2012/043038

6. The method of claim 1 herein receiving metadata comprises receiving
metadata separately from the storage request to allow backwards compatibility with

existing applications that call traditional file system APIs to store data.

7. The method of claim 1 wherein automatically determining

characteristics comprises identifying the application that provided the data.

8. The method of claim 1 wherein identifying potential storage locations
comprises invoking one or more operating system functions for enumerating storage

devices attached to a computing system.

9. The method of claim 1 wherein identifying potential storage locations
comprises receiving information describing one or more external storage locations,

including at least one cloud-based data storage service.

10. The method of claim 1 wherein identifying potential storage locations
comprises identifying information related to at least one other application’s use of data

storage to efficiently manage data storage locations across multiple applications.

11. The method of claim 1 wherein selecting a storage location comprises
matching data characteristics with storage location properties to determine a storage

location for storing the requested data.

12. The method of claim 1 wherein selecting a storage location comprises

considering other properties not known to the application related to each storage location.

13. The method of claim 1 wherein providing the reference to the
application comprises creating a reference that the system can use to determine which data
item the application is looking for and to determine where the system is currently storing

the requested data item.

14. The method of claim 1 wherein providing the reference to the

application comprises providing a reference related to an index of data items.

13



WO 2012/177580 PCT/US2012/043038

15. A computer system for storage media abstraction to provide uniform

data storage, the system comprising:

a processor and memory configured to execute software instructions
embodied within the following components;

one or more data stores that store data received from one or more
applications and managed by the system;

an application interface component that provides an interface to one or more
applications for storing and accessing data used by each application;

a storage metadata component that receives information from an application
and automatically determines characteristics of data that the
application requests to be stored;

a location selection component that automatically selects a storage medium
on which to store received application data and a location therein at
which to store the received application data based on the determined
data characteristics;

a storage policy component that receives one or more policies that affect the
location and medium selected for storing received data;

a data-monitoring component that monitors stored data over time to
determine whether data characteristics change and whether the
automatically selected storage location remains an appropriate
location for storing each data item;

a data transfer component that moves data originally stored at a first location
to a second location determined by the data-monitoring component;
and

a data access component that provides access to applications to one
or more data items regardless of a storage location of the items that

was previously automatically selected by the system.

14



WO 2012/177580 PCT/US2012/043038

1/3
100
/—J
Storage Abstraction System
110 120 130 140
r_J f_J
Data Application Storage Location
Store(s) Interface Metadata Selection
Component Component Component
150 160 170 180
Storage Data Data
Policy Monitoring Transfer %a:)tqugﬁgrsﬂs
Component Component Component P

FIG. 1



WO 2012/177580

2/3

< Store Data )

Receive Application
Request to Store Data

" 210

Recelve Metadata
Describing Data
Characteristics

" 220

Determine Additional
Data Characteristics

" 230

|dentify Potential Storage
Locations and Properties

" 240

Automatically Select
Storage Location

" 250

Provide Reference to
Application to Access
Data

" 260

< pone )

FIG. 2

PCT/US2012/043038



WO 2012/177580 PCT/US2012/043038

3/3

< Monitor Data )

Monitor Stored Data ""310

Update Metadata 320

Transfer Data to New
Location — 7330

Receive Application
Request to Access Data 340

Determine Storage
Location of the Data [~ 350

Provide Requested Data
to Application 7360

< pone )

FIG. 3




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings

