(54) Title: ANTAGONISTS OF A2B HUMAN ADENOSINE RECEPTORS

(57) Abstract

The invention concerns the use of 8-phenylxanthines, 8-cycloalkylxan-
thines or 8-substituted xanthine derivatives to specifically modulate the phys-
ilologic role of the A2B adenosine receptor.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BI</td>
<td>Benin</td>
<td>IE</td>
<td>Iceland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KE</td>
<td>Kenya</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LR</td>
<td>Liberia</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>SI</td>
<td>Slovenia</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>SK</td>
<td>Slovakia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>SN</td>
<td>Senegal</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>SZ</td>
<td>Swaziland</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>TD</td>
<td>Chad</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GH</td>
<td>Ghana</td>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
<td>ZA</td>
<td>South Africa</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
ANTAGONISTS OF A2B HUMAN ADENOSINE RECEPTORS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods for the treatment or prevention of disease states induced by activation of the A2B receptor and mast cell activation.

2. Description of the Related Art

A key early event in allergic responses is the activation of mast cells by allergens. For example, in asthma, exposure to an allergen such as ragweed, triggers the release of allergic mediators such as histamine, leukotrienes, etc. from mast cells. The action of allergens to trigger mast cell degranulation is enhanced by adenosine in asthmatics, but not in non-asthmatics (Bjorck T, Gustafsson LE, Dahlen SE: Isolated bronchi from asthmatics are hyper responsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am.Rev.Respir.Dis. 1992;145:1087-1091). Theophylline is a xanthine that is known to block adenosine receptors and is effective therapeutically to treat asthma (Barnes PJ, Pauwels RA: Theophylline in the management of asthma: time for reappraisal?. European.Respiratory.Journal. 1994;7:579-591). For this reason, theophylline is thought to ameliorate the symptoms of asthma, at least in part by blocking adenosine receptors. However, enprofylline, another xanthine that also is used to treat asthma in Europe, was found not to block adenosine receptors in the therapeutic concentration range of 20-50 uM (Chapman KR, Ljungholm K, Kallen A: Long-term xanthine therapy of asthma. Enprofylline and theophylline compared. International Enprofylline Study Group. Chest 1994;106:1407-1413). Hence it was concluded that enprofylline does not work by blocking adenosine receptors. However, this conclusion was based on an examination of enprofylline binding only to two of the four known adenosine receptor subtypes, A1 and A2A receptors.
Applicant and others have recently discovered that the A3 adenosine receptor on mast cells are responsible for adenosine-stimulated release of allergic mediators in rodent species (Jin X, Shepherd RK, Duling BR, Linden J: Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. *J.Clin.Invest.* 1997;100:2849-2857; Ramkumar V, Stiles GL, Beaven MA, Ali H: The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. *J.Biol.Chem.* 1993;268:16887-16890). These findings are misleading in that applicant has found that the A3 receptor is not involved in the release of allergic mediators from other species, including human and dog. Rather, applicant discovered that in canine and human mast cells the A2B and not the A3 adenosine receptor is responsible for adenosine-facilitated mast cell degranulation (Auchampach JA, Jin J, Wan TC, Caughey GH, Linden J: Canine mast cell adenosine receptors: cloning and expression of the A3 receptors and evidence that degranulation is mediated by the A2B receptor. *Mol.Pharmacol.* 1997;52:846-860). Fig. 1 of the instant application shows that NECA (a nonselective agonist that activates A2B and A3 receptors) causes intracellular Ca^{2+} and cyclic AMP accumulation in the human mast cell line, HMC-1. IB-MECA, a potent and selective agonist of the A3 receptor is poorly effective. These data suggest that the A2B receptor mediates these responses in HMC-1 human mast cells. Another published report also suggests that activation of A2B receptors is responsible for triggering interleukin-8 release from human HMC-1 mast cells (Feoktistov I, Biaggioni I: Adenosine A_{2B} receptors evoke interleukin-8 secretion in human mast cells - An enprofylline-sensitive mechanism with implications for asthma. *J.Clin.Invest.* 1995;96:1979-1986).

8-Phenylxanthines, methods of their synthesis and their use in human and veterinary therapy for conditions associated with the cell surface effects of adenosine have been described (EP 0 203 721, published 12/3/86). However, this publication is silent as to whether adenosine receptors mediate this response and if so, which adenosine receptor subtype. Also, the subtype specificity of disclosed compounds is not described. In WO 90/00056, a group of 1,3-
unsymmetrical straight chain alkyl-substituted 8-phenylxanthines were described as being potent bronchodilators. This disclosure is likewise silent as to the role of adenosine and the subtype specificity of disclosed compounds.

SUMMARY OF THE INVENTION

The present invention concerns the use of compounds identified as specific modulators of adenosine's physiological actions. The pharmacology of these compounds is characterized through the use of cloned human adenosine receptors of the A1, A2A, A2B and A3 class and their subtypes. Applicant has found that compounds identified as antagonists of the A2B adenosine receptor subtype are useful in preventing mast cell degranulation and are therefore useful in the treatment or prevention of disease states induced by activation of the A2B receptor and mast cell activation. These disease states include but are not limited to asthma, myocardial reperfusion injury, allergic reactions including but not limited to rhinitis, poison ivy induced responses, urticaria, scleroderma arthritis, other autoimmune diseases and inflammatory bowel diseases. The present invention is based on the finding that antagonists of the A2B adenosine receptor subtype have anti-inflammatory action.

Through the use of homogenous, recombinant adenosine receptors, the identification and evaluation of compounds which have selectivity for a single
receptor subtype have now been accomplished. Moreover, because of the variable effects of adenosine documented in other species, the utilization of human adenosine receptor subtypes is advantageous for the development of human therapeutic adenosine receptor agonists, antagonists or enhancers. In previous research conducted by the Applicant, compounds which unexpectedly exhibit selective binding affinity for the human A2B adenosine receptor were identified, along with methods for using such compounds to overcome the disadvantages of using compounds of uncharacterized specificity. The compounds specifically block activities mediated through the activation of the A2B receptor subtype without substantially blocking the activities of other adenosine receptor subtypes. In particular, Applicant found that the use of such compounds, identified through the use of recombinant human adenosine receptors A1, A2A, A2B and A3, and functional assays, can specifically modulate the physiologic role of adenosine activation of various receptors.

Applicant has developed for the first time a radioligand binding assay for the A2B adenosine receptor (Linden, J. et al. US patent application serial no 08/670,175, filed June 20, 1996, the entire disclosure of which is herein incorporated by reference). Using this assays system, applicant has discovered that enprofylline, in the therapeutic concentration range of 20-50 μM used to treat asthma, blocks recombinant human A2B adenosine receptors, but is a much weaker antagonist of other adenosine receptor subtypes (Figure 2 and Table 1).

The release of enzymes, bioactive amines and arachidonic acid metabolites following mast cell activation causes vasoconstriction, edema, leukocyte accumulation, and ultimately, tissue damage. Mast cell degranulation is a component of myocardial reperfusion injury, hypersensitivity reactions
(asthma, allergic rhinitis, and urticaria), ischemic bowel disease, autoimmune inflammation, and atopic dermatitis. Highly specific A2B adenosine receptor antagonists can be used to treat or prevent these diseases and pathologic effects that result from mast cell degranulation.

Mast cell degranulation is clearly involved in the pathophysiology of allergies such as asthma. Autoimmune diseases are also characterized by immune reactions which attack targets, including self-proteins in the body such as collagen, mistaking them for invading antigens. The resulting damage, caused at least in part by mast cell degranulation, is amenable to treatment by the method of this invention which comprises administration of selective A2B adenosine receptor antagonists effective to inhibit mast cell degranulation. Among these types of diseases, all of the following, but not limited to these, are amenable to treatment by the administration of selective A2B adenosine receptor antagonists: Addison's disease (adrenal), autoimmune hemolytic anemia (red cells), Crohn's disease (gut), Goodpasture's syndrome (kidney and lungs), Grave's disease (thyroid), Hashimoto's thyroiditis (thyroid), idiopathic thrombocytopenic purpura (platelets), Insulin-dependent diabetes mellitus (pancreatic beta cells), multiple sclerosis (brain and spinal cord), myasthenia gravis (nerve/muscle synapses), Pemphigus vulgaris (skin), pernicious anemia (gastric parietal cells), poststreptococcal glomerulonephritis (kidney), psoriasis (skin), rheumatoid arthritis (connective tissue), sclerodema (heart, lung, gut, kidney), Sjogren's syndrome (liver, kidney, brain, thyroid, salivary gland), spontaneous, infertility (sperm), systemic lupus erythematosus (DNA, platelets, other tissues).

Disease states associated with A2B adenosine receptor activation and mast cell degranulation include, but are not limited to asthma, myocardial
reperfusion injury, allergic reactions including but not limited to rhinitis, asthma, poison ivy induced responses, urticaria, scleroderma, arthritis, and inflammatory bowel diseases.

The present invention is directed to the discovery that antagonists of A2B receptors are anti-inflammatory in man. A3 adenosine receptors also have an anti-inflammatory action, but are most important in rodent species. It has been found that enprofylline, a compound already used to treat asthma, blocks A2B adenosine receptors and that human HMC-1 mast cells have A2B receptors and that 8-phenylxanthines that block human A2B adenosine receptors are useful in the treatment or prevention of disease states induced by activation of the A2B receptor and mast cell activation. Also, applicant has discovered that BW-A493 is a potent and selective antagonist of human A2B adenosine receptors (Table 1).

A further aspect of the invention is the treatment of prevention of asthma, bronchoconstriction, allergic potentiation, inflammation or reperfusion injury in a human by administering to the human an amount of an adenosine A2B receptor specific inhibitor comprising an 8-phenylxanthine or 8-phenylxanthine derivative effective to antagonize activation of the adenosine receptor of the A2B subtype by adenosine.

The invention also relates to a method for treating a human suffering from an autoimmune disease selected from the group consisting of Addison's disease (adrenal), autoimmune hemolytic anemia (red cells), Crohn's disease (gut), Goodpasture's syndrome (kidney and lungs), Grave's disease (thyroid), Hashimoto's thyroiditis (thyroid), idiopathic thrombocytopenic purpura (platelets), insulin-dependent diabetes miltitus (pancreatic beta cells), multiple sclerosis (brain and spinal cord), myasthenia gravis (nerve/muscle synapses),
Pemphigus vulgaris (skin), pernicious anemia (gastric parietal cells), post-streptococcal glomerulonephritis (kidney), psoriasis (skin), rheumatoid arthritis (connective tissue), scleroderma (heart, lung, gut, kidney), Sjogren’s syndrome (liver, kidney, brain, thyroid, salivary gland), spontaneous infertility (sperm), and systemic lupus erythematosus (DNA, platelets, other tissues), which comprises administering to the human an effective amount of a selective A2B adenosine receptor antagonist comprising a xanthine or a xanthine derivative having a meta-substituted acidic aryl at the 8 position to inhibit mast cell degranulation.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B illustrate that 5-N-ethylcarboxamidoadenosine (NECA) but not N\(^6\)-(2-iodo)benzyl-5’-N-methylcarboxamidoadenosine (IB-MECA) stimulates human mast cells to mobilize calcium and to accumulate cyclic AMP.

Figure 2A is an illustration of competitive binding studies of theophylline and enprofylline for the rhA2B adenosine receptor.

Figure 2B is an illustration of competitive binding studies of theophylline and enprofylline for the rhA3 adenosine receptor.

Figures 3A and 3B illustrate the functional effects of theophylline and enprofylline in modulating cAMP in HEK 293 cells transfected with A2B adenosine receptor cells.

Figure 4 is an illustration of the functional effects of theophylline and enprofylline in modulating cAMP in HEK 293 cells transfected with A3 adenosine receptor cells.

Figure 5 is an illustration of the effects of theophylline and enprofylline on inositol-(1,4,5)-trisphosphate (IP\(_3\)) generation.
Figure 6 is an illustration of the effects of theophylline and enprofylline on intracellular calcium mobilization.

Figure 7 is an illustration of structures to further identify compounds described in this application.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a method for achieving a blockade of the mast cell degradation response induced through adenosine activation of the A2B adenosine receptor subtype. The method comprises contacting cells bearing the A2B receptor with an amount of an adenosine A2B receptor subtype specific inhibitor comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative effective to block activation of the receptor by adenosine.

Further, the invention relates to a method for treating or preventing myocardial ischemia, inflammation, brain arteriole diameter constriction, and/or the release of allergic mediators. The method comprises using a specific inhibitor of the A2B adenosine receptor subtype to inhibit effects induced by adenosine mediated mast cell degranulation by contacting A2B receptor bearing mast cells with an amount of a selective A2B inhibitor comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative effective to prevent mast cell degranulation.

Further the invention relates to a method for preventing or treating asthma, bronchoconstriction, allergic potentiation, inflammation or reperfusion injury in a human. The method comprises administering to the human an effective amount of an adenosine A2B receptor specific inhibitor comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or substituted xanthine derivative
to antagonize activation of the adenosine receptor of the A2B subtype by adenosine.

Further, the invention relates to a method for preventing mast cell degranulation in a human. The method comprises administering to the human an amount of an adenosine A2B receptor specific inhibitor comprising an 8-substituted xanthine or 8-substituted xanthine derivative effective to antagonize activation of the adenosine receptor of the A2B subtype by adenosine.

Further, the invention relates to a method for treating an autoimmune disease selected from the group consisting of Addison's disease (adrenal), autoimmune hemolytic anemia (red cells), Crohn's disease (gut), Goodpasture's syndrome (kidney and lungs), Grave's disease (thyroid), Hashimoto's thyroiditis (thyroid), idiopathic thrombocytopenic purpura (platelets), Insulin-dependent diabetes mellitus (pancreatic beta cells), multiple sclerosis (brain and spinal cord), myasthenia gravis (nerve/muscle synapses), Pemphigus vulgaris (skin), pernicious anemia (gastric parietal cells), poststreptococcal glomerulonephritis (kidney), psoriasis (skin), rheumatoid arthritis (connective tissue), scleroderma (heart, lung, gut, kidney), Sjogren's syndrome (liver, kidney, brain, thyroid, salivary gland), spontaneous infertility (sperm), and systemic lupus erythematosus (DNA, platelets, other tissues). The method comprises administration to a patient in need thereof of an effective amount of a selective A2B adenosine receptor antagonist comprising an 8-substituted xanthine or 8-substituted xanthine derivative to inhibit mast cell degranulation.

Further, the invention relates to a method for the treatment or prevention of disease states mediated through activation of the A2B subtype of the adenosine receptor on mast cells by prevention of mast cell degranulation.
through blockade of the A2B subtype of the adenosine receptor. The method comprises contacting mast cells with an inhibitory effective amount of an adenosine A2B receptor specific inhibitor comprising an 8- substituted xanthine or 8- substituted xanthine derivative specific for the A2B receptor subtype. The disease state includes asthma, myocardial reperfusion injury, allergic reactions including but not limited to rhinitis, poison ivy induced responses, urticaria, scleroderma, arthritis, and inflammatory bowel diseases.

A preferred 8-phenyl or 8-cycloalkyl substituted xanthine or 8- substituted xanthine derivative has the formula:

![Chemical Structure](image)

wherein R₁ is a hydrogen, an alkyl, a cycloalkyl, or an aryl; R₂ is a cycloalkyl or an aryl; and R₃ is a phenyl, substituted phenyl, cycloalkyl or substituted cycloalkyl. Specifically, when the 8-phenyl substituted xanthine or 8-phenyl substituted xanthine derivative is BW 493, R₁ = R₂ = \(-\text{CH}_2-\) and R₃ is \(-\text{C}=\text{C}–\text{COO}–\). When enprofylline is selected as the 8-phenyl substituted xanthine or 8-phenyl substituted xanthine derivative, R₁ = H, R₂ = C–C–C and R₃ = H.

Preferably the 8-phenyl or 8-cycloalkyl substituted xanthine or 8- substituted xanthine derivative has an affinity for the A2B subtype of the human adenosine receptor which is at least one order of magnitude greater than the
affinity for either the A1 or A2 subtypes of the human adenosine receptor
effective to antagonize activation of the adenosine receptor of the A2B subtype
by adenosine when:

\[R_1 = R_3 = CH_2-\bigcirc \]

More preferably, the 8-phenyl or 8-cycloalkyl substituted xanthine or 8-
substituted xanthine derivative has a pKi for the A2B subtype of 7 or greater
and a pKi for other adenosine receptor subtypes of 6 or less. Most preferably,
the 8-phenyl or 8-cycloalkyl substituted xanthine or 8- substituted xanthine
derivative is BW 493.

The following examples are provided to further define but not to limit the
invention defined by the foregoing description and the claims which follow:

Example 1

Functional Responses Of Human HMC-1 Mast Cells to NECA and
IB-MECA: In tests as described in “Canine Mast Cell Adenosine Receptors:
Cloning and Expression of the A3 Receptor and Evidence that Degranulation is
Mediated by the A2B Receptor,” *Molecular Pharmacology, 52*:1-15 (1997) to
Auchampapch et al., that reference being incorporated herein by reference,
intact cells were treated with the A3-selective agonist IB-MECA and the
nonselective agonist NECA.

Figures 1A and 1B show (A) Intracellular Ca\(^{2+}\) accumulation measured
in cells pretreated with the Ca\(^{2+}\)-sensitive fluorescent reporter, FURA and (B)
Cyclic AMP accumulation measured by radioimmunoassay. The results are
typical of triplicate experiments. Figures 1A and 1B show that NECA, but not
IB-MECA stimulates canine mast cells to mobilize calcium and to accumulate
cyclic AMP. Agonists of A1 or A2A adenosine receptors do not have these effects. These data suggest that canine mast cells are activated by A2B rather than A3 adenosine receptors.

Example 2

Binding of Enprofylline and Theophylline to Human Adenosine Receptors:
The xanthines theophylline and enprofylline (See Figure 7) are used clinically to treat asthma. However, enprofylline has been reported to bind weakly to adenosine receptors. Lunell *et al.*, Effects of enprofylline, a xanthine lacking adenosine receptor antagonism, in patients with chronic obstructive lung disease, *European Journal of Clinical Pharmacology* 22:395-402 (1982).

Competition for specific radioligand binding of enprofylline and theophylline was measured on membranes prepared from cells expressing (A) recombinant human A2B adenosine receptors and (B) recombinant human A3 adenosine receptors as described in "Molecular Characterization of Recombinant Human Adenosine Receptors," *Drug Development Research*, 39:243-252 (1996) to Robeva *et al.*, which is incorporated herein by reference.

As shown in Figures 2A and 2B, each point is the mean standard error of the mean (SEM) of triplicate determinations. The results are typical of three experiments. In the competition binding studies shown, theophylline and enprofylline compete for $[^3]H$1,3-diethyl-8-phenylxanthine ($[^3]H$DPX, 5nM) binding to rhA2B adenosine receptors as shown in Figure 2A. Both antagonist have higher affinities for human A2B adenosine receptors than for human A3 adenosine receptors (see Figure 2B) with A2B K_i values of 7.1 μM and 5.6 μM for theophylline and enprofylline, respectively.
Example 3

Functional Antagonism by Enprofylline and Theophylline of Recombinant
A2B Receptor-Mediated Cyclic AMP Accumulation: Agonists were used to
modulate cAMP in HEK 293 cells stably transfected the rhA2B adenosine
receptors or rhA3 adenosine receptors. This procedure is also described in the
Auchampach et al. publication.

Figures 3A and 3B shows antagonists of NECA-stimulated cyclic AMP
accumulation in transfected HEK-293 cells by (A) theophylline and (B)
enprofylline. Line (C) is Schild analysis of the data shown in (A) and (B).

NECA or IB-MECA produced a dose-dependent functional response in
cells expressing rhA2B adenosine receptors or rhA3 adenosine receptors
respectively. The addition of theophylline or enprofylline produced a
progressive shift to the right in the potency of NECA in these functional assays.
Schild analyses of the data gave A2B Kᵢ values of 16.7 μM for theophylline and
17.1 μM for enprofylline.

For rhA3 adenosine receptors, the A3-selective agonist, IB-NECA was
used to generate dose-response curves for inhibition of isoproferenol-stimulated
cyclic accumulation in the absence or presence of different concentrations of
theophylline or enprofylline. IB-MECA produced dose-dependent inhibition of
cAMP accumulation stimulated by 1 μM isoproterenol; the maximum inhibition
was 50-70%. The presence of increasing concentrations of either theophylline
or enprofylline shifted the dose-response curve progressively to the right, with
Kᵢ values of 27.6 μM for theophylline and 39.6 μM for enprofylline based on
Schild analysis (see Figure 4). For both A2B and A3 receptors, the Kᵢ values
of theophylline and enprofylline obtained from cAMP functions assays are in
good agreement with the K_i values calculated from radioligand competition binding assays.

Example 4

Effect of Theophylline and Enprofylline of IP$_3$ generation: On agonist stimulation, A2B adenosine receptors activate phospholipase C, leading to inositol-(1,4,5)-trisphosphate (IP$_3$) formation. Characteristically, A2B-mediated effects are insensitive to blockage by pertussis toxin.

In this example, untransfected HEK-293 (HEK 293) or cells transfected with recombinant human A2B adenosine receptors were treated with the indicated compounds. IP$_3$ was measured in cells pretreated with [³H]inositol. This procedure is also described in the Auchampach *et al.* publication.

As shown in Figure 5, NECA at 10 µM produced a 3.5 fold increase in IP$_3$ formation in rhA2B adenosine receptor transfected HEK 293 cells. At 250 µM, both theophylline and enprofylline were able to block the increase in IP$_3$ produced by 10 µM NECA in human A2B adenosine receptor transfected HEK 293 cells. Neither antagonist affected basal levels of inositol phosphates.

Example 5

Effect of Theophylline and Enprofylline on the Ca$^{2+}$ Mobilization: The activation of the phospholipase C pathway leads to intracellular calcium mobilization. NECA produces a dose-dependent increase in intracellular Ca$^{2+}$ content in human A2B adenosine receptor transfected cells.

HEK-293 cells transfected with recombinant human A2B adenosine receptors were treated with the compounds indicated in Figure 6. Calcium
mobilization was measured in cells preloaded with FURA. Again, this procedure is also described in the Auchampach et al. publication.

As shown in Figure 6, theophylline or enprofylline at 100 µM totally blocks the Ca^{2+} response induced by 1 µM NECA.

Example 6

Screening to Identify Selective Antagonists of Recombinant Human A2B Adenosine Receptors: A series of compounds was screened to identify potent A2B selective antagonists. This was done in competition binding assays using recombinant human A1, A2A, A2B or A3 adenosine receptors, similar to that illustrated in Figures 2A and 2B.

Table 1

The following Kᵢ values (nM) show that BW-A493 is a potent and selective A2B antagonist:

<table>
<thead>
<tr>
<th></th>
<th>BW-A493</th>
<th>Enprofylline</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4980 ± 553</td>
<td>156,000 ± 109,000</td>
</tr>
<tr>
<td>A2A</td>
<td>1518 ± 797</td>
<td>32,000 ± 7,800</td>
</tr>
<tr>
<td>A2B</td>
<td>198 ± 52</td>
<td>7,000 ± 1,850</td>
</tr>
<tr>
<td>A3</td>
<td>922 ± 399</td>
<td>65,000 ± 12,100</td>
</tr>
</tbody>
</table>

One should note that the lowest Kᵢ value corresponds to the highest affinity; BW-A493 and enprofylline are A2B selective. As shown above, BW-A493 is approximately 35 times more potent than enprofylline as an antagonist of human A2B adenosine receptors.

Examples 1 to 5 indicate that known anti-inflammatory compounds are antagonists of A2B. The Examples establish that enprofylline, a compound used
to treat asthma, but which previously had an unknown mechanism of action, blocks human A2B adenosine receptors and that human HMC-1 mast cells have A2B receptors indicating that antagonists of A2B as well as A3 adenosine receptors have anti-inflammatory action. Example 6 identifies BW-A493 as a selective antagonist of human A2B adenosine receptors.

Enprofylline can be used in moderately severe asthmatic patients. Typically, a bolus injection of 1.5 mg/kg enprofylline is given over 20 minutes and then a maintenance infusion of 0.4 mg/kg/h is given for up to 24 hours.

While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the variations, adaptations, modifications as come within the scope of the following claims and their equivalents.
WHAT IS CLAIMED IS:

1. The use of an adenosine A2B receptor subtype specific inhibitor comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative effective to block activation of the receptor by adenoside to prepare a medicament useful for achieving blockade of inflammatory responses.

2. The use of a specific inhibitor of the A2B adenosine receptor subtype to prepare a medicament useful for treating or preventing myocardial ischemia, inflammation, brain arteriole diameter constriction, or the release of allergic mediators.

3. The use of an adenosine A2B receptor specific inhibitor comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative to antagonize activation of the adenoside receptor of the A2B subtype by adenoside to prepare a medicament useful for preventing or treating asthma, bronchoconstriction, allergic potentiation, inflammation or reperfusion injury in a human.

4. The use of an adenosine A2B receptor specific inhibitor comprising an 8-phenol or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative effective to antagonize activation of the adenoside receptor of the A2B subtype by adenoside to prepare a medicament useful for preventing mast cell degranulation in a human.

5. The use of an adenosine A2B receptor specific inhibitor comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative effective to reduce vasoconstriction in the vasculature without any substantial effect (binding or blockade) of the A1 or A2A subtypes of the adenosine receptor to prepare a medicament useful for achieving blockade of vascular constriction induced through activation of the A2B subtype of the adenosine receptor in a primate.
6. The use of a selective A2B adenosine receptor antagonist comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative effective to inhibit mast cell degranulation to prepare a medicament useful for treating an autoimmune disease selected from the group consisting of Addison’s disease (adrenal), autoimmune hemolytic anemia (red cells), Crohn’s disease (gut), Goodpasture’s syndrome (kidney and lungs), Grave’s disease (thyroid), Hashimoto’s thyroiditis (thyroid), idiopathic thrombocytopenic purpura (platelets), Insulin-dependent diabetes mellitus (pancreatic beta cells), multiple sclerosis (brain and spinal cord), myasthenia gravis (nerve/muscle synapses), Pemphigus vulgaris (skin), pernicious anemia (gastric parietal cells), poststreptococcal glomerulonephritis (kidney), psoriasis (skin), rheumatoid arthritis (connective tissue), scleroderma (heart, lung, gut, kidney), Sjogren’s syndrome (liver, kidney, brain, thyroid, salivary gland), spontaneous infertility (sperm), and systemic lupus erythematosus (DNA, platelets, other tissues).

7. The use of an adenosine A2B receptor specific inhibitor comprising an 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative specific for the A2B receptor subtype to prepare a medicament useful for the treatment or prevention of disease states mediated through activation of the A2B subtype of the adenosine receptor on mast cells by prevention of mast cell degranulation through blockade of the A2B subtype of the adenosine receptor.

8. The use of claim 7 wherein the disease state associated with A2B adenosine receptor activation and mast cell degranulation includes asthma, myocardial reperfusion injury, allergic reactions including but not limited to rhinitis, poison ivy induced responses, urticaria, scleroderma, arthritis, and inflammatory bowel diseases.

9. The use of any one of claims 1-8, wherein the xanthine derivative is enprofylline.

10. The use of any one of claims 1-8 wherein the 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative has the formula:
19

wherein the R_1 is hydrogen, alkyl, cycloalkyl or aryl; R_2 is cycloalkyl or aryl; and R_3 is phenyl, cycloalkyl, substituted phenyl, or substituted cycloalkyl.

11. The use of any one of claims 1-8 wherein the 8-phenyl or 8-cycloalkyl substituted xanthine or 8-substituted xanthine derivative has the formula:

$$
\begin{array}{c}
\text{O} \\
\text{R}_1 \text{N} \\
\text{O} \\
\text{N} \\
\text{N} \\
\text{R}_2 \\
\text{N} \\
\text{R}_3 \\
\end{array}
$$

wherein $R_1 = R_2 = \text{CH}_2 - \text{cyclohexane}$

and R_3 is

$$
\begin{array}{c}
\text{CH} \\
\text{C} = \text{C} - \text{COO}^{-}
\end{array}
$$

12. The use of any one of claims 1-8 wherein the 8-phenyl or 8-cycloalkyl substituted xanthine or 8- substituted xanthine derivative has an affinity for the A2B subtype of the human adenosine receptor which is at least one order of magnitude greater than the affinity for either the A1 or A2A subtypes of the human adenosine receptor effective to antagonize activation of the adenosine receptor of the A2B subtype by adenosine.
13. The use of any one of claims 1-8, wherein the 8-phenyl or 8-cycloalkyl substituted xanthine or 8- substituted xanthine derivative has the pKi for the A2B subtype of 7 or greater and a pKi for other adenosine receptor subtypes of 6 or less.
FIG. 2A

FIG. 2B

BOUND $[^3]$HDPX (FRACTION OF CONTROL)

BOUND $[^{25}J]$ABA (FRACTION OF CONTROL)

[COMPETITOR], LOG M
FIG. 3A

FIG. 3B
SUBSTITUTE SHEET (RULE 26)
FIG. 4

- THEOPHYLLINE
- ENPROFYLLINE
FIG. 5

[Graph showing data for different conditions with control and treatments labeled.]

FIG. 7

SUBSTITUTE SHEET (RULE 26)
FIG. 6