发明名称
基于功率控制法的高压输电线路CT取电装置

摘要
本发明提供一种高压输电技术领域的基于功率控制法的高压输电线路CT取电装置。高压输电线路先后从取电磁芯和测量磁芯中间穿过，取电磁芯和测量磁芯外分别取电磁芯线圈、测量磁芯线圈，取电磁芯线圈与过压保护及切换继电器连接，过压保护及切换继电器、整流滤波电路、DC/DC模块、电源管理模块、稳压输出电路连接；整流滤波电路与电压电流检测电路连接，电压电流检测电路连接到电源管理模块；电源管理模块与法拉电容连接，法拉电容连接到稳压输出电路；测量磁芯线圈与取样电路连接，取样电路与电源管理模块连接。本发明实现在较大的电流范围内输出稳定的功率，并且在输电线路电流较大时，避免发生磁芯不饱和现象，不存在发热问题。
1. 一种基于功率控制法的高压输电线路 CT 取电装置，包括：
取电磁芯 (2)、环绕于所述取电磁芯 (2) 的取电磁芯线圈 (1)、穿设于所述取电磁芯 (2) 的高压输电线路 (3)、用以构成交流电互感器而获取感应后的交流电压和交流电流；
整流滤波模块 (8)，用以将所述感应后的交流电压和交流电流转为直流电压和直流电流；
稳压输出模块 (13)，用以输出稳定电压；
其特征在于，还包括：
过压保护及切换继电器模块 (7)，其连接所述取电磁芯线圈 (1) 和整流滤波模块 (8)，用以避免所述高压输电线路 (3) 发生短路或合回感应电流和感应电压对后级电路的破坏；
DC/DC 模块 (9)，其与所述整流滤波模块 (8) 相连，用以接收所述整流滤波模块 (8) 产生的固定直流电压和直流电流并将其转化为可变的直流电压和直流电流；以及
电源管理模块 (11)，其连接所述 DC/DC 模块 (9) 和稳压输出模块 (13)，用以实时检测所述高压输电线路 (3) 的感应电流并动态调整输入到所述 DC/DC 模块 (9) 的电流和电压使得输出功率等比系统所需功率。
2. 如权利要求 1 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：
取电磁芯 (2) 并排设置的是测量磁芯 (5)，高压输电线路 (3) 同时穿设于电磁芯 (2) 和测量磁芯 (5)，环绕于所述测量磁芯 (5) 的测量磁芯线圈 (4) 以及连接所述测量磁芯线圈 (4) 与电源管理模块 (11) 的取样电路 (6)，用以辅助所述电源管理模块 (11) 对所述高压输电线路 (3) 的感应电流的实时检测。
3. 如权利要求 1 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：
在整流滤波模块 (8) 和电源管理模块 (11) 之间设置电压电流量检测模块 (10)，用以计算于所述高压输电线路 (3) 电压电流量输入到所述 DC/DC 模块 (9) 的最佳电流量和电压值。
4. 如权利要求 1 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：
在电源管理模块 (11) 和稳压输出模块 (13) 之间设法拉电容 (12)，用以辅助所述电源管理模块 (11) 的动态调整输入到所述 DC/DC 模块 (9) 的电流和电压。
5. 如权利要求 1 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：
所述过压保护及切换继电器模块 (7) 包括第一、第二功率稳压二极管 (D1, D2)、瞬态抑制管 (D3)、继电器 (U8) 及其驱动；所述继电器 (U8) 的驱动包括一电阻 (R23)、一肖特基二极管 (D8) 以及二极管 (Q4)，其中，所述第一大功率稳压二极管 (D1) 的正极接所述继电器 (U8) 的第 2 脚位，其负极接所述第一大功率稳压二极管 (D2) 的负极；所述第二大功率稳压二极管 (D2) 的正极接所述继电器 (U8) 的第 4 脚位；所述第二功率稳压二极管 (D3) 的负极接所述整流滤波模块 (8)，其正极接地；所述继电器 (U8) 的第 3 脚位和第 8 脚位接所述取电磁芯线圈 (1)，其第 2 脚位和第 9 脚位短接，其第 1 脚位经所述驱动的电阻 (R23) 接电源并同时接所述驱动的肖特基二极管 (D8) 的负极，其第 10 脚位接所述驱动的三极管 (Q4) 的发射极并同时接所述肖特基二极管 (D8) 的正极；所述驱动的三极管 (Q4) 的发射极接地，其基极接所述电源管理模块 (11)。
6. 如权利要求 1、3 或者 5 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：所述整流滤波模块 (8) 包括整流桥 (U1) 和相互并联的第一、二滤波电容 (E1, C2)。
中，所述整流桥 (U1) 的第 2 脚位接所述电压保护及切换继电器模块 (7) 的继电器 (U8) 的第 7 脚位，其第 3 脚位接所述电压电流检测模块 (10)；所述第一滤波电容 (E1) 的正极接所述整流桥 (U1) 的第 1 脚位，其负极接地。

7. 如权利要求 1 或者 3 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：所述 DC/DC 模块 (9) 包括 DC/DC 芯片 (U2)，第一、四、五、六、八、九、二电容 (C1、C4、C5、C7、C8、C9、E2)，第四、五、六、七、八电阻 (R4、R5、R6、R7、R8) 以及第五、六二极管 (D5、D6)，其中，所述 DC/DC 芯片 (U2) 第 3.4 脚位接 VOUT 端，其第 8 脚位经所述第四电阻 (R4) 接地，其第 9 脚位经所述第四电容 (C4) 接地，其第 11 脚位经所述第五电容 (C5) 接地，其第一脚位经所述第一电容 (C1) 接地，其第 17、18、19 脚位短接后经所述第六电容 (C6) 接至其第 20 脚位且同时接所述第二极管 (D5) 的负极，其第 15、16 脚位短接后至所述所述第二极管 (D5) 的正极，其第 12 脚接电源；所述所述第五电阻 (R5) 和所述第八电容 (C8) 串联后分别接到所述 DC/DC 芯片 (U2) 的第 6 脚位和第 7 脚位；所述第七电阻 (R7) 跨接电源和所述 DC/DC 芯片 (U2) 的第 12 脚位之间；所述第八电阻 (R8) 跨接在所述 DC/DC 芯片 (U2) 的第 12 脚位和接地端之间；所述第七电容 (C7) 一端接所述 DC/DC 芯片 (U2) 的第 17 脚而另一端接所述第六电容 (R6)，所述第六电阻 (R6) 的另一端接地；所述第二电容 (E2) 的正极接电源而负极接地；所述第九电容 (C9) 与所述第二电容 (E2) 并联。

8. 如权利要求 3 或者 6 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：所述电压电流检测模块 (10) 包括所述原边电流测量电路、DC/DC 输入电流测量电路和 DC/DC 输入电压测量电路，其中：

所述原边电流测量电路包括所述罗氏电流互感器 (U4) 以及由第一运算放大器 (U5A)、第十六电阻 (R16) 和第十三电容 (C13) 构成的积分电路；所述高压输电线路 (3) 从所述所述罗氏电流互感器 (U4) 的中心穿过，所述所述罗氏电流互感器 (U4) 的副边输出分别接所述第一运算放大器 (U5A) 的第 2 脚位和第 3 脚位，所述第十三电容 (C13) 与所述十六电阻 (R16) 并联后跨接至所述第一运算放大器 (U5A) 的第 1 脚位和第 2 脚位之间，所述第一运算放大器 (U5A) 的第 8 脚位接电源而第 4 脚位接地；

所述 DC/DC 输入电流测量电路包括所述霍尔电流互感器 (U6) 以及由第二运算放大器 (U5B)、第十七电阻 (R17) 和第十四电容 (C14) 构成的积分式低频电流传感器测量电路，所述所述过压保护及切换继电器模块 (7) 的所述继电器 (U8) 和所述整流滤波模块 (8) 的整流桥 (U1) 之间的连线从所述所述霍尔电流互感器 (U6) 中心穿过，所述所述霍尔电流互感器 (U6) 副边输出分别接所述第二运算放大器 (U5B) 的第 5 脚位和第 6 脚位，所述第十四电容 (C14) 和第十七电阻 (R17) 并联后跨接至所述第二运算放大器 (U5B) 的第 6 脚位和第 7 脚位之间；

所述 DC/DC 输入电压测量电路包括所述第二电阻 (R2)、所述第三电阻 (R3) 以及所述第三电容 (C3)，所述第二电阻 (R2) 跨接于 VOUT 端和 VoltDet 端之间，所述第三电阻 (R3) 和第三电容 (C3) 并联后跨接于 VoltDet 端和接地端之间。

9. 如权利要求 1、2、3、4 或者 5 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：所述的电源管理模块 (11) 包括所述充电控制电路和输出功率控制电路，其中：

所述的充电控制电路包括所述第九、十电阻 (R9、R10)、第二接口 (J2)、所述场效应管 (Q1) 和所述三极管 (Q2)，所述的场效应管 (Q1) 的第 2 脚位接电源、第 1 脚位接所述充电控制电路的三极管 (Q2) 的集电极，第 3 脚位接所述第二接口 (J2) 的第 3、4 脚位；所述第十电阻 (R10) 跨接
在电源端和所述的三极管 (Q2) 的集电极之间，所述第九电阻 (R9) 一端接 Cap_ChgEN 而另一端接所述三极管 (Q2) 的基极，所述三极管 (Q2) 的发射极接地，所述第二接口 (J2) 的第 1、2 脚位短接后接 V_Cap+，第 3、4 脚位短接后接地，外接所述法拉电容 (12)。

所述的输出功率控制电路包括第十一、十二、十八、十九电阻 (R11、R12、R18、R19)、第十电容 (C10)、第一接口 (J1) 和单片机 (U7)；所述第十一电阻 (R11) 一端 V_Cap+，另一脚接 Cap_VoltMSR；所述第十二电阻 (R12) 和第十电容 (C10) 并联后一端接 Cap_VoltMSR，另一端接地；所述单片机 (U7) 的第 2 脚接 Cap_ChgEN，第 3 脚接地，第 6 脚接电源，第 9 脚接所述第一接口 (J1) 的第 3 脚位，第 10 脚接所述第一接口 (J1) 的第 2 脚位，第 11 脚接 Cap_VoltMSR 端，第 12 脚接 PriCrrtDct 端，第 13 脚接 SecCrrtDct 端，第 14 脚接 VoltDet 端，第 23 脚接 RelayCtrl 端；第一接口 (J1) 为所述单片机 (U7) 程序下载接口，其第一脚位接电源，第 4 脚位接地。

10. 如权利要求 1 或者 4 所述的基于功率控制法的高压输电线路 CT 取电装置，其特征在于：所述的稳压输出模块 (13) 包括稳压芯片 (U3)、第二电感 (L2)、第三、第四、第十一、十二电容 (E3、E4、C11、C12)、第十四、十五电阻 (R14、R15) 及第七二极管 (D7)，所述稳压芯片 (U3) 的第 5 脚位接 V_Cap+，第 1 脚位经所述第十三电阻 (R13) 和第十一电容 (C11) 接地，第 3 脚位悬空，第 6、7 脚位接地，第二 2 脚位经第十五电阻 (R15) 接地且经第十四电阻 (R14) 接电源，第 8 脚位接所述第七二极管 (D7) 的正极，所述第二电感 (L2) 跨接在所述稳压芯片 (U3) 的第 5、8 脚位之间，所述第三电容 (E3) 跨接于 V_Cap+ 端和接地端之间，所述第七二极管 (D7) 负极接地，所述第四、十二电容 (E4、C12) 跨接于电源端和接地端之间。
基于功率控制法的高压输电线路 CT 取电装置

技术领域

[0001] 本发明涉及一种高电压技术领域的取电装置，尤其是一种基于功率控制法的高压输电线路 CT 取电装置。

背景技术

[0002] 电力系统高压侧测量设备如光电式电流互感器，输电线路温度测量设备、高压断路器母线温度测量设备等直接测量高侧信息，然后通过光纤或者无线网络把采集信息传送至低压端，这样大大简化了绝缘的要求，并且提高了采集信号的精度。但是高压侧测量设备不能通过低侧导线直接对其供电，所以高压侧测量设备的供电问题是高压侧测量设备可靠运行的关键。

[0003] 经检索文献发现武汉大学申请的专利，申请号为 200410061314.9，名称为：用于架空高压输电导线的感应取电装置，该技术利用电流互感器原理从高压输电导线上获取电能，但是该技术没有体现出输电线路负载电流在其整个工作范围内的有效输出功率，尤其是在输电线路空载时的输出功率，并且在输电线路负荷电流较大时，取电装置发热严重。武汉大学申请的另一份专利，申请号为：200820066665.2 名称为：高压线路感应取电装置，该技术同样利用互感器原理从输电导线上取电，其输出的标称值为 80A~300A 时输出的功率为20~110W，但是输电线路空载时，导线电流仅为 40A 左右，也未给出此时取电装置的输出功率，并且随着输电导线上电流的增加，取电装置亦会发热越来越严重。上述两个专利中后备电源都是锂电池，而锂电池受其寿命、工作温度等限制，不适合长期工作在野外输电线路。

发明内容

[0004] 本发明的目的在于克服现有技术中的不足，提供一种基于功率控制法的高压输电线路 CT 取电装置，可实现在较大的电流范围内输出稳定的功率，并且在输电线路电流较大时，避免发生磁芯不饱和和严重发热现象。

[0005] 本发明包括：

[0006] 取电磁芯，环绕于所述取电磁芯的取电磁芯线圈，穿设于所述取电磁芯的高压输电线路，用以构成电流互感器而获取感应后的交流电压和交流电流；

[0007] 整流滤波模块，用以将所述感应后的交流电压和交流电流转变成直流电压和直流电流；

[0008] 稳压输出模块，用以输出稳定电压；

[0009] 过压保护及切换继电器模块，其连接所述取电磁芯线圈和整流滤波模块，用以避免所述高压输电线路发生短路或产生高感应电流和感应电压对后级电路的破坏；

[0010] DC/DC 模块，其与所述整流滤波模块相连，用以接收所述整流滤波模块产生的固定直流电压和直流电流并将其转化为可变的直流电压和直流电流；

[0011] 电源管理模块，其连接所述 DC/DC 模块和稳压输出模块，用以实时检测所述高压
输电线路的感应电流并动态调整输入到所述 DC/DC 模块的电流和电压使得输出功率等于系统所需功率。

作为本发明的一种优选方案，与取电磁芯并联设置的是测量电芯，高压输电线路同时穿设于电磁芯和测量电芯。环绕于所述测量电芯的测量磁芯线圈以及连接所述测量磁芯线圈与电源管理模块的取样电路，用以辅助所述电源管理模块对所述高压输电线路的感应电流的实时检测。

作为本发明的一种优选方案，所述整流滤波模块在电源管理模块之间设置电压电流检测模块，其连接所述整流滤波模块和电源管理模块，用以计算出所述高压输电线路的当前电流下输入到所述 DC/DC 模块的最佳电流和电压值。

作为本发明的一种优选方案，在电源管理模块和稳压输出模块之间设置法拉电容，其连接于所述电源管理模块和稳压输出模块，用以辅助所述电源管理模块的动态调整输入到所述 DC/DC 模块的电流和电压。

所述过压保护及切换继电器模块包括第一、二大功率稳压二极管、瞬态抑制管、继电器及其驱动，所述继电器的驱动包括一电阻、一肖特基二极管以及一三极管，其中所述第一大功率稳压二极管的正极接所述继电器的第七脚位，其负极接所述第一大功率稳压二极管的负极；所述第二大功率稳压二极管的正极接所述继电器的第 4 脚位；所述瞬态抑制管的负极接所述整流滤波模块，其正极接地；所述继电器的第 3 脚位和第 8 脚位接所述取电芯线圈，其第 2 脚位和第 9 脚位接所述第一脚位经所述驱动的电阻接电源并同时接所述驱动的肖特基二极管的负极，其第 10 脚位接所述驱动的三极管的集电极并同时接所述肖特基二极管的正极；所述驱动的三极管的发射极接地，其基极接所述电源管理模块。

所述整流滤波模块包括整流桥和相互并联的一、二滤波电容，其中，所述整流桥的第 2 脚位接所述过压保护及切换继电器模块的继电器的第 7 脚位，其第 3 脚位接所述电压电流检测模块，所述第一滤波电容的正极接所述整流桥的第 1 脚位，其负极接地。

所述 DC/DC 模块包括 DC/DC 芯片，第一、二、三、四、五、六、七、八电容以及第 5、第 6 电容，其中，所述 DC/DC 芯片第 3、4 脚位接 VOUT 端，其第 8 脚位经所述第四电容接地，其第 9 脚位经所述第四电容接地，其第 11 脚位经所述第五电容接地，其第 1 脚位经所述第一电容接地，其第 17、18、19 脚位接所述第六电容接地其第 20 脚位且同时接所述二极管的负极；其第 15、16 脚位短接后接至所述第二电容的正极，其第 12 脚接电源；所述第五电容和所述第八电容串联后分别接所述 DC/DC 芯片的第 6 脚位和第 7 脚位；所述第二电容跨接电源和所述 DC/DC 芯片的第 12 脚位之间；所述第二电容跨接在所述 DC/DC 芯片的第 12 脚位和接地端之间；所述第二电容一端接所述 DC/DC 芯片的第 17 脚而另一端接所述第六电容，所述第六电容的另一端接地；所述第二电容的正极接电源而负极接地；所述第 9 脚电容与所述第二电容并联。

所述电压电流检测模块包括原边电流测量电路，DC/DC 输入电流测量电路和 DC/DC 输入电压测量电路，其中：

所述原边电流测量电路包括罗氏电流互感器以及由第一运算放大器、第十六电阻和第十三电容构成的积分电路，所述高压输电线路从所述罗氏电流互感器的中心穿过，所述罗氏电流互感器的副边输出分别接所述第一运算放大器的第 2 脚位和第 3 脚位，所述第 13 电容与第 16 电阻并联后跨接至所述第一运算放大器的第 1 脚位和第 2 脚位之间，所
述第一运算放大器的第 8 脚位接电源而第 4 脚位接地；
【0020】所述 DC/DC 输入电流测量电路包括霍尔电流互感器以及由第二运算放大器、第
十电阻和第十四电容构成的积分式低频电流传感器测量电路，所述过压保护及切换续电
器模块的继电器和所述整流滤波模块的整流桥之间的连线从所述霍尔电流互感器中心穿
过，所述霍尔电流互感器的副输出分别接所述第二运算放大器的第 5 脚位和第 6 脚位，所述
第十四电容和第十七电阻联后跨接至所述第二运算放大器的第 6 脚位和第 7 脚位之间；
【0021】所述 DC/DC 输入电压测量电路包括第二电阻、第三电阻以及第三电容，所述第二
电阻跨接于 VOUT 端和 VoltDet 端之间，所述第三电阻和第三电容并联后跨接于 VoltDet 端
和接地端之间。
【0022】所述的电源管理模块包括充电控制电路和输出功率控制电路，其中，
【0023】所述的充电控制电路包括第九、十电阻、第二接口、场效应管和三极管；所述的场
效应管的第 2 脚位接电源、第 1 脚位接所述充电控制电路的三极管的集电极，第 3 脚位接所
述第二接口的第 3,4 脚位；所述第十电阻跨接在电源端和所述的三极管的集电极之间；所
述第九电阻一端接 Cap_ChgEN 而另一端接所述三极管的基极，所述三极管的发射极接地；
所述第二接口的第一、二脚位短接后接 V_Cap+, 第 3,4 脚短接后接地，外接所述法拉电容；
【0024】所述的输出功率控制电路包括第十一、十二、十八、十九电阻、第十电容、第一接口
和单片机；所述第十一电阻一端接 V_Cap+, 另一端接 Cap_VoltMSR；所述第十二电阻和第十电
容并联后一端接 Cap_VoltMSR，另一端接地；所述单片机的第 2 脚接 Cap_ChgEN，第 3 脚接
地，第 6 脚接电源、第 9 脚接所述第一接口的第 3 脚位、第 10 脚接所述第一接口的第二脚位、
第 11 脚接 Cap_VoltMSR 端，第 12 脚接 SecCurrent 端，第 13 脚接 SecCurrent 端，第 14 脚
接 VoltDet 端，第 23 脚接 RelayCtrl 端，第一接口为所述单片机程序下载接口，其第 1 脚位
接电源、第 4 脚位接地。
【0025】作为本发明的一种优选方案，所述的稳压输出模块包括稳压芯片、第二电感、第
三、四、十一、十二电容、第十四、十五电阻以及第四三极管，所述稳压芯片的第 5 脚位接 V_
Cap+ 端、第 1 脚位接所述第十三电阻和第十一电容接地、第 3 脚位悬空，第 6,7 脚位接地、
第 2 脚位经第十五电阻接地且经第十四电阻接电源、第 8 脚位接所述第二三极管的正极，所
述第二电感跨接在所述稳压芯片的第五、八脚位之间；所述第三电容跨接于 V_Cap+ 端和接
地端之间，所述第七二极管负极接地电源，所述第四、十二电容跨接于电源端和接地端之间。
【0026】本发明取电磁芯线圈从高压输电线路中感应出交流电压后，经整流滤波电路把交
流电压变成直流电压提供给 DC/DC 模块，电源管理模块实时监测高压输电线路的电流计算
出在当前高压输电线路电流的情况下，输入到 DC/DC 模块最佳的电压、电流值，然后通过改
变法拉电容的充放电流，动态调整输入到 DC/DC 模块最佳的电压、电流值，直至其输出功率
等于系统所需功率，这样取电装置没有多余的热量产生。稳压输出模块负责把法拉电容的
电压稳定在 +5V 输出。当法拉电容充放完毕后，电源管理模块切断高压保护及切换继电器
中的切换继电器，此时取电线圈副边短路，工作在备用状态。当法拉电容的电压低于阈值电
压时，电源管理模块吸收高压保护及切换继电器中的切换继电器，此时取电线圈工作在供
电状态。
【0027】本发明的技术效果在于，通过对互感器输出功率点的控制，可在输电线路负载电
流为 30-1000A 时稳定输出 1W 的功率并且在输电线路电流较大时，磁芯不饱和，也不存在发
附图说明
[0028] 图 1 是本发明的基于功率控制法的高压输电线路 CT 取电装置的电路方框图；
[0029] 图 2 是本发明的过压保护及切换继电器，整流滤波电模块和电压电流检测模块的电路原理图；
[0030] 图 3 是本发明的 DC/DC 模块的电路原理图；
[0031] 图 4 是本发明的电源管理模块和稳压输出模块的电路原理图。

具体实施方式
[0032] 以下结合附图对本发明的实施例作详细说明，本实施例在以本发明技术方案为前提下进行实施，给出了详细的实施方式和过程，但本发明的技术方案不限于下述的实施例。
[0033] 如图 1 所示，本实施例包括，取电磁芯线圈 1，取电磁芯 2，测量磁芯线圈 4，测量磁芯 5，取样电路 6，过压保护及切换继电器 7，整流滤波电路 8，DC/DC 模块 9，电压电流检测电路 10，电源管理模块 11，法拉电容 12 以及稳压输出电路 13，高压输电线路 3 先后从取电磁芯 2 和测量磁芯 5 中间穿过，取电磁芯 2 和测量磁芯 5 外面分别为取电磁芯线圈 1，测量磁芯线圈 4，取电磁芯线圈 1 与过压保护及切换继电器 7 连接，过压保护及切换继电器 7，整流滤波电路 8，DC/DC 模块 9，电源管理模块 11，稳压输出电路 13 依次连接，整流滤波电路 8 进一步与电压电流检测电路 10 连接，电压电流检测电路 10 又连接到电源管理模块 11；电源管理模块 11 进一步与法拉电容 12 连接，法拉电容 12 又连接到稳压输出电路 13；测量磁芯线圈 4 与取样电路 6 连接进一步与电源管理模块 11 连接。
[0034] 如图 2 所示，所述的过压保护及切换继电器 7 电路包括包括第一、二大功率稳压二极管 D1、D2，瞬态抑制管 D3，继电器 U8 及其驱动，所述继电器 U8 的驱动包括一电阻 R23、一肖特基二极管 D8 以及一三极管 Q4，其中，所述第一大功率稳压二极管 D1 的正极接所述继电器 U8 的第 7 脚位，其负极接所述第一大功率稳压二极管 D2 的负极；所述第二大功率稳压二极管 D2 的正极接所述继电器 U8 的第 4 脚位；所述瞬态抑制管 D3 的负极接所述整流滤波模块 8，其正极接地；所述继电器 U8 的第 3 脚位和第 8 脚位接所述取电磁芯线圈 1 的副端输出端，其第 2 脚位和第 9 脚位直接，其第 1 脚位经所述驱动的电阻 R23 接 +5VDC 并同时接所述驱动的肖特基二极管 D8 的负极，其第 10 脚位接所述驱动的三极管 Q4 的集电极并同时接所述肖特基二极管 D8 的正极，所述驱动的三极管 Q4 的基极接 RelayCtrl 端子；所述驱动的三极管 Q4 的发射极接地，其基极接所述电源管理模块 11。所述第一、二大功率稳压二极管 D1、D2 为 12V/50W 的大功率稳压二极管，当输电线路负载电流较低时，第一、二大功率稳压二极管 D1、D2 都不导通，保证取电线圈获得的功率全部都可以输送给负载，当输电线路负载电流较高时所述第一、二大功率稳压二极管 D1、D2 分别在整流桥的正、负半波电压超过 12V 时导通，把取电线圈的输出电压峰值钳位在 13V 左右，从而保护后级电路不被高压击坏。瞬态抑制二极管 D3 始终把输入到 DC/DC 模块 9 的输入电压限制在 15V 以下，保证 DC/DC 模块 9 不被高压击坏。继电器 U8 作为取电线圈工作状态切换继电器兼保护继电器，当电源管理模块 11 检测到第一运算放大器 USA 的输出突然增大（输电线路发生短路故障）时，电源管理模块 11 的第 23 脚位 (RelayCtrl) 输出低电平，继电器 U8 线圈失电，继电器的触
点处于常闭状态，此时取电线路副边短路且和后级断开，保护后级电路不被高压冲击坏。

[0035] 如图2所示，所述的整流滤波电路8包括整流桥U1和相互并联的第一、二滤波电容E1、E2，其中，所述整流桥U1的第2脚位按所述过压保护及切换继电器模块7的继电器U8的第7脚位，其第3脚位按所述电压电流检测模块10的霍尔电流传感器U6的第3脚位；所述第一滤波电容E1的正极接所述整流桥U1的第1脚位，其负极接地。所述整流桥U1为耐压100V，额定电流为6A的整流桥，其负责把取电线圈输出的交流电压变成直流电压。所述第一电容E1为耐压68V容量为10000UF的电解电容，主要用于减少整流桥输出电压的纹波。所述第二滤波电容C2为0.1uF的高频退耦电容，其主要滤出电源上面的高频尖峰。

[0036] 如图3所示，所述的DC/DC模块9包括DC/DC芯片U2，第一、四、五、七、八、九、二电容C1、C4、C5、C7、C8、C9、E2，第四、五、六、七、八电阻R4、R5、R6、R7、R8以及第五、六二极管D5、D6，其中，所述DC/DC芯片U2第3、4脚位接VOUT端，其第8脚位经所述第四电阻R4接地，其第9脚位经所述第四电容C4接地，其第11脚位经所述第二电容C5接地，其第一脚位经所述第一电容C1接地，其第17、18、19脚位短接后经所述第六电容C6接至其第20脚位且同时接第二二极管D5的负极，其第15、16脚位短接后接至所述第二二极管D5的正极，其第12脚位接+6VD；所述第二电阻R5和所述第五电容C8串联后分别接到所述DC/DC芯片U2的第6脚位和第7脚位；所述第七电阻R7跨接+6VD和所述DC/DC芯片U2的第12脚位之间；所述第三电阻R8跨接在所述DC/DC芯片U2的第12脚位和接地端之间；所述第一电容C7一端接所述DC/DC芯片U2的第17脚而另一端接所述第六电容R6，所述第六电容R6的另一端接地；第一电感L1一端接DC/DC芯片U2的第17脚；所述第二电容E2的正极接+6VD而负极接地；所述第三电容C9与所述第二电容E2并联。其工作原理为成熟技术，不做赘述。

[0037] 如图2所示，所述的电压电流检测电路10包括原边电流测量电路，DC/DC输入电流测量电路和DC/DC输入电压测量电路，其中；所述原边电流测量电路包括霍尔电流传感器U4以及由第一运算放大器U5A，第二运算放大器R16和第六电容C13构成的积分电路，所述高电压检测电路3从所述霍尔电流传感器U4的中心穿过，所述电流传感器U4的副边输出分别接第一运算放大器U5A的第2脚位和第3脚位，所述第二电容C13与第十九电阻R16并联后跨接至所述第一运算放大器U5A的第1脚位和第2脚位之间，所述第一运算放大器U5A的第8脚位接+5V而第4脚位接地。所述的积分电路把霍尔电流传感器U4的副边输出调理成与输入电流成比例的且幅值在一定范围内的电压信号，为测量单片机U7自带AD转换器采样。

[0038] 所述DC/DC输入电流测量电路包括霍尔电流传感器U6以及由第二运算放大器U5B，第十七电阻R17和第十四电容C14构成的积分式低频电流传感器测量电路，所述过压保护及切换继电器模块7的继电器U8和所述整流滤波模块8的整流桥U1之间的连线从所述霍尔电流传感器U6中心穿过，所述霍尔电流传感器U6副边输出分别接第二运算放大器U5B的第5脚位和第6脚位，所述第二运算放大器C14和第十七电阻R17并联后跨接至所述第二运算放大器U5B的第6脚位和第7脚位之间。所述的积分式低频电流传感器测量电路把取能线圈副边输出电流值转换成幅值电压信号，为测量单片机U7自带AD转换器采样。

[0039] 所述DC/DC输入电压测量电路包括第二电阻R2、第三电阻R3以及第三电容C3，所述第三电阻R2跨接于VOUT端和VoIotDet端之间，所述第三电阻R3和第三电容C3并联后
跨接于 VoltDet 端和接地端之间。所述的第二电阻 R2、第三电阻 R3 以及第三电容 C3 构成分压器把取能线圈副边的电压信号分压成可供单片机自带 AD 转换器采集的电压。

【0040】如图 4 所示，所述的电源管理模块 11 包括充电控制电路、输出功率控制电路，其中：

【0041】所述的充电控制电路包括第九、十电阻 R9、R10、第二接口 J2、场效应管 Q1 和三极管 Q2；所述的场效应管 Q1 的第 2 脚位接 +5V6、第 1 脚位接所述充电控制电路的三极管 Q2 的集电极，第 3 脚位接所述第二接口 J2 的第 3,4 脚位；所述第十电阻 R10 跨接在 +5V6 和所述的三极管 Q2 的集电极之间；所述第九电阻 R9 一端接 Cap_ChgEN 而另一端接所述三极管 Q2 的基极，所述三极管 Q2 的发射极接地；所述第二接口 J2 的第 1,2 脚位短接后接 V_Cap+、第 3,4 脚位短接后接地，外接所述法拉电容 L2。当所述三极管 Q2 基极为高电平时三极管 Q2 导通，所述三极管 Q2 的集电极为低电平时所述场效应管 Q1 导通，充电电路导通，开始充电，控制信号为 PWM 波形，通过调节每个周期的占空比来改变法拉电容的充电电流。

【0042】所述的输出功率控制电路包括第十一、十二、十八、十九电容 R11、R12、R18、R19、第十电阻 C10。第一接口 J1 和单片机 U7，所述第十一电阻 R11 和单片机 U7 的第一接口 J1 和单片机并联所述 Cap_VoltMSR。所述单片机 U7 的第 2 脚接 Cap_ChgEN，第 3 脚接地，第 6 脚接电源，第 9 脚接所述第一接口 J1 的第 3 脚位，第 10 脚接所述第一接口 J1 的第 2 脚位，第 11 脚接 Cap_VoltMSR 端，第 12 脚接 PriCrrtDct 端，第 13 脚接 SecCrrtDct 端，第 14 脚接 VoltDet 端，第 23 脚接 RelayCtrl 端，第一接口 J1 为所述单片机 U7 程序下载接口，其第一脚位接 +3V，第四脚位接地。

【0043】取能线圈在工作状态时，所述单片机 U7 的 23 脚（RelayCtrl）输出高电平切换继电器 U8 吸合，单片机 U7 通过内置 AD 转换器实时测量 PriCrrtDct、SecCrrtDct, VoltDet 的值，然后根据电流互感器、电感分压器的比例关系得到输电线路负载电流 I1，输入到 DC/DC 模块 9 的电流 I2，输入到 DC/DC 模块 9 的电压 U2，所述单片机 U7 计算在 I1 条件下，提供负载所耗功率时的磁化电流值，进一步计算出所需输入到 DC/DC 模块 9 的电流 I2，然后通过调节充电电路中 PWM 波形的占空比，改变法拉电容充电电流的大小，进一步改变输入到 DC/DC 模块 9 的电流，从而使取能线圈的输出功率始终等于负载所需功率。此工作方式可有效的解决取电装置发热问题。当超级电容的电压达到 5.4V 时，所述单片机 U7 的 23（RelayCtrl）脚输出低电平继电器释放，取能线圈副边短路，工作在轻载状态，亦无热量产生。当所述单片机 U7 检测到超级电容电压下降至 4.5V 时，所述单片机 U7 的 23 脚输出高电平切换继电器 U8 吸合，取能线圈又切换至正常工作状态。

【0044】如图 4 所示，所述的稳压输出电路 13 包括稳压芯片 U3、第二电感 L2、第三、四、十一、十二电容 E3、E4、C11、C12、第十四、十五电阻 R14、R15 以及第七二极管 D7，所述稳压芯片 U3 的第 5 脚位接 V_Cap+ 端，第 1 脚位经所述第十三电阻 R13 和第十一电容 C11 接地，第 3 脚位悬空，第 6,7 脚位接地。第二 2 脚位经第十五电阻 R15 接地且经第十四电阻 R14 接 +5VDC，第 8 脚位接所述第七二极管 D7 的正极，所述第三电感 L2 跨接在所述稳压芯片 U3 的第 5,8 脚位之间，所述第三电容 E3 跨接于 V_Cap+ 端和接地端之间，所述第七二极管 D7 负极接 +5VDC，所述第四、十二电容 E4、C12 跨接于 +5VDC 端和接地端之间。稳压输出电路 13 把超级电容的输出电压经变换后稳定的输出在 +5V，其为现有技术不做赘述。

【0045】本实施例取电磁芯线圈 1 从高压输电线路 3 上感应出交流电压后，经整流滤波电
路 8 把交流电压变成直流电压提供给 DC/DC 模块 9。电源管理模块 11 实时监测高压输电线路 3 的电流，计算出在当前高压输电线路 3 电流的情况下，输入到 DC/DC 模块 9 最佳的电压、电流值，然后通过改变法拉电容 12 的充电电流，动态调整输入到 DC/DC 模块 9 最佳的电压、电流值，直至其输出功率等于系统所需功率，这样取电装置没有多余的热量产生。稳压输出模块 13 负责把法拉电容 12 的电压稳定在 +5V 输出。当法拉电容 12 充电完毕后，电源管理模块 11 切断过压保护及切换继电器 7 中的切换继电器，此时取电磁芯线圈 1 副边短路，工作在备用状态。当法拉电容 12 的电压低于阈值电压时，电源管理模块 11 吸合切断过压保护及切换继电器 7 中的切换继电器，此时取电磁芯线圈 1 工作在供电状态。