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(57) Abstract: The present invention isamethod for detecting an abnormal event for process units of aDelayed Coking Unit. The
method compares the operation of the process units to statistical and engineering models. The statistical models are developed by
principal components analysis of the normal operation for these units. The engineering models are based statistical and correlation
analysis between variables. If the difference between the operation of aprocess unit and the normal model result indicates an abnor-
mal condition, then the cause of the abnormal condition is determined and corrected.
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APPLICATION OF ABNORMAL EVENT DETECTION TECHNOLOGY
TO DELAYED COKING UNIT

BACKGROUND OF THE INVENTION

" [0001] The present invention relates to the operation of a Delayed Coking
Unit (DCU) comprising of feed heaters, main fractionator, wet gas compressor,
and downstream light ends processing towers referred to as the Gas Plant. In
particular, the present invention relates to determining when the process is
deviating from normal operation and automatic generation of notification.

[0002] Delayed Coking is ahigh-severity thermal cracking process used in
petroleum refineries. The process unit, DCU, thermally decomposes the
"bottom™ of the crude barrel, which aretypically the bottom streams of the
atmospheric and vacuum crude distillation towers and produces avalue-added
mixture of olefins, naphthas, gas oils and petroleum coke. The overall reaction
is endothermic with the furnace supplying the necessary heat for vaporization
and cracking. The olefins are used in the petrochemical industry. Naphthas are
used for various gasoline blends. Gas Qils are sent to other refinery units to be
further cracked into naphthas and olefins. The coke, which is essentially carbon
with varying amounts of impurities, is calcined (roasted to dry, without melting)
and used in the aluminum, steel or chemical industries. Coke can also be burned
as fuel, or gasified to produced steam or electricity.

[0003] Figure 23 shows atypical DCU layout. One or more fired heaters
with horizontal tubes are used in the process to reach thermal cracking
temperatures of 905 to 941 OF (485 to 505 9C). With short residence time in the
furnace tubes, coking (formation of Petroleum Coke) of the feed material is
"delayed" until it reaches alarge drum downstream of the heater. The
thermodynamic conditions of the drum are well-suited for the cracking operation
to proceed. These drums are designed to normally operate at atop drum vapor
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temperature of 825°F (441 9C) and apressure of 15 psig (103 kpag). Asthe feed
cracks, the cracked products (vapors) are sent into a fractionator while coke
accumulates in the drum. The fractionator separates the hydrocarbon mixture
received from the coke drum into various fractions. The overhead product of the
fractionator is sent through wet gas compressorsto a light ends processing unit
to further separate the light mixture.

[0004] When the drum isfilled mostly with coke, the feed from the furnace
isdirected to an empty drum. Multiple drums are thus operated in a staggered
fashion to ensure continuity of operations of the furnaces, fractionator and the
gasplant. The coke in the filled drum is quenched, cut and removed with high-
pressure water to apit located below the coke drums. A bridge crane is used to
transfer coke from the pit to apad where water is allowed to drain from the coke
before it is crushed and loaded onto railcars for transport. The emptied drum is
cleaned and readied for the next cycle. The furnaces are brought offline about
once every 3 months to clean coke deposits formed over time in the tubes
through aprocess known as "decoking". In some refineries the furnaces are
cleaned online through aprocess known as steam spalling. The delayed coking
unit is thus capable of turndown to anominal 50% of capacity which represents
operation with one furnace and pair of drums out of service. The complete
schematic with DCU and the downstream units is shown in Figure 24.

[0005] Due to the complicated dynamic and semi-batch nature of the DCU,
and due to the high-severity process conditions, abnormal process operations can
easily result from various root problems that can escalate to serious problems
and even cause plant shutdowns. Three problems typically plague the delayed
coker units: 1) Premature coking of the heater tubes (instead of in the drum)
resulting in reduced feed rates and reduced refinery throughput and eventual
shutdown of the unit with significant economic losses; 2) Foam (produced while
coking) carryover from the coke drum into the coker fractionator; 3) Reliability
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problems with the coker fractionator. These operations can have significant
safety and economic implications ranging from lost production, equipment
damage, environmental emissions, injuries and even death. A primary job of the
operator is to identify the cause of the abnormal situation and execute
compensatory or corrective actions in ati mely and efficient manner.

[0006J The current commercial practice isto use advanced process control
applications to automatically adjust the process in response to minor process
disturbances, to rely on human process intervention for moderate to severe
abnormal operations, and to use automatic emergency process shutdown systems
for very severe abnormal operations. The normal practice to notify the console
operator of the start of an abnormal process operation is through "process
aarms'. These alarms are triggered when key process measurements
(temperatures, pressures, flows, levels and compositions) violate predefined
static set of operating ranges. These operating ranges are kept aswide as
possible to avoid false alarms, and to avoid multiple related and repetitive
alarms. Thus, when an alarm occurs, it is often too late for the operator to bring
the process to normal operations without compromising the optimal production
rates.

[0007] Furthermore, more than 600 key process measurements cover the
operation of atypical DCU. Under the conventional Distributed Control System
(DCS) system, the operator must survey this list of sensors and its trends,
compare them with mental knowledge of norma DCU operation, and use their
skill to discover the potential problems. Due to the very large number of sensors
in an operating DCU, abnormalities can be and are easily missed. With the
current DCS based monitoring technology, the only automated detection
assistance an operator has isthe DCS alarm system which is based on the
alarming of each sensor when it violates predetermined limits. In any large-
scale complex process such asthe DCU, this type of notification is clearly a
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limitation as it often comes in too late for the operator to act to mitigate the
problem. The present invention provides amore effective notification to the
operator of the DCU.

SUMMARY OF THE INVENTION

[0008] The present invention isamethod and system for detecting an
abnormal event for the process units of aDCU. The system and method
compare the current operation to various models of normal operation for the
covered units. If the difference between the operation of the unit and the normal
operation indicates an abnormal condition in aprocess unit, then the cause of the
abnormal condition is determined and relevant information is presented
efficiently to the operator to take corrective actions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Figure 1shows how the information in the online system flows
through the various transformations, model calculations, fuzzy Petri nets and
consolidation to arrive a asummary trend which indicates the normality /
abnormality of the process areas.

[0010] Figure 2 shows avalve flow plot to the operator as a simple x-y plot.
[0011] Figure 3 shows three-dimensional redundancy expressed as a PCA
model.

[0012] Figure 4 shows a schematic diagram of a fuzzy network setup.

[0013] Figure 5 shows a schematic diagram of the overall process for
developing an abnormal event application.

[0014] Figure 6 shows a schematic diagram of the anatomy of aprocess
control cascade.
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Figure 7 shows a schematic diagram of the anatomy of a

multivariable constraint controller, MV CC.

[0016]

Figure 8 shows a schematic diagram of the on-line inferential

estimate of current quality.

[0017]
[0018]

[0019]

Figure 9 shows the KPI analysis of historical data.
Figure 10 shows a diagram of signal to noise ratio.

Figure 11 shows how the process dynamics can disrupt the

correlation between the current values of two measurements.

[0020]

[0021]°

[0022]

[0023]

Figure 12 shows the probability distribution of process data.
Figure 13 shows illustration of the press statistic.
Figure 14 shows the two-dimensional energy balance model.

Figure 15 shows atypica stretch of Flow, Vave Position, and Delta

Pressure data with the long period of constant operation.

[0024]
[0025]
[0026]
[0027]
[0028]

[0029]

Figure 16 shows atype 4 fuzzy discriminator.

Figure 17 shows a flow versus valve Pareto chart.

Figure 18 shows a schematic diagram of operator suppression logic.
Figure 19 shows a schematic diagram of event suppression logic.
Figure 20 shows the setting of the duration of event suppression.

Figure 21 shows the event suppression and the operator suppression

disabling predefined sets of inputs in the PCA model.

[0030]

Figure 22 shows how design objectives are expressed in the primary

interfaces used by the operator.

[0031]

Figure 23 shows the schematic layout of aDCU.
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[0032] Figure 24 showsthe typical overall schematic of DCU and the light
ends towers displayed for monitoring and control at the operator console.

[0033] Figure 25 showsthe operator display of all the problem monitors for
the DCU operation along with adisplay of alog of recent alerts.

[0034] Figure 26 showsthe components of fuzzy logic based continuous
abnormality indicator.

[0035] Figure 27 showsthe fuzzy logic network for detecting a level
controller monitor problem.

[0036] Figure 28 showsthat complete drill down for a Furnace Operation
problem along with all the supporting evidences.

[0037] Figure 29 showsthe overview display with ared triangle indicating
that the furnace area has aproblem. It aso shows an alert message log
Indicating the exact nature of the problem and a list of the worst actors.

[0038] Figure 30 isadisplay that is shown to the operator when selecting
the red triangle on Figure 29. This dispiay indicates to the operator the sub-area
of the furnace where the problem is most likely occurring.

[0039] Figure 31 showsthe Pareto chart for the tags involved in the Furnace
Abnormal operation scenario in Figure 30.

[0040] Figure 32 shows the multi-trends for the tags in Figure 31. It shows
the current tag values and also the model predictions. ‘

[0041] Figure 33 shows amore detailed trend including the control chart for
the worst actor (first bar) shown in the Pareto chart of Figure 31.

[0042] Figure 34 showsthe historical trend of the abnormality of the
furnace sub-area. This trend will alow the operator to trace the last severa
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problems and their corresponding drill downs similar to those shown in Figures
31through 33.

[0043] Figure 35 shows the Pareto chart for the furnace feed valves.

[0044] Figure 36 showsthe X-Y plot for one of the furnace feed valves.
This is displayed when the operator selects one of the valve bars from the Pareto
chart in Figure 35.

[0045] Figure 37 shows the furnace Valve Flow Monitor fuzzy network
[0046] Figure 38 shows an example of valve out of controllable range.

[0047] Figure 39 shows the distribution of principal components during
PCA model development.

[0048] Figure 40 shows the Alert Suppression networks used to suppress
aerts during known events.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0049] The present invention is amethod to provide early notification of
abnormal conditions in sections of the DCU to the operator using Abnormal
Event Detection (AED) technology.

[0050] In contrast to alarming techniques that are snapshot based and
provide only an on/off indication, this method uses fuzzy logic to combine
multiple supportive evidences of abnormalities that contribute to an operational
problem and estimates its probability in real-time. This probability is presented
as a continuous signal to the operator thus removing any chattering associated
with the current single sensor alarming-based on/off methods. The operator is
provided with a set of tools that allow complete investigation and drill down to
the root cause of aproblem for focused action. This approach has been
demonstrated to furnish the operator with advanced warning of the abnormal
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operation that can be minutes to hours earlier than the conventional alarm
system. This early notification letsthe operator to make informed decision and
take corrective action to avert any escalation or mishaps. This method has been
successfully applied to the DCU. For example, Figure 28 shows the complete
drill down for a Furnace Operation Problem.

[0051] The DCU application uses diverse sources of specific operational
knowledge to combine indications from Principal Component Analysis (PCA),
correlation-based engineering models, and relevant sensor transformations into
several fuzzy logic networks. This fuzzy logic network aggregates the evidence
and indicates the combined confidence level of apotential problem. Therefore,
the network can detect aproblem with higher confidence a its initial developing
stages and provide crucial lead-time for the operator to take compensatory or
corrective actions to avoid serious incidents. This is akey advantage over the
present commercial practice of monitoring DCU based on single sensor alarming
from aDCS system. Very often the alarm comes in too late for the operator to
mitigate an operational problem due to the complicated, fast dynamic nature of
DCU or (b) multiple alarms could flood the operator, confusing them and thus
hindering rather than aiding in response.

[0052] In the preferred embodiment, the present invention divides the DCU
operation into the following overall monitors:

1. Overal Furnaces Operation
2. Oveall Gas Plant Operation

and the following special concern monitors
3. Hedth of PID Controllers
4. Operations Consistency

5. Vave Flow Consistency
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[0053] The overall monitors carry out "gross model checking" to detect any
deviation in the overall operation and cover alarge number of sensors. The
special concern monitors cover areas with potentially serious concerns and
consist of focused models for early detection. In addition to all these monitors
the application provides for several practical tools such asthose dealing with
suppression of notifications generated from normal/routine operational events
and elimination of false positives due to special cause operations such as drum-
switching.

A. Operator Interface

[0054] The operator user interface isacritical component of the system as it
provides the operator with abird's eyeview of the process. The display is
intended to give the operator aquick overview of DCU operations and indicate
the probability of any developing abnormalities.

[0055] Figure 25 shows the operator interface for the system. The interface
consists of the abnormality monitors mentioned above. Thiswas developed to
represent the list of important abnormal indications in each operation area.
Comparing model results with the state of key sensors generates abnormal
indications. Fuzzy logic (described below) is used to aggregate abnormal
indications to evaluate a single probability of aproblem. Based on specific
knowledge about the normal operation of each section, we developed afuzzy
logic network to take the input from sensors and model residuals to evaluate the
probability of aproblem. Figure 26 shows the components of the probability
indicator.

[0056] Figure 27 shows alogic network for a controller monitor. The green
nodes show the sub problems that combine together to determine the final
certainty of alevel controller monitor problem. The estimated probability of an
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abnormal condition is shown to the operating team in a continuous trend to
indicate the condition's progression.

10057] Figure 28 shows the complete drill down of a furnace problem.
Figure 29 shows the operator display of afurnace operation problem aong with
continuous signal indications for al other problem areas. This display gives the
operator asignificant advantage to get an overview of the health of the process
than having to check the status of each sensor individually. More importantly, it
gives the operator 'peace-of-mind’. Due to its extensive coverage, chances of
missing any event are remote. So it is aso used as a normality-indicator. When
the probability of abnormality reaches 0.6, the problem indicator turns yellow
(warning) and when the probability reaches 0.9 the indicator turns red (alert).

[0058] This invention comprises of Principal Component Analysis (PCA)
models to cover the areas of Furnaces (Heaters) and Gas Plant. Each Furnace
has its own PCA. The process units in the gas plant can be combined to build a
single PCA model or the mgor gas plant columns can be separated to build
multiple PCA models (e.g. absorber, debutanizer). Based on process knowledge,
we overlap key sensors that are affected by interacting sections in PCA models.
The coverage of the PCA models was determined based on the interactions of
the different processing units. In addition there are anumber of special concern
monitors intended towatch conditions that could escalate into serious events.
The objective isto detect the problems early on so that the operator has
sufficient lead-time to act.

[0059] Under normal operations, the operator executes severa routine
actions such as fuel gas feed rate changes, decoking operations, cut-down of
coker gasto the fluid catalytic cracking unit and set point moves that could
produce short-lived high residuals in some sensors in the PCA and other models.
Since such notifications are redundant and do not give new information, this
invention has mechanism built-in to detect their onset and suppress the
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notifications. This mechanism istypicaly alogic network with aset of source
conditions, which, when true, will suppress a set of pre-specified models.

[0060] The operator isinformed of an impending problem through the
warning triangles that change color from greentoyellow and then tored. The
application provides the operator with drill down capability to further investigate
the problem by viewing alist of prioritized sub problems. This novel method
provides the operator with drill down capabilities to the sub problems. This
enables to operator to narrow down the search for the root cause. Figure 30
shows the result of selecting the red triangle of Figure 29. It indicates that the
West Heater (Furnace) Operation has aproblem. This assists the operator in
isolating and diagnosing the root cause of the condition so that compensatory or
corrective actions can betaken. When the Pareto-chart icon corresponding to
the West Heater is selected, aPareto chart indicating the residual (extent of
abnormality) of deviating sensors sorted by their deviations, from worst to best
is displayed as shown in Figure 31.

[0061] The application uses the Pareto chart approach quite extensively to
present information to the operator. The sequence of presentation isin
decreasing order of individual deviation from normal operation. This allows a
succinct and conciseview of the process narrowed down to the few critical bad
actors so the console operator can make informed decisions about course of
action. Figure 31 demonstrated this functionality through alist of sensors
organized in aPareto chart. Upon selecting an individual bar, a custom plot
showi nQ the tag trend versus model prediction for the sensor is created as shown
in Figure 33. The operator can also look at trends of problem sensors together
using the "multi-trend view". For instance, Figure 32 shows the trends of the
value and model predictions of the sensors in the Pareto chart of Figure 31.
Figure 35 shows the same concept this time applied to the ranking of valve-flow
monitors based on the normalized-projection-deviation error. Selecting the bar
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in this case generates an X-Y scatter plot of Figure 36 that shows the current
operation point in the context of the bounds of normal operation. A history of
recent abnormality isalso retained. The extent of retention is configurable in the
system. Figure 34 shows the historical trend of the abnormality of the furnace
sub-area. This trend will allow the operator to trace the last several problems
and their corresponding drill downs similar to those shown in Figures 31 through
33. It must be noted that history isretained for the first onset of abnormality as
indicated by the red asterisk in Figure 34, since this is the most relevant snapshot
of abnormality.

[0062] In addition to the PCA overal monitors, there are anumber of
gpecial concern monitors built using engineering relationships. These cover
critical equipment in the DCU such asthe main fractionator accumulator boot.
Underlying these monitors are fuzzy-logic networks that generate asingle
abnormality signal.

[0063] In summary, the advantages of this invention include:

1. The decomposition of the entire DCU operation into 3
Operational Areas. Furnaces (Heaters), Main Fractionator, and
Gas Plant - for supervision.

2. The operational condition of the entire DCU is summarized into
5single aerts

3. The PCA models provide model predictions of the 200+
Sensors.

4. The abnormal deviations of these 200+ sensors are summarized
by the alerts based on the Sum of Square Error of the PCA
models
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5. Events resulting from specia cause/routine operations are
suppressed to eliminate the false positives. The enormous
dimensionality reduction from 200+ individual tagsto afew
alert signals significantly cuts down on the false positive rate.
The PCA modeling approach inherently resolvesthe single
sensor alarming issue in an elegant manner.

6. ThePID Monitors provide apowerful way to monitor level,
pressure and other control loops, which effect control actions
and thus can be the source of or be affected by process upsets.
PID monitors detect four different abnormal process conditions:
Frozen process value which is indicative of afaulty instrument
or confrol, highly variant process value, accumulation of
significant control error outside a dead band, and process value
staying on the same side of the set point for a significant length
of time.

7. TheValve-flow models provide apowerful way to monitor flow
control loops, which effect control actions and thus can be the
source of or be affected by process upsets.

8. The heuristic engineering relationships models provide a
simplified way to easily monitor critical engineering
relationships between process variables and specific process
knowledge acquired over years of operation. An example of
thisisthe relationship between two tray temperatures in the
bottom section of the fractionator column to determine if the
column is flooding.
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B. Development and Deployment of AED Models for a DCTJ

[0064] The application has PCA models, engineering relationship models
and heuristics to detect abnormal operation in aDCU. The first steps involve
analyzing the concerned unit for historical operational problems. This problem
identification step isimportant to define the scope of the application.

[0065] The development of these models is described in general in
Appendix 1. Some of the specific concerns around building these models for the
DCU are described below.

Problem Identification

[0066] The first step in the application development isto identify a
significant problem, which will benefit process operations. The abnormal event
detection application in general can be applied to two different classes of
problems. The firstis ageneric abnormal event application that monitors an
entire process area looking for any abnormal event. This type will use several
hundred measurements, but does not require ahistorical record of any specific
abnormal operations. The application will only detect and link an abnormal
event to aportion (tags) of the process. Diagnosis of the problem requires the
skill of the operator or engineer.

[0067] The'second type is focused on a specific abnormal operation. This
type will provide a specific diagnosis once the abnormality is detected. It
typically involves only asmall number of measurements (5 -20), but requires a
historical data record of the event. This model can beaPCA / PLS model or
based on simple engineering correlations (e.g. mass/energy-balances, control
action and corresponding process changes). This document covers both kinds of
applications in order to provide extensive coverage. The operator or the
engineer would then rely on their process knowledge/expertise to accurately
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diagnose the cause. Typically most of the events seem to be primarily the result
of problems with the instruments and valves.

[0068] When scoping the problem, it is common to get the wrong
impression from site personnel that there would not be a sufficient number of
abnormal eventstojustify an abnormal event detection application. In general,
an overly low estimate of how frequently abnormal events affect the process
occurs because:

Abnormal events are often not recorded and analyzed. Only those
that cause significant losses are tracked and analyzed.

Abnormal events are often viewed as part of normal operations since
operators deal with them daily.

Unlessthere is aregularly repeating abnormal event, the application should
cover alarge enough portion of the process to "see" abnormal eventson a
regular basis (e.g. More than 5 times each week).

I. PCA Modes

[0069] The PCA models are the heart of the DCU AED. PCA transforms
the actual process variables into a set of 'orthogonal’ or independent variables
called Principal Components (PC) which are linear combinations of the original
variables. It has been observed that the underlying process has a number of
degrees of freedom which represent the specific independent effects that
influence the process. These different independent effects show up in the
process data as process variation. Process variation can be due to intentional
changes, such as feed rate changes, or unintentional diﬁurbanceﬁ, such as
ambient temperature variation.
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[0070] Each principal component captures a unique portion of the process
variability caused by these different independent influences on the process. The
principal components are extracted in the order of decreasing process variation.
Each subsequent principal component captures asmaller portion of the total
process variability. The major principal components should represent significant
underlying sources of process variation.. As an example, the first principal
component often represents the effect of feed rate changes since thisis usually
the largest single source of process changes.

[0071] The application is based on aPrincipal Component Analysis, PCA,
of the process, which creates an empirical model of "normal operations'. The
process of building PCA models is described in detail in the section "Developing
PCA Models for AED" in Appendix 1. The following will discuss the special
considerations that are necessary to apply PCA toward creating an abnormal
event detection application for aDCU.

DCU PCA Model Development

[0072] The application has PCA models covering the furnaces area
(HEATER-PCA) and light ends towers (GASPLANT-PCA). This alows
extensive coverage of the overall DCU operation and early aerts.

[0073] The PCA model development comprises of the following steps:
1) Input Data and Operating Range Selection
2) Historical data collection and pre-processing
3) Dataand Process Analysis
4) Initial model creation
5) Model Testing and Tuning

6) Model Deployment
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[0074] The general principles involved in building PCA models are
described in the subsection | "Conceptua PCA Model Design” under section
"Developing PCA Models for AED" in Appendix 1 These steps constitute the
primary effort in model development. Since PCA models are data-driven, good
guality and quantity of training data representing normal operations is very
crucial. The basic development strategy isto start with avery rough model, then
to successively improve that model's fidelity. This requires observing how the
model compares to the actual process operations and re-training the model based
on these observations. The steps are briefly described next.

Input Data and Operating Range Selection

[0075] Asthe list of tags in the PCA model dictates coverage, we start with
acomprehensive list of al the tags in the concerned areas. The process of
selecting measurements and variables is outlined in subsection 11 "Input Data
and Operating Range Selection” under the section "Developing PCA Models for
AED" in Appendix 1. Any measurements that were known to be unreliable or
exhibit erratic behavior should be removed from the list. Additional
measurement reduction is performed using an iterative procedure once the initial
PCA model is obtained.

Historical Data collection and Pre-Processing

[0076] Developing agood model of normal operations requires atraining
data set of normal operations. This data set should:

e Spanthe normal operating range

e Only include normal operating data

[0077] Because it is very rare to have a complete record of the abnormal
event history at a site, historical data can only be used as a starting point for
creating the training data set. Operating records such as Operator logs, Operator
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Change Journals, Alarm Journals, Instrument Maintenance records provide a
partial record of the abnormal process history. The process of data collection is
elaborated upon in subsection I11 "Historical Data collection” under the section
"Developing PCA Models for AED" in Appendix |.

[0078] In the case of the DCU, the historical data spanned 1.5 years of
operation to cover both summer and winter periods. With one-minute averaged
data, the number of time stamped values turns out to be around 750,000+ for
each tag. In order to make the data-set more manageable while still retaining
underlying information, engineering judgment was applied and every 3rd point
was retained resulting in about 250,000+ points for each sensor. This allowed
the representative behavior to be captured by the PCA models.

[0077]. Basic statistics such as average, min/max and standard deviation are
calculated for al the tags to determine the extent of variation/information
contained within. Also, operating logs were examined to remove data contained
within windows with known unit shutdowns or abnormal operations. Each
candidate measurement was scrutinized to determine appropriateness for
inclusion in the training data set.

Creating Balanced Training Data Set

[0080] Using the operating logs, the historical datais divided into periods
with known abnormal operations and periods with no identified abnormal
operations. The data with no identified abnormal operations will bethe
preliminary training data set used for model development.

[0081] Once these exclusions have been made the first rough PCA model
can bebuilt. Since this is going to be avery rough model the exact number of
principal components (PCs) to beretained is not important. This should be no
more than 5% of the number measurements included in the model. The number
of PCs should ultimately match the number of degrees of freedom in the process,
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however this isnot usually known since this includes all the different sources of
process disturbances. There are several standard methods for determining how
many principal componentsto include. Also at this stage the statistical approach
to variable scaling should be used: scale all variables to unit variance.

[0082] The training data set should now be run through this preliminary
model to identify time periods where the data does not match the model. These
time periods should be examined to see whether an abnormal event was
occurring at thetime. If this isjudged to bethe case, then these time periods
should also be flagged as times with known abnormal events occurring. These
time periods should be excluded from the training data set and the model rebuilt
with the modified data. The process of creating balanced training data sets using
data and process analysisis outlined in Section IV "Data & Process Analysis'
under the section "Developing PCA Models for AED" in Appendix 1.

Initial Model Creation

[0083] The model development strategy isto start with avery rough model
(the consequence 6f aquestionable training data set) then use the model to
gather ahigh quality training data set. This data isthen used to improve the
model, which isthen used to continue to gather better quality training data. This
process is repeated until the model is satisfactory.

[0084] Once the specific measurements have been selected and the training
data set has been built, the model can be built quickly using standard statistical
tools. An example of such aprogram showing the percent variance captured by
each principal component is shown in Figure 39.

The model building process is described in Section V "Model Creation” under
the section "Developing PCA Models for AED" in Appendix 1.
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Model Testing and Tuning

[0085] Once the initial model has been created, it needs to be enhanced by
creating anew training data set. This is done by using the model to monitor the
process. Once the model indicates apotential abnormal situation, the engineer
should investigate and classify the process situation. The engineer will find
three different situations, either some special process operation is occurring, an
actual abnormal situation is occurring, or the process isnormal and it isafalse
indication.

[0086] The process datawill not have a Gaussian or normal distribution.
Consequently, the standard statistical method of setting the trigger for detecting
an abnormal event from the variability of the residual error should not be used.
Instead the trigger point needs to be set empirically based on experience with
using the model. Section VI "Model Testing & Tuning" under the section
"Developing PCA Models for AED" in Appendix 1describes the Modé testing
and enhancement procedure.

DCU PCA Model Deployment

[0087] Successful deployment of AED on aprocess unit requires a
combination of accurate models, awell designed user interface and proper
trigger points. The detailed procedure of deploying PCA model is described
under "Deploying PCA Models and Simple Engineering Models for AED" in
Appendix 1.

[0088] Over time, the developer or site engineer may determinethat it is
necessary to improve one of the models. Either the process conditions have
changed or the model isproviding afalse indication. Inthis event, the training
data set could be augmented with additional process data and improved model
coefficients could be obtained. The trigger points can be recalculated using the
same rules of thumb mentioned previoudly.
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[0089] Old data that no longer adequately represents process operations
should beremoved from thetraining data set. If aparticular type of operation is
no longer being done, all data from that operation should be removed. After a
major process modification, the training data and AED model may need to be
rebuilt from scratch.

[0090]  The DCU PCA model started with an initial set of about 600 tags,
which was then refined to about 300 tags. The Heater-PCA models include
about 60 tags each. The Gas Plant-PCA model includes about 100 tags and
covers the sections downstream of the main fractionator involved in the recovery
- compressors, absorber and debutanizer (Figure 24). The details of the Heater-
PCA models are shown in Appendix 2A and the Gas Plant-PCA model is
described in Appendix 2B.

1. AED Engineering Mod€els

DCU Engineering Models Development

[0091]] The engineering models comprise of correlation-based models
focused on specific detection of abnormal conditions. The detailed description
of building engineering models can be found under "Simple Engineering Models
for AED" section in Appendix 1.

[0092] The engineering model requirements for the DCU application were
determined by: performing an engineering evaluation of historical process data
and interviews with console operators and equipment specialists. The
engineering evaluation included areas of critical concern and worst case
scenarios for DCU operation. To address the conclusions from the engineering
assessment, the following engineering models were developed for the DCU
AED application:

» Critical Level and Pressure PID Control Loops Monitor
» Process Consistency Monitors
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1. Heater Pass Flow Material Balance Monitor

2. Main Fractionator Flooding Monitor

3. Main Fractionator Overhead Accumulator to Flare Monitor
4. Debutanizer Bottoms Flooding Monitor

5. Main Fractionator Overhead Accumulator Temperature
Monitor

6. Cat Slurry Oil and Steam Flow Monitor
* Flow - Vave Position Consistency Monitor

[0093] The DCU has about 20 critical level and pressure control loops.
Thée PID control loops are monitored to detect four different abnormal process
conditions. Frozen process value which is indicative of afaulty instrument or
control, highly variant process value, accumulation of significant control error
outside a dead band, and process value staying on the same side of the set point
for asignificant length of time. The tuning parameters and thresholds for
detecting these four conditions are set based on historical and statistical analysis
of normal operations for aperiod of at least 3 months. Details of these control
loops are provided in Appendix 3A.

[0094] Process Consistency Monitors are checks that the console operator
would otherwise perform based on years of process experience. The console
operator knowledge, along with thresholds and tuning parameters are captured in
these consistency checks. Inthe initial implementation 6 such checks have been
included. Details follow and are also provided in Appendix 3B.

[0095] The Heater Pass Flow Material Balance Monitor sums the individual
pass flows (for example, sum of four flows in afurnace containing four passes)
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and compares it to the total pass flow meter. If these are inconsistent it is more
than likely that at least one of the flow meters is erroneous.

[0096] Main Fractionator Flooding Monitor monitors temperatures of two
trays, in the flash zone and the bottom of the column, that are close to each
other. If these temperatures are sufficiently close then that isindicative of
flooding.

[0097] Main Fractionator Overhead Accumulator to Flare Monitor monitors
the consistency between two pressures in the overhead vapor line, oneisthe
flare line pressure, and the other isthe pressure in the compressor line.
Inconsistency between these two could result in an undesirable hydrocarbon
release.

[0098] Debutanizer Bottoms Flooding Monitor monitors the difference
between the debutanizer bottoms and the reboiler inlet temperatures. If this
difference is less than a specific threshold while the debutanizer bottoms
temperature is greater than a specified maximum, then that is indicative of
flooding.

[0099] Main Fractionator Overhead Accumulator Temperature Monitor
monitors two temperatures in the overhead vapor line, with one of them used to
control the fractionator reflux flow. Inconsistency between these temperatures
could result undesirable fractionation in the column.

[00100] Cat Slurry Oil (CSO) and Steam Flow Monitor monitors the sum of
the CSO and velocity steam flows. If there isno flow in this line, then it is
possible to plug the line. Thiswill result in improper plugging of the drum at the
beginning of the coking cycle, which in turn can affect the type of coke
produced and the cutting of coke.

[00101] The Flow-Valve position consistency monitor was derived from a
comparison of the measured flow (compensated for the pressure drop across the
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valve) with amodel estimate of the flow. These are powerful checks asthe
condition of the control loops are being directly monitored in the process. The
model estimate of the flow is obtained from historical data by fitting coefficients
to the valve curve equation (assumed to be either linear or parabolic). Inthe
initial application, 22 flow/valve position consistency models were devel oped.
An example is shown in Figure 36 for aheater feed valve. Thisvalve iscrucia
in maintaining the corresponding pass temperature to avoid any tube coking. |f
allowed to develop, tube coking could bring the entire unit down and can result
in severa million dollars of production losses. The details of the valve flow
models are given in Appendix 3C. A time-varying drift term was added to the
model estimate to compensate for long term sensor drift. The operator can also
request areset of the drift term after a sensor recalibration or when amanual
bypass valve has been opened or closed. This modification to the flow estimator
significantly improved the robustness for implementation within an online
detection algorithm.

[00102] In addition to the valve-flow model mismatch, there is an additional
check to notify the operator in the event that a control valve is beyond
controllable range using value-exceedance. Figure 37 shows both the
components of the fuzzy net and an example of value-exceedance is shown in
Figure 38.

DCU Engineering Model Deployment

[00103] The procedure for implementing the engineering models within
AED is straightforward. For the models which identify specific known types of
behavior within the unit (e.g. Main Fractionator Flooding) the trigger points for
notification were determined from the statistical analysis of historical datain
combination with console operator input. For the computational models (e.g.
flow/valve position models), the trigger points for notification were initially
derived from the standard deviation of the model residual. For the first several
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months of operation, known AED indications were reviewed with the operator to
ensure that the trigger points were appropriate and modified as necessary.
Section "Deploying PCA Models and Simple Engineering Models for AED" in
Appendix 1 describes details of engineering model deployment.

[00104] Under certain circumstances, the valve/flow diagnostics could
provide the operator with redundant notification. Model suppression was
applied to the valve / flow diagnostics to provide the operator with a single alert
to aproblem with avalve/flow pair. For instance, unless the sum of pass flows
do not match with the total flow measurement into a heater within apre-
specified tolerance, the pass flow valves will not be activated.

C. AED Additional Tools

[00105] In order to facilitate smooth daily AED operation, various tools are
provided to help maintain AED models and accommodate real concerns.

Event suppression/Tags Disabling

[00106] The operator typically makes many moves (e.g., set point changes,
tags under maintenance, decokes etc.) and other process changes in routine daily
operations. In order to suppress such known events beforehand, the system
provides for event suppression. Whenever set point moves are implemented, the
step changes in the corresponding PV and other related tags might generate
notifications. In practice if the AED models are not already aware of such
changes, the result can be an abnormality signal. To suppress this, fuzzy net
uses the condition check and the list of models to be suppressed as shown in
Figure 40. In other situations, tags in PCA models, valve flow models and fuzzy
nets can be temporarily disabled for specified time periods by the operator and
reactivated using a condition-based algorithm. Also, in such cases, a
configurable automatic reactivation time of 12 hours isused to prevent operators
from forgetting to reactivate.
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Alternative Solutions May Be Better -Corrective actions for repeated events

[00107] If aparticular repeating problem has been identified, the devel oper
should confirm that there is not a better way to solve the problem. In particular

the developer should make the following checks before trying to build an
abnormal event detection application.

Can the problem be permanently fixed? Often aproblem exists
because site personnel have not had sufficient timeto
investigate and permanently solve the problem. Oncethe
attention of the organization is focused on the problem, a
permanent solution is often found. This isthe best approach.

Can the problem be directly measured? A more reliable way to
detect a problem isto install sensorsthat can directly measure
the problem in the process. This can also be used to prevent the
problem through aprocess control application. Thisisthe
second best approach.

Can an inferential measurement be developed which will
measure the approach to the abnormal operation? Inferential
measurements arevery close relatives to PCA abnormal event
models. |If the data exists which can be used to reliably measure
the approach to the problem condition (e.g. tower flooding using
deltapressure), this can then be used to not only detect when the
condition exists but also as the base for acontrol application to
prevent the condition from occurring. This isthe third best
approach.

Abnormal Event Detection Applications Do Not Replace the Alarm System

[00108] Whenever aprocess problem occurs quickly, the alarm system will

identify the problem as quickly asan abnormal event detection application. The
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sequence of events (e.g. The order in which measurements become unusual)
may be more useful than the order of the alarms for helping the operator
diagnose the cause. This possibility should be investigated once the application
ison-line.

[00109] However, abnormal event detection applications can give the
operator advanced warning when abnormal events develop slowly (longer than
15 minutes). These applications are sensitive to a change in the pattern of the
process data rather than requiring alarge excursion by a single variable.
Consequently alarms can be avoided. If the alarm system has been configured to
alert the operator when the process moves away from asmall operating region
(not true safety alarms), this application may be able to replace these alarms.

[00110] In addition tojust detecting the presence of an abnormal event the
AED system also isolates the deviant sensors for the operator to investigate the
event. Thisisacrucial advantage considering that modern plants have
thousands of sensors and it is humanly infeasible to monitor them all online.
The AED system can thus be thought of as another powerful addition to the
operator toolkit to deal with abnormal situations efficiently and effectively.
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APPENDIX 1

[00111] Events and disturbances of various magnitudes are constantly
affecting process operations. Most of the time these events and disturbances are
handled by the process control system. However, the operator isrequired to
make an unplanned intervention in the process operations whenever the process
control system cannot adequately handle the process event. We define this
situation as an abnormal operation and the cause defined as an abnormal event.

[00112] A methodology and system has been developed to create and to
deploy on-line, sets of models, which are used to detect abnormal operations and
help the operator isolate the location of the root cause. In apreferred
embodiment, the models employ principal component analysis (PCA). These
sets of models are composed of both simple models that represent known
engineering relationships and principal component analysis (PCA) models that
represent normal data patternsthat exist within historical databases. The results
from these many model calculations are combined into a small number of
summary time trends that allow the process operator to easily monitor whether
the process is entering an abnormal operation.

[00113] Figure 1 shows how the information in the online system flows
through the various transformations, model calculations, fuzzy Petri nets and
consolidations to arrive & a summary trend which indicates the normality /
abnormality of the process areas. The heart of this system isthe various models
used to monitor the normality of the process operations.

[00114] The PCA models described in this invention are intended to broadly
monitor continuous refining and chemical processes and to rapidly detect
developing equipment and process problems. The intent is to provide blanket
monitoring of all the process equipment and process operations under the span of
responsibility of aparticular console operator post. This can involve many



WQ 2007/124002

PCT/US2007/009576

-29.-

major refining or chemical process operating units (e.g. distillation towers,

reactors, compressors, heat exchange trains, etc.), which have hundreds to

thousands of process measurements. The monitoring is designed to detect

problems which develop on a minutesto hours timescale, as opposed to long

term performance degradation. The process and equipment problems do not
need to be specified beforehand. Thisisin contrast to the use of PCA models
cited in the literature which are structured to detect a specific important process

problem and to cover amuch smaller portion of the process operations.

[00115] To accomplish this objective, the method for PCA model
development and deployment includes anumber of novel extensions required for

their application to continuous refining and chemical processes including:

criteria for establishing the equipment scope of the PCA models
criteria and methods for selecting, analyzing, and transforming
measurement inputs

developing of multivariate statistical models based on avariation
of principal component models, PCA

developing models based on simple engineering relationships
restructuring the associated statistical indices

preprocessing the on-line data to provide exception calculations
and continuous on-line model updating

using fuzzy Petri netsto interpret model indices as normal or
abnormal

using fuzzy Petri nets to combine multiple model outputs into a
single continuous summary indication of normality / abnormality
for aprocess area
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design of operator interactions with the models and fuzzy Petri
nets to reflect operations and maintenance activities

[00116] These extensions are necessary to handle the characteristics of

continuous refining and chemical plant operations and the corresponding data
characteristics so that PCA and simple engineering models can be used
effectively. These extensions provide the advantage of preventing many of the |

Type | and Type Il errors and quicker indications of abnormal events.

[00117]  This section will not provide ageneral background to PCA. For
that, readers should refer to a standard textbook such asE. Jackson's "A User's
Guide to Principal Component Analysis® (2)

[00118] The classical PCA technigue makes the following statistical
assumptions all of which are violated to some degree by the data generated from

normal continuous refining and chemical plant process operations:

1

The process is stationary—its mean and variance are constant
over time.

The cross correlation among variables is linear over the range of
normal process operations

Process noise random variables are mutually independent.

The covariance matrix of the process variables is not degenerate
(i.e. positive semi-definite).

The data are scaled "appropriately” (the standard statistical
approach being to scale to unit variance).

There are no (uncompensated) process dynamics (a standard
partial compensation for this being the inclusion of lag variables
inthe model)
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7. All variables have some degree of cross correlation.
8. The datahave a multivariate normal distribution

[00119) Consequently, in the selection, analysis and transformation of inputs
and the subsequent in building the PCA model, various adjustments are made to
evaluate and compensate for the degree of violation.

[00120] Once these PCA models are deployed on-line the model calculations
require specific exception processing to remove the effect of known operation
and maintenance activities, to disable failed or "bad acting" inputs, to allow the
operator observe and acknowledge the propagation of an event through the
process and to automatically restore the calculations once the process has
returned to normal.

[00121] Use of PCA models is supplemented by simple redundancy checks
that are based on known engineering relationships that must be true during
normal operations. These can be as simple as checking physically redundant
measurements, or as complex as material and engineering balances,

[00122] The simplest form of redundancy checks are simple 2x2 checks, e.g.

e temperature 1= temperature 2
» flow 1=valve characteristic curve 1(valve 1position)

* materia flow into process unit 1= material flow out of process

unit 1

[00123] These are shown to the operator as simple x-y plots, such asthe
valve flow plot in Figure 2. Each plot has an area of normal operations, shown
on this plot by the gray area. Operations outside this area are signaled as
abnormal.



WO 2007/124002 PCT/US2007/009576

-32 -

[00124] Multiple redundancy can also be checked through a single
multidimensional model. Examples of multidimensional redundancy are:

e pressure 1=pressure 2= ... =pressure n

» material flow into process unit 1= material flow out of process
unit | = ... = materia flow into process unit 2

[00125]  Multidimensional checks are represented with "PCA like" models.
In Figure 3, there are three independent and redundant measures, XI, X2, and
X3. Whenever X3 changes by one, X| changes by a5 and X2 changes by a,,.
This set of relationships is expressed as a PCA model with asingle principal
component direction, P. Thistype of model ispresented to the operator in a
manner similar to the broad PCA models. Aswith the two dimensional
redundancy checks the gray area shows the area of normal operations. The
principal component loadings of P are directly calculated from the engineering
eguations, not in the traditional manner of determining P from the direction of
greatest variability.

[00126] The characteristics of the process operation require exception
operations to keep these relationships accurate over the normal range of process
operations and normal field equipment changes and maintenance activities.
Examples of exception operations are:

e opening of bypass valves around flow meters
e compensating for upstream / downstream pressure changes
» recalibration of field measurements

» redirecting process flows based on operating modes

[00127] The PCA models and the engineering redundancy checks are
combined using fuzzy Petri netsto provide the process operator with a
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continuous summary indication of the normality of the process operations under
his control (Figure 4).

[00128] Multiple statistical indices are created from each PCA model so that
the indices correspond to the configuration and hierarchy of the process
equipment that the process operator handles. The sensitivity of the traditional
sum of Squared Prediction Error, SPE, index isimproved by creating subset
indices, which only contain the contribution to the SPE index for the inputs
which come from designated portions of the complete process area covered by
the PCA model. Each statistical index from the PCA models is fed into a fuzzy
Petri net to convert the index into azero to one scale, which continuously
indicates the range from normal operation (value of zero) to abnormal operation
(value of one).

[00129] Each redundancy check isalso converted to a continuous normal -
abnormal indication using fuzzy nets. There are two different indices used for
these models to indicate abnormality; deviation from the model and deviation
outsidethe operating range (shown on Figure 3). These deviations are
equivalent to the sum of the square of the error and the Hotelling T square
indices for PCA models. For checkswith dimension greater than two, it is
possible to identify which input has aproblem. In Figure 3, since the X3-X2
relationship is still within the normal envelope, the problem iswith input X L
Each deviation measure is converted by the fuzzy Petri net into azero to one
scale that will continuously indicate the range from normal operation (value of
zero) to abnormal operation (value of one).

[00130] For each process area under the authority of the operator, the
applicable set of normal - abnormal indicators is combined into a single normal -
abnormal indicator. This is done by using fuzzy Petri logic to select the worst
case indication of abnormal operation. In this way the operator has a high level
summary of al the checks within the process area. This section will not provide
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a general background to fuzzy Petri nets. For that, readers should refer to
Cardoso, et al, Fuzzy Petri Nets: An Overview (1)

[00131] The overall process for developing an abnormal event application is
shown in Figure 5. The basic development strategy is iterative where the
developer starts with arough model, then successively improves that model's
capability based on observing how well the model represents the actual process
operations during both normal operations and abnormal operations. The models
are then restructured and retrained based on these observations.

Developing PCA models for Abnormal Event Detection
/. Conceptual PCA Model Design

[00132] The overall design goals areto:

» provide the console operator with a continuous status (normal vs.
abnormal) of process operations for all of the process units under
his operating authority

» provide him with an early detection of arapidly developing
(minutes to hours) abnormal event within his operating authority

» provide him with only the key process information needed to
diagnose the root cause of the abnormal event.

[00133] Actual root cause diagnosis is outside the scope of this invention.
The console operator is expected to diagnosis the process problem based on his
process knowledge and training.

[00134] Having abroad process scope isimportant to the overall success of
abnormal operation monitoring. For the operator to learn the system and
maintain.his skills, he needs to regularly use the system. Since specific
abnormal events occur infrequently, abnormal operations monitoring of a small
portion of the process would be infrequently used by the operator, likely leading
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the operator to disregard the system when it final iy detects an abnormal event.
This broad scope isin contrast to the published modeling goal which isto design

the mode!l based on detecting a specific process problem of significant economic
interest (see Kourti, 2004).

[00135] There are thousands of process measurements within the process
units under a single console operator's operating authority. Continuous refining
and chemical processes exhibit significant time dynamics among these
measurements, which break the cross correlation among the data. This requires
dividing the process equipment into separate PCA models where the cross
correlation can be maintained.

[00136] Conceptual model design is composed of four major decisions:

» Subdividing the process equipment into equipment groups with
corresponding PCA models

e Subdividing process operating time periods into process
operating modes requiring different PCA models

* ldentifying which measurements within an equipment group
should be designated as inputs to each PCA model

* ldentifying which measurements within an equipment group
should act as flags for suppressing known events or other
exception operations

A. Process Unit Coverage

[00137] The initial decision isto create groups of equipment that will be
covered by asingle PCA model. The specific process units included requires an
understanding of the process integration / interaction. Similar to the design of a
multivariable constraint controller, the boundary of the PCA model should
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encompass all significant process interactions and key upstream and downstream
indications of process changes and disturbances.

[00138]' The following rules are used to determined these equipment groups:

[00139] Equipment groups are defined by including all the major material
and energy integrations and quick recycles in the same equipment group. If the
process uses amultivariate constraint controller, the controller model will
explicitly identify the interaction points among the process units. Otherwise the
interactions need to be identified through an engineering analysis of the process.

[00140] Process groups should bedivided at apoint where thereisa
minimal interaction between theprocess equipment groups. The most obvious
dividing point occurs when the only interaction comes through a single pipe
containing the feed to the next downstream unit. In this case the temperature,
pressure, flow, and composition of the feed are the primary influences on the
downstream equipment group and the pressure in the immediate downstream
unit isthe primary infl uence on the upstream equipment group. These primary
influence measurements should be included in both the upstream and
downstream equipment group PCA models.

[00141] Include the influence d theprocess control applications between
upstream and downstream equipment groups. The process control applications
provide additional influence paths between upstream and downstream equipment
groups. Both feedforward and feedback paths can exist. Where such paths exist
the measurements which drive these paths need to be included in both equipment
groups. Analysis of the process control applications will indicate the major
Interactions among the process units.

[00142] Divide equipment groups wherever there are significant time
dynamics (e.g. storage tanks, longpipelines etc.). The PCA models primarily
handle quick process changes (e.g. those which occur over aperiod of minutes
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to hours). Influences, which take several hours, days or even weeks to have their
effect on the process, are not suitable for PCA models. Where these influences
are important to the normal data patterns, measurements of these effects need to
be dynamically compensated to get their effect time synchronized with the other
process measurements (see the discussion of dynamic compensation).

B. Process Operating Modes

[00143] Process operating modes are defined as specific time periods where
the process behavior issignificantly different. Examples of these are production
of different grades of product (e.g. polymer production), significant process
transitions (e.g. startups, shutdowns, feedstock switches), processing of
dramatically different feedstock (e.g. cracking naphtha rather than ethane in
olefins production), or different configurations of the process equipment
(different sets of process units running).

[00144] PFhere these significant operating modes exist, it is likely that
separate PCA models will need to be developed for each major operating mode.
The fewer models needed the better. The developer should assume that a
specific PCA model could cover similar operating modes. This assumption must
be tested by running new data from each operating mode through the model to
see if it behaves correctly.

C. Historical ProcessProblems

[00145] In order for there to be organizational interest in developing an
abnormal event detection system, there should be an historical process problem
of significant economic impact. However, these significant problems must be
analyzed to identify the best approach for attacking these problems. In
particular, the developer should make the following checks before trying to build
an abnormal event detection application:
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1. Canthe problem be permanently fixed? Often aproblem exists because
site personnel have not had sufficient time to investigate and permanently -
solve the problem. Once the attention of the organization is focused on the
problem, apermanent solution is often found. This isthe best approach.

2. Canthe problem be directly measured? A more reliable way to detect a
problem is to install sensors that can directly measure the problem in the
process. This can also be used to prevent the problem through a process
control application. Thisisthe second best approach.

3. Can an inferential measurement be developed which will measure the
approach to the abnormal operation? Inferential measurements are usually
developed using partial least squares, PLS, models which are very close
relatives to PCA abnormal event models. Other common alternatives for
developing inferential measurements include Neural Nets and linear
regression models. |If the data exists which can beused to reliably measure
the approach to the problem condition (e.g. tower flooding using delta
pressure), this can then be used to not only detect when the condition exists
but also as the base for a control application to prevent the condition from
occurring. Thisisthethird best approach.

[00146] Both direct measurements of problem conditions and inferential
measurements of these conditions can be easily integrated into the overall
network of abnormal detection models.

/1. Input Data and Operating Range Selection

[00147] Within an equipment group, there will bethousands of process
measurements. For the preliminary design:

» Select all cascade secondary controller measurements, and
especially ultimate secondary outputs (signalsto field control
valves) on these units



WO 2007/124002

PCT/US2007/009576

-39 -

Select key measurements used by the console operator to monitor
the process (e.g. those which appear on his operating
schematics)

Select any measurements used by the contact engineer to
measure the performance of the process

Select any upstream measurement of feed rate, feed temperature
or feed quality

Sdlect measurements of downstream conditions which affect the
process operating area, particularly pressures.

Sdlect extraredundant measurements for measurements that are
important

Select measurements that may be needed to calculate non-linear
transformations.

Select any external measurement of a disturbance (e.g. ambient
temperature)

Select any other measurements, which the process experts regard
as important measures of the process condition

[00148] From this list only include measurements which have the following

characteristics:

The measurement does not have a history of erratic or problem
performance

The measurement has a satisfactory signal to noise ratio

The measurement is cross-correlated with other measurements in
the data set
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e The measuremént s not saturated for more than 10% of the time
during normal operations.

» The measurement is not tightly controlled to a fixed set point,

which rarely changes (the ultimate primary of a control
hierarchy).

» The measurement does not have long stretches of "Bad Value"
operation or saturated against transmitter limits.

* The measurement does not go across arange of values, which is
known to be highly non-linear '

* The measurement is not aredundant calculation from the raw
measurements

* Thesignalsto field control valves are not saturated for more than
10% of thetime

A. Evaluations for Sdlecting Modédl |nputs

[00149] There are two statistical criteria for prioritizing potential inputs into
the PCA Abnormal Detection Model, Signal to Noise Ratio and Cross-
Correlation.

J Sgnal toNoise Test

The signal to noise ratio isa measure of the information content in
the input signal.

The signal tonoiseratio is calculated as follows:

1. Theraw signa isfiltered using an exponential filter with an approximate
dynamic time constant equivalent to that of the process. For continuous
refining and chemical processes this time constant is usualy in the range of
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30 minutes to 2 hours. Other low pass filters can be used as well. For the
exponential filter the equations are:

Y,=P*Y_,+(1-P) * X,, Exponentia filter equation Equation 1
P = Exp(-TJTy) Filter constant calculation Equation 2
where:

Y, the current filtered value

Y.,  theprevious filtered value

X, the current raw value

P the exponential filter constant

T the sample time of the measurement

T; the filter time constant

2. A residua signal is created by subtracting the filtered signal from the raw
signa

R,=X,-Y, Equation 3

3. The signa to noiseratio isthe ratio of the standard deviation of the filtered
signal divided by the standard deviation of the residual signal

S;N=0,/0g Equation 4

[00150] It ispreferable to have al inputs exhibit a S/N which is greater than
apredetermined minimum, such as4. Those inputs with SIN less than this
minimum need individual examination to determine whether they should be
included in the model

[00151] The data set used to calculate the S/N should exclude any long
periods of steady-state operation since that will cause the estimate for the noise
content to be excessively large.
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2 CrossCorrelation Test

[00152] The cross correlation is ameasure of the information redundancy the
input data set. The cross correlation between any two signalsis calculated as:

1. Calculate the co-variance, Sy, between each input pair, i and k

Si, = N* Z (X *Xi) - (2 Xi) * (Z Xi) Equation 5
N*(N-1)

2. Calculate the correlation coefficient for each pair of inputs from the co-
variance:

CCi, = S /(S,*S)"? Equation 6

[00153] There aretwo circumstances, which flag that an input should not be
included in the model. The first circumstance occurs when there is no
significant correlation between aparticular input and the rest of the input data
set. For each input, there must be at least one other input in the data set with a
significant correlation coefficient, such as 0.4.

[00154] The second circumstance occurs when the same input information
has been (accidentally) included twice, often through some calculation, which
has adifferent identifier. Any input pairs that exhibit correlation coefficients
near one (for example above 0.95) need individual examination to determine
whether both inputs should be included in the model. If the inputs are physically
independent but logically redundant (i.e., two independent thermocouples are
independently measuring the same process temperature) then both these inputs
should be included in the model.

[00155] If two inputs are transformations of each other (i.e., temperature and
pressure compensated temperature) the preference isto include the measurement
that the operator isfamiliar with, unless there is a significantly improved cross
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correlation between one of these measurements and the rest of the dataset. Then
the one with the higher cross correlation should be included.

3 Identifying & Handling Saturated Variables

[00156] Refining and chemical processes often run against hard and soft
constraints resulting in saturated values and "Bad Vaues' for the model inputs.
Common constraints are: instrument transmitter high and low ranges, analyzer
ranges, maximum and minimum control valve positions, and process control
application output limits. Inputs can fall into several categories with regard to
saturation which require special handling when pre-processing the inputs, both
for model building and for the on-line use of these models.

[00157] For standard analog instruments (e.g., 4-20 milliamp electronic
transmitters), bad values can occur because of two separate reasons.

» The actual process condition is outside the range of the field
transmitter

e The connection with the field has been broken

[00158] When either of these conditions occur, the process control system
could be configured on an individual measurement basisto either assign a
specia code to the value for that measurement to indicate that the measurement
isaBad Value, or to maintain the last good value of the measurement. These
values will then propagate throughout any calculations performed on the process
control system. When the "last good value" option has been configured, this can
lead to erroneous calculations that are difficult to detect and exclude. Typically
when the "Bad Value" code ispropagated through the system, all calculations
which depend on the bad measurement will be flagged bad aswell.

[00159] Regardless of the option configured on the process control system,
those time periods, which include Bad Vaues should not be included in training
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or test data sets. The developer needs to identify which option has been

configured in the process control system and then configure data filters for

excluding samples, which are Bad Values. For the on-line implementation,
inputs must be pre-processed so that Bad Values are flagged as missing values,

regardless of which option had been selected on the process control system.

[00160] Those inputs, which are normally Bad Value for extensive time
periods should be excluded from the model.

[00161] Constrained variables are ones where the measurement is at some

limit, and this measurement matches an actual process condition (as opposed to

where the value has defaulted to the maximum or minimum limit of the

transmitter range - covered in the Bad Value section). This process situation can

occur for several reasons:

Portions of the process are normally inactive except under
special override conditions, for example pressure relief flow to
the flare system. Time periods where these override conditions
are active should be excluded from the training and validation
data set by setting up data filters. For the on-line implementation
these override events are trigger events for automatic suppression
of selected model statistics

The process control system is designed to drive the process
against process operating limits, for example product spec limits.
These constraints typically fall into two categories: - those,
which are occasionally saturated and those, which are normally
saturated. Those inputs, which are normally saturated, should be
excluded from the model. Those inputs, which are only
occasionally saturated (for example lessthan 10% of the time)
can be included in the model however, they should be scaled
based on the time periods when they are not saturated.
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B. Input from Process Control Applications

[00162] The process control applications have avery significant effect on the
correlation structure of the process data. In particular:

* Thevariation of controlled variables is significantly reduced so
that movement in the controlled variables isprimarily noise
except for those brief time periods when the process has been hit
with a significant process disturbance or the operator has
intentionally moved the operating point by changing key set
points.

* The normal variation in the controlled variables is transferred by
the control system to the manipulated variables (ultimately the
signals sent to the control valves in the field).

[00163] The normal operations of refinery and chemical processes are
usually controlled by two different types of control structures: the classical
control cascades (shown in Figure 6) and the more recent multivariate
constraint controllers, MVCC (shown in Figure 7).

1) Selecting model inputs from cascade structures

[00164] Figure 6 shows atypical "cascade" process control application,
which isavery common control structure for refining and chemical processes.
Although there are many potential model inputs from such an application, the
only onesthat are candidates for the model arethe raw process measurements
(the "PVs' in this figure ) and the final output to the field valve.

[00165] Although it is avery important measurement, the PV of the ultimate
primary of the cascade control structure is apoor candidate for inclusion in the
model. This measurement usually has very limited movement since the
objective of the control structure isto keep this measurement a the set point.
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There can be movement inthe PV of the ultimate primary if its set point is
changed but this usually isinfrequent. The data patterns from occasional
primary set point moves will usually not have sufficient power in the training
dataset for the model to characterize the data pattern.

[00166] Because of this difficulty in characterizing the data pattern resulting
from changes in the set point of the ultimate primary, when the operator makes
this set point move, it islikely to cause a significant increase in the sum of
squared prediction error, SPE, index of the model. Consequently, any change in
the set point of the ultimate primary is acandidate trigger for a "known event
suppression”. Whenever the operator changes an ultimate primary set point, the
"known event suppression” logic will automatically remove its effect from the
SPE calculation.

[00167] Should the developer include the PV of the ultimate primary into the
model, this measurement should be scaled based on those brief time periods
during which the operator has changed the set point and until the process has
moved close to the vale of the new set point (for example within 95% of the new
set point change thus if the set point change is from 10 to 11, when the PV
reaches 10.95)

[00168] There may also be measurements that are very strongly correlated
(for example greater than .95 correlation coefficient) with the PV of the Ultimate
Primary, for example redundant thermocouples located near atemperature
measurement used as aPV for an Ultimate Primary. These redundant
measurements should be treated in the identical manner that is chosen for the PV
of the Ultimate Primary.

[00169] Cascade structures can have set point limits on each secondary and
can have output limits on the signal to the field control valve. It is important to
check the status of these potentially constrained operations to see whether the
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measurement associated with a set point has been operated in a constrained
manner or whether the signal to the field valve has been constrained. Date
. during these constrained operations should not be used.

2) Selecting/ Calculating Modél Inputs from Multivariate Constraint
Controllers. MVCC

[001701  Figure 7 shows atypical MV CC process control application, which
isavery common control structure for refining and chemical processes. An

MV CC -uses a dynamic mathematical model to predict how changes in
manipulated variables, MVs, (usually valve positions or set points of regulatory
control loops) will change control variables, CV's (the dependent temperatures,
pressures, compositions and flows which measure the process state). An MVCC
attempts to push the process operation against operating limits. These limits can
be either MV limits or CV limits and are determined by an external optimizer.
The number of limits that the process operates against will be equal to the
number of MVs the controller is allowed to manipulate minus the number of
material balances controlled. Soif an MVCC has 12 MVs, 30 CVsand 2 levels
then the process will be operated against 10 limits. An MV CC will also predict
the effect of measured load disturbances on the process and compensate for these
load disturbances (known as feed forward variables, FF).

[00171] Whether or not araw MV or CV isagood candidate for inclusion in
the PCA model depends on the percentage of time that MV or CV is held against
its operating limit by the MVCC. Asdiscussed inthe Constrained Variables
section, raw variables that are constrained more than 10% of the time are poor
candidates for inclusion inthe PCA model. Normally unconstrained variables
should be handled per the Constrained Variables section discussion.

[00172] If an unconstrained MV is a set point to aregulatory control loop,
the set point should not be included; instead the measurement of that regulatory
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control loop should be included. The signal to the field valve from that
regulatory control loop should also be included.

[001731 If an unconstrained MV isasignal to afield valve position, then it
should be included in the model.

C. Redundant Measurements

[00174] The process control system databases can have a significant
redundancy among the candidate inputs into the PCA model. One type of
redundancy is "physical redundancy”, where there are multiple sensors (such as
thermocouples) located in close physical proximity to each other within the
process equipment. The other type of redundancy is "calculational redundancy”,
where raw sensors are mathematically combined into new variables (e.g.
pressure compensated temperatures or mass flows calculated from volumetric
flow measurements).

[00175] Asagenera rule, both the raw measurement and an input which is
calculated from that measurement should not be included in the model. The
genera preference isto include the version of the measurement that the process
operator ismost familiar with. The exception tothis rule is when the raw inputs
must be mathematically transformed in order to improve the correlation structure
of the data for the model. In that case the transformed variable should be
included in the model but not the raw measurement.

[00176] Physical redundancy isvery important for providing cross validation
information in the model. Asagenera rule, raw measurements, which are
physically redundant, should be included in the model. When there are alarge
number of physically redundant measurements, these measurements must be
specially scaled so asto prevent them from overwhelming the selection of
principal components (see the section on variable scaling). A common process
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example occurs from the large number of thermocouples that are placed in
reactors to catch reactor runaways.

[00177] When mining avery large database, the developer can identify the
redundant measurements by doing a cross-correlation calculation among all of
the candidate inputs. Those measurement pairs with avery high cross-
correlation (for example above .95) should be individually examined to classify
each pair as either physically redundant or calculationally redundant.

UL Historical Data Collection

[00178] A significant effort in the development lies in creating a good
training data set, which isknown to contain all modes of normal process
operations. This data set should:

[00179] Span the normal operating range: Datasets, which span small parts
of the operating range, are composed mostly of noise. The range of the data
compared to the range of the data during steady state operations is agood
indication of the quality of the information in the dataset.

[00180] Include all normal operating modes (including seasonal mode
variations). Each operating mode may have different correlation structures.
Unless the patterns, which characterize the operating mode, are captured by the
' model, these unmodeled operating modes will appear as abnormal operations.

[00181] Only include normal operating data: If strong abnormal operating
data isincluded inthe training data, the model will mistakenly model these
abnormal operations as hormal operations. Consequently, when the model is
later compared to an abnormal operation, it may not detect the abnormality
operations.

[00182] History should be as similar aspossible to the data used in the on-
line system: The online system will beproviding spot values a afrequency fast
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enough to detect the abnormal event. For continuous refining and chemical
operations this sampling frequency will be around one minute. Within the
limitations of the data historian, the training data should be as equivalent to one-
minute spot values as possible.

[00183] The strategy for data collection isto start with along operating
history (usually in the range of 9 months to 18 months), then try to remove those
time periods with obvious or documented abnormal events. By using such a
long time period,

» the smaller abnormal eventswill not appear with sufficient
strength in the training data set to significantly influence the
model parameters

* most operating modes should have occurred and will be
represented in the data.

A . Historical Data Collection Issues

1) Data Compression

[00184] Many historical databases use data compression to minimize the
storage requirements for the data. Unfortunately, this practice can disrupt the
correlation structure of the data. At the beginning of the project the data
compression of the database should be turned off and the spot values of the data
historized. Final models should be built using uncompressed data whenever
possible. Averaged values should not be used unlessthey arethe only data
available, and then with the shortest data average available.

2) Length of Data History

[00185] For the model to properly represent the normal process patterns, the
training data set needs to have examples of all the normal operating modes,
normal operating changes and changes and normal minor disturbances that the
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process experiences. This is accomplished by using data from over along period
of process operations (e.g. 9- 18 months). In particular, the differences among
seasonal operations (spring, summer, fall and winter) can bevery significant
with refinery and chemical processes.

[00186] Sometimes these long stretches of data are not yet available (e.g.
after aturnaround or other significant reconfiguration of the process equipment).
In these cases the model would start with a short initial set of training data (e.g.
6 weeks) then the training dataset is expanded as further data is collected and the
model updated monthly until the models are stabilized (e.g. the model
coefficients don't change with the addition of new data)

3) Ancillary Historical Data

[00187] The various operating journals for thistime period should aso be
collected.: Thiswill be used to designate operating time periods as abnormal, or
operating in some special mode that needs to be excluded from the training
dataset. In particular, important historical abnormal events can be selected from
these logs to act astest cases for the models.

4) Lack of Specific Measurement History

[00188] Often set points and controller outputs are not historized in the plant
process data historian. Historization of these values should immediately begin at
the start of the project.

5) Operating Modes

[00189] Old datathat no longer properly represents the current process
operations should be removed from the training data set. After a major process
modification, the training data and PCA model may need to be rebuilt from
scratch. |If aparticular type of operation is no longer being done, al data from
that operation should beremoved from the training data set.
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[00190] Operating logs should be used to identify when the process was run
under different operating modes. These different modes may require separate
models. Where the model is intended to cover several operating modes, the
number of samples in the training dataset from each operating model should be
approximately equivalent.

6) Sampling Rate

[00191] The developer should gather several months of process data using
the site's process historian, preferably getting one minute spot values. If thisis
not available, the highest resolution data, with the least amount of averaging
should be used.

7) Infrequently Sampled Measurements

[00192] Quality measurements (analyzers and lab samples) have a much
slower sample frequency than other process measurements, ranging from tens of
minutes to daily. In order to include these measurements in the model a
continuous estimate of these quality measurements needs to be constructed.
Figure 8 shows the online calculation of acontinuous quality estimate. This
same model structure should be created and applied to the historical data. This
guality estimate then becomes the input into the PCA model.

8) Modd Triggered Data Annotation

[00193] Except for very obvious abnormalities, the quality of historical data
is difficult to determine. The inclusion of abnormal operating data can bias the
model. The strategy of using large quantities of historical datawill compensate
to some degree the model bias caused by abnormal operating in the training data
set. The model built from historical datathat predates the start of the project
must be regarded with suspicion asto its quality. The initial training dataset
should be replaced with a dataset, which contains high quality annotations of the
process conditions, which occur during the project life.
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[00194] The model development strategy isto start with an initia "rough”
model (the consequence of a questionable training data set) then use the model
totrigger the gathering of ahigh quality training data set. Asthe model isused
to monitor the process, annotations and datawill be gathered on normal
operations, special operations, and abnormal operations. Anytime the model
flags an abnormal operation or an abnormal event is missed by the model, the
cause and duration of the event is annotated. Inthis way feedback on the
model's ability to monitor the process operation can be incorporated in the
training data. This data is then used to improve the model, which isthen used to
continue to gather better quality training data. This process isrepeated until the
model is satisfactory.

IV. Data & ProcessAnalysis

A. Initial Rough Data Analysis

[00195] Using the operating logs and examining the process key
performance indicators, the historical dataisdivided into periods with known
abnormal operations and periods with no identified abnormal operations. The
data with no identified abnormal operations will bethe training data set.

[00196] Now each measurement needs to be examined over its history to see
whether it is a candidate for the training data set. Measurements which should
be excluded are:

* Those with many long periods of time as "Bad Value"
* Those with many long periods of time pegged to their transmitter

high or low limits

» Those, which show very little variability (except those, which are
tightly controlled to their set points)
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* Those that continuously show very large variability relative to
their operating range

* Those that show little or no cross correlation with any other
measurements in the data set

» Those with poor signal to noise ratios

[00197] While examining the data, those time periods where measurements
are briefly indicating "Bad Value" or are briefly pegged to their transmitter high
or low limits should also be excluded.

[00198] Once these exclusions have been made the first rough PCA model
should be built. Since thisisgoing to be avery rough model the exact number
of principal components to beretained is not important. Thiswill typicaly be
around 5% of the number measurements included in the model. The number of
PCs should ultimately match the number of degrees of freedom in the process,
however this isnot usually known since this includes all the different sources of
process disturbances. There are several standard methods for determining how
many principal componentsto include. Also a this stage the statistical approach
to variable scaling should be used: scale al variables to unit variance.

X'=(X-Xyg! 0 ' Equation 7

[00199] The training data set should now be run through this preliminary
model to identify time periodswhere the data does not match the model. These
time periods should be examined to see whether an abnormal event was
occurring a the time. If thisisjudged to bethe case, then these time periods
should also be flagged as times with known abnormal events occurring. These
time periods should be excluded from the training data set and the model rebuilt
with the modified data. '



WO 2007/124002 PCT/US2007/009576

-55-

B. Removing Outliers and Periods of Abnormal Operations

[00200] Eliminating obvious abnormal events will be done through the
following: '

Removing documented events. It isvery rare to have acdmpl ete record of the
abnormal event history at asite. However, significant operating problems
should be documented in operating records such as operator logs, operator
changejournals, alarmjournals, and instrument maintenance records. These are
only providing apartia record of the abnormal event history.

Removing timeperiods where keyperformance indicators, KPIs, are abnormal.
Such measurements as feed rates, product rates, product quality are common key
performance indicators. Each process operation may have additional KPIs that
are specific to the unit. Careful examination of this limited set of measurements
will usually give a clear indication of periods of abnormal operations. Figure 9
shows a histogram of aKPI. Since the operating goal for this KPI isto
maximize it, the operating periods where this KPI islow are likely abnormal
operations. Process qualities are often the easiest KPIs to analyze since the
optimum operation is against a specification limit and they are less sensitive to
normal feed rate variations.

C. Compensating for Noise

[00201] By noise we are referring to the high frequency content of the
measurement signal which does not contain useful information about the
process. Noise can be caused by specific process conditions such as two-phase
flow across an orifice plate or turbulence in the level. Noise can be caused by
electrical inductance. However, significant process variability, perhaps caused
by process disturbances isuseful information and should not be filtered out.

[00202] There are two primary noise types encountered in refining and
chemical process measurements. measurement spikes and exponentially
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correlated continuous noise. With measurement spikes, the signal jumps by an
unreasonably large amount for a short number of samples before returning to a
value near its previousvalue. Noise spikes are removed using atraditiona spike
rejection filter such asthe Union filter.

[00203] The amount of noise in the signal can be quantified by a measure
known asthe signal to noise ratio (see Figure 10). This is defined asthe ratio of
the amount of signal variability due to process variation to the amount of signa
variability dueto high frequency noise. A val ué below four isatypical value for
indicating that the signal has substantial noise, and can harm the model's
effectiveness.

[00204] Whenever the developer encounters asignal with significant noise,
he needs to make one of three choices. In order of preference, these are:

» Fix the signal by removing the source of the noise (the best
. answe)

* Remove/ minimize the noise through filtering techniques

* Excludethe signa from the model

[00205] Typicaly for signaswith signal to noise ratios between 2 and 4, the
exponentially correlated continuous noise can be removed with atraditional low
pass filter such as an exponentia filter. The equations for the exponential filter
are:

Yn= P * YnL(1-P) * X"  Exponential filter equation Equation 8

P = Exp(-TJTy) Filter constant calculation Equation 9

YNisthe current filtered value
Y™ tisthe previous filtered val ue
X" isthe current raw value
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P isthe exponentia filter constant
T,isthe sample time of the measurement
T:isthe filter time constant

[00206] Signals with very poor signal to noise ratios (for exarhple less than
2) may not be sufficiently improved by filtering techniques to be directly
included in the model. If the input isregarded asimportant, the scaling of the
variable should be set to de-sensitize the model by significantly increasing the
size of the scaling factor (typically by afactor in the range of 2 - 10).

D. Transformed Variables

[00207] " Transformed variables should be included in the mode! for two
different reasons.

[00208] First, based on an engineering analysis of the specific equipment and
process chemistry, known non-linearities in the process should be transformed
and included in the model. Since one of the assumptions of PCA isthat the
variables in the model are linearly correlated, significant process or equipment
non-linearities will break downthis correlation structure and show up as a
deviation from the model. Thiswill affect the usable range of the model.

[00209]. Examples of well known non-linear transforms are:

* Reflux tofeedratio in distillation columns

» Log of composition in high purity distillation

* Pressure compensated temperature measurement
e Sidestreamyield

* Flow tovalveposition (Figure 2)

* Reaction rate to exponential temperature change

[00210] Second, the data from process problems, which have occurred
historically, should also be examined to understand how these problems show up
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in the process measurements. . For example, the relationship between tower delta
pressure and feedrate isrelatively linear until the flooding point isreached, when
the deltapressure will increase exponentially. Since tower flooding is picked up
by the break inthis linear correlation, both delta pressure and feed rate should be
included. Asanother example, catalyst flow problems can often be seen in the
deltapressures in the transfer line. So instead of including the absolute pressure
measurements in the model, the delta pressures should be calculated and
included.

E. Dynamic Transformations

[00211] Figure 11 shows how the process dynamics can disrupt the
correlation between the current values of two measurements. During the
transition time one value is constantly changing while the other is not, sothere is
no correlation between the current values during the transition. However these
two measurements can be brought back into time synchronization by
transforming the leading variable using adynamic transfer function. Usually a
first order with deadtime dynamic model (shown in Equation 9 in the Laplace
transform format) is sufficient to time synchronize the data.
Y= e ©SY(g Equation 9

Ts+1

Y - raw data

Y' - time synchronized data

T - time constant

O - deadtime

S - Laplace Transform parameter

[00212]  Thistechnique is only needed when there is a significant dynamic
separation between variables used in the model." Usually only 1-2% of the
variables requires this treatment. This will betrue for those independent
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variables such as set points which are often changed in large steps by the
operator and for the measurements which are significantly upstream of the main

process units being modeled.

F. Removing Average Operating Point

[00213] Continuous refining and chemical processes are constantly being
moved from one operating point to another. These can be intentional, where the
operator or an optimization program makes changes to akey set points, or they
can be due to slow process changes such asheat exchanger fouling or catalyst
deactivation.  Consequently, the raw data is not stationary. These operating

point changes need to beremoved to create a stationary dataset. Otherwise these

changes erroneously appear as abnorma events.

[00214] The process measurements are transformed to deviation variables:
deviation from amoving average operating point. This transformation to
remove the average operating point isrequired when creating PCA models for
abnormal event detection. This is done by subtracting the exponentialy filtered
value (see Equations 8 and 9 for exponential filter equations) of a measurement

from its raw value and using this difference in the model.

X1=X - X ' ' Equation 10

fillered

X' - measurement transformed to remove operating point changes
X - origina raw measurement

X fierg - exponentially  filtered raw measurement

[00215] The time constant for the exponential filter should be about the same
size asthe magor time constant of the process. Often atime constant of around
40 minutes will be adequate. The consequence of this transformation isthat the
inputs to the PCA model are a measurement of the recent change of the process

from the moving average operating point.
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[00216] In order to accurately perform this transform, the data should be
gathered at the sample frequency that matches the on-line system, often every
minute or faster. This will result in collecting 525,600 samples for each
measurement to cover one year of operating data. Once this transformation has
been calculated, the dataset isresampled to get down to a more manageable
number of samples, typically in the range of 30,000 to 50,000 samples.

V. Model Creation

[00217] Once the specific measurements have been selected and the training

data set has been built, the model can be built quickly using standard tools.

A. ScalingModel Inputs

[00218] The performance of PCA models is dependent on the scaling of the
inputs. The traditional approach to scaling isto divide each input by its standard

deviation, 0, within the training data set.

xir=X;!q- . Equation 11

[00219] For input sets that contain alarge number of nearly identical
measurements (such asmultiple temperature measurements of fixed catalyst
reactor beds) this approach ismodified to further divide the measurement by the

sguare root of the number of nearly identical measurements.

For redundant data groups

X, =X,/( O,* sgrt<N)) ' Equation 12

Where N = number of inputs in redundant data group

[00220] These traditional approaches can be inappropriate for measurements

from continuous refining and chemical processes. Because the process isusually

well controlled at specified operating points, the data distribution isa
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combination of data from steady state operations and data from "disturbed" and
operating point change operations. These datawill have overly small standard

deviations from the preponderance of steady state operation data. The resulting
PCA model will be excessively sensitive to small to moderate deviations in the
process measurements.

[00221] For continuous refining and chemical processes, the scaling should
be based on the degree of variability that occurs during normal process
disturbances or during operating point changes not on the degree of variability
that occurs during continuous steady state operations. For normally
unconstrained variables, there are two different ways of determining the scaling
factor.

[00222] First isto identify time periods where the process was not running a
steady state, but was also not experiencing a significant abnormal event. A
limited number of measurements act asthe key indicators of steady state
operations. These are typically the process key performance indicators and
usually include the process feed rate, the product production rates and the
product quality. These key measures are used to segment the operations into
periods of normal steady state operations, normally disturbed operations, and
abnormal operations. The standard deviation from the time periods of normally
disturbed operations provides a good scaling factor for most of the
measurements.

[00223]  An dternative approach to explicitly calculating the scaling based on
disturbed operations is to use the entire training data set as follows. The scaling
factor can be approximated by looking at the data distribuion outside of 3
standard deviations from the mean. For example, 99.7% of the data should lie,
within 3 standard deviations of the mean and that 99.99% of the data should lie,
within 4 standard deviations of the mean. The span of data values between
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99.7% and 99.99% from the mean can act as an approximation for the standard
deviation of the "disturbed" datain the data set. See Figure 12.

[00224] Finally, if ameasurement is often constrained (see the discussion on
saturated variables) only those time periods where the variable is unconstrained
should be used for calculating the standard deviation used as the scaling factor.

B. Sdecting the Number of Principal Components

[00225] PCA transforms the actual process variables into a set of
independent variables called Principal Components, PC, which are linear
combinations of the original variables (Equation 13).

PCi=Ain * X+ A jp* X+ A 3" X3+, . . Equation 13

[00226] The process will have anumber of degrees of freedom, which
represent the specific independent effectsthat influence the process. These
different independent effects show up in the process data as process variation.
Process variation can be dueto intentional changes, such as feed rate changes, or
unintentional disturbances, such as ambient temperature variation.

[00227] Each principal component models apart of the process variability
caused by these different independent influences on the process. The principal
components are extracted in the direction of decreasing variation in the data set,
with each subsequent principal component modeling less and less of the process
variability. Significant principal components represent a significant source of
process variation, for example the first principal component usually represents
the effect of feed rate changes since thisisusually the source of the largest
process changes. At some point, the developer must decide when the process
variation modeled by the principal components no longer represents an
independent source of process variation.
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[00228] The engineering approach to selecting the correct number of
principal components isto stop when the groups of variables, which are the
primary contributors to the principal component no longer make engineering
sense. The primary cause of the process variation modeled by a PC isidentified

by looking at the coefficients, Aj , of the origina variables (which are called

loadings). Those coefficients, which are relatively large in magnitude, are the
major contributors to aparticular PC. Someone with a good understanding of
the process should be able to ook a the group of variables, which are the major
contributors to aPC and assign aname (e.g. feed rate effect) tothat PC. As
more and more PCs are extracted from the data, the coefficients become more
equal in size. At this point the variation being modeled by aparticular PC is
primarily noise.

[00229] The traditional statistical method for determining when the PC isjust
modeling noise isto identify when the process variation being modeled with
each new PC becomes constant. Thisis measured by the PRESS statistic, which
plots the amount of variation modeled by each successive PC (Figure 13).
Unfortunately this test is often ambiguous for PCA models developed on
refining and chemical processes.

vJ. Model Testing& Tuning

[00230] The process data will not have a gaussian or normal distribution.
Consequently, the standard statistical method of setting the trigger for detecting
an abnormal event at 3 standard deviations of the error residual should not be
used. Instead the trigger point needsto be set empirically based on experience
with using the model.

[00231] Initially the trigger level should be set so that abnormal events
would be signaled a arate acceptable to the site engineer, typically 5 or 6 times
each day. This can be determined by looking at the SPE, statistic for the training



WO 2007/124002 PCT/US2007/009576

-64 -

data set (thisis also referred to asthe Q statistic or the DMOD,, statistic). This
level is set so that real abnormal eventswill not get missed but false alarms will
not overwhelm the site engineer.

A. Enhancing the Modéel

[00232] Once the initial model has been created, it needs to be enhanced by
creating a new training data set. Thisis done by using the model to monitor the
process. Once the model indicates apotential abnormal situation, the engineer
should investigate and classify the process situation. The engineer will find
three different situations, either some special process operation is occurring, an
actual abnormal situation is occurring, or the process isnormal and it is afalse
indication.

[00233] The new training data set is made up of data from special operations
and normal operations. The same analyses as were done to create the initial
model need to be performed on the data, and the model re-calculated. With this
new model the trigger lever will still be set empirically, but now with better
annotated data, this trigger point can be tuned so asto only give an indication
when atrue abnormal event has occurred.

Simple Engineering Models for Abnormal Event Detection

[00234] The physics, chemistry, and mechanical design of the process
equipment aswell asthe insertion of multiple similar measurements creates a
substantial amount of redundancy in the data from continuous refining and
chemical processes. This redundancy is called physical redundancy when
identical measurements are present, and calculational redundancy when the
physical, chemical, or mechanical relationships are used to perform independent
but equivalent estimates of a process condition. This class of model is caled an
engineering redundancy model.
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.  TwoDimensional Engineering Redundancy Models

[00235] Thisisthe ssimplest form of the model and it has the generic form:

F(yi) = G(x;) + filtered biasi + operator bias + error ; Equation 14

raw bias; = F(y ) - { G(x 9 + filtered biasg+ operator bias}  Equation 15
= error;

filtered bias. = filtered bias;.; + N *raw biasi; Equation 16

N - convergence factor (e.g. .0001)
Normal operating range: Xmin < X < Xmax

Normal model deviation: -(max_error) < error < (max_error)

[00236] The "operator bias' term is updated whenever the operator
determines that there has been some field event (e.g. opening a bypass flow)
which requires the model to be shifted. On the operator's command, the operator
bias term is updated so that Equation 14 is exactly satisfied (error -=0)

[00237] The "filtered bias" term updates continuously to account for
persistent unmeasured process changes that bias the engineering redUndancy
model. The convergence factor, "N", is set to eliminate any persistent change
after auser specified time period, usually on the time scale of days.

[00238] The "normal operating range" and the "normal model deviation" are
determined from the historical data for the engineering redundancy model. In
most cases the max_error value is a single value; however this can also bea
vector of values that is dependent on the x axis location.

[00239]  Any two dimensional equation can be represented in this manner.
Material balances, energy balances, estimated analyzer readings versus actual
analyzer readings, compressor curves, etc. Figure 14 shows atwo dimensional
energy balance.
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[00240] Asacase in point the flow versus valve position model is explained
in greater detail.

A. The Flow versus ValvePosition Model

[00241] A particularly valuable engineering redundancy model is the flow
versus valve position model. This model isgraphicaly shown in Figure 2. The
particular form of this model is: '

Flow + filtered bias + operator bias= Cv (VP)
(Delta_Pressure / Delta_Pressure erence )2

Equation 17

where:
Flow: measured flow through acontrol valve
DeltaJPressure = closest measured upstream pressure -
closest measured downstream pressure
Delta Pressure e - average Delta_Pressure during normal operation
a: model parameter fitted to historical data
Cv: valve characteristic curve determined empirically from historical data
VP:. signal to the control valve (not the actual control valve position)

The objectives of this model areto:

» Detecting sticking / stuck control valves
» Detecting frozen / failed flow measurements
» Detecting control valve operation where the control system loses

control of the flow
[00242] This particular arrangement of the flow versus valve equation is

chosen for human factors reasons: the x-y plot of the equation in this form isthe
one most easily understood by the operators. It is important for any of these
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models that they be arranged in the way which is most likely to be easily
understood by the operators.

B. Developing the Flow versus ValvePosition Model

[00243] Because of the long periods of steady state operation experienced by
continuous refining and chemical processes, along historical record (1to2
years) may berequired to get sufficient datato span the operation of the control
valve. Figure 15 shows atypical stretch of Flow, Valve Position, and Delta
Pressure data with the long periods of constant operation. The first step isto
isolate the brief time periods where there is some significant variation in the
operation, as shown. This should be then mixed with periods of normal
operation taken from various periods in history.

[00244] Often, either the Upstream Pressure (often apump discharge) or the
Downstream Pressure is not available. In those cases the missing measurement
becomes a fixed model parameter in the model. If both pressures are missing
then it is impossible to include the pressure effect in the mode.

[00245] The valves characteristic curve can be either fit with alinear valve
curve, with a quadratic valve curve or with apiecewise linear function. The
piecewise linear function isthe most flexible and will fit any form of valve
characteristic curve.

[00246] The theoretical value for "a" is 1/2 if the measurements are taken
directly acrossthevalve. Rarely are the measurements positioned there, "a'
becomes an empirically determined parameter to account for the actual
positioning of the pressure measurements.

[00247] Often there will bevery few periods of time with variations in the
Delta Pressure. The noise in the Delta Pressure during the normal periods of
operation can confuse the model-fitting program. To overcome this, the model
is developed in two phases, first where asmall dataset, which only contains
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periods of Delta Pressure variation is used to fit the model. Then the pressure
dependent parameters ("a" and perhaps the missing upstream or downstream
pressure) are fixed a the values determined, and the model isre-developed with
the larger dataset.

C. Fuzzav-net Processing o Flow versus ValveAbnormality | ndications

[00248] Aswith any two-dimensiona engineering redundancy model, there
are two measures of abnormality, the "normal operating range" and the "normal
model deviation". The "normal model deviation" is based on anormalized
index: the error / max_error. Thisisfed into atype 4 fuzzy discriminator
(Figure 16). The developer can pick the transition from normal (value of zero)
to abnormal (value of 1) in astandard way by using the normalized index.

[00249] The "normal operating range” index is the valve position distance
from the normal region. It typically represents the operating region of the valve
where a change in valve position will result in little or no change in the flow
through the valve. Once again the developer can use the type 4 frizzy
discriminator to cover both the upper and lower ends of the normal operating
range and the transition from normal to abnormal operation.

D. GroupingMultiple Flow/ ValveModels

[00250] A common way of grouping Flow / Valve models which isfavored
by the operators isto put all of these models into a single fuzzy network so that
the trend indicator will tell them that al of their critical flow controllers are
working. Inthat case, the model indications into the fuzzy network (Figure 4)
will contain the "normal operating range" and the "normal model deviation"
indication for each of the flow/valve models. Thetrend will contain the
discriminator result from the worst model indication.

[00251] When a common equipment type is grouped together, another
operator favored way to look at this group isthrough aPareto chart of the flow /
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valves (Figure 17). Inthis chart, the top 10 abnormal valves are dynamically
arranged from the most abnormal on the left to the least abnormal on the right.
Each Pareto bar also has areference box indicating the degree of variation of the
model abnormality indication that iswithin normal. The chart in Figure 17
shows that "Valve 10" is substantially outside the normal box but that the others
are al behaving normally. The operator would next investigate aplot for "Valve
10" similar to Figure 2 to diagnose the problem with the flow control loop.

/[.  Multidimensional Engineering Redundancy Models

[00252] Once the dimensionality gets larger than 2, asingle "PCA like"
model is developed to handle ahigh dimension engineering redundancy check.
Examples of multidimensional redundancy are:

* pressure 1=pressure 2 =.... -=pressure n

» material flow into process unit 1= material flow out of process
unit | = ... = material flow into process unit 2

[00253] Because of measurement calibration errors, these equations will each
require coefficients to compensate. Consequently, the model set that must be
first developed is:

F.(Gy i) = aGi (x3 + filtered bias,. + operator bias + errori, ;
F2(y:) = a,G, (xi) + filtered bias,,i + operator bias, + error, i
F.(yi=a,G, (xi + filtered bias,,, + operator bias, + error_;
Equation 18
[00254] These models are developed in the identical manner that the two
dimensional engineering redundancy models were devel oped.

[00255] This set of multidimensional checks are now converted into "PCA
like" models. This conversion relies on the interpretation of aprincipal
component in aPCA model as amodel of an independent effect on the process
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where the principal component coefficients (loadings) represent the proportional
change inthe measurements due to this independent effect. In Figure 3, there
are three independent and redundant measures, XI, X2, and X3. Whenever X3
changes by one, X | changes by ai and X2 changes by a,. This set of
relationships is expressed asasingle principal component model, P, with
coefficients in unsealed engineering units as:
P=ai Xi+a, X2 +8,X3 Equation 19
Where a,= 1
[00256] This engineering unit version of the model can be converted to a

standard PCA model format as follows:

[00257] Drawing analogies to standard statistical concepts, the conversion

factors for each dimension, X, can bebased on the normal operating range. For
example, using 30 around the mean to define the norma operating range, the

scaled variables are defined as:
X,ca>e = X normal operating range / 60 Equation 20
(99.7% of norma operating data should fall within 3 0 of the mean)
Xmid = X mid point of operating range Equation 21

(explicitly defining the "mean" asthe mid point of the normal operating
range)

XI= (X - X hig) I X e Equation 22
(standard PCA scaling once mean and O are determined)

Then the Plloadings for X; are:

b= @/Xi- wat) 1 (TN, (@ X ymd?)™ Equation 23
k

(the requirement that the loading vector be normalized)
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Thistransforms P to
F=b* Xl +b,* X2+ ee e +p *XN Equation 24
P' "standard deviation" = bi +b,+ e+ +b_ Equation 25

[00258] With this conversion, the multidimensional engineering redundancy
model can now be handled using the standard PCA structure for calculation,
exception handling, operator display and interaction.

Deploying PCA models and Simple Engineering Models for Abnor mal
Event Detection

/. Operator and Known Event Suppression
[00259] Suppression logic isrequired for the following:

* Provide away to eliminate false indications from measurable
unusual events

* Provide away to clear abnormal indications that the operator has
Investigated

* Provide away totemporarily disable models or measurements
for maintenance

* Provide away to disable bad acting models until they can be
retuned

* Provide away to permanently disable bad acting instruments.

[00260]  There aretwo types of suppression. Suppression whichis
automatically triggered by an external, measurable event and suppression which
isinitiated by the operator. The logic behind these two types of suppression is
shownin Figures 18 and 19. Although these diagrams show the suppression
occurring on afuzzified model index, suppression can occur on aparticular
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measurement, on aparticular model index, on an entire model, or on a
combination of models within the process area.

[00261] For operator initiated suppression, there are two timers, which
determine when the suppression is over. Onetimer verifies that the suppressed
information has returned to and remains in the normal state. Typical values for
thistimer are from 15 - 30 minutes. The second timer will reactivate the
abnormal event check, regardless of whether it has returned to the normal state.
Typical values for this timer are either equivaent to the length of the operator's
work shift (8 to 12 hours) or avery largetime for semi-permanent suppression.

- [00262] For event based suppression, ameasurable trigger isrequired. This
can be an operator set point change, a sudden measurement change, or a digita
signal. Thissignal is converted into atiming signal, shown in Figure 20. This
timing signal is created from the trigger signal using the following equations:

Y. ,=P*Y .1+(1-P) * X, Exponentia filter equation Equation 26
P = Exp(-TJT)) Filter constant calculation Equation 27
Z,=X,-Y, Timing signal calculation Equation 28
where:

Y, thecurrent filtered value of thetrigger signal
Y.,i theprevious filtered value of the trigger signal
X,  thecurrent value of the trigger signal

Z, thetiming signal shown in Figure 20

P the exponentia filter constant

T,  thesampletime of the measurement

T;  thefilter time constant
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[00263] Aslong asthe timing signal is above athreshold (shown as .05 in
Figure 20), the event remains suppressed. The developer sets the length of the
suppression by changing the filter time constant, T;. Although asimple timer
could also be used for this function, this timing signal will account for trigger
signals of different sizes, creating longer suppressions for large changes and
shorter suppressions for smaller changes.

[00264] Figure 21 showsthe event suppression and the operator suppression
disabling predefined sets of inputs in the PCA model. The set of inputsto be
automatically suppressed is determined from the on-line model performance.
Whenever the PCA model gives an indication that the operator does not want to
see, this indication can betraced to a small number of individual contributions to
the Sum of Error- Square index. To suppress these individual contributions, the
calculation of this index is modified as follows:

E°= Y <w e? Equation 29

2=

w; - the contribution weight for input i (normally equal to 1)
e- - the contribution to the sum of error squared from input i

[00265] When atrigger event occurs, the contribution weights are set to zero
for each of the inputs that areto be suppressed. When these inputs are to be
reactivated, the contribution weight is gradually returned to avalue of 1.

/l.  PCA Model Decomposition

[00266]  Although the PCA model isbuilt using a broad process equipment
scope, the model indices can be segregated into groupings that better match the
operators view of the process and can improve the sensitivity of the index to an
abnormal event.

[00267] Referring again to Equation 29, we can create several Sum of Error
Square groupings:
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E 2= 1 we? Equation 30
ZI‘IW e
Zl_kw e

[00268] Usually these groupings are based around smaller sub-units of
equipment (e.g. reboiler section of atower), or are sub-groupings, which are
relevant to the function of the equipment (e.g. product quality).

[00269] Since each contributor, e, is always adding to the sum of error
square based on process noise, the size of the index due to noise increases
linearly with the number of inputs contributing to the index. With fewer
contributors to the sum of error square calculation, the signal to noise ratio for
the index isimproved, making the index more responsive to abnormal events.

[00270] In a similar manner, each principal component can be subdivided to
match the equipment groupings and an index analogous to the Hotelling T2 index
can be created for each subgroup.

- W Equation 31 -
Pl,a_ Li=1bl’ixi q

Pi= Y% b, x;

Pl,c Z i=k bl,,-x,-
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[00271] The thresholds for these indices are calculated by running the testing
data through the models and setting the sensitivity of the thresholds based on
their performance on the test data.

[00272] These new indices are interpreted for the operator in the identical
manner that anormal PCA model is handled. Pareto charts based on the original
Inputs are shown for the largest contributors to the sum of error square index,
and the largest contributors to the largest P in the T2 calculation.

HI. Overlapping PCA models

[00273] Inputs will appear in several PCA models so that all interactions
affecting the model are encompassed within the model. This can cause multiple
indications to the operator when these inputs are the major contributors to the
sum of error squared index.

[00274] To avoid this issue, any input, which appears in multiple PCA
models, is assigned one of those PCA models asits primary model. The
contribution weight in Equation 29 for the primary PCA model will remain &
one while for the non-primary PCA models, it is set to zero.

IV. Operator Interaction & Interface Design
[00275] The primary objectives of the operator interface areto:

* Provide acontinuous indication of the normality of the major
process areas under the authority of the operator

* Providerapid (1 or 2 mouse clicks) navigation to the underlying
model information

* Providethe operator with control over which models are enabled.
Figure 22 shows how these design objectives are expressed in the
primary interfaces used by the operator.
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[00276] The final output from afuzzy Petri net isanormality trend asis
shown in Figure 4. This trend represents the model index that indicates the
greatest likelihood of abnormality as defined in the fuzzy discriminate function.
The number of trends shown inthe éJmmary is flexible and decided in
discussions with the operators. On thistrend are two reference lines for the
operator to help signal when they should take action, ayellow linetypically set
a avaue of 0.6 and ared linetypically set at avalue of 0.9. These lines provide
guidance to the operator asto when he is expected to take action. When the
trend crosses the yellow line, the green triangle in Figure 4 will turn yellow and
when the trend crosses the red line, the green triangle will turn red. The triangle
also has the function that it will take the operator to the display associated with
the model giving the most abnormal indication.

[00277] If the model is aPCA model or it ispart of an equipment group (e.g.
all control valves), selecting the green triangle will create a Pareto chart. For a
PCA model, of the dozen largest contributors to the model index, this will
indicate the most abnormal (on the left) to the least abnormal (on the right)
Usually the key abnormal event indicators will be among the first 2 or 3
measurements. The Pareto chart includes ared box around each bar to provide
the operator with areference asto how unusua the measurement can be before it
isregarded asan indication of abnormality.

[00278] For PCA models, operators are provided with atrend Pareto, which
matches the order in the bar chart Pareto. With the trend Pareto, each plot has
two trends, the actual measurement (in cyan) and an estimate from the PCA
model of what that measurements should have been if everything was normal (in
tan).

[00279] For valve / flow models, the detail under the Pareto will be the two
dimensional flow versus valve position model plot. From this plot the operator
can apply the operator bias to the model.
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[00280] If there is no equipment grouping, selecting the green triangle will
take the operator right to the worst two-dimensional model under the summary

trend.
[00281] Operator suppression is done a the Pareto chart level by selecting
the on/off button beneath each bar.
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APPENDIX 2

Principal Component Analysis Models
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APPENDIX 2A

The HEATERPCA Modd: 5Principal Components (Named)
With Sensor Description, Engineering Units, and Principal Component Loading

Oil Flow Control

1ST PASS HYDROCARBON FLOW
3RD PASS HYDROCARBON FLOW
2ND PASS HYDROCARBON FLOW
4T™H PASS HYDROCARBON FLOW

Oil Side Heat | nput

3RD PASS CONTROL TEMPERATURE
15T PASS CONTROL TEMPERATURE
2ND PASS CONTROL TEMPERATURE
4T™H PASS CONTROL TEMPERATURE
TRANSFER LI NE TEMPERATURE
3RD PASS QUTLET TEMPERATURE
1ST PASS QUTLETTEMPETRATURE

2ND PASS QUTLETTEMPETATURE

4TH PASS OQUTLET TEMPERATURE

Fuel Gas Flow

1ST PASS FUEL GAS FLOW
4TH PASS FUEL GAS FLOW
3RD PASS FUEL GAS FLOW
2ND PASS FUEL GAS FLOW

Steam Flow Control

1ST PASS STEAM FLOW
2ND PASS STEAM FLOW
3RD PASS STEAM FLOW
4TH PASS STEAM FLOW

Excess Heat

o~NoOOAWNER (]

EAST HTR O2 CONTROL

3RD PASS M D TEMPERATURE

4TH PASS M D TEMPERATURE

2ND PASS BOX TEMPERATURE

FLUE GAS TO PREHEATER TEMPERATURE
STACK TEMPERATURE

1ST PASS M D TEMPERATURE

15T PASS BOX TEMPERATURE

BBL/D
BBL/D
BBL/D
BBL/D

DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF

MSCF/D
MSCF/D
MSCF/D
MSCF/D

LB/HR
LB/HR
LB/HR
LB/HR

PCT

DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF

-2.56E-01
-2.55E-01
-2.54E-01
-2.51E-01

3.40E-01
3.29E-01
3.27E-01
3.26E-01
2.39E-01
2.21E-01
2.20E-01
2.08E-01
1.94E-01

2.23E-01
2.18E-01
2.09E-01
1.87E-01

5.62E-01
2.79E-01
2.78E-01
2.78E-01

6.26E-01
3.07E-01
2.55E-01
-2.48E-01
-2.17E-01
2.10E-01
1.94E-01
-1.84E-01
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9 4™ PASS BOX TEMPERATURE DEG- -1.84E-01
10 3RD PASS BOX TEMPERATURE DEG- -1.71E-01
11 2ND PASS MID TEMPERATURE DEG- 1. 49E-01
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The GASPLANT PCA Mode: 6 Principal Components (Named)
With Sensor Description, Engineering Units, and Principal Component Loading

Gas Plant Feed

ABSORBER OFF GAS

COMP DISCH-2ND STAGE Output
ABS PRESS CONTRL Output
M.F. OFF GAS Output

COMPR 2ND STAGE PRESS
COMP STG 2 INLET

COMPR 1ST STAGE PRESS

M.F. BACK PRESS CONTRL Output
I-STAGE KO DRM 6D9 PRESS
M.F. OVHD REFLUX Output

M.F. OFF GAS

MAIN FRAC OVHD PRESSURE

Gas Plant Heat Balance

DEB REBLR DRAW
DEBUT BOTTOMS
DEB REBLR RETURN
MF OVHD ACCUM LIQ
HGO FROM GP TO MF
DEB BTMS REB TEMP
LEAN OIL TO E12
DEBUT TRAY 2

ABS MID REB RETN

Gas Plant Fuel Production

ABS TOP CLR DRAW

M.F. BACK PRESS CONTRL
M.F. OVHD ACC TO FLARE
ABS MID CLR DRAW

COMPR 2ND DISCHARGE
COMP SUCTION PRESS

ABS TRAY 29 VAP

DEBUT TRAY 2

I-STAGE KO DRM 6D9 PRESS
DEB BTMS REB TEMP

ABS TRAY 2

COMPR 1ST STAGE PRESS
ABSORBER TRAY 2 TEMP
MAIN FRAC OVHD PRESSURE
DISCH KO DRM 6D20 Output
ABS TOP CLR RETN
COLALESCER DRAW

ABS MID REB DRAW

MSCF/D
%

%

%

PSIG
DEGF
PSIG

%

PSIG

%
MSCF/D
PSIG

DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF

DEGF
PSIG
PSIG
DEGF
DEGF
PSIG
DEGF
DEGF
PSIG
DEGF
DEGF
PSIG
DEGF
PSIG
%
DEGF
DEGF
DEGF

-1.76E-01

1.71E-01
-1.71E-01

1.66E-01
-1.61E-01
-1.57E-01
-1.55E-01
-1.54E-01
-1.52E-01
-1.51E-01
-1.51E-01
-1.51E-01

-1.27E-01
-9.21 E-02
-7.34E-02
-4.00E-02
-6.71 E-02
-1.67E-01
-7.11 E-02
-1.72E-01
-9.60E-02

-1.98E-01
1.97E-01
1.97E-01

-1.94E-01

-1.85E-01
1.77E-01

-1.77E-01

-1.72E-01
1.70E-01

-1.67E-01

-1.66E-01
1.64E-01

-1.58E-01
1.56E-01

-1.53E-01

-1.51 E-01

-1.42E-01

-1.41 E-01
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19 DEBUT OVHD VAPOR

20 NAPTHA TO ABS Output

21 DEB REBLR DRAW

22 M.F. OVHD ACC LVL Output

23 NAPTHA TO ABS

24 HGO TO ABS REB Output

25 ABS MID CLR RETN

26 ABSORBER OFF-GAS

27 M.F. OVHD OUTLET TEMP

28 LEAN OIL FROM E9

4. Gas Plant Gasoline Production
1 ABS REFLUX-LEAN OIL

2 ABS REFLUX-LEAN OIL Output
3 DEB BTMS LVL Output

4 NAPHTHA TO STORAGE

5 NAPHTHA TO STORAGE Output
6 NAPTHA TO ABS

7 M.F. OVHD ACC LVL Output

8 NAPTHA TO ABS Output

9 #1 INTERCOOLER FLW

10 ABSORBER OFF-GAS

11 #1 INtERCOOLER LVL Output
12 ABS BTMS LVL Output

13 ABS NAP>DEB

14 HGO FROM ABS REB

15 ABSORBER BOTTOVE TEMP

16 ABS TRAY 2

17 ABSORBER TRAY 2 TEMP

18 ABS NAP>DEB Output

19 M.F. OFF GAS

20 COMPRESSOR 6-G-14 AMPS
21 COMP DISCH-2ND STAGE

22 MF 16D1 TRAY 21 TEMP

23 ABS TOP CLR DRAW

24 ABS TOP REFLUX

25 DISCH KO DRM 6D20 INTRFC Output
26 ABS TOP CLR RETN

27 16G14M MAX STATOR TEMP
28 M.F. BACK PRESS CONTRL Output
29 DEB ACC LVL Output

5. Gas Plant Pebutanizer Feed
1 ABSORBER BOTTOVE TEMP

2 ABS M D REB RETN

3 ABSORBER TRAY 2 TEMP

4 ABS TRAY 2

5 HGO TO ABS REB Output

6 HGO FROM ABS REB

7 COMPR 1ST DISCHARGE

-82-

DEGF
%
DEGF
%
KBBUD
%
DEGF
DEGF
DEGF
DEGF

KBBL/ D
%

%
KBBL/ D
%
KBBL/ D
%

%
KBBL/ D
DEGF
%

%
KBBL/ D
DEGF
DEGF
DEGF
DEGF
%
MSCF/ D
AWVP
MSCF/ D
DEGF
DEGF
DEGF

%

DEGF
DEGF
%

%

DEGF
DEGF
DEGF
DEGF
%

DEGF

PCT/US2007/009576

-1. 38E-01
1. 28E-01
-1.27E-01
1. 26E- 01
1. 25E- 01
1.21E-01
-1.18E-01
-1.16E-01
1. 15E-01
-1.14E-01

3.32E-01
2.87E-01
-2.84E-01
-2.81E-01
-2.63E-01
-2.59E-01
-2.58E-01
-2.32E-01
1.95E-01
-1.84E-01
1.82E-01
1.54E-01
1.53E-01
-1.52E-01
-1. 29E-01
-1.27E-01
-1.19E-01
1.06E-01
. 98E-02
. 96E- 02
. 90E- 02
. 09E- 02
. 87E-02
. 62E-02
. 99E- 02
. 7T6E-02
. 45E- 02
. 27E-02
. 25E-02

o
O OON~NN oo © oo

. 64E-01
.47E-01
. 10E-01
. 08E-01
. 98E-01
.93E-01
. 90E-01

B PR NMNNN
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DISCH KO DRM 6D20 Output
LEAN OIL FROM E9

COMPR 2ND DISCHARGE
ABS NAP>DEB Output

ABS BTMS LVL Output

ABS NAP>DEB

M.F. BACK PRESS CONTRL
M.F. OVHD ACC TO FLARE
I-STAGE KO DM 6D9 Output
COMP SUCTION PRESS
ABSORBER BOTTOMS TEMP Output
COMP KO DRUM IN

HGO TO ABS REB

ABS BTM REB DRAW
I-STAGE KO DRM 6D9 PRESS
MF OVHD COND OUT
COMPR 1ST STAGE PRESS

Gas Plant Olefin Production

DEBUT REFLUX

HGO FROM GP TO MF
DEBUT BOTTOVG

DEB REBLR RETURN

DEB REBLR DRAW

C3 TOTAL in DEBUT OVHD
HGO TO DEB REB

DEB BTMS REB TEMP Output
ABS TOP CLR RETN

C4='S IN DEBUT BOTTOMS
#1 INTERCOOLER FLW

%
DEGF
DEGF
%

%
KBBL/D
PSIG
PSIG

%

PSIG

% .
DEGF
KBBL/D
DEGF
PSIG
DEGF
PSIG

DEGF
DEGF
DEGF
DEGF
DEGF
PCT
KBBL/D
%
DEGF
PCT
KBBL/D

PCT/US2007/009576

-1.80E-01
1.80E-01
-1.77E-01
-1.76E-01
-1.74E-01
-1.72E-01
1.69E-01
1.69E-01
-1.53E-01
1.48E-01
-1.48E-01
-1.43E-01
-1.42E-01
1.33E-01
1.27E-01
-1.22E-01
1.21E-01

2.64E-01
2.56E-01
2.48E-01
2.46E-01
2.30E-01
1.97E-01
1.92E-01
191E-01
1.68E-01
1.55E-01
1.54E-01
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APPENDIX 3
ENGINEERING MODELS

A. PID Controller Monitors

Standard Frozen Offset High High

Deviation Frozen Value| Duration Accumulated| Standard| Standard

Controlier Time Value| Tolerance] Tolerance| Control Error| Deviation| Deviation
Descripiton] Window| Threshold| (Minutes) {Minutes)|Deadband Tolersnce] Threshold| Tolerance

MF Btms Lvl 15 0.02 15 120 3 21 3 1
HGO Tray Lvl 15 0.03 5 120 5 50 15 1
HGO Circ Stm Gen Lvi 10 0.03 3 120 5 40 5 1
MF Ovhd.Ace HC Lv) 10 0.02 10 120 ) 35 5 1
WF Ovhd Acc Boot Lvi 5 0.25 5 15 15 100 10000 10000
Absorber Bottoms Lvl 15 0.05 10 120 4 40 5 1
#2 intercogler Lvl 10 0.08 10 60 20 100 10000 10000
#1-ntercooler Lvi 10 0.075 10 120 3 50 10000 10000
Debut Boitoms Lvi 10 0.05 10 120 2.5 40 10000 10000
Debut Acc Lvi 15 0.025 10 120 2 100 10000 10000
LStage KO Drum HC Lyl 15 0.04 10 120 2 10 5 1
IStage KO Drum Lvi 5 0.63 10 120 4 100 10 10
Suct KO Drum Lvi 15 0.035 10 - - - 10 10
HGO Prod Stm Gen Lvi 5 0.1 10 120 7.5 50 7 1
HGQ Stripper Lvl 15 0.05 7 30 8 80 8 1
Absorber Ovhd Pressure] 15 0.02 ’ 5 120 5 80 2 10
Debut Ovhd Pressure 15 0.025 10 120 4 50 5 S0
Purge Oil Pressure 15 0.04 10 120 5 50 10 10
Hat MCB to E Hir Flow 60 1.00E-11 10000 120 400 2000 5000 10800
|Hot KMCB to W Hir Flo 60 1.00E-11 10000 10000 400 2000 10000 10000

Standard Deviation Time Window (SDTW):
Frozen Value Threshold (FVT):

Frozen Value Tolerance Minutes (FVTM):

Offset Duration Tolerance (ODT):

Control Deadband (CDB):

Accumulated Error Tolerance (AET):

High Standard Deviation Threshold (HST):

Minutes of data used to calculate standard deviation
of the process value

Value to be compared with current standard deviation
calculated over SDTW minutes

If current value of standard deviation remains below
FVT for FVTM minutes instrument is considered to
be frozen

Number of minutes for which the current PV must
stay on one side above a dead band (CDB) to
consider that the instrument has a control offset
problem.

A threshold set to evaluate control offset error or
accumulated controller error

Signed Vaue representing the cumulative error (PV-
SP) over a specified time. Accumulation starts when
PV is outside the dead band (CDB) and stays on the
same side of the set point.

Value to be compared with current standard deviation
calculated over SDTW minutes
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If current value of standard deviation remains above
HST for HSTM minutes instrument is considered to

behighly variant.
B. Process Consistency Monitors
Name Calculation Tolerance Value (of [Units
absolute value)
Heat Pass Flows Monitor Sum of individual pass|Must be less than BBL/D
flows - the total flow 2000
for each furnace
Main Fractionator Flooding Flash Zone Must be greater than |DEGF
Monitor Temperature - 50
Bottoms Temperature
Main Fractionator Overhead [Overhead Cannot be greater DEGF
Temperature Monitor Temperature ~ than 3
Overhead Qutlet
Temperature
Main Fractionator Overhead |Overhead Flare Line |1 PSIG
Accumulator to Flare Monitor |Pressure — Overhead
Compressor Line
Pressure
Debutanizer Bottoms Debutanizer Bottoms |Debut Btms > 250 DEGF
Flooding Monitor Temperature — Delta > 10
Reboiler Inlet
Temperature
Cat Slurry Oil and Steam CSO Flow + 150 # Must be greater than [BBL/D
Flow Monitor Steam Flow for each [0.01 {Hydrocarbon)
heater LB/H (Steam)

C. Valve-Flow-Models

22 valve-flow models have been developed for the DCU AED application. All the valve models

have bias-updating implemented.

manner:

Compensated Flow = FL / (DP/ StdDP) A

where,
FL= Actual Flow

DP = Upstream Pressure - Downstream Pressure
StdDP = Standard Delta Pressure
A = Exponential Parameter

The flow is compensated for the Delta Pressure in this

A plot is then made between the Estimated Compensated Flow and the Actual Compensated
Flow to check the model consistency (X-Y plot) with a specified tolerance. The following is the
list of the 22 valve flow models.

DCU Area |Flow Description Flow Standard Exponential |Tolerance
Engineering |Differential |Parameter (Flow Units)
Units (PSIG) (Flow Units)
Gas Plant ABS REFLUX-LEAN OIL KBBL/D 60.0 0.21 2.3-39
ABSORBER OFF GAS MSCF/D 55.421 0.284 7.0
ABS NAP>DEB KBBL/D 60.0 0.273 4.0-8.0
DEB REFLUX KBBL/D 94,037 0.1 1.5
NAPHTHA TO STORAGE KBBL/D 137.264 0.6 4.5-4.625
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DCU Area |Fiow Description Flow Standard Exponential [Tolerance
Engineering |Differential |Parameter (Flow Unbits)
Units (PSIG) (Flow Units)

C3C4 TO FCC TRTS BBL/D 49.423 0.247 800
Fractionator |UPPER FD-TRAY 5 KBBL/D 70.736 0.1 2.5

SOUR FEED CONTRL KBBL/D 28.268 0.273 6.0

16E27 HGO FRESH FEED OUT |[KBBL/D 14.016 0.073 4.0-4.6

M.F. OVHD REFLUX KBBL/D 70.425 0.273 4.0

NAPTHA TO ABS KBBL/D 116.464 0.242 2.05

HGO TO DEB REB KBBL/D 64.708 0.6 2.625

HOT FD-CRUDE KBBL/D 165.125 0.1 5.0

COKER GAS (16D6) TO FCC MSCF/D 10.232 0.549 1.5
Furnances |1ST PASS-E. HTR BBL/D 473.075 0.29 1600

2ND PASS-E. HTR BBL/D 399.594 0.35 1837.5

3RD PASS-E. HTR BBL/D 516,236 0.45 1837.5

ATH PASS-E. HTR BBL/D 507.764 0.2 1312.5

1ST PASS-W. HTR BBL/D 747.437 0 1181.25

2ND PASS-W. HTR BBL/D 657.98 0 13125

3RD PASS-W. HTR BBL/D 667.437 0 1200

4TH PASS-W. HTR BBL/D 653.891 0 1200
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CLAIMS:

1 A method for abnormal event detection (AED) for some
process units of a delayed coking unit (DCU) comprising:

(@ Comparing online measurements from the process units
to a set of models for normal operation of the corresponding process units,

(b) Determining if the current operation differs from
expected normal operations so asto indicate the presence of an abnormal
condition in aprocess unit,

(c) Assisting the process operator to determine the
underlying cause of an abnormal condition in the DCU, and

(d) Performing corrective action to return the unit to normal
operation.

2. The method of claim 1wherein said set of models correspond
to equipment groups and operating modes, one model for each group which may
include one or more operating mode.

3. The method of claim 1wherein said set of models correspond
to equipment groups and process operating modes, one model for each group
and each mode.

4. The method of claim 2 wherein said equipment groups
include all major material and energy interactions in the same group.

5. The method of claim 4 wherein said equipment groups
include quick recycles in the same group.

6. The method of claim 5 wherein said set of models of normal
operations include principal component models.
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7. The method of claim 6 wherein set of models of normal
operations includes engineering models.

8. The method of claim 1wherein said set of models of normal
operation for each process unit is either aPrincipal components model or an
engineering model.

9. Themethod of claim 1wherein said model of normal
operation for each process unit is determined using principal components
analysis (PCA) and using engineering correlations.

10. The method of claim 9 wherein said Delayed Coking Unit
and downstream towers are decomposed into five abnormality monitors.

11. The method of claim 1wherein said process units are divided
into operational sections of the DCU system.

12. The method of claim 11wherein there arethree operational
sections.

13. The method of claim 11wherein the three operational
sections include the Furnaces (Heaters), Main Fractionator and the Gas Plant

14. The method of claim 9 wherein each of the abnormality
monitors generates a continuous signal indicating the probability of an abnormal
condition in the area.

15. The method of claim 9 wherein said models include process
variables values measured by sensors.

16. The method of claim 9 wherein said principal components of
models for different process units include some process variable values
measured by the same sensor.
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17. The method of c\aim 13 wherein said model further identifies
the consistency between tags around a specific unit, the main fractionator, gas
plant units, the wet gas compressor, valves/ flows, to indicate any early
breakdown in the relationship pattern.

18. The method of claim 17 wherein said model further
comprises suppressing model calculations to eliminate false positives on specia
cause operations.

19. The method of claim 9 wherein (a) determining said model
begins with arough model based on questionable data, (b) using said rough
model to gather high quality training data, and improve the model, and (c)
repeating step (b) to further improve the model.

20. The method of claim 19 wherein said training data includes
historical datafor the model of the processing unit.

21. The method of claim 20 wherein said model includes
transformed variables.

22. The method of claim 21wherein said transformed variables
include pressure compensated temperature or flow measurements and flow to
valve positions.

23. The model of claim 19 wherein some pairs of measurements
for two variables are brought into time synchronization by one of the variables
using adynamic transfer function.

24. The model of claim 20 wherein variables of process
measurements that are affected by operating point changes in process operations
are converted to deviation variables by subtracting the moving average.

.25. The method of claim 20 wherein said model is corrected for
noise.
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26. The method of claim 25 wherein said model is corrected by
filtering or eliminating noisy measurements of variables.

27. The method of claim 20 wherein the measurements of a
variable are scaled.

28. The method of claim 27 wherein the measurements are scaled
to the expected normal range of that variable.

29. The method of claim 4 where alist of abnormality monitors
automatically identified, isolated, ranked and displayed for the operator.

30. Themethod of claim 9 where the operator is presented with
diagnostic information at different levels of detail to aid in the investigation of
the event.

31 Themethod of claim 20 wherein the number of principal
components is chosen such that coefficients of the principal component become
about equal in size.

32. The method of claim 4 wherein said principal components
Include process variables provided by online measurements.

33. Themode of clam 32 wherein some measurement pairs are
time synchronized to one of the variables using adynamic filter.

34. Themodel of claim 32 wherein the process measurement
variables affected by operating point changes in the process operations are
converted to deviation variables.

35. The method of claim 32 wherein the number of principal
components is selected by the magnitude of total process variation represented
by successive components.
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36. A System for abnormal event detection (AED) for some of
the process units of aDCU of a petroleum refinery comprised of:

(@) aset of models for the process units describing
operations of the process units including automatic
detection of drum switches and furnace decoking
operations,

(b) adisplay which indicates if the current operation differs
from expected normal operations so asto indicate the
presence of an abnormal condition in the process unit,

(c) adisplay which indicates the underlying cause of an
abnormal condition in the DCU.

37. The system of claim 36 wherein said model for each process
unit is either aPrincipal components model or an engineering model.

38. The system of claim 37 wherein aDCU is partitioned into
three operational sections with Principal components models for selected
sections. '

39. The system of claim 38 wherein said principal components
include process variables provided by online measurements.

40. The system of claim 38 wherein said model further comprises
suppressing model calculations to eliminate operator induced notifications and
false positives.

41. The system of claim 37 wherein: (a) deriving said model
begins with obtaining an initial model based upon questionable data, (b) use of
said initial model to refine the data and improve the model, and (c) iteratively
repeating step (b) to improve the model.
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42. The system of clam 4 1wherein said training data set
includes historical data of the processing unit for model devel opment.

43. Thesystem of claim 42 wherein said model includes
transformed variables.

44. The system of claim 43 wherein said transformed variables
include pressure compensated temperature or flow measurements and flow to
valve positions.

45. The system of claim 42 wherein some measurement pairs are
time synchronized to one of the variables using adynamic filter.

46. The system of claim 42 wherein the process measurement
variables affected by operating point changes in the process operations are
converted to deviation variables.

47. The system of claim 42 wherein the measurements of a
variable are scaled prior to model identification.

48. The system of claim 47 wherein the measurements are scaled
by the expected normal range of that variable.

49. The system of claim 42 wherein the number of principal
components is selected by the magnitude of total process variation represented
by successive components.
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Three Dimensional Redundancy Expressed as a PCA Model
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Process For Developing a PCA Abnormal Event Detector
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Anatomy of a Process Control Cascade
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Anatomy of a Multivariable Constraint Controller, MVCC
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On-Line Inferential Estimate of Current Quality
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KPI Analysis of Historical Data

0.18+ Mean

0.17-
0.16-
0.15':
0.14-
0.134
0.12-
0.1

Normal

o
Y
i

0.09
0.08-_
0.074
0.06 1
0.05-
0.04
0.03
0.02
0.01

Abnormal

Probability Density

FIG.9

SUBSTITUTE SHEET (RULE 26)



WO 2007/124002 PCT/US2007/009576

10/40

Signal to Noise Ratio
Standard Deviation of Signal/ Standard Deviation of Noise
04.42.00

79.0 ’
75.7 WW
72.0 .
< 69.0 & q A ‘
65.7 1
62.3
59.0 [ Origina 79.0
lMeasurement \/‘\ - 75.7
> M T72.0
'n"w\n .pf‘\'“‘\w-ﬁ.- 'N"MI /‘v\\’\'\w J’ i 690 Z
o S0 S L 657 >
Igna L 62.3
1 0'8 Component Y
10.0 1
-1.0 1
< 80 MMW\&WM | WW MMW\‘N
-6.01 ' Noise
-4.0 Component
-20.0 1

17.42.00 03.11.00 00.00.00 17.09.00 08.06.00 01.07.00 17.06.00
day 1 day 3 day$5 day 6 day 8 day 10 day 11

FIG. 10

SUBSTITUTE SHEET (RULE 26)



WO 2007/124002 PCT/US2007/009576

11/40

Example of the Need for Dynamic Reconciliation
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An Tllustration of the Press Statistic
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Two Dimensional Energy Balance Model
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Valve to Flow Data
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Fuzzy Discriminators
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Flow versus Valve Pareto Chart
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Operator Suppression Logic
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PCA Model Suppression
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Primary Operator Interface Design
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FIG. 23

DCU Schematic Layout
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FIG. 24

DCU and Light Ends Processing Units
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FIG. 26

Fuzzy Logic Based Continuous Abnormality Indicator
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FIG. 27

Fuzzy Logic Network for a Level Controller Monitor
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FIG. 28

Complete Drill Down of a Furnace problem in AED
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FIG. 29

Overview Display on the Occurrence of a Furnace Problem
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FIG. 30

Indication of Furnace Sub—Area with a Problem
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FIG. 31

Bad Actor Pareto—Chart for a Furnace Problem
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FIG. 32
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FIG. 33

Detailed Trend of Worst Actor for Furnace Problem
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FIG. 34

Historical Trend of Furnace Sub—Area Normality Indicator
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FIG. 35

Valve Flow Pareto Chart (Furnace Feed Valves)
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FIG. 36

Valve—Flow model X-Y plot
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FIG. 37

Valve—Flow Fuzzy Network (Heater Valves)
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FIG. 38

Example of Valve Out of Controllable Range
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FIG. 39

Building a PCA Model: Distribution of Principal Components
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FIG. 40

Alert Suppression Network
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