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(57) Abstract: A method of building a statistical shape model by automatically establishing correspondence between a set of two
dimensional shapes or three dimensional shapes, the method comprising : a) determining a parameterisation of each shape, building a
statistical shape model using the parameterisation, using an objective function to provide an output which indicates the quality of the
statistical shape model; b) performing step a) repeatedly for different parameterisations and comparing the quality of the resulting
statistical shape models using output of the objective function to determine which parameterisation provides the statistical shape
model having the best quality, wherein the output of the objective function is a measure of the quantity of information required to

code the set of shapes using the statistical shape model.
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STATISTICAL MODEL

The present invention relates to a statistical shape model, and to the parameterisation

of a set of shapes used for the statistical shape model.

Statistical models of shape have been used for some time to provide automated
interpretation of images [1]. The basic idea used by the models is to establish, from a
training set, a pattern of ‘legal’ variation in the shapes and spatial relationships of
structures in a given class of images (the class of images may be for example face
images, or hand images, etc.). Statistical analysis is used to give an efficient
parameterisation of the pattern of legal variation, providing a compact representation
of shape. The statistical analysis also provides shape constraints which are used to
determine whether the shape of a structure in an analysed image is a plausible

example of the object class of interest [2].

One of the main drawbacks of statistical shape models is the need, during training, to
establish dense correspondence between shape boundaries for a reasonably large set of
example images. It is important to establish the ‘correct’ correspondence, i.e. a
landmark should represent the same location for each of the images used to generate
the model (for example a landmark could be located at the inner comer of the left
eye). If ‘correct’ correspondences are not established, an inefficient model of shape
can result, leading to difficulty in defining shape constraints. In other words, the
model will not correctly determine whether the shape of a hypothesised structure in an
analysed image represents a plausible example of the object class of interest. The
problem of establishing correspondence can be viewed as one of finding an
appropriate parameterisation of the shape. The term parameterisation refers to the
process of defining a one-to-csne correspondence between values of one or more
parameters and positioﬁ on the shape so that a given value of the parameter (or
parameters) defines a unique location on the shape. For example, a single parameter
can define position around a closed boundary, whilst two parameters are required to

define position on a closed surface (in 3D) of spherical topology.
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In practice, correspondence has often been established for training images by using
manually defined ‘landmarks’. In 2D this defines a piecewise linear parameterisation
of each shape, with equivalent landmarks for the different shapes corresponding by
definition and intermediate sections of shape boundary parameterised as a linear
function of path length. Shape models generated in this way have been found to
function reasonably well. HoWever, there are several disadvantages associated with
manually defining landmarks. Firstly, in general a large number of images must be
annotated in order to generate an accurate model, and manually defining landmarks
for each image is very time consuming. A second disadvantage is that manually
defining the landmarks unavoidably involves an element of subjective judgement
when determining exactly where to locate each landmark, and this will lead to some
distortion of the model. The disadvantages are exacerbated when manually defining

landmarks for 3-D images, since the number of landmarks per image increases

significantly.

The impact of parameterisation upon the generation of a two dimensional (2-D) model

is illustrated in the following example:

A 2-D statistical shape model is built from a training set of example .
shapes/boundaries. Each shape, S;, can (without loss of generality) be represented by
a set of (1/2) points sampled along the boundary at equal intervals, as defined by some

parameterisation @; of the boundary path.

Using Procrustes analysis [12] the sets of points can be rigidly aligned to minimise the
sum of squared differences between corresponding points. This allows each shape §;
to be represented by an n-dimensional shape vector x; formed by concatenating the
coordinates of its sample points, measured in a standard frame of reference. Using
Principal Component analysis, each shape vector can be approximated by a linear

model of the form
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x=X+Pb 1)
where X is the mean shape vector, the columns of P describe a set of orthogonal
modes of shape variation and b is a vector of shape parameters. New examples of the
class of shapes can be generated by choosing values of b within the range found in the
training set. This approach can be extended easily to deal with continuous boundary

" functions [6], but for clarity is limited here to the discrete case.

The utility of the linear model of shape shown in (1) depends on the appropriateness
of the set of boundary parameterisations {@;} that are chosen. An inappropriate
choice can result in the need for a large set of modes (and corresponding shape
parameters) to approximate the training shapes to a given accuracy and may lead to
‘legal’ valﬁes of b generating ‘illegal’ shapehinstances. For example, consider two
models generated from a set of 17 hand outlines. Model 4 uses a set of
parameterisations of the outlines that cause ‘natural’ landmarks such as the tips of the
fingers to correspond. Model B uses one such correspondence but then uses a simple
path length parameterisation to position the other sample points. The variance of the
three most significant modes of models 4 and B are (1.06, 0.58, 0.30) and (2.19, 0.78,
0.54) respectively. This suggests that model 4 is more compact than model B. All the
example shapes generated by model 4 using values of b within the range found in the
training set are ‘legal’ example‘s of hands, whilst model B- generates implausible

examples This is illustrated in Figures 1a and 1b.

The set of parameterisations used for model 4 were obtained by marking ‘natural’
landmarks manually on each training example, then using simple path length
parameterisation to sample a fixed number of equally spaced points between them.
This manual mark-up is a time-consuming and subjective process. In principle, the
modelling approach extends naturally to 3-D, but in practice manual landmarking

becomes impractical.
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Several previous attempts have been made to automate model generation [3-6] by the
automatic location of landmarks for training images. Each of these attempts suffers

from disadvantages, as set out below.

Various authors have described attempts to automate the construction of statistical
shape models from a set of training shapes. The simplest approach is to select a
starting point and equally space landmarks along the boundary of each shape. This is
advocated by Baumberg and Hogg [7] but it does not génerally result in a satisfactory
model. Kelemen. et al [8] use spherical harmonic descriptors to parameterise their
training shapes. Although it is independent of origin, this is equivalent to an arbitrary
parameterisation of the boundary, and it is not based upon a consideration of the

optimal arrangement of landmarks.

Benayoun et al [9] and Kambhamettu and Goldgof [10] use curvature information to
select landmark points. However, there is a risk that corresponding points will not lie
on regions that have the same curvature. Also, since these methods only consider

pairwise correspondences, they may not find the best global solution.

A more robust approach to automatic model building is to treat the task as an
optimisation problem. Hill and Taylor [4] attempt this by minimising the total
variance of a shape model. They choose to iteratively perform a series of local
optimisétions, re-building . the model at each stage. Unfortunately, this makes the
approach prone to becoming trapped in local minima and consequently depends on a
good initial estimate of the correct landmark positions. Rangarajan ef al [13] describe
a method. of shape correspondence that also minimises the total model variance by
simultaneously determining a set of correspondences and the similarity transformation
required to register pairs of contours. This method is not based upon a consideration

of the optimal arrangement of landmarks.

Bookstein [11] describes an algorithm for landmarking sets of continuous contours

represented as polygons. Points are allowed to move along the contours so as to
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minimise a bending energy term. The parameterisation is not based upon a
consideration of the optimal arrangement of landmarks, and instead the arrangement

of the landmarks is merely arbitrary.

Kotcheff and Taylor [6] describe an approach which attembts to define a best model
in terms of ‘compactness’, as measured by the determinant of the model’s covariance
matrix [6]. They represented the parameterisation of each of a set of training shapes
explicitly, and used a genetic algorithm search to optimise the model with respect to
the parameterisation. Although this work showed promise, there were several
problems. The objective function, although reasonably intuitive, could not be
rigorously justified. The method was described for 2-D shapes and could not easily be
extended to 3-D. It was sometimes difficult to make the optimisation converge. A
further disadvantage is that a required accuracy value had to be selected in order to
make the algorithm work correctly. The choice of accuracy value had a direct impact
upon the parameterisation chosen. Consequently, different accuracy values were
appropriate for different models, and a user was required to select an accuracy value

during initiation of the model.

It is an object of the present invention to provide a method of parameterisation or a
statistical shape model which overcomes or substantially mitigates at least one of the

above disadvantages.

According to the invention there is provided a method of building a statistical shape
model by automatically establishing correspondence between a set of two dimensional
shapes or three dimensional shapes, the method comprising:

a. determining a parameterisation of each shape, building a statistical shgpe
model using the parameterisation, using an objective function to provide an output
which indicates the quality of the statistical shape model,

b. performing step a repeatedly for different parameterisations and comparing the
quality of the resulting statistical shape models using output of the objective function

to determine which parameterisation provides the statistical shape model having the
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best quality, wherein the output of the objective function is a measure of the quantity

of information required to code the set of shapes using the statistical shape model.

The inventors have realised that the Objective Function may be based upon the key
insight that the ‘best’ model is that which provides coding of the set of shapes as
efficiently as possible. The inventors have thus devised a new function with a
rigorous theoretical bas@s which allows different parameterisations to be easily

compared.

Preferably, the parameterisations used to perform step a are selected using an
optimisation method based upon previous parameterisations and the quality of the
statistical shape models generated using those parameterisations as indicated by the

output of the objective function.

Preferably, the output of the objective function comprises a value indicative of the
amount of information required to code parameters of the model, and a value

indicative of the information required to code residuals for the set of shapes.

The term ‘residual’ is intended to mean information that is required in order to
represent all of the images of the training set to an arbitrary accuracy, and which is not

included in the model itself.

Preferably, the oﬁtput of the objective function further comprises a value indicative of
the amount of information required to code mapping between parameters and the

shapes.

Preferably, for a given parameterisation the objective function provides a single scalar

output.

Preferably, the single scalar output comprises a combination of the value indicative of

the amount of information required to code parameters of the model, the value
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indicative of the information required to code residuals for the set of shapes, and the
value indicative of the amount of information required to code mapping between

parameters and the shapes.
Preferably, the mapping comprises a mean vector and a covariance matrix.

Preferably, the parameters of the model are parameter vectors, and the average amount
of information per parameter vector is determined and multiplied by the number of
shapes in the training set, to provide the value indicative of the amount of information

required to code parameters of the model

Preferably, the residuals are residual vectors, and the average amount of information
per residual vector is determined and multiplied by the number of shapes in the
training set, to provide the value indicative of the information required to code

residuals for the complete set of training shapes.

Preferably, the number of residuals in each residual vector is twice the number of

parameterisations used to generate the model.

Preferably, the number of modes of variation of the model is selected to represent the

training set to a given accuracy

Preferably, the boundary of each two-dimensional shape of the training set is
 recursively subdivided by inserting landmarks, the parameterisation of the boundary
being represented by the position of each landmark as a fraction of boundary path

length between preceding and following landmarks. ~

Preferably, the parameterisation which provides the best optimisation value is

determined using a stochastic optimisation method.
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Preferably, a set of curves is used to determine a parameterisation function for the

training set.
Preferably, the set of curves is a cumulative density function.
Preferably, the cumulative density function comprises a sum of kernel curves.

Preferably, the cumulative density function is determined by combining increasing
numbers of kemel curves to provide increasing resolution levels, and the
parameterisation function which provides the statistical shape model of the best
quality is determined using the output of the objective function for each resolution

level.

Preferably, the kernel curves are Gaussian fﬁnctions.
Preferably, the kernel curves are Cauchy functions.
Preferably, the kernel curves are two dimensional curvés.
Preferably, the kernel curves are three dimensiorial curves.

Preferably, the boundary of each shape of the training set is parameterised by

specifying a set of control landmarks used to determine a parameterisation function.

Preferably, the parameterisation function is determined for increasing numbers of
control landmarks to provide increasing resolution levels, and the parameterisation
function which provides the statistical shape model of the best quality is determined
using the output of the objective function for each resolution level.

Preferably, equally spaced landmarks are provided between the control landmarks.
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Preferably, the shape and grey-level appearance are both included in the model.

According to a second aspect of the invention there is provided a method of

parameterising a set of three dimensional shapes, the method comprising:

a. mapping each three dimensional shape to a simple canonical form of an
appropriate topology,
b. applying a set of landmarks to the simple form for a given level of resolution,

each landmark being constrained to lie inside a spherical triangle formed by a triple of
landmark points of a lower resolution level,
c. upon the completion of the application of the set of landmarks for the

resolution level, projecting the set of landmarks onto the three dimensional shapes,

d. building a statistical shape model using the set of landmarks of the resolution
level,
e. using an objective function to provide an output which indicates the quality of

the statistical shape model determined using the set of landmarks of the resolution
level,
f comparing the output with output determined using a different set of
langimarks having the same level of resolution, and

B repeating steps a to f to determine which set of landmarks which provides the
best quélity of statistical shape model,

h. repeating steps a to g at a higher level of resolution.

According to a third aspect of the invention there is provided a method of
parameterising a set of three dimensional shapes, the method comprising:

a. mapping each three dimensional shape to a simple canonical form of an
appropriate topology,

b. applying a set of landmarks to the simple form,

c. modifying the locations of the landmarks by applying a transformation,

d. projecting the set of landmarks onto the three dimensional shapes,

e. building a statistical shape model using the set of landmarks,
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f using an objective function to provide an output which indicates the quality of
the statistical shape model determined using the set of landmarks,

g comparing the output with output determined using landmarks having different

locations, and

h. repeating steps ¢ to g to determine which set of landmarks which provides the

best quality of statistical shape model.

Preferably, the transformation comprises for a selected landmark pushing other -
landmarks away from the selected landmark along the surface of the simple form, or

pulling other landmarks towards the selected landmark along the surface of the simple

form.

Preferably, the transformation is defined by a wrapped kemel.
Preferably, the wrapped kemel is a wrapped Cauchy distribution.
Preferably, the wrapped kernel is a wrapped Gaussian distribution.

Preferably, the simple form is a sphere or a torus. The simple form may be any other
form, and preferably has a shape which generally corresponds with the general shape

of the set of three dimensional shapes.

The second aspéct of the invention or the third aspect of the invention may include

preferred features of the first aspect of the invention.

A specific embodiment of the invention will now be described by way of example
only with reference to the accompanying figures, in whiéh:

Figure 1 is two sets of outputs generated by shape models which use prior art
parameterisation;

Figure 2 is a graph which illustrates discrete parameterisation;
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Figure 3 is a diagram which illustrates discrete parameterisation by the first
embodiment of the invention;

Figures 4 to 6 are results obtained using the first embodiment of the invention;

Figure 7 is a diagram which illustrates the application of the invention to 3-D
surfaces;

Figure 8 is a Figure 3 is a graph which illustrates continuous parameterisation;

Figure 9 is results obtained using the second embodiment of the invention;

Figures 10 is further results obtained using the second embodiment of the invention;
Figure 11 is a diagram which illustrates discrete parameterisation by the third
embodiment of the invention; and

Figure 12 is results obtained using the second embodiment of the invention.

The illustrated embodiment of the invention is based upon a two dimensional (2-D)

statistical shape model.

As previously described in the introduction, a 2-D statiétical shape model is built from
a training set of example shapes/boundaries. Each shape, S;, can (without loss of
generality) be represented by a set of (n/2) points sampled along the boundary at equal
intervals, as defined by some parameterisation @ of the boundary path (the term
parameterisation refers to the separation of the boundary path into the set of distances

along the boundary between the sampled points).

Using Procrustes analysis [12] the sets of points can be rigidly aligned to minimise the

sum of squared differences between corresponding points. This allows each shape S;
" to be represented by an n-dimensional shape vector x;, formed by concatenating the

coordinates of its sample points, measured in a standard frame of reference. Using

Principal Component analysis, each shape vector can be approximated by a linear

model of the form |

x=X+Pb 2)
where ¥ is the mean shape vector, the columns of P describe a set of orthogonal

modes of shape variation and b is a vector of shape parameters. New examples of the
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class of shapes can be generated by choosing values of b within the range found in the
training set. This approach can be extended easily to deal with continuous boundary

functions [6], but for clarity this embodiment of the invention is limited to the discrete

case.

An example of how a shape is sampled according to its parameterisation is shown in
figure 2. The shape is a circle, and the origin used for the parameterisation is the
lowermost point on the circle. It has been decided fo use ten landmarks to
parameterise the circle (including the origin). Referring to the graph shown in figure
é, the landmarks are equally spaced along the horizontal axis of the graph which is
labelled ¢ (¢ is in effect a measure of the number of landmarks used to parameterise the
circle). The parameterisation of any given landmark is represented by the clockwise
distance around the circle between that landmark and the preceding landmark. These

distances are represented by the vertical axis of the graph.

The utility of the linear model of shape shown in (2) depends on the appropriateness
| of the set of boundary parameterisations {&;} that are used to construct the statistical
shape model from the set of training boundaries {S;}. The embodiment of the
invention defines a criterion for choosing the set of parameterisations { @;}. The aim
is to choose {@} so as to obtain the ‘best possible’ model. Since it is desired to
obtain a compact model with good generalisation properties the ‘best’ model is
defined as that which can account for all of the observations (the training boundaries)
in as simple a way as possible. In other words, the inventors have based their
parameterisation method upon the statement that the ‘best’ model is that which

describes the whole training set as efficiently as possible.

In order to determine which parameterisation is the most efficient a minimum
description length criterion is used (i.e. the optimisation method attempts to determine
the set of parameterisations which uses the least amount of data to describe the whole
training set). This is formalised by stating that it is desired to find {@} that

minimises the information required to code the whole training set to some accuracy o
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on each of the elements of {x;}. Note that to describe {x;} to arbitrary accuracy would
require infinite information; o 'is chosen to reflect the measurement errors involved in

acquiring the training boundaries.

A set {S;} of s training shapes are to be parameterised using {@;} and sampled to give
a set of n-dimensional shape vectors {x;}. Following (2), {X;} can be approximated to

an accuracy of §in each of its elements using a linear shape model of the form
X, =X+Pb,+r, 3

Where X is the mean of {x;}, P has ¢ columns which are the ¢ eigenvectors of the
covariance matrix of {x;} corresponding to the # largest eigenvalues A;, b; 1s a vector

of shape parameters, and r; is a vector of residuals. The elements of r; can be shown

S

. 1 ..
to have zero mean and a variance of A, =— Z A; over the training set.
nish
J=t+l

The total information required to code the complete training set of images using this
encoding is given by

IT

otal IModeZ + SIb + S'[r (4)
Where Jyoq0 is the information required to code the model (the mean vector X and the
covariance matrix P), I, is the average information required to code each parameter

vector by, and I the average information required to code each residual vector, r;.

For simplicity, it is assumed that the elements of the mean X and the matrix P are
uniformly distributed in the range [-1,1], and that %, bits are used per element for the

mean and k; bits per element for the ;™ column of P giving quantisation errors

5,=2" and § = 27" respectively. Thus

! 5
Lot =nkm+nij \ ®)
7=l
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The elements of b; are assumed to be normally distributed over the training set with
zero mean and variance A;. To code them to an accuracy &, it can be shown [14] that

the information required to code each parameter vector b; is on average

I, = i[/cb +0.5log(27el,)] (6)

J=1
Where kl; =-log(d,). Alllogs are base 2.
Similarly, to code the # elements of r; to an accuracy of o, = 27% the information

required on average is
I =nlk, +0.5log(27el,)] (7
Substituting (5), (6) and (7) into (4) gives
11
ITotal = nkm + nz kj (8)

J=1
¢

+s [k, +0.5log(2mel;)]
j=1

+snfk, +0.5log(27wel, )]

This is the total amount of information required to code the complete training set of
images using a linear shape model of the form given in (3). It can be seen from (§)
that I, is a function of the quantisation parameters &y, kj, kv, and k, which are
related to &, the overall approximation error. Since it is desired ultimately to minimise
Troi With respect to {@;} it is first required to find the minimum with respect to ?he
quantisation parameters. This can be found analytically, leading to an expression in
terms of s, n, ¢, {}”tj} and A;.

=-0.5(n+nt +st)log(12a4, / s)+snk (9)

t
+0.5(n+5) Y log(4,) +0.5ns log(aA, )
j=1 '

+0.5s(n +1)1log(27e) —0.5st log(s)

I Total

where s is the number of: training shapes, # is double the number of points sampled
along the boundary of each shape (each point being represented as a pair of

coordinates), ¢ is the number of columns of the covariance matrix (i.e. the number of
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eigenvalues used to code the training set of images, or equivalently the number of
modes of the model), /; is the value of each eigenvalue, A, is the variance over the

ns
n(s—)~t(n—s)

training set of images of the vector of residuals, and o = ( }. The

details of this derivation are given in Appendix A.

Thus, for a fixed number of modes, £, to optimise Iz it is required to minimise

F=(n+s) ilog(/lj)Jr[n(S ~1)~t(n+s)]log(4,) a0

=

The number of modes to use, t, is chosen so as to be able to represent the training set
to a given accuracy. In this instance the root mean square difference between points
on the training set and the model reconstructions of the set are less than a suitable

threshold. The threshold is typically chosen to be related to the estimated uncertainty

"in the original data.

The motivation behind the generation of the function F is to allow an optimal dense
correspondence to be established automatically between a set of training shapes. As
set out above, corresponding points are described in terms of parameterisation & of
the boundary path of the shape. It is desired to find the global optimum of F in (10)

with respect to the set of shape parameterisations {&;}.

The first described method of finding the global optimum of F is to use an explicit

representation of {@;} coupled with a stochastic search.

A representation of {@;} is required that ensures a diffeomorphic mapping between
each pair of training shapes. In 2-D this can be achieved by enforcing the ordering of
corresponding points around the training shapes. In 3-D, however, no such ordering
exists. The invention provides a new method of representation that guarantees

diffeomorphic mapping without using an explicit ordering constraint. Here the
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method is described for 2-D shapes; Appendix B explains how it can be extended to
3-D.

A piecewise linear parameterisation is defined for each training shape by recursively
subdividing boundary intervals by inserting nodes (landmarks). The position of each
new landmark is coded as fraction of the boundary path length between neighbouring
landmarks. Thus by constraining the subdivision parameters to the range [0,1] a
hierarchical ordering is enforced where, at each level of the hierarchy, landmarks are
positioned between those already present. This is illustrated by the example in Figure

3 which demonstrates the parameterisation of a circle.

Referring to figure 3, the shape to be parameterised is a circle. An origin is marked
onto the circle as shown in figure 3a (the origin is the first landmark). Moving in a
clockwise direction the circumference around the circle is constrained to have a length
of 1. A second landmark is positioned at 0.65, measured from the origin, as shown in
figure 3b. This is the first level of the hierarchy. Starting from the origin the distance
around the circle to the second landmark is constrained to be 1. ‘A third landmark is
positioned at-0.65, measured from the origin, as shown in figure 3c. Starting from the
second landmark the distance around the circle to the origin is constrained to be 1. A
fourth landmark is positioned at 0.8, measured from the second landmark, as shown in
figure 3¢c. This the second level of the hierarchy. Further landmarks are added in the

same manner, as shown in figure 3d, thereby providing the third level in the hierarchy.

Recursive subdivision can be continued until an arbitrarily exact parameterisation is
achieved. Correspondence is assumed across the whole training set between

equivalent nodes in the subdivision tree (i.e. equivalent levels of hierarchy).

A set of parameterisations {®} can be manipulated in order to optimise the objective
function F. In practice the search space is high-dimensional with many local minima,
and consequently it is preferred to use a stochastic optimisation method such as

simulated annealing [15] or genetic algorithm search [16]. Both the simulated
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annealing [15] and genetic algorithm search are well known to those skilled in the art.

A genetic algorithm was used to perform the experiments reported below.

The results of applying the invention to several sets of outlines of 2-D biomedical
objects are now described. Qualitative results are shown by displaying the variation
captured by the first three modes of each model (first three elements of b varied by +
2[standard deviations over training set]). Quantitative results are also given,
tébulating the value of F, the total variance and variance explained by each mode for
each of the models, comparing the automatic result with those for models built using

manual landmarking and equally spaced points (boundary length parameterisation).

The first test used 17 hand outlines. The qualitative results in figure 4 show the ability
to generalise plausibly to examples not in the training set. The results in table 1 show
that the automatic method produées a better model than both the equally spaced and

manual model.

The second test used 38 outlines of left ventricles of the h_eaft, segmented from
echocardiograms. Again, figure 5 shows good generalisation. The quantitative results
are presented in table 2. Once again, the automatic algorithm produces significantly

better results than the other two methods.

The final test used the outlines of 49 hip prostheses. The qualitative results in figure 6
show that there is little variation in the three most significant modes of the automatic
model. This is because the only variation in shape is caused by the rotation of the
prosthesis in the plane. It is also interesting to note in table 3 that the mode] produced
by equally spacing landmarks is better than the manual model. This is because
equally-spaced points suffice as there is little variation, but the manual annotation

adds noise to the model. As before, the automatically constructed model is best.

The second described method of finding the global optimum of £ involves selecting

corresponding points by uniformly sampling a continuous parameterisation @(m), of
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each shape, and then manipulatiné the set of parameterisations {&;}, in a way that
minimises the value of Fmn. The method described in this section is applicable to

both open and closed curves; for clarity, the discussion is limited to the closed case.

A legal reparameterisation function @(m) is a monotonically increasing function of m,
with a range (0 < @m) < 1). An examble of such a function is shown in figure 8.
Referring to figure 8, rather than determining a set of landmark points which togetlher
provide a parameterisation function (as shown in figure 2) it is desired instead to use
two-dimensional curves to generate a parameterisation function @(m). Such a
function can be represented as the cumulative distribution function of some

normalised, positive definite density function

pkx), where ®(m) = ’]-p(x)dx

We choose, for example, to represent o(x) as a sum of Gaussian kernels:

p(x)=cl:1+ i —O—_\T——%;exp(— 2;2 (x-—a,.)zﬂ (11)

where the coefficients 4; control the height of each kernel; oy specifies the width and
a; the position of the centre and ¢ is the normalisation constant. The constant term is

included to ensure that when all 4;'s are zero, &(m) is an arc-length parameterisation.

Given this representation of p(x), &m) is calculated

O(m) = ”j‘p (x)dx = c{m + Z%e:f(%} + Z ;;_l erf[ ga\i/'iﬂ (12)

where ¢ is a normalisation constant

¢ =1+lzgi-e;f(’c’:\/‘§)+z—‘42ie;f(aaj/§] (13)

and erfis a standard error function
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erf (x) = -j—;— xje-'zczr (14)

The parameterisation is manipulated by varying {4;}, the heights of the kernels; the
widths {o;} and the positions {a;} are fixed. In other words, a set of Gaussian curves
is combined together to gemerate a function whose cumulative value is the
parameterisation 'of the shape (i.e. the set of curves together provide a curve of the

type shown in figure 8).

If n; kernels are used to represent the parameterisation, the configuration space
becomes (ns)-dimensional. One possibility is to use a stochastic optimisation method
as described above, but a more efficient approach would be desirable. This search
space is generally too large for a direct optimisation scheme to converge rapidly and
reliably. This problem is overcome by using the following multiresolution approach:
eBegin with a single kernel of width o;= 1/4, centred at a; = 1/2 on each shape.
The height, 4; of the kernel on each shape is initialised to zero - equivalent to
an arc-length parameteﬁsation. Employ an optimisation algorithm to find the
magnitude 4;, of the kernel on each shape that minimises . Once these values
are found, tﬁey are fixed and recorded.
eAt each subsequent iteration k, add an additional 21 kernels of width
1/4(1/2)". The new kernels are positioned at intervals of (1/2)* between m = 0
and m = 1 so that they lie halfway between the kemels added on previous
iterations. The optimisation algorithm is used to find the best height for each
kernel. |
Continue recursively adding additional kernels until the parameterisation is

suitably defined.

An advantage of this approach is that it avoids becoming trapped in a local minima of

F since it starts at very low resolution and gradually steps up to higher resolutions.
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The best alignment of the training set depends on the parameterisation of each shape.
This is addressed by performing a Procrustes analysis [6] on the reparameterised

shapes before evaluating Frmin.

It will appreciated that other suitable forms of kernels may be used in place of the

Gaussian kernels, for example Cauchy functions may be used.

In the experiments reported below, it has been assumed that a correspondence exists
between the origins of each shape in the training set. If the correspondence does not
exist, (12) must be modified so that @ () — (¢+ @ (#)) modl, where & specifies the

offset of the origin.

Qualitative and quantitative results of applying the second method to several sets of
outlines of 2D biomedical objects have been obtained. An investigation of how the
objective function behaves around the minimum and how it selects the correct number

of modes to use has also been carried out.

The method was tested on a set of 17 hand outlines, 38 left ventricles of the heart, 24
hip prostheses and 15 cross-sections of the femoral articular cartilage. The algorithm
was run for four iterations, giving 16 kernels per shape. A MATLAB implementation
of the algorithm using a standard iterative optimisation algorithm takes between 20
and 120 minutes, depending on the size of training set. The results are compared with
models built by equally-spacing points along the boundary and hand-built models,
produced by identifying a set of ‘natural' landmarks on each shape.

Figure 9 shows qualitative results by displaying the variation captured by the first
three modes of each model (the first three elements of b varied by +20). Quantitative
results are given in table 2, tabulating the value of Fy, the total variance, and

variance explained by each mode for each of the models.
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The qualitative results in figure 9 show that the shapes generated within the allowed
range of b are all plausible. The quantitative results in table 2 show that the method
produces models that are significantly more compact than either the models built by
hand or those obtained using equally-spaced points. It is interesting to note that the
model produced by equally-spacing points on the hip prosthesis is more compact than
the manual model. This is because\ equally-spaced points suffice as there 1is little
variation, but errors in the manual annotation adds additional noise which is captured

as a statistical variation.

To demonstrate the behaviour of the objective function some corresponding points
were taken from the automatically generated hand model, and random noise was
added to each one. Figure 10 shows a plot of Fin against the standard deviation of
the noise. The plot shows that as the points are moved further away f%om their

corresponding positions, the value of Fyn increases - the desired behaviour.
This method of describing parameterisation can also be applied in 3D.

The second method of parameterisation, described above, uses two dimensional
kernels to determine the parameterisation. The third method, described below, is
similar to the second method but uses landmark points rather than Gaussian kernels to

represent the parameterisation.

The training data used by the third method are a set {# } of shapes that are
represented as curves in two dimensions:

@ =[wro,w oot @5)

The shape outlines can be open [¥, # ¥, (1)]or closed [¥,(0) =¥, ]

It is required to find the optimal set of pafameterisations {®;} of these curves, where
&, is a diffeomorphic mapping: ‘
¥ (1) = ¥(@,0) , {0101 (16)
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A piecewise-linear approximation to the parameterisation @; is used by specifying a
set of contrbl points, {p;} on each shape and equally spacing n/k points along the
boundary between each interval. The configuration space is therefore (n. ns)-
dimensional. This search space is generally too large for a direct optimisation scheme
to converge rapidly and reliably. This is overcome by using the following

multiresolution approach:

e Begin with one control point, p;;, on each shape. Add n/2 equally-spaced
points along the contours between %(0) and ¥i(p ;) and between ¥(p;) and
¥(0). Search for the best set of values for {p;;} in the range [0,1]. A circle to be
parameterised is shown in figure 11a. The “X' represents the origin, the circles
represent the current (flexible) contfol points and the squares represent the fixed
control points. At each iteration, the current control points are allowed to move
between the endpoints of the arrow. For the first iteration, the best control point
p1;is found to be at 0.35. Once the best values are found, fix and record them.

e Place two additional control points p,; and p3; between 0 and p;; and between
pu;and 1 respectively. Equally space n/4 points between [0, pail, [p2, p1il, (P15 P3il
and [p3;, 1]. Referring to figure 11b the best control points py; and ps; are 0.12 and
0.85 respectively. Fix and record the optimal positions of {p} and {ps:}.

e Continue adding additional control points in a similar fashion between the
fixed control points {p;} until the parameterisation is suitably defined. Referring
to figure 11c the best control points p4;, psi, psi and pz are 0.6, 0.25, 0.7 and 0.95.
Figure 11d shows the full set of best control points.

At each iteration, the position of each control points is initialised as halfway along its
allowed range - the equivalent of an arc-length parameterisation. Since an explicit
ordering constraint has not been used, the method may be used on shapes in 3D (see

[19] for details).
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The pose of each shape affects the value of F. It is therefore required to optimise the

four parameters that allow a rigid transformation of each shape: translations dx, d,

scaling s and rotation €.

It has been found that adding an additional 4n; dimensions to each iteration
significantly slows the optimisation and introduces many additional false minima.
Better results can be achieved by performing a Procrustes analysis [12] of the

reparameterised shapes after each iteration.

The third method was tested on a set of 17 hand outlines, 38 left ventricles of the
heart, 24 hip prostheses and 15 outlines of the femoral articular cartilage. The
.algorithm was run for four iterations, giving 16 control points per shape. The results
are compared to models built by equally-spacing points along the boundary and hand-
built models, produced by identifying a set of ‘natural' landmarks on each shape.

In figure 13 qualitative results are shown by displaying the variation captured by the
first three modes of each model (the first three elements of b varied by +20).
Quantitative results are given in table 3, tabulating the value of F, the total variance,
and variance explained by each mode for each of the models. The automatic results
are compared with those obtained for models built using manual landmarking and

equally spaced points.

The qualitative results in figure 12 show that the shapes generated within the allowed
range of b are all plausible. The quantitative results in table 3 show that the method
produces models that are significantly more compacf than either the models built by
hand or those obtained using equally-spaced points. It is interesting to note that,
although the total variance of the hand-built model of the heart ventricle is larger than
the equally-spaced model, the value of the objective function is lower. This is
because much of the variation of the hand-built model is captured within the ﬁrsf few

modes whereas the equally-spaced model requires more modes to describe the same
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amount of variation. This is the behaviour that is desired from the objective function -

the ability to represent much variation with few modes.

The invention provides an objecﬁve function that can be used to evaluate the quality
of a statistical shape model. The expression used has a theoretical grounding in
Information 'Theory, is independent of quantisation error and unlike other approaches
[4, 61, doeé not involve any arbitrary parameters. As well as providing good results
when used as an objective function for automatically building statistical shape models,

the function may also be used to calculate the correct number of modes to use for a
given model. The objective function includes a Z log(4,) term which is equivalent to

the determinant of the covariance matrix, as used by Kotcheff and Taylor [6], but the

more complete treatment here shows that other terms are also important.

Three novel represeﬁtations of correspondence have been described that enforce
diffeomorphic mapping and are applicable in 2-D and 3-D. It has been found that
these new representations improve the performance of genetic algorithm search n
comparison with the representation described by Kotcheff and Taylor [6] and allow
more direct methods of optimisation to be applied. The results described in relation to
2-D objects offer a significant improvement over those from a hand-built model. The
test has been run with different random seeds and achieved almost identical results

each time.

The various approaches described here can also be extended to modellihg full
appearance (grey-levels, not just shape) as described in paper [20]. Since the
mathematical description of the appearance model is identical to the shape model this

is straight forward.
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APPENDIX A: QUANTISATION EFFECTS

Irow in (7) is a function of the quantisation parameters &, {G}, & and 6. "Since we
wish ultimately to minimise [z With respect to {@} we need first to find the
minimum with respect to these parameters. First, we need to determine what
quantisations &, {5}, 5,, and &, are required to achieve a quantisation error & = 27% in
the final reconstruction. We assume that by quantising a parameter, we effectively add

noise to that parameter. We have used error propagation to estimate the effects of

‘noise on the final reconstruction.

In our linear model (2), noise of variance o? on the clements of X induces noise of
variance o> on X;. Similarly, noise of variance of o? on the elements of b; can be
shown to induce an average noise of variance c?/2 on the elements of x;. Noise of
variance o> on the elements of the jth column of P induces an average noise of

variance A,c” on each element of x;.

Quantising a value to & induces noise with a flat distribution in [-6/2, &2] and thus a
variance of 6/12. Thus quantising X, P, and b;, causes an additional error that must
be corrected by the residual term, r;. In effect, the variance of the residual 1s increased
from the original A,. Taking this into account, the variance on the elements of the
residual is given by
;-
A =2, +T1§(§"2' +2—’n§§ +;;Lj5;) ()

Using the central limit theorem we assume that the residuals are normally distributed.
A! is substituted for 4, in (7) giving

L 12
]Toral =nk}n+nzkj ( )

=

t A
+5Y [k, +0.5log(2mel, )]+ snlk +0.5log(2zel)]

J=1
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We can now find the minimum of Ir.m with respect to &, {&}, & and &. By

equating the differentials to zero, we can show that at the optimum

52 =27 =124, /s (13)
62 =271 =124, l(sA,) =61 4 (i4)
52 =270 =124, =6, (15)

~ Substituting (12), (13) and (14) into (10) gives

ns ) (16)
n(s—1)—tn-s)

Al =al, wherea =(
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Appendix B: Extension to 3D

This appendix contains a description of how our parameterisation can be extended to

3-D. Our ultimate goal is to build 3-D statistical shape models of biomedical objects.

To ensure that all shape instances are legal, we must constrain each landmark to lie on
the surface. A seemingly plausible solution is to use spherical co-ordinates whose
centre is at the centre of gravity of the shape. This representation, however, is not
unique, in that two different points on the surface may have the same co-ordinates.
Consequently, triangles can flip over between examples and as this is captured as a
statistical variation, the specificity and compactness of the model is affected. We can
overcome this by flattening the surface to that of a unit sphere using the conformal
mapping technique of Angenent et al [18]. This method solves a second order partial
differential equation to provide a function that maps any point on the original surface
to that of a unit sphere. As the mapping is a diffeomorphism, each point on the
original surface has a unique, corresponding point on the sphere. This allows us to

navigate the shapes surface using two spherical co-ordinates.

We may now use hierarchical parameterisation to position landmarks on the sphére.
We guarantee that the landmarks stay in order by constraining each point to lie inside
the spherical triangle formed by the triple of points from the hierarchy tier above. The
parameterisation is now the position of the point in relation to the three vertices of the
triangle. This allows us to constrain each landmark to lie between its neighbouring
points, thus defining an explicit correspondence across the entire set of shapes. When
a new landmark is added, it forms three new triangles, as demonstrated in figure 7.
Once all the landmark points have been positioned on the sphere, they can be
projected onto the shapes surface using the inverse of the conformal mapping and
evaluate them using our objective function. ‘ _
An alternative approach is the extension of the continuous parameterisation of a line
(given in equation 16) - the parameterisation of homeomorphisms on the sphere (i.e.

mappings which do not induce folding or tearing of the sphere). If we define one

parameterisable transformation which does not tear or fold, we can generate a general

SUBSTITUTE SHEET (RULE 26)
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transformation by applying a sequence of such individual transformation. Below we
describe one such transformation, which essentially stretches the area around a
particular point and compresses the area at the opposite side of the sphere. By
applying a sequence of such stretches, centred on different points, we can generate a
wide variety of homeomorphisms. To automatically build a model we optimise the
parameters of these individual transformations so as to minimise the objective

function defined above.
Cenerating a set of homeomorphisms on the sphere

We wish to construct a parameterised set of exact homeomorphisms on the sphere,
that is, a set of mappings from the sphere to itself which are continuous, one-to-one,
and onto (i.e. no gaps or wrinkles). - We would also like the ﬁapping to be
differentiable everywhere other than at a finite number of isolated points. We would
like the 1neﬁbers of this set to be localised in terms of their action, and continuous
with the identity. From a computational point of view, we would like the set to use as
a few parameters as possible, and be computationally efficient (i.e. involve only the

evaluation of elementary functions).
Theta Transformations

We can construct such a set as follows. Consider an arbitrary point P on the unit

sphere. We construct spherical polar co-ordinates (0, gp) on the sphere such that P
corresponds to the point &=0. Let us now consider a set of homeomorphisms that

re-parameterises the § co-ordinate:

0 £(6.0) )

We first take the rotationally symmetric case where f ((9,90): f (9) For the mappiﬁg
to be differentiable over the range 0 <@ <z and continuous with the identity, f must

be a differentiable non-decreasing monotonic function over the range
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0< 8 <7, withf (O) =0,f (ﬂ) =7. Any such monotonic function f can be re-written in
terms of the cumulative distribution function of some density function p(g), defined

over therange 0<@ <.

We take as our normalised density function a constant term plus a wrapped Cauchy
distribution. The wrapped Cauchy [1] is a normalisable, uni-modal distribution for

circular data, of variable width, which has an analytic indefinite integral:

1 1-a ‘
p(0)= E{H A[Haz - 2acos€ﬂ @

where N = 7z[l+ A]

Hence: f(@) = 75(]‘ d@((”)

, L
_ 1 0+ Aarccos (1+cx )cos@ 2c
1+ 4 1

+a® —2acosf

where (05 =e¢’,ac ER) is the width-parameter of the Cauchy, with amplitude 4>0.

In this case, the mapping is also differentiable everywhere.

We can extend this to the non-symmetric case if we make the amplitude 4 a smooth
function of the co-ordinate @. One such way to do this is to again use the wrapped

Cauchy distribution to obtain:

g 1- _1-p
AéA(gD)”Ao{il—{—,Bz——Z,Bcosga (1+,8)2} (3),

where B=e™ is the width of the subsidiary Cauchy, and we have chosen the

formulation such that 4(g) has a minimum value of zero. Note that we have also
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introduced a further parameter in terms of the definition of the zero of the ¢ co-

ordinate.

This mapping is differentiable everywhere except at the point P and the point

diametrically opposite to it.

Shear and Twist
We can also consider transformations of the ¢ co-ordinate, which are equivalent to
shearing and twisting the sphere about the axis defined by our point P. So, for

example, we could consider a re-parameterisation of the form:

o —p+g(0) @

B 1-72 -
where g(0)=| — 5 : IT=e ,teR
2z )1+7 —27cos(6’—6’0)

where B is the amplitude, ¢ the width and &, the center. This transformation is

continuous with the identity at B =0. It can also be localised about 8 =6, in the limit

of zero width.

Combined Transformations

We take a set of transformations as defined above, each about a different point, and
apply them in succession to generate a combined transformation. In general, the final

transformation will depend on the order on which we compose the individual

transforms.
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CLAIMS

1. A method of building a statistical shape model by automatically establishing
correspondence between a set of two dimensional shapes or three dimensional shapes,
the method comprising:

a. determining a parameterisation of each shape, building a statistical shape
model using the parameterisation, using an objective function to provide an output
which indicates the quality of the statistical shape model,

b. performing step a repeatedly for different parameterisations and comparing the
qﬁality of the resulting statistical shape models using output of the objective function
to determine which parameterisation provides the statistical shape model having the
best quality, wherein the output of the obj ectivé function is a measure of the quantity

of information required to code the set of shapes uSing the statistical shape model.

2. A method according to claim 1, wherein the parameterisations used to perform
step a are selected using an optimisation method based upon previous ‘
parameterisations and the quality of the statistical shape models generated using those

parameterisations as indicated by the output of the objective function.

3. Amethod according to claim 2, wherein the output of the objective function
comprises a value indicative of the amount of information required to code parameters
of the model, and a value indicative of the information required to code residuals for

the set of shapes.

4. A method according to claim 3, wherein the output of the objective function
further comprises a value indicative of the amount of information required to code

mapping between parameters and the shapes.

5. A method according to any of claims 1 to 4, wherein for a given

parameterisation the objective function provides a single scalar output.
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6. A method according to claim 5 as dependent upon claims 3 and 4, wherein the
single scalar output comprises a combination of the value indicative of the amount of
information required to code parameters of the model, the value indicative of the
information required to code residuals for the set of shapes, and the value indicative
of the amount of information required to code mapping between parameters and the

shapes.

7. A method according to claim 4, wherein the mapping comprises a mean vector

and a covariance matrix.

8. A method according to any of claims 3 to 7, wherein the parameters of the
model are parameter vectors, and the average amount of information per parameter
vector is determined and multiplied by the number of shapes in the training set, to
provide the value indicative of the amount of information required to code parameters

of the model

9. A method according to any of claims 3 to 8, wherein the residuals are residual
vectors, and the average amount of information per residual vector is determined and
multiplied by the number of shapes in the training set, to provide the value indicative

of the information required to code residuals for the complete set of training shapes.

10. A method according to claim 9, wherein the number of residuals in each

residual vector is twice the number of parametérisations used to generate the model.

11. A method according to any preceding claim, wherein the number of modes of

variation of the model is selected to represent the training set to a given accuracy

.12. A method acéofding to any preceding claim, wherein the boundary of each
two-dimensional shape of the training set is recursively subdivided by inserting
landmarks, the parameterisation of the boundary being represented by the position of
each landmark as a fraction of boundary path length between preceding and following

landmarks.
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13. A method according to claim 12, wherein the parameterisation which provides

the best optimisation value is determined using a stochastic optimisation method.

14. A method according to any of claims 1 to 11, wherein a set of curves is used to

determine a parameterisation function for the training set.

15. A method according to claim 14, wherein the set of curves is a cumulative

density function.

16. A method according to claim 15, wherein the cumulative density function

comprises a sum of kernel curves.

17. A method according to claim 16, wherein the cumulative density function is
determined by combining increasing numbers of kernel curves to provide increasing
resolution levels, and the parameterisation function which provides the statistical
shape model of the best quality is determined using the output of the objective

function for each resolution level.

18. A method according to claim 16 or claim 17, wherein the kernel curves are

Gaussian functions.

19. A method according to claim 16 or claim 17, wherein the kernel curves are

Cauchy functions.

20. A method according to any of claims 16 to 19, wherein the kernel curves are

two dimensional curves.

21. A method according to any of claims 16 to 19, wherein the kernel curves are

three dimensional curves.
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22. A method according to any of claims 1 to 11, wherein the boundary of each
shape of the training set is parameterised by specifying a set of control landmarks

used to determine a parameterisation function.

23. A method according to claim 22, wherein the parameterisation function is
determined for increasing numbers of control landmarks to provide increasing
resolution levels, and the parameterisation function which provides the statistical
shape model of the best quality is determined using the output of the objective

function for each resolution level.

24. © A method according to claim 22 or claim 23, wherein equally spaced

landmarks are provided between the control landmarks.

25. A method according to any preceding claim, wherein the shape and grey-level

appearance are both included in the model.

26. A method of parameterising a set of three dimensional shapes, the method
comprising:

a. mapping each three dimensional shape to a simple canonical form of an
appropriate topology, ,

b. applying a set of landmarks to the simple form for a given level of resolution,
each landmark being constrained to lie inside a spherical triangle formed by a triple of
landmark points of a lower resolution level,

c. upon the completion of the application of the set of landmarks for the

resolution level, projecting the set of landmarks onto the three dimensional shapes,

d. building a statistical shape model using the set of landmarks of the resolution
level,
e. using an objective function to provide an output which indicates the quality of

- the statistical shape model determined using the set of landmarks of the resolution

level,

f. comparing the output with output determined using a different set of

landmarks having the same level of resolution, and
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g. repeating steps a to fto determine which set of landmarks which provides the

best quality of statistical shape model,

h. repeating steps a to g at a higher level of resolution.

27. A method of parameterising a set of three dimensional shapes, the method
comprising:

a. mapping each three dimensional shape to simple canonical form of an
appropriate topology, '

b. applying a set of landmarks to the simple form,

c. modifying the locations of the landmarks by applying a transformation,

d. projecting the set of landmarks onto the three dimensional shapes,

e. building a statistical shape model using the set of landmarks,

f. qsing an objective function to provide an ou;cput which indicates the quality of

the statistical shape model determined using the set of landmarks,
g. comparing the output with output determined using landmarks having

different locations, and

h. repeating steps ¢ to g to determine which set of landmarks which provides the

best quality of statistical shape model.

28. A method according to claim 27, wherein the transformation comprises for a
selected landmark pushing other landmarks away from the selected landmark along
the surface of the simple form, or pulling other landmarks towards the selected

landmark along the surface of the simple form.

29. A method according to claim 28, wherein the transformation is defined by a

wrappéd kernel.

30. A method according to claim 29, wherein the wrapped kernel is a wrapped

Cauchy distribution.

31. A method according to claim 29, wherein the wrapped kernel is a wrapped

Gaussian distribution.
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32. A method according to any of claims 28 to 31, wherein the simple form is a

sphere or a torus.
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Table 1

Hands
| Mode | Manual Equally Automatic
. Spaéed
1 934 20.74 8.438
2 5.12 7.4 4.61
3 2.41 5.13 2.1 -
4 1.38 3.15 1.36-
5 0.67 1.71 0.44
6 0.49 1.21 .0.34
YT ]20.68 41.21 18.64
F | 18020 19114 17304
Heart Ventricles
Mode Manual Equally Automatic
Spaced
1 2.4852 1.8999 1.9745
2 1.356 1.2095 1.13
3 0.5723 0.6982 0.6562
4 0.4946 0.4861 0.3369
5 0.1714 0.3188 0.1848
6 0.1402 0.1679 0.1277
VT 558 535 4785
F 15408 17714 13932
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Table 2

Hands
Mode | Automatic | Hand Built | Equally
) Spaced
s 2.75 4.19 8.65
2 1.67 2.29 3.08
3 0.98 1.20 2.13
14 0.44 0.99 1.31
5 0.18 0.30 0.71
6 0.11 0.28 0.51
Vr 6.32 9.92 17.18
Fmin 6645 8177 9072 t
Hip Prostheses
Mode | Automatic | Hand Built | Equally
' ‘ Spaced
1 2.91 8.75 8.71
2 1.79 391 3.79
3 1.09 0.84 0.54
4 0.12 0.11 0.09
5 1010 0.05 0.06
6 0.04 - 0.03 0.02
Vo 6.08 13.7 - 13.2
| Fin 3377 1.16443 11366
Knee Cartlidge
Mode | Automatic | Hand Built | Equally
: Spaced
1 5.97 8.04 8.44
2 1.44 1.30 1.37
3 0.25 0.67 0.70
4 0.23 0.23 0.24
5 0.15 0.18 - 0.19
16 J 0.09 0.11 0.11
V1 8.31 10.7 11.3
Frin 2478 3517 3567
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