

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2016307430 B2

(54) Title
Anti-ANGPTL8 antibodies and uses thereof

(51) International Patent Classification(s)
C07K 16/00 (2006.01) **C07K 16/22** (2006.01)
C07K 16/18 (2006.01)

(21) Application No: **2016307430** (22) Date of Filing: **2016.08.04**

(87) WIPO No: **WO17/027316**

(30) Priority Data

(31) Number (32) Date (33) Country
62/202,366 **2015.08.07** **US**

(43) Publication Date: **2017.02.16**
(44) Accepted Journal Date: **2022.04.21**

(71) Applicant(s)
Regeneron Pharmaceuticals, Inc.

(72) Inventor(s)
Gusarova, Viktoria;Gromada, Jesper;Murphy, Andrew J.;Buckler, David R.

(74) Agent / Attorney
Griffith Hack, Level 10 161 Collins St, MELBOURNE, VIC, 3000, AU

(56) Related Art
Zhang Ren, ENDOCRINE SOCIETY'S 97TH ANNUAL MEETING AND EXPO, March 5-8, 2015 - SAN DIEGO, URL: <http://press.endocrine.org/doi/10.1210/endo-meetings.2015.DGM.3.OR13-6>, (2016-11-08)
Anonymous, "Product Data Sheet - Purified anti-Betatrophin (ANGPTL8)", (2014-07-25), BioLegend, URL: http://www.biologics.com/pop_pdf.php?id=10113, (2016-11-08)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/027316 A1

(43) International Publication Date

16 February 2017 (16.02.2017)

(51) International Patent Classification:

C07K 16/00 (2006.01) C07K 16/22 (2006.01)
C07K 16/18 (2006.01)

(21) International Application Number:

PCT/US2016/045535

(22) International Filing Date:

4 August 2016 (04.08.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/202,366 7 August 2015 (07.08.2015) US

(71) Applicant: **REGENERON PHARMACEUTICALS, INC.** [US/US]; 777 Old Saw Mill River Road, Tarrytown, New York 10591 (US).

(72) Inventors: **GUSAROVA, Viktoria**; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591 (US). **GROMADA, Jesper**; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591 (US). **MURPHY, Andrew J.**; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591 (US). **BUCKLER, David R.**; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591 (US).

(74) Agents: **SWANSON & BRATSCHUN, L.L.C** et al.; 8210 Southpark Terrace, Littleton, Colorado 80120 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

WO 2017/027316 A1

(54) Title: ANTI-ANGPTL8 ANTIBODIES AND USES THEREOF

(57) Abstract: The present invention provides antibodies that bind to ANGPTL8 and methods of using the same. According to certain embodiments, the antibodies of the invention bind human ANGPTL8 with high affinity. The antibodies of the invention may be fully human antibodies. The antibodies of the invention are useful for the treatment of various diseases or disorders characterized in part by elevated blood triglyceride levels.

ANTI-ANGPTL8 ANTIBODIES AND USES THEREOF

FIELD OF THE INVENTION

[0001] The present invention relates to antibodies, and antigen-binding fragments thereof, which specifically bind angiopoietin-like protein (ANGPTL) 8, compositions comprising these antibodies and methods of use thereof.

BACKGROUND

[0002] ANGPTL8 (alternatively called TD26, RIFL, Lipasin, C19orf80 and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. It is a circulating protein that is expressed primarily in liver and adipose tissue. Unlike ANGPTL3 and ANGPTL4, ANGPTL8 lacks a fibrinogen like domain at the C-terminus, but contains an N-terminal coiled-coil domain, much like other ANGPTL family members. Phylogenetic analysis reveals that ANGPTL8 shares common ancestors with ANGPTL3 and ANGPTL4 (Fu, Z. *et. al.*, (2013), *Biochem. Biophys. Res. Commun.* 430:1126-1131).

[0003] Hepatic overexpression of ANGPTL8 is associated with hypertriglyceridemia, whereas inactivation of *Angptl8* causes a reduction in plasma TG levels (Quagliarini, F. *et. al.* (2012), *Proc. Natl. Acad. Sci. USA* 109(48):19751-19756; Wang, Y. *et. al.* (2013), *Proc. Natl. Acad. Sci. USA* 110:16109-16114). Despite the consensus that ANGPTL8 is involved in lipid regulation, the mechanism responsible for this process is still under debate. One proposed mechanism is that ANGPTL8 inhibits lipoprotein lipase (LPL) activity, resulting in reduced triglyceride hydrolysis and clearance (Zhang, R. *et.al.*, (2012), *Biochem. Biophys. Res. Commun.* 424:786-792).

[0004] ANGPTL8 has also been reported to play a role in beta cell proliferation and beta cell mass in mice, where insulin resistance was induced by an insulin receptor antagonist, S961 (Yi, P. *et. al.* (2013), *Cell* 153:747-758). However, subsequent studies revealed that ANGPTL8 is not required for beta cell function, or the beta cell growth response to insulin resistance. Furthermore, overexpression of ANGPTL8 does not increase beta cell area or improve glycemic control (Gusarova, V. *et. al.* (2014) *Cell* 159:691-696).

[0005] Since hepatic overexpression of ANGPTL8 is associated with hypertriglyceridemia and since inactivation of *Angptl8* results in a reduction in plasma triglyceride levels, an inhibitor or antagonist of ANGPTL8 may prove effective in treating a disease characterized in part by elevated levels of triglycerides, such as, but not limited to, hypertriglyceridemia.

[0006] Zhang reported that a monoclonal antibody to lipasin, when injected intraperitoneally to wildtype mice, decreased serum triglyceride levels (Zhang, R. (2015), Endocrine Society's 97th Annual Meeting, Presentation No. OR13-6, March 5-8, San Diego, CA). However, no fully human antibodies specific for ANGPTL8 have been described to date that may be used in a

clinical setting to treat diseases, or conditions characterized by elevated levels of triglycerides, including hypertriglyceridemia.

[0007] Accordingly, there is a need in the art for novel antagonists of ANGPTL8, such as the antibodies described herein, for treating patients suffering from hypertriglyceridemia and other disorders or conditions associated with elevated triglyceride and lipid levels.

[0007a] It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

BRIEF SUMMARY OF THE INVENTION

[0008] Advantageously, the present invention may provide antibodies and antigen-binding fragments thereof that bind to angiopoietin-like protein 8 (ANGPTL8). One aspect of the disclosure provides human antibodies and antigen-binding fragments thereof that bind to/interact with ANGPTL8, whereby such binding and/or interaction results in the lowering of triglyceride levels in a mammal.

[0009] Accordingly, in a first aspect, the disclosure provides fully human monoclonal antibodies (mAbs) and antigen-binding fragments thereof that specifically bind, neutralize, inhibit, block, abrogate, reduce, or interfere with, at least one activity of ANGPTL8, in particular, human ANGPTL8 (See amino acids 22-198 of GenBank accession number NP_061157.3 and amino acids 1-177 of SEQ ID NO:340). The activity of ANGPTL8 that can be neutralized, inhibited, blocked, abrogated, reduced or interfered with, by an antibody or antigen-binding fragment thereof of the disclosure, includes, but is not limited to, inhibition of LPL activity, or lowering of triglyceride levels *in vivo* and the like.

[0009a] In one aspect, there is provided an anti-angiopoietin-like protein 8 (ANGPTL8) antibody or antigen-binding fragment thereof, which comprises a HCVR/LCVR sequence pair of SEQ ID NOs: 162/170.

[0010] In one embodiment, the disclosure provides a monoclonal antibody or antigen-binding fragment thereof that specifically binds to ANGPTL8 and neutralizes, or inhibits at least one activity associated with ANGPTL8, wherein the antibody or antigen-binding fragment thereof exhibits one or more of the following characteristics:

- a) is a fully human monoclonal antibody;
- b) binds specifically to a linear epitope in the N-terminal region of human ANGPTL8 as defined by SEQ ID NO: 337;
- c) does not bind to a linear epitope in the N-terminal region of human ANGPTL8 as defined by SEQ ID NO: 337;
- d) does not bind to the N-terminal coiled-coil region of human ANGPTL3 peptide of SEQ ID NO: 338, or to the N-terminal coiled-coil region of human ANGPTL4 peptide of SEQ ID NO:

339;

- e) binds human ANGPTL8 at 25°C with a K_D of less than about 150pM and binds monkey ANGPTL8 at 25°C with a K_D of less than about 90pM as measured by surface plasmon resonance;
- f) lowers triglyceride levels in a mammal by about 68% (maximum) when administered subcutaneously at a dose of about 10 mg/kg;
- g) lowers triglyceride levels in a mammal for a period ranging from about 7 days to 21 days, when administered subcutaneously at doses ranging from about 5 mg/kg to about 25 mg/kg;
- h) comprises a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 266, 274, 282, 290, 298, 306, 314 and 330;
- i) comprises a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, and 322; or
- j) cross-competes with a reference antibody, wherein the reference antibody comprises a heavy chain variable region (HCVR) and a light chain variable region (LCVR) amino acid sequence selected from the group consisting of any of the HCVR and LCVR amino acid sequences of Table 1.

[0011] In one embodiment, an antibody or antigen-binding fragment thereof of the present disclosure can neutralize, inhibit, block, abrogate, reduce or interfere with, an activity of hANGPTL8 by binding to an epitope of hANGPTL8 that is directly involved in the targeted activity of hANGPTL8 (e.g. the LPL inhibitory activity of ANGPTL8).

[0012] In another embodiment, an antibody or antigen-binding fragment thereof of the disclosure can neutralize, inhibit, block, abrogate, reduce or interfere with, an activity of hANGPTL8 by binding to an epitope of hANGPTL8 that is not directly involved in the targeted activity of hANGPTL8, but the antibody or fragment binding thereto may either by steric overlap or by allosteric effects at sites different from the antibody-antigen contact surface inhibit, block, abrogate, reduce or interfere with, the targeted activity of hANGPTL8.

[0013] In another embodiment, an antibody or fragment thereof of the disclosure binds to an epitope of hANGPTL8 that is not directly involved in the targeted activity (e.g., inhibiting LPL activity, and the like) of hANGPTL8 (i.e., a non-blocking antibody), but the antibody or fragment thereof results in lowering of triglyceride levels *in vivo*, compared to the lowering of triglyceride levels in the absence of the antibody or fragment thereof.

[0014] In one embodiment, the disclosure features an isolated anti-hANGPTL8 antibody or antigen-binding fragment thereof that binds to an epitope situated within the N-terminal region at residues 1-39 of SEQ ID NO: 340 (shown also as SEQ ID NO: 337).

[0015] In another embodiment, the disclosure provides an isolated antibody or antigen-binding

fragment of an antibody that binds to an epitope situated within the N-terminal region of human ANGPTL8 at residues 1-39 of SEQ ID NO: 340 (shown also as SEQ ID NO: 337), but does not bind to the N-terminal coiled-coil region of hANGPTL3 (SEQ ID NO:338), or to the N-terminal coiled-coil region of hANGPTL4 (SEQ ID NO:339).

[0016] In one embodiment, the disclosure features an isolated anti-hANGPTL8 antibody or antigen-binding fragment thereof that binds to an epitope situated outside of the region of human ANGPTL8 defined by amino acid residues 1-39 of SEQ ID NO: 340 (shown also as SEQ ID NO: 337), i.e. amino acid residues 40-177 of SEQ ID NO: 340), and neutralizes, inhibits, abrogates, reduces or interferes with, at least one activity of hANGPTL8.

[0017] In one embodiment, the disclosure features an isolated anti-hANGPTL8 antibody or antigen-binding fragment thereof that binds to human ANGPTL8 (amino acid residues 1-177 of SEQ ID NO: 340; See also amino acid residues 22-198 of GenBank accession number NP_061157.3), but does not cross react with a related protein, such as human ANGPTL3 (amino acid sequence of SEQ ID NO: 342, encoded by the nucleic acid sequence shown in SEQ ID NO: 343), or human ANGPTL4 (amino acid sequence of SEQ ID NO: 344, encoded by the nucleic acid sequence shown in SEQ ID NO:345).

[0018] The antibodies of the disclosure can be full-length (for example, an IgG1 or IgG4 antibody) or may comprise only an antigen-binding portion (for example, a Fab, F(ab')₂ or scFv fragment), and may be modified to affect functionality, e.g., to increase persistence in the host or to eliminate residual effector functions (Reddy et al., 2000, J. Immunol. 164:1925-1933). In certain embodiments, the antibodies may be bispecific.

[0019] Exemplary anti-ANGPTL8 antibodies of the present disclosure are listed in Tables 1 and 2 herein. Table 1 sets forth the amino acid sequence identifiers of the heavy chain variable regions (HCVRs), light chain variable regions (LCVRs), heavy chain complementarity determining regions (HCDR1, HCDR2 and HCDR3), and light chain complementarity determining regions (LCDR1, LCDR2 and LCDR3) of exemplary anti-ANGPTL8 antibodies. Table 2 sets forth the nucleic acid sequence identifiers of the HCVRs, LCVRs, HCDR1, HCDR2 HCDR3, LCDR1, LCDR2 and LCDR3 of the exemplary anti-ANGPTL8 antibodies.

[0020] The present disclosure provides antibodies, or antigen-binding fragments thereof, comprising an HCVR comprising an amino acid sequence selected from any of the HCVR amino acid sequences listed in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0021] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising an LCVR comprising an amino acid sequence selected from any of the LCVR amino acid sequences listed in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0022] The present disclosure also provides antibodies, or antigen-binding fragments thereof,

comprising an HCVR and an LCVR amino acid sequence pair (HCVR/LCVR) comprising any of the HCVR amino acid sequences listed in Table 1 paired with any of the LCVR amino acid sequences listed in Table 1.

[0023] In one embodiment, the disclosure provides an isolated antibody or antigen-binding fragment thereof that binds specifically to and/or inhibits at least one activity associated with ANGPTL8, wherein the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/250, 266/250, 274/250, 282/250, 290/250, 306/250, 314/322, and 330/322.

[0024] In one embodiment, the disclosure provides an isolated antibody or antigen-binding fragment thereof that binds specifically to and/or inhibits at least one activity associated with ANGPTL8, wherein the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 66/74, 162/170, 194/202 and 314/322.

[0025] In one embodiment, the disclosure provides an isolated antibody or antigen-binding fragment thereof that binds specifically to and/or inhibits at least one activity associated with ANGPTL8, wherein the antibody or antigen-binding fragment comprises the HCVR/LCVR amino acid sequence pair of SEQ ID NOs: 162/170.

[0026] In one embodiment, the disclosure provides an isolated antibody or antigen-binding fragment thereof that binds to and/or inhibits at least one activity associated with ANGPTL8, wherein the antibody or antigen-binding fragment comprises: (a) three heavy chain complementarity determining regions (CDRs) (HCDR1, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences as set forth in Table 1; and (b) three light chain CDRs (LCDR1, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences as set forth in Table 1.

[0027] In one embodiment, the disclosure provides an isolated antibody or antigen-binding fragment thereof that binds specifically to and/or inhibits at least one activity associated with ANGPTL8, wherein the antibody or antigen-binding fragment comprises:

(a) a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 268, 276, 284, 292, 300, 308, 316 and 332;

(b) a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 262, 270, 278, 286, 294, 302, 310, 318, and 334;

(c) a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 272, 280, 288, 296, 304, 312, 320 and 336;

(d) a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252 and 324;

(e) a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254, and 326; and

(f) a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256 and 328.

[0028] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR1 (HCDR1) comprising an amino acid sequence selected from any of the HCDR1 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

[0029] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR2 (HCDR2) comprising an amino acid sequence selected from any of the HCDR2 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

[0030] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR3 (HCDR3) comprising an amino acid sequence selected from any of the HCDR3 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

[0031] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR1 (LCDR1) comprising an amino acid sequence selected from any of the LCDR1 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

[0032] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR2 (LCDR2) comprising an amino acid sequence selected from any of the LCDR2 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

[0033] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR3 (LCDR3) comprising an amino acid sequence selected from any of the LCDR3 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

[0034] The present disclosure also provides antibodies, or antigen-binding fragments thereof,

comprising an HCDR3 and an LCDR3 amino acid sequence pair (HCDR3/LCDR3) comprising any of the HCDR3 amino acid sequences listed in Table 1 paired with any of the LCDR3 amino acid sequences listed in Table 1. According to certain embodiments, the present disclosure provides antibodies, or antigen-binding fragments thereof, comprising an HCDR3/LCDR3 amino acid sequence pair contained within any of the exemplary anti-ANGPTL8 antibodies listed in Table 1. In certain embodiments, the HCDR3/LCDR3 amino acid sequence pair is selected from the group consisting of SEQ ID NOs: 72/80 (e.g., H4H15321P), 168/176 (e.g., H4H15341P), 200/208 (e.g., H4H15345P), and 320/328 (e.g., H4H15367P2). In one embodiment, the HCDR3/LCDR3 amino acid sequence pair is SEQ ID NO: 168/176 (e.g., H4H15341P).

[0035] The present disclosure also provides antibodies, or antigen-binding fragments thereof, comprising a set of six CDRs (*i.e.*, HCDR1-HCDR2-HCDR3-LCDR1-LCDR2-LCDR3) contained within any of the exemplary anti-ANGPTL8 antibodies listed in Table 1. In certain embodiments, the HCDR1-HCDR2-HCDR3-LCDR1-LCDR2-LCDR3 amino acid sequence set is selected from the group consisting of SEQ ID NOs: 68-70-72-76-78-80 (e.g., H4H15321P); 164-166-168-172-174-176 (e.g., H4H15341P); 196-198-200-204-206-208 (e.g., H4H15345P); 316-318-320-324-326-328 (e.g., H4H15367P2). In one embodiment, the HCDR1-HCDR2-HCDR3-LCDR1-LCDR2-LCDR3 amino acid sequence set is SEQ ID NOs: 164-166-168-172-174-176 (e.g., H4H15341P).

[0036] In a related embodiment, the present disclosure provides antibodies, or antigen-binding fragments thereof, comprising a set of six CDRs (*i.e.*, HCDR1-HCDR2-HCDR3-LCDR1-LCDR2-LCDR3) contained within an HCVR/LCVR amino acid sequence pair as defined by any of the exemplary anti-ANGPTL8 antibodies listed in Table 1. For example, the present disclosure includes antibodies, or antigen-binding fragments thereof, comprising the HCDR1-HCDR2-HCDR3-LCDR1-LCDR2-LCDR3 amino acid sequences set contained within an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 66/74 (e.g., H4H15321P), 162/170 (e.g., H4H15341P); 194/202 (e.g., H4H15345P); 314/322 (e.g., H4H15367P2). Methods and techniques for identifying CDRs within HCVR and LCVR amino acid sequences are well known in the art and can be used to identify CDRs within the specified HCVR and/or LCVR amino acid sequences disclosed herein. Exemplary conventions that can be used to identify the boundaries of CDRs include, *e.g.*, the Kabat definition, the Chothia definition, and the AbM definition. In general terms, the Kabat definition is based on sequence variability, the Chothia definition is based on the location of the structural loop regions, and the AbM definition is a compromise between the Kabat and Chothia approaches. See, *e.g.*, Kabat, "Sequences of Proteins of Immunological Interest," National Institutes of Health, Bethesda, Md. (1991); Al-Lazikani *et al.*, *J. Mol. Biol.* 273:927-948 (1997); and Martin *et al.*, *Proc. Natl. Acad. Sci. USA* 86:9268-9272 (1989). Public databases are also available for

identifying CDR sequences within an antibody.

[0037] The present disclosure includes anti-ANGPTL8 antibodies having a modified glycosylation pattern. In some embodiments, modification to remove undesirable glycosylation sites may be useful, or an antibody lacking a fucose moiety present on the oligosaccharide chain, for example, to increase antibody dependent cellular cytotoxicity (ADCC) function (see Shield *et al.* (2002) JBC 277:26733). In other applications, modification of galactosylation can be made in order to modify complement dependent cytotoxicity (CDC).

[0038] The present disclosure also provides for antibodies and antigen-binding fragments thereof that compete for specific binding to ANGPTL8 with a reference antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Table 1.

[0039] In one embodiment, the disclosure provides an isolated monoclonal antibody or antigen-binding fragment thereof that competes for binding to ANGPTL8 with a reference antibody comprising an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/250, 266/250, 274/250, 282/250, 290/250, 306/250, 314/322, and 330/322.

[0040] The present disclosure also provides antibodies and antigen-binding fragments thereof that bind the same epitope on ANGPTL8 as a reference antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Table 1.

[0041] In one embodiment, the disclosure provides an isolated monoclonal antibody or antigen-binding fragment thereof that binds to the same epitope on ANGPTL8 as a reference antibody comprising an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/250, 266/250, 274/250, 282/250, 290/250, 306/250, 314/322, and 330/322.

[0042] In one embodiment, the isolated antibody that binds specifically to and/or inhibits at least one activity associated with ANGPTL8, is a recombinantly produced human monoclonal antibody.

[0043] In one embodiment, the isolated antibody that binds specifically to and/or inhibits at least one activity associated with ANGPTL8, is a recombinantly produced human monoclonal antibody having a HCVR and/or an LCVR sequence selected from the amino acid sequences found in Table 1.

[0044] In one embodiment, the isolated antibody that binds specifically to and/or inhibits at

least one activity associated with ANGPTL8, is a recombinantly produced human monoclonal antibody having a HCVR /LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOS: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/250, 266/250, 274/250, 282/250, 290/250, 306/250, 314/322, and 330/322.

[0045] In one embodiment, the disclosure provides a fully human monoclonal antibody or antigen-binding fragment thereof that neutralizes ANGPTL8 activity, wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 266, 274, 282, 290, 298, 306, 314 and 330; (ii) comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, and 322; (iii) comprises a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOS: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 272, 280, 288, 296, 304, 312, 320 and 336, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOS: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256 and 328, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (iv) comprises a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOS: 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 268, 276, 284, 292, 300, 308, 316 and 332, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOS: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 262, 270, 278, 286, 294, 302, 310, 318, and 334, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOS: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252 and 324, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOS: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254, and 326, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (v) binds specifically to the N-terminal region of human ANGPTL8 defined by SEQ ID NO: 337; vi) does not bind specifically to the N-terminal region of human ANGPTL8 defined by SEQ ID NO: 337; vii) does not bind to the N-terminal coiled-coil region of human ANGPTL3 peptide of SEQ ID NO: 338, or to the N-

terminal coiled-coil region of human ANGPTL4 peptide of SEQ ID NO: 339; viii) binds human ANGPTL8 at 25°C with a K_D of less than about 150pM and binds monkey ANGPTL8 at 25°C with a K_D of less than about 90pM as measured by surface plasmon resonance; ix) lowers triglyceride levels in a mammal by about 68% (maximum) when administered subcutaneously at a dose of about 10 mg/kg; x) lowers triglyceride levels in a mammal for a period ranging from about 7 days to 21 days, when administered subcutaneously at doses ranging from about 5 mg/kg to about 25 mg/kg; xi) cross-competes with a reference antibody, wherein the reference antibody comprises a heavy chain variable region (HCVR) and a light chain variable region (LCVR) amino acid sequence selected from the group consisting of any of the HCVR and LCVR amino acid sequences of Table 1.

[0046] In a second aspect, the present disclosure also provides nucleic acid molecules encoding anti-ANGPTL8 antibodies or portions thereof. For example, the present disclosure provides nucleic acid molecules encoding any of the HCVR amino acid sequences listed in Table 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0047] The present disclosure also provides nucleic acid molecules encoding any of the LCVR amino acid sequences listed in Table 1. In certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0048] The present disclosure also provides nucleic acid molecules encoding any of the HCDR1 amino acid sequences listed in Table 1. In certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR1 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0049] The present disclosure also provides nucleic acid molecules encoding any of the HCDR2 amino acid sequences listed in Table 1. In certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR2 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0050] The present disclosure also provides nucleic acid molecules encoding any of the HCDR3 amino acid sequences listed in Table 1. In certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR3 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0051] The present disclosure also provides nucleic acid molecules encoding any of the LCDR1 amino acid sequences listed in Table 1. In certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR1 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0052] The present disclosure also provides nucleic acid molecules encoding any of the LCDR2 amino acid sequences listed in Table 1. In certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR2 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0053] The present disclosure also provides nucleic acid molecules encoding any of the LCDR3 amino acid sequences listed in Table 1. In certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR3 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.

[0054] The present disclosure also provides nucleic acid molecules encoding an HCVR, wherein the HCVR comprises a set of three CDRs (*i.e.*, HCDR1-HCDR2-HCDR3), wherein the HCDR1-HCDR2-HCDR3 amino acid sequence set is as defined by any of the exemplary anti-ANGPTL8 antibodies listed in Table 1.

[0055] The present disclosure also provides nucleic acid molecules encoding an LCVR, wherein the LCVR comprises a set of three CDRs (*i.e.*, LCDR1-LCDR2-LCDR3), wherein the LCDR1-LCDR2-LCDR3 amino acid sequence set is as defined by any of the exemplary anti-ANGPTL8 antibodies listed in Table 1.

[0056] The present disclosure also provides nucleic acid molecules encoding both an HCVR and an LCVR, wherein the HCVR comprises an amino acid sequence of any of the HCVR amino acid sequences listed in Table 1, and wherein the LCVR comprises an amino acid sequence of any of the LCVR amino acid sequences listed in Table 1. In certain embodiments, the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto, and a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto. In certain embodiments according to this aspect of the disclosure, the nucleic acid molecule encodes an HCVR and LCVR, wherein the HCVR and LCVR are both derived from the same anti-ANGPTL8 antibody listed in Table 1.

[0057] The present disclosure also provides recombinant expression vectors capable of expressing a polypeptide comprising a heavy or light chain variable region of an anti-ANGPTL8

antibody. For example, the present disclosure includes recombinant expression vectors comprising any of the nucleic acid molecules mentioned above, *i.e.*, nucleic acid molecules encoding any of the HCVR, LCVR, and/or CDR sequences as set forth in Table 1. Also included within the scope of the present disclosure are host cells into which such vectors have been introduced, as well as methods of producing the antibodies or portions thereof by culturing the host cells under conditions permitting production of the antibodies or antibody fragments, and recovering the antibodies and antibody fragments so produced.

[0058] In one embodiment, the isolated antibody that binds specifically to and/or inhibits at least one activity associated with ANGPTL8, is a recombinantly produced human monoclonal antibody having a HCVR and/or a LCVR encoded by a nucleic acid sequence selected from the nucleic acid sequences found in Table 2.

[0059] In one embodiment, the disclosure provides an isolated nucleic acid molecule encoding an antibody or fragment thereof that binds specifically to human ANGPTL8, wherein the antibody or an antigen binding fragment thereof comprises (a) the complementarity determining regions (CDRs) of a heavy chain variable region (HCVR) having an amino acid sequence as set forth in Table 1; and (b) the CDRs of a light chain variable region (LCVR) having an amino acid sequence as set forth in Table 1.

[0060] In one embodiment, the disclosure provides an isolated nucleic acid molecule encoding an antibody or antigen-binding fragment thereof that binds specifically to human ANGPTL8, wherein the antibody or antigen-binding fragment comprises an HCVR selected from the group consisting of an amino acid sequence as set forth in Table 1 and a LCVR selected from the group consisting of an amino acid sequence as set forth in Table 1.

[0061] In a third aspect, the disclosure provides a pharmaceutical composition comprising a recombinant human monoclonal antibody or antigen-binding fragment thereof, which specifically binds ANGPTL8 and a pharmaceutically acceptable carrier.

[0062] In one embodiment, the disclosure provide a pharmaceutical composition comprising at least one antibody specific for human ANGPTL8 selected from an antibody or an antigen-binding fragment thereof of any of the anti-ANGPTL8 antibodies found in Table 1 and a pharmaceutically acceptable carrier or diluent.

[0063] In a related aspect, the disclosure features a composition, which is a combination of an anti-ANGPTL8 antibody and a second therapeutic agent. In one embodiment, the second therapeutic agent is any agent that is advantageously combined with an anti-ANGPTL8 antibody.

[0064] In one embodiment, the second therapeutic agent may be an agent capable of lowering triglycerides or reducing at least one symptom in a patient suffering from a disease or condition characterized by high triglyceride levels, such as hypertriglyceridemia.

[0065] In certain embodiments, the second therapeutic agent may be an agent that helps to

counteract or reduce any possible side effect(s) associated with the antibody or antigen-binding fragment of an antibody of the disclosure, if such side effect(s) should occur.

[0066] The second therapeutic agent may be a small molecule drug, a protein/polypeptide, an antibody, a nucleic acid molecule, such as an anti-sense molecule, or a siRNA. The second therapeutic agent may be synthetic or naturally derived.

[0067] It will also be appreciated that the antibodies and pharmaceutically acceptable compositions of the present disclosure can be employed in other combination therapies, that is, the antibodies and pharmaceutically acceptable compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, an antibody may be administered concurrently with another agent used to treat the same disorder), or they may achieve different effects (e.g., control of any adverse effects). As used herein, additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition, are appropriate for the disease, or condition, being treated.

[0068] In a related embodiment, the disclosure features a composition, which is a combination of an antibody or antigen-binding fragment thereof of the disclosure, and a second therapeutic agent, such as (1) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, such as cerivastatin, atorvastatin, simvastatin, pitavastatin, rosuvastatin, fluvastatin, lovastatin, pravastatin, and the like; (2) inhibitors of cholesterol uptake and/or bile acid re-absorption; (3) niacin, which increases lipoprotein catabolism; (4) fibrates or amphipathic carboxylic acids, which reduce TG level, low-density lipoprotein (LDL) level and improve high-density lipoprotein (HDL) levels; and (5) activators of the LXR transcription factor that plays a role in cholesterol elimination such as 22-hydroxycholesterol, or fixed combinations such as ezetimibe plus simvastatin; a statin with a bile resin (e.g., cholestyramine, colestipol, colesevelam), a fixed combination of niacin plus a statin (e.g., niacin with lovastatin); or with other lipid lowering agents such as omega-3-fatty acid ethyl esters (for example, omacor).

[0069] Furthermore, the second therapeutic agent can be one or more other inhibitors of ANGPTL8 as well as inhibitors of other molecules, such as ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, apolipoprotein C-III (APOC3) and proprotein convertase subtilisin/kexin type 9 (PCSK9), which are involved in lipid metabolism, in particular, cholesterol and/or triglyceride homeostasis. Inhibitors of these molecules include small molecules, antisense molecules and antibodies that specifically bind to these molecules and block their activity.

[0070] In one embodiment, if the anti-ANGPTL8 antibodies of the disclosure are used to treat a disease such as diabetes (e.g., type 2 diabetes), then these antibodies may be used in

combination with one or more of the following treatments for diabetes that are currently available. These include the following: insulin, an insulin analog (see below), a biguanide (metformin), a sulfonylurea (e.g. glyburide, glipizide), a PPAR gamma agonist (e.g. pioglitazone, rosiglitazone), an alpha glucosidase inhibitor (e.g. acarbose, voglibose), a glucagon-like peptide 1 (GLP-1) agonist (e.g., BYETTA® (exenatide), TRULICITY™(dulaglutide), VICTOZA® (liraglutide), Lyxumia® (lixisenatide), Tanzeum™ (albiglutide)), a dipeptidyl peptidase IV (DPP-4) inhibitor (e.g. saxagliptin (ONGLYZA®), sitaliptin (JANUVIA®), and vildagliptin (GALVUS®), a sodium-glucose co-transporter 2 (SGLT2) inhibitor (e.g., INVOKANA™ (canagliflozin), FORXIGA® (dapagliflozin), empagliflozin, ipragliflozin, tofogliflozin), SYMLIN® (pramlintide), a glucagon receptor antagonist (as described in, for example, US8545847), and a glucagon antagonist.

[0071] In certain related embodiments, the composition may include a second agent selected from the group consisting of non-sulfonylurea secretagogues, insulin analogs, including fast acting (e.g., Lispro, Aspart, Glulisine) and long acting (e.g. Detemir insulin, Degludec insulin, or Glargin insulin, exendin-4 polypeptides, beta 3 adrenoceptor agonists, inhibitors of cholesterol uptake and/or bile acid re-absorption, LDL-cholesterol antagonists, cholestryl ester transfer protein antagonists (e.g. torcetrapib, anacetrapib, dalcetrapib, or evacetrapib), endothelin receptor antagonists, growth hormone antagonists, insulin sensitizers, amylin mimetics or agonists, cannabinoid receptor antagonists, glucagon-like peptide-1 receptor agonists, melanocortins, melanin-concentrating hormone receptor agonists, SNRIs, a fibroblast growth factor 21 (FGF21) mimetic (See, for example, US20110002845 and US20080261236), a fibroblast growth factor receptor 1c (FGFR1c) agonist (See, for example, US20110150901), an inhibitor of advanced glycation end product formation, such as, but not limited to, aminoguanidine, and protein tyrosine phosphatase inhibitors.

[0072] In related embodiments, the second therapeutic agent may be one or more other therapeutic agents, such as analgesics, anti-inflammatory agents, including non-steroidal anti-inflammatory drugs (NSAIDS), such as Cox-2 inhibitors, and the like, so as to ameliorate and/or reduce the symptoms accompanying the underlying condition, if needed.

[0073] In a fourth aspect, the disclosure provides a method for neutralizing, inhibiting, blocking, abrogating, reducing or interfering with, at least one activity associated with ANGPTL8 in a patient in need thereof, the method comprising administering any one or more of the antibodies of the disclosure, as found in Table 1, or a pharmaceutical composition comprising any one or more of these antibodies to a patient in need thereof, wherein at least one activity associated with ANGPTL8 is reduced or diminished.

[0074] In one embodiment, the disclosure provides a therapeutic method comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition comprising one or more anti-hANGPTL8 antibodies or antigen-binding fragments

thereof of the disclosure and, optionally one or more additional therapeutic agents as described above.

[0075] In a fifth aspect, the disclosure provides a method for treating a disease or condition associated in part with elevated expression and/or activity of ANGPTL8, the method comprising administering an ANGPTL8 inhibitor/antagonist, wherein the ANGPTL8 inhibitor/antagonist is an antibody or an antigen-binding fragment thereof specific for ANGPTL8. In one embodiment, the antibody or an antigen-binding fragment thereof specific for ANGPTL8 comprises an HCVR selected from the group consisting of an amino acid sequence from Table 1 and a LCVR selected from the group consisting of an amino acid sequence from Table 1.

[0076] In one embodiment, the disease or disorder treatable by the methods of the disclosure is any disease or condition which is improved, ameliorated, inhibited or prevented, or at least one symptom associated with the disease is reduced in severity or frequency of occurrence, compared to that without anti-hANGPTL8 antibody treatment (e.g., ANGPTL8-mediated diseases or disorders), by removing, inhibiting, reducing, or otherwise interfering with, ANGPTL8 activity. Examples of diseases or disorders treatable by the methods of the disclosure include, but are not limited to, those involving lipid metabolism, such as hyperlipidemia, hyperlipoproteinemia and dyslipidemia, including atherogenic dyslipidemia, diabetic dyslipidemia, hypertriglyceridemia, including severe hypertriglyceridemia with TG > 1000 mg/dL and associated acute pancreatitis, hypercholesterolemia, chylomicronemia, mixed dyslipidemia (obesity, metabolic syndrome, diabetes, etc.), lipodystrophy, lipoatrophy, and the like, which are caused by, for example, decreased LPL activity and/or LPL deficiency, altered ApoC2, ApoE deficiency, increased ApoB, increased production and/or decreased elimination of very low-density lipoprotein (VLDL), certain drug treatment (e.g., glucocorticoid treatment-induced dyslipidemia), any genetic predisposition, diet, life style, and the like.

[0077] The methods of the disclosure can also prevent or treat diseases or disorders associated with or resulting from triglyceridemia, hypertriglyceridemia, hyperlipidemia, hyperlipoproteinemia, and/or dyslipidemia, including, but not limited to, cardiovascular diseases or disorders, such as atherosclerosis, aneurysm, hypertension, angina, stroke, cerebrovascular diseases, congestive heart failure, coronary artery diseases, myocardial infarction, peripheral vascular diseases, and the like; acute pancreatitis; nonalcoholic steatohepatitis (NASH); blood sugar disorders, such as diabetes; obesity, and the like.

[0078] In one embodiment, at least one antibody of the disclosure, or an antigen-binding fragment thereof, may be used to treat metabolic syndrome associated dyslipidemia, obesity, or for preventing weight gain, or for maintaining a normal weight.

[0079] In one embodiment, the disclosure provides a method for lowering blood triglyceride levels, or for treating a condition or disease associated with, or characterized in part by high blood triglyceride levels, or at least one symptom or complication associated with the condition

or disease, the method comprising administering a pharmaceutical composition comprising one or more antibodies specific for human ANGPTL8 from Table 1, to a patient in need thereof, such that blood triglyceride levels are lowered or that the condition or disease is mediated, or at least one symptom or complication associated with the condition or disease is alleviated or reduced in severity.

[0080] In one embodiment, at least one antibody of the disclosure, or an antigen-binding fragment thereof, may be used alone or in combination with a second or third therapeutic agent to treat hypertriglyceridemia, or at least one symptom associated with hypertriglyceridemia, or may be used to treat a patient at risk for acquiring hypertriglyceridemia, for example, in a patient who has a genetic predisposition for developing hypertriglyceridemia, e.g. familial hypertriglyceridemia or familial dysbetalipoproteinemia.

[0081] Other conditions may predispose a patient to high levels of triglycerides. For example, certain medications such as beta blockers, birth control pills, diuretics, steroids, or the use of tamoxifen may lead to elevated levels of triglycerides and as such, may increase a patient's likelihood of developing conditions, or complications associated with high levels of triglycerides, such as atherosclerosis, stroke, heart attack, and other cardiac conditions.

[0082] In addition, certain other conditions may lead to high levels of triglycerides, including obesity, poorly controlled diabetes, hypothyroidism, kidney disease, or alcohol consumption.

[0083] In one embodiment, the antibodies may be used to prevent the onset of a disease or disorder characterized in part by elevated blood triglyceride levels, or to prevent the likelihood of developing such disease or disorder, or to mitigate the severity of the disease or disorder, or at least one symptom associated with the disease or disorder. It is envisioned that the antibodies of the disclosure may be used alone, or as adjunct therapy with other agents or methods known to be standard care for treating patients suffering from diseases or conditions characterized in part by elevated blood triglyceride levels, such as, but not limited to, hypertriglyceridemia. Such standard therapy may include fluid administration, or administration of any other pharmaceutical agents useful for lowering blood triglycerides, or lipids, or for weight reduction.

[0084] In one embodiment, the use of the antibodies described herein, may be an effective means of achieving normal levels of triglycerides, thereby ameliorating, or preventing one or more symptoms of, or long term complications associated with a disease characterized by high triglyceride levels.

[0085] In one embodiment, the antibodies of the disclosure may be used in the preparation of a medicament for use in treating any disease or disorder characterized in part by elevated levels of triglycerides.

[0086] The antibodies of the disclosure may be used as short-term therapy in an acute setting, or they may be envisioned for long-term use as chronic therapy.

[0087] Other embodiments will become apparent from a review of the ensuing detailed

description.

BRIEF DESCRIPTION OF THE FIGURES

[0088] **Figure 1** shows the mean +/- SEM of serum triglyceride and total cholesterol concentration in humanized ANGPTL8 mice administered a single subcutaneous dose of H4H15341P. Doses administered were 1, 5, 10, or 25 mg/kg on day 0 of the study. Statistical comparison was done by 2-way ANOVA of differences from Control Ab, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001

[0089] **Figure 2** shows the levels of circulating anti-human antibody after administration of one subcutaneous dose of H4H15341P at doses of 1, 5, 10, or 25 mg/kg.

[0090] **Figure 3** shows the effect of the H4H15341P mAb on serum lipoprotein lipase (LPL) and hepatic lipase in ANGPTL8 mice compared to control antibody. Statistics were done by unpaired student's t-test; **p<0.01

[0091] **Figure 4** shows the effect of the mAb H4H15341P in a lipid tolerance test in ANGPTL8 mice. Administration of the H4H15341P mAb was assessed for lowering of triglyceride levels after acute fat loading compared to control antibody. Statistics were done by 2-way ANOVA with Bonferroni post-test; ****p<0.0001

DETAILED DESCRIPTION

[0092] Before the present invention is described, it is to be understood that this invention is not limited to particular methods and experimental conditions described, as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

[0093] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. As used herein, the term "about," when used in reference to a particular recited numerical value, means that the value may vary from the recited value by no more than 1%. For example, as used herein, the expression "about 100" includes 99 and 101 and all values in between (e.g., 99.1, 99.2, 99.3, 99.4, etc.).

[0094] Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All patents, applications and non-patent publications mentioned in this specification are incorporated herein by reference in their entireties.

Definitions

[0095] "Angiopoietin-like protein 8" or, "ANGPTL8," is a member of the angiopoietin family of proteins, and is sometimes referred to as TD26, RIFL, Lipasin, C19orf80 and Betatrophin. "ANGPTL8", as used herein, refers to human ANGPTL8 comprising the amino acid sequence as set forth in amino acid residues 1-177 of SEQ ID NO: 340. The full-length human ANGPTL8 amino acid sequence, including the signal sequence, can also be found in GenBank accession number NP_061157.3, while the full-length nucleic acid sequence encoding human ANGPTL8 can be found in GenBank accession number NM_018687.6. The N-terminal coiled-coil domain of human ANGPTL8 spans amino acid residues 1-39 of SEQ ID NO: 340 and is also depicted as SEQ ID NO: 337. All references to proteins, polypeptides and protein fragments herein are intended to refer to the human version of the respective protein, polypeptide or protein fragment unless explicitly specified as being from a non-human species. Thus, the expression "ANGPTL8" means human ANGPTL8 unless specified as being from a non-human species,

e.g., "mouse ANGPTL8," "monkey ANGPTL8," etc.

[0096] The term "human angiopoietin-like protein 3" or "hANGPTL3", as used herein, refers to ANGPTL3 having the nucleic acid sequence shown in SEQ ID NO:343 and the amino acid sequence of SEQ ID NO:342, or a biologically active fragment thereof. The N-terminal coiled-coil domain of human ANGPTL3 is depicted as SEQ ID NO: 338.

[0097] The term "human angiopoietin-like protein 4" or "hANGPTL4", as used herein, refers to ANGPTL4 having the nucleic acid sequence shown in SEQ ID NO:345 and the amino acid sequence of SEQ ID NO:344, or a biologically active fragment thereof. The N-terminal coiled-coil domain of human ANGPTL4 is depicted as SEQ ID NO: 339.

[0098] The specific embodiments, antibody or antibody fragments of the invention may be conjugated to a therapeutic moiety ("immunoconjugate"), such as a second ANGPTL8 antagonist, or any other therapeutic moiety useful for treating a disease or condition caused in part by elevated triglyceride levels.

[0099] As used herein, the expression "anti-ANGPTL8 antibody" includes both monovalent antibodies with a single specificity, as well as bispecific antibodies comprising a first arm that binds ANGPTL8 and a second arm that binds a second (target) antigen, wherein the anti-ANGPTL8 arm comprises any of the HCVR/LCVR or CDR sequences as set forth in Table 1 herein.

[0100] The term "antibody", as used herein, means any antigen-binding molecule or molecular complex comprising at least one complementarity determining region (CDR) that specifically binds to or interacts with a particular antigen (e.g., ANGPTL8). The term "antibody" includes immunoglobulin molecules comprising four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, as well as multimers thereof (e.g., IgM). Each heavy chain comprises a heavy chain variable region (abbreviated herein as HCVR or V_H) and a heavy chain constant region. The heavy chain constant region comprises three domains, C_H1 , C_H2 and C_H3 . Each light chain comprises a light chain variable region (abbreviated herein as LCVR or V_L) and a light chain constant region. The light chain constant region comprises one domain (C_L1). The V_H and V_L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDRs), interspersed with regions that are more conserved, termed framework regions (FR). Each V_H and V_L is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. In different embodiments of the invention, the FRs of the anti-ANGPTL8 antibody (or antigen-binding portion thereof) may be identical to the human germline sequences, or may be naturally or artificially modified. An amino acid consensus sequence may be defined based on a side-by-side analysis of two or more CDRs.

[0101] The term "antibody", as used herein, also includes antigen-binding fragments of full

antibody molecules. The terms "antigen-binding portion" of an antibody, "antigen-binding fragment" of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex. Antigen-binding fragments of an antibody may be derived, *e.g.*, from full antibody molecules using any suitable standard techniques such as proteolytic digestion or recombinant genetic engineering techniques involving the manipulation and expression of DNA encoding antibody variable and optionally constant domains. Such DNA is known and/or is readily available from, *e.g.*, commercial sources, DNA libraries (including, *e.g.*, phage-antibody libraries), or can be synthesized. The DNA may be sequenced and manipulated chemically or by using molecular biology techniques, for example, to arrange one or more variable and/or constant domains into a suitable configuration, or to introduce codons, create cysteine residues, modify, add or delete amino acids, etc.

[0102] Non-limiting examples of antigen-binding fragments include: (i) Fab fragments; (ii) F(ab')2 fragments; (iii) Fd fragments; (iv) Fv fragments; (v) single-chain Fv (scFv) molecules; (vi) dAb fragments; and (vii) minimal recognition units consisting of the amino acid residues that mimic the hypervariable region of an antibody (*e.g.*, an isolated complementarity determining region (CDR) such as a CDR3 peptide), or a constrained FR3-CDR3-FR4 peptide. Other engineered molecules, such as domain-specific antibodies, single domain antibodies, domain-deleted antibodies, chimeric antibodies, CDR-grafted antibodies, diabodies, triabodies, tetrabodies, minibodies, nanobodies (*e.g.* monovalent nanobodies, bivalent nanobodies, etc.), small modular immunopharmaceuticals (SMIPs), and shark variable IgNAR domains, are also encompassed within the expression "antigen-binding fragment," as used herein.

[0103] An antigen-binding fragment of an antibody will typically comprise at least one variable domain. The variable domain may be of any size or amino acid composition and will generally comprise at least one CDR, which is adjacent to or in frame with one or more framework sequences. In antigen-binding fragments having a V_H domain associated with a V_L domain, the V_H and V_L domains may be situated relative to one another in any suitable arrangement. For example, the variable region may be dimeric and contain V_H-V_H, V_H-V_L or V_L-V_L dimers. Alternatively, the antigen-binding fragment of an antibody may contain a monomeric V_H or V_L domain.

[0104] In certain embodiments, an antigen-binding fragment of an antibody may contain at least one variable domain covalently linked to at least one constant domain. Non-limiting, exemplary configurations of variable and constant domains that may be found within an antigen-binding fragment of an antibody of the present invention include: (i) V_H-C_H1; (ii) V_H-C_H2; (iii) V_H-C_H3; (iv) V_H-C_H1-C_H2; (v) V_H-C_H1-C_H2-C_H3; (vi) V_H-C_H2-C_H3; (vii) V_H-C_L; (viii) V_L-C_H1; (ix) V_L-C_H2; (x) V_L-C_H3; (xi) V_L-C_H1-C_H2; (xii) V_L-C_H1-C_H2-C_H3; (xiii) V_L-C_H2-C_H3; and (xiv) V_L-C_L. In any configuration of variable and constant domains, including any of the exemplary configurations

listed above, the variable and constant domains may be either directly linked to one another or may be linked by a full or partial hinge or linker region. A hinge region may consist of at least 2 (e.g., 5, 10, 15, 20, 40, 60 or more) amino acids which result in a flexible or semi-flexible linkage between adjacent variable and/or constant domains in a single polypeptide molecule.

Moreover, an antigen-binding fragment of an antibody of the present invention may comprise a homo-dimer or hetero-dimer (or other multimer) of any of the variable and constant domain configurations listed above in non-covalent association with one another and/or with one or more monomeric V_H or V_L domain (e.g., by disulfide bond(s)).

[0105] As with full antibody molecules, antigen-binding fragments may be monospecific or multispecific (e.g., bispecific). A multispecific antigen-binding fragment of an antibody will typically comprise at least two different variable domains, wherein each variable domain is capable of specifically binding to a separate antigen or to a different epitope on the same antigen. Any multispecific antibody format, including the exemplary bispecific antibody formats disclosed herein, may be adapted for use in the context of an antigen-binding fragment of an antibody of the present invention using routine techniques available in the art.

[0106] The term "human antibody", as used herein, is intended to include non-naturally occurring human antibodies. The term includes antibodies that are recombinantly produced in a non-human mammal, or in cells of a non-human mammal. The term is not intended to include antibodies isolated from or generated in a human subject.

[0107] The antibodies of the invention may, in some embodiments, be recombinant human antibodies. The term "recombinant human antibody", as used herein, is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell (described further below), antibodies isolated from a recombinant, combinatorial human antibody library (described further below), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor et al. (1992) *Nucl. Acids Res.* 20:6287-6295) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. In certain embodiments, such recombinant human antibodies are subjected to *in vitro* mutagenesis (or, when an animal transgenic for human Ig sequences is used, *in vivo* somatic mutagenesis) and thus the amino acid sequences of the V_H and V_L regions of the recombinant antibodies are sequences that, while related to human germline V_H and V_L sequences, may not naturally exist within the human antibody germline repertoire *in vivo*.

[0108] Human antibodies can exist in two forms that are associated with hinge heterogeneity. In one form, an immunoglobulin molecule comprises a stable four chain construct of approximately 150-160 kDa in which the dimers are held together by an interchain heavy chain disulfide bond. In a second form, the dimers are not linked via inter-chain disulfide bonds and a

molecule of about 75-80 kDa is formed composed of a covalently coupled light and heavy chain (half-antibody). These forms have been extremely difficult to separate, even after affinity purification.

[0109] The frequency of appearance of the second form in various intact IgG isotypes is due to, but not limited to, structural differences associated with the hinge region isotype of the antibody. A single amino acid substitution in the hinge region of the human IgG4 hinge can significantly reduce the appearance of the second form (Angal et al. (1993) Molecular Immunology 30:105) to levels typically observed using a human IgG1 hinge. The instant invention encompasses antibodies having one or more mutations in the hinge, C_H2 or C_H3 region which may be desirable, for example, in production, to improve the yield of the desired antibody form.

[0110] The antibodies of the invention may be isolated antibodies. An "isolated antibody," as used herein, means an antibody that has been identified and separated and/or recovered from at least one component of its natural environment. For example, an antibody that has been separated or removed from at least one component of an organism, or from a tissue or cell in which the antibody naturally exists or is naturally produced, is an "isolated antibody" for purposes of the present invention. An isolated antibody also includes an antibody *in situ* within a recombinant cell. Isolated antibodies are antibodies that have been subjected to at least one purification or isolation step. According to certain embodiments, an isolated antibody may be substantially free of other cellular material and/or chemicals.

[0111] The anti-ANGPTL8 antibodies disclosed herein may comprise one or more amino acid substitutions, insertions and/or deletions in the framework and/or CDR regions of the heavy and light chain variable domains. Such mutations can be readily ascertained by comparing the amino acid sequences disclosed herein to sequences available from, for example, public antibody sequence databases. Once obtained, antibodies and antigen-binding fragments that contain one or more mutations can be easily tested for one or more desired property such as, improved binding specificity, increased binding affinity, improved or enhanced antagonistic or agonistic biological properties (as the case may be), reduced immunogenicity, etc. Antibodies and antigen-binding fragments obtained in this general manner are encompassed within the present invention.

[0112] The present invention also includes anti-ANGPTL8 antibodies comprising variants of any of the HCVR, LCVR, and/or CDR amino acid sequences disclosed herein having one or more conservative substitutions. For example, the present invention includes anti-ANGPTL8 antibodies having HCVR, LCVR, and/or CDR amino acid sequences with, e.g., 10 or fewer, 8 or fewer, 6 or fewer, 4 or fewer, etc. conservative amino acid substitutions relative to any of the HCVR, LCVR, and/or CDR amino acid sequences set forth in Table 1 herein.

[0113] A "blocking antibody" or a "neutralizing antibody", as used herein (or an "antibody that

neutralizes ANGPTL8 activity"), is intended to refer to an antibody whose binding to and/or interaction with ANGPTL8 results in inhibition of at least one biological activity of ANGPTL8. For example, an antibody of the invention may inhibit the lipoprotein lipase inhibitory activity of ANGPTL8, or it may lower plasma triglycerides through a mechanism other than through inhibition of the LPL inhibitory activity of ANGPTL8. This inhibition of the biological activity of ANGPTL8 can be assessed by measuring one or more indicators of ANGPTL8 biological activity by one or more of several standard *in vitro* or *in vivo* assays known in the art. An alternate activity is the triglyceride lowering activity associated with an antibody of the invention.

[0114] The term "surface plasmon resonance", or "SPR", as used herein, refers to an optical phenomenon that allows for the analysis of real-time biomolecular interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using a BIACORE™ system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.), or a MASS-1 system (Sierra Sensors, Hamburg, Germany and Greenville, RI).

[0115] The term " K_D ", as used herein, is intended to refer to the equilibrium dissociation constant of a particular antibody-antigen interaction.

[0116] The term "epitope" refers to an antigenic determinant that interacts with a specific antigen binding site in the variable region of an antibody molecule known as a paratope. A single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects. Epitopes may be either conformational or linear. A conformational epitope is produced by spatially juxtaposed amino acids from different segments of the linear polypeptide chain. A linear epitope is one produced by adjacent amino acid residues in a polypeptide chain. In certain circumstance, an epitope may include moieties of saccharides, phosphoryl groups, or sulfonyl groups on the antigen.

[0117] The term "substantial identity" or "substantially identical," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 95%, and more preferably at least about 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed below. A nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.

[0118] As applied to polypeptides, the term "substantial similarity" or "substantially similar" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 95% sequence identity, even more preferably at least 98% or 99% sequence identity. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. A "conservative amino acid

"substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson (1994) *Methods Mol. Biol.* 24: 307-331, herein incorporated by reference. Examples of groups of amino acids that have side chains with similar chemical properties include (1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; (2) aliphatic-hydroxyl side chains: serine and threonine; (3) amide-containing side chains: asparagine and glutamine; (4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; (5) basic side chains: lysine, arginine, and histidine; (6) acidic side chains: aspartate and glutamate, and (7) sulfur-containing side chains are cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine. Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet *et al.* (1992) *Science* 256: 1443-1445, herein incorporated by reference. A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.

[0119] Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG software contains programs such as GAP and BESTFIT which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) *supra*). Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. See, e.g., Altschul *et al.* (1990) *J. Mol. Biol.* 215: 403-410 and (1997) *Nucleic Acids Res.* 25:3389-402, each of which is herein incorporated by reference.

[0120] By the phrase "therapeutically effective amount" is meant an amount that produces the desired effect for which it is administered. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for

example, Lloyd (1999) *The Art, Science and Technology of Pharmaceutical Compounding*).

[0121] The term "treating" or "treatment", as used herein, refers to an approach for obtaining beneficial or desired clinical results. In one embodiment of the invention, a beneficial or desired clinical result includes, but is not limited to, an improvement in blood triglyceride levels, or an improvement in any one or more conditions, diseases, or symptoms associated with, or resulting from, elevated levels of triglycerides, including, but not limited to hypertriglyceridemia, etc.

pH-Dependent Binding

[0122] The present invention includes anti-ANGPTL8 antibodies with pH-dependent binding characteristics. For example, an anti-ANGPTL8 antibody of the present invention may exhibit reduced binding to ANGPTL8 at acidic pH as compared to neutral pH. Alternatively, anti-ANGPTL8 antibodies of the invention may exhibit enhanced binding to ANGPTL8 at acidic pH as compared to neutral pH. The expression "acidic pH" includes pH values less than about 6.2, e.g., about 6.0, 5.95, 5.9, 5.85, 5.8, 5.75, 5.7, 5.65, 5.6, 5.55, 5.5, 5.45, 5.4, 5.35, 5.3, 5.25, 5.2, 5.15, 5.1, 5.05, 5.0, or less. As used herein, the expression "neutral pH" means a pH of about 7.0 to about 7.4. The expression "neutral pH" includes pH values of about 7.0, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, and 7.4.

[0123] In certain instances, "reduced binding to ANGPTL8 at acidic pH as compared to neutral pH" is expressed in terms of a ratio of the K_D value of the antibody binding to ANGPTL8 at acidic pH to the K_D value of the antibody binding to ANGPTL8 at neutral pH (or vice versa). For example, an antibody or antigen-binding fragment thereof may be regarded as exhibiting "reduced binding to ANGPTL8 at acidic pH as compared to neutral pH" for purposes of the present invention if the antibody or antigen-binding fragment thereof exhibits an acidic/neutral K_D ratio of about 3.0 or greater. In certain exemplary embodiments, the acidic/neutral K_D ratio for an antibody or antigen-binding fragment of the present invention can be about 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0, 70.0, 100.0 or greater.

[0124] Antibodies with pH-dependent binding characteristics may be obtained, e.g., by screening a population of antibodies for reduced (or enhanced) binding to a particular antigen at acidic pH as compared to neutral pH. Additionally, modifications of the antigen-binding domain at the amino acid level may yield antibodies with pH-dependent characteristics. For example, by substituting one or more amino acids of an antigen-binding domain (e.g., within a CDR) with a histidine residue, an antibody with reduced antigen-binding at acidic pH relative to neutral pH may be obtained.

Anti-ANGPTL8 Antibodies Comprising Fc Variants

[0125] According to certain embodiments of the present invention, anti-ANGPTL8 antibodies

are provided comprising an Fc domain comprising one or more mutations, which enhance or diminish antibody binding to the FcRn receptor, *e.g.*, at acidic pH as compared to neutral pH. For example, the present invention includes anti-ANGPTL8 antibodies comprising a mutation in the C_H2 or a C_H3 region of the Fc domain, wherein the mutation(s) increases the affinity of the Fc domain to FcRn in an acidic environment (*e.g.*, in an endosome where pH ranges from about 5.5 to about 6.0). Such mutations may result in an increase in serum half-life of the antibody when administered to an animal. Non-limiting examples of such Fc modifications include, *e.g.*, a modification at position 250 (*e.g.*, E or Q); 250 and 428 (*e.g.*, L or F); 252 (*e.g.*, L/Y/F/W or T), 254 (*e.g.*, S or T), and 256 (*e.g.*, S/R/Q/E/D or T); or a modification at position 428 and/or 433 (*e.g.*, H/L/R/S/P/Q or K) and/or 434 (*e.g.*, A, W, H, F or Y [N434A, N434W, N434H, N434F or N434Y]); or a modification at position 250 and/or 428; or a modification at position 307 or 308 (*e.g.*, 308F, V308F), and 434. In one embodiment, the modification comprises a 428L (*e.g.*, M428L) and 434S (*e.g.*, N434S) modification; a 428L, 259I (*e.g.*, V259I), and 308F (*e.g.*, V308F) modification; a 433K (*e.g.*, H433K) and a 434 (*e.g.*, 434Y) modification; a 252, 254, and 256 (*e.g.*, 252Y, 254T, and 256E) modification; a 250Q and 428L modification (*e.g.*, T250Q and M428L); and a 307 and/or 308 modification (*e.g.*, 308F or 308P). In yet another embodiment, the modification comprises a 265A (*e.g.*, D265A) and/or a 297A (*e.g.*, N297A) modification.

[0126] For example, the present invention includes anti-ANGPTL8 antibodies comprising an Fc domain comprising one or more pairs or groups of mutations selected from the group consisting of: 250Q and 248L (*e.g.*, T250Q and M248L); 252Y, 254T and 256E (*e.g.*, M252Y, S254T and T256E); 428L and 434S (*e.g.*, M428L and N434S); 257I and 311I (*e.g.*, P257I and Q311I); 257I and 434H (*e.g.*, P257I and N434H); 376V and 434H (*e.g.*, D376V and N434H); 307A, 380A and 434A (*e.g.*, T307A, E380A and N434A); and 433K and 434F (*e.g.*, H433K and N434F). All possible combinations of the foregoing Fc domain mutations, and other mutations within the antibody variable domains disclosed herein, are contemplated within the scope of the present invention.

[0127] The present invention also includes anti-ANGPTL8 antibodies comprising a chimeric heavy chain constant (C_H) region, wherein the chimeric C_H region comprises segments derived from the C_H regions of more than one immunoglobulin isotype. For example, the antibodies of the invention may comprise a chimeric C_H region comprising part or all of a C_H2 domain derived from a human IgG1, human IgG2 or human IgG4 molecule, combined with part or all of a C_H3 domain derived from a human IgG1, human IgG2 or human IgG4 molecule. According to certain embodiments, the antibodies of the invention comprise a chimeric C_H region having a chimeric hinge region. For example, a chimeric hinge may comprise an "upper hinge" amino acid sequence (amino acid residues from positions 216 to 227 according to EU numbering) derived from a human IgG1, a human IgG2 or a human IgG4 hinge region, combined with a "lower hinge" sequence (amino acid residues from positions 228 to 236 according to EU

numbering) derived from a human IgG1, a human IgG2 or a human IgG4 hinge region. According to certain embodiments, the chimeric hinge region comprises amino acid residues derived from a human IgG1 or a human IgG4 upper hinge and amino acid residues derived from a human IgG2 lower hinge. An antibody comprising a chimeric C_H region as described herein may, in certain embodiments, exhibit modified Fc effector functions without adversely affecting the therapeutic or pharmacokinetic properties of the antibody. (See, e.g., U.S. Provisional Appl. No. 61/759,578, filed February 1, 2013, the disclosure of which is hereby incorporated by reference in its entirety).

Biological Characteristics of the Antibodies

[0128] The present invention includes antibodies and antigen-binding fragments thereof that bind ANGPTL8 with high affinity. For example, the present invention includes anti-ANGPTL8 antibodies that bind human or monkey ANGPTL8 with a K_D of less than about 150 nM, as measured by surface plasmon resonance (SPR) at 25°C, or at 37°C, e.g., using recombinant ANGPTL8 protein with a mouse IgG2a Fc C-terminal fusion, in an assay format as defined in Examples 3 and 4 herein, or a substantially similar assay. According to certain embodiments, anti-ANGPTL8 antibodies are provided that bind human or monkey ANGPTL8 at 25°C or 37°C with a K_D of less than about 90 nM, or less than about 50 nM, less than about 3 nM, less than about 2 nM, less than about 1 nM, less than about 900 pM, less than about 500 pM, less than about 300 pM, less than about 150 pM, or less than about 90 pM, as measured by surface plasmon resonance, e.g., using an assay format as defined in Examples 3 and 4 herein, or a substantially similar assay.

[0129] The present invention also includes antibodies and antigen-binding fragments thereof that bind the peptide of SEQ ID NO: 337 derived from the N-terminal region of human ANGPTL8 with a dissociative half-life ($t_{1/2}$) of greater than about 100 minutes as measured by surface plasmon resonance at 25°C or 37°C, e.g., using an assay format as defined in Example 3 herein, or a substantially similar assay. According to certain embodiments, anti-ANGPTL8 antibodies are provided that bind peptides derived from the N-terminal region of human ANGPTL8 at 25°C with a $t_{1/2}$ of greater than or equal to about 110 minutes, greater than about 120 minutes, greater than about 130 minutes, greater than about 200 minutes, greater than about 300 minutes, greater than about 400 minutes, greater than about 500 minutes, or longer, as measured by surface plasmon resonance, e.g., using an assay format as defined in Example 3 herein, or a substantially similar assay.

[0130] The present invention also includes antibodies and antigen-binding fragments thereof that lower triglycerides in a mammal by about 20%, or by about 30%, or by about 40%, or by about 50%, or by about 60%, or greater when administered subcutaneously at a dose of about

0.1mg/kg, or about 1mg/kg, or about 10mg/kg, or about 25mg/kg, or about 50mg/kg, or about 100mg/kg. The effect of an antibody of the invention on lowering plasma triglycerides may last from at least 7 days after administration to about 3 weeks, or 4 weeks after administration, or longer.

[0131] An antibody of the invention comprises a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 266, 274, 282, 290, 298, 306, 314 and 330; and

a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, and 322; or may cross-compete with a reference antibody, wherein the reference antibody comprises a heavy chain variable region (HCVR) and a light chain variable region (LCVR) amino acid sequence selected from the group consisting of any of the HCVR and LCVR amino acid sequences of Table 1.

[0132] An antibody of the invention may comprise a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/250, 266/250, 274/250, 282/250, 290/250, 306/250, 314/322, and 330/322.

[0133] An antibody of the invention may comprise:

- (a) a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 268, 276, 284, 292, 300, 308, 316 and 332;
- (b) a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 262, 270, 278, 286, 294, 302, 310, 318, and 334;
- (c) a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 272, 280, 288, 296, 304, 312, 320 and 336;
- (d) a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252 and 324;
- (e) a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254, and 326; and
- (f) a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256 and 328.

[0134] The antibodies of the present invention may possess one or more of the aforementioned biological characteristics, or any combination thereof. The foregoing list of biological characteristics of the antibodies of the invention is not intended to be exhaustive. Other biological characteristics of the antibodies of the present invention will be evident to a person of ordinary skill in the art from a review of the present disclosure including the working Examples herein.

Epitope Mapping and Related Technologies

[0135] The epitope to which the antibodies of the present invention bind may consist of a single contiguous sequence of 3 or more (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more) amino acids of an ANGPTL8 protein. Alternatively, the epitope may consist of a plurality of non-contiguous amino acids (or amino acid sequences) of ANGPTL8.

[0136] Various techniques known to persons of ordinary skill in the art can be used to determine whether an antibody "interacts with one or more amino acids" within a polypeptide or protein. Exemplary techniques include, e.g., routine cross-blocking assay such as that described Antibodies, Harlow and Lane (Cold Spring Harbor Press, Cold Spring Harb., NY), alanine scanning mutational analysis, peptide blots analysis (Reineke, 2004, *Methods Mol Biol* 248:443-463), and peptide cleavage analysis. In addition, methods such as epitope excision, epitope extraction and chemical modification of antigens can be employed (Tomer, 2000, *Protein Science* 9:487-496). Another method that can be used to identify the amino acids within a polypeptide with which an antibody interacts is hydrogen/deuterium exchange detected by mass spectrometry. In general terms, the hydrogen/deuterium exchange method involves deuterium-labeling the protein of interest, followed by binding the antibody to the deuterium-labeled protein. Next, the protein/antibody complex is transferred to water to allow hydrogen-deuterium exchange to occur at all residues except for the residues protected by the antibody (which remain deuterium-labeled). After dissociation of the antibody, the target protein is subjected to protease cleavage and mass spectrometry analysis, thereby revealing the deuterium-labeled residues which correspond to the specific amino acids with which the antibody interacts. See, e.g., Ehring (1999) *Analytical Biochemistry* 267(2):252-259; Engen and Smith (2001) *Anal. Chem.* 73:256A-265A.

[0137] The present invention further includes anti-ANGPTL8 antibodies that bind to the same epitope as any of the specific exemplary antibodies described herein (e.g. antibodies comprising any of the amino acid sequences as set forth in Table 1 herein). Likewise, the present invention also includes anti-ANGPTL8 antibodies that compete for binding to ANGPTL8 with any of the specific exemplary antibodies described herein (e.g. antibodies comprising any of the amino acid sequences as set forth in Table 1 herein).

[0138] One can easily determine whether an antibody binds to the same epitope as, or

competes for binding with, a reference anti-ANGPTL8 antibody by using routine methods known in the art and exemplified herein. For example, to determine if a test antibody binds to the same epitope as a reference anti-ANGPTL8 antibody of the invention, the reference antibody is allowed to bind to an ANGPTL8 protein. Next, the ability of a test antibody to bind to the ANGPTL8 molecule is assessed. If the test antibody is able to bind to ANGPTL8 following saturation binding with the reference anti-ANGPTL8 antibody, it can be concluded that the test antibody binds to a different epitope than the reference anti-ANGPTL8 antibody. On the other hand, if the test antibody is not able to bind to the ANGPTL8 molecule following saturation binding with the reference anti-ANGPTL8 antibody, then the test antibody may bind to the same epitope as the epitope bound by the reference anti-ANGPTL8 antibody of the invention. Additional routine experimentation (e.g., peptide mutation and binding analyses) can then be carried out to confirm whether the observed lack of binding of the test antibody is in fact due to binding to the same epitope as the reference antibody or if steric blocking (or another phenomenon) is responsible for the lack of observed binding. Experiments of this sort can be performed using ELISA, RIA, Biacore, flow cytometry or any other quantitative or qualitative antibody-binding assay available in the art. In accordance with certain embodiments of the present invention, two antibodies bind to the same (or overlapping) epitope if, e.g., a 1-, 5-, 10-, 20- or 100-fold excess of one antibody inhibits binding of the other by at least 50% but preferably 75%, 90% or even 99% as measured in a competitive binding assay (see, e.g., Junghans et al., *Cancer Res.* 1990;50:1495-1502). Alternatively, two antibodies are deemed to bind to the same epitope if essentially all amino acid mutations in the antigen that reduce or eliminate binding of one antibody reduce or eliminate binding of the other. Two antibodies are deemed to have "overlapping epitopes" if only a subset of the amino acid mutations that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.

[0139] To determine if an antibody competes for binding (or cross-competes for binding) with a reference anti-ANGPTL8 antibody, the above-described binding methodology is performed in two orientations: In a first orientation, the reference antibody is allowed to bind to a ANGPTL8 protein under saturating conditions followed by assessment of binding of the test antibody to the ANGPTL8 molecule. In a second orientation, the test antibody is allowed to bind to an ANGPTL8 molecule under saturating conditions followed by assessment of binding of the reference antibody to the ANGPTL8 molecule. If, in both orientations, only the first (saturating) antibody is capable of binding to the ANGPTL8 molecule, then it is concluded that the test antibody and the reference antibody compete for binding to ANGPTL8. As will be appreciated by a person of ordinary skill in the art, an antibody that competes for binding with a reference antibody may not necessarily bind to the same epitope as the reference antibody, but may sterically block binding of the reference antibody by binding an overlapping or adjacent epitope.

Preparation of Human Antibodies

[0140] The anti-ANGPTL8 antibodies of the present invention can be fully human (non-naturally occurring) antibodies. Methods for generating monoclonal antibodies, including fully human monoclonal antibodies are known in the art. Any such known methods can be used in the context of the present invention to make human antibodies that specifically bind to human ANGPTL8.

[0141] Using VELOCIMMUNE® technology (see, for example, US 6,596,541, Regeneron Pharmaceuticals, VELOCIMMUNE®) or any other known method for generating monoclonal antibodies, high affinity chimeric antibodies to an allergen are initially isolated having a human variable region and a mouse constant region. The VELOCIMMUNE® technology involves generation of a transgenic mouse having a genome comprising human heavy and light chain variable regions operably linked to endogenous mouse constant region loci such that the mouse produces an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation. The DNA encoding the variable regions of the heavy and light chains of the antibody are isolated and operably linked to DNA encoding the human heavy and light chain constant regions. The DNA is then expressed in a cell capable of expressing the fully human antibody.

[0142] Generally, a VELOCIMMUNE® mouse is challenged with the antigen of interest, and lymphatic cells (such as B-cells) are recovered from the mice that express antibodies. The lymphatic cells may be fused with a myeloma cell line to prepare immortal hybridoma cell lines, and such hybridoma cell lines are screened and selected to identify hybridoma cell lines that produce antibodies specific to the antigen of interest. DNA encoding the variable regions of the heavy chain and light chain may be isolated and linked to desirable isotypic constant regions of the heavy chain and light chain. Such an antibody protein may be produced in a cell, such as a CHO cell. Alternatively, DNA encoding the antigen-specific chimeric antibodies or the variable domains of the light and heavy chains may be isolated directly from antigen-specific lymphocytes.

[0143] As described in the experimental section below, the high affinity chimeric antibodies, which are isolated having a human variable region and a mouse constant region, are characterized and selected for desirable characteristics, including affinity, selectivity, epitope, etc. The mouse constant regions are then replaced with a desired human constant region to generate the fully human antibody of the invention, for example wild-type or modified IgG1 or IgG4. While the constant region selected may vary according to specific use, high affinity antigen-binding and target specificity characteristics reside in the variable region.

[0144] In general, the antibodies of the instant invention possess very high affinities, typically possessing K_D of from about 10^{-12} through about 10^{-9} M, when measured by binding to antigen either immobilized on solid phase or in solution phase.

Bioequivalents

[0145] The anti-ANGPTL8 antibodies and antibody fragments of the present invention encompass proteins having amino acid sequences that vary from those of the described antibodies but that retain the ability to bind human ANGPTL8. Such variant antibodies and antibody fragments comprise one or more additions, deletions, or substitutions of amino acids when compared to parent sequence, but exhibit biological activity that is essentially equivalent to that of the described antibodies. Likewise, the anti-ANGPTL8 antibody-encoding DNA sequences of the present invention encompass sequences that comprise one or more additions, deletions, or substitutions of nucleotides when compared to the disclosed sequence, but that encode an anti-ANGPTL8 antibody or antibody fragment that is essentially bioequivalent to an anti-ANGPTL8 antibody or antibody fragment of the invention. Examples of such variant amino acid and DNA sequences are discussed above.

[0146] Two antigen-binding proteins, or antibodies, are considered bioequivalent if, for example, they are pharmaceutical equivalents or pharmaceutical alternatives whose rate and extent of absorption do not show a significant difference when administered at the same molar dose under similar experimental conditions, either single doses or multiple dose. Some antibodies will be considered equivalents or pharmaceutical alternatives if they are equivalent in the extent of their absorption but not in their rate of absorption and yet may be considered bioequivalent because such differences in the rate of absorption are intentional and are reflected in the labeling, are not essential to the attainment of effective body drug concentrations on, e.g., chronic use, and are considered medically insignificant for the particular drug product studied.

[0147] In one embodiment, two antigen-binding proteins are bioequivalent if there are no clinically meaningful differences in their safety, purity, and potency.

[0148] In one embodiment, two antigen-binding proteins are bioequivalent if a patient can be switched one or more times between the reference product and the biological product without an expected increase in the risk of adverse effects, including a clinically significant change in immunogenicity, or diminished effectiveness, as compared to continued therapy without such switching.

[0149] In one embodiment, two antigen-binding proteins are bioequivalent if they both act by a common mechanism or mechanisms of action for the condition or conditions of use, to the extent that such mechanisms are known.

[0150] Bioequivalence may be demonstrated by *in vivo* and *in vitro* methods. Bioequivalence measures include, e.g., (a) an *in vivo* test in humans or other mammals, in which the concentration of the antibody or its metabolites is measured in blood, plasma, serum, or other biological fluid as a function of time; (b) an *in vitro* test that has been correlated with and is reasonably predictive of human *in vivo* bioavailability data; (c) an *in vivo* test in humans or other

mammals in which the appropriate acute pharmacological effect of the antibody (or its target) is measured as a function of time; and (d) in a well-controlled clinical trial that establishes safety, efficacy, or bioavailability or bioequivalence of an antibody.

[0151] Bioequivalent variants of anti-ANGPTL8 antibodies of the invention may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity. For example, cysteine residues not essential for biological activity can be deleted or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation. In other contexts, bioequivalent antibodies may include anti-ANGPTL8 antibody variants comprising amino acid changes, which modify the glycosylation characteristics of the antibodies, *e.g.*, mutations which eliminate or remove glycosylation.

Multispecific Antibodies

[0152] The antibodies of the present invention may be monospecific or multispecific (*e.g.*, bispecific). Multispecific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for more than one target polypeptide. See, *e.g.*, Tutt *et al.*, 1991, *J. Immunol.* 147:60-69; Kufer *et al.*, 2004, *Trends Biotechnol.* 22:238-244. The anti-ANGPTL8 antibodies of the present invention can be linked to or co-expressed with another functional molecule, *e.g.*, another peptide or protein. For example, an antibody or fragment thereof can be functionally linked (*e.g.*, by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody or antibody fragment to produce a bi-specific or a multispecific antibody with a second binding specificity.

[0153] The present invention includes bispecific antibodies wherein one arm of an immunoglobulin binds human ANGPTL8, and the other arm of the immunoglobulin is specific for a second antigen. The ANGPTL8-binding arm can comprise any of the HCVR/LCVR or CDR amino acid sequences as set forth in Table 1 herein.

[0154] An exemplary bispecific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) C_H3 domain and a second Ig C_H3 domain, wherein the first and second Ig C_H3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bispecific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference. In one embodiment, the first Ig C_H3 domain binds Protein A and the second Ig C_H3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering). The second C_H3 may further comprise a Y96F modification (by IMGT; Y436F by EU). Further modifications that may be found within the second C_H3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of IgG1 antibodies; N44S, K52N, and

V82I (IMGT; N384S, K392N, and V422I by EU) in the case of IgG2 antibodies; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of IgG4 antibodies. Variations on the bispecific antibody format described above are contemplated within the scope of the present invention.

[0155] Other exemplary bispecific formats that can be used in the context of the present invention include, without limitation, e.g., scFv-based or diabody bispecific formats, IgG-scFv fusions, dual variable domain (DVD)-Ig, Quadroma, knobs-into-holes, common light chain (e.g., common light chain with knobs-into-holes, etc.), CrossMab, CrossFab, (SEED)body, leucine zipper, Duobody, IgG1/IgG2, dual acting Fab (DAF)-IgG, and Mab² bispecific formats (see, e.g., Klein *et al.* 2012, mAbs 4:6, 1-11, and references cited therein, for a review of the foregoing formats). Bispecific antibodies can also be constructed using peptide/nucleic acid conjugation, e.g., wherein unnatural amino acids with orthogonal chemical reactivity are used to generate site-specific antibody-oligonucleotide conjugates which then self-assemble into multimeric complexes with defined composition, valency and geometry. (See, e.g., Kazane *et al.*, *J. Am. Chem. Soc.* [Epub: Dec. 4, 2012]).

Therapeutic Formulation and Administration

[0156] The invention provides pharmaceutical compositions comprising the anti-ANGPTL8 antibodies or antigen-binding fragments thereof of the present invention. The pharmaceutical compositions of the invention are formulated with suitable carriers, excipients, and other agents that provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTIN™, Life Technologies, Carlsbad, CA), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell *et al.* "Compendium of excipients for parenteral formulations" PDA (1998) J Pharm Sci Technol 52:238-311.

[0157] The dose of antibody administered to a patient may vary depending upon the age and the size of the patient, target disease, conditions, route of administration, and the like. The preferred dose is typically calculated according to body weight or body surface area. In an adult patient, it may be advantageous to intravenously administer the antibody of the present invention normally at a single dose of about 0.01 to about 20 mg/kg body weight, more preferably about 0.02 to about 7, about 0.03 to about 5, or about 0.05 to about 3 mg/kg body weight. Depending on the severity of the condition, the frequency and the duration of the treatment can be adjusted. Effective dosages and schedules for administering anti-ANGPTL8 antibodies may be determined empirically; for example, patient progress can be monitored by

periodic assessment, and the dose adjusted accordingly. Moreover, interspecies scaling of dosages can be performed using well-known methods in the art (e.g., Mordenti *et al.*, 1991, *Pharmaceut. Res.* 8:1351).

[0158] Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor mediated endocytosis (see, e.g., Wu *et al.*, 1987, *J. Biol. Chem.* 262:4429-4432). Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.

[0159] A pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe. In addition, with respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention. Such a pen delivery device can be reusable or disposable. A reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.

[0160] Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but are not limited to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Bergdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUMALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, IN), NOVOPEN™ I, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, NJ), OPTIPEN™, OPTIPEN PRO™, OPTIPEN STARLET™, and OPTICLIK™ (Sanofi-Aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but are not limited to the SOLOSTAR™ pen (Sanofi-Aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly), the SURECLICK™ Autoinjector (Amgen, Thousand

Oaks, CA), the PENLET™ (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L.P.), and the HUMIRA™ Pen (Abbott Labs, Abbott Park IL), to name only a few.

[0161] In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, 1987, *CRC Crit. Ref. Biomed. Eng.* 14:201). In another embodiment, polymeric materials can be used; see, *Medical Applications of Controlled Release*, Langer and Wise (eds.), 1974, CRC Pres., Boca Raton, Florida. In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose (see, *e.g.*, Goodson, 1984, in *Medical Applications of Controlled Release*, *supra*, vol. 2, pp. 115-138). Other controlled release systems are discussed in the review by Langer, 1990, *Science* 249:1527-1533.

[0162] The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, *e.g.*, by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (*e.g.*, ethanol), a polyalcohol (*e.g.*, propylene glycol, polyethylene glycol), a nonionic surfactant [*e.g.*, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, *e.g.*, sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is preferably filled in an appropriate ampoule.

[0163] Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc. The amount of the aforesaid antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the aforesaid antibody is contained in about 5 to about 100 mg and in about 10 to about 250 mg for the other dosage forms.

Immunoconjugates

[0164] The invention encompasses a human anti-ANGPTL8 monoclonal antibody conjugated to a therapeutic moiety ("immunoconjugate"), such as an agent that is capable of reducing blood triglyceride or lipid levels. The type of therapeutic moiety that may be conjugated to the anti-ANGPTL8 antibody will take into account the condition to be treated and the desired therapeutic

effect to be achieved. For example, for treating hypertriglyceridemia, or any other condition whereby it is desirable to lower blood triglycerides, and/or to maintain normal blood triglyceride levels, an agent may be conjugated to the ANGPTL8 antibody. Alternatively, if the desired therapeutic effect is to treat the sequelae or symptoms associated with hypertriglyceridemia, or any other condition resulting from high, or uncontrolled blood triglyceride levels, it may be advantageous to conjugate an agent appropriate to treat the sequelae or symptoms of the condition. Examples of suitable agents for forming immunoconjugates are known in the art, see for example, WO 05/103081.

Therapeutic Uses of the Antibodies

[0165] The present antibodies are useful for lowering blood triglyceride levels, for example, in a patient suffering from hypertriglyceridemia, and also for the treatment of a wide range of conditions and disorders in which inhibiting the activity of ANGPTL8 is beneficial. Thus, the antibodies may find use for example to prevent, treat, or alleviate, diseases or conditions or associated symptoms or sequelae, of the endocrine system, the central nervous system, the peripheral nervous system, the cardiovascular system, the pulmonary system, and the gastrointestinal system, while reducing and or eliminating one or more of the unwanted side effects associated with the current treatments.

[0166] For example, the antibodies of the invention may be used to treat a disease or disorder including, but not limited to, those involving lipid metabolism, such as hyperlipidemia, hyperlipoproteinemia and dyslipidemia, including atherogenic dyslipidemia, diabetic dyslipidemia, hypertriglyceridemia, including severe hypertriglyceridemia with TG > 1000 mg/dL and associated acute pancreatitis, hypercholesterolemia, chylomicronemia, mixed dyslipidemia (obesity, metabolic syndrome, diabetes, etc.), lipodystrophy, lipoatrophy, and the like, which are caused by, for example, decreased LPL activity and/or LPL deficiency, altered ApoC2, ApoE deficiency, increased ApoB, increased production and/or decreased elimination of very low-density lipoprotein (VLDL), certain drug treatment (e.g., glucocorticoid treatment-induced dyslipidemia), any genetic predisposition, diet, life style, and the like.

[0167] The methods of the invention can also prevent or treat diseases or disorders associated with or resulting from triglyceridemia, hypertriglyceridemia, hyperlipidemia, hyperlipoproteinemia, and/or dyslipidemia, including, but not limited to, cardiovascular diseases or disorders, such as atherosclerosis, aneurysm, hypertension, angina, stroke, cerebrovascular diseases, congestive heart failure, coronary artery diseases, myocardial infarction, peripheral vascular diseases, and the like; acute pancreatitis; nonalcoholic steatohepatitis (NASH); blood sugar disorders, such as diabetes (e.g. Type II diabetes); obesity, and the like.

[0168] In one embodiment, at least one antibody of the invention, or an antigen-binding fragment thereof, may be used to treat metabolic syndrome associated dyslipidemia, obesity, or for preventing weight gain, or for maintaining a normal weight.

[0169] In one embodiment, the invention provides a method for lowering blood triglyceride levels, or for treating a condition or disease associated with, or characterized in part by high blood triglyceride levels, or at least one symptom or complication associated with the condition or disease, the method comprising administering a pharmaceutical composition comprising one or more antibodies specific for human ANGPTL8 from Table 1, to a patient in need thereof, such that blood triglyceride levels are lowered or that the condition or disease is mediated, or at least one symptom or complication associated with the condition or disease is alleviated or reduced in severity.

[0170] In one embodiment, at least one antibody of the invention, or an antigen-binding fragment thereof, may be used alone or in combination with a second or third therapeutic agent to treat hypertriglyceridemia, or at least one symptom associated with hypertriglyceridemia, or may be used to treat a patient at risk for acquiring hypertriglyceridemia, for example, in a patient who has a genetic predisposition for developing hypertriglyceridemia, *e.g.* familial hypertriglyceridemia or familial dysbetalipoproteinemia.

[0171] Other conditions may predispose a patient to high levels of triglycerides. For example, certain medications such as beta blockers, birth control pills, diuretics, steroids, or the use of tamoxifen may lead to elevated levels of triglycerides and as such, may increase a patient's likelihood of developing conditions, or complications associated with high levels of triglycerides, such as atherosclerosis, stroke, heart attack, and other cardiac conditions.

[0172] In addition, certain other conditions may lead to high levels of triglycerides, including obesity, poorly controlled diabetes, hypothyroidism, kidney disease, or alcohol consumption.

[0173] In one embodiment, the antibodies may be used to prevent the onset of a disease or disorder characterized in part by elevated blood triglyceride levels, or to prevent the likelihood of developing such disease or disorder, or to mitigate the severity of the disease or disorder, or at least one symptom associated with the disease or disorder. It is envisioned that the antibodies of the invention may be used alone, or as adjunct therapy with other agents or methods known to be standard care for treating patients suffering from diseases or conditions characterized in part by elevated blood triglyceride levels, such as, but not limited to, hypertriglyceridemia. Such standard therapy may include fluid administration, or administration of any other pharmaceutical agents useful for lowering blood triglycerides, or lipids, or for weight reduction.

[0174] In one embodiment, the use of the antibodies described herein, may be an effective means of achieving normal levels of triglycerides, thereby ameliorating, or preventing one or more symptoms of, or long term complications associated with a disease characterized by high triglyceride levels.

[0175] It is envisioned that the antibodies of the invention may be used in an acute setting (for short term use), or for longer term (chronic) use.

Combination Therapies

[0176] Combination therapies may include an anti-ANGPTL8 antibody of the invention and any additional therapeutic agent that may be advantageously combined with an antibody of the invention, or with a biologically active fragment of an antibody of the invention.

[0177] For example, when the antibodies of the invention are contemplated for use in treating a disease or condition characterized in part by elevated triglyceride levels, such as hypertriglyceridemia, a second therapeutic agent may be employed to aid in further lowering of triglyceride levels, or to reduce at least one symptom in a patient suffering from a disease or condition characterized by high blood triglyceride levels. Such a second agent may be selected from, for example, another ANGPTL8 antagonist (e.g. another different anti-ANGPTL8 antibody or small molecule inhibitor of ANGPTL8), or may include other therapeutic moieties useful for treating triglyceridemia, or other diseases or conditions associated with, or resulting from elevated blood triglyceride levels, or agents useful for treating any long term complications associated with elevated and/or uncontrolled blood triglyceride levels.

[0178] In related embodiments, the invention features a composition, which is a combination of an antibody or antigen-binding fragment thereof of the invention, and a second therapeutic agent, such as (1) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, such as cerivastatin, atorvastatin, simvastatin, pitavastatin, rosuvastatin, fluvastatin, lovastatin, pravastatin, and the like; (2) inhibitors of cholesterol uptake and/or bile acid re-absorption; (3) niacin, which increases lipoprotein catabolism; (4) fibrates or amphipathic carboxylic acids, which reduce low-density lipoprotein (LDL) level, improve high-density lipoprotein (HDL) and TG levels, and reduce the number of non-fatal heart attacks; and (5) activators of the LXR transcription factor that plays a role in cholesterol elimination such as 22-hydroxycholesterol, or fixed combinations such as ezetimibe plus simvastatin; a statin with a bile resin (e.g., cholestyramine, colestipol, colesevelam), a fixed combination of niacin plus a statin (e.g., niacin with lovastatin); or with other lipid lowering agents such as omega-3-fatty acid ethyl esters (for example, omacor).

[0179] Furthermore, the second therapeutic agent can be one or more other inhibitors/antagonists of glucagon or an inhibitor/antagonist of the glucagon receptor, as well as inhibitors of other molecules, such as other inhibitors of ANGPTL8, as well as inhibitors of other molecules, such as ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, apolipoprotein C-III (also referred to as APOC3; see for example, inhibitors of APOC3 described in US8530439, US7750141, US7598227 and volanesorsen, also referred to as ISIS-APOCIIIRx) and proprotein convertase subtilisin/kexin type 9 (PCSK9), which are involved in lipid metabolism, in particular, cholesterol and/or triglyceride homeostasis. Inhibitors of these molecules include small molecules, antisense molecules and antibodies that specifically bind to these molecules and block their activity.

[0180] In one embodiment, if the anti-ANGPTL3 antibodies of the invention are used to treat a disease such as diabetes (e.g., type 2 diabetes), then these antibodies may be used in combination with one or more of the following treatments for diabetes that are currently available. These include the following: insulin, an insulin analog (see below), a biguanide (metformin), a sulfonylurea (e.g. glyburide, glipizide), a PPAR gamma agonist (e.g. pioglitazone, rosiglitazone), an alpha glucosidase inhibitor (e.g. acarbose, voglibose), a glucagon-like peptide 1 (GLP-1) receptor agonist (e.g., BYETTA® (exenatide), TRULICITY™ (dulaglutide), VICTOZA® (liraglutide), LYXUMIA® (lixisenatide), TANZEUM™ (albiglutide), or an analogue of any of the foregoing), a dipeptidyl peptidase IV (DPP-4) inhibitor (e.g. saxagliptin (ONGLYZA®), sitagliptin (JANUVIA®), and vildagliptin (GALVUS®), a sodium-glucose co-transporter 2 (SGLT2) inhibitor (e.g., INVOKANA™ (canagliflozin), FORXIGA® (dapagliflozin), empagliflozin, ibragliflozin, tofogliblozin), (SYMLIN® (pramlintide), a glucagon receptor antagonist (as described in, for example, US8545847), and a glucagon antagonist.

[0181] In certain related embodiments, the composition may include a second agent selected from the group consisting of non-sulfonylurea secretagogues, insulin analogs, including fast acting (e.g., Lispro, Aspart, Glulisine) and long acting (e.g. Detemir insulin, Degludec insulin, or Glargin insulin, exendin-4 polypeptides, beta 3 adrenoceptor agonists, inhibitors of cholesterol uptake and/or bile acid re-absorption, LDL-cholesterol antagonists, cholesteryl ester transfer protein antagonists (e.g. torcetrapib, anacetrapib, dalcetrapib, or evacetrapib), endothelin receptor antagonists, growth hormone antagonists, insulin sensitizers, amylin mimetics or agonists, cannabinoid receptor antagonists, glucagon-like peptide-1 receptor agonists, melanocortins, melanin-concentrating hormone receptor agonists, SNRIs, a fibroblast growth factor 21 (FGF21) mimetic (See, for example, US20110002845 and US20080261236), a fibroblast growth factor receptor 1c (FGFR1c) agonist (See, for example, US20110150901), an inhibitor of advanced glycation end product formation, such as, but not limited to, aminoguanidine, and protein tyrosine phosphatase inhibitors.

[0182] In related embodiments, the second therapeutic agent may be one or more other therapeutic agents, such as analgesics, anti-inflammatory agents, including non-steroidal anti-inflammatory drugs (NSAIDS), such as Cox-2 inhibitors, and the like, so as to ameliorate and/or reduce the symptoms accompanying the underlying condition, if needed.

[0183] The additional therapeutically active component(s) may be administered prior to, concurrent with, or after the administration of the anti-ANGPTL8 antibody of the present invention. For purposes of the present disclosure, such administration regimens are considered the administration of an anti-ANGPTL8 antibody “in combination with” a second therapeutically active component.

Administration Regimens

[0184] According to certain embodiments of the present invention, multiple doses of an anti-ANGPTL8 antibody (or a pharmaceutical composition comprising a combination of an anti-ANGPTL8 antibody and any of the additional therapeutically active agents mentioned herein) may be administered to a subject over a defined time course. The methods according to this aspect of the invention comprise sequentially administering to a subject multiple doses of an anti-ANGPTL8 antibody of the invention. As used herein, "sequentially administering" means that each dose of anti-ANGPTL8 antibody is administered to the subject at a different point in time, *e.g.*, on different days separated by a predetermined interval (*e.g.*, hours, days, weeks or months). The present invention includes methods which comprise sequentially administering to the patient a single initial dose of an anti-ANGPTL8 antibody, followed by one or more secondary doses of the anti-ANGPTL8 antibody, and optionally followed by one or more tertiary doses of the anti-ANGPTL8 antibody.

[0185] The terms "initial dose," "secondary doses," and "tertiary doses," refer to the temporal sequence of administration of the anti-ANGPTL8 antibody of the invention. Thus, the "initial dose" is the dose which is administered at the beginning of the treatment regimen (also referred to as the "baseline dose"); the "secondary doses" are the doses which are administered after the initial dose; and the "tertiary doses" are the doses which are administered after the secondary doses. The initial, secondary, and tertiary doses may all contain the same amount of anti-ANGPTL8 antibody, but generally may differ from one another in terms of frequency of administration. In certain embodiments, however, the amount of anti-ANGPTL8 antibody contained in the initial, secondary and/or tertiary doses varies from one another (*e.g.*, adjusted up or down as appropriate) during the course of treatment. In certain embodiments, two or more (*e.g.*, 2, 3, 4, or 5) doses are administered at the beginning of the treatment regimen as "loading doses" followed by subsequent doses that are administered on a less frequent basis (*e.g.*, "maintenance doses").

[0186] In certain exemplary embodiments of the present invention, each secondary and/or tertiary dose is administered 1 to 26 (*e.g.*, 1, 1½, 2, 2½, 3, 3½, 4, 4½, 5, 5½, 6, 6½, 7, 7½, 8, 8½, 9, 9½, 10, 10½, 11, 11½, 12, 12½, 13, 13½, 14, 14½, 15, 15½, 16, 16½, 17, 17½, 18, 18½, 19, 19½, 20, 20½, 21, 21½, 22, 22½, 23, 23½, 24, 24½, 25, 25½, 26, 26½, or more) weeks after the immediately preceding dose. The phrase "the immediately preceding dose," as used herein, means, in a sequence of multiple administrations, the dose of anti-ANGPTL8 antibody, which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.

[0187] The methods according to this aspect of the invention may comprise administering to a patient any number of secondary and/or tertiary doses of an anti-ANGPTL8 antibody. For example, in certain embodiments, only a single secondary dose is administered to the patient. In other embodiments, two or more (*e.g.*, 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are

administered to the patient. Likewise, in certain embodiments, only a single tertiary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient. The administration regimen may be carried out indefinitely over the lifetime of a particular subject, or until such treatment is no longer therapeutically needed or advantageous.

[0188] In embodiments involving multiple secondary doses, each secondary dose may be administered at the same frequency as the other secondary doses. For example, each secondary dose may be administered to the patient 1 to 2 weeks or 1 to 2 months after the immediately preceding dose. Similarly, in embodiments involving multiple tertiary doses, each tertiary dose may be administered at the same frequency as the other tertiary doses. For example, each tertiary dose may be administered to the patient 2 to 12 weeks after the immediately preceding dose. In certain embodiments of the invention, the frequency at which the secondary and/or tertiary doses are administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient following clinical examination.

Diagnostic Uses of the Antibodies

[0189] The anti-ANGPTL8 antibodies of the present invention may also be used to detect and/or measure ANGPTL8 in a sample, e.g., for diagnostic purposes. For example, an anti-ANGPTL8 antibody, or fragment thereof, may be used to diagnose a condition or disease characterized by aberrant expression (e.g., over-expression, under-expression, lack of expression, etc.) of ANGPTL8. Exemplary diagnostic assays for ANGPTL8 may comprise, e.g., contacting a sample, obtained from a patient, with an anti-ANGPTL8 antibody of the invention, wherein the anti-ANGPTL8 antibody is labeled with a detectable label or reporter molecule or used as a capture ligand to selectively isolate ANGPTL8 protein from patient samples. Alternatively, an unlabeled anti-ANGPTL8 antibody can be used in diagnostic applications in combination with a secondary antibody which is itself detectably labeled. The detectable label or reporter molecule can be a radioisotope, such as ³H, ¹⁴C, ³²P, ³⁵S, or ¹²⁵I; a fluorescent or chemiluminescent moiety such as fluorescein isothiocyanate, or rhodamine; or an enzyme such as alkaline phosphatase, β -galactosidase, horseradish peroxidase, or luciferase.

[0190] Specific exemplary assays that can be used to detect or measure ANGPTL8 in a sample include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence-activated cell sorting (FACS).

[0191] Samples that can be used in ANGPTL8 diagnostic assays according to the present invention include any tissue or fluid sample obtainable from a patient, which contains detectable quantities of ANGPTL8 protein, or fragments thereof, under normal or pathological conditions. Generally, levels of ANGPTL8 in a particular sample obtained from a healthy patient (e.g., a

patient not afflicted with a disease or condition associated with abnormal ANGPTL8 levels or activity) will be measured to initially establish a baseline, or standard, level of ANGPTL8. This baseline level of ANGPTL8 can then be compared against the levels of ANGPTL8 measured in samples obtained from individuals suspected of having a ANGPTL8 related disease or condition, or symptoms associated with such disease or condition.

EXAMPLES

[0192] Before the present methods are described, it is to be understood that this invention is not limited to particular methods, and experimental conditions described, as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

[0193] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. As used herein, the term "about," when used in reference to a particular recited numerical value, means that the value may vary from the recited value by no more than 1%. For example, as used herein, the expression "about 100" includes 99 and 101 and all values in between (e.g., 99.1, 99.2, 99.3, 99.4, etc.).

[0194] Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference in their entirety.

Example 1. Generation of Anti-ANGPTL8 Antibodies

[0195] Anti-ANGPTL8 antibodies were obtained by immunizing a VELOCIMMUNE® mouse (*i.e.*, an engineered mouse comprising DNA encoding human immunoglobulin heavy and kappa light chain variable regions) with an immunogen comprising a recombinant human ANGPTL8 expressed with a C-terminal mouse IgG2a tag (See SEQ ID NO: 340). The antibody immune response was monitored by an ANGPTL8-specific immunoassay. When a desired immune response was achieved, several fully human anti-ANGPTL8 antibodies were generated from antigen-positive B cells as described in US 2007/0280945A1, incorporated by reference herein in its entirety.

[0196] Certain biological properties of the exemplary anti-ANGPTL8 antibodies generated in accordance with the methods of this Example are described in detail in the Examples set forth below.

Example 2. Heavy and Light Chain Variable Region Amino Acid and Nucleic Acid Sequences

[0197] Table 1 sets forth the amino acid sequence identifiers of the heavy and light chain variable regions and CDRs of selected anti-ANGPTL8 antibodies of the invention. The corresponding nucleic acid sequence identifiers are set forth in Table 2.

Table 1: Amino Acid Sequence Identifiers

Antibody Designation	SEQ ID NOs:								
	HCVR	HCDR1	HCDR2	HCDR3	LCVR	LCDR1	LCDR2	LCDR3	
H4H15314P2	2	4	6	8	10	12	14	16	
H4H15316P	18	20	22	24	26	28	30	32	
H4H15318P	34	36	38	40	42	44	46	48	
H4H15319P	50	52	54	56	58	60	62	64	
H4H15321P	66	68	70	72	74	76	78	80	
H4H15323P	82	84	86	88	90	92	94	96	
H4H15330P	98	100	102	104	106	108	110	112	
H4H15331P	114	116	118	120	122	124	126	128	
H4H15334P	130	132	134	136	138	140	142	144	
H4H15335P	146	148	150	152	154	156	158	160	
H4H15341P	162	164	166	168	170	172	174	176	
H4H15343P	178	180	182	184	186	188	190	192	
H4H15345P	194	196	198	200	202	204	206	208	
H4H15346P	210	212	214	216	218	220	222	224	
H4H15347P	226	228	230	232	234	236	238	240	
H4H15350P2	242	244	246	248	250	252	254	256	
H4H15353P2	258	260	262	264	250	252	254	256	
H4H15354P2	266	268	270	272	250	252	254	256	
H4H15355P2	274	276	278	280	250	252	254	256	
H4H15357P2	282	284	286	288	250	252	254	256	
H4H15361P2	290	292	294	296	250	252	254	256	
H4H15362P2	298	300	302	304	250	252	254	256	
H4H15363P2	306	308	310	312	250	252	254	256	
H4H15367P2	314	316	318	320	322	324	326	328	
H4H15369P2	330	332	334	336	322	324	326	328	

Table 2: Nucleic Acid Sequence Identifiers

Antibody Designation	SEQ ID NOs:								
	HCVR	HCDR1	HCDR2	HCDR3	LCVR	LCDR1	LCDR2	LCDR3	
H4H15314P2	1	3	5	7	9	11	13	15	
H4H15316P	17	19	21	23	25	27	29	31	
H4H15318P	33	35	37	39	41	43	45	47	
H4H15319P	49	51	53	55	57	59	61	63	
H4H15321P	65	67	69	71	73	75	77	79	
H4H15323P	81	83	85	87	89	91	93	95	
H4H15330P	97	99	101	103	105	107	109	111	
H4H15331P	113	115	117	119	121	123	125	127	

H4H15334P	129	131	133	135	137	139	141	143
H4H15335P	145	147	149	151	153	155	157	159
H4H15341P	161	163	165	167	169	171	173	175
H4H15343P	177	179	181	183	185	187	189	191
H4H15345P	193	195	197	199	201	203	205	207
H4H15346P	209	211	213	215	217	219	221	223
H4H15347P	225	227	229	231	233	235	237	239
H4H15350P2	241	243	245	247	249	251	253	255
H4H15353P2	257	259	261	263	249	251	253	255
H4H15354P2	265	267	269	271	249	251	253	255
H4H15355P2	273	275	277	279	249	251	253	255
H4H15357P2	281	283	285	287	249	251	253	255
H4H15361P2	289	291	293	295	249	251	253	255
H4H15362P2	297	299	301	303	249	251	253	255
H4H15363P2	305	307	309	311	249	251	253	255
H4H15367P2	313	315	317	319	321	323	325	327
H4H15369P2	329	331	333	335	321	323	325	327

[0198] Antibodies are typically referred to herein according to the following nomenclature: Fc prefix (e.g. "H1H," "H1M," "H2M", "H4H", etc.), followed by a numerical identifier (e.g. "15321," "15341," "15350," etc.), followed by a "P" or "N" suffix, as shown in Tables 1 and 2. Thus, according to this nomenclature, an antibody may be referred to herein as, e.g., "H4H15321P", etc. The H4H prefix on the antibody designations used herein indicate the particular Fc region isotype of the antibody. For example, an "H4H" antibody has a human IgG4 Fc, an "H1M" antibody has a mouse IgG1 Fc, and an "H2M" antibody has a mouse IgG2 Fc, (all variable regions are fully human as denoted by the first 'H' in the antibody designation). As will be appreciated by a person of ordinary skill in the art, an antibody having a particular Fc isotype can be converted to an antibody with a different Fc isotype (e.g., an antibody with a mouse IgG1 Fc can be converted to an antibody with a human IgG4, etc.), but in any event, the variable domains (including the CDRs) – which are indicated by the numerical identifiers shown in Tables 1 and 2 – will remain the same, and the binding properties are expected to be identical or substantially similar regardless of the nature of the Fc domain.

Example 3: Surface plasmon resonance (SPR) determination of dissociation rate constants (k_d) for ANGPTL8 antibodies binding to ANGPTL8, ANGPTL3, and ANGPTL4 peptides

[0199] It was previously demonstrated that antibodies binding to the N-terminal coiled-coil region of ANGPTL3 [WO 2012/174178 A1; Lee et al. (2009) JBC, 284:13735-13745] and ANGPTL4 [Desai et al. (2007) PNAS, 104:11766-11771] blocked the LPL inhibitory activity of the ANGPTL proteins. In this experiment, antibodies against ANGPTL8 were tested for binding to a peptide from the N-terminal region of ANGPTL8.

[0200] Dissociation rate constants for ANGPTL8 antibodies binding to human ANGPTL8 peptide (hANGPTL8 peptide, SEQ ID NO: 337) were determined using a real-time surface

plasmon resonance based MASS-1 biosensor platform. The assay utilized a format where ANGPTL8 antibodies were captured on the sensor surface and peptides were injected over the antibody surface. Peptides from the N-terminal coiled-coil region of human ANGPTL3 (hANGPTL3 peptide, SEQ ID NO: 338) and human ANGPTL4 (hANGPTL4 peptide, SEQ ID NO: 339) were also included as controls. Also included was a control antibody (H4H268P from US2011/0159015A1) that binds to the ANGPTL4 peptide and a negative isotype control antibody. All binding studies were performed in 10mM HEPES pH 7.4, 150mM NaCl, 3mM EDTA, and 0.05% v/v Surfactant Tween-20 (HBS-ET running buffer) at 25 °C. The HCA sensor surface was derivatized via amine coupling to a monoclonal mouse anti-human Fc antibody (GE, # BR-1008-39), and to this surface was captured approximately 1000RU of each ANGPTL8 antibody or control antibody. Peptide stock solutions were diluted in HBS-ET running buffer to 500nM and injected over the antibody-captured surfaces for 4 minutes at a flow rate of 30µL/minute followed by the dissociation of bound peptide in HBS-ET running buffer for 10 minutes.

[0201] The association phase of peptides binding to captured ANGPTL8 antibodies could not be fit to a 1:1 binding model; therefore, only the dissociation rate constant (k_d) values were calculated by fitting the real-time binding sensorgrams using Scrubber 2.0c curve-fitting software. Dissociative half-lives ($t_{1/2}$) were calculated from k_d as:

$$t_{1/2} \text{ (min)} = \frac{\ln(2)}{60 \times k_d}$$

[0202] Binding parameters for the ANGPTL8, ANGPTL3, and ANGPTL4 N-terminal region peptides binding to captured ANGPTL8 antibodies, the control ANGPTL4 antibody, and the isotype control antibody are shown in Tables 3-5.

Results:

[0203] Under these experimental conditions, the maximum non-specific binding signal exhibited by 500nM of hANGPTL8, hANGPTL3, or hANGPTL4 peptides to blank anti-hFc surface was 3 RUs. Hence, binding interactions with signals that were three-fold above the 3 RU non-specific background (i.e., \geq 9RU) were considered specific binding interactions. Based on this criterion, antibody-peptide binding signals less than 9 RUs were considered non-binding (NB in Table 1).

[0204] From this binding study it was shown that ANGPTL8 antibodies H4H15321P, H4H15367P2, and H4H15345P bind specifically to the N-terminal region ANGPTL8 peptide (SEQ ID NO: 337). None of the ANGPTL8 antibodies bound to the hANGPTL3 (SEQ ID NO: 338) or hANGPTL4 (SEQ ID NO: 339) N-terminal region peptides.

Table 3: Binding of anti-ANGPTL8 monoclonal antibody to hANGPTL8 peptide at 25°C

mAb Captured	mAb Capture Level (RU)*	500nM hANGPTL8 peptide Bound (RU)	kd (1/s)	t _{1/2} (min)
H4H15321P	1101 ± 6.1	61	8.29E-05	139
H4H15367P2	1116 ± 17.4	43	9.82E-05	118
H4H15345P	1096 ± 3.6	37	2.03E-05	570
H4H15361P2	1394 ± 12.3	4	NB	NB
H4H15347P	1554 ± 54.6	0	NB	NB
H4H15318P	1087 ± 31.5	0	NB	NB
H4H15350P2	1298 ± 30.7	0	NB	NB
H4H15363P2	1281 ± 13.7	0	NB	NB
H4H15346P	1277 ± 26.3	0	NB	NB
H4H15334P	1256 ± 5.3	0	NB	NB
H4H15335P	1625 ± 31	0	NB	NB
H4H15343P	1129 ± 19.8	0	NB	NB
H4H15357P2	1159 ± 13.1	0	NB	NB
H4H15353P2	1296 ± 8.5	0	NB	NB
H4H15341P	1023 ± 30.1	0	NB	NB
H4H15369P2	1196 ± 54.2	0	NB	NB
H4H15330P	1168 ± 20.1	0	NB	NB
H4H15362P2	1131 ± 15.5	0	NB	NB
H4H15319P	974 ± 3.5	0	NB	NB
H4H15316P	1107 ± 24.7	0	NB	NB
H4H15323P	1068 ± 16.4	0	NB	NB
H4H15354P2	1297 ± 8.5	0	NB	NB
H4H15355P2	1323 ± 25.4	0	NB	NB
H4H15314P2	1011 ± 3.4	0	NB	NB
H4H15331P	1264 ± 16.8	-1	NB	NB
(α-AngPTL4 Ab)	1281 ± 50.2	0	NB	NB
Negative isotype control Ab	1092 ± 41.5	0	NB	NB
Blank α-hFc Surface	5 ± 0.3	3	NB	NB

* This column displays the average and standard deviation of antibody surface densities used for binding to ANGPTL8.

Table 4: Binding of anti-ANGPTL8 monoclonal antibody to hANGPTL3 shift peptide at 25°C

mAb Captured	mAb Capture Level (RU)*	500nM hANGPTL3 peptide Bound (RU)	kd (1/s)	t _{1/2} (min)
H4H15321P	1101 ± 6.1	0	NB	NB
H4H15367P2	1116 ± 17.4	0	NB	NB

H4H15345P	1096 ± 3.6	0	NB	NB
H4H15361P2	1394 ± 12.3	0	NB	NB
H4H15347P	1554 ± 54.6	-1	NB	NB
H4H15318P	1087 ± 31.5	0	NB	NB
H4H15350P2	1298 ± 30.7	0	NB	NB
H4H15363P2	1281 ± 13.7	0	NB	NB
H4H15346P	1277 ± 26.3	0	NB	NB
H4H15334P	1256 ± 5.3	0	NB	NB
H4H15335P	1625 ± 31	-1	NB	NB
H4H15343P	1129 ± 19.8	0	NB	NB
H4H15357P2	1159 ± 13.1	0	NB	NB
H4H15353P2	1296 ± 8.5	0	NB	NB
H4H15341P	1023 ± 30.1	0	NB	NB
H4H15369P2	1196 ± 54.2	0	NB	NB
H4H15330P	1168 ± 20.1	-1	NB	NB
H4H15362P2	1131 ± 15.5	0	NB	NB
H4H15319P	974 ± 3.5	0	NB	NB
H4H15316P	1107 ± 24.7	0	NB	NB
H4H15323P	1068 ± 16.4	0	NB	NB
H4H15354P2	1297 ± 8.5	0	NB	NB
H4H15355P2	1323 ± 25.4	0	NB	NB
H4H15314P2	1011 ± 3.4	0	NB	NB
H4H15331P	1264 ± 16.8	0	NB	NB
(α-AngPTL4 Ab)	1281 ± 50.2	0	NB	NB
Negative isotype control Ab	1092 ± 41.5	0	NB	NB
Blank α-hFc Surface	5 ± 0.3	0	NB	NB

* This column displays the average and standard deviation of antibody surface densities used for binding to ANGPTL3 peptide.

Table 5: Binding of anti-ANGPTL8 monoclonal antibody to hAngPTL4 peptide at 25°C

mAb Captured	mAb Capture Level (RU)*	500nM hAngPTL4 peptide Bound (RU)	kd (1/s)	t½ (min)
H4H15321P	1101 ± 6.1	0	NB	NB
H4H15367P2	1116 ± 17.4	0	NB	NB
H4H15345P	1096 ± 3.6	0	NB	NB
H4H15361P2	1394 ± 12.3	0	NB	NB
H4H15347P	1554 ± 54.6	0	NB	NB
H4H15318P	1087 ± 31.5	0	NB	NB
H4H15350P2	1298 ± 30.7	0	NB	NB

H4H15363P2	1281 ± 13.7	0	NB	NB
H4H15346P	1277 ± 26.3	0	NB	NB
H4H15334P	1256 ± 5.3	1	NB	NB
H4H15335P	1625 ± 31	1	NB	NB
H4H15343P	1129 ± 19.8	0	NB	NB
H4H15357P2	1159 ± 13.1	0	NB	NB
H4H15353P2	1296 ± 8.5	0	NB	NB
H4H15341P	1023 ± 30.1	0	NB	NB
H4H15369P2	1196 ± 54.2	0	NB	NB
H4H15330P	1168 ± 20.1	0	NB	NB
H4H15362P2	1131 ± 15.5	0	NB	NB
H4H15319P	974 ± 3.5	0	NB	NB
H4H15316P	1107 ± 24.7	0	NB	NB
H4H15323P	1068 ± 16.4	0	NB	NB
H4H15354P2	1297 ± 8.5	0	NB	NB
H4H15355P2	1323 ± 25.4	0	NB	NB
H4H15314P2	1011 ± 3.4	1	NB	NB
H4H15331P	1264 ± 16.8	0	NB	NB
(α-AngPTL4 Ab)	1281 ± 50.2	23	1.02E-03	11
Negative isotype control Ab	1092 ± 41.5	0	NB	NB
Blank α-hFc Surface	5 ± 0.3	0	NB	NB

* This column displays the average and standard deviation of antibody surface densities used for binding to ANGPTL4 peptide.

Example 4: Determination of kinetic binding parameters for H4H15341P binding to full-length human and monkey ANGPTL8 proteins by surface plasmon resonance (SPR)

[0205] The equilibrium dissociation constant (K_D) for ANGPTL8 antibody H4H15341P binding to full-length human and cynomolgus monkey ANGPTL8 proteins was determined using a real-time surface plasmon resonance-based MASS-1 biosensor platform. For the assay H4H15341P was injected over sensor surfaces onto which human or monkey ANGPTL8 proteins were immobilized. All binding studies were performed in 10mM HEPES pH 7.4, 150mM NaCl, 3mM EDTA, and 0.05% v/v Surfactant Tween-20 (HBS-ET running buffer) at 25 °C. The HCA sensor surface was first derivatized by amine coupling goat anti-mouse IgG2a polyclonal antibody (Southern Biotech, # 1080-01) onto which was then captured approximately 30 RU (binding units) of human ANGPTL8 expressed with C-terminal mouse IgG2a Fc tag (hANGPTL8-mFc; SEQ ID NO: 340) or monkey ANGPTL8 expressed with C-terminal mouse IgG2a Fc tag (MfANGPTL8-mFc; SEQ ID NO: 341). Different concentrations of ANGPTL8 mAb were first prepared in HBS-ET running buffer (300nM – 1.23nM; 3-fold serial dilution) and then injected

over the ANGPTL8-mFc captured surfaces for 4 minutes at a flow rate of 30 μ L/minute followed by the dissociation of bound mAb in HBS-ET running buffer for 10 minutes.

[0206] Kinetic association (k_a) and dissociation (k_d) rate constants were determined by fitting the real-time binding sensorgrams to a 1:1 binding model with mass transport limitation using Scrubber 2.0c curve-fitting software. Binding dissociation equilibrium constants (K_D) and dissociative half-lives ($t^{1/2}$) were calculated from the kinetic rate constants as:

$$K_D (M) = \frac{k_d}{k_a}, \quad \text{and} \quad t^{1/2} (\text{min}) = \frac{\ln(2)}{60 \times k_d}$$

[0207] Binding kinetic parameters for anti-ANGPTL8 mAb binding to hANGPTL8-mFc and MfANGPTL8-mFc at 25 °C is shown in Table 6.

Results:

[0208] Antibody H4H15341 bound to both human and monkey ANGPTL8 proteins immobilized on the sensor surface and did not exhibit measureable dissociation during the recorded dissociation phase. To obtain an estimate of the binding affinity the dissociation rate constant, k_d , was fixed at the upper detection limit under the experimental conditions, 1.0E-05 1/s. The equilibrium dissociation constant (K_D) values of H4H15341P binding to hANGPTL8-mFc and MfANGPTL8-mFc were estimated to be 117pM and 86pM or lower, respectively.

Table 6: Binding kinetics parameters of H4H15341P binding to hANGPTL8-mFc and MfANGPTL8-mFc at 25 °C.

Capture Surface	k_a (1/Ms)	k_d (1/s)	K_D (M)	$t^{1/2}$ (min)
hANGPTL8-mFc	8.50E+04	1.00E-05*	$\leq 1.17E-10$	≥ 1155
MfANGPTL8-mFc	1.16E+05	1.00E-05*	$\leq 8.60E-11$	≥ 1155

*No dissociation of anti-ANGPTL8 mAb was observed under the experimental conditions; therefore, the value of k_d was fixed at the upper detection limit of 1.00E-05s⁻¹.

Example 5: Determination of human and monkey ANGPTL8 binding specificity by Bio-Layer Interferometry (BLI)

[0209] Binding of ANGPTL8 antibodies to human and monkey ANGPTL8 proteins was investigated using Bio-layer Interferometry with an Octet HTX biosensor platform (ForteBio, A Division of Pall Life Sciences). All experiments were performed at 25 °C in 10mM HEPES pH 7.4, 150mM NaCl, 0.05% v/v Surfactant Tween-20, and 1mg/ml BSA with the reaction multiwell plate agitated at 1000rpm. Approximately 1.6nm of human ANGPTL8 produced with a C-terminal mouse IgG2a Fc tag (hANGPTL8-mFc; SEQ ID NO: 340) or cynomolgus monkey

ANGPTL8 produced with a C-terminal mouse IgG2a Fc tag (MfANGPTL8-mFc; SEQ ID NO: 341) was captured onto anti-mFc (AMC) Octet biosensors by submerging the sensors into wells containing 10 μ g/mL of each protein for 4 minutes. Under the same conditions a negative control protein with the same mFc tag (hLDLR-mFc) was also coupled to the AMC sensor. All four sensors, three protein-coupled and one blank, were then submerged into wells containing 100nM of different ANGPTL8 monoclonal antibodies or an isotype control for 4 minutes. Binding signals observed after the 4 minute binding step are tabulated in Table 7.

Results:

[0210] Among 25 ANGPTL8 mAbs tested in this study, 24 antibodies displayed binding signals higher than the maximum binding signals on the irrelevant control sensor tips (0.03 nm; this value was used to calculate binding signals as fold above background). Among the 24 human ANGPTL8 binders, 20 displayed positive binding on the monkey ANGPTL8 protein. The 4 antibodies that did not bind to monkey ANGPTL8 protein also displayed low binding signal on the human ANGPTL8 protein with values between 1-2 fold above the background binding signal. For the 24 antibodies binding to human ANGPTL8 protein, 4 antibodies (H4H15362P2, H4H15321P, H4H15330P, H4H15367P2) showed binding signals of 10-fold above background. Another group of 12 antibodies displayed binding signals between 5-10-fold above background. The remaining antibodies bound the human ANGPTL8 protein with binding signals that were between 1-5-fold above the background level.

Table 7: Binding specificity of 100 nM ANGPTL8 monoclonal antibodies to human and monkey ANGPTL8-mFc captured on Octet biosensors

mAb PID#	mAb Binding Response (nm)			
	hANGPTL8.mFc Captured Surface	MfANGPTL8.mFc Captured Surface	Irrelevant control (hLDLR.mFc) Captured Surface	Blank AMC Sensor
H4H15362P2	0.39	0.36	0.03	0.01
H4H15321P	0.36	0.51	0.01	0.00
H4H15330P	0.34	0.39	0.02	0.01
H4H15367P2	0.32	0.33	0.01	0.00
H4H15363P2	0.25	0.26	0.01	0.02
H4H15347P	0.25	0.29	0.01	0.03
H4H15345P	0.25	0.31	0.00	0.01
H4H15319P	0.22	0.26	-0.01	0.00
H4H15361P2	0.20	0.21	0.01	0.02
H4H15318P	0.19	0.20	0.01	0.01

H4H15323P	0.18	0.15	0.00	0.00
H4H15350P2	0.17	0.20	0.00	-0.01
H4H15343P	0.17	0.20	-0.01	0.01
H4H15331P	0.16	0.21	0.01	0.01
H4H15355P2	0.15	0.13	0.02	0.03
H4H15353P2	0.15	0.11	0.02	0.02
H4H15369P2	0.14	0.17	0.00	0.01
H4H15357P2	0.13	0.08	0.01	0.02
H4H15341P	0.12	0.10	0.02	0.03
H4H15346P	0.07	0.01	0.00	-0.01
H4H15335P	0.06	0.04	0.01	0.01
H4H15354P2	0.05	0.03	0.01	0.02
H4H15334P	0.05	0.01	0.00	0.03
H4H15314P2	0.04	0.01	0.01	0.00
H4H15316P	0.03	0.02	0.02	0.02
Negative Isotype control Ab	0.01	0.00	0.01	0.01

Example 6: *In Vivo* Effect of IgG4 Anti-hANGPTL8 Antibodies on circulating triglyceride levels in humanized ANGPTL8 mice

[0211] The effect of anti-hANGPTL8 antibodies on serum triglyceride (TG) levels was determined in humanized ANGPTL8 mice. Mice were pre-bled 7 days before the experiment and put into groups of five mice each for each antibody tested. Antibodies were administered at 10mg/kg dose (anti-hANGPTL8 and isotype-matched (hIgG4) control with irrelevant specificity) by subcutaneous injection on Day 0 of the study. Mice were bled (nonfasted) at consecutive days after antibody injections and TG levels were determined in the serum by ADVIA® 1800 Serum Chemistry Analyzer (Siemens). Averages were calculated for each of the time points for all tested antibodies. Results, expressed as (mean ± SEM) of serum TG concentration, are shown in Tables 8-13.

Levels of circulating anti-hANGPTL8 (Serum Ab) were also determined using a standard ELISA assay. Briefly, plates were coated with a goat anti-human Fc antibody (Sigma-Aldrich) to capture Serum Ab. Serum was then added to the plates and captured antibodies were detected by chemiluminescence using a horseradish peroxidase (HRP) conjugated goat anti-human IgG antibody (Sigma-Aldrich). Results, expressed as (mean ± SEM) of are shown in Tables 14-19.

Control: Mice that received an isotype-matched Control Ab

Results:

[0212] The effect of 25 mAbs to hANGPTL8 on circulating TG levels were tested in humanized ANGPTL8 mice. Antibody H4H15341P led to significant reduction in circulating TG (up to 68% average) after administration (compared to control mAb).

Table 8. Study 1, serum triglycerides (mg/dL)

Days after injection	Antibody									
	Control		H4H15321P		H4H15331P		H4H15343P		H4H15367P2	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
- 7	205.4	14.20	203.8	19.68	206.6	16.20	205.2	12.13	203.6	14.21
1	233.6	16.93	239.4	28.61	259.8	35.52	196.8	16.05	222.0	27.41
4	210.4	12.79	233.2	26.19	244.4	33.83	175.2	10.32	234.8	27.28
7	261.0	19.66	235.6	33.82	241.8	55.74	201.8	23.50	203.2	27.79

Table 9. Study 2, serum triglycerides (mg/dL)

Days after injection	Antibody							
	Control		H4H15341P		H4H15319P		H4H15318P	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
- 7	214.8	20.08	211.4	21.67	213.6	20.50	212.8	20.00
1	255.4	25.18	82.0	3.35	217.4	26.92	235.2	24.62
4	228.6	33.43	93.6	7.69	195.0	29.93	270.6	34.28
7	197.0	21.22	90.8	7.68	235.4	35.70	209.6	31.88
14	223.0	14.98	126.4	21.75	185.2	29.94	166.0	24.58

Table 9 (continued)

Days after injection	Antibody			
	H4H15355P2		H4H15345P	
	Mean	SEM	Mean	SEM
- 7	214.4	19.18	213.0	20.34
1	248.2	45.93	228.8	37.97
4	221.2	30.30	195.80	23.87
7	254.2	37.93	252.60	25.24
14	219.4	36.69	190.60	13.13

Table 10. Study 3, serum triglycerides (mg/dL)

Days after injection	Antibody									
	Control		H4H15350P2		H4H15314P2		H4H15330P		H4H15361P2	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
- 7	247.8	23.88	242.8	21.60	244.0	26.34	243.2	22.29	242.4	25.29
1	214.6	20.37	206.6	21.60	228.2	35.33	206.6	25.44	215.4	20.20
4	222.4	13.78	198.2	22.61	192.4	17.25	216.6	15.84	200.0	15.89
7	288.8	35.41	274.6	45.48	238.6	21.21	244.4	14.61	247.4	37.93

Table 11. Study 4, serum triglycerides (mg/dL)

Days after injection	Antibody									
	Control		H4H15357P2		H4H15363P2		H4H15347P		H4H15369P	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
- 7	197.0	18.29	201.6	25.18	201.6	26.15	200.4	24.71	198.8	22.43
1	227.6	46.41	221.6	37.35	189.4	5.963	194.6	28.33	217.0	39.68
6	194.0	18.06	211.2	35.96	190.6	20.21	248.2	16.12	223.0	25.61

Table 12. Study 5, serum triglycerides (mg/dL)

Days after injection	Antibody							
	Control		H4H15353P2		H4H15323P		H4H15362P2	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
- 7	199.2	26.68	197.4	27.02	199.8	30.33	200.8	27.55
2	217.2	16.09	184.4	28.67	179.8	35.99	166.6	26.76
8	161.8	18.58	185.4	24.78	187.0	38.76	180.2	18.22
14	227.2	33.70	216.4	11.74	212.4	31.29	173.2	17.75

Table 12 (continued)

Days after injection	Antibody			
	H4H15334P		H4H15354P2	
	Mean	SEM	Mean	SEM
- 7	199.8	26.25	200.0	26.33
2	183.0	16.93	169.8	23.14
8	160.0	16.56	162.6	20.50
14	167.6	18.73	197.4	34.20

Table 13. Study 6, serum triglycerides (mg/dL)

Days after injection	Antibody							
	Control		H4H15316P		H4H15335P		H4H15346P	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
- 7	232.0	24.94	232.0	28.26	232.4	23.88	232.8	30.30
2	211.0	23.19	248.2	35.35	203.2	6.785	197.2	20.42
7	256.8	32.02	249.6	35.72	248.0	17.28	234.8	66.74

Table 14. Study 1, Serum Ab (µg/mL)

Days after injection	Antibody									
	Control		H4H15321P		H4H15331P		H4H15343P		H4H15367P2	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
1	64.1	9.0	76.4	8.6	9.8	2.0	74.4	8.5	113.0	9.6
4	55.8	6.3	66.5	4.6	3.3	0.7	68.3	4.4	101.4	11.3

Table 15. Study 2, Serum Ab (µg/mL)

Days after injection	Antibody							
	Control		H4H15341P		H4H15319P		H4H15318P	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
1	50.8	3.9	104.0	18.7	81.8	8.2	74.4	8.5
4	51.2	9.5	70.6	23.6	59.1	9.6	68.3	4.4
7	40.9	5.4	50.7	13.3	46.8	8.9	68.3	4.4
14	32.2	3.1	8.2	4.6	24.1	8.7	68.3	4.4

Table 15 (continued)

Days after injection	Antibody							
	H4H15355P2		H4H15345P					
	Mean	SEM	Mean	SEM				
1	68.4	3.8	59.3	3.6				
4	58.4	3.0	46.3	16.2				
7	35.7	6.6	50.1	3.9				
14	3.1	0.8	35.9	4.6				

Table 16. Study 3, Serum Ab (µg/mL)

Days after injection	Antibody									
	Control		H4H15350P2		H4H15314P2		H4H15330P		H4H15361P2	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
1	47.3	7.0	57.2	23.4	89.9	13.0	38.3	14.7	50.0	13.6
4	50.6	13.4	66.1	22.6	69.9	12.9	35.4	0.9	57.4	10.1
7	38.8	9.2	39.9	14.7	48.6	17.3	30.0	5.1	38.7	11.1

Table 17. Study 4, Serum Ab (µg/mL)

Days after injection	Antibody									
	Control		H4H15357P2		H4H15363P2		H4H15347P		H4H15369P	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
1	100.9	100.9	78.4	26.7	93.2	10.1	53.6	7.5	99.7	15.6
6	84.0	84.0	56.9	14.8	62.0	7.6	9.5	2.9	68.0	12.0

Table 18. Study 5, Serum Ab (µg/mL)

Days after injection	Antibody							
	Control		H4H15353P2		H4H15323P		H4H15362P2	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
2	93.7	14.4	63.5	17.6	99.9	34.5	91.0	24.6

8	79.8	8.7	42.8	11.1	50.3	9.7	50.8	10.3
14	55.1	11.4	18.2	14.0	32.3	10.0	29.5	20.9

Table 18 (continued)

Days after injection	Antibody			
	H4H15334P		H4H15354P2	
	Mean	SEM	Mean	SEM
2	64.4	15.0	71.3	7.2
8	38.7	7.1	46.0	15.4
14	8.6	4.6	30.1	26.6

Table 19. Study 6, Serum Ab (µg/mL)

Days after injection	Antibody							
	Control		H4H15316P		H4H15335P		H4H15346P	
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
2	87.4	9.2	79.3	18.5	66.9	17.5	61.1	22.8
7	97.4	23.0	77.9	12.8	78.6	16.2	56.7	23.7

Example 7: Dose Response of hANGPTL8 Antibody H4H15341P in humanized ANGPTL8 mice

[0213] The effects of different doses of hANGPTL8 mAb, H4H15341P, on serum triglycerides (TG) were evaluated in humanized ANGPTL8 mice. Mice were pre-bled 7 days before the experiment and put into groups of five mice each for each dose tested. H4H15341P was administered at 1, 5, 10 and 25 mg/kg and isotype-matched (hIgG4) control with irrelevant specificity at 10mg/kg by single-dose subcutaneous injection on Day 0 of the study. Mice were bled (nonfasted) at days 2, 7, 14 and 21 after antibody injection and TG levels were determined in the serum by ADVIA® 1800 Chemistry System (Siemens). Averages were calculated for each time point. Results, expressed as (mean ± SEM) of serum TG concentration, are shown in Figure 1.

[0214] Levels of circulating anti-human antibodies (Serum Ab) were determined using a standard ELISA assay. Briefly, plates were coated with a goat anti-human Fc antibody (Sigma-Aldrich) to capture Serum Ab. Serum was then added to the plates and captured antibodies were detected by chemiluminescence using a horseradish peroxidase (HRP) conjugated goat anti-human IgG antibody (Sigma-Aldrich). Results, expressed as (mean ± SEM) are shown in Figure 2.

Control Ab refers to mice that received an isotype-matched control Ab.

Results:

[0215] The effect of 4 different doses of H4H15341P (anti-hANGPTL8) on circulating TG and cholesterol levels were tested in humanized ANGPTL8 mice. H4H15341P led to dose-dependent sustained significant reduction in serum TG (up to 66% average, compared to control mAb) with 5mg/kg being the lowest efficacious dose. No effect was observed on total cholesterol levels.

Example 8. Evaluation of lipoprotein lipase (LPL) activity after hANGPTL8 mAb treatment in humanized ANGPTL8 mice

[0216] The effect of hANGPTL8 mAb (H4H15341P) administration on LPL activity was evaluated in humanized ANGPTL8 mice. Mice were pre-bled 7 days before the experiment and put into groups of five mice each for each mAb tested. H4H15341P and Control Ab were administered at 10 mg/kg by single-dose subcutaneous injection on Day 0 of the study. On day 4 of the study, mice were dosed with heparin by intravenous injection via tail vein at 250U/kg that releases LPL from vascular endothelial surfaces. Five minutes later mice were bled from the retro-orbital sinus and post-heparin plasma collected and fractionated to separate LPL from hepatic lipase using heparin-Sepharose chromatography. Post-heparin plasma was loaded onto 1.0-ml heparin-Sepharose HiTrap columns (GE Healthcare) controlled by the GE Akta Prime, equilibrated with 0.25 M NaCl, 20% glycerol, 1% BSA, 10 mM sodium phosphate, pH 6.5. The column was washed with 10 ml of the equilibration buffer and eluted with a 30 ml NaCl gradient (0.25–1.5 M in 20% glycerol, 1% BSA, 10 mM sodium phosphate, pH 6.5). Resulting fractions were pooled by hepatic lipase and LPL peaks and the lipase activities were assayed using Invitrogen Enzchek Lipase substrate (cat#E33955). The kinetic reaction was read on Molecular Devices SpectraMax i3 plate reader at 482nm excitation / 518nm emission. Results, expressed as relative fluorescence units (RFU) (mean ± SEM) are shown in Figure 3. Control Ab refers to mice that received an isotype-matched negative control Ab.

Results

[0217] The results showed that administration of H4H15341P (anti-hANGPTL8) to humanized ANGPTL8 mice leads to a significant increase in LPL activity and has no effect on hepatic lipase activity.

Example 9. Lipid Tolerance Test in Humanized ANGPTL8 Mice Treated with hANGPTL8 mAb H4H15341P

[0218] The effect of ANGPTL8 inhibition with the mAb H4H15341P on triglyceride clearance was evaluated by acute fat loading. Humanized ANGPTL8 mice were pre-bled 8 days before the experiment and put into groups of 6 mice each for each mAb tested. H4H15341P and isotype-matched control Ab were administered at 10 mg/kg by single-dose subcutaneous injection on Day 0 of the study. On day 4 of the study mice were fasted for 4 hours following intravenous administration of 20% intralipid (Baxter Healthcare, IL) at 2.5 µl/g body weight. TG

level was evaluated in blood collected from the tail vein at subsequent time points. Results, expressed as (mean \pm SEM) of TG concentration are shown in Figure 4. Control Ab refers to mice that received an isotype-matched negative control Ab.

Results

[0219] Administration of H4H15341P (anti-hANGPTL8) to humanized ANGPTL8 mice leads to a significantly lower TG level after acute fat load compared to control antibody. These data suggest that H4H15341P, by blocking ANGPTL8, promotes accelerated TG clearance from the circulation.

Example 10. HiSense Linear Epitope Mapping for Angiopoietin-Like Protein 8

[0220] Pepscan analysis using HiSense linear peptides was employed to establish linear epitopes for antibodies H4H15341P and H4H15367P2. The study was conducted at Pepscan Presto BV, (Zuidersluisweg 2, 8243RC Lelystad, The Netherlands). All Pepscan data is stored in the software package Peplab™, a proprietary database application developed in-house and built on a PostgreSQL storage back-end.

SYNTHESIS OF PEPTIDES

[0221] To reconstruct epitopes of the target molecule, a library of peptides was synthesized. An amino functionalized polypropylene support was obtained by grafting with a proprietary hydrophilic polymer formulation, followed by reaction with t-butyloxycarbonyl-hexamethylenediamine (BocHMDA) using dicyclohexylcarbodiimide (DCC) with Nhydroxybenzotriazole (HOBr) and subsequent cleavage of the Boc-groups using trifluoroacetic acid (TFA). Standard Fmocpeptide synthesis was used to synthesize peptides on the amino-functionalized solid support by custom modified JANUS liquid handling stations (Perkin Elmer).

COUPLING OF ANGIOPOIETIN-LIKE PROTEIN 8 ONTO THE ARRAY

[0222] The target protein was coupled on the mini-card as a positive control. To couple Angiopoietin-like protein 8 (hANGPTL8-mFc) onto the arrays, two cross-linking agents were used - m-maleimidobenzoyl-Nhydroxysuccinimide ester (MBS) and glutaraldehyde (GDA). For MBS 40 μ l of hANGPTL8-mFc were mixed with 1 μ l of MBS (2 mg/ml), incubated for 45 min at room temperature, and then applied onto the array at positions containing the linker motif CGGCGG (SEQ ID NO:346). For the GDA linking, 0.05% GDA in phosphate buffer (pH 5.0) was applied onto the array, incubated at room temperature for 4 hours, then hANGPTL8-mFc at concentration 5 or 20 μ g/ml in phosphate buffer pH 8.0 was added onto the array on positions containing Gly only to allow coupling to the free N terminus.

ELISA SCREENING

[0223] The binding of antibody to each of the synthesized peptides was tested in a

PEPSCAN-based ELISA. The peptide arrays were incubated with primary antibody solution (overnight at 4 °C). After washing, the peptide arrays were incubated with a 1/1000 dilution of an appropriate antibody peroxidase conjugate (goat anti-human HRP conjugate, Southern Biotech, catalog no. 2010-05) for one hour at 25 °C. After washing, the peroxidase substrate 2,2'-azino-di-3-ethylbenzthiazoline sulfonate (ABTS) and 20 µl/ml of 3 percent H₂O₂ were added. After one hour, the color development was measured. The color development was quantified with a charge coupled device (CCD) - camera and an image processing system.

SCREENING DETAILS

[0224] Antibody binding depends on a combination of factors, including concentration of the antibody and the amounts and nature of competing proteins in the ELISA buffer. Also, the pre-coat conditions (the specific treatment of the peptide arrays prior to incubation with the experimental sample) affect binding. These details are summed up as follows:

<u>Label</u>	<u>Dilution</u>	<u>Sample buffer</u>	<u>Pre-conditioning</u>
H4H15341P	1 µg/ml	100% SQ	100% SQ
H4H15367P2	1 µg/ml	100% SQ	100% SQ
Negative isotype control	1 µg/ml	100% SQ	100% SQ

For the Pepscan Buffer and Preconditioning (SQ), the numbers indicate the relative amount of competing protein (a combination of horse serum and ovalbumin).

DATA PROCESSING

[0225] The values obtained from the CCD camera range from 0 to 3000 mAU, similar to a standard 96-well plate ELISA-reader. The results are quantified and stored into the Peplab database. Occasionally, a well contains an air-bubble resulting in a false-positive value, the cards are manually inspected and any values caused by an air-bubble are scored as 0.

SYNTHESIS QUALITY CONTROL

[0226] To verify the quality of the synthesized peptides, a separate set of positive and negative control peptides was synthesized in parallel. These were screened with antibody 57.9 (Posthumus, *et al.* 1990 *J Virol* 64:3304-3309).

Results

DESIGN OF PEPTIDES

[0227] The following sets of peptides were synthesized on the target sequence:

[0228] Human ANGPTL8, mature sequence, amino acids 22-198 from NP_061157.3

1 APMGGPELAQ HEELTLLFHG TLQLGQALNG VYRTTEGRLT KARNSLGLYG 50

51 RTIELLGQEV SRGRDAAQEL RASLLETQME EDILQLQAEA TAEVLGEVAQ 100

101 AQKVLRDSVQ RLEVQLRSAW LGPAYREFEV LKAHADKQSH ILWALTGHVQ 150

151 RQRREMVAQQ HRLRQIQLRL HTAALPA 177 (SEQ ID NO:347)

[0229] The antibodies were tested for binding a series of 15-mer peptides covering the full sequence of ANGPTL8, each peptide offset by one amino acid from the next. Also included were double alanine ("AA") substitutions within the series of tested peptides for finer epitope analysis.

SET 1. Mimic: linear. Type: LIN

Description Peptides of length 15 derived from the target sequence of Angiopoietin-like protein 8 with an offset of one residue.

Sequences (first 10)

APMGGPELAQHEELT (SEQ ID NO: 348)

PMGGPELAQHEELTL (SEQ ID NO: 349)

MGGPELAQHEELTLL (SEQ ID NO: 350)

GGPELAQHEELTLLF (SEQ ID NO: 351)

GPELAQHEELTLLFH (SEQ ID NO: 352)

PELAQHEELTLLFHG (SEQ ID NO: 353)

ELAQHEELTLLFHGT (SEQ ID NO: 354)

LAQHEELTLLFHGTL (SEQ ID NO: 355)

AQHEELTLLFHGTLQ (SEQ ID NO: 356)

QHEELTLLFHGTLQL (SEQ ID NO: 357)

SET 2. Mimic: linear. Type: LIN.AA

Description Peptides of set 1, but with residues on positions 10 and 11 replaced by Ala. When a native Ala would occur on either position, it is replaced by Gly. The order of peptides in this set was randomized. The actual order on the array is shown.

Sequences (first 10)

TAEVLGEVAAGQKVL (SEQ ID NO: 358)

VYRTTEGRLAAARNS (SEQ ID NO: 359)

GVYRTTEGRAAKARN (SEQ ID NO: 360)

VQRLEVQLRAGWLGP (SEQ ID NO: 361)

LTGHVQRQRAAMVAQ (SEQ ID NO: 362)

VLKAHADKQAAILWA (SEQ ID NO: 363)

LRDSVQRLEAALRSA (SEQ ID NO: 364)

RREMVAQQHAARQIQ (SEQ ID NO: 365)

VSRGRDAAQAAARASL (SEQ ID NO: 366)

AYREFEVLKGAADKQ (SEQ ID NO: 367)

[0230] The raw ELISA results of the screening were provided and plotted (box plot, data not shown) to depict each dataset and indicate the average ELISA signal, the distribution, and the outliers within each dataset. Depending on experiment conditions (amount of antibody, blocking strength, etc.), different distributions of ELISA data were obtained.

ANTIBODY H4H15367P2

[0231] When tested under high stringency conditions, antibody H4H15367P2 avidly bound only one linear peptide comprised of sequence 1APMGGPELAQHEELT15 (SEQ ID NO: 348). This sample was tested twice under the same conditions and repeatedly yielded the same result. Antibody H4H15367P2 also strongly bound Angiopoietin-like protein 8, which was coupled onto the array as a positive control. Interestingly, somewhat weaker binding was obtained with the target protein coupled using MBS when compared to GDA coupling.

ANTIBODY H4H15341P

[0232] When tested under high stringency conditions, antibody H4H15341P avidly bound a series of linear peptides, which contain common sequence ₁₅₀QRQRREMVAQ₁₅₉ (SEQ ID NO: 368). Comparison of intensity profiles recorded on set 1 (native linear epitope mimics) and set 2 (double Ala mutants) indicates that residues R154, E155, and Q159 are essential for antibody binding. Antibody H4H15341P also strongly bound Angiopoietin-like protein 8, which was coupled onto the array as a positive control, regardless of the immobilization.

NEGATIVE ISOTYPE CONTROL

[0233] Negative isotype control did not bind any peptide present on the array. Furthermore, no detectable binding was recorded with Angiopoietin-like protein 8, which was coupled onto the array as a positive control. Negative isotype control was additionally tested with goat anti-human secondary conjugate used in Pepscan ELISA. The antibody can be recognized by this secondary.

Conclusion

[0234] Three antibodies provided for this study were tested on HiSense peptide arrays. It was possible to establish tentative linear epitopes for two antibodies. Despite repeated incubations, antibody Negative isotype control did not bind to the array. Core tentative epitopes identified in this study are listed as follows:

<u>Antibody</u>	<u>Core epitope</u>
-----------------	---------------------

H4H15341P	$^{150}\text{QRQRREMVAQ}_{159}$ (SEQ ID NO: 368)
-----------	--

H4H15367P2	$^{1}\text{APMGGPELAQHEELT}_{15}$ (SEQ ID NO: 348)
------------	--

Negative isotype control	-.
--------------------------	----

[0235] Thus, Antibodies H4H15341P and H4H15367P2 recognize distinct linear sequences within C- and N-termini respectively. The fact that signal obtained for antibody H4H15367P2 with MBS coupling was less than with GDA coupling, together with its localization on the extreme N terminus indicate that the N terminal amine itself may be part of the epitope. Additionally, for antibody H4H15341P double alanine mutants served to pinpoint residues that are critical for binding (residues shaded in light grey, above).

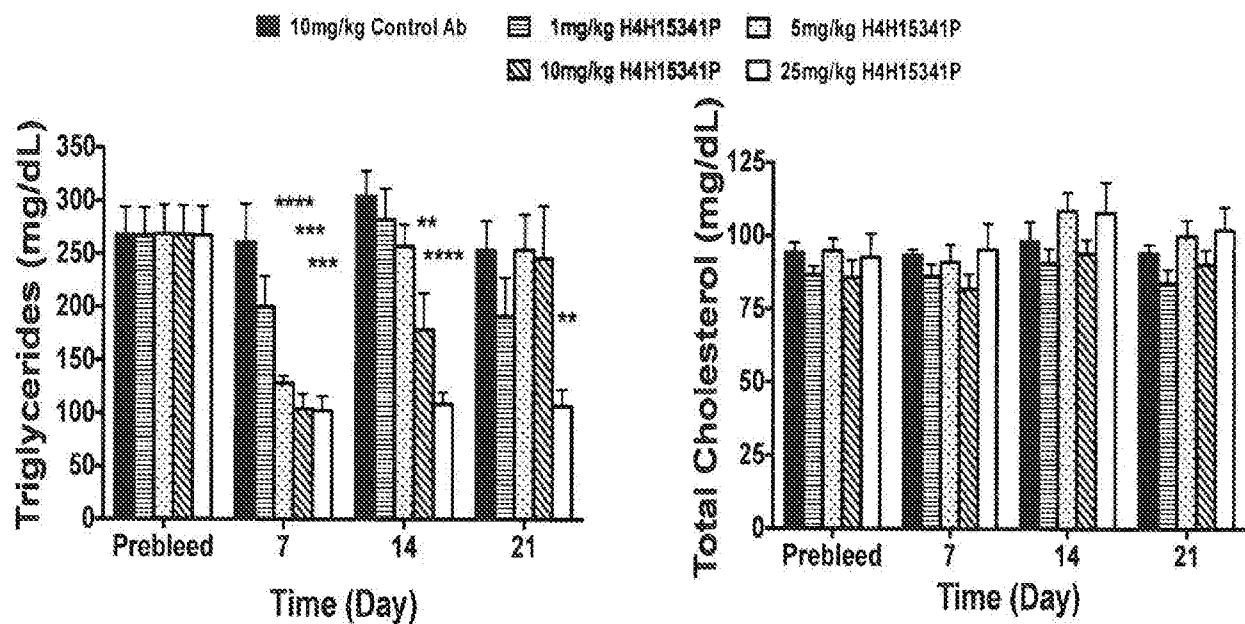
[0236] Antibody H4H15341P targets a C-terminal region of Angiopoietin-like protein 8, while H4H15367P2 targets the very N-terminus. Antibody Negative isotype control did not bind to the array.

[0237] In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

What is claimed is:

1. An anti-angiopoietin-like protein 8 (ANGPTL8) antibody or antigen-binding fragment thereof, which comprises a HCVR/LCVR sequence pair of SEQ ID NOs: 162/170.
2. The antibody of claim 1, which is an IgG1 or IgG4 antibody.
3. An isolated nucleic acid molecule encoding an antibody or antigen-binding fragment thereof as defined in claim 1 or 2.
4. A recombinant expression vector comprising a nucleic acid molecule of claim 3 or a host cell comprising the vector.
5. A method of producing an antibody or antigen-binding fragment thereof of claim 1 or 2, comprising culturing the host cell of claim 4 under conditions permitting production of the antibody or fragment and recovering the antibody or fragment so produced.
6. A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof of claim 1 or 2 and a pharmaceutically acceptable carrier or diluent.
7. A method of treating a condition or disease associated with, or characterized in part by high blood triglyceride levels, or at least one symptom or complication associated with the condition or disease, the method comprising administering the antibody or antigen-binding fragment thereof of claim 1 or 2, or the pharmaceutical composition of claim 6, to a patient in need thereof, such that blood triglyceride levels are lowered or that the condition or disease is mediated, or the at least one symptom or complication associated with the condition or disease is alleviated or reduced in frequency or severity, wherein the condition or disease is selected from the group consisting of hyperlipidemia, hyperlipoproteinemia, dyslipidemia such as atherogenic dyslipidemia, diabetic dyslipidemia, diabetic dyslipidemia or mixed dyslipidemia, hypertriglyceridemia, severe hypertriglyceridemia with $TG > 1000$ mg/dL and associated acute pancreatitis, hypercholesterolemia, chylomicronemia, obesity, metabolic syndrome, diabetes, lipodystrophy, lipoatrophy resulting from, or caused by altered ApoC2, ApoE deficiency, nonalcoholic steatohepatitis, or glucocorticoid treatment-induced dyslipidemia.
8. Use of the antibody or antigen-binding fragment thereof of claim 1 or 2, or the pharmaceutical composition of claim 6, in the manufacture of a medicament for treating a

condition or disease associated with, or characterized in part by high blood triglyceride levels, or at least one symptom or complication associated with the condition or disease, wherein blood triglyceride levels are lowered or that the condition or disease is mediated, or the at least one symptom or complication associated with the condition or disease is alleviated or reduced in frequency or severity, and wherein the condition or disease is selected from the group consisting of hyperlipidemia, hyperlipoproteinemia, dyslipidemia such as atherogenic dyslipidemia, diabetic dyslipidemia, diabetic dyslipidemia or mixed dyslipidemia, hypertriglyceridemia, severe hypertriglyceridemia with $TG > 1000$ mg/dL and associated acute pancreatitis, hypercholesterolemia, chylomicronemia, obesity, metabolic syndrome, diabetes, lipodystrophy, lipoatrophy resulting from, or caused by altered ApoC2, ApoE deficiency, nonalcoholic steatohepatitis, or glucocorticoid treatment-induced dyslipidemia.


9. The method of claim 7 or use the of claim 8, wherein the condition or disease is a cardiovascular disease or disorder selected from the group consisting of atherosclerosis, aneurysm, hypertension, angina, stroke, cerebrovascular diseases, congestive heart failure, coronary artery diseases, myocardial infarction, and peripheral vascular diseases.

10. The method of claim 7 or 9 or the use of claim 8 or 9, wherein the antibody or antigen-binding fragment thereof or the pharmaceutical composition or the medicament is to be administered to the patient in combination with a second therapeutic agent.

11. The method or use of claim 10, wherein the second therapeutic agent is selected from the group consisting of:

- (a) niacin; fibrates 22-hydroxycholesterol; ezetimibe plus simvastatin; a statin with cholestyramine, colestipol or colesevelam; niacin plus a statin such as niacin with lovastatin; omega-3-fatty acid ethyl esters; cerivastatin, atorvastatin, simvastatin, pitavastatin, rosuvastatin, fluvastatin, lovastatin, and pravastatin;
- (b) an isolated antibody, or an antigen-binding fragment thereof, that specifically binds to angiopoietin-like protein 3 (ANGPTL3), angiopoietin-like protein 4 (ANGPTL4), angiopoietin-like protein 5 (ANGPTL5), angiopoietin-like protein 6 (ANGPTL6) and human proprotein convertase subtilisin/kexin type 9 (PCSK9); or
- (c) insulin, metformin, glyburide, glipizide, pioglitazone, rosiglitazone, acarbose, voglibose, exenatide, dulaglutide, liraglutide, lixisenatide, albiglutide, saxagliptin, sitagliptin, vildagliptin, canagliflozin, dapagliflozin, empagliflozin, ipragliflozin, tofogliflozin, pramlintide, fast acting Lispro, Aspart, Glulisine

and long acting Detemir insulin, Degludec insulin, Glargine insulin, torcetrapib, anacetrapib, dalcetrapib, evacetrapib or aminoguanidine.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001

Figure 1

Serum Ab

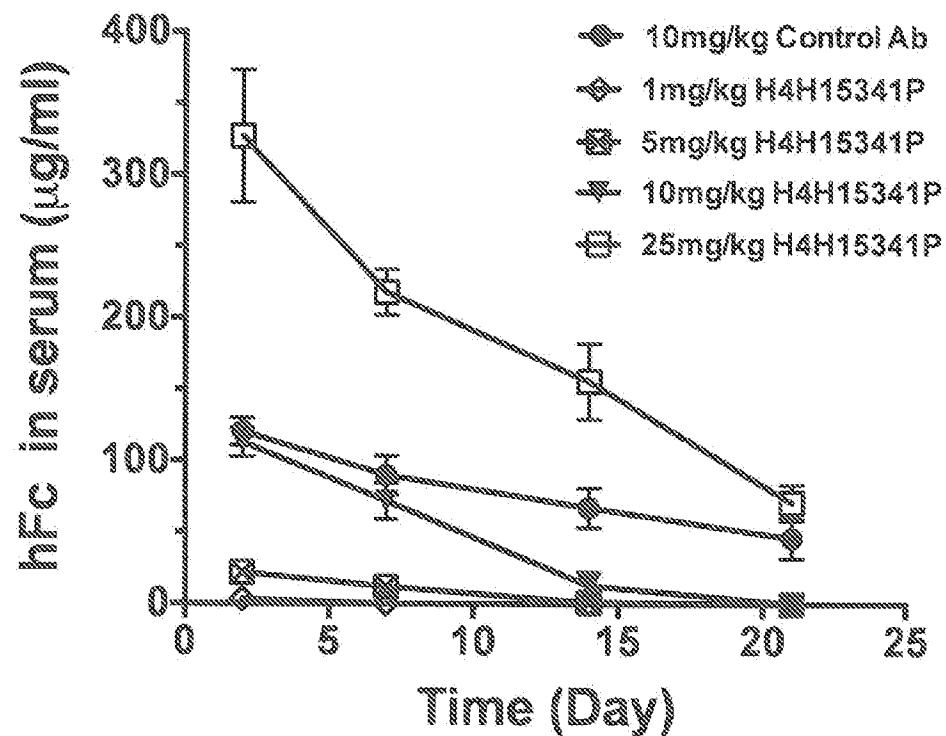
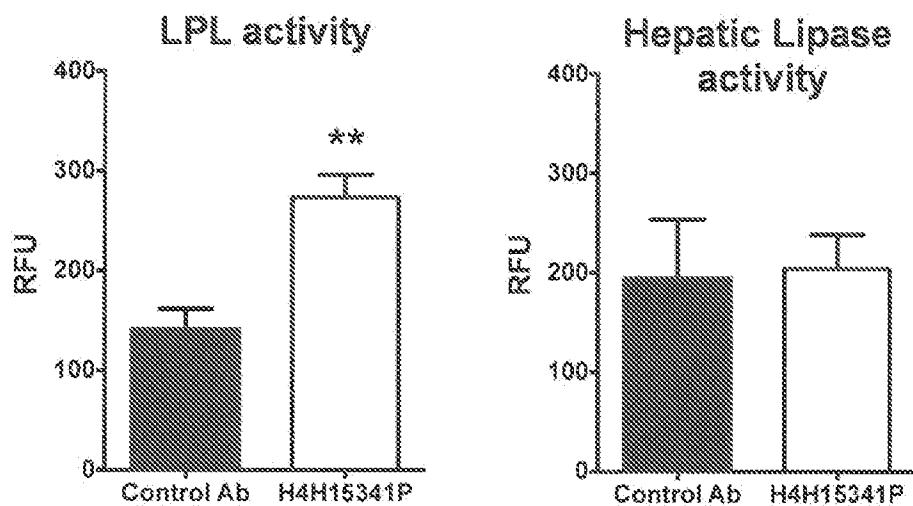



Figure 2

**p<0.01

Figure 3

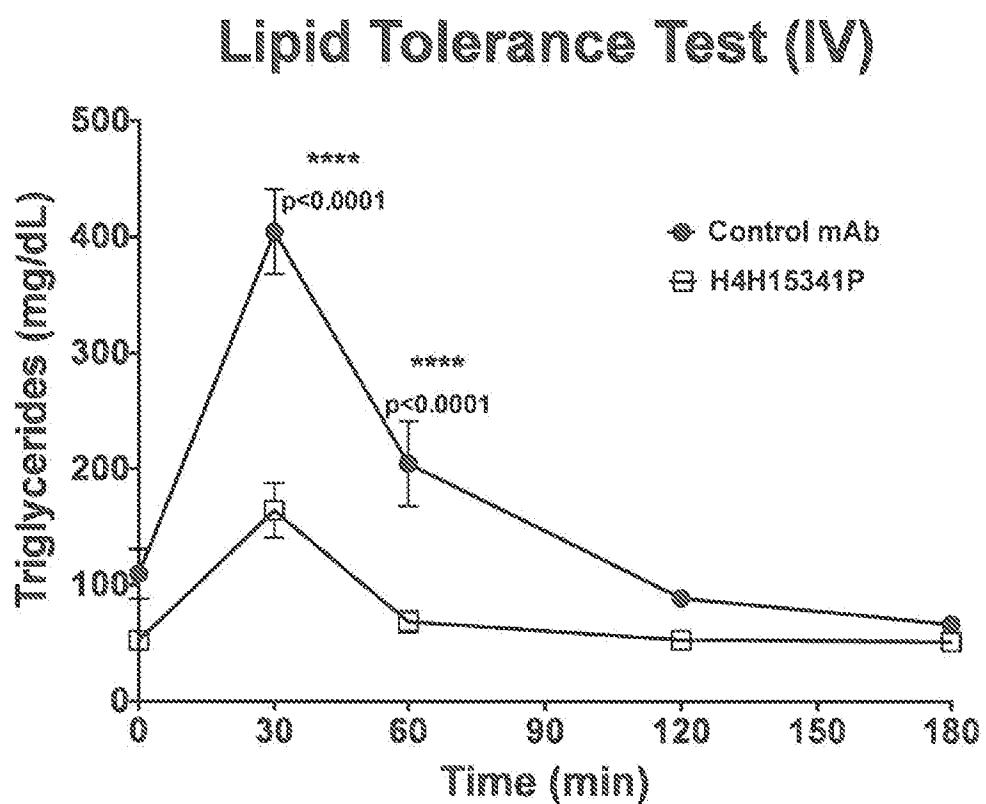


Figure 4

0431_21PCT_SL.TXT
SEQUENCE LISTING

<110> REGENERON PHARMACEUTICALS, INC.

<120> ANTI-ANGPTL8 ANTI BODIES AND USES THEREOF

<130> 0431.21PCT

<140>
<141>

<150> 62/202, 366

<151> 2015-08-07

<160> 368

<170> PatentIn version 3.5

<210> 1

<211> 351

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 1

caggtgcagtc tggcagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc 60

tcctgcaagg cttctggata cacccacc acctttacc agttatgata tcaattgggt ggcacaggcc 120

actggacaag ggcttgagtg gatggggtgg atgaacccta acggtgataa cacaggctat 180

gcacagaagt tccagggcag agtcaccatg accggggaca cctccataag cacagcctac 240

atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc gagagaggga 300

atttgggggt tcgaccctg gggccaggga accctggta ccgtctccctc a 351

<210> 2

<211> 117

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 2

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Asp Ile Asn Trp Val Arg Gln Ala Thr Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Met Asn Pro Asn Gly Asp Asn Thr Gly Tyr Ala Gln Lys Phe 50 55 60

0431_21PCT_SL.TXT

Gl n Gl y Arg Val Thr Met Thr Gl y Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80

Met Gl u Leu Ser Ser Leu Arg Ser Gl u Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Al a Arg Gl u Gl y Ile Trp Gl y Phe Asp Pro Trp Gl y Gl n Gl y Thr Leu
100 105 110

Val Thr Val Ser Ser
115

<210> 3

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 3

ggatacacacct tcaccaggta tgat

24

<210> 4

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 4

Gl y Tyr Thr Phe Thr Ser Tyr Asp
1 5

<210> 5

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 5

atgaacccta acggtgataa caca

24

<210> 6

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
Page 2

peptide"

<400> 6
 Met Asn Pro Asn Gly Asp Asn Thr
 1 5

<210> 7
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 7
 gcgagagagg gaatttgggg gttcgacc 30
 ccc

<210> 8
 <211> 10
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 peptide"

<400> 8
 Ala Arg Glu Gly Ile Trp Gly Phe Asp Pro
 1 5 10

<210> 9
 <211> 321
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 polynucleotide"

<400> 9
 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgttaggaga cagagtcacc 60
 atcacttgcc gggcaagtca ggacattaga aatgatttag gctggtatca gcagaaacca 120
 gggaaagccc ctaagcgcct gatctatgt gcatccagtt tgcaaagtgg ggtcccatca 180
 aggttcagcg gcagtggatc tggacagaa ttcactctca caatcagcag cctgcagcct 240
 gaagattttg caactttta ctgtctacag cataatactt tccctcggac gttcggccaa 300
 gggaccaagg tggaaatcaa a 321

<210> 10
 <211> 107
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 Page 3

0431_21PCT_SL.TXT

polypeptide"

<400> 10
 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gln
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Arg Asn Asp
 20 25 30

Leu Gln Trp Tyr Gln Gln Lys Pro Gln Lys Ala Pro Lys Arg Leu Ile
 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gln Val Pro Ser Arg Phe Ser Gln
 50 55 60

Ser Gln Ser Gln Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Gl u Asp Phe Ala Thr Phe Tyr Cys Leu Gln His Asn Thr Phe Pro Arg
 85 90 95

Thr Phe Gln Gln Gln Thr Lys Val Glu Ile Lys
 100 105

<210> 11

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 11

caggacatta gaaatgat

18

<210> 12

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 12

Gln Asp Ile Arg Asn Asp
 1 5

<210> 13

<211> 9

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic

ol i gonucleotide"

<400> 13
gctgcatcc

9

<210> 14
<211> 3
<212> PRT
<213> Artificial Sequence<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"<400> 14
Ala Ala Ser
1<210> 15
<211> 27
<212> DNA
<213> Artificial Sequence<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"<400> 15
ctacagcata atactttccc tcggacg

27

<210> 16
<211> 9
<212> PRT
<213> Artificial Sequence<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
peptide"<400> 16
Leu Glu His Asn Thr Phe Pro Arg Thr
1 5<210> 17
<211> 351
<212> DNA
<213> Artificial Sequence<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"<400> 17
gaagtgcagc tggggaggc ttggcacagc ctggcaggc cctgagactc
tcctgtcagc cctctggatt catcttgat gattatgaca tgcactgggt ccggcaagct
ccagggaggc gcctggaggc ggtctcaggat attagttgaa atagtggtat taaaggctat
gcggactctg tgaaggccg attcaccatc tccagagaca acgccaagaa ctccctgtat

60

120

180

240

0431_21PCT_SL.TXT

ctgcaaatga acagtctgag agctgaggac acggccttgtt attactgtac aaaaggccc 300
tgggactactt tgactactg gggccaggga accctggtca ccgtctcctc a 351

<210> 18
<211> 117
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 18
Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Arg 15
1 5 10

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ile Phe Asp Asp Tyr 30
20 25 30

Asp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 45
35 40 45

Ser Gly Ile Ser Trp Asn Ser Gly Ser Lys Gly Tyr Ala Asp Ser Val 60
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 80
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 95
85 90 95

Thr Lys Gly Pro Trp Asp Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu 110
100 105 110

Val Thr Val Ser Ser
115

<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 19
ggattcatct ttgatgattatgac 24

<210> 20
<211> 8
<212> PRT
<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 20
Gly Phe Ile Phe Asp Asp Tyr Asp
1 5

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 21
attagttgga atagtggtag taaa 24

<210> 22
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 22
Ile Ser Trp Asn Ser Gly Ser Lys
1 5

<210> 23
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 23
acaaaaggc cctggacta cttgactac 30

<210> 24
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 24
Thr Lys Gly Pro Trp Asp Tyr Phe Asp Tyr
1 5 10

0431_21PCT_SL.TXT

<210> 25
 <211> 321
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 25
 gacatccaga tgacccagtc tccttccacc ctgtctgcat ctgttaggaga cagagtcacc 60
 atcacttgcc gggccagtc gagtattagt agctggttgg cctggtatca gcagaaacca 120
 gggaaagccc ctaagctcct gatctataag gcgtctagtt tagaaaatgg ggtcccatca 180
 aggttcagcg gcagtggatc tggacagaa ttcactctca ccatcagcag cctgcagcct 240
 gatgatttg caacttatta ctgccaacag tataatagtt attcgtacac ttttggccag 300
 gggaccaagg tggagatcaa a 321

<210> 26
 <211> 107
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 26
 Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Trp
 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Lys Ala Ser Ser Leu Glu Asn Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Ser Tyr
 85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
 100 105

<210> 27
 <211> 18
 <212> DNA
 <213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 27
cagagtatta gtagctgg

18

<210> 28
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 28
Gln Ser Ile Ser Ser Trp
1 5

<210> 29
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 29
aaggcgtct

9

<210> 30
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 30
Lys Ala Ser
1

<210> 31
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 31
caacagtata atagttatc gtacact

27

<210> 32

0431_21PCT_SL.TXT

<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 32
Gln Gln Tyr Asn Ser Tyr Ser Tyr Thr
1 5

<210> 33
<211> 378
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 33
caggtgcagc tggggagtc tggggaggc gtggccagc ctgggaggc cctgagactc 60
tcctgtacag cctccggatt caccccgaa aactttggca tacactgggt ccgcaggct
ccaggcaagg ggctggagtg ggtggcggtc atatcatatg atgaaactga taaattctat 120
gcagaccccg tgaagggccg attcattatc tccagagaca attctatgaa cattctgtat 180
ctgcaaatga acagcctgag agctgaagac acggctgtat actattgtgc gaaagatggg 240
gaaatggaac tacgggata ctattactac tacggaatgg acgtctgggg ccaagggacc 300
acggtcaccg tctcctca 360
378

<210> 34
<211> 126
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 34
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 15
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr Phe Gly Asn Phe
20 25 30

Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Ser Tyr Asp Gly Thr Asp Lys Phe Tyr Ala Asp Pro Val
50 55 60

Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Met Asn Ile Leu Tyr
Page 10

65

70

75

80

Leu Glu Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Lys Asp Glu Glu Met Glu Leu Arg Glu Tyr Tyr Tyr Tyr Glu
 100 105 110

Met Asp Val Trp Glu Glu Thr Thr Val Thr Val Ser Ser
 115 120 125

<210> 35
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 35
 ggattcacct tcggaaacctt tgcc 24

<210> 36
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 peptide"

<400> 36
 Glu Phe Thr Phe Glu Asn Phe Glu
 1 5

<210> 37
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 37
 atatcatatg atgaaactga taaa 24

<210> 38
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 peptide"

0431_21PCT_SL.TXT

<400> 38
 Ile Ser Tyr Asp Gl y Thr Asp Lys
 1 5

<210> 39
 <211> 57
 <212> DNA
 <213> Arti fi ci al Sequence

<220>
 <221> source
 <223> /note="Description of Arti fi ci al Sequence: Synthetic
 oligonucleotide"

<400> 39
 gcgaaagatg gggaaatgga actacgggga tactattact actacggaat ggacgtc 57

<210> 40
 <211> 19
 <212> PRT
 <213> Arti fi ci al Sequence

<220>
 <221> source
 <223> /note="Description of Arti fi ci al Sequence: Synthetic
 peptide"

<400> 40
 Ala Lys Asp Gl y Gl u Met Gl u Leu Arg Gl y Tyr Tyr Tyr Tyr Tyr Gl y
 1 5 10 15

Met Asp Val

<210> 41
 <211> 321
 <212> DNA
 <213> Arti fi ci al Sequence

<220>
 <221> source
 <223> /note="Description of Arti fi ci al Sequence: Synthetic
 polynucleotide"

<400> 41
 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgttggaga cagagtcacc 60
 attacttgc gggcgagtca ggttataac acctggtag cctggtatca gcagaaacca
 120
 gggacagccc caaagctcct gatcttgct gcatccagtt tggagagcgg agtcccatca
 180
 agttcagcg gcagtggatt tggtagat ttcactctca ccatcagcag cctacagtct
 240
 gaggatcttcaacttactt ttgtcaacag gttcacagtc ccccgtagacac ttttggccag
 300
 gggaccaagg tggagatcaa a 321

<210> 42
 <211> 107
 <212> PRT
 <213> Arti fi ci al Sequence

<220>

0431_21PCT_SL.TXT

<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 42
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gln
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gln Ile Asn Thr Trp
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gln Thr Ala Pro Lys Leu Leu Ile
35 40 45

Phe Ala Ala Ser Ser Leu Glu Ser Gln Val Pro Ser Arg Phe Ser Gln
50 55 60

Ser Gln Phe Gln Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser
65 70 75 80

Glu Asp Leu Ala Thr Tyr Phe Cys Gln Gln Val His Ser Pro Pro Tyr
85 90 95

Thr Phe Gln Gln Gln Thr Lys Leu Glu Ile Lys
100 105

<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 43
cagggtatta acacctgg 18

<210> 44
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 44
Gln Gln Ile Asn Thr Trp
1 5

<210> 45
<211> 9
<212> DNA
<213> Artificial Sequence

<220>

0431_21PCT_SL.TXT

<221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 45
 gctgcatcc

9

<210> 46
 <211> 3
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 46
 Ala Ala Ser
 1

<210> 47
 <211> 27
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 47
 caacaggttc acagtccccc gtacact

27

<210> 48
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 48
 Glu Glu Val His Ser Pro Pro Tyr Thr
 1 5

<210> 49
 <211> 348
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 49
 gaggtgcagc tggggagtc tggaggagggt gtggtaacggc cgggggggtc actgagactc
 tcctgtgctg cctctggatt caccgttcat gattatgaca tgggtgggt ccgccaaact
 ccagggaaagg ggctggagtg gatctctggc attaattgga atggaggtaa cacaggttat

60

120

180

0431_21PCT_SL.TXT

gcagactctg tgaaggccg attcatcatc tccagagaca gcgccaagaa ctccctgttt 240
ctgcaaatga acagtctgag agccgaggac acggccttgt atcactgttg gggagcgatt 300
ggtgctttg atatttgggg ccaagggaca atggtcaccg tctcttca 348

<210> 50
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 50
Glu Val Gln Leu Val Glu Ser Gly Gly Val Val Arg Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Asp Asp Tyr
20 25 30

Asp Met Ser Trp Val Arg Gln Thr Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45

Ser Gly Ile Asn Trp Asn Gly Gly Asn Thr Gly Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Ile Ile Ser Arg Asp Ser Ala Lys Asn Ser Leu Phe
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr His Cys
85 90 95

Trp Gly Ala Ile Gly Ala Phe Asp Ile Trp Gly Gln Gly Thr Met Val
100 105 110

Thr Val Ser Ser
115

<210> 51
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 51
ggattcaccg ttgatgattt tgac 24

<210> 52
<211> 8
<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 52

Gly Phe Thr Val Asp Asp Tyr Asp
1 5

<210> 53

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 53

attaaatttga atggaggtaa caca

24

<210> 54

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 54

Ile Asn Trp Asn Gly Gly Asn Thr
1 5

<210> 55

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 55

tggggagcga ttggtgcttt tcatatt

27

<210> 56

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 56

Trp Gly Ala Ile Gly Ala Phe Asp Ile
1 5

0431_21PCT_SL.TXT

<210> 57
<211> 336
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 57		
gatattgtga tgacccagtc tccactctcc tcacctgtca cccttggaca gccggcctcc		60
atctcctgca ggtctagtca aagcctcgta cacagtgtatg gccggcaccta cttgagttgg		120
cttcagcaga ggccaggcca gcctccaaga ctccataattt ataagattt taaccggttc		180
tctgggtcc cagacagatt cagtggcagt gggcaggga cagatttcac actgagaatc		240
agttagggtgg aagctgagga tgtcgggtt tattactgca tgcaaacaac acaattccg		300
ctcactttcg gcggaggac caaggtggag atcaaa		336

<210> 58
<211> 112
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 58
Asp Ile Val Met Thr Gln Ser Pro Leu Ser Ser Pro Val Thr Leu Gly
1 5 10 15

Gln Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
20 25 30

Asp Gly Gly Thr Tyr Leu Ser Trp Leu Gln Gln Arg Pro Gly Gln Pro
35 40 45

Pro Arg Leu Leu Ile Tyr Lys Ile Phe Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ala Gly Thr Asp Phe Thr Leu Arg Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Thr
85 90 95

Thr Gln Phe Pro Leu Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
100 105 110

<210> 59
<211> 33
<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 59

caaaggcctcg tacacagtga tggcggcacc tac

33

<210> 60

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 60

Gln Ser Leu Val His Ser Asp Glu Gly Thr Tyr
1 5 10

<210> 61

<211> 9

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 61

aagattttt

9

<210> 62

<211> 3

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 62

Lys Ile Phe

1

<210> 63

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 63

atgcaaacaa cacaatttcc gtcact

27

0431_21PCT_SL.TXT

<210> 64
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 64
Met Gln Thr Thr Gln Phe Pro Leu Thr
1 5

<210> 65
<211> 345
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 65
gaggtgcagc tggtgagtc tggggaggc ttggtagc cttgggggtc cctgagactc 60
tcctgtcagc cctctggatt cacccttagc agctatgcca tgagctgggt ccggcaggct 120
ccagggaaagg ggctggagtg ggtctcagct attactggta gtggtag aacatactac 180
gcagactccg tgaagggccg gttcaccatc tccagagaca atgccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaaaacttt 300
cccttgact actggggcca ggaaaccctg gtcaccgtct cctca 345

<210> 66
<211> 115
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 66
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 15
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ala Ile Thr Gly Ser Gly Gly Arg Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
Page 19

65

70

75

80

Leu Glu Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Lys Asn Phe Pro Phe Asp Tyr Trp Gly Glu Gly Thr Leu Val Thr
 100 105 110

Val Ser Ser
 115

<210> 67
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 67
 ggattcacct ttagcagacta tgcc

24

<210> 68
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 peptide"

<400> 68
 Gly Phe Thr Phe Ser Ser Tyr Ala
 1 5

<210> 69
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 69
 attactggta gtggtag aaca

24

<210> 70
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 peptide"

0431_21PCT_SL.TXT

<400> 70
 Ile Thr Gly Ser Gly Gly Arg Thr
 1 5

<210> 71
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 71
 gcgaaaaact ttcccttga ctac 24

<210> 72
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 72
 Ala Lys Asn Phe Pro Phe Asp Tyr
 1 5

<210> 73
 <211> 339
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 73
 gacatcgta tgaccaggc tccagactcc ctggctgtgt ctctggcgaa gagggccacc 60
 atcaactgcg agtccaggcc aagtgtttta tacagctcca acaataagaa ctacttagct 120
 tggtaccagg agaaaccagg acagcctcct aagctgctca tttactggc atctacccgg 180
 gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc 240
 atcagcaccc tgcaggctga ggtatgtggca gtttattact gtcagcaata ttatagtact 300
 ccgtacactt ttggccaggg gaccaagctg gagatcaaa 339

<210> 74
 <211> 113
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

0431_21PCT_SL.TXT

<400> 74
Asp Ile Val Met Thr Glu Ser Pro Asp Ser Leu Ala Val Ser Leu Glu
1 5 10 15

Gl u Arg Ala Thr Ile Asn Cys Gl u Ser Ser Glu Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Glu Glu Lys Pro Glu Glu
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Glu Val
50 55 60

Pro Asp Arg Phe Ser Glu Ser Glu Ser Glu Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Glu Ala Glu Asp Val Ala Val Tyr Tyr Cys Glu Glu
85 90 95

Tyr Tyr Ser Thr Pro Tyr Thr Phe Glu Glu Glu Thr Lys Leu Glu Ile
100 105 110

Lys

<210> 75
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 75
cagagtgttt tatacagctc caacaataag aactac

36

<210> 76
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 76
Glu Ser Val Leu Tyr Ser Ser Asn Asn Lys Asn Tyr
1 5 10

<210> 77
<211> 9
<212> DNA
<213> Artificial Sequence

<220>

0431_21PCT_SL.TXT

<221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 77
 tggcatct

9

<210> 78
 <211> 3
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 peptide"

<400> 78
 Trp Ala Ser
 1

<210> 79
 <211> 27
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 79
 cagcaatatt atagtactcc gtacact

27

<210> 80
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 peptide"

<400> 80
 Glu Glu Tyr Tyr Ser Thr Pro Tyr Thr
 1 5

<210> 81
 <211> 372
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic
 polynucleotide"

<400> 81
 gaggtgcagc tggtgagtc tggggaggc ttggtagcagc ctgggggtc cctgagactc
 tcctgtcagc cctctggatt cacctttcc agctatgcca tgacctgggt ccgccaggct
 ccagggaggc ggctggagtg ggtctcagct attagtgta gtgggtggtag cacatactac

60

120

180

0431_21PCT_SL.TXT

acagactccg tgaaggccg gttcaccctc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaatctgac 300
tacagtaaca ccatctactg gtactacggt atggacgtct ggggccaagg gaccacggc 360
accgtctcct ca 372

<210> 82
<211> 124
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 82
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Thr Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Leu Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Lys Ser Asp Tyr Ser Asn Thr Ile Tyr Trp Tyr Tyr Gly Met Asp
100 105 110

Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 83
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 83
ggattcacct tttccagacta tgcc 24

<210> 84

0431_21PCT_SL.TXT

<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 84
Gly Phe Thr Phe Ser Ser Tyr Ala
1 5

<210> 85
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 85
attagtggta gtggtaggtag caca

24

<210> 86
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 86
Ile Ser Gly Ser Gly Gly Ser Thr
1 5

<210> 87
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 87
gcgaaatctg actacagtaa caccatctac tggtaactacg gtatggacgt c

51

<210> 88
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 88

Ala Lys Ser Asp Tyr Ser Asn Thr Ile Tyr Trp Tyr Tyr Gly Met Asp
 1 5 10 15

Val

<210> 89
 <211> 321
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 89
 gacatccaga tgaccaggc tccatccctcc ctgtctgcat ctgttaggaga cagagtcacc 60
 atcacttgcc gggcaagtca gagcattagc agctattaa attggtatca gcagaaacca 120
 gggaaagccc ctaagctcct gatctatgct gcatccagg ttgaaagtgg ggtcccatca 180
 aggttcagtgcagtttggc tggacagat ttcactctca ccatcagcag tctgcaacct 240
 gaagattttg caacttacta ctgtcaacag agttacagta cccctcggac gttcggccaa 300
 gggaccaagg tggaaatcaa a 321

<210> 90
 <211> 107
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 90
 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Gl u Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Arg
 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
 Page 26

<210> 91
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 91
cagagcatta gcagctat

18

<210> 92
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 92
Gln Ser Ile Ser Ser Tyr
1 5

<210> 93
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 93
gctgcatcc

9

<210> 94
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 94
Ala Ala Ser
1

<210> 95
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source

0431_21PCT_SL.TXT

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 95

caacagagtt acagtacccc tcggacg

27

<210> 96

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 96

Gln Gln Ser Tyr Ser Thr Pro Arg Thr
1 5

<210> 97

<211> 369

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 97

caggtgcagc tggggaggc ttggtaagc ctggagggtc cctgagactc

60

tcctgtcag cctctggatt cacccatgt gactactata tgagctggat ccgccaggct

120

ccagggagg gactggaggc gattcacac attagtgta gtggtagaac cacacactac

180

gcagactcta tgaaggccg attcaccatt tccagggaca acgccaagaa ctcactgtat

240

ttgcaaatga acgcctgag agccgaggac acggccgtgt attactgtgt gagagaggga

300

gttttaact ggaactacga ggtactttt gatatctggg gccagggac aatggtcacc

360

gtctcttca

369

<210> 98

<211> 123

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 98

Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
20 25 30

Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile

35

0431_21PCT_SL.TXT
40 45

Ser His Ile Ser Gly Ser Gly Arg Thr Thr His Tyr Ala Asp Ser Met
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Ala Gl u Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Val Arg Gl u Gl y Gl y Phe Asn Trp Asn Tyr Gl u Gl y Thr Phe Asp Ile
100 105 110

Trp Gl y Gl n Gl y Thr Met Val Thr Val Ser Ser
115 120

<210> 99

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 99

ggattcacct tcagtgacta ctat

24

<210> 100

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 100

Gl y Phe Thr Phe Ser Asp Tyr Tyr
1 5

<210> 101

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 101

attagtggtt gtggtagaac caca

24

<210> 102

<211> 8

0431_21PCT_SL.TXT

<212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 102
 Ile Ser Gly Ser Gly Arg Thr Thr
 1 5

<210> 103
 <211> 48
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 103
 gtgagagagg gaggtttaa ctggaactac gagggtaactt ttgatatc 48

<210> 104
 <211> 16
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 104
 Val Arg Glu Gly Gly Phe Asn Trp Asn Tyr Glu Gly Thr Phe Asp Ile
 1 5 10 15

<210> 105
 <211> 336
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 105
 gatattgtga tgacccagac tccactctct tcacctgtca cccttgaca gccggcctcc 60
 atctcctgca ggtctagtca aagcctctta cacagtgatc aaaacaccta cttgagttgg 120
 cttcaccaga ggccaggcca gcctccaaga ctcctaattt ataagatttc taaccggttc 180
 tctgggtcc cagacagatt cagtggcagt ggggcaggga cagatttcac actgaaaatc 240
 agcagggtgg aagctgagga tgtcggatt tattactgca tgcaaggtac acaattccg 300
 ctcactttcg gcggaggagc caaggtggag atcaaa 336

<210> 106
 <211> 112

0431_21PCT_SL.TXT

<212> PRT
<213> Artificial Sequence

<220>
<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 106
Asp Ile Val Met Thr Gln Thr Pro Leu Ser Ser Pro Val Thr Leu Gln
1 5 10 15

Gln Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asp Gln Asn Thr Tyr Leu Ser Trp Leu His Gln Arg Pro Gln Gln Pro
35 40 45

Pro Arg Leu Leu Ile Tyr Lys Ile Ser Asn Arg Phe Ser Gln Val Pro
50 55 60

Asp Arg Phe Ser Gln Ser Gln Ala Gln Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gln Ile Tyr Tyr Cys Met Gln Gln
85 90 95

Thr Gln Phe Pro Leu Thr Phe Gln Gln Thr Lys Val Glu Ile Lys
100 105 110

<210> 107

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 107
caaaggctct tacacagtga tcaaaacacc tac

33

<210> 108

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 108
Gln Ser Leu Leu His Ser Asp Gln Asn Thr Tyr
1 5 10

<210> 109

<211> 9

0431_21PCT_SL.TXT

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 109

aagatttct

9

<210> 110

<211> 3

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 110

Lys Ile Ser

1

<210> 111

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 111

atgcaaggta cacaatttcc gctcact

27

<210> 112

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 112

Met Glu Gly Thr Glu Phe Pro Leu Thr

1 5

<210> 113

<211> 363

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 113

gaggtgcagc tgggtggagtc tggggggagg cttggtagac ggggggggtc cctgagactc

60

0431_21PCT_SL.TXT

tcctgtgaag cctctggatt cacattagc agcttgcca tgaactgggt ccgccaggct	120
ccagggagg ggctggagt ggtctcaggt cttagtgta gtggtagaag tacatactac	180
gcagactccg tgaagggccg gttcaccatc tccagagaca actccaagaa tagactctat	240
ttgcaaattg acagcctgag agccgaggac tcggccgtat attattgtgc ggcctacgtg	300
ttacgaattt tggatcggtg gttcgacccc tggggccagg gaaccctggt caccgtctcc	360
tca	363

<210> 114
<211> 121
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 114
Glu Val Gln Leu Val Glu Ser Gly Gly Arg Leu Gly Thr Gly Gly 15
1 5 10 15

Ser Leu Arg Leu Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Ser Phe
20 25 30

Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Gly Leu Ser Gly Ser Gly Arg Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Arg Leu Tyr
65 70 75 80

Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Ala Tyr Val Leu Arg Ile Leu Asp Arg Trp Phe Asp Pro Trp Gly
100 105 110

Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 115
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 115

ggattcacat ttagcagctt tgcc

<210> 116
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 116
 Gly Phe Thr Phe Ser Ser Phe Ala
 1 5

<210> 117
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 117
 ctttagtgta gtggtagaaag taca

<210> 118
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 118
 Leu Ser Gly Ser Gly Arg Ser Thr
 1 5

<210> 119
 <211> 42
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 119
 gcggcctacg tgttacgaat tttggatcgg tggttcgacc cc

<210> 120
 <211> 14
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source

0431_21PCT_SL.TXT

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 120
Ala Ala Tyr Val Leu Arg Ile Leu Asp Arg Trp Phe Asp Pro
1 5 10

<210> 121

<211> 336

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 121
gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
atctcctgca ggtcttagtca gagcctcctt cataggactg gataacaacta tttggactgg 120
tacctgcaga agccagggca gtctccacag atcctgatct atttgggttc ttatcgggcc 180
tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaagatc 240
agcagagtgg aggctgaaga tggttgggtt tattactgca tgcaagctct acaaactccg 300
tggacgttcg gccaagggac caaggtggaa atcaaa 336

<210> 122

<211> 112

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 122
Asp Ile Val Met Thr Glu Ser Pro Leu Ser Leu Pro Val Thr Pro Glu
1 5 10 15

Gl u Pro Ala Ser Ile Ser Cys Arg Ser Ser Glu Ser Leu Leu His Arg
20 25 30

Thr Glu Tyr Asn Tyr Leu Asp Trp Tyr Leu Glu Lys Pro Glu Glu Ser
35 40 45

Pro Glu Ile Leu Ile Tyr Leu Glu Ser Tyr Arg Ala Ser Glu Val Pro
50 55 60

Asp Arg Phe Ser Glu Ser Glu Ser Glu Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Glu Val Tyr Tyr Cys Met Glu Ala
85 90 95

Leu Glu Thr Pro Trp Thr Phe Glu Glu Glu Thr Lys Val Glu Ile Lys
Page 35

<210> 123
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 123
 cagagcctcc ttcataggac tggataacaac tat

33

<210> 124
 <211> 11
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 124
 Glu Ser Leu Leu His Arg Thr Gly Tyr Asn Tyr
 1 5 10

<210> 125
 <211> 9
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 125
 ttgggttct

9

<210> 126
 <211> 3
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 126
 Leu Glu Ser
 1

<210> 127
 <211> 27
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source

0431_21PCT_SL.TXT

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 127

atgcaagctc tacaaactcc gtggacg

27

<210> 128

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 128

Met Glu Ala Leu Glu Thr Pro Trp Thr
1 5

<210> 129

<211> 354

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 129

caggtgcagc tgcaggagtc gggccagga ctggtaagc cttcacagac cctgtccctc
acctgcactg tctctgggg ctccatcaac agtggggtt actactggaa ctggatccgc
cagcacccag ggaaggccct ggagtggatt gggtacatct attacagtgg gagcacctac
ttcaaccgt ccctcaagag tcgagttacc atatcaatag acacgtctaa gaaccagttc
tccctgaagc tgagcttgt gactgccg gacacggccg tgtattactg tgcgagagag
gggatttatg ctttgacta ctggggccag ggaaccctgg tcaccgtctc ctca

60

120

180

240

300

354

<210> 130

<211> 118

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 130

Glu Val Glu Leu Glu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Asn Ser Gly
20 25 30

Gly Tyr Tyr Trp Asn Trp Ile Arg Glu His Pro Gly Lys Gly Leu Glu
35 40 45

0431_21PCT_SL.TXT

Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr Phe Asn Pro Ser
50 55 60

Leu Lys Ser Arg Val Thr Ile Ser Ile Asp Thr Ser Lys Asn Gln Phe
65 70 75 80

Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Arg Glu Gly Ile Tyr Ala Phe Asp Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser
115

<210> 131

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 131

ggtagctcca tcaacagttgg tggttactac

30

<210> 132

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 132

Gly Gly Ser Ile Asn Ser Gly Gly Tyr Tyr
1 5 10

<210> 133

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 133

atctattaca gtgggagcac c

21

<210> 134

<211> 7

<212> PRT

<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 134
Ile Tyr Tyr Ser Gly Ser Thr
1 5

<210> 135
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 135
gcgagagagg ggatttatgc ttttactac 30

<210> 136
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 136
Ala Arg Glu Gly Ile Tyr Ala Phe Asp Tyr
1 5 10

<210> 137
<211> 321
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 137
gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgttaggaga cagagtcacc 60
atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120
ggaaagccc ctaagcgctt gatctattct gcatccagtt tgcaaagtgg ggtcccatca 180
aggttcggcg gcagtggatc tggacagaa ttcactctca caatcagcag cctgcagcct 240
gaagattttcaacttattatctgtctacaa cataatagtt acccgtggac gttcggccaa 300
gggaccaagg tggaaatcaa a 321

<210> 138
<211> 107
<212> PRT
<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 138

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp
20 25 30

Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
35 40 45

Tyr Ser Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Gly Gly
50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Trp
85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 139

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 139

cagggcatt a gaaatgat

18

<210> 140

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 140

Gln Gly Ile Arg Asn Asp
1 5

<210> 141

<211> 9

<212> DNA

<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 141
tctgcattcc

9

<210> 142
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 142
Ser Ala Ser
1

<210> 143
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 143
ctacaacata atagttaccc gtggacg

27

<210> 144
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 144
Leu Glu His Asn Ser Tyr Pro Trp Thr
1 5

<210> 145
<211> 378
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 145
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggagggt cctgagactc
tcctgtcag cctctggatt caccatcaat aactatggca tacactgggt ccgccaggct

60

120

0431_21PCT_SL.TXT

ccaggcaagg ggctggagtg ggtggcagtt atatcatatg atgaaagtaa taaatactat	180
gcagactccg tgaaggccg attcaccatc tccagagaca attccaagaa cacgctgtat	240
ctgcaaatga acagcctgag agctgaggac acggctgttt attactgtgc gaaagacata	300
cggatagcag ctcgtcggca ctactactac tacggtatgg acgtctgggg ccaagggacc	360
acggtcaccg tctcctca	378

<210> 146

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 146

Gl n Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Val Val Gl n Pro Gl y Arg	15												
1	5	10	15										

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gl y Phe Thr Phe Asn Asn Tyr	30												
20	25												

Gl y Ile His Trp Val Arg Gl n Ala Pro Gl y Lys Gl y Leu Gl u Trp Val	45											
35	40											

Al a Val Ile Ser Tyr Asp Gl u Ser Asn Lys Tyr Tyr Al a Asp Ser Val	60											
50	55											

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr	80										
65	70	75									

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys	95										
85	90										

Al a Lys Asp Ile Arg Ile Al a Al a Arg Arg His Tyr Tyr Tyr Tyr Gl y	110									
100	105									

Met Asp Val Trp Gl y Gl n Gl y Thr Thr Val Thr Val Ser Ser	125								
115	120								

<210> 147

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 147

ggattcacct tcaataacta tggc

24

0431_21PCT_SL.TXT

<210> 148

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 148

Gly Phe Thr Phe Asn Asn Tyr Gly
1 5

<210> 149

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 149

atatcatatg atgaaagtaa taaa

24

<210> 150

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 150

Ile Ser Tyr Asp Glu Ser Asn Lys
1 5

<210> 151

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 151

gcgaaagaca tacggatagc agctcgctgg cactactact actacggtat ggacgtc

57

<210> 152

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

0431_21PCT_SL.TXT

<400> 152
 1 Ala Lys Asp Ile Arg Ile Ala Ala Arg Arg His Tyr Tyr Tyr Tyr Gly
 5

Met Asp Val

<210> 153
 <211> 321
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 153
 gacatccaga tgaccaggc tccatcttcc gtgtctgcat ctgttaggaga cagagtcacc 60
 atcacttgc gggcgagtca gggatttagc aggtggtag cctggtatca gcagaaacca 120
 gggaaagccc caaagctcct gatctatgct gcatccagtt tgaaagtgg ggtcccgca 180
 aggttcagcg gcagtggatc tggacagat ttcactctca ccatcagcag cctgcagcct 240
 gaagatttg caacttacta ttgtcaacag gctaacagtt tccaaatcac tttcgccct 300
 gggaccaaag tggatataaa a 321

<210> 154
 <211> 107
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 154
 1 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 5

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Arg Trp
 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Ala Ala Ser Ser Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Ile
 85 90 95

0431_21PCT_SL.TXT

Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
100 105

<210> 155
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 155
cagggtatta gcaggtgg 18

<210> 156
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 156
Gln Gly Ile Ser Arg Trp
1 5

<210> 157
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 157
gctgcattcc 9

<210> 158
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 158
Ala Ala Ser
1

<210> 159
<211> 27
<212> DNA
<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 159
 caacaggcta acagtttccc aatcact

27

<210> 160
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 160
 Gln Gln Ala Asn Ser Phe Pro Ile Thr
 1 5

<210> 161
 <211> 360
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 161
 gaggtgcagc tggggaggc ttggtagc ctggagggtc cctgagactc 60
 tcctgtcag cctctggatt cacccat aatcatgaaa tgaattgggt ccgccaggct
 ccagggagg gtctggagtg ggttcatac attagtagta gtggtaatac cgtaacctac 120
 gcagactttc tgaaggccg attcaccatc tccagagaca acgccaagaa ctcgctgttt 180
 ctgcaaatga acagcctgcg agacgaggac acggctgttt attactgtgc gcgagatcat 240
 ttaagtggaa cctccccact ttcttattgg ggccaggaa ccctggtcac cgtctccctca 300
 360

<210> 162
 <211> 120
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 162
 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Glu
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Asn His
 20 25 30

Glu Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35

0431_21PCT_SL.TXT
40 45

Ser Tyr Ile Ser Ser Ser Gly Asn Thr Val Thr Tyr Ala Asp Phe Leu
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Phe
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Asp Gl u Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Al a Arg Asp His Leu Ser Gl y Thr Ser Pro Leu Ser Tyr Trp Gl y Gl n
100 105 110

Gl y Thr Leu Val Thr Val Ser Ser
115 120

<210> 163

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 163

ggattcacct tcaataatca tgaa

24

<210> 164

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 164

Gl y Phe Thr Phe Asn Asn His Gl u
1 5

<210> 165

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 165

attagtagta gtggtaatac cgta

24

<210> 166

<211> 8

0431_21PCT_SL.TXT

<212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 166
 Ile Ser Ser Ser Gly Asn Thr Val
 1 5

<210> 167
 <211> 39
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 167
 ggcgcgagtc atttaagtgg aacctcccca ctttcttat

39

<210> 168
 <211> 13
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 168
 Ala Arg Asp His Leu Ser Gly Thr Ser Pro Leu Ser Tyr
 1 5 10

<210> 169
 <211> 321
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 169
 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtgggaga cagagtcacc
 atcacttgcc aggcgagtca ggacattaac aactacttaa attggttca gcagaaaccca
 gggaaagccc ctaaactcct gatcttcgat gcatccaatt tagaaacagg ggtcccatca
 aggttcagtg gaagtggatc tggacagat tttacttca ccatcagcag cctgcagcct
 gaagatattg caacatattt ctgtcaacag tatgaaaatc tcccttacac ttttggccag
 gggaccaagc tggagatcaa a

60

120

180

240

300

321

<210> 170
 <211> 107

0431_21PCT_SL.TXT

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 170

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asp Ile Asn Asn Tyr
20 25 30

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Phe Asp Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Ile Ala Thr Tyr Phe Cys Gln Gln Tyr Gl u Asn Leu Pro Tyr
85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 171

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 171

caggacatta acaactac

18

<210> 172

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 172

Gln Asp Ile Asn Asn Tyr
1 5

<210> 173

<211> 9

0431_21PCT_SL.TXT

<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 173
gatgcatcc

9

<210> 174
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 174
Asp Ala Ser
1

<210> 175
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 175
caacagtatg aaaatctccc ttacact

27

<210> 176
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 176
Gln Gln Tyr Glu Asn Leu Pro Tyr Thr
1 5

<210> 177
<211> 363
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 177
caggtgcagc tgggtggagtc tgggggaggc gtgggtccagc ctggggaggc cctgagactc

60

0431_21PCT_SL.TXT

tcctgtcag cctctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atatcatatg ctggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acggcctgag agctgaggac acggctgtgt attactgtgc gaaagatccc 300
tacggtgact acgagggggt tcttgactac tggggccagg gaaccctggc caccgtctcc 360
tca 363

<210> 178
<211> 121
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 178
Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Ser Tyr Ala Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Gly Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Lys Asp Pro Tyr Gly Asp Tyr Glu Gly Val Leu Asp Tyr Trp Gly
100 105 110

Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 179
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 179

ggattcacct tcagtagcta tggc

<210> 180

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 180

Gly Phe Thr Phe Ser Ser Tyr Gly

1 5

<210> 181

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 181

atatcatatg ctggaagtaa taaa

<210> 182

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 182

Ile Ser Tyr Ala Gly Ser Asn Lys

1 5

<210> 183

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 183

gcgaaagatc cctacggtga ctacgagggg gttcttgact ac

<210> 184

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<221> source

0431_21PCT_SL.TXT

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 184

Ala Lys Asp Pro Tyr Gly Asp Tyr Glu Gly Val Leu Asp Tyr
1 5 10

<210> 185

<211> 321

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 185

gacatccaga tgaccaggc tccatccctcc ctgtctgcat ctgttaggaga cagagtcacc 60

atcacttgcc aggcgagtcg ggacattagc aactattaa attggtatca gcagaaaccca 120

gggaaagccc ctaagctcct gatctacgtat gcttccaatt tgaaaacagg ggtcccatca 180

aggttcagtg gaagtggatc tggacagat tttacttca ccatcagcag cctgcagcct 240

gaagatattg caacatatta ctgtcagcag tatgatcatc tcccgatcac cttcgccaa 300

gggacacgac tggagattaa a 321

<210> 186

<211> 107

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 186

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asp Ile Ser Asn Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Asp Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Asp His Leu Pro Ile
85 90 95

Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys

<210> 187
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 187
caggacatta gcaactat 18

<210> 188
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 188
Gln Asp Ile Ser Asn Tyr
1 5

<210> 189
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 189
gatgcttcc 9

<210> 190
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 190
Asp Ala Ser
1

<210> 191
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source

0431_21PCT_SL.TXT

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 191
cagcagtatg atcatctccc gatcacc

27

<210> 192
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 192
Gln Gln Tyr Asp His Leu Pro Ile Thr
1 5

<210> 193
<211> 345
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 193
gaggtgcagc tggggaggc ttgggtcagc ctgggggtc cctgagactc 60
tcctgtcag cctctggatt cacccttagc acctatgcca tgagctgggt ccgcaggct
ccagggagg ggctggagtg ggtctcagtt attagtggta gtttatttag cacatactac 120
gcagactccg tgaaggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 180
ctgcaaatga ccagcctgag agccgaggac acggccgtat attactgtgc gaaaaactcc 240
cccttgact actggggcca gggaaaccctg gtcaccgtct cctca 300
345

<210> 194
<211> 115
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 194
Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

0431_21PCT_SL.TXT

Ser Val Ile Ser Gly Ser Phe Ile Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Thr Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Lys Asn Ser Pro Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr
100 105 110

Val Ser Ser
115

<210> 195

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 195

ggattcacct ttagcaccta tgcc

24

<210> 196

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 196

Gly Phe Thr Phe Ser Thr Tyr Ala
1 5

<210> 197

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 197

attagtggta gttttattag caca

24

<210> 198

<211> 8

<212> PRT

<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 198
Ile Ser Gly Ser Phe Ile Ser Thr
1 5

<210> 199
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 199
gcgaaaaact ccccctttga ctac

24

<210> 200
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 200
Ala Lys Asn Ser Pro Phe Asp Tyr
1 5

<210> 201
<211> 339
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 201
gacatcgta tgacccagtc tccagactcc ctgactgtat ctctggcga gagggccacc 60
atcaactgca agtccagcca gagtgttta tacagctcca acaataagaa ctacttagct 120
tggtaccagg agaaaccagg acagcctcct aacctgctca tttactggc atctaccgg 180
gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc 240
atcagcagcc tgcaggctga agatgtggca gtttattact gtcagcaata ttatactact 300
ccgtggacgt tcggccgagg gaccaaggtg gagatcaa 339

<210> 202
<211> 113
<212> PRT
<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 202

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Thr Val Ser Leu Gly
1 5 10 15

Gl u Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Thr Thr Pro Trp Thr Phe Gly Arg Gly Thr Lys Val Glu Ile
100 105 110

Lys

<210> 203

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 203

cagagtgttt tatacagctc caacaataag aactac

36

<210> 204

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 204

Gln Ser Val Leu Tyr Ser Ser Asn Asn Lys Asn Tyr
1 5 10

0431_21PCT_SL.TXT

<210> 205
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 205
tggcatct

9

<210> 206
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 206
Trp Ala Ser
1

<210> 207
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 207
cagcaatatt atactactcc gtggacg

27

<210> 208
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 208
Gln Gln Tyr Tyr Thr Thr Pro Trp Thr
1 5

<210> 209
<211> 345
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

0431_21PCT_SL. TXT

<400> 209
gaggtgcagc tggtgagtc tgggggaggc ttggtagc cgggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttagc aactatgcca tgagctgggt ccgccaggct 120
ccagggaaagg gactggagtg ggtctcaact attagtgata ctggtggtag cacatactac 180
gcagactccg tgaagggccg gttcgcctc tccagagaca attccaggaa cacgctgtat 240
ctacaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaagagggg 300
cccccgact actggggaca gggcaccctg gtcaccgtct cctca 345

<210> 210

<211> 115

<212> PRT

<213> Artificial Sequence

<220>
881

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 210

Gl u Val Gl n Leu Val 5 Gl u Ser Gl y Gl y 10 Gl y Leu Val Gl n Pro Gl y Gl y 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Asn Tyr
20 25 30

Ala Met Ser Trp Val Arg Glu Ala Pro Glu Lys Glu Leu Glu Trp Val
35 40 45

Ser Thr Ile Ser Asp Thr 50 Gly Gly Ser Thr Tyr Tyr 60 Ala Asp Ser Val

Lys Gl y Arg Phe Al a Leu Ser Arg Asp Asn Ser Arg Asn Thr Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Al a Lys Gl u Gl y Pro Pro Asp Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr
100 105 110

Val Ser Ser
115

<210> 211
211 24

<211> 24
212 BM

<212> DNA

<213> Artifical Sequence

<220>
-221-

<221> source
<223> /note=

<223> /note= Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 211

ggattcacct ttagcaacta tgcc

<210> 212
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 212
Gly Phe Thr Phe Ser Asn Tyr Ala
1 5

<210> 213
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 213
attagtgata ctgggtggtag caca

<210> 214
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 214
Ile Ser Asp Thr Gly Gly Ser Thr
1 5

<210> 215
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 215
gcgaaagagg ggcccccggta ctac

<210> 216
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source

0431_21PCT_SL. TXT

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 216
Ala Lys Glu Glu Pro Pro Asp Tyr
1 5

<210> 217
<211> 321
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
polynucleotide"

<400> 217
gaaatttgtt tgacacagtc tccagccacc ctgtctttgt ctccagggga aagagccacc 60
ctctccctgca ggaccagtca gagtgtcagc atctacttag cctgttacca acagaaacct 120
ggccaggctc ccaggctcct catctatgat gcatccaaga gggccactgg catcccagcc 180
aggttcagtg gcagagggtc tgggacagac ttcactctca ccatcagcag cctagagcct 240
gaagattttg cagtttattta ctgtcagcag cgttagcaact ggcctctcac cttcggccaa 300
gggacacgac tggagattaa a 321

<210> 218
<211> 107
<212> PRT
<213> Arti fi ci al Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 218
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Gl u Arg Al a Thr Leu Ser Cys Arg Thr Ser Gl n Ser Val Ser Ile Tyr
20 25 30

Leu Ala Trp Tyr Glu Glu Lys Pro Gly Glu Ala Pro Arg Leu Leu Ile
35 40 45

Tyr Asp Ala Ser Lys Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly
50 55 60

Arg Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80

Gl u Asp Phe Al a Val Tyr Tyr Cys Gl n Gl n Arg Ser Asn Trp Pro Leu
85 90 95

Thr Phe Glu Gln Gly Thr Arg Leu Glu Ile Lys
Page 62

<210> 219
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 219
cagagtgtca gcatctac 18

<210> 220
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 220
Gln Ser Val Ser Ile Tyr
1 5

<210> 221
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 221
gatgcatcc 9

<210> 222
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 222
Asp Ala Ser
1

<210> 223
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source

0431_21PCT_SL.TXT

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 223
cagcagcgta gcaactggcc tctcacc

27

<210> 224
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 224
Gln Gln Arg Ser Asn Trp Pro Leu Thr
1 5

<210> 225
<211> 363
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 225
gaggtgcagc tgggggaggc ttgggtgcagc cgggggggtc cctgagactc 60
tcctgtcag cctctggatt cacccaga aactatgcca tgaactgggc ccgcaggct
ccagggagg gactggagg ggtctcaggt attactggta gtggtggtgc cacatactac 120
gcagactccg tgaaggccg gttcaccatc tccagagaaa attccaagaa cacgctgttt 180
ctgcaaatgg acaccctgag agccgaggac acggccgttt attattgtgc gaaagatcgg 240
aggattttcc ctacttcggg gggcctcag tggggccagg gaaccctggc caccgtctcc 300
tca 360

<210> 226
<211> 121
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 226
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Asn Tyr
20 25 30

Ala Met Asn Trp Ala Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35

0431_21PCT_SL.TXT
40 45

Ser Gly Ile Thr Gly Ser Gly Gly Ala Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Glu Asn Ser Lys Asn Thr Leu Phe
65 70 75 80

Leu Gln Met Asp Thr Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Lys Asp Arg Arg Tyr Phe Pro Thr Ser Gly Gly Pro Gln Trp Gly
100 105 110

Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 227

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 227

ggattcacct tcagaaacta tgcc

24

<210> 228

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 228

Gly Phe Thr Phe Arg Asn Tyr Ala
1 5

<210> 229

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 229

attactggta gtgggtggc caca

24

<210> 230

<211> 8

0431_21PCT_SL.TXT

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 230

Ile Thr Gly Ser Gly Gly Ala Thr
1 5

<210> 231

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 231

gcgaaagatc ggaggtattt ccctacttcg gggggtcctc ag

42

<210> 232

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 232

Ala Lys Asp Arg Arg Tyr Phe Pro Thr Ser Gly Gly Pro Gln
1 5 10

<210> 233

<211> 336

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 233

gatattgtga tgactcagtc tccactctcc ctgccccgtca cccctggaga gccggcctcc 60

atctcctgca ggtcttctcg gagcctcctg catagttctg gataacaacta tttggattgg 120

tacctgcaga agccagggca gtctccacag ctcctgtct atttgggttc taatcgggcc 180

tccggggtcc ctgacaggtt cagttggcagt ggatcaggca catatttac actgaaaatc 240

agcagagtgg acgctgaaga tgttgggtt tattactgca tgcaagctct acaaactccg 300

tggacgttcg gccaaggggac caaggtggaa atcaaa 336

<210> 234

<211> 112

0431_21PCT_SL.TXT

<212> PRT
<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 234

Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Gl u Pro Al a Ser Ile Ser Cys Arg Ser Ser Arg Ser Leu Leu His Ser
20 25 30

Ser G l y Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro G l y Gln Ser
35 40 45

Pro Gln Leu Leu Leu Tyr Leu G l y Ser Asn Arg Al a Ser G l y Val Pro
50 55 60

Asp Arg Phe Ser G l y Ser G l y Ser G l y Thr Tyr Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Asp Al a Gl u Asp Val G l y Val Tyr Tyr Cys Met Gln Al a
85 90 95

Leu Gln Thr Pro Trp Thr Phe G l y Gln G l y Thr Lys Val Gl u Ile Lys
100 105 110

<210> 235

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 235

cggaggctcc tgcatagttc tggataacaac tat

33

<210> 236

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 236

Arg Ser Leu Leu His Ser Ser G l y Tyr Asn Tyr
1 5 10

<210> 237

<211> 9

0431_21PCT_SL.TXT

<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 237
ttgggttct

9

<210> 238
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 238
Leu Glu Ser
1

<210> 239
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 239
atgcaagctc tacaaactcc gtggacg

27

<210> 240
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 240
Met Glu Ala Leu Glu Thr Pro Trp Thr
1 5

<210> 241
<211> 348
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 241
gaggtgcagc tgggtggagtc tgggggaggc ttgggtccagc cgggggggtc cctgagactc
Page 68

60

0431_21PCT_SL.TXT

tcctgtcag cctctggatt caccttagt agcttagga tgacctgggt ccgccaggct	120
ccagggagg ggctggagtg ggtggccaac ataaagcaag atggaagtga gaaatactat	180
gtggactctg tgaaggcccg attcaccatc tccagagaca acgccaagaa ctcactgtat	240
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagggggg	300
ggtatagcag cttactgggg ccagggacc ctggtcaccg tctcctca	348

<210> 242

<211> 116

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 242

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y						
1	5	10	15			

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe					
20	25	30			

Arg Met Thr Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val					
35	40	45			

Al a Asn Ile Lys Gl n Asp Gl y Ser Gl u Lys Tyr Tyr Val Asp Ser Val					
50	55	60			

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Ser Leu Tyr					
65	70	75	80		

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys					
85	90	95			

Al a Arg Gl y Gl y Gl y Ile Al a Al a Tyr Trp Gl y Gl n Gl y Thr Leu Val					
100	105	110			

Thr Val Ser Ser	
115	

<210> 243

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 243

ggattcacct ttagtagctt tagg

24

0431_21PCT_SL.TXT

<210> 244
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 244
Gly Phe Thr Phe Ser Ser Phe Arg
1 5

<210> 245
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 245
ataaaagcaag atggaagtga gaaa 24

<210> 246
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 246
Ile Lys Gln Asp Gly Ser Glu Lys
1 5

<210> 247
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 247
gcgagagggg ggggtatagc agcttac 27

<210> 248
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

0431_21PCT_SL.TXT

<400> 248
Ala Arg Gly Gly Gly Ile Ala Ala Tyr
1 5

<210> 249
<211> 324
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 249	60
gacatccaga tgaccaggc tccatcctcc ctgtctgcat ctgttaggaga cagagtcacc	60
atcacttgcc gggcaagtca gagcattagc agctattaa attggtatca gcagaaacca	120
gggaaagccc ctaagctcct gatctatgct gcatccagg ttgaaagtgg ggtccgtca	180
aggttcagtgc agtggatc tggacagat ttcactctca ccatcagcag tctgcaacct	240
gaagattttcaacttacta ctgtcaacag agttacagta cccctccgat caccttcggc	300
caaggacac gactggagat taaa	324

<210> 250
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 250
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro
85 90 95

Ile Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys
100 105

0431_21PCT_SL.TXT

<210> 251
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 251
cagagcatta gcagctat

18

<210> 252
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 252
Gln Ser Ile Ser Ser Tyr
1 5

<210> 253
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 253
gctgcatcc

9

<210> 254
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 254
Ala Ala Ser
1

<210> 255
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

0431_21PCT_SL.TXT

<400> 255
caacagagtt acagtacccc tccgatcacc 30

<210> 256
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 256
Gln Gln Ser Tyr Ser Thr Pro Pro Ile Thr
1 5 10

<210> 257
<211> 375
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 257
gaggtgcagc tggggagtc tggggaggc ttggtagc ctgggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttagc agctatgcca tgagctgggt ccgccaggct 120
ccagggagg ggctggagtg ggtctcagct attagtgta gtggtagcacatactac 180
gcagactccg tgaaggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaagatcgg 300
ggggaaaacc ggtattacta ctactactac ggtatggacg tctggggcca agggaccacg 360
gtcaccgtct cctca 375

<210> 258
<211> 125
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 258
Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

0431_21PCT_SL.TXT

Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Lys Asp Arg Gly Glu Asn Arg Tyr Tyr Tyr Tyr Tyr Gly Met
100 105 110

Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

<210> 259

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 259

ggattcacct ttagcagcta tgcc

24

<210> 260

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 260

Gly Phe Thr Phe Ser Ser Tyr Ala
1 5

<210> 261

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 261

attagtggta gtgggtggtag caca

24

<210> 262

<211> 8

<212> PRT

<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 262
Ile Ser Gly Ser Gly Gly Ser Thr
1 5

<210> 263
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 263
gcgaaagatc gggggaaaaa ccgttattac tactactact acgttatgga cgtc 54

<210> 264
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 264
Ala Lys Asp Arg Gly Glu Asn Arg Tyr Tyr Tyr Tyr Tyr Gly Met
1 5 10 15

Asp Val

<210> 265
<211> 396
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 265
caggtgcagc tggtgagtc tggggaggc gtggccagc ctggaggtc cctgagactc 60
tcctgtacag cctctggatt cacattcaat aactatggca tccactgggt ccgccaggct
ccaggcaagg ggctgaaatg ggtggcagtt atatcatatg atgaaagtaa taaattctat 120
gcagagtccg tgagggccg attcaccatc tccagagaca attccaggaa cacactgttt
ctgcagatga tcagcctgcg aggtgaggac tcggctgttt attactgtgc gaaagatcga 180
ccctattacg atatggac tgctcattat ccctctgact actacttcta cgctatggac
gtctggggcc atgggaccac ggtcaccgtc tcctca 240
300
360
396

0431_21PCT_SL.TXT

<210> 266
<211> 132

<212> PRT
<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 266

Gl n Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Val Val Gl n Pro Gl y Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Ala Ser Gl y Phe Thr Phe Asn Asn Tyr
20 25 30

Gl y Ile His Trp Val Arg Gl n Ala Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Al a Val Ile Ser Tyr Asp Gl y Ser Asn Lys Phe Tyr Al a Gl u Ser Val
50 55 60

Arg Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ser Arg Asn Thr Leu Phe
65 70 75 80

Leu Gl n Met Ile Ser Leu Arg Gl y Gl u Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Al a Lys Asp Arg Pro Tyr Tyr Asp Ile Leu Thr Ala His Tyr Pro Ser
100 105 110

Asp Tyr Tyr Phe Tyr Al a Met Asp Val Trp Gl y His Gl y Thr Thr Val
115 120 125

Thr Val Ser Ser
130

<210> 267

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 267

ggattcacct tcaataacta tggc

24

<210> 268

<211> 8

<212> PRT

<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 268
Gly Phe Thr Phe Asn Asn Tyr Gly
1 5

<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 269
atatacatatg atgaaagtaa taaa 24

<210> 270
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 270
Ile Ser Tyr Asp Gly Ser Asn Lys
1 5

<210> 271
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 271
gcgaaagatc gaccattatta cgatattttg actgctcatt atccctctga ctactacttc 60
tacgctatgg acgtc 75

<210> 272
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 272
Ala Lys Asp Arg Pro Tyr Tyr Asp Ile Leu Thr Ala His Tyr Pro Ser
1 5 10 15

0431_21PCT_SL.TXT

Asp Tyr Tyr Phe Tyr Ala Met Asp Val
20 25

<210> 273
<211> 369
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 273
caggcgcgc tggggaggc gtggccagc ctgggaggc cctgagactc 60
tcctgtcag cctctggctt cacccact aactatgcca tgcactgggt ccgcaggct 120
ccaggcaagg gactggagtg ggtggcagtt atatcatatg atgaaagtca cacatactt 180
gcagactccg tgaaggccg attcaccatg tccagagaca attccaagaa cacgatatct 240
ctacaaatga acagtctgag acctgaggac acggctgttt attttgc gggaggagga 300
gctactacgt ggttctactt ttacggttg gacgtctggg gccaaggac cacggtcacc 360
gtctcctca 369

<210> 274
<211> 123
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 274
Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr Asn Tyr
20 25 30

Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Ser Tyr Asp Gly Ser His Thr Tyr Phe Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Met Ser Arg Asp Asn Ser Lys Asn Thr Ile Ser
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Ala Gly Gly Gly Ala Thr Thr Trp Phe Tyr Phe Tyr Gly Leu Asp Val
Page 78

100

0431_21PCT_SL.TXT

105

110

Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 275

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 275

ggcttcacct tcactaacta tgcc

24

<210> 276

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 276

Gly Phe Thr Phe Thr Asn Tyr Ala
1 5

<210> 277

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 277

atatcatatg atggaagtca caca

24

<210> 278

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 278

Ile Ser Tyr Asp Gly Ser His Thr
1 5

<210> 279

<211> 48

<212> DNA

0431_21PCT_SL.TXT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 279

gcgggaggag gagctactac gtggttctac ttttacggtt tggacgtc

48

<210> 280

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 280

Ala Gly Gly Gly Ala Thr Thr Trp Phe Tyr Phe Tyr Gly Leu Asp Val
1 5 10 15

<210> 281

<211> 378

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 281

gaggtgcagc tggtgagtc tggggaggc ttggtaaaac cgggggggtc ccttagactc 60

tcctgtacag cctctggatt cacttcgtt aatgcctgga ttagctgggt ccggcaggct 120

ccagggagg gcctggagtg ggtggcctt attaaaggta aaactgatgg tggacaaca 180

aactacgctg caccctgaa aggagattc accatctcaa gagatgattc aaaaaacacg 240

ctgtatctgc atttgaacag cctgagaacc gaggacacag ccttgttatta ctgtaccaca 300

gatcagggtgg aactacgaca atactactac tacggttgg acgtctgggg ccaggggacc 360

acggtcaccg ttcctca 378

<210> 282

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 282

Glu Val Glu Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr Phe Gly Asn Ala
Page 80

Trp Met Ser Trp Val Arg Glu Ala Pro Gly Lys Glu Leu Glu Trp Val
 35 40 45

Gly Leu Ile Lys Gly Lys Thr Asp Gly Gly Thr Thr Asn Tyr Ala Ala
 50 55 60

Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr
 65 70 75 80

Leu Tyr Leu His Leu Asn Ser Leu Arg Thr Glu Asp Thr Ala Leu Tyr
 85 90 95

Tyr Cys Thr Thr Asp Glu Val Glu Leu Arg Glu Tyr Tyr Tyr Gly
 100 105 110

Leu Asp Val Trp Gly Glu Gly Thr Thr Val Thr Val Ser Ser
 115 120 125

<210> 283

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 283

ggattcactt tcggtaatgc ctgg

24

<210> 284

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
 peptide"

<400> 284

Gly Phe Thr Phe Gly Asn Ala Trp
 1 5

<210> 285

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
 oligonucleotide"

<400> 285

attaaaggta aaactgatgg tgggacaaca

30

0431_21PCT_SL.TXT

<210> 286

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 286

Ile Lys Gly Lys Thr Asp Gly Gly Thr Thr
1 5 10

<210> 287

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 287

accacagatc aggtggact acgacaatac tactactacg gtttggacgt c

51

<210> 288

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 288

Thr Thr Asp Gln Val Glu Leu Arg Gln Tyr Tyr Tyr Tyr Gly Leu Asp
1 5 10 15

Val

<210> 289

<211> 354

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 289

gagggtgcagc tgggtggagtc tgggggaggc ttgggtacagc cagggcggtc cctgagactc

60

tcctgtacag cttctggatt cagcttttgt gataatgcta tgggctgggt ccgccaggct

120

ccagggagg ggctggagtg ggtaagttc attagaagga aagcttctgg tgggacaaca

180

gaatacggccg cgtctgtgaa aggcagattc accatctcaa gagatgattc caaaagcatc

240

0431_21PCT_SL.TXT

gcctatctgc aaatgaacag tctaaaaacc gaggacacag gcgttatta ttgtactaga 300
ggaggagcag tgtacggcta ctggggccag ggaaccctgg tcaccgtctc ctca 354

<210> 290
<211> 118
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 290
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Phe Gly Asp Asn
20 25 30

Ala Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Phe Ile Arg Arg Lys Ala Ser Gly Gly Thr Thr Glu Tyr Ala Ala
50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ile
65 70 75 80

Ala Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Gly Val Tyr
85 90 95

Tyr Cys Thr Arg Gly Gly Ala Val Tyr Gly Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser
115

<210> 291
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 291
ggattcagct ttgggtataa tgct 24

<210> 292
<211> 8
<212> PRT
<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 292
Gly Phe Ser Phe Gly Asp Asn Ala
1 5

<210> 293
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 293
attagaagga aagcttctgg tgggacaaca 30

<210> 294
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 294
Ile Arg Arg Lys Ala Ser Gly Gly Thr Thr
1 5 10

<210> 295
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 295
actagaggag gagcagtgtt cggtctac 27

<210> 296
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 296
Thr Arg Gly Gly Ala Val Tyr Gly Tyr
1 5

0431_21PCT_SL.TXT

<210> 297
 <211> 369
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 297
 caggtgcagc tggggaggc gtggccagc ctgggaggc cctgagactc 60
 tcctgtcag cgtctggatt cacccatgt agctatggca tgcactgggt ccggcaggct
 ccaggcaagg ggctggagtg ggtggcagtt atatggatg atgaaatgtaa taaatactat 180
 gcagactccg tgaaggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
 ctgcaaatga acagcctgag agccgaggac acggctgttt attactgtgc gagagattgg 300
 gtacgatttt tggagtggtt tcccaacttt gactactggg gccagggAAC cctggtcacc 360
 gtctccctca 369

<210> 298
 <211> 123
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 298
 Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Trp Val Arg Phe Leu Glu Trp Phe Pro His Phe Asp Tyr
 100 105 110

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120

0431_21PCT_SL.TXT

<210> 299
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 299
ggattcacct tcagtagcta tggc

24

<210> 300
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 300
Gly Phe Thr Phe Ser Ser Tyr Gly
1 5

<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 301
atatggatg atgaaagtaa taaa

24

<210> 302
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 302
Ile Trp Tyr Asp Gly Ser Asn Lys
1 5

<210> 303
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

0431_21PCT_SL.TXT

<400> 303
gcgagagatt gggtagatt tttggagtgg tttcccaact ttgactac 48

<210> 304
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 304
Ala Arg Asp Trp Val Arg Phe Leu Glu Trp Phe Pro His Phe Asp Tyr
1 5 10 15

<210> 305
<211> 360
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 305
gaggtgcagc tggtagtc tggggaggc ttggtagcctc ctgggggtc cctgagactc 60
tcctgtcag cctctggatt caccttagc aactatgcca tgagctgggt ccgcagggtt 120
ccagggagg ggctggagtggtctcaact attagtgta gtggtagcacatactac 180
gcagactccg tgaaggccg gttcaccatc tccagagaca attccaagaa ctcgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtat attattgtgc gaaattggtt 300
cggggagttt ttggctggtt cgaccctgg ggccaggaa ccctggcac cgtctccctca 360

<210> 306
<211> 120
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 306
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr
20 25 30

Ala Met Ser Trp Val Arg Gln Val Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Thr Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Tyr Ala Asp Ser Val
Page 87

50

55

60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Ser Leu Tyr
 65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys
 85 90 95

Al a Lys Leu Val Arg Gl y Val Ile Gl y Trp Phe Asp Pro Trp Gl y Gl n
 100 105 110

Gl y Thr Leu Val Thr Val Ser Ser
 115 120

<210> 307

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 307

ggattcacct ttagcaacta tgcc

24

<210> 308

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 308

Gl y Phe Thr Phe Ser Asn Tyr Al a
 1 5

<210> 309

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 309

attagtggta gtgggtggtag caca

24

<210> 310

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

0431_21PCT_SL.TXT

<221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 310
 Ile Ser Gly Ser Gly Gly Ser Thr
 1 5

<210> 311
 <211> 39
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 311
 gcgaaattgg ttcggggagt tattggctgg ttcgacccc 39

<210> 312
 <211> 13
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 312
 Ala Lys Leu Val Arg Gly Val Ile Gly Trp Phe Asp Pro
 1 5 10

<210> 313
 <211> 363
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 313
 caggtgcagc tggggagtc tggggaggc gtgggtccagc ctggggaggc cgtgagactc 60
 tcctgtggag cgtctggatt cacttcaaa tactatggca tgcactgggt ccggccaggct
 ccaggcaagg ggcttggaaatg ggtggcagtc atttggatg attggaaagaaa taaatttat 120
 gcagactctg tgaaggcccg cttcactatac tccagagaca attccaagaa cacggtaat
 ctggaaatga acaacctgag agccgaggac acggctataat attactgtgc gagagatgga 180
 ggaacacggg atggcgacta ttttggactac tggggccagg gaaccctggt caccgtctcc
 tca 240
 300
 360
 363

<210> 314
 <211> 121
 <212> PRT
 <213> Artificial Sequence

0431_21PCT_SL.TXT

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 314

Gl n Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Val Val Gl n Pro Gl y Arg

1

5

10

15

Ser Val Arg Leu Ser Cys Gl y Ala Ser Gl y Phe Thr Phe Lys Tyr Tyr

20

25

30

Gl y Met His Trp Val Arg Gl n Ala Pro Gl y Lys Gl y Leu Gl u Trp Val

35

40

45

Al a Val Ile Trp Tyr Asp Gl y Arg Asn Lys Phe Tyr Al a Asp Ser Val

50

55

60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Val Asn

65

70

75

80

Leu Gl u Met Asn Asn Leu Arg Al a Gl u Asp Thr Al a Ile Tyr Tyr Cys

85

90

95

Al a Arg Asp Gl y Gl y Thr Al a Asp Gl y Asp Tyr Phe Asp Tyr Trp Gl y

100

105

110

Gl n Gl y Thr Leu Val Thr Val Ser Ser

115

120

<210> 315

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 315

ggattcactt tcaaatacta tggc

24

<210> 316

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 316

Gl y Phe Thr Phe Lys Tyr Tyr Gl y

1

5

0431_21PCT_SL.TXT

<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 317
atttggatcg atgaaagaaa taaa

24

<210> 318
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 318
Ile Trp Tyr Asp Gly Arg Asn Lys
1 5

<210> 319
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 319
gcgagagatg gagaaacagc ggtatggcgac tattttgact ac

42

<210> 320
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 320
Ala Arg Asp Gly Gly Thr Ala Asp Gly Asp Tyr Phe Asp Tyr
1 5 10

<210> 321
<211> 324
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

0431_21PCT_SL.TXT

<400> 321		
gaaatagttt tgacacagag tccggcaca ctgtcactct ctcccgaaaa aagagccacc		60
ttgtcatgta gagcaagtca gtcagtctct agctttatc tcgcctggta ccagcagaag		120
ccggacagg cccctagact gctgatctac ggggcaagtt ccagggccac cgaaatcccc		180
gaccggttca gtgaaagcgg aagcgaacc gatttactt tgacgatttc tagactggag		240
ccagaggatt tcgcccgttta ctattgtcaa cgtacggaa gcagccgtg gacgttggc		300
cagggcacga aggtagaaat caag		324

<210> 322

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 322

Gl u Ile Val Leu Thr Gl n Ser Pro Gl y Thr Leu Ser Leu Ser Pro Gl y			
1	5	10	15

Gl u Arg Ala Thr Leu Ser Cys Arg Ala Ser Gl n Ser Val Ser Ser Ser			
20	25	30	

Tyr Leu Ala Trp Tyr Gl n Gl n Lys Pro Gl y Gl n Ala Pro Arg Leu Leu			
35	40	45	

Ile Tyr Gl y Ala Ser Ser Arg Ala Thr Gl y Ile Pro Asp Arg Phe Ser			
50	55	60	

Gl y Ser Gl y Ser Gl y Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Gl u			
65	70	75	80

Pro Gl u Asp Phe Ala Val Tyr Tyr Cys Gl n Gl n Tyr Gl y Ser Ser Pro			
85	90	95	

Trp Thr Phe Gl y Gl n Gl y Thr Lys Val Gl u Ile Lys		
100	105	

<210> 323

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 323

agagcaagtc agtcagtctc tagctttat ctcgcc

36

<210> 324

0431_21PCT_SL.TXT

<211> 12
<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 324

Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala
1 5 10

<210> 325

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 325

ggggcaagtt ccagggccac c

21

<210> 326

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 326

Gly Ala Ser Ser Arg Ala Thr
1 5

<210> 327

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 327

caacagtacg gaagcagccc gtggacg

27

<210> 328

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 328

0431_21PCT_SL.TXT

Gl n Gl n Tyr Gl y Ser Ser Pro Trp Thr
 1 5

<210> 329
 <211> 366
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 329
 gaggtgcagc tggggagtc tggggaggt ttggtagc cttgggggtc cctgagactc 60
 tcctgttag gcactggatt cacccttagc aactatgcca tggactgggt ccgcaggct 120
 ccagggagg ggctggaggc ggtctcagggt attagtgta gaagtagtgg cacattctac 180
 gcagactccg tgaaggccg gttcaccatc tccagagaca attcccaagaa tacgctgtat 240
 ctgcaaatga acagcctggg agccgaggac acggccgtat attactgtgc gaaagttcc 300
 cgttataact gggactacgt ccccttgac ttctggggcc agggaaacctt ggtcaccgtc 360
 tcctca 366

<210> 330
 <211> 122
 <212> PRT
 <213> Artificial Sequence

<220>
 <221> source
 <223> /note="Description of Artificial Sequence: Synthetic polypeptide"

<400> 330
 Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y 15
 1 5 10 15

Ser Leu Arg Leu Ser Cys Val Gl y Thr Gl y Phe Thr Phe Ser Asn Tyr
 20 25 30

Al a Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
 35 40 45

Ser Gl y Ile Ser Gl y Arg Ser Ser Gl y Thr Phe Tyr Al a Asp Ser Val
 50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ser Gl n Asn Thr Leu Tyr
 65 70 75 80

Leu Gl n Met Asn Ser Leu Gl y Al a Gl u Asp Thr Al a Val Tyr Tyr Cys
 85 90 95

Al a Lys Val Ser Arg Tyr Asn Trp Asp Tyr Val Pro Phe Asp Phe Trp
 100 105 110

0431_21PCT_SL.TXT

Gly Glu Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 331
ggattcacct ttagcaacta tgcc

24

<210> 332
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 332
Gly Phe Thr Phe Ser Asn Tyr Ala
1 5

<210> 333
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 333
attagtggta gaagtagtgg caca

24

<210> 334
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 334
Ile Ser Gly Arg Ser Ser Gly Thr
1 5

<210> 335
<211> 45
<212> DNA
<213> Artificial Sequence

0431_21PCT_SL.TXT

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 335

gcgaaagttt cccgttataa ctgggactac gtccccc ttg acttc

45

<210> 336

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
peptide"

<400> 336

Ala Lys Val Ser Arg Tyr Asn Trp Asp Tyr Val Pro Phe Asp Phe
1 5 10 15

<210> 337

<211> 39

<212> PRT

<213> Homo sapiens

<220>

<221> source

<223> /note="Human AngPTL8 Naked Peptide: amino acids 22-60"

<300>

<308> /note="GenBank Database: NP_061157.3"

<400> 337

Ala Pro Met Gly Gly Pro Glu Leu Ala Glu His Glu Glu Leu Thr Leu
1 5 10 15

Leu Phe His Gly Thr Leu Glu Leu Gly Glu Ala Leu Asn Gly Val Tyr
20 25 30

Arg Thr Thr Glu Gly Arg Leu
35

<210> 338

<211> 26

<212> PRT

<213> Homo sapiens

<220>

<221> source

<223> /note="Human ANGPTL3 Shift Naked Peptide: amino acids
32-57"

<300>

<308> /note="GenBank Database: NP_055310.1"

<400> 338

Glu Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Ile Leu Ala
1 5 10 15

0431_21PCT_SL.TXT

Asn Gl y Leu Leu Gl n Leu Gl y Hi s Gl y Leu
20 25

<210> 339
<211> 34
<212> PRT
<213> Homo sapiens

<220>
<221> source
<223> /note="Human ANGPTL4 Naked Peptide: amino acids 34-67"

<300>
<308> /note="GenBank Database: NP_001034756.1"

<400> 339
Arg Phe Al a Ser Trp Asp Gl u Met Asn Val Leu Al a Hi s Gl y Leu Leu
1 5 10 15

Gl n Leu Gl y Gl n Gl y Leu Arg Gl u Hi s Al a Gl u Arg Thr Arg Ser Gl n
20 25 30

Leu Cys

<210> 340
<211> 413
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
hANGPTL8-mFc aa 1-177: amino acids 22-198 of NP_061157.3
aa 178-413: GPG linker and mouse IgG2a Fc tag polypeptide"

<300>
<308> /note="GenBank Database: NP_061157.3 (part of full length seq)"

<400> 340
Al a Pro Met Gl y Gl y Pro Gl u Leu Al a Gl n Hi s Gl u Gl u Leu Thr Leu
1 5 10 15

Leu Phe His Gl y Thr Leu Gl n Leu Gl y Gl n Al a Leu Asn Gl y Val Tyr
20 25 30

Arg Thr Thr Gl u Gl y Arg Leu Thr Lys Al a Arg Asn Ser Leu Gl y Leu
35 40 45

Tyr Gl y Arg Thr Ile Gl u Leu Leu Gl y Gl n Gl u Val Ser Arg Gl y Arg
50 55 60

Asp Al a Al a Gl n Gl u Leu Arg Al a Ser Leu Leu Gl u Thr Gl n Met Gl u
65 70 75 80

Gl u Asp Ile Leu Gl n Leu Gl n Al a Gl u Al a Thr Al a Gl u Val Leu Gl y
Page 97

Gl u Val Al a Gl n Al a Gl n Lys Val Leu Arg Asp Ser Val Gl n Arg Leu
100 105 110

Gl u Val Gl n Leu Arg Ser Al a Trp Leu Gl y Pro Al a Tyr Arg Gl u Phe
115 120 125

Gl u Val Leu Lys Al a His Al a Asp Lys Gl n Ser His Ile Leu Trp Al a
130 135 140

Leu Thr Gl y His Val Gl n Arg Gl n Arg Arg Gl u Met Val Al a Gl n Gl n
145 150 155 160

His Arg Leu Arg Gl n Ile Gl n Gl u Arg Leu His Thr Al a Al a Leu Pro
165 170 175

Al a Gl y Pro Gl y Gl u Pro Arg Gl y Pro Thr Ile Lys Pro Cys Pro Pro
180 185 190

Cys Lys Cys Pro Al a Pro Asn Leu Leu Gl y Gl y Pro Ser Val Phe Ile
195 200 205

Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Ile
210 215 220

Val Thr Cys Val Val Val Asp Val Ser Gl u Asp Asp Pro Asp Val Gl n
225 230 235 240

Ile Ser Trp Phe Val Asn Asn Val Gl u Val His Thr Al a Gl n Thr Gl n
245 250 255

Thr His Arg Gl u Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Al a Leu
260 265 270

Pro Ile Gl n His Gl n Asp Trp Met Ser Gl y Lys Gl u Phe Lys Cys Lys
275 280 285

Val Asn Asn Lys Asp Leu Pro Al a Pro Ile Gl u Arg Thr Ile Ser Lys
290 295 300

Pro Lys Gl y Ser Val Arg Al a Pro Gl n Val Tyr Val Leu Pro Pro Pro
305 310 315 320

Gl u Gl u Gl u Met Thr Lys Lys Gl n Val Thr Leu Thr Cys Met Val Thr
325 330 335

Asp Phe Met Pro Gl u Asp Ile Tyr Val Gl u Trp Thr Asn Asn Gl y Lys
340 345 350

Thr Gl u Leu Asn Tyr Lys Asn Thr Gl u Pro Val Leu Asp Ser Asp Gl y
Page 98

355

360

365

Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp Val
 370 375 380 385

Gl u Arg Asn Ser Tyr Ser Cys Ser Val Val His Gl u Gl y Leu His Asn
 385 390 395 400

His His Thr Thr Lys Ser Phe Ser Arg Thr Pro Gl y Lys
 405 410

<210> 341

<211> 410

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
 MfAngPTL8-mFc aa 1-177: amino acids 78-254 of
 XP_005588064. 1aa 178-410: mouse IgG2a Fc tag polypeptide"

<300>

<308> /note="GenBank Database: XP_005588064. 1 (part of full length seq)"

Ala Pro Val Gl y Ser Pro Gl u Leu Ala Gl u His Gl u Gl u Leu Thr Leu
 1 5 10 15

Leu Phe His Gl y Thr Leu Gl n Leu Gl y Gl n Ala Leu Asn Gl y Val Tyr
 20 25 30

Lys Thr Thr Gl u Gl y Arg Leu Thr Lys Ala Arg Asn Ser Leu Gl y Leu
 35 40 45

Tyr Gl y Arg Thr Val Gl u Leu Leu Gl y Gl n Gl u Val Ser Arg Gl y Arg
 50 55 60

Asp Ala Ala Gl n Gl u Leu Arg Ala Ser Leu Leu Gl u Thr Gl n Met Gl u
 65 70 75 80

Gl u Asp Ile Leu Gl n Leu Lys Ala Gl u Ala Ile Ala Gl u Val Leu Gl u
 85 90 95

Gl u Val Ala Gl n Ala Gl n Lys Val Leu Gl n Asp Ser Val Arg Arg Leu
 100 105 110

Gl u Val Gl n Leu Arg Ser Ala Trp Leu Gl y Pro Ala Tyr Gl n Gl u Phe
 115 120 125

Gl u Val Leu Lys Ala His Ala Asp Lys Gl n Ser His Ile Leu Trp Ala
 130 135 140

Leu Thr Gl y His Val Gl n Arg Gl n Arg Arg Gl u Met Val Ala Gl n Gl n
 Page 99

0431_21PCT_SL.TXT

145

150

155

160

Hi s Arg Leu Arg Gl n Ile Gl n Gl u Arg Ile His Lys Ala Ala Leu Pro
 165 170 175

Al a Gl u Pro Arg Gl y Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys
 180 185 190

Pro Al a Pro Asn Leu Leu Gl y Gl y Pro Ser Val Phe Ile Phe Pro Pro
 195 200 205

Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys
 210 215 220

Val Val Val Asp Val Ser Gl u Asp Asp Pro Asp Val Gl n Ile Ser Trp
 225 230 235 240

Phe Val Asn Asn Val Gl u Val His Thr Al a Gl n Thr Gl n Thr His Arg
 245 250 255

Gl u Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Al a Leu Pro Ile Gl n
 260 265 270

Hi s Gl n Asp Trp Met Ser Gl y Lys Gl u Phe Lys Cys Lys Val Asn Asn
 275 280 285

Lys Asp Leu Pro Al a Pro Ile Gl u Arg Thr Ile Ser Lys Pro Lys Gl y
 290 295 300

Ser Val Arg Al a Pro Gl n Val Tyr Val Leu Pro Pro Pro Gl u Gl u Gl u
 305 310 315 320

Met Thr Lys Lys Gl n Val Thr Leu Thr Cys Met Val Thr Asp Phe Met
 325 330 335

Pro Gl u Asp Ile Tyr Val Gl u Trp Thr Asn Asn Gl y Lys Thr Gl u Leu
 340 345 350

Asn Tyr Lys Asn Thr Gl u Pro Val Leu Asp Ser Asp Gl y Ser Tyr Phe
 355 360 365

Met Tyr Ser Lys Leu Arg Val Gl u Lys Lys Asn Trp Val Gl u Arg Asn
 370 375 380

Ser Tyr Ser Cys Ser Val Val His Gl u Gl y Leu His Asn His His Thr
 385 390 395 400

Thr Lys Ser Phe Ser Arg Thr Pro Gl y Lys
 405 410

0431_21PCT_SL.TXT

<211> 460

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic hANGPTL3
polypeptide"

<400> 342

Met Phe Thr Ile Lys Leu Leu Leu Phe Ile Val Pro Leu Val Ile Ser
1 5 10 15

Ser Arg Ile Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Gln
20 25 30

Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Ile Leu Ala Asn
35 40 45

Gly Leu Leu Gln Leu Gly His Gly Leu Lys Asp Phe Val His Lys Thr
50 55 60

Lys Gly Gln Ile Asn Asp Ile Phe Gln Lys Leu Asn Ile Phe Asp Gln
65 70 75 80

Ser Phe Tyr Asp Leu Ser Leu Gln Thr Ser Glu Ile Lys Gln Glu Glu
85 90 95

Lys Glu Leu Arg Arg Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu
100 105 110

Val Lys Asn Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu
115 120 125

Glu Glu Lys Ile Leu Leu Gln Gln Lys Val Lys Tyr Leu Glu Glu Gln
130 135 140

Leu Thr Asn Leu Ile Gln Asn Gln Pro Glu Thr Pro Glu His Pro Gln
145 150 155 160

Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser Ile Lys
165 170 175

Asp Leu Leu Gln Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln
180 185 190

His Ser Gln Ile Lys Glu Ile Glu Asn Gln Leu Arg Arg Thr Ser Ile
195 200 205

Gln Glu Pro Thr Glu Ile Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg
210 215 220

Thr Thr Pro Phe Leu Gln Leu Asn Gln Ile Arg Asn Val Lys His Asp
225 230 235 240

0431_21PCT_SL.TXT

Gly Ile Pro Ala Glu Cys Thr Thr Ile Tyr Asn Arg Gly Glu His Thr
245 250 255

Ser Gly Met Tyr Ala Ile Arg Pro Ser Asn Ser Gln Val Phe His Val
260 265 270

Tyr Cys Asp Val Ile Ser Gly Ser Pro Trp Thr Leu Ile Gln His Arg
275 280 285

Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu Asn Tyr Lys Tyr
290 295 300

Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu Gly Leu Glu Lys Ile
305 310 315 320

Tyr Ser Ile Val Lys Gln Ser Asn Tyr Val Leu Arg Ile Glu Leu Glu
325 330 335

Asp Trp Lys Asp Asn Lys His Tyr Ile Glu Tyr Ser Phe Tyr Leu Gly
340 345 350

Asn His Glu Thr Asn Tyr Thr Leu His Leu Val Ala Ile Thr Gly Asn
355 360 365

Val Pro Asn Ala Ile Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp
370 375 380

Asp His Lys Ala Lys Gly His Phe Asn Cys Pro Glu Gly Tyr Ser Gly
385 390 395 400

Gly Trp Trp Trp His Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys
405 410 415

Tyr Asn Lys Pro Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu
420 425 430

Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr Ser Ile Lys Ser Thr Lys
435 440 445

Met Leu Ile His Pro Thr Asp Ser Glu Ser Phe Glu
450 455 460

<210> 343

<211> 1383

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic hANGPTL3 polynucleotide"

0431_21PCT_SL.TXT

<400> 343
atgttcacaa ttaagctcct tcttttatt gttcctctag ttatccctc cagaattgat 60
caagacaatt catcatttga ttctctatct ccagagccaa aatcaagatt tgctatgtta
gacgatgtaa aaattttagc caatggcctc cttcagttgg gacatggtct taaagacttt 120
gtccataaga cgaagggcca aattaatgac atatttcaaa aactcaacat atttgcata 180
tcttttatg atctatcgct gcaaaccagt gaaatcaaag aagaagaaaa ggaactgaga
agaactacat ataaactaca agtcaaaaat gaagaggtaa agaatatgtc acttgcactc 240
aactcaaaac ttgaaagcct cctagaagaa aaaattctac ttcaacaaaa agtgaatata 300
ttagaagagc aactaactaa cttattcaa aatcaacctg aaactccaga acacccagaa 360
gtaacttcac taaaacttt ttagaaaaaa caagataata gcatcaaaga ctttcctcag
accgtgaaag accaatataa acaattaaac caacagcata gtcaaataaa agaaatagaa 420
aatcagctca gaaggactag tattcaagaa cccacagaaa tttctctatc ttccaagcca 480
agagcaccaa gaactactcc cttcttcag ttgaatgaaa taagaaatgt aaaacatgat 540
ggcattcctg ctgaatgtac caccattt aacagaggtg aacatacaag tggcatgtat
ccatggacat taattcaaca tcgaatagat ggatcacaaa acttcaatga aacgtggag 600
aactacaat atggtttgg gaggcttgat ggagaatttt ggttggcct agagaagata 660
tactccatag tgaagcaatc taattatgtt ttacgaattt agttggaga ctggaaagac 720
aacaacatt atattgaata ttcttttac ttggaaatc acgaaaccaa ctatacgcta 780
catctagttg cgattactgg caatgtcccc aatgcaatcc cgaaaaacaa agattggtg 840
ttttctactt gggatcacaa agcaaaagga cacttcaact gtccagaggg ttattcagga 900
ggctgggt ggcatgtga gtgtggagaa aacaacctaa atggtaaata taacaaacca 960
agagcaaaat ctaagccaga gaggagaaga ggattatctt ggaagtctca aaatggaagg 1020
ttatactcta taaaatcaac caaaatgtt atccatccaa cagattcaga aagcttgaa 1080
tga 1383

<210> 344

<211> 406

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic hANGPTL4 polypeptide"

<400> 344

Met	Ser	Gly	Ala	Pro	Thr	Ala	Gly	Ala	Ala	Leu	Met	Leu	Cys	Ala	Ala
1															

Thr	Ala	Val	Leu	Leu	Ser	Ala	Gln	Gly	Gly	Pro	Val	Gln	Ser	Lys	Ser
20															

0431_21PCT_SL.TXT

Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu
35 40 45

Leu Glu Leu Gly Glu Leu Arg Glu His Ala Glu Arg Thr Arg Ser
50 55 60

Glu Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala Cys Gly Ser Ala Cys
65 70 75 80

Glu Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg
85 90 95

Val Asp Pro Glu Val Leu His Ser Leu Glu Thr Glu Leu Lys Ala Glu
100 105 110

Asn Ser Arg Ile Glu Glu Leu Phe His Lys Val Ala Glu Glu Glu Arg
115 120 125

His Leu Glu Lys Glu His Leu Arg Ile Glu His Leu Glu Ser Glu Phe
130 135 140

Gly Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala
145 150 155 160

Arg Arg Lys Arg Leu Pro Glu Met Ala Glu Pro Val Asp Pro Ala His
165 170 175

Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Glu Glu Leu Phe
180 185 190

Glu Val Glu Glu Arg Glu Ser Glu Leu Phe Glu Ile Glu Pro Glu Glu
195 200 205

Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Glu Glu Trp
210 215 220

Thr Val Ile Glu Arg Arg His Asp Glu Ser Val Asp Phe Asn Arg Pro
225 230 235 240

Trp Glu Ala Tyr Lys Ala Glu Phe Glu Asp Pro His Glu Glu Phe Trp
245 250 255

Leu Glu Leu Glu Lys Val His Ser Ile Thr Glu Asp Arg Asn Ser Arg
260 265 270

Leu Ala Val Glu Leu Arg Asp Trp Asp Glu Asn Ala Glu Leu Leu Glu
275 280 285

Phe Ser Val His Leu Glu Glu Glu Asp Thr Ala Tyr Ser Leu Glu Leu
290 295 300

0431_21PCT_SL.TXT

Thr Ala Pro Val Ala Gly Glu Leu Gly Ala Thr Thr Val Pro Pro Ser
305 310 315 320

Gly Leu Ser Val Pro Phe Ser Thr Trp Asp Glu Asp His Asp Leu Arg
325 330 335

Arg Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly
340 345 350

Thr Cys Ser His Ser Asn Leu Asn Gly Glu Tyr Phe Arg Ser Ile Pro
355 360 365

Gln Gln Arg Gln Lys Leu Lys Gly Ile Phe Trp Lys Thr Trp Arg
370 375 380

Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Ile Gln Pro Met
385 390 395 400

Ala Ala Glu Ala Ala Ser
405

<210> 345

<211> 1221

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic hANGPTL4 polynucleotide"

<400> 345

atgagcggtg ctccgacggc cggggcagcc ctgatgtct gcgcggccac cgccgtgcta 60

ctgagcgctc agggcggacc cgtgcagtcc aagtcgccgc gctttgcgtc ctgggacgag 120

atgaatgtcc tggcgacagg actcctgcag ctcggccagg ggctgcgcga acacgcggag 180

cgcacccgca gtcagctgag cgcgctggag cggcgccctga gcgcgtgcgg gtccgcctgt 240

cagggAACCG aggggtccac cgacctcccg ttagccctg agagccgggt ggaccctgag 300

gtccttcaca gcctgcagac acaactcaag gtcagaaca gcaggatcca gcaactcttc 360

cacaagggtgg cccagcagca gcggcacctg gagaagcagc acctgcgaat tcagcatctg 420

caaagccagt ttggcctcct ggaccacaag cacctagacc atgaggtggc caagcctgcc 480

cgaagaaaga ggctgcccga gatggcccag ccagttgacc cggctcacaa tgtcagccgc 540

ctgcacccggc tgcccaggaa ttgccaggag ctgttccagg ttggggagag gcagagtgg 600

ctatttggaa tccagcctca ggggtctccg ccattttgg tgaactgcaa gatgaccta 660

gatggaggct ggacagtaat tcagaggcgc cacgatggct cagtggactt caaccggccc 720

tggaaaggct acaaggcggg gttggggat ccccacggcg agttctggct gggctggag 780

aaggtgcata gcatcacggg ggaccgcaac agccgcctgg ccgtgcagct gcgggactgg 840

0431_21PCT_SL.TXT

gatggcaacg	ccgagttgct	gcagttctcc	gtgcacctgg	gtggcgagga	cacggcctat	900
agcctgcagc	tcactgcacc	cgtggccggc	cagctggcg	ccaccaccgt	cccacccagc	960
ggcctctccg	tacccttctc	cacttggac	caggatcagc	acctccgcag	ggacaagaac	1020
tgcgccaaga	gcctctctgg	aggctggtgg	tttggcacct	gcagccattc	caacctaacc	1080
ggccagtagt	tccgctccat	cccacagcag	cggcagaagc	ttaagaaggg	aatcttctgg	1140
aagacctggc	ggggccgcta	ctacccgctg	caggccacca	ccatgttcat	ccagcccatg	1200
gcagcagagg	cagcctccta	g				1221

<210> 346

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 346

Cys Gl y Gl y Cys Gl y Gl y

1 5

<210> 347

<211> 177

<212> PRT

<213> Homo sapiens

<400> 347

Al a Pro Met Gl y Gl y Pro Gl u Leu Al a Gl n His Gl u Gl u Leu Thr Leu

1

5

10

15

Leu Phe His Gl y Thr Leu Gl n Leu Gl y Gl n Al a Leu Asn Gl y Val Tyr

20

25

30

Arg Thr Thr Gl u Gl y Arg Leu Thr Lys Al a Arg Asn Ser Leu Gl y Leu

35

40

45

Tyr Gl y Arg Thr Ile Gl u Leu Leu Gl y Gl n Gl u Val Ser Arg Gl y Arg

50

55

60

Asp Al a Al a Gl n Gl u Leu Arg Al a Ser Leu Leu Gl u Thr Gl n Met Gl u

65

70

75

Gl u Asp Ile Leu Gl n Leu Gl n Al a Gl u Al a Thr Al a Gl u Val Leu Gl y

85

90

95

Gl u Val Al a Gl n Al a Gl n Lys Val Leu Arg Asp Ser Val Gl n Arg Leu

100

105

110

Gl u Val Gl n Leu Arg Ser Al a Trp Leu Gl y Pro Al a Tyr Arg Gl u Phe

115

120

125

0431_21PCT_SL.TXT

Gl u Val Leu Lys Al a His Al a Asp Lys Gl n Ser His Ile Leu Trp Al a
130 135 140

Leu Thr Gl y His Val Gl n Arg Gl n Arg Arg Gl u Met Val Al a Gl n Gl n
145 150 155 160

His Arg Leu Arg Gl n Ile Gl n Gl u Arg Leu His Thr Al a Al a Leu Pro
165 170 175

Al a

<210> 348

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 348

Al a Pro Met Gl y Gl y Pro Gl u Leu Al a Gl n His Gl u Gl u Leu Thr
1 5 10 15

<210> 349

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 349

Pro Met Gl y Gl y Pro Gl u Leu Al a Gl n His Gl u Gl u Leu Thr Leu
1 5 10 15

<210> 350

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 350

Met Gl y Gl y Pro Gl u Leu Al a Gl n His Gl u Gl u Leu Thr Leu Leu
1 5 10 15

<210> 351

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

0431_21PCT_SL.TXT

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 351
Gly Gly Pro Glu Leu Ala Gln His Glu Glu Leu Thr Leu Leu Phe
1 5 10 15

<210> 352

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 352

Gly Pro Glu Leu Ala Gln His Glu Glu Leu Thr Leu Leu Phe His
1 5 10 15

<210> 353

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 353

Pro Glu Leu Ala Gln His Glu Glu Leu Thr Leu Leu Phe His Gly
1 5 10 15

<210> 354

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 354

Gly Leu Ala Gln His Glu Glu Leu Thr Leu Leu Phe His Gly Thr
1 5 10 15

<210> 355

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 355

Leu Ala Gln His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu
1 5 10 15

0431_21PCT_SL.TXT

<210> 356

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 356

Ala Glu His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Glu
1 5 10 15

<210> 357

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 357

Glut His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Glu Leu
1 5 10 15

<210> 358

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 358

Thr Ala Glu Val Leu Gly Glu Val Ala Ala Gly Glu Lys Val Leu
1 5 10 15

<210> 359

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 359

Val Tyr Arg Thr Thr Glu Gly Arg Leu Ala Ala Ala Arg Asn Ser
1 5 10 15

<210> 360

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic

0431_21PCT_SL.TXT

pepti de"

<400> 360
Gly Val Tyr Arg Thr Thr Glu Gly Arg Ala Ala Lys Ala Arg Asn
1 5 10 15

<210> 361
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 361
Val Gln Arg Leu Glu Val Gln Leu Arg Ala Gly Trp Leu Gly Pro
1 5 10 15

<210> 362
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 362
Leu Thr Gly His Val Gln Arg Gln Arg Ala Ala Met Val Ala Gln
1 5 10 15

<210> 363
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 363
Val Leu Lys Ala His Ala Asp Lys Gln Ala Ala Ile Leu Trp Ala
1 5 10 15

<210> 364
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 364
Leu Arg Asp Ser Val Gln Arg Leu Glu Ala Ala Leu Arg Ser Ala
1 5 10 15

<210> 365

0431_21PCT_SL.TXT

<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 365
Arg Arg Glu Met Val Ala Glu Glu His Ala Ala Arg Glu Ile Glu
1 5 10 15

<210> 366
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 366
Val Ser Arg Gly Arg Asp Ala Ala Glu Ala Ala Arg Ala Ser Leu
1 5 10 15

<210> 367
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 367
Ala Tyr Arg Glu Phe Glu Val Leu Lys Gly Ala Ala Asp Lys Glu
1 5 10 15

<210> 368
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic peptide"

<400> 368
Gln Arg Gln Arg Arg Glu Met Val Ala Glu
1 5 10