

US 20080153147A1

(19) United States(12) Patent Application Publication

Liu et al.

(10) Pub. No.: US 2008/0153147 A1 (43) Pub. Date: Jun. 26, 2008

- (54) COMPOSITIONS, ORGANISMS AND METHODOLOGIES EMPLOYING A NOVEL HUMAN KINASE
- (75) Inventors: Wei Liu, Sudbury, MA (US); Leeying Wu, Lexington, MA (US); Huimin Chen, Bedford, MA (US)

Correspondence Address: CHOATE, HALL & STEWART LLP/WYETH PATENT GROUP, TWO INTERNATIONAL PLACE BOSTON, MA 02110

- (73) Assignee: Wyeth, Madison, NJ (US)
- (21) Appl. No.: 11/982,836
- (22) Filed: Nov. 5, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/702,496, filed on Nov. 7, 2003, now Pat. No. 7,297,525. (60) Provisional application No. 60/429,381, filed on Nov. 27, 2002.

Publication Classification

(51)	Int. Cl.	
	C12N 9/12	(2006.01)
	C12N 15/11	(2006.01)
	C12N 15/52	(2006.01)

(52) U.S. Cl. 435/194; 536/23.1; 536/23.2

(57) **ABSTRACT**

This invention provides compositions, organisms and methodologies employing a novel human protein kinase, MCRK1. The novel human kinase has sequence homology to rat myotonic dystrophy kinase-related Cdc42 binding kinase (MRCK) alpha. The gene encoding the novel kinase is localized in locus 11q13 of human chromosome 11. The novel protein kinase comprises multiple functional/structural domains that include a kinase domain, a pkinase_C domain, a DAG-PE binding domain, and a CNH domain. The sequence and structure similarity between the novel human protein and rat MRCK alpha indicates that the novel human protein may function as a downstream effector of Cdc42 in cytoskeleton reorganization.

Human MRCK1 Probe

Schematic diagram (not drawn to scale)

Exons 29 10 20 33 35 1 ×. → <u>ہ</u> Forward Reverse primer primer Forward primer sequence: 5' GCTGGCATCTACGTGGATG 3'

Reverse primer sequence: 5' GTGGTTGAAGTTGGTAGGCG 3'

Probe sequence

GCTGGCATCTACGTGGATGGCGCAGGCCGCAAGTCTC GTGGCACGAGCTGTTGTGGCCAGCAGCGCCCATGGG CTGGGGGTATGCGGCCCCTACCTGACAGTGTTCAGCG AGAACTCCATCGATGTGTTTGACGTGAGGAGGGCAGA ATGGGTGCAGACCGTGCCGCTCAAGAAGGTGCGGCCC CTCAATCCAGAGGGCTCCCTGTTCCTCTACGGCACCGA GAAGGTCCGCCTGACCTACCTCAGGAACCAGCTGGCA GAGAGGACGAGTTCGACATCCCGGACCTACCGACA ACAGCCGGCGCCAGCTGTCCGCACCAAGAGCAGCG CCGCTTCTTTTCCGCGTGTCGGAGGAGCAGCAGAGC AGCAGCGCAGGGAGATGCTGAAGGACCCTTTTGTGCG CTCCAAGCTCATCTCGCCGCCTACCAACTTCAACCAC

Query: 40	PLRRERSVAQFLSWASPFVSKVKELRLQRDDFEILKVIGRGAFGEVTVVRQRDTGQIFAM PLRRE+++ ++L WA PF SKVK++RL R+DFEILKVIGRGAFGEV VV+ ++ ++FAM	99
Sbjct: 46		105
Query: 10	0 KMLHKWEMLKRAETACFREERDVLVKGDSRWVTTLHYAFQDEEYLYLVMDYYAGGDLLTL K+L+KWEMLKRAETACFREERDVLV GDS+W+TTLHYAFQD+ LYLVMDYY GGDLLTL	159
Sbjct: 10	6 KILNKWEMLKRAETACFREERDVLVNGDSKWITTLHYAFQDDNNLYLVMDYYVGGDLLTL	165
Query: 16	0 LSRFEDRLPPELAQFYLAEMVLAIHSLHQLGYVHRDVKPDNVLLDVNGHIRLADFGSCLR LS+FEDRLP E+A+FYLAEMV+AI S+HQL YVHRD+KPDN+L+D+NGHIRLADFGSCL+	219
Sbjct: 16	6 LSKFEDRLPEEMARFYLAEMVIAIDSVHQLHYVHRDIKPDNILMDMNGHIRLADFGSCLK	225
Query: 22	0 LNTNGMVDSSVAVGTPDYISPEILQAMEEGKGHYGPQCDWWSLGVCAYELLFGETPFYAE L +G V SSVAVGTPDYISPEILQAME+GKG YGP+CDWWSLGVC YE+L+GETPFYAE	279
Sbjct: 22		285
Query: 28	0 SLVETYGKIMNHEDHLQFPPDVPDVPASAQDLIRQLLCRQEERLGRGGLDDFRNHPFFEG SLVETYGKIMNH++ QFP V DV +A+DLIR+L+C +E RLG+ G++DF+ HPFF G	339
-	6 SLVETYGKIMNHKERFQFPTQVTDVSENAKDLIRRLICSREHRLGQNGIEDFKKHPFFSG	
Query: 34	0 VDWERLASSTAPYIPELRGPMDTSNFDVDDDTLNHPGTLPPPSHGAFSGHHLPFVGFTYT +DW+ + APYIPE+ P DTSNFDVDDD L + T+PPP+H AFSGHHLPFVGFTYT	399
	6 IDWDNIRNCEAPYIPEVSSPTDTSNFDVDDDCLKNSETMPPPTHTAFSGHHLPFVGFTYT	
-	0R+++ LEQEKVELSRKHQ 4 R+++ LEQEK+EL+RK Q	
Sbjct: 40	6 SSCVLSDRSCLRVTAGPTSLDLDVNVQRTLDNNLATEAYERRIKRLEQEKLELTRKLQ 4	63

Query: 551 RQVTQLQGQWEQRL----EESSQAKTIHTASETN---GMGPPEGGPQEAQLRKEVAALRE 603 +++T+L+ E++ EE S+ + IH + N + EG Q+ L KE+ L++ QEITKLKTDLEKKSIFYEEEISKREGIHASEIKNLKKELHDSEG--QQLALNKEIMVLKD 741 sbjct: 684 Query: 604 +LE+ S +EE Q LE KLEKTRRESQSEREEFENEFKQQYEREKVLLTEENKKLTSELDKLTSLYESLSLRNQHLE 801 Sbjct: 742 GE-----RRETESNWEAQLADILSWVNDEKVSRGYLQALATKMAEELESLRNVGTQTLP 706 Query: 653 E ++E+ ++WEAQ+ +I+ WV+DEK +RGYLQALA+KM EELE+LRN +L EEVKDLADKKESVAHWEAQITEIIQWVSDEKDARGYLQALASKMTEELEALRN---SSLG 858 sbjct: 802 Query: 707 ARPLDHQWKARRLQKMEASARLELQSALEAEIRAKQGLQERLTQVQEAQLQAERRLQEAE 766 R D WK RR K++ SARLELQSAL+AEIRAKQ +QE L +V+ + + E +L+++E sbjct: 859 TRATDMPWKMRRFAKLDMSARLELQSALDAEIRAKQAIQEELNKVKASNIITECKLKDSE 918 KQSQALQQELAML---REELRARGPVDTKPSNSLIPFLSFRSSEKDSAKDPGISGEATRH 823 K++ L E+ L EELR+ V+ + S FL+F ++ D+ + Query: 767 KKNLELLSEIEQLIKDTEELRSEKGVEHRDSQH--SFLAFLNTPTDALD------QF 967 Sbjct: 919 GGEPDLRPEGRRSLRMGAVFPRAPTANTASTEGLPAKGWGMGPWEALGNGCPPPQPGSHT 883 Query: 824 PPG+R+PT+GPAG PP+ +H ERSPSCTPAG-KGRRIADSAPLPVHTPTLRKKGCPASA-GF-----PPKRKTHQ 1014 Sbjct: 968 Query: 884 LRPRSFPSPTKCLRCTSLMLGLGRQGLGCDACGYFCHTT-XXXXXXXXXXXXDLLRTALG 942 +SF +PTKC +CTSLM+GL RQG C+ CG+ CH T + LG Sbjct: 1015 FFVKSFTAPTKCHQCTSLMVGLIRQGCSCEVCGFSCHITCVNKAPTTCPVPPEQTKGPLG 1074 Query: 943 VHPETGTGTAYEGFLSVPRPSGVRRGWQRVFAALSDSRLLLFDAPDLRLSPPSGALLQVL 1002 + P+ G GTAYEG + +P+P+GV++GWQR A + D +L L+D + + S PS + QV+ Sbjct: 1075 IDPQKGVGTAYEGHVRIPKPAGVKKGWQRALAVVCDFKLFLYDIAEGKASQPSSVISQVI 1134 Query: 1003 DLRDPQFSATPVLASDVIHAQSRDLPRIFRVTTSQLAVPPTTCTVLLLAESEGERERWXX 1062 D+RD +FS + VLASDVIHA +D+P IFRVT SQL+ P C++L+LA+SE ER +W Sbjct: 1135 DMRDEEFSVSSVLASDVIHASRKDIPCIFRVTASQLSAPSDKCSILMLADSETERSKWVG 1194 VY KEAYD+ LPL+ T AAI+D +R+ALG EEGLFV+H+ Sbjct: 1195 VLSELHKVLKKNKFRDRSVYVPKEAYDSTLPLIKTTQAAAIIDHERVALGNEEGLFVVHV 1254 Query: 1123 RSNDIFQVGECRRVQQLTLSPSAGLLVVLCGRGPSVRLFALAELENIEVAGAKIPESRGC 1182 ++I +VG+ +++ Q+ L PS L+ V+ GR VRLF ++ L+ E K+ E++GC Sbjct: 1255 TKDEIIRVGDNKKIHQIELIPSDQLVAVISGRNRHVRLFPMSALDGRETDFYKLAETKGC 1314 Query: 1183 QVLAAGSILQARTPVLCVAVKRQVLCYQLGPGPGPWQRRIRELQAPATVQSLGLLGDRLC 1242 Q +AAG + LCVA+KRQVLCY+L R+ +E+Q P VQ + + + LC Sbjct: 1315 QTIAAGKVRHGALSCLCVAMKRQVLCYELFQSKTR-HRKFKEIQVPCNVQWMAIFSEHLC 1373 VG GF L GI sbjct: 1374 VGFQSGFLRYPLNGEGSPCNMLHSN-DHTLAFITHQPMDAICAVEISNKEYLLCFSSIGI 1432 Query: 1303 YVDGAGRKSRGHELLWPAAPMGWGYAAPYLTVFSENSIDVFDVRRAEWVQTVPLKKVRPL 1362 Y D GR+SR EL+WPA P Y APYL+++SEN++D+FDV EW+QT+PLKKVRPL Sbjct: 1433 YTDCQGRRSRQQELMWPANPSSCCYNAPYLSIYSENAVDIFDVNSMEWIQTLPLKKVRPL 1492 Query: 1363 NPEGSLFLYGTEKVRLTYLRNQLAEKDEFDIPDLTDNSRRQL-XXXXXXXXXXXXXXSEEQ 1421 N EGSL L G E +RL Y +N++AE DE +P+ +DNSR+Q+ V EE+ Sbjct: 1493 NTEGSLNLLGLETIRLIYFKNKMAEGDELVVPETSDNSRKQMVRNINNKRRYSFRVPEEE 1552 Query: 1422 QKQQRREMLKDPFVRSKLISPPTNFNHLVHVGPANG 1457 + QORREML+DP +R+KLIS PTNFNH+ H+GP +G Sbjct: 1553 RMQQRREMLRDPEMRNKLISNPTNFNHIAHMGPGDG 1588

Query:	71	FEILKVIGRGAFGEVTVVRQRDTGQIFAM	KMLHKWEMLKRAETACFREERDVLVKGDSRW	130
Sbjct:	1	YELLEVLGKGAFGKVYLARDKKTGKLVAI	KVIKKEKLKKKKRERILRE-IKILKKLDHPN	59
Query:	131	VTTLHYAFQDEEYLYLVMDYYAGGDLLTL	LSRFEDRLPPELAQFYLAEMVLAIHSLHQLG	190
Sbjct:	60	IVKLYDVFEDKDKLYLVMEYCEGGDLFDL	LKK-RGRLSEDEARFYARQILSALEYLHSNG	118
Query:	191	YVHRDVKPDNVLLDVNGHIRLADFGSCLR	LNTNGMVDSSVAVGTPDYISPEILQAMEEGK	250
Sbjct:	119	IIHRDLKPENILLDSDGHVKLADFGLAKQ	LDSGGTLLTTF-VGTPEYMAPEVLLG	172
Query:	251	GHYGPQCDWWSLGVCAYELLFGETPFYAE	SLVETYGKIMNHEDHLQFPPDVPDVPASAQD	310
Sbjct:	173	KGYGKAVDIWSLGVILYELLTGKPPFPGD	DQLDALFKKIGKPPP-PFPPPEWKISPEAKD	231
Query:	311	LIRQLLCRQEERLGRGGLDDFRNHPFF	337	
Sbjct:	232	LIKKLLVKDPEKRLTAEEALEHPFF	256	

Query:71FEILKVIGRGAFGEVTVVRQRDTGQIFAMKMLHKWEMLKRAETACFREERDVLVKGDSRW130Sbjct:1YELGEKLGSGSFGKVYKGKHKNTGEIVAIKKLKKESI---KEKKRFLREIRILRRLSHPN57Query:131VTTLHYAFQDEEYLYLVMDYYAGGDLLTLLSRFEDRLPPELAQFYLAEMVLAIHSLHQLG190Sbjct:58IVRLIGVFEEDDHLYLVMEYMEGGDLFDYLRRNGLLSEKEAKKIALQILRGLEYLHSRG117Query:191YVHRDVKPDNVLLDVNGHIRLADFGSCLRLNTNGMVDSSVAVGTPDYISPEILQAMEEGK250Sbjct:118IVHRDLKPENILLDENGTVKIADFGLARLLKSSYSKLTTF-VGTPEYMAPEVLEG-----171Query:251GHYGPQCDWWSLGVCAYELLFGETPFYAESLVETYGKIMNHEDHLQFPPDVPDVPASAQD310Sbjct:172RGYSSKVDVWSLGVVLYELLTGKPPFSGIDPLEELFRIIKRGLRLPLPPNCSE---ELKD228Query:311LIRQLLCRQEERLGRGGLDDFRNHPFF337Sbjct:229LIKKCLNKDPEK--RPTAKEILNHPWF253

Query:	72	ILKVIGRGAFGEVTVVRQRDTGQIFAMKMLHKWEMLKRAETACFREERDVLVKGDS	128
Sbjct:	2	LGKKLGEGAFGEVYKGTLKGKGGKEVEVAVKTLKEDASEQQIEEFLREAKIMRKLDH	59
Query:	129	RWVTTLHYAFQDEEYLYLVMDYYAGGDLLTLLSRFEDRLPPELAQFYLAEMVLAIHS	185
Sbjct:	60	PNIVKLLGVCTEEEPLMIVMEYMEGGDLLDYLRKNRPKELSLSDLLSFALQIARGME	116
Query:	186	-LHQLGYVHRDVKPDNVLLDVNGHIRLADFGSCLRLNTNGMVDSSVAVGTPDYISPEILQ	244
Sbjct:	117	YLESKNFVHRDLAARNCLVGENKTVKIADFGLSRDLYSDDYYKVKGGKLPIRWMAPESLK	176
Query:	245	AMEEGKGHYGPQCDwwSLGVCAYELL-FGETPFYAESLVETYGKIMNHEDHLQFPPDVPD	303
Sbjct:	177	EGKFTSKSDVWSFGVLLWEIFTLGESPYPGMSNEEVLEYLKK-GYRLPQPPNCPD	230

Query: 339 GVDWERLAS--STAPYIPELRGPMDTSNFDVDDDTLNHPGTLPPPSHGAFSGHHLPFVGF 396

sbjct: 2 GIDWDKLENKEIEPPFVPKIKSPTDTSNF--DPEFTEESPVLTPVDPPLSESDQDEFRGF 59

Query: 397 TY 398

Sbjct: 60 SY 61

FIGURE 6

Query: 339 GVDWERLASS--TAPYIPELRGPMDTSNFDVDDDTLNHPGTLPPPSHGAF-SGHHLPFVG 395 Sbjct: 2 NIDWDKLENKEIEPPFKPKIKSPRDTSNF--DKEFTREKPVLTPVDSVLIRSIDQNEFRG 59 Query: 396 FTY 398 Sbjct: 60 FSY 62

FIGURE 7

Query:882HTLRPRSFPSPTKCLRCTSLMLGLGRQGLGCDACGYFCH920Sbjct:1HRFKRTSFRQPTFCDHCGEFIWGLGKQGLKCSNCGLVVH39

Query: 953 YEGFLSVPRPSGVRRGWQRVFAALSDSRLLLFDAPDLRLSPPSGALLQVLDLRDPQFSAT 1012 Sbjct: 3 KEGWLLK-KSSGGKKSWKKRYFVLFNGVLLYYKSKK---KKSSSKPKGSIPLSGCTVREA 58 Query: 1013 PVLASDVIHAQSRDLPRIFRVTTSQLAVPPTTCTVLLLAESEGERERW 1060 Sbjct: 59 P-----DSDSDKKKNCFEIVT-----PDRKTLLLQAESEEEREEW 93

FIGURE 9

Query:	954	EGFLSVPRPSGVRRGWQRVFAALSDSRLLLFDAPDLRLSPPSGALLQVL	DLRDPQFSATP	1013
Sbjct:	4	EGWLLK~KSTVKKKRWKKRYFFLFNDVLIYYKSKKKSYEPKGSI	PLSGCSVEDVP	57
Query: Sbjct:	1014 58	<pre>VLASDVIHAQSRDLPRIFRVTTSQLAVPPTTCTVLLLAESEGERERWDSEFKRPNCFQLVTRDGKETFILQAESEEERQDW</pre>	1060 91	

Query: 1102 AILDQDRLALGTEEGLFVIHLRSN-DIFQVGECRRVQQLTLSPSAGLLVVLCGRGPSVRL 1160 Sbjct: 8 PYTIEDNLLVGTEEGLFFLNRSQQRNLMRIAGPRSVTQLEIMAELNCLAMIAGKSGQLRM 67

Query: 1161 FALAELENIEVAGAKIPES-----RGCQVLAAGSILQARTPVLCVAVKRQVLCYQ 1210

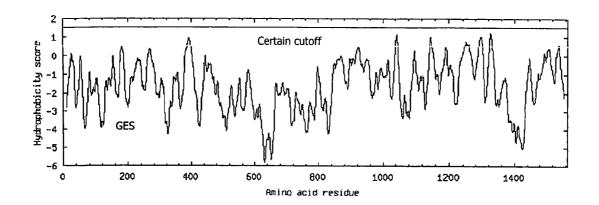
Sbjct: 68 IPLDSLILRALQSTQLSARPEILPEFEDVKGCIKYHVQKG--ERFLFICDALHSSVVKYN 125

QUERY: 1211 LGPGPGPWQRRIRELQAPATVQSLGLL----GDRLCVGAAGGFALYPLLNEAAPLALGAG 1266

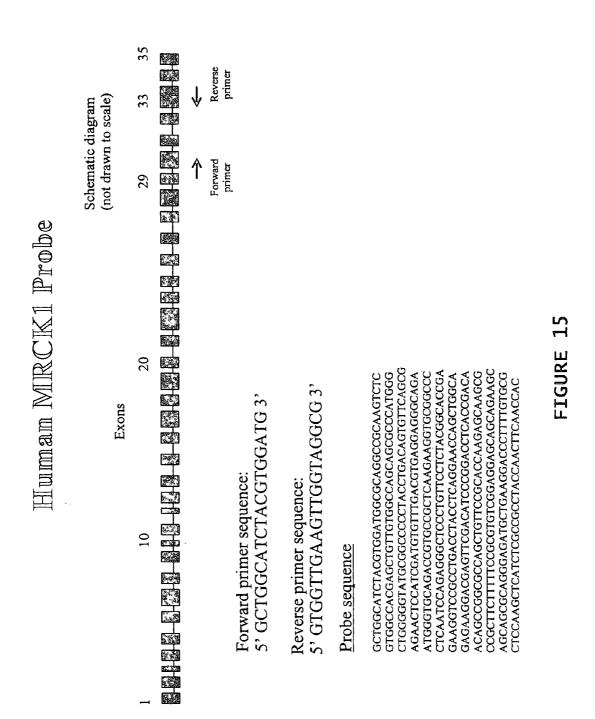
Sbjct: 126 ATYDPFSKFAKFRV-PEPTPLPEPISLTESAPSGIIIGCDTFYYVVLDHQTSNVSARDLS 184

Query: 1267 LVPEELPPSRGGLGEALGAVELSLSEFLLLFTTAGIYVDGAGRKSRGHELLWPAAPMGWG 1326

sbjct: 185 -----LPNKNEFSEGPISVIIVNQNEVLLCYQNQGVFVNLYGRQSRTETIEWEEMPMAFA 239


Query: 1327 YAAPYLTVFSENSIDVFDV 1345

Sbjct: 240 YTEPFLYIVHDDSIEILEI 258


FIGURE 11

Query: 1440 ISPPTNFNHLVHVGPANGRPGARDKSPPPWAA 1471 Sbjct: 1 ISTPTNFKHIAHVGF-DGQTGEFTGLPTEWES 31

Query:648KQRLEGERRETESNWEAQLADILSWVNDEKVSRGYLQALATKMAEELESLRN------699Sbjct:173KAKLNAEKKA--KQLESQLSELQVKLDELQRQLNDLTSQKSRLQSENSDLTRQLEEAEAQ230Query:700VGTQTLPARPLDHQWK-ARRLQKMEASARLELQSALEAEIRAKQGLQERLTQVQEAQLQA758Sbjct:231VSNLSKLKSQLESQLEEAKRSLEEESRERANLQAQLRQLEHDLDSLREQLEEESEAKAEL290Query:759ERRLQEAEKQSQALQQEL---AMLR----EELRAR786Sbjct:291ERQLSKANAEIQQWRSKFESEGALRAELEELKKK325

GES				
Peak Range	Peak Type	Peak Height		
386 - 397	Putative	0.944		
924 - 924	Putative	0.543		
1040 - 1046	Putative	1.149		
1144 - 1149	Putative	1.023		
1246 - 1260	Putative	0.768		
1289 - 1300	Putative	1.039		
1322 - 1330	Putative	1.226		
1539 - 1540	Putative	0.582		

COMPOSITIONS, ORGANISMS AND METHODOLOGIES EMPLOYING A NOVEL HUMAN KINASE

[0001] The present invention incorporates by reference U.S. Provisional Application Ser. No. 60/429,381, filed Nov. 27, 2002 and entitled "Compositions, Organisms and Methodologies Employing A Novel Human Kinase."

FIELD OF THE INVENTION

[0002] The present invention relates to compositions, organisms and methodologies employing a novel human protein kinase, MRCK1, which has 65% sequence homology to rat myotonic dystrophy kinase-related Cdc42 binding kinase (MRCK). This invention can be used for diagnosing, prognosing and treating kinase-related diseases and, in particular, diseases associated with aberrant expression of MRCK1.

BACKGROUND OF THE INVENTION

[0003] Protein kinases regulate many different cell proliferation, differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. Reversible protein phosphorylation is the main strategy for controlling activities of eukaryotic cells. It is estimated that more than 1,000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. As is well known in the art, the high energy phosphate, which drives activation, is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc.), cell cycle checkpoints, and environmental or nutritional stresses. The phosphorylation process is roughly analogous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

[0004] The kinases comprise the largest known protein group, a superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups: those that phosphorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250-300 amino acid catalytic domain. The primary structure of the kinase domains is conserved and can be further subdivided into 11 subdomains. The N-terminal of the kinase domain, which contains subdomains I-IV, generally folds into a lobelike structure that binds and orients the ATP (or GTP) donor molecule. The C terminal of the kinase domain forms a larger lobe, which contains subdomains VI-XI, binds the protein substrate and carries out the transfer of the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Subdomain V spans the two lobes. Each of the 11 subdomains contains specific residues and motifs or patterns of amino acids that are characteristic of that subdomain and are highly conserved.

[0005] The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein.

[0006] The presence or absence of a phosphate moiety modulates protein function in multiple ways. A common mechanism involves changes in the catalytic properties (Vmax and Km) of an enzyme, leading to its activation or inactivation.

[0007] A second widely recognized mechanism involves promoting protein-protein interactions. An example of this is the tyrosine autophosphorylation of the ligand-activated EGF receptor tyrosine kinase. This event triggers the high-affinity binding to the phosphotyrosine residue on the receptor's C-terminal intracellular domain to the SH2 motif of an adaptor molecule Grb2. Grb2, in turn, binds through its SH3 motif to a second adaptor molecule, such as SHC. The formation of this ternary complex activates the signaling events that are responsible for the biological effects of EGF. Serine and threonine phosphorylation events also have been recently recognized to exert their biological function through protein-protein interaction events that are mediated by the high-affinity binding of phosphoserine and phosphothreonine to the WW motifs present in a large variety of proteins.

[0008] A third important outcome of protein phosphorylation is changes in the subcellular localization of the substrate. As an example, nuclear import and export events in a large diversity of proteins are regulated by protein phosphorylation.

[0009] Many kinases are involved in regulatory cascades wherein their substrates may include other kinases whose activities are regulated by their phosphorylation state. Ultimately the activities of some downstream effectors are modulated by phosphorylation resulting from activation of such a pathway.

[0010] Myotonic dystrophy kinase-related Cdc42 binding kinases (MRCKs) are serine/threonine kinases. MRCKs have been implicated in the morphological activities of Cdc42 in non-neural cells and are suggest to be downstream effectors of Cdc42 in cytoskeletal reorganization. At least two types of MRCKs, MRCK alpha and MRCK beta, have been identified. MRCKs interact with the GTP-bound form of Cdc42 and, to a lesser extent, the GTP-bound form of Rac. The catalytic domain of MRCKs phosphorylates non-muscle myosin light chain 2 at serine 19. The phosphorylation is believed to be involved in myosin contractile activity and associated changes in the organization of actin microfilaments in intact cells.

[0011] MRCK alpha and Rho-binding kinase (ROK) alpha are believed to have contrasting roles in regulating neurite morphology. ROK alpha acts downstream of RhoA in inducing neurite retraction, while MRCK alpha acts downstream of Cdc42/Rac1 in promoting neurite outgrowth. The neurite outgrowth induced by either kinase-dead ROK alpha or nerve growth factor can be effectively blocked by a kinase-dead and p21-binding deficient MRCK alpha mutant. In addition, expression of kinase-dead MRCK alpha blocks $Cdc42^{V12}$ -dependent formation of focal complexes and peripheral microspikes. Microinjection of a plasmid encoding MRCK alpha results in actin and myosin reorganization.

2

[0012] MRCKs have multiple functional domains. These domains include three coiled-coil alpha-helix domains, a cysteine-rich motif resembling those of protein kinase C and n-chimaerin, and a Pleckstrin homology domain. Native MRCK kinases tend to form high-molecular-weight multimers. The intermolecular interactions among the three coiled-coil domains and the N-terminal region preceding the kinase domain in MRCK alpha are believed to be responsible for the multimerization.

[0013] MRCK alpha can be activated by the N-terminusmediated dimerization. The dimerization leads to trans-autophosphorylation of MRCK kinases. In addition, MRCK alpha kinases can be negatively regulated through intramolecular interactions between the two distal coiled-coil domains. Deletion of these coiled-coil domains leads to a more active kinase, showing the negative autoregulatory role of these domains. The N-terminus-mediated dimerization and the intramolecular interaction between the distal coiled-coil domains are considered to be two mutually exclusive events, which regulate the catalytic state of MRCK kinases.

SUMMARY OF THE INVENTION

[0014] The present invention discloses compositions, organisms and methodologies employing a novel human protein kinase. The new human protein kinase shares sequence homology with rat MRCK alpha. The gene encoding the new protein is localized at 11q13.1 in human chromosome 11. This new gene is hereinafter referred to as the MRCK1 gene, and its encoded protein(s) is referred to as MRCK1 or MRCK1 kinase. MRCK1 has multiple domains including at least a kinase domain, a protein kinase C terminal domain, a myosin tail domain, a phorbol esters/diacylglycerol binding domain (DAG_PE binding domain), a Pleckstrin homology domain, a CNH domain, and a P21-Rho-binding domain. The sequence and structure similarity between MRCK1 and rat MRCK alpha indicates that MRCK1 may be involved in Cdc42-mediated cytoskeleton reorganization in human cells. [0015] The kinase domain in MRCK1 shows 100% sequence alignment with the consensus sequences of the catalytic domains of at least two subfamilies of protein kinases. The utility of various kinase domains is known in the art. The utilities of other domains, such as protein kinase C terminal domains, Phorbol esters/diacylglycerol binding domains, Pleckstrin homology domains, CNH domains, and P21-Rhobinding domains are also known in the art. The unique peptide sequences, and nucleic acid sequences that encode the peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate kinase activity in cells and tissues that express the kinase.

[0016] In one aspect, the invention provides isolated polynucleotides comprising a nucleotide sequence encoding MRCK1 or a variant of MRCK1.

[0017] In another aspect, the invention provides isolated polypeptides comprising the amino acid sequence of MRCK1 or a variant of MRCK1.

[0018] In yet another aspect, the invention provides agents that modulate expression levels of the MRCK1 gene or an activity of MRCK1.

[0019] The invention also provides methods for (a) detecting polynucleotides comprising a nucleotide sequence encoding MRCK1 or a variant of MRCK1 and (b) detecting polypeptides comprising an amino acid sequence of MRCK1 or a variant of MRCK1 in a biological sample.

[0020] The invention further provides methods for screening agents that modulate expression level of the MRCK1 gene or an activity of MRCK1.

[0021] The invention further provides cell lines harboring the MRCK1 gene, animals transgenic for the MRCK1 gene, and animals with interrupted MRCK1 gene (MRCK1 knock-out animals). These cell lines and animals can be used to study the functions of MRCK1.

[0022] In still another aspect, the invention provides polynucleotides capable of inhibiting MRCK1 gene expression by RNA interference.

[0023] The invention further provides methods of inhibiting MRCK1 gene expression by introducing siRNAs or other RNAi sequences into target cells.

[0024] The preferred embodiments of the invention are described below in the Detailed Description of the Invention. Unless specifically noted, it is intended that the words and phrases in the specification and claims be given the ordinary and accustomed meaning to those of ordinary skill in the applicable art or arts. If any other meaning is intended, the specification will specifically state that a special meaning is being applied to a word or phrase.

[0025] It is further intended that the invention not be limited only to the specific structure, material or methods that are described in the preferred embodiments, but include any and all structures, materials or methods that perform the claimed function, along with any and all known or later-developed equivalent structures, materials or methods for performing the claimed function.

[0026] Further examples exist throughout the disclosure, and it is not applicant's intention to exclude from the scope of the invention the use of structures, materials, or methods that are not expressly identified in the specification, but nonetheless are capable of performing the claimed function.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] The inventions of this application are better understood in conjunction with the following drawings, in which: **[0028]** FIG. 1 is the sequence alignment between a fragment of MRCK1 and its corresponding sequence in rat MRCK alpha.

[0029] FIG. **2** depicts the sequence alignment between another fragment of MRCK1 and its corresponding sequence in rat MRCK alpha.

[0030] FIG. **3** compares MRCK1's kinase domain to the catalytic domain of a family of Ser/Thr protein kinases.

[0031] FIG. **4** compares MRCK1 's kinase domain to the kinase domain of another family of protein kinases.

[0032] FIG. **5** shows the sequence alignment between the kinase domain of MRCK1 and the catalytic domain of a family of tyrosine kinases.

[0033] FIG. **6** illustrates the sequence alignment between amino acid residues 339 to 398 of MRCK1 and the extension to Ser/Thr-type protein kinases

[0034] FIG. 7 compares amino acid residues 339 to 398 of MRCK1 to a protein kinase C terminal domain.

[0035] FIG. **8** shows the sequence alignment between the amino acid residues 882-920 of MRCK1 and a consensus sequence of the DAG_PE bind domains of other proteins.

[0036] FIG. **9** depicts the sequence alignment between the amino acid residues 953-1060 of MRCK1 and a consensus sequence of the PH bind domains.

[0038] FIG. **11** compares the amino acid residues 1102-1345 of MRCK1 to a consensus sequence of the CNH domains.

[0039] FIG. **12** shows the sequence alignment between the amino acid residues 1440-1471 of MRCK1 and a consensus sequence of the P21-Rho-binding domains.

[0040] FIG. **13** compares the amino acid residues 648-786 of MRCK1 to a consensus sequence of the myosin tail domains.

[0041] FIG. 14 shows the hydrophobicity profile of MRCK1.

[0042] FIG. **15** shows the position and nucleotide sequence of human MRCK1 probe and PCR primers used for the amplification of the probe sequences.

DETAILED DESCRIPTION OF THE INVENTION

[0043] The following detailed description is presented to enable any person skilled in the art to make and use the invention. For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required to practice the invention. Descriptions of specific applications are provided only as representative examples. Various modifications to the preferred embodiments will be readily apparent to one skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the scope of the invention. The present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest possible scope consistent with the principles and features disclosed herein.

[0044] The present invention is based on the sequence information obtained from a newly-developed genomic prediction pipeline. Briefly, the X-ray crystal structures of the catalytic domains of protein kinases were collected and aligned together according to their structural identity/similarities. The alignment was converted into a "scoring matrix" which carried the structural profile of the kinase catalytic domains. This scoring matrix was then used to search the Celera Human Genome database and pull out sequences that have kinase catalytic domains.

[0045] Based on this analysis, the present invention provides the amino acid sequence of a human kinase peptide that is highly homologous to rat myotonic dystrophy kinase-related Cdc42 binding kinase (MRCK), cDNA sequences and genomic sequences that encode the kinase peptide, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the kinase of the present invention.

[0046] In addition to being previously unknown, the peptide of the present invention is selected based on its ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology to a known kinase protein of rat MRCK alpha.

[0047] Various aspects of the invention are described in detail in the following subsections. It should of course be

understood that the use of subsections is not meant to limit the invention. Rather, each subsection applies to any aspect of the invention, as is appropriate.

DEFINITIONS AND TERMS

[0048] To facilitate the understanding of the present invention, a number of terms and phrases are defined below:

[0049] As used herein, a polynucleotide or a polypeptide is "isolated" if it is removed from its native environment. For instance, a polynucleotide or a polypeptide is isolated through a purification process such that the polynucleotide or polypeptide is substantially free of cellular material or free of chemical precursors. The polynucleotide/polypeptide of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. As appreciated by one of ordinary skill in the art, a polynucleotide/polypeptide can perform its desired function(s) even in the presence of considerable amounts of other components or molecules.

[0050] In some uses, a polynucleotide/polypeptide that is "substantially free of cellular material" includes preparations which have less than about 30% (by weight) other polynucleotides/polypeptides including contaminating polynucleotides/polypeptides. For instance, the preparations can have less than about 20%, less than about 10%, or less than about 5% other polynucleotides/polypeptides. If a polynucleotide/ polypeptide preparation is recombinantly produced, it can be substantially free of culture medium, i.e., culture medium components representing less than about 20% by weight of the polynucleotide/polypeptide preparation.

[0051] The language "substantially free of chemical precursors" includes preparations in which the polynucleotide/ polypeptide is separated from chemical precursors or other chemicals that are involved in the synthesis of the polynucleotide/polypeptide. In one embodiment, the language "substantially free of chemical precursors" includes kinase preparations having less than about 30% (by weight), less than about 20% (by weight), less than about 10% (by weight), or less than about 5% (by weight) of chemical precursors or other chemicals used in the synthesis.

[0052] A "polynucleotide" can include any number of nucleotides. For instance, a polynucleotide can have at least 10, 20, 25, 30, 40, 50, 100 or more nucleotides. A polynucleotide can be DNA or RNA, double-stranded or single-stranded. A polynucleotide encodes a polypeptide if the polypeptide is capable of being transcribed and/or translated from the polynucleotide. Transcriptional and/or translational regulatory sequences, such as promoter and/or enhancer(s), can be added to the polynucleotide before said transcription and/or translation occurs. Moreover, if the polynucleotide is singled-stranded, the corresponding double-stranded DNA containing the original polynucleotide and its complementary sequence can be prepared before said transcription and/or translation.

[0053] As used herein, "a variant of a polynucleotide" refers to a polynucleotide that differs from the original polynucleotide by one or more substitutions, additions, and/or deletions. For instance, a variant of a polynucleotide can have 1, 2, 5, 10, 15, 20, 25 or more nucleotide substitutions, additions or deletions. Preferably, the modification(s) is in-frame, i.e., the modified polynucleotide can be transcribed and translated to the original or intended stop codon. If the original polynucleotide encodes a polypeptide with a biological activity, the polypeptide encoded by a variant of the original poly-

nucleotide substantially retains such activity. Preferably, the biological activity is reduced/enhanced by less than 50%, or more preferably, less than 20%, relative to the original activity.

[0054] A variant of a polynucleotide can be a polynucleotide that is capable of hybridizing to the original polynucleotide, or the complementary sequence thereof, under reduced stringent conditions, preferably stringent conditions, or more preferably, highly stringent conditions. Examples of conditions of different stringency are listed in Table 1. Highly stringent conditions are those that are at least as stringent as conditions A-F; stringent conditions are at least as stringent as conditions G-L; and reduced stringency conditions are at least as stringent as conditions M-R. As used in Table 1, hybridization is carried out under a given hybridization condition for about 2 hours, followed by two 15-minute washes under the corresponding washing condition(s).

TABLE 1

ditions M-R. As used in Table 1,	the biologi
It under a given hybridization con-	ably, the b
followed by two 15-minute washes	enhanced 1
washing condition(s).	20%, relati

Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) ¹	Hybridization Temperature and Buffer ^H	Wash Temp. and Buffer ^H
А	DNA:DNA	>50	65° C.; 1xSSC -or- 42° C.; 1xSSC, 50% formamide	65° C.; 0.3xSSC
В	DNA:DNA	<50	T _B *; 1xSSC	T _B *; 1xSSC
С	DNA:RNA	>50	67° C.; 1xSSC -or- 45° C.; 1xSSC, 50% formamide	67° C.; 0.3xSSC
D	DNA:RNA	<50	T _D *; 1xSSC	T _D *; 1xSSC
Е	RNA:RNA	>50	70° C.; 1xSSC -or- 50° C.; 1xSSC, 50% formamide	70° C.; 0.3xSSC
F	RNA:RNA	<50	T _F *; 1xSSC	T _F *; 1xSSC
G	DNA:DNA	>50	65° C.; 4xSSC -or- 42° C.; 4xSSC, 50% formamide	65° C.; 1xSSC
н	DNA:DNA	<50	T _H *; 4xSSC	T _H *; 4xSSC
Ι	DNA:RNA	>50	67° C.; 4xSSC -or- 45° C.; 4xSSC, 50% formamide	67° C.; 1xSSC
J	DNA:RNA	<50	T_J^* ; 4xSSC	T _J *; 4xSSC
K	RNA:RNA	>50	70° C.; 4xSSC -or- 50° C.; 4xSSC, 50% formamide	67° C.; 1xSSC
L	RNA:RNA	<50	T _L *; 2xSSC	T_L^* ; 2xSSC
М	DNA:DNA	>50	50° C.; 4xSSC -or- 40° C.; 6xSSC, 50% formamide	50° C.; 2xSSC
Ν	DNA:DNA	<50	T _N *; 6xSSC	T _N *; 6xSSC
Ο	DNA:RNA	>50	55° C.; 4xSSC -or- 42° C.; 6xSSC, 50% formamide	55° C.; 2xSSC
Р	DNA:RNA	<50	T _P *; 6xSSC	T _P *; 6xSSC
Q	RNA:RNA	>50	60° C.; 4xSSC -or- 45° C.; 6xSSC, 50% formamide	60° C.; 2xSSC
R	RNA:RNA	<50	T _R *; 4xSSC	T _R *; 4xSSC

¹The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity. ^HSSPE (1XSSPE is 0.15M NaCl, 10 mM NaH₂PO₄, and 1.25 mM EDTA, pH 7.4) can be substituted for SSC (1XSSC is 0.15M NaCl and 15 mM sodium citrate) in the hybridization and wash buffers.

buffers. $T_B^* - T_R^*The hybridization temperature for hybrids anticipated to be less than 50 base pairs in$ $length should be 5-10° C. less than the melting temperature (<math>T_m$) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (° C.) = 2(# of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (° C.) = 81.5 + 16.6(log₁₀Na⁺) + 0.41(% G + C) - (600/N), where N is the number of bases in the hybrid, and Na⁺ is the concentration of sodium ions in the hybridization buffer (Na⁺ for 1xSSC = 0.165M).

[0055] It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many polynucleotide variants that encode the same polypeptide. Some of these polynucleotide variants bear minimal sequence homology to the original polynucleotide.

[0058] Similarly, the ability of a variant to react with antigen-specific antisera can be enhanced or reduced by less than 50%, preferably less than 20%, relative to the original polypeptide. These variants can be prepared and evaluated by modifying the original polypeptide sequence and then deter-

[0056] As used herein, a "polypeptide" can include any number of amino acid residues. For instance, a polypeptide can have at least 5, 10, 15, 20, 30, 40, 50 or more amino acid residues.

[0057] As used herein, a "variant of a polypeptide" is a polypeptide that differs from the original polypeptide by one or more substitutions, deletions, and/or insertions. Preferably, these modifications do not substantially change (e.g. reduce or enhance) the original biological function of the polypeptide. For instance, a variant can reduce or enhance or maintain the biological activities of the original polypeptide. Preferably, the biological activities of the variant are reduced or enhanced by less than 50%, or more preferably, less than 20%, relative to the original polypeptide.

mining the reactivity of the modified polypeptide with the antigen-specific antibodies or antisera.

[0059] Preferably, a variant polypeptide contains one or more conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid which has similar properties, such that one skilled in the art would expect that the secondary structure and hydropathic nature of the substituted polypeptide will not be substantially changed. Conservative amino acid substitutions can be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. Negatively charged amino acids include aspartic acid and glutamic acid, and positively charged amino acids include lysine and arginine. Amino acids having uncharged polar head groups and similar hydrophilicity values include leucine, isoleucine and valine, or glycine and alanine, or asparagine and glutamine, or serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that can produce conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A polypeptide variant can also contain nonconservative changes.

[0060] Polypeptide variants can be prepared by the deletion and/or addition of amino acids that have minimal influence on the biological activity, immunogenicity, secondary structure and/or hydropathic nature of the polypeptide. Variants can be for instance by substituting, modifying, deleting or adding one or more amino acids residues in the original sequence. Polypeptide variants preferably exhibit at least 96%, more preferably at least 97%, and most preferably at least 98% sequence homology to the original polypeptide.

[0061] Polypeptide variants include polypeptides that are modified from the original polypeptides either by a natural process, such as a post-translational modification, or by a chemical modification. These modifications are well-known in the art. Modifications can occur anywhere in the polypeptide, including the backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification can be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide can contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides can result from natural post-translational processes or be made through synthetic methods. Suitable modifications for this invention include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gammacarboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenovlation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

[0062] As used herein, the term "modulation" includes upregulation, induction, stimulation, potentiation, inhibition, down-regulation or suppression, or relief of inhibition. **[0063]** A nucleotide sequence is "operably linked" to another nucleotide sequence if the two sequences are placed into a functional relationship. For example, a coding sequence is operably linked to a 5' regulatory sequence if the 5' regulatory sequence can initiate transcription of the coding sequence in an in vitro transcription/translation system or in a host cell. "Operably linked" does not require that the DNA sequences being linked are contiguous to each other. Intervening sequences may exist between two operably linked sequences.

[0064] As used herein, a "disease-free" human refers to a human who does not have MRCK1-related diseases. Disease-free, tissues or samples refer to cells, tissues or samples obtained from disease-free human(s).

[0065] A polynucleotide is "capable of hybridizing" to a gene if the polynucleotide can hybridize to at least one of the following sequences: (1) the sequence of an RNA transcript of the gene, (2) the complementary sequence of an RNA transcript of the gene, (3) the cDNA sequence of an RNA transcript of the gene, (4) the complementary sequence of the cDNA sequence of an RNA transcript of the gene, (5) a genomic sequence of the gene, and (6) the complementary sequence of a genomic sequence of the gene.

[0066] As used herein, sequence "identity" or "percentage alignment" in an alignment can be determined by the standard protein-protein or nucleotide-nucleotide BLAST programs (i.e., blastp or blastn, respectively). Sequence identity can also be determined by the BLAST2 program. Suitable BLAST program can be found at the BLAST web site maintained by the National Center of Biotechnology Information (NCBI) (National Library of Medicine)

Human MRCK1 Gene and MRCK1 Kinase

[0067] The present invention identifies a new human gene (MRCK1 gene) that encodes a protein that is highly homologous to rat MRCK alpha. The nucleotide and amino acid sequences of the protein encoded by the MRCK1 gene are depicted in SEQ ID NOS:1 and 2, respectively. FIGS. 1 and 2 show the sequence alignment between SEQ ID NO:2 (denoted as "Query") and the amino acid sequence of rat MRCK alpha (denoted as "Sbjct"). The alignment is a result of blast search of the "all non-redundant GenBank CDS database" in Entrez. The blast search uses BLASTP 2.2.3 algorithm [Apr. 24, 2002], which is described in Altschul et al., Nucleic Acids Res., 25: 3389-3402 (1997).

[0068] FIG. 1 shows that the sequence consisting of amino acid residues 40 to 434 of MRCK1 (Query) and the sequence consisting of amino acid residues 46 to 463 of rat MRCK alpha (Sbjct) have 65% sequence identity with 78% positives, a score of 588 bits (1516) and an E value of 1×10^{-172} . FIG. 2 shows that the sequence consisting of amino acid residues 551 to 1457 of MRCK1 (Query) and the sequence consisting of amino acid residues 684 to 1588 of rat MRCK alpha (Sbjct) have 38% sequence identity with 54% positives, a score of 615 bits (1586) and an E value of 1×10^{-166} . The rat MRCK alpha sequence used in the alignment has Entrez Database accession number AAC02941.1 or NP_446109.1.

[0069] The same approach is used to compare MRCK1 to a predicted mouse protein, which is similar to Ser/Thr protein kinase related to the myotonic dystrophy protein kinase. The sequence of the mouse protein has Entrez Database accession number XP_140553.1. Alignment shows that amino acid residues 40 to 1574 of the mouse sequence (Sbjct) and the sequence consisting of amino acid residues 40 to 1548 of

MRCK1 (Query) have 70% sequence identity with 73% positives, a score of 1981 bits (5133) and an E value of 0.0.

[0070] The same blast search also identifies sequence similarity between MRCK1 and other proteins. These proteins include, but are not limited to, human Cdc42-binding protein kinase beta (Entrez accession number: NM_006035) and *C. elegans* serine/threonine-protein kinase (Entrez accession number: NM_072198).

[0071] In addition, the kinase domain of MRCK1 (including amino acid residues 77 to 337, see below) has sequence homology to the catalytic domains of various protein kinases. These protein kinases include, but are not limited to, human myotonic dystrophy kinase (Entrez accession number: AAC14450.1 or L08835, 62% sequence identity), human dystrophia myotonica-protein (Entrez accession number: NM_004409, 61% sequence identity), human myotoninprotein kinase, Form VI (Entrez accession number: AAA75239.1 or L00727, 62% sequence identity), and human myotonin-protein kinase, Form VIII (Entrez accession number: AAA75237.1 or L00727, 62% sequence identity).

[0072] The sequence consisting of amino acid residues 113 to 399 of MRCK1 (Query) also aligns to the amino acid sequence having Entrez Protein Database accession number CAA73006.1 (Sbjct). These two sequences are 100% identical to each other. Sequence CAA73006.01 was disclosed in Kedra et al., Hum. Genet. 100: 611-619 (1997), and is localized to 11q13 in human chromosome 11.

[0073] MRCK1 gene is also localized near or at 11q13 in human chromosome 11. Specifically, the MRCK1 gene is located between genes LOC256612 and EHD1, and overlaps with gene LOC196205. The MRCK1 gene encompasses nucleotides 979139 to 999235 in human chromosome 11. The nucleotide numbering in human chromosome 11 is based on Entrez Human Genome Sequence Database maintained by NCBI. The minus-strand sequence of human chromosome 11 that consists of nucleotides 979139 to 999235 is shown in SEQ ID NO:3. The genomic sequence in SEQ ID NO:3 is listed from 5' to 3', i.e. from nucleotide 999235 to nucleotide 979139 in the minus strand of human chromosome 11.

[0074] Human chromosome loci near or at 11q13 harbor multiple disease-related genes. These diseases include insulin-dependent diabetes mellitus, familial paraganglioma type 2, spinocerebellar ataxia type 5, Bardet-Biedl syndrome, and multiple endocrine neoplasia type 1. In addition, there is a report of a translocation, t(11;17), at this loci in B-cell non-Hodgkin's lymphoma.

[0075] Human MRCK1 gene has at least 35 exons. Table 2 lists the location of each of these 35 exons in the genomic sequence SEQ ID NO:3. SEQ ID NO:1 shows an MRCK1-coding sequence produced by fusing the 35 exons in consecutive order. Translation of SEQ ID NO:1 produces the amino acid sequence SEQ ID NO:2. Table 2 also illustrates the corresponding location of each exon in the MRCK1-coding sequence SEQ ID NO:1.

TABLE 2

Exons in Human MRCK1 Gene				
Exon Numbers	Corresponding Sequence in SEQ ID NO: 3 Comprised in Human Chromosome 11	Corresponding Sequence in SEQ ID NO: 1		
1 2	1-160 2,666-2,757	1-160 161-252		

TABLE 2-continued

Exons in Human MRCK1 Gene			
Exon Numbers	Corresponding Sequence in SEQ ID NO: 3 Comprised in Human Chromosome 11	Corresponding Sequence in SEQ ID NO: 1	
3	2,837-2,920	253-336	
4	3,922-4,017	337-432	
5	4,302-4,450	433-581	
6	4,999-5,092	582-675	
7	5,337-5,537	676-876	
8	5,668-5,916	877-1,125	
9	6,408-6,487	1,126-1,205	
10	7,551-7,648	1,206-1,303	
11	7,692-7,831	1,304-1,443	
12	8,276-8,455	1,444-1,623	
13	8,721-8,810	1,624-1,713	
14	8,951-9,072	1,714-1,835	
15	9,153-9,225	1,836-1,908	
16	9,419-9,525	1,909-2,015	
17	9,609-9,723	2,016-2,130	
18	9,995-10,143	2,131-2,279	
19	10,218-10,306	2,280-2,368	
20	10,595-10,647	2,369-2,421	
21	10,736-10,834	2,422-2,520	
22	10,913-10,972	2,521-2,580	
23	11,182-11,341	2,581-2,740	
24	11,613-11,746	2,741-2,874	
25	11,829-11,968	2,875-3,014	
26	12,063-12,144	3,015-3,096	
27	12,851-13,067	3,097-3,313	
28	14,317-14,379	3,314-3,376	
29	14,503-15,102	3,377-3,976	
30	16,786-16,883	3,977-4,074	
31	16,958-17,042	4,075-4,159	
32	17,171-17,291	4,160-4,280	
33	17,402-17,519	4,281-4,398	
34	17,857-18,099	4,399-4,641	
35	20,041-20,097	4,642-4,698	

[0076] MRCK1 kinase depicted by SEQ ID NO:2 comprises multiple structural/functional domains. These structural/functional domains include at least a kinase domain (comprising amino acid residues 71 to 337), a protein kinase C terminal domain (comprising amino acid residues 339 to 398), a myosin tail domain (comprising amino acid residues 648 to 786), a DAG_PE binding domain (comprising amino acid residues 882 to 920), a Pleckstrin homology domain (comprising amino acid residues 953 to 1060), a CNH domain (comprising amino acid residues 1102 to 1345), and a P21-Rho-binding domain (comprising amino acid residues 1440 to 1471).

[0077] FIGS. **3**, **4**, and **5** illustrate the sequence alignments between MRCK1's kinase domain and various protein kinase domains. As used in other figures of this invention, "Query" denotes to the sequence of MRCK1, and "Sbjct" refers to the sequence being compared to the MRCK1 sequence.

[0078] FIG. **3** is the alignment between MRCK1's kinase domain and the consensus sequence of the catalytic domains of a subfamily of Serine/Threonine protein kinases. This subfamily includes C-Jun N-terminal kinase (JNK3), abelson tyrosine kinase, a calmodulin-binding, vesicle-associated, protein kinase-like protein (1G5), serine/threonine-protein kinase sin *Caenorhabditis elegans*, and ribosomal S6 kinase of *C elegans*. The consensus sequence has CD NO: smart00220.4, S_TKc, and can be retrieved from the Conserved Domain Database maintained by NCBI. The alignment was performed using standard protein-protein BLAST

(blastp) algorithm provided by NCBI. MRCK1's kinase domain has 100% sequence identities to the consensus sequence smart00220.4, with a score of 263 bits and an E value of 3×10^{-71} .

[0079] FIG. **4** shows the alignment between MRCK1 's kinase domain and the consensus sequence of the catalytic domains of another subfamily of protein kinases. This subfamily includes protein kinase Ck2, wee1-like protein kinase (WEE1hu), and tyrosine-protein kinase RYK. The consensus sequence has CD NO: pfam00069.4, pkinase. MRCK1's kinase domain has 100% sequence identities to pfam00069.4, with a score of 213 bits and an E value of 2×10^{-56} .

[0080] FIG. **5** shows the alignment between MRCK1's kinase domain and the catalytic domain (CD NO: smart00219.4, TyrKc) of a subfamily of tyrosine kinases. This subfamily includes the tyrosine kinase domain of fibroblast growth factor receptor 1, tyrosine-protein kinase (KIN15/KIN16 subfamily), and a *Drosophila* receptor protein-tyrosine kinase family member (drl-P1). The amino acid residues 72-303 in MRCK1's kinase domain has 89.1% sequence identities to smart00219.4, with a score of 112 bits and an E value of 9×10^{-26} .

[0081] FIG. **6** illustrates the sequence alignment between the amino acid residues 339-398 of MRCK1 and the consensus sequence for the extension to a family of Ser/Thr-type protein kinases. The consensus sequence has CD NO: smart00133.4, S_TK_X. This family of protein kinases includes cAMP-Dependent protein kinase, protein kinase cek1, and cell cycle protein kinase DBF2. The two sequences share 95.2% sequence identities with a score of 57.7 bits and an E value of 3×10^{-9} .

[0082] The amino acid residues 339-398 of MRCK1 further aligned to a consensus sequence (CD NO: pfam00433.4, pkinase_C) of the protein kinase C terminal domain. FIG. **7** shows 91% sequence identities between these two sequences. The alignment has a score of 40.6 bits and an E value of 4×10^{-04} . Ribosomal protein S6 kinase (S6K), serine/threonine-protein kinase YPK1, and protein kinase C, zeta type (NPKC-ZETA) share the consensus sequence pfam00433.4, pkinase_C.

[0083] FIG. **8** demonstrates the sequence alignment between the amino acid residues 882-920 and a consensus sequence of the DAG_PE binding domains. The two sequences show 78% sequence identities with a score of 51.9 bits and an E value of 2×10^{-07} . The CD number for the consensus sequence is pfam00130.4. The DAG_PE binding domain is also known as the protein kinase C conserved region 1 (C1 or cysteine-rich) domain.

[0084] In addition, MRCK1 shows sequence homology to the Pleckstrin homology domain (PH domain). PH domains are commonly found in eukaryotic signaling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates and various other proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and/or to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients.

[0085] FIG. **9** shows the comparison of the amino acid residues 953-1060 of MRCK to the consensus sequence of the PH domains of a family of proteins which include Rac1 and GTPase activating protein BEM2/IPL2. The consensus

sequence has CD NO: smart00233.4, PH. The comparison indicates 87.5% sequence identities with a score of 47.8 bits and an E value of 2×10^{-6} .

[0086] FIG. **10** depicts the comparison between the amino acid residues 954-1060 of MRCK1 and another consensus sequence of the PH domains. The consensus sequence has CD NO: pfam00169.4, PH, which is shared by proteins including Still life protein type 1 (SIF type 1) and *C. elegans* LET-502 protein. The comparison shows 88% sequence identities with a score of 42.6 bits and an E value of 9×10^{-5} .

[0087] FIG. **11** shows the comparison between the amino acid residues 1102-1345 of MRCK1 and a consensus CNH domain sequence (CD NO: pfam00780.4, CNH). The alignment shows 85.7% sequence identities with a score of 60.0 bits and an E value of 6×10^{-10} . The consensus CNH domain sequence is found in NIK1-like kinase, mouse citron (Rho-interacting, serine/threonine kinase 21), and yeast ROM1 and ROM2.

[0088] FIG. **12** shows the sequence alignment between the amino acid residues 1440-1475 of MRCK1 and the consensus sequence of other P21-Rho-binding domain (CD NO: smart00285, PBD). The two sequences have 86.1% sequence identities with a score of 38.3 bits and an E value of 0.002. P21-Rho-binding domain is a domain that binds Cdc42p-and/or Rho-like small GTPases. The domain also knows as the Cdc42/Rac interactive binding domain (CRIB domain).

[0089] The amino acid residues 648 to 786 in MRCK1 also weakly resemble a myosin tail domain (CD NO: pfam01576). The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains. It is a fundamental contractile protein found in all eukaryotic cell types. The myosin tail domain consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. The alignment shows in FIG. **13**. The two sequences being compared have 17.8% sequence identities with a score of 39.9 bits and an E value of 7×10^{-4} .

[0090] The MRCK1 sequence also shows high homology to PKIN20, a human kinase disclosed in PCT patent application No. WO 02/08399. The two proteins share 90% sequence identities in amino acids and 95% identities at the cDNA level.

[0091] Hydrophobicity analysis indicates that MRCK1 kinase is not likely a membrane or transmembrane protein. The hydrophobicity profile of MRCK1 is illustrated in FIG. **14**.

[0092] The existence and expression of the MRCK1 gene in humans are supported by various EST sequences. For instance, nucleotides 289-1205 of SEQ ID NO:1 are supported by the EST sequence disclosed under GenBank accession number BF994269; nucleotides 2449-2798 of SEQ ID NO:1 are supported by the EST sequences disclosed under GenBank accession numbers BF869661, BF357216, BF357213, BG952299, and BG014499; nucleotides 3042-3313 of SEQ ID NO:1 are supported by the EST sequence disclosed under GenBank accession number BF991223; nucleotides 4043-4403 of SEQ ID NO:1 are supported by the EST sequences disclosed under GenBank accession numbers BE793390, BG752641, and AW814108; nucleotides 4398-440 of SEQ ID NO:1 are supported by the EST sequences disclosed under GenBank accession numbers BG752641, AW516225, BE793390, BI792977, and BI793270; nucleotides 4556-4698 of SEQ ID NO:1 are supported by the EST sequences disclosed under GenBank accession numbers BG752641, BI793270, BE793390, AW516225, BI792977, and AA809737.

[0093] Two transcripts of MRCK1, a 4 kb and a 6 kb transcript, were detected in human brain, heart, skeletal muscle, colon, thymus, spleen, kidney, liver, small intestine, placenta, lung, and peripheral blood leukocyte by Multiple Tissue Northern analysis (MTN). The highest expression was in placenta while the lowest expression was in small intestine. The MRCK1 expression was confirmed by an multiple tissue expression array (MTA), in which MRCK1 expression was found in all 76 tissues contained in the array.

Utility of Protein Kinases

[0094] Protein kinases are involved in the regulation of many critical biological processes such as signal transduction pathways. Malfunctions of cellular signaling have been associated with many diseases. Regulation of signal transduction by cytokines and association of signal molecules with protooncogenes and tumor suppressor genes have been the subjects of intense research. Many therapeutic strategies can now be developed through the synthesis of compounds which activate or inactivate protein kinases.

[0095] The importance of kinases in the etiology of diseases has been well established. Kinase proteins are a major target for drug action and development. A January 2002 survey of ongoing clinical trials in the USA revealed more than 100 clinical trials involving the modulation of kinases. Trials are ongoing in a wide variety of therapeutic indications including asthma, Parkinson's, inflammation, psoriasis, rheumatoid arthritis, spinal cord injuries, muscle conditions, osteoporosis, graft versus host disease, cardiovascular disorders, autoimmune disorders, retinal detachment, stroke, epilepsy, ischemia/reperfusion, breast cancer, ovarian cancer, glioblastoma, non-Hodgkin's lymphoma, colorectal cancer, non-small cell lung cancer, brain cancer, Kaposi's sarcoma, pancreatic cancer, liver cancer, and other tumors. Numerous kinds of modulators of kinase activity are currently in clinical trials including antisense molecules, antibodies, small molecules, and even gene therapy. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of the kinase family proteins. The present invention advances the state of the art by providing novel human kinase proteins which are structurally related to MRCKs.

[0096] Many therapeutic strategies are aimed at critical components in signal transduction pathways. Approaches for regulating kinase gene expression include specific antisense oligonucleotides for inhibiting post-transcriptional processing of the messenger RNA, naturally, occurring products and their chemical derivatives to inhibit kinase activity and monoclonal antibodies to inhibit receptor linked kinases. In some cases, kinase inhibitors also allow other therapeutic agents additional time to become effective and act synergistically with current treatments.

[0097] Among the areas of pharmaceutical research that are currently receiving a great deal of attention are the role of phosphorylation in transcriptional control, apoptosis, protein degradation, nuclear import and export, cytoskeletal regulation, and checkpoint signaling. The accumulating knowledge about signaling networks and the proteins involved will be put to practical use in the development of potent and specific pharmacological modulators of phosphorylation-dependent signaling. The rational structure-based design and development of highly specific kinase modulators is becoming routine and drugs that intercede in signaling pathways are becoming a major class of drug. The functions of some of the kinases are described below.

[0098] The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic-ADPribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all prokaryotic and animal cells that have been studied. Such hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease.

[0099] Calcium-calmodulin (CaM) dependent protein kinases are also members of STK family. Calmodulin is a calcium receptor that mediates many calcium regulated processes by binding to target proteins in response to the binding of calcium. The principle target protein in these processes is CaM dependent protein kinases. CaM-kinases are involved in regulation of smooth muscle contraction (MLC kinase), glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM kinase I phosphorylates a variety of substrates including the neurotransmitter related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR. CaM II kinase also phosphorylates synapsin at different sites, and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. Many of the CaM kinases are activated by phosphorylation in addition to binding to CaM. The kinase may autophosphorylate itself, or be phosphorylated by another kinase as part of a "kinase cascade".

[0100] Another ligand-activated protein kinase is 5'-AMPactivated protein kinase (AMPK). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotrimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues, such as brain, heart, spleen, and lung, than expected. This distribution suggests that AMPK's functions may extend beyond regulation of lipid metabolism alone.

[0101] The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intra-cellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli. MAP kinase signaling pathways are present in mammalian cells as well as in yeast. The extracellular stimuli that activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin-1 (IL-1).

[0102] EGF receptor is found in over half of breast tumors unresponsive to hormone. EGF is found in many tumors, and EGF may be required for tumor cell growth. Antibody to EGF blocked the growth of tumor xenografts in mice. An antisense oligonucleotide for amphiregulin inhibited growth of a pancreatic cancer cell line.

[0103] Tamoxifen, a protein kinase C inhibitor with antiestrogen activity, is currently a standard treatment for hormone-dependent breast cancer. The use of this compound may increase the risk of developing cancer in other tissues such as the endometrium. Raloxifene, a related compound, has been shown to protect against osteoporosis. The tissue specificity of inhibitors must be considered when identifying therapeutic targets.

[0104] Signal transduction to the nucleus in response to extracellular stimulus by a growth factor involves the mitogen activated protein (MAP) kinases. MAP kinases are a family of protein serine/threonine kinases which mediate signal transduction from extracellular receptors or heat shock, or UV radiation. Cell proliferation and differentiation in normal cells are under the regulation and control of multiple MAP kinase cascades. Aberrant and deregulated functioning of MAP kinases can initiate and support carcinogenesis. Insulin and IGF-1 also activate a mitogenic MAP kinase pathway that may be important in acquired insulin resistance occurring in type 2 diabetes.

[0105] Many cancers become refractory to chemotherapy by developing a survival strategy involving the constitutive activation of the phosphatidylinositol 3-kinase-protein kinase B/Akt signaling cascade. This survival signaling pathway thus becomes an important target for the development of specific inhibitors that would block its function. PI-3 kinase/ Akt signaling is equally important in diabetes. The pathway activated by RTKs subsequently regulates glycogen synthase 3 (GSK3) and glucose uptake. Since AKT has decreased activity in type 2 diabetes, it provides a therapeutic target.

[0106] Protein kinase inhibitors provide much of our knowledge about in vivo regulation and coordination of physiological functions of endogenous peptide inhibitors. A pseudosubstrate sequence within PKC acts to inhibit the kinase in the absence of its lipid activator. A PKC inhibitor, such as chelerythrine, acts on the catalytic domain to block substrate interaction, while calphostin acts on the regulatory domain to mimic the pseudosubstrate sequence and block ATPase activity, or to inhibit cofactor binding.

[0107] Although some protein kinases have, to date, no known system of physiological regulation, many are activated or inactivated by autophosphorylation or phosphorylation by upstream protein kinases. The regulation of protein kinases also occurs during the transcription, post-transcription, and post-translation processes. The mechanism of post-transcriptional regulation is alternative splicing of precursor mRNA. For example, protein kinase C β I and β II are two isoforms of a single PKC β gene derived from differences in the splicing of the exon encoding the C-terminal 50-52 amino acids. Splicing can be regulated by a kinase cascade in response to peptide hormones, such as insulin and IGF-1. PKC β I and β II have different specificities for phosphorylating members of the mitogen activated protein (MAP) kinase family, for glycogen synthase 3β , for nuclear transcription

factors, such as TLS/Fus, and for other nuclear kinases. By inhibiting the post-transcriptional alternative splicing of PKC β II mRNA, PKC β II-dependent processes are inhibited.

[0108] The development of antisense oligonucleotides to inhibit the expression of various protein kinases has been successful. Antisense oligonucleotides are short lengths of synthetically manufactured, chemically modified DNA or RNA designed to specifically interact with mRNA transcripts encoding target proteins. The interaction of the antisense moiety with mRNA inhibits protein translation and, in some cases, post-transcriptional processing (e.g., alternative splicing and stability) of mRNA. Antisense oligonucleotides have been developed to alter alternative splicing of mRNA forms for inhibiting the translation of PKC α .

[0109] Protein kinase C isoforms have been implicated in cellular changes observed in the vascular complications of diabetes. Hyperglycemia is associated with increased levels of PKC α and β isoforms in renal glomeruli of diabetic rats. Oral administration of a PKCß inhibitor prevented the increased mRNA expression of TGF-\u00b31 and extracellular matrix component genes. Administration of the specific PKCβ inhibitor (LY333531) also normalized levels of cytokines, caldesmon, and hemodynamics of retinal and renal blood flow. Overexpression of the PKCß isoform in the myocardium resulted in cardiac hypertrophy and failure. The use of LY333531 to prevent adverse effects of cardiac PKCß overexpression in diabetic subjects is under investigation. The compound is also in Phase I/II clinical trials for diabetic retinopathy and diabetic macular edema indicating that it may be pharmacodynamically active.

[0110] PRK (proliferation-related kinase) is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakaroytic cells. PRK is related to the polo (derived from humans polo gene) family of STKs implicated in cell division. PRK is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation. Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

[0111] DNA-dependent protein kinase (DNA-PK) is involved in the repair of double-strand breaks in mammalian cells. This enzyme requires ends of double-stranded DNA or transitions from single-stranded to double-stranded DNA in order to act as a serine/threonine kinase. Cells with defective or deficient DNA-PK activity are unable to repair radiation induced DNA double-strand breaks and are consequently very sensitive to the lethal effects of ionizing radiation. Inhibition of DNA-PK has the potential to increase the efficacy of anti-tumor treatment with radiation or chemotherapeutic agents.

[0112] The cyclin-dependent protein kinases (CDKs) are another group of STKs that control the progression of cells through the cell cycle. Cyclins are small regulatory proteins that act by binding to and activating CDKs that then trigger various phases of the cell cycle by phosphorylating and activating selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to the binding of cyclin, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue. **[0113]** Cellular inhibitors of CDKs also play a major role in cell cycle progression. Alterations in the expression, function, and structure of cyclin and CDK are encountered in the cancer phenotype. Therefore CDKs may be important targets for new cancer therapeutic agents.

[0114] Chemotherapy resistant cells tend to escape apoptosis. Under certain circumstances, inappropriate CDK activation may even promote apoptosis by encouraging the progression of the cell cycle under unfavorable conditions, i.e., attempting mitosis while DNA damage is largely unrepaired.

[0115] Purines and purine analogs act as CDK inhibitors. Flavopiridol is a flavonoid that causes 50% growth inhibition of tumor cells at 60 nM. It also inhibits EGFR and protein kinase A. Flavopiridel induces apoptosis and inhibits lymphoid, myeloid, colon, and prostate cancer cells grown in vivo as tumor xenografts in nude mice.

[0116] Staurosporine and its derivative, UCN-01, in addition to inhibiting protein kinase C, inhibit cyclin B/CDK ($IC_{50}=3$ to 6 nM). Staurosporine is toxic, but its derivative 7-hydroxystaurosporine (UCN-01) has anti-tumor properties and is in clinical trials. UCN-01 affects the phosphorylation of CDKs and alters the cell cycle checkpoint functioning. These compounds illustrate that multiple intra-cellular targets may be affected as the concentration of an inhibitor is increased within cells.

[0117] Protein tyrosine kinases, PTKs, specifically phosphorylate tyrosine residues on their target proteins and may be divided into transmembrane, receptor PTKs and non-transmembrane, non-receptor PTKs. Transmembrane protein tyrosine kinases are receptors for most growth factors. Binding of a growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Growth factors (GF) associated with receptor PTKs include; epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

[0118] Since RTKs stimulate tumor cell proliferation, inhibitors of RTKs may inhibit the growth and proliferation of such cancers. Inhibitors of RTKs are also useful in preventing tumor angiogenesis and can eliminate support from the host tissue by targeting RTKs located on vascular cells, such as blood vessel endothelial cells and stromal fibroblasts. For example, VEGF stimulates endothelial cell growth during angiogenesis, and increases the permeability of tumor vasculature so that proteins and other growth factors become accessible to the tumor. Broad-spectrum antitumor efficacy of an oral dosage form of an inhibitor of VEGF signaling has been reported. Thus, inhibition of VEGF receptor signaling presents an important therapeutic target. An extracellular receptor can also be a target for inhibition. For example, the EGF receptor family and its ligands are overexpressed and exist as an autocrine loop in many tumor types.

[0119] Increasing knowledge of the structure and activation mechanism of RTKs and the signaling pathways controlled by tyrosine kinases provided the possibility for the development of target specific drugs and new anti-cancer therapies. Approaches towards the prevention or interception of deregulated RTK signaling include the development of selective components that target either the extracellular ligand-binding domain or the intra-cellular substrate binding region.

[0120] The most successful strategy to selectively kill tumor cells is the use of monoclonal antibodies (mAbs) that are directed against the extracellular domain of RTKs which

are critically involved in cancer and are expressed at the surface of tumor cells. In the past years, recombinant antibody technology has made an enormous progress in the design, selection and production of newly engineered antibodies. It is also possible to generate humanized antibodies, human-mouse chimeric or bispecific antibodies for targeted cancer therapy. Mechanistically, anti-RTK mAbs might work by blocking the ligand-receptor interaction and therefore inhibiting ligand-induced RTK signaling and increasing RTK down-regulation and internalization. In addition, binding of mAbs to certain epitopes on the cancer cells may induce immune-mediated responses, such as opsonization and complement-mediated lysis, and trigger antibody-dependent cellular cytotoxicity by macrophages or natural killer cells. In recent years, it became evident that mAbs control tumor growth by altering the intra-cellular signaling pattern inside the targeted tumor cell, leading to growth inhibition and/or apoptosis. In addition, bispecific antibodies can bridge selected surface molecules on a target cell with receptors on an effector cell, thus triggering cytotoxic responses against the target cell. Despite the toxicity that has been seen in clinical trials of bispecific antibodies, advances in antibody engineering, characterization of tumor antigens and immunology might help to produce rationally designed bispecific antibodies for anti-cancer therapy.

[0121] Another promising approach to inhibiting aberrant RTK signaling is to develop small molecule drugs that selectively interfere with the intrinsic tyrosine kinase activity and thereby block receptor autophosphorylation and activation of downstream signal transducers. The tyrphostins, which belong to the quinazolines, are one important group of such inhibitors that compete with ATP for the ATP binding site at the receptor's tyrosine kinase domain and some members of the group have been shown to specifically inhibit the EGFR. Potent and selective inhibitors of receptors involved in neovascularization have been developed and are now undergoing clinical evaluation. New classes of tyrosine kinase inhibitors (TKIs) with increased potency and selectivity, higher in vitro and in vivo efficacy and decreased toxicity have been developed using the advantages of structure-based drug design, crystallographic structure information, combinatorial chemistry and high-throughput screening.

[0122] Recombinant immunotoxins provide another possibility of target-selective drug design. Recombinant immunotoxins are composed of a bacterial or plant toxin either fused or chemically conjugated to a specific ligand, such as the variable domains of the heavy and light chains of mAbs or to a growth factor. Immunotoxins may contain bacterial toxins, such as *Pseudomouas* exotoxin A or diphtheria toxin, or plant toxins, such as ricin A or clavin. These recombinant molecules can selectively kill their target cells when internalized after binding to cell surface receptors of the target cells.

[0123] The use of antisense oligonucleotides represents another strategy to inhibit the activation of RTKs. Antisense oligonucleotides are short pieces of synthetic DNA or RNA that are designed to interact with the mRNA to block the transcription and thus the expression of the target proteins. Antisense oligonucleotides interact with the mRNA by Watson-Crick base-pairing and are therefore highly specific to the target protein. Several preclinical and clinical studies suggest that antisense therapy might be therapeutically useful for the treatment of solid tumors.

[0124] The potential of RTKs and their relevant signaling as selective anti-cancer targets for therapeutic intervention

has been recognized. As a consequence, a variety of successful target specific drugs such as mAbs and RTK inhibitors have been developed and are currently being evaluated in clinical trials. Table 3 summarizes the most successful drugs against receptor tyrosine kinase signaling which are currently evaluated in clinical phases or have already been approved by the FDA.

to as "ALKomas" which display inappropriate expression of a neural-specific tyrosine kinase, anaplastic lymphoma kinase (ALK).

[0131] Iressa (ZD1839) is an orally active selective EGF-R inhibitor. This compound disrupts signaling involved in cancer cell proliferation. The clinical efficacy of this agent shows that it is well tolerated by patients undergoing Phase I/II

TABI	E 3

RTK Drugs Currently Under Clinical Evaluation				
RTK	Drug	Company	Description	Status
EGFR	ZA18539 Iressa	AstraZeneca	TKI that inhibits EGFR signaling	Phase III
EGFR	Cetuximab C225	ImClone Systems	Mab directed against EGFR	Phase III
EGFR	EGF fusion protein	Seragen	Recombinant diphtheria toxin-hEGF fusion protein	Phase II
HER2	Trastuzumab Herceptin	Genetech	Mab directed against HER2	Approved by the FDA in 1998
IGF-IR	INX-4437	INEX USA	Antisense oligonucleotides targeting IGR-IR	Phase I
VEGFR	SU5416	SUGEN	TKI that inhibits VEGFR2	Phase II
VEGFR/ FGFR/ PDGFR	SU6668	SUGEN	RTK inhibition of VEGFR, FGFR, and PDGFR	Phase I

[0125] Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intra-cellular regions of cell surface receptors. Receptors that function through non-receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

[0126] Many of the PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well-known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity.

[0127] Many tyrosine kinase inhibitors, such as flavopiridol, genistem, erbstatin, lavendustin A, staurosporine, and UCN-01, are derived from natural products. Inhibitors directed to the ATP binding site are also available. Signals from RTKs can also be inhibited at other target sites such as nuclear tyrosine kinases, membrane anchors (inhibition of farnesylation) and transcription factors.

[0128] Targeting the signaling potential of growth promoting tyrosine kinases such as EGFR, HER2, PDGFR, src, and abl, will block tumor growth while blocking IGF-1 and TRK will interfere with tumor cell survival. Inhibition of these kinases will lead to tumor shrinkage and apoptosis. FkII/KDR and src are kinases necessary for neovascularization (angiogenesis) of tumors. Inhibition of these kinases will slow tumor growth and decrease metastases.

[0129] Inhibitors of RTKs suppress tumor development by preventing cell migration, invasion and metastases. These drugs are likely to increase the time required for tumor progression, and may inhibit or attenuate the aggressiveness of the disease but may not initially result in measurable tumor regression.

[0130] An example of cancer arising from a defective tyrosine kinase is a class of ALK positive lymphomas referred

clinical trials. The compound has shown promising cytotoxicity towards several cancer cell lines.

[0132] Since the majority of protein kinases are expressed in the brain, often in a neuron-specific fashion, protein phosphorylation must play a key role in the development and function of the vertebrate central nervous system. Thus neuron-specific kinases are well established as targets for the development of pharmacologically active modulators.

[0133] In summary, kinase proteins are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of kinase proteins. The present invention advances the state of the art by providing a previously unidentified human kinase protein that has homology to rat MRCK.

Utility of the MRCK1 Gene and MRCK1 Kinase

[0134] MRCKs are serine/threonine kinases with multiple functional domains. MRCKs are thought to act as a downstream effector of Cdc42 in cytoskeletal reorganization. Cdc42 is an essential GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. The 11 current members of the Cdc42 family display between 75 and 100% amino acid identity and are functional, as well as structural, homologs. Cdc42 transduces signals to the actin cytoskeleton to initiate and maintain polarized growth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42 plays an important role in multiple actindependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42 regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors

within the nucleus. Cdc42 mediates these processes through interactions with a myriad of downstream effectors. In addition, Cdc42 has been implicated in a number of human diseases through interactions with its regulators and downstream effectors.

[0135] The MRCK family includes at least two related protein kinases: MRCK alpha and MRCK beta, which were isolated from a human brain cDNA library using a monoclonal antibody directed against myotonic dystrophy protein kinase (DMPK). The epitope shared by DMPK and MRCKs was located at the catalytic site of DMPK using a phagedisplayed random peptide library (Lam L T, Hum Mol Genet. 9:2167-2173, 2000).

[0136] MRCKs are involved in Cdc42-mediated myosin light chain phosphorylation (Dong et al., Eur J Cell Biol 81:231-42, 2002). Specifically, MRCK alpha was implicated in Cdc42-mediated peripheral actin formation and neurite outgrowth in HeLa and PC12 cells, respectively. It was suggest that MRCK alpha may act as a downstream effector of Cdc42 in cytoskeletal reorganization (Leung et al., Mol Cell Biol 18:130-40, 1998).

[0137] The native MRCK exists in high-molecular-weight complexes. The three independent coiled-coil (CC) domains and the N-terminal region preceding the kinase domain are responsible for intermolecular interactions leading to MRCK alpha multimerization. N-terminus-mediated dimerization and consequent trans-autophosphorylation are critical processes regulating MRCK alpha catalytic activities. A region containing the two distal CC domains (CC2 and CC3; residues 658 to 930) was found to interact intramolecularly with the kinase domain and negatively regulates its activity. Its deletion also resulted in an active kinase, confirming a negative auto-regulatory role. The N-terminus-mediated dimerization and activation of MRCK and the negative kinasedistal CC domain interaction are two mutually exclusive events that tightly regulate the catalytic state of the kinase. Disruption of this interaction by a mutant kinase domain resulted in increased kinase activity. MRCK kinase activity was also elevated when cells were treated with phorbol ester, which can interact directly with a cysteine-rich domain next to the distal CC domain. It therefore appears that binding of phorbol ester to MRCK releases its auto-inhibition, allowing N-terminal dimerization and subsequent kinase activation. (Tan et al., Mol. Cell. Biol., 21:2767-78, 2001)

[0138] The approximately 190-kD MRCK kinases preferentially phosphorylate non-muscle myosin light chain at serine 19, which is known to be crucial for activating actinmyosin contractility. The p21-binding domain binds GTP-Cdc42 but not GDP-Cdc42. The multidomain structure includes a cysteine-rich motif resembling those of protein kinase C and n-chimaerin and a putative Pleckstrin homology domain. MRCK alpha and Cdc $42^{\nu_{12}}$ co-localize, particularly at the cell periphery in transfected HeLa cells. Microinjection of a plasmid encoding MRCK alpha resulted in actin and myosin reorganization. Expression of kinase-dead MRCK alpha blocked Cdc42^{V12}-dependent formation of focal complexes and peripheral microspikes. This was not due to possible sequestration of the p21, as a kinase-dead MRCK alpha mutant defective in Cdc42 binding was an equally effective blocker. Coinjection of an MRCK alpha plasmid with a Cdc42 plasmid, at concentrations where Cdc42 plasmid by itself elicited no effect, led to the formation of the peripheral structures associated with a Cdc42-induced morphological phenotype. These Cdc42-type effects were not promoted upon coinjection with plasmids of kinase-dead or Cdc42binding-deficient MRCK alpha mutants. These results suggest that MRCK alpha may act as a downstream effector of Cdc42 in cytoskeletal reorganization (Leung et al., Mol. Cell. Biol., 18:130-40, 1998).

[0139] Two major substrates, p130 and p85, for MRCK alpha-kinase have been identified. P130 is identified as the myosin binding subunit p130, whereas p85 is a novel related protein. P85 contains N-terminal ankyrin repeats, an alphahelical C terminus with leucine repeats, and a centrally located conserved motif with the MRCK alpha kinase phosphorylation site. Like MBS130, p85 is specifically associated with protein phosphatase 1delta (PP1delta), and this requires the N-terminus, including the ankyrin repeats. This association is required for the regulation of both the catalytic activities and the assembly of actin cytoskeleton. The N-terminus, in association with PP1 delta, is essential for actin depolymerization, whereas the C-terminus antagonizes this action. The C-terminal effects consist of two independent events that involved both a conserved phosphorylation inhibitory motif and an alpha-helical leucine repeats. The former was able to interact with PP1delta only in the phosphorylated state and result in inactivation of PP1delta activity. This provides further evidence that phosphorylation of a myosin binding subunit protein by specific kinases confers conformational changes in a highly conserved region that plays an essential role in the regulation of its catalytic subunit activities (Tan et al., J. Biol. Chem., 276:21209-16, 2001).

[0140] Taken together, MRCKs appear to be an important player in cytoskeletal reorganization, neuronal differentiation, and myotonic dystrophy. MRCKs may serve as a major target for drug action and development.

[0141] The present invention provides a new human kinase (MRCK1) which has sequence and structure similarities to rat MRCK alpha and other kinases. The multiple domains in MRCK1 share high sequence identities with the corresponding domains in other kinases. Each of these domains, either in its native form or in a mutant form, can be used to affect the function of the corresponding domain in other kinases. The kinase domain in MRCK1 can be used to phosphorylate suitable substrates, including p130 and p85 or substrate peptides containing MRCK alpha phosphorylation sites. The substrate peptides can be conjugated to antibodies, and the phosphate groups added to the substrate peptides can be radioactively or fluorescently labeled. Antibodies thus labeled can be used in various detection assays, as appreciated by one of skilled in the art.

[0142] The MRCK1 gene and gene products can be used as molecular markers for diagnosing, prognosing, and monitoring the treatment of disorders related to the aberrant expression of MRCK1. In addition, the MRCK1 gene can be used to screen for potential agents or drugs capable of enhancing or inhibiting the MRCK1 gene expression in human cells. The MRCK1 gene products (polynucleotide and polypeptide) can be used to screen for potential agents or drugs capable of enhancing or inhibiting MRCK1 activity. Furthermore, various therapeutic methods for treating disorders related to the aberrant expression of MRCK1 can be designed based on the MRCK1 gene, its variants, or the agents/drugs that affect the expression of the MRCK1 gene or the activity of the MRCK1 gene products.

[0143] The following subsections illustrate examples of the utilities of human MRCK1 gene and MRCK1 kinase. Various changes and modifications within the spirit and scope of the

present invention will become apparent to those skilled in the art from the present description.

Polynucleotides and Variants Thereof

[0144] One aspect of the invention pertains to isolated polynucleotide probes capable of hybridizing to the MRCK1 gene or its transcripts, such as MRCK1 mRNAs. These probes can be used to detect the expression level of the MRCK1 gene in human tissue or cells. The present invention also contemplates polynucleotide fragments for use as PCR primers for the amplification or mutation of the MRCK1 gene or the MRCK1 kinase-coding sequences. Another aspect of the invention pertains to isolated polynucleotides that encode MRCK1, or a fragment or mutant thereof. These polynucleotides can be used for expressing MRCK1, or a fragment or mutant thereof. The protein products thus expressed can be used to screen for agents/drugs that modulate an activity of MRCK1. In addition, these polynucleotides can be used to designing gene therapy vectors which target the expression of the MRCK1 gene or an activity of MRCK1 in humans.

[0145] A polynucleotide comprising SEQ ID NO:1 or SEQ ID NO:3 can be prepared using standard molecular biology techniques as appreciated by one of ordinary skill in the art. For instance, primers derived from the 5' and 3' ends of SEQ ID NO:1 can be used to amplify mRNAs isolated from human tissues. The cDNA thus produced contains SEQ ID NO:1. Likewise, primers for amplifying the human genomic sequence containing SEQ ID NO:3 can be designed and used to prepare the genomic sequence of the MRCK1 gene. A variant (such as a homolog) or a fragment of SEQ ID NO:1 or SEQ ID NO:3 can be similarly prepared. Alternatively, probes can be designed to screen for cDNA or genomic sequence libraries in order to identify polynucleotide molecules comprising the full-length or fragments of SEQ ID NO:1 or SEQ ID NO:3. The molecules thus identified can be used to create suitable vectors comprising the full-length SEQ ID NO:1 or SEQ ID NO:3.

[0146] Polynucleotides capable of hybridizing to the MRCK1 gene can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer. Preferably, the polynucleotide probes can hybridize to the MRCK1 gene under reduced stringent conditions, stringent conditions, or highly stringent conditions. In one embodiment, the polynucleotides comprise at least 15, 20, 25, 30, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 or more consecutive nucleotides of SEQ ID NO:1. Any fragments of SEQ ID NO:1 and SEQ ID NO:3 may be used as hybridization probes or PCR primers for the MRCK1 gene or its transcripts. The probes/primers can be substantially purified.

[0147] In a preferred embodiment, the hybridization probes for the MRCK1 gene comprise a label group. The label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Probes thus labeled can be used as part of a diagnostic kit for determining the expression level of the MRCK1 gene in human tissues.

[0148] This invention encompasses human MRCK1 gene homologs in other species. These homologs can be determined by search different sequence databases, such as the Entrez/GenBank sequence databases maintained by the NCBI. The invention also encompasses polynucleotide molecules which are structurally different from the molecules described above, but have the substantially same properties as the molecules described above. Such molecules include allelic variants, which will be described below in greater detail.

[0149] DNA sequence polymorphism in human MRCK1 gene exists among different individuals due to natural allelic variations. An allele is one of a group of genes which occur alternatively at a given genetic locus. DNA polymorphisms that affect the RNA expression level of the MRCK1 gene can also exist, e.g. through affecting the regulation or degradation of expression of the gene. The present invention contemplates all allelic variants of human MRCK1 gene. Allelic variants and other homologs of the MRCK1 gene can be isolated using probes/primers derived from SEQ ID NO:1 or SEQ ID NO:3. [0150] It should, of course, be understood that SEQ ID NO:1 and SEQ ID NO:3 can be modified. The modified polynucleotides can comprise one or more mutations. These mutations can be substitutions, additions or deletions of 1, 2, 3, 5, 10, 15, 20 or more nucleotide residues in SEQ ID NO:1 or SEQ ID NO:3. Standard techniques can be used, such as site-directed mutagenesis or PCR-mediated mutagenesis. Preferably, these mutations create conservative amino acid substitutions. Alternatively, mutations can be introduced randomly along all or part of the MRCK1 gene or its cDNA, such as by saturation mutagenesis. Following mutagenesis, the encoded proteins can be expressed recombinantly and their activities can be determined.

[0151] In one embodiment, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be introduced. A "non-essential" amino acid residue is a residue that can be altered without changing the biological activity of the protein. In contrast, an "essential" amino acid residue is required for the biological activity of the protein. Amino acid residues that are conserved among allelic variants or homologs of the MRCK1 gene from different species preferably are not changed in the present invention.

[0152] Accordingly, another aspect of the invention pertains to MRCK1 proteins that contain changes in amino acid residues that are not essential for the biological activity of MRCK1. These proteins differ in amino acid sequence from the original human MRCK1 kinase, but retain its biological activity. In one embodiment, the modified protein comprises an amino acid sequence at least about 91%, 95%, 98%, 99% or more homologous to SEQ ID NO:2.

[0153] In another embodiment, MRCK1 proteins contain mutations in amino acid residues which result in inhibition of MRCK1 activity. These mutated MRCK1 proteins can be used to inhibit MRCK1 activity in patients with disorders related to the aberrant expression of MRCK1.

[0154] A polynucleotide of this invention can be further modified to increase its stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2-o-methyl rather than phosphodiester linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetylmethyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

[0155] Polynucleotide molecules which are antisense to the MRCK1 gene can be prepared. An "antisense" polynucleotide comprises a nucleotide sequence which is complementary to a "sense" polynucleotide which encodes a protein. An antisense polynucleotide can bind via hydrogen bonds to the sense polynucleotide. [0156] Antisense polynucleotides of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense polynucleotide molecule can be complementary to the entire coding region or part of the coding region of the MRCK1 gene. The antisense polynucleotide molecule can also be complementary to a "noncoding region" in the coding strand of the MRCK1 gene. Preferably, the antisense polynucleotide is an oligonucleotide which is antisense to only a portion of the MRCK1 gene. An antisense polynucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense polynucleotide of the invention can be constructed using chemical synthesis and enzymatic ligation reactions as appreciated by one of ordinary skill in the art. For example, an antisense polynucleotide can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense polynucleotides. Examples of modified nucleotides which can be used to generate the antisense polynucleotide include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 3-methylcytosine, 2-methylguanine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyl adenosine, uracil-5-oxyacetic acid, wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, 3-(3-amino-3-N2carboxypropyl)uracil, (acp3)w, and 2,6-diaminopurine. Phosphorothioate derivatives and acridine substituted nucleotides can also be used. Alternatively, the antisense polynucleotide can be produced biologically using an expression vector into which a polynucleotide has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted polynucleotide will be of an antisense orientation to the target polynucleotide of interest).

[0157] The antisense polynucleotides of the invention can be administered to a subject or applied in situ such that they hybridize or bind to cellular mRNAs and/or genomic DNA's that encode MRCK1 kinase, thereby inhibiting the expression of MRCK1 kinase. The hybridization can result in a stable duplex via conventional nucleotide complementarity. An example route for administering antisense polynucleotides includes direct injection at a tissue site. Antisense polynucleotides can also be modified first, and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface. Suitable modifications include linking the antisense polynucleotides to peptides or antibodies which bind to the cell surface receptors or antigens. In addition, the antisense polynucleotides can be delivered to cells using vectors. To achieve sufficient intra-cellular concentrations of the antisense molecules, strong pol II or pol III promoters may be used in the vectors.

[0158] In one embodiment, the antisense polynucleotides are α -anomeric polynucleotides. An α -anomeric polynucle-

otide molecule forms specific double-stranded hybrid with a complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other. The antisense polynucleotide molecule can also comprise a 2-o-methylribonucleotide or a chimeric RNA-DNA analog.

[0159] In another embodiment, the antisense polynucleotide is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded polynucleotide, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes described in Haselhoif and Gerlach Nature 334:585-591, 1988) can be used to catalytically cleave mRNA transcripts of MRCK1 in order to inhibit its expression. A ribozyme having specificity for the MRCK1 gene or its transcripts can be designed based upon SEQ ID NO:1 or 3. mRNAs transcribed from the MRCK1 gene can be used to select from a pool of RNA molecules a catalytic RNA having a specific ribonuclease activity.

[0160] Alternatively, the expression of the MRCK1 gene can be inhibited by using nucleotide sequences complementary to the regulatory region (e.g., the promoter and/or enhancers). These nucleotide sequences can form triple helical structures that prevent transcription of the gene in the target cells.

[0161] Expression of the MRCK1 gene can also be inhibited using RNA interference ("RNAi"). RNAi is a phenomenon in which the introduction of double-stranded RNA (dsRNA) into certain organisms or cell types causes degradation of the homologous mRNA. First discovered in the nematode Caenorhabditis elegans, RNAi has since been found to operate in a wide range of organisms. For example, in mammalian cells, introduction of long dsRNA (>30 nucleotides) can initiate a potent antiviral response, exemplified by nonspecific inhibition of protein synthesis and RNA degradation. RNA interference provides a mechanism of gene silencing at the mRNA level. In recent years, RNAi has become an endogenous and potent gene-specific silencing technique that uses double-stranded RNAs (dsRNA) to mark a particular transcript for degradation in vivo. It also offers an efficient and broadly applicable approach for gene knock-out. In addition, RNAi technology can be used for therapeutic purposes. For example, RNAi targeting Fas-mediated apoptosis has been shown to protect mice from fulminant hepatitis. RNAi technology has been disclosed in numerous publications, such as U.S. Pat. Nos. 5,919,619, 6,506,559 and PCT Publication Nos. WO99/14346, WO01/70949, WO01/36646, WO00/63364, WO00/44895, WO01/75164, WO01/92513, WO01/68836 and WO01/29058.

[0162] A sequence capable of inhibiting gene expression by RNA interference can have any length. For instance, the sequence can have at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100 or more consecutive nucleotides. The sequence can be dsRNA or any other type of polynucleotide, provided that the sequence can form a functional silencing complex to degrade the target mRNA transcript.

[0163] In one embodiment, the sequence comprises or consists of a short interfering RNAs (siRNA). The siRNA can be dsRNA having 19-25 nucleotides. siRNAs can be produced endogenously by degradation of longer dsRNA molecules by an RNase III-related nuclease called Dicer. siRNAs can also be introduced into a cell exogenously, or by transcription of an expression construct. Once formed, the siRNAs assemble with protein components into endoribonuclease-containing complexes known as RNA-induced silencing complexes

(RISCs). An ATP-generated unwinding of the siRNA activates the RISCs, which in turn target the complementary mRNA transcript by Watson-Crick base-pairing, thereby cleaving and destroying the mRNA. Cleavage of the mRNA takes place near the middle of the region bound by the siRNA strand. This sequence specific mRNA degradation results in gene silencing.

[0164] At least two ways can be employed to achieve siRNA-mediated gene silencing. First, siRNAs can be synthesized in vitro and introduced into cells to transiently suppress gene expression. Synthetic siRNA provides an easy and efficient way to achieve RNAi. siRNA are duplexes of short mixed oligonucleotides which can include, for example, 19 RNAs nucleotides with symmetric dinucleotide 3' overhangs. Using synthetic 21 bp siRNA duplexes (e.g., 19 RNA bases followed by a UU or dTdT 3' overhang), sequence specific gene silencing can be achieved in mammalian cells. These siRNAs can specifically suppress targeted gene translation in mammalian cells without activation of DNA-dependent protein kinase (PKR) by longer dsRNA, which may result in non-specific repression of translation of many proteins.

[0165] Second, siRNAs can be expressed in vivo from vectors. This approach can be used to stably express siRNAs in cells or transgenic animals. In one embodiment, siRNA expression vectors are engineered to drive siRNA transcription from polymerase III (pol III) transcription units. Pol III transcription units are suitable for hairpin siRNA expression, since they deploy a short AT rich transcription termination site that leads to the addition of 2 bp overhangs (e.g., UU) to hairpin siRNAs—a feature that is helpful for siRNA function. The Pol III expression vectors can also be used to create transgenic mice that express siRNA.

[0166] In another embodiment, siRNAs can be expressed in a tissue-specific manner. Under this approach, long doublestranded RNAs (dsRNAs) are first expressed from a promoter (such as CMV (pol II)) in the nuclei of selected cell lines or transgenic mice. The long dsRNAs are processed into siR-NAs in the nuclei (e.g., by Dicer). The siRNAs exit from the nuclei and mediate gene-specific silencing. A similar approach can be used in conjunction with tissue-specific (pol II) promoters to create tissue-specific knockdown mice.

[0167] Any 3' dinucleotide overhang, such as UU, can be used for siRNA design. In some cases, G residues in the overhang are avoided because of the potential for the siRNA to be cleaved by RNase at single-stranded G residues.

[0168] With regard to the siRNA sequence itself, it has been found that siRNAs with 30-50% GC content can be more active than those with a higher G/C content in certain cases. Moreover, since a 4-6 nucleotide poly(T) tract may act as a termination signal for RNA pol III, stretches of ≥4 Ts or As in the target sequence may be avoided in certain cases when designing sequences to be expressed from an RNA pol III promoter. In addition, some regions of mRNA may be either highly structured or bound by regulatory proteins. Thus, it may be helpful to select siRNA target sites at different positions along the length of the gene sequence. Finally, the potential target sites can be compared to the appropriate genome database (human, mouse, rat, etc.). Any target sequences with more than 16-17 contiguous base pairs of homology to other coding sequences may be eliminated from consideration in certain cases.

[0169] In one embodiment, siRNA can be designed to have two inverted repeats separated by a short spacer sequence and end with a string of Ts that serve as a transcription termination

site. This design produces an RNA transcript that is predicted to fold into a short hairpin siRNA. The selection of siRNA target sequence, the length of the inverted repeats that encode the stem of a putative hairpin, the order of the inverted repeats, the length and composition of the spacer sequence that encodes the loop of the hairpin, and the presence or absence of 5'-overhangs, can vary to achieve desirable results.

[0170] The siRNA targets can be selected by scanning an mRNA sequence for AA dinucleotides and recording the 19 nucleotides immediately downstream of the AA. Other methods can also been used to select the siRNA targets. In one example, the selection of the siRNA target sequence is purely empirically determined (see e.g., Sui et al., Proc. Natl. Acad. Sci. USA 99: 5515-5520, 2002), as long as the target sequence starts with GG and does not share significant sequence homology with other genes as analyzed by BLAST search. In another example, a more elaborate method is employed to select the siRNA target sequences. This procedure exploits an observation that any accessible site in endogenous mRNA can be targeted for degradation by synthetic oligodeoxyribonucleotide/RNase H method (Lee et al., Nature Biotechnology 20:500-505, 2002).

[0171] In another embodiment, the hairpin siRNA expression cassette is constructed to contain the sense strand of the target, followed by a short spacer, the antisense strand of the target, and 5-6 Ts as transcription terminator. The order of the sense and antisense strands within the siRNA expression constructs can be altered without affecting the gene silencing activities of the hairpin siRNA. In certain instances, the reversal of the order may cause partial reduction in gene silencing activities.

[0172] The length of nucleotide sequence being used as the stem of siRNA expression cassette can range, for instance, from 19 to 29. The loop size can range from 3 to 23 nucleotides. Other lengths and/or loop sizes can also be used.

[0173] In yet another embodiment, a 5' overhang in the hairpin siRNA construct can be used, provided that the hairpin siRNA is functional in gene silencing. In one specific example, the 5' overhang includes about 6 nucleotide residues.

[0174] In still yet another embodiment, the target sequence for RNAi is a 21-mer sequence fragment selected from SEQ ID NO:1. The 5' end of the target sequence has dinucleotide "NA," where "N" can be any base and "A" represents adenine. The remaining 19-mer sequence has a GC content of between 35% and 55%. In addition, the remaining 19-mer sequence does not include any four consecutive A or T (i.e., AAAA or TTTT), three consecutive G or C (i.e., GGG or CCC), or seven "GC" in a role. Exemplary RNAi target sequences identified according to the above-described criteria ("relaxed" criteria) are illustrated in Table 4. The siRNA sequences for each target sequence (listed in the same row as the target sequence and including the sense strand and the antisense strand) are also indicated in Table 4.

[0175] Additional criteria can also be used for selecting RNAi target sequences. For instance, the GC content of the remaining 19-mer sequence can be limited to between 45% and 55%. Moreover, any 19-mer sequence having three consecutive identical bases (i.e., GGG, CCC, TTT, or AAA) or a palindrome sequence with 5 or more bases is excluded. Furthermore, the remaining 19-mer sequence can be selected to have low sequence homology to other human genes. In one specific example, potential target sequences are searched by BLASTN against NCBI's human UniGene cluster sequence

database. The human UniGene database contains non-redundant sets of gene-oriented clusters. Each UniGene cluster includes sequences that represent a unique gene. 19-mer sequences producing no hit to other human genes under the BLASTN search can be selected. During the search, the e-value may be set at a stringent value (such as "1"). Exemplary target sequences derived using these additional conditions ("stringent" criteria) are shown in Table 5. The siRNA sequences for each target sequence (listed in the same row as the target sequence and including the sense strand and the antisense strand) are also indicated in Table 5.

[0176] The effectiveness of the siRNA sequences listed in Tables 4 and 5, as well as any other RNAi sequence derived according to the present invention, can be evaluated using various methods known in the art. For instance, an siRNA sequence of the present invention can be introduced into a cell that expresses the MRCK1 gene. The polypeptide or mRNA level of the MRCK1 gene in the cell can be detected. A substantial change in the expression level of the MRCK1 gene before and after the introduction of the siRNA sequence is indicative of the effectiveness of the siRNA sequence in suppressing the expression of the MRCK1 gene. In one specific example, the expression levels of other genes are also monitored before and after the introduction of the siRNA sequence. An siRNA sequence which has inhibitory effect on MRCK1 gene expression but does not significantly affect the expression of other genes can be selected. In another specific example, multiple siRNA or other RNAi sequences can be introduced into the same target cell. These siRNA or RNAi sequences specifically inhibit MRCK1 gene expression but not the expression of other genes. In yet another specific example, siRNA or other RNAi sequences that inhibit the expression of both the MRCK1 gene and other gene or genes can be used.

TABLE 4

Exemplary RNAi Target Sequences in the MRCK1 Gene and the	e
Corresponding siRNAs (Under Relaxed Criteria)	

Target Sequence	siRNA Sense Strand	siRNA Antisense Strand
SEQ ID NO: 10	SEQ ID NO: 11	SEQ ID NO: 12
SEQ ID NO: 13	SEQ ID NO: 14	SEQ ID NO: 15
SEQ ID NO: 16	SEQ ID NO: 17	SEQ ID NO: 18
SEQ ID NO: 19	SEQ ID NO: 20	SEQ ID NO: 21
SEQ ID NO: 22	SEQ ID NO: 23	SEQ ID NO: 24
SEQ ID NO: 25	SEQ ID NO: 26	SEQ ID NO: 27
SEQ ID NO: 28	SEQ ID NO: 29	SEQ ID NO: 30
SEQ ID NO: 31	SEQ ID NO: 32	SEQ ID NO: 33
SEQ ID NO: 34	SEQ ID NO: 35	SEQ ID NO: 36
SEQ ID NO: 37	SEQ ID NO: 38	SEQ ID NO: 39
SEQ ID NO: 40	SEQ ID NO: 41	SEQ ID NO: 42
SEQ ID NO: 43	SEQ ID NO: 44	SEQ ID NO: 45
SEQ ID NO: 46	SEQ ID NO: 47	SEQ ID NO: 48
SEQ ID NO: 49	SEQ ID NO: 50	SEQ ID NO: 51
SEQ ID NO: 52	SEQ ID NO: 53	SEQ ID NO: 54
SEQ ID NO: 55	SEQ ID NO: 56	SEQ ID NO: 57
SEQ ID NO: 58	SEQ ID NO: 59	SEQ ID NO: 60
SEQ ID NO: 61	SEQ ID NO: 62	SEQ ID NO: 63
SEQ ID NO: 64	SEQ ID NO: 65	SEQ ID NO: 66
SEQ ID NO: 67	SEQ ID NO: 68	SEQ ID NO: 69
SEQ ID NO: 70	SEQ ID NO: 71	SEQ ID NO: 72
SEQ ID NO: 73	SEQ ID NO: 74	SEQ ID NO: 75
SEQ ID NO: 76	SEQ ID NO: 77	SEQ ID NO: 78
SEQ ID NO: 79	SEQ ID NO: 80	SEQ ID NO: 81
SEQ ID NO: 82	SEQ ID NO: 83	SEQ ID NO: 84
SEQ ID NO: 85	SEQ ID NO: 86	SEQ ID NO: 87
SEQ ID NO: 88	SEQ ID NO: 89	SEQ ID NO: 90
SEQ ID NO: 91	SEQ ID NO: 92	SEQ ID NO: 93

TABLE 4-continued

Target SequencesiRNA Sense StrandsiRNA AntisenSEQ ID NO: 94SEQ ID NO: 95SEQ ID NO: 96SEQ ID NO: 97SEQ ID NO: 98SEQ ID NO: 97SEQ ID NO: 100SEQ ID NO: 101SEQ ID NO: 101SEQ ID NO: 103SEQ ID NO: 104SEQ ID NO: 104SEQ ID NO: 103SEQ ID NO: 104SEQ ID NO: 104SEQ ID NO: 104SEQ ID NO: 104SEQ ID NO: 104	6 9
SEQ ID NO: 97 SEQ ID NO: 98 SEQ ID NO: 99 SEQ ID NO: 100 SEQ ID NO: 101 SEQ ID NO: 101 SEQ ID NO: 103 SEQ ID NO: 104 SEQ ID NO: 104	9
SEQ ID NO: 100 SEQ ID NO: 101 SEQ ID NO: 10 SEQ ID NO: 103 SEQ ID NO: 104 SEQ ID NO: 10	
SEQ ID NO: 103 SEQ ID NO: 104 SEQ ID NO: 10	01
	02
GEO ID NO. 107 GEO ID NO. 107 GEO ID NO. 1	05
SEQ ID NO: 106 SEQ ID NO: 107 SEQ ID NO: 10	08
SEQ ID NO: 109 SEQ ID NO: 110 SEQ ID NO: 1	
SEQ ID NO: 112 SEQ ID NO: 113 SEQ ID NO: 1	
SEQ ID NO: 115 SEQ ID NO: 116 SEQ ID NO: 1	
SEQ ID NO: 118 SEQ ID NO: 119 SEQ ID NO: 12	
SEQ ID NO: 121 SEQ ID NO: 122 SEQ ID NO: 12	
SEQ ID NO: 124 SEQ ID NO: 125 SEQ ID NO: 12	
SEQ ID NO: 127 SEQ ID NO: 128 SEQ ID NO: 12	
SEQ ID NO: 130 SEQ ID NO: 131 SEQ ID NO: 1	
SEQ ID NO: 133 SEQ ID NO: 134 SEQ ID NO: 1	
SEQ ID NO: 136 SEQ ID NO: 137 SEQ ID NO: 1	
SEQ ID NO: 139 SEQ ID NO: 140 SEQ ID NO: 14	
SEQ ID NO: 142 SEQ ID NO: 143 SEQ ID NO: 14 SEQ ID NO: 145 SEQ ID	
SEQ ID NO: 145 SEQ ID NO: 146 SEQ ID NO: 14	
SEQ ID NO: 148 SEQ ID NO: 149 SEQ ID NO: 1: SEQ ID NO: 151 SEQ ID NO: 152 SEQ ID NO: 151	
SEQ ID NO: 151 SEQ ID NO: 152 SEQ ID NO: 151 SEQ ID NO: 154 SEQ ID NO: 155 SEQ ID	
SEQ ID NO: 154 SEQ ID NO: 155 SEQ ID NO: 157 SEQ ID NO: 157 SEQ ID NO: 158 SEQ ID NO: 158	
SEQ ID NO: 157 SEQ ID NO: 158 SEQ ID NO: 11	
SEQ ID NO: 160 SEQ ID NO: 161 SEQ ID NO: 1 SEQ ID NO: 162 SEQ ID NO: 164 SEQ ID NO: 164	
SEQ ID NO: 163 SEQ ID NO: 164 SEQ ID NO: 16 SEQ ID NO: 166 SEQ ID NO: 167 SEQ ID NO: 167	
SEQ ID NO: 166 SEQ ID NO: 167 SEQ ID NO: 1 SEQ ID NO: 169 SEQ ID NO: 170 SEQ ID NO: 170	
SEQ ID NO: 169 SEQ ID NO: 170 SEQ ID NO: 17 SEQ ID NO: 172 SEQ ID NO: 173 SEQ ID NO: 17	
SEQ ID NO: 172 SEQ ID NO: 173 SEQ ID NO: 17 SEQ ID NO: 175 SEQ ID NO: 176 SEQ ID NO: 17	
SEQ ID NO: 179 SEQ ID NO: 170 SEQ ID NO: 17 SEQ ID NO: 178 SEQ ID NO: 179 SEQ ID NO: 15	
SEQ ID NO: 178 SEQ ID NO: 179 SEQ ID NO: 179 SEQ ID NO: 181 SEQ ID NO: 182 SEQ ID NO: 182	
SEQ ID NO: 181 SEQ ID NO: 182 SEQ ID NO: 18 SEQ ID NO: 184 SEQ ID NO: 185 SEQ ID NO: 18	
SEQ ID NO: 187 SEQ ID NO: 188 SEQ ID NO: 18	
SEQ ID NO: 190 SEQ ID NO: 191 SEQ ID NO: 19	
SEQ ID NO: 193 SEQ ID NO: 194 SEQ ID NO: 19	
SEQ ID NO: 196 SEQ ID NO: 197 SEQ ID NO: 19	
SEQ ID NO: 199 SEQ ID NO: 200 SEQ ID NO: 2	
SEQ ID NO: 202 SEQ ID NO: 203 SEQ ID NO: 20	
SEQ ID NO: 205 SEQ ID NO: 206 SEQ ID NO: 20	
SEQ ID NO: 208 SEQ ID NO: 209 SEQ ID NO: 2	
SEQ ID NO: 211 SEQ ID NO: 212 SEQ ID NO: 2	
SEQ ID NO: 214 SEQ ID NO: 215 SEQ ID NO: 2	
SEQ ID NO: 217 SEQ ID NO: 218 SEQ ID NO: 2	
SEQ ID NO: 220 SEQ ID NO: 221 SEQ ID NO: 22	22
SEQ ID NO: 223 SEQ ID NO: 224 SEQ ID NO: 22	25
SEQ ID NO: 226 SEQ ID NO: 227 SEQ ID NO: 22	28
SEQ ID NO: 229 SEQ ID NO: 230 SEQ ID NO: 2	31
SEQ ID NO: 232 SEQ ID NO: 233 SEQ ID NO: 2	34
SEQ ID NO: 235 SEQ ID NO: 236 SEQ ID NO: 2	37
SEQ ID NO: 238 SEQ ID NO: 239 SEQ ID NO: 24	40
SEQ ID NO: 241 SEQ ID NO: 242 SEQ ID NO: 24	
SEQ ID NO: 244 SEQ ID NO: 245 SEQ ID NO: 24	
SEQ ID NO: 247 SEQ ID NO: 248 SEQ ID NO: 24	
SEQ ID NO: 250 SEQ ID NO: 251 SEQ ID NO: 251	
SEQ ID NO: 253 SEQ ID NO: 254 SEQ ID NO: 253	
SEQ ID NO: 255 SEQ ID NO: 254 SEQ ID NO: 25 SEQ ID NO: 256 SEQ ID NO: 257 SEQ ID NO: 25	
SEQ ID NO: 259 SEQ ID NO: 260 SEQ ID NO: 20 SEQ ID NO: 262 SEQ ID NO: 263 SEQ ID NO: 20	
SEQ ID NO. 202 SEQ ID NO. 203 SEQ ID NO. 20	0 -1

TABLE 5

Exemplary RNAi Target Sequences in the MRCK1 Gene and the Corresponding siRNAs (Under Stringent Criteria)				
Target Sequence	siRNA Sense Strand	siRNA Antisense Strand		
SEQ ID NO: 265 SEQ ID NO: 268 SEQ ID NO: 271	SEQ ID NO: 266 SEQ ID NO: 269 SEQ ID NO: 272	SEQ ID NO: 267 SEQ ID NO: 270 SEQ ID NO: 273		

TABLE 5-continued

Exemplary RNAi Target Sequences in the MRCK1 Gene and the Corresponding siRNAs (Under Stringent Criteria)				
Target Sequence	siRNA Sense Strand	siRNA Antisense Strand		
SEQ ID NO: 274	SEQ ID NO: 275	SEQ ID NO: 276		
SEQ ID NO: 277 SEQ ID NO: 280	SEQ ID NO: 278 SEQ ID NO: 281	SEQ ID NO: 279 SEQ ID NO: 282		
SEQ ID NO: 280 SEQ ID NO: 283	SEQ ID NO: 281 SEQ ID NO: 284	SEQ ID NO: 282 SEQ ID NO: 285		
SEQ ID NO: 286	SEQ ID NO: 287	SEQ ID NO: 288		
SEQ ID NO: 289	SEQ ID NO: 290	SEQ ID NO: 291		
SEQ ID NO: 292 SEQ ID NO: 295	SEQ ID NO: 293 SEQ ID NO: 296	SEQ ID NO: 294 SEQ ID NO: 297		
SEQ ID NO: 298	SEQ ID NO: 299	SEQ ID NO: 300		
SEQ ID NO: 301	SEQ ID NO: 302	SEQ ID NO: 303		
SEQ ID NO: 304	SEQ ID NO: 305	SEQ ID NO: 306		

[0177] In yet another embodiment, the polynucleotides of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve the stability, hybridization, or solubility of the molecules. For instance, the deoxyribose phosphate backbone of the polynucleotide molecules can be modified to generate peptide polynucleotides (see, Hyrup et al, Bioorganic & Medicinal Chemistry, 4:523, 1996). As used herein, the terms "peptide polynucleotides" or "PNAs" refer to polynucleotide mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. PNA oligomers can be synthesized using standard solid phase peptide synthesis protocols.

[0178] PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense agents for sequence-specific modulation of the MRCK1 gene expression. PNAs can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as artificial restriction enzymes when used in combination with other enzymes, (e.g., S1 nucleases); or as probes or primers for DNA sequencing or hybridization.

[0179] In one embodiment, PNAs can be modified to enhance their stability or cellular uptake by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other drug delivery techniques known in the art. For example, PNA-DNA chimeras of the polynucleotides of the invention can be generated. These chimeras allow DNA recognition enzymes, such as RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion provides high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths which are selected based on base stacking, number of bonds between the nucleobases, and orientations. The PNA-DNA chimeras can be synthesized as follows. A DNA chain is synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment.

[0180] In other embodiments, the polynucleotides of this invention may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents

facilitating transportation across the cell membrane or the blood-kidney barrier (see, e.g., PCT Publication No. WO89/ 10134). In addition, polynucleotides can be modified using hybridization-triggered cleavage agents or intercalating agents. To this end, the polynucleotides can be conjugated to another molecule (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent). Furthermore, the polynucleotide can be detectably labeled.

Polypeptides and Variants Thereof

[0181] Several aspects of the invention pertain to isolated MRCK1 polypeptides and mutated MRCK1 polypeptides capable of inhibiting normal MRCK1 activity. The present invention also contemplates immunogenic polypeptide fragments suitable for raising anti-MRCK1 antibodies.

[0182] In one embodiment, native MRCK1 polypeptides can be isolated from cells or tissue sources by using standard protein purification techniques. Standard purification methods include electrophoresis, molecular, immunological and chromatographic techniques. Specific examples include ion exchange, hydrophobic, affinity or reverse-phase HPLC chromatography, and chromatofocusing. In one embodiment, MRCK1 polypeptides are purified using a standard affinity column coupled with anti-MRCK1 antibodies. Ultrafiltration and diafiltration techniques can also be used. The degree of purification depends on the purpose of the use of the MRCK1 polypeptides. In some instances, purification is not necessary. [0183] In another embodiment, MRCK1 polypeptides or mutated MRCK1 polypeptides capable of inhibiting normal MRCK1 activity are produced by recombinant DNA techniques. Alternative to recombinant expression, MRCK1 polypeptides or mutated MRCK1 polypeptides can be synthesized chemically using standard peptide synthesis techniques.

[0184] The invention provides MRCK1 polypeptides encoded by the human MRCK1 gene, or homologs thereof. The polypeptides of this invention can be substantially homologous to human MRCK1 kinase (SEQ ID NO:2). Preferably, these polypeptides retain the biological activity of the native MRCK1 kinase. In one embodiment, the polypeptides comprise an amino acid sequence which is at least about 91%, 95%, 98%, 99% or more homologous to SEQ ID NO:2.

[0185] Comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. The percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (J. Mol. Biol. 48:444-453, 1970) algorithm, or the GAP program in the GCG software package which uses either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. The percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package, which uses a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. The percent identity between two amino acid or nucleotide sequences can also be determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17, 1989) which has been incorporated into the ALIGN program (version 2.0), or the pairwise BLAST program available at NCBI's BLAST web site.

[0186] The polypeptide and polynucleotide sequences of the present invention can be used as query sequences for searching public databases in order to identify similar sequences. The search can be conducted using BLAST programs, such as the protein BLAST, nucleotide BLAST, pairwise BLAST, and genomic BLAST, that are available at the BLAST web site maintained by the NCBI. When using BLAST programs, the default parameters of the respective programs can also be used.

[0187] The invention further provides chimeric or fusion MRCK1 polypeptides. A fusion MRCK1 polypeptide contains an MRCK1-related polypeptide and a non-MRCK1 polypeptide. The MRCK1-related polypeptides include all or a portion of SEQ ID NO:2 or its variant. A peptide linker sequence can be employed to separate the MRCK1-related polypeptide from the non-MRCK1 polypeptide components by a distance sufficient to ensure that each polypeptide folds into its native secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well-known in the art. Suitable peptide linker sequences can be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the MRCK1related polypeptide and non-MRCK1 polypeptide; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala can also be used in the linker sequence. Amino acid sequences suitable as linkers include those disclosed in Maratea et al., Gene, 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA, 83:8258-8262, 1986; and U.S. Pat. Nos. 4,935,233 and 4,751,180. The linker sequences may be from 1 to about 50 amino acids in length. Linker sequences are not required when the MRCK1related polypeptide or the non-MRCK1 polypeptide has nonessential N-terminal amino acid regions that can be used to separate the respective functional domains and thereby prevent steric interference.

[0188] In one embodiment, the fusion protein is a GST-MRCK1 fusion protein in which an MRCK1-related sequence, such as SEQ ID NO:2, is fused to the C-terminus of the GST sequence. This fusion protein can facilitate the purification of the recombinant MRCK1.

[0189] The MRCK1-fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject. The MRCK1-fusion proteins can be used to affect the bioavailability of an MRCK1 substrate. The MRCK1-fusion proteins can also be used for the treatment or prevention of damages caused by (i) aberrant modification or mutation of MRCK1, or (ii) aberrant post-translational modification of MRCK1. It is also conceivable that a fusion protein containing a normal or mutated MRCK1 polypeptide, or a fragment thereof, can be used to inhibit MRCK1 activity in a human subject.

[0190] Moreover, the MRCK1-fusion proteins can be used as immunogens to produce anti-MRCK1 antibodies. They can also be used to purify MRCK1 ligands and to screen for molecules capable of inhibiting the interaction between MRCK1 and its substrates.

[0191] Preferably, the MRCK1-chimeric or fusion proteins of the invention are produced using standard recombinant DNA techniques. Commercially available expression vectors which encode a fusion moiety (e.g., a GST polypeptide) can be used.

[0192] A signal sequence can be used to facilitate secretion and isolation of the secreted protein or other proteins of

interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway. The present invention encompasses MRCK1 polypeptides having a signal sequence, or the polynucleotide sequences encoding the same.

[0193] The present invention also pertains to MRCK1 mutants which function as antagonists to MRCK1. In one embodiment, antagonists of MRCK1 are used as therapeutic agents. For example, a mutant of MRCK1 that forms a non-functional dimer with a wide-type MRCK1 (the so-called dominant negative mutant) can decrease the activity of MRCK1 and may ameliorate diseases in a subject wherein MRCK1 are abnormally increased in level or activity. Dominant negative MRCK1 mutants can be generated by mutagenesis, as appreciated by one skilled in the art.

[0194] MRCK1 mutants which function as either MRCK1 agonists or antagonists can be identified by screening combinatorial libraries of mutants. A variegated library of MRCK1 mutants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential MRCK1 sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins containing the set of MRCK1 sequences therein. There are a variety of methods which can be used to produce libraries of potential MRCK1 mutants from a degenerate oligonucleotide sequence. A degenerate gene sequence can be chemically synthesized using an automatic DNA synthesizer. The synthetic gene can then be ligated into an appropriate expression vector.

[0195] In one embodiment, a library of coding sequences can be generated using nucleases. For instance, double-stranded PCR fragments of the MRCK1 coding sequence can be treated by a nuclease which produces about one nick per molecule. The double-stranded DNAs then are subject to a cycle of denaturing and re-naturing. The newly reformed DNAs, which may include sense/antisense pairs from different nicked products, are treated with S1 nuclease to remove single-stranded portions. Using this method, an expression library which encodes N-terminal, C-terminal or internal fragments of MRCK1 can be derived.

[0196] In addition, recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used to prepare MRCK1 mutants (Delgrave et al., Protein Engineering, 6:327-331, 1993).

[0197] MRCK1 fragments, or variants thereof, can also be generated using synthetic means, such as solid-phase synthesis methods. Preferably, the synthesized fragment has less than about 100 amino acids, or preferably, less than about 50 amino acids.

Antibodies

[0198] In accordance with another aspect of the present invention, antibodies specific to MRCK1 or its variants are prepared. An antibody is considered to bind "specifically" to an antigen if the binding affinity between the antibody and the antigen is equal to, or greater than 10^5 M^{-1} . The antibodies can be monoclonal or polyclonal. Preferably, the antibodies are humanized antibodies.

[0199] Polyclonal anti-MRCK1 antibodies can be prepared by immunizing a suitable subject with MRCK1 or fragments thereof. The anti-MRCK1 antibody titer in the immunized subject can be monitored over the time using standard techniques, such as ELISA. The anti-MRCK1 antibody can be isolated from the immunized subject using well-known techniques.

[0200] In one embodiment, hybridomas capable of producing anti-MRCK1 antibodies are prepared. Purified MRCK1 or its variants, or fragments thereof, are used to immunize a vertebrate, such as a mammal. Suitable mammals include mice, rabbits and sheep. Preferably, the fragment used for immunization comprises at least 8 amino acid residues, more preferably at least 12 amino acid residues, highly preferably at least 16 amino acid residues, and most preferably at least 20 amino acid residues.

[0201] Immunogenic fragments (epitopes) of MRCK1 can be identified using well-known techniques. In general, any fragment of SEQ ID NO:2 can be used to raise antibodies specific to MRCK1. Preferred epitopes are regions that are located on the surface of MRCK1. These regions are usually hydrophilic.

[0202] Splenocytes are isolated from the immunized vertebrate and fused with an immortalized cell line (such as a myeloma) to form hybridomas. Preferably, the immortal cell line is derived from the same mammalian species as the lymphocytes. For example, murine hybridomas can be made by fusing an immortalized mouse cell line with lymphocytes isolated from a mouse that is immunized with an immunogenic preparation of the present invention. Preferred immortalized cell lines include mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine ("HAT medium"). Suitable myeloma cell lines include, but are not limited to, the P3-NS1/1-Ag4-1, P3-x63-Ag8.653 or Sp210-Ag14 myeloma lines, all of which are available from ATCC. In one embodiment, HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol ("PEG"). Hybridoma cells thus produced are selected against HAT medium, which kills unfused or unproductively fused myeloma cells. Hybridoma cells which produce monoclonal anti-MRCK1 antibodies are then detected by screening the hybridoma culture supernatants.

[0203] A monoclonal anti-MRCK1 antibody can also be prepared by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phase display library). Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit, Catalog No. 240612).

[0204] The anti-MRCK1 antibodies of the present invention also include "single-chain Fv" or "scFv." The scFv fragments comprise the V_H and V_L domains of an antibody. Generally, the scFv polypeptide further comprises a polypeptide linker between the V_H and V_L domains. The polypeptide linker enables the scFv to form the desired structure for antigen binding. Additionally, recombinant anti-MRCK1 antibodies, such as chimeric and humanized monoclonal antibodies, can be prepared, as appreciated by one of ordinary skill in the art.

[0205] Humanized antibodies are particularly desirable for therapeutic treatment of human subjects. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab', F(ab)₂ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies are derived from human immunoglobulins in which the residues forming the complementary determining regions (CDRs) are replaced by the residues from CDRs of a nonhuman antibody, such as a mouse, rat or rabbit antibody having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. The humanized antibody can comprise at least one or two variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the constant regions are those of a human immunoglobulin consensus sequence. The humanized antibody preferably comprises at least a portion of an immunoglobulin constant region (Fc) of a human immunoglobulin.

[0206] Humanized antibodies can be produced using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains but can express human heavy and light chains. The transgenic mice are immunized in the normal fashion with a selected antigen. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored in the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Using this technique, therapeutically useful IgG, IgA and IgE antibodies can be prepared.

[0207] In addition, humanized antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected nonhuman monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a humanized antibody recognizing the same epitope.

[0208] In a preferred embodiment, the antibodies to MRCK1 are capable of reducing or eliminating the biological function of MRCK1. Preferably, the antibodies reduce at least 25% of MCRK1 activity. More preferably, the antibodies reduce at least about 50% of the activity. Highly preferably, the antibodies reduce about 95-100% of MRCK1 activity.

[0209] Anti-MRCK1 antibodies can be used to isolate MRCK1. Suitable methods include affinity chromatography and immunoprecipitation. Moreover, anti-MRCK1 antibodies can be used to evaluate the expression level of MRCK1. Anti-MRCK1 antibodies can also be used to monitor MRCK1 level as part of a clinical testing procedure, or to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive materials include ^{125}I , ^{131}I , ^{35}S or ^{3}H .

[0210] Anti-MRCK1 antibodies are also useful for targeting a therapeutic agent/drug to a particular cell or tissue. The therapeutic agent/drug may be coupled to an antibody, either covalently or non-covalently. For instance, a therapeutic agent can be coupled to an antibody via a linker group. A linker group can function as a spacer to separate the antibody from the agent so as to avoid interference with antibody's binding capabilities. The linker group can also serve to increase the chemical reactivity of a substituent on the agent or the antibody, and thus increase the coupling efficiency. A variety of bifunctional or polyfunctional reagents, either homo- or hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, Ill.), can be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing this methodology. See e.g., U.S. Pat. No. 4,671,958.

[0211] Where a therapeutic agent is more potent when free from the antibody, it may be desirable to use a linker group which is cleavable during or upon internalization into the target cell. A number of different cleavable linker groups have been described. The mechanisms for the intra-cellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Pat. No. 4,489,710), by irradiation of a photolabile bond (e.g., U.S. Pat. No. 4,625, 014), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Pat. No. 4,638,045), by serum complement-mediated hydrolysis (e.g., U.S. Pat. No. 4,667,958), or by acid-catalyzed hydrolysis (e.g., U.S. Pat. No. 4,569,789).

[0212] It may also be desirable to couple more than one agent to an antibody. In one embodiment, multiple agents are coupled to one antibody molecule. In another embodiment, at least two different types of agents are coupled to one antibody. Regardless of the particular embodiment, immunoconjugates coupled with more than one agent can be prepared in a variety of ways, as appreciated by one of ordinary skill in the art.

Vectors, Expression Vectors and Gene Delivery Vectors

[0213] Another aspect of the invention pertains to vectors containing a polynucleotide encoding MRCK1 or a portion thereof. One type of vector is a "plasmid," which includes a circular double-stranded DNA into which additional DNA segments can be introduced. Vectors also include expression vectors and gene delivery vectors.

[0214] The expression vectors of the present invention comprise a polynucleotide encoding MRCK1 or a portion thereof. The expression vectors also include one or more regulatory sequences operably linked to the polynucleotide being expressed. These regulatory sequences are selected based on the type of host cells. It will be appreciated by those skilled in the art that the design of the expression vector depends on such factors as the choice of the host cells and the desired expression levels. MRCK1 can be expressed in bacterial cells such as E. coli, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. The expression vector can also be transcribed and translated in vitro, for example, by using T7 promoter regulatory sequences and T7 polymerase. Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of the recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Suitable cleavage enzymes include Factor Xa, thrombin and enterokinase. Examples of fusion expression vectors include pGEX (Pharmacia Piscataway, N.J.), pMAL (New England Biolabs, Beverly, Mass.) and pRITS (Pharmacia, Piscataway, N.J.). Purified fusion proteins can be utilized in MRCK1 activity assays, or to generate antibodies specific for MRCK1.

[0215] Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc and pET 11d. Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HSLE174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

[0216] One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in host bacteria that have an impaired capacity to proteolytically cleave the recombinant protein. Another strategy is to alter the polynucleotide sequence encoding the protein so that the individual codons for each amino acid are those preferentially utilized in *E. coli*.

[0217] In another embodiment, the MRCK1 expression vector is a yeast expression vector. Examples of yeast expression vectors include pYepSec1, pMFa, pJRY88, pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (Invitrogen Corp, San Diego, Calif.).

[0218] Alternatively, MRCK1 or its variant can be expressed in insect cells using baculovirus expression vectors. Suitable baculovirus vectors include the pAc series and the pVL series.

[0219] In yet another embodiment, MRCK1 or its variant is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 and pMT2PC. When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus and Simian Virus 40.

[0220] In another embodiment, the mammalian expression vector contains tissue-specific regulatory elements. Examples of suitable tissue-specific promoters include the liver-specific albumin promoter, lymphoid-specific promoters, promoters of T cell receptors and immunoglobulins, neuron-specific promoters (e.g., the neurofilament promoter), pancreas-specific promoters, and mammary gland-specific promoters (e.g., milk whey promoter). Developmentally-regulated promoters are also contemplated, which include, for example, the α -fetoprotein promoter.

[0221] The present invention also provides a recombinant expression vector comprising a polynucleotide which encodes MRCK1 but is cloned into the expression vector in an antisense orientation. Regulatory sequences that are operatively linked to the antisense-oriented polynucleotide can be chosen to direct continuous expression of the antisense RNA molecule in a variety of cell types. Suitable regulatory sequences include viral promoters and/or enhancers. Regulatory sequences can also be chosen to direct constitutive, tissue specific or cell type specific expression of the antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense polynucleotides are produced under the control of a highly efficient regulatory region.

[0222] The present invention further provides gene delivery vehicles for delivering polynucleotides to mammals. A polynucleotide sequence of the invention can be administered either locally or systemically via a gene delivery vehicle. Expression of the polynucleotide can be induced using endogenous mammalian or heterologous promoters. Expression of the polynucleotide in vivo can be either constituted or regulated. The gene delivery vehicles preferably are viral vectors, including retroviral, lentiviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vectors. The viral vectors can also be astrovirus, parovirus, picornavirus, pavovirus, provirus, picornavirus, poxvirus, or togavirus vectors.

[0223] Delivery of gene therapy constructs is not limited to the above mentioned viral vectors. Other delivery methods can also be employed. These methods include nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus, ligand linked DNA, liposome-DNA conjugates, gene guns, ionizing radiation, nucleic charge neutralization, or fusion with cell membranes. Naked DNA can also be employed. Uptake efficiency of the naked DNA may be improved using biodegradable latex beads. This method can be further improved by treating the beads to increase their hydrophobicity.

Regulatable Expression Systems

[0224] Another aspect of the present invention pertains to the use of regulatable expression systems to express desirable polynucleotides or polypeptides in cells. Systems suitable for this invention are briefly described below:

[0225] Tet-on/off system. The Tet-system is based on two regulatory elements derived from the tetracycline-resistance operon of the E. coli Tn10 transposon: the tet repressor protein (TetR) and the Tet operator DNA sequence (tetO) to which TetR binds (Gossen et al., Science, 268: 1766-1769, 1995). The system consists of two components, a "regulator" and a "reporter" plasmid. The "regulator" plasmid encodes a hybrid protein containing a mutated Tet repressor (rtetR) fused to the VP16 activation domain of herpes simplex virus. The "reporter" plasmid contains a tet-responsive element (TRE), which controls the "reporter" gene of choice. The rtetR-VP16 fusion protein can only bind to the TRE, therefore activating the transcription of the "reporter" gene in the presence of tetracycline. The system has been incorporated into a number of viral vectors including retrovirus, adenovirus and AAV.

[0226] Ecdysone system. The ecdysone system is based on the molting induction system found in *Drosophila*, but modified for inducible expression in mammalian cells. The system uses an analog of the *Drosophila* steroid hormone ecdysone, muristerone A, to activate expression of the gene of interest via a heterodimeric nuclear receptor. Expression levels have been reported to exceed 200-fold over basal levels with no effect on mammalian cell physiology (No et al., Proc. Natl. Acad. Sci. USA, 93: 3346-3351, 1996).

[0227] Progesterone-system. The progesterone receptor is normally stimulated to bind to a specific DNA sequence and to activate transcription through an interaction with its hormone ligand. Conversely, the progesterone antagonist mifepristone (RU486) is able to block hormone-induced nuclear transport and subsequent DNA binding. A mutant form of the progesterone receptor that can be stimulated to bind through an interaction with RU486 has been generated. To generate a specific, regulatable transcription factor, the RU486-binding domain of the progesterone receptor has been fused to the DNA-binding domain of the yeast transcription factor GAL4 and the transactivation domain of the HSV protein VP16. The chimeric factor is inactive in the absence of RU486. The addition of hormone, however, induces a conformational change in the chimeric protein, and this change allows binding to a GAL4-binding site and the activation of transcription from promoters containing the GAL4-binding site (Wang et al., Nat. Biotech., 15: 239-243, 1997).

[0228] Rapamycin-system. Immunosuppressive agents, such as FK506 and rapamycin, act by binding to specific cellular proteins and facilitating their dimerization. For example, the binding of rapamycin to FK506-binding protein (FKBP) results in its heterodimerization with another rapamycin binding protein FRAP, which can be reversed by removal of the drug. The ability to bring two proteins together by addition of a drug potentiates the regulation of a number of biological processes, including transcription. A chimeric DNA-binding domain has been fused to the FKBP, which enables binding of the fusion protein to a specific DNAbinding sequence. A transcriptional activation domain also has been fused to FRAP. When these two fusion proteins are co-expressed in the same cell, a fully functional transcription factor can be formed by heterodimerization mediated by addition of rapamycin. The dimerized chimeric transcription factor can then bind to a synthetic promoter sequence containing copies of the synthetic DNA-binding sequence. This system has been successfully integrated into adenoviral and AAV vectors. Long term regulatable gene expression has been achieved in both mice and baboons (Ye et al., Science, 283: 88-91, 1999).

Detection Methods

[0229] In patients with disorders related to the aberrant expression of MRCK1. The expression level of MRCK1 can be used as an indicator for detecting the presence of MRCK1-related diseases in humans. Detection and measurement of the relative amount of the MRCK1 gene product can be carried out using various methods known in the art.

[0230] Typical methodologies for detecting the transcription level of a gene include extracting RNA from a cell or tissue sample, hybridizing a labeled probe to the extracted RNA or derivative thereof (such as cDNA or cRNA), and detecting the probe. Suitable methods include Northern Blot and quantitative PCR or RT-PCR. In situ hybridization can also be used to detect the transcription level of the MRCK1 gene in human tissues.

[0231] Typical methodologies for detecting a polypeptide include extracting proteins from a cell or tissue sample, binding an antibody to the target polypeptide and detecting the

antibody. Suitable methods include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. The antibody can be polyclonal, or preferably, monoclonal. The antibody can be an intact antibody, or a fragment thereof (e.g. Fab or $F(ab')_2$). The antibody can be labeled with a radioisotope, a fluorescent compound, an enzyme, an enzyme co-factor, or a detectable ligand. The term "labeled," with regard to a probe or antibody, is intended to encompass direct labeling such as through covalent coupling, as well as indirect labeling such as being mediated by another reagent which is directly labeled. Examples of indirect labeling include labeling a primary antibody using a fluorescently labeled secondary antibody, or attaching a DNA probe with a biotin which can be detected, for example, by a fluorescence-labeled streptavidin.

[0232] Preferably, the binding affinity of the antibody to MRCK1 is at least 10^5 M^{-1} . More preferably, the binding affinity is at least 10^6 M^{-1} . Other methods such as electrophoresis, chromatography or direct sequencing can also be used to detect the amount of a polypeptide in a biological sample. Anti-MRCK1 antibodies can also be directly introduced into a subject. The antibody can be labeled with a radioactive marker whose presence and location in the subject can be detected using standard imaging techniques.

[0233] In one embodiment, the genomic copies of the MRCK1 gene in the genome of a human subject may indicate the presence or predisposition of a disease. Detection of the presence or number of copies of the MRCK1 gene in the genome can be performed using methods known in the art. For instance, it can be assessed using Southern Blot. The probes for Southern Blot can be labeled with a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.

[0234] In the field of diagnostic assays, the above-described detection methods can be used to determine the severity of MRCK1-related diseases. A biological sample is isolated from a test subject, and the presence, quantity and/or activity of MRCK1 in the sample relative to a normal or control sample is evaluated. The expression level of MRCK1 in the biological sample can indicate the presence or severity of MRCK1-related diseases in the test subject. The term "biological sample" is intended to include tissues, cells or biological fluids isolated from the subject. A preferred biological sample is a serum sample isolated from the subject using conventional means.

Screening Methods

[0235] The present invention also provides methods for identifying MRCK1 modulators. The activity of MRCK1 can be evaluated using various methods, such as those disclosed in Leung et al., Mol. Cell. Biol., 18:130-140, 1998, and Chen et al., J. Biol. Chem., 274: 19901-19905, 1999, both of which are incorporated herein by reference.

[0236] Suitable modulators include compounds or agents comprising therapeutic moieties, such as peptides, peptidomimetics, peptoids, polynucleotides, small molecules or other drugs. These moieties can either bind to MRCK1, or have a modulatory (e.g., stimulatory or inhibitory) effect on the activity of MRCK1. In one embodiment, the moieties have a modulatory effect on the interactions of MRCK1 with one or more of its natural substrates. These moieties can also exert a modulatory effect on the expression of MRCK1. The screen assays of the present invention comprise detecting the interactions between MRCK1 and test components.

[0237] The test compounds of the present invention can be either small molecules or bioactive agents. In a preferred embodiment, the test compound is a small organic or inorganic molecule. In another preferred embodiment, the test compound is a polypeptides, oligopeptides, polysaccharides, nucleotides or polynucleotides.

[0238] In accordance with one aspect of this invention, methods for screening for compounds that inhibit the biological activities of MRCK1 are provided. Pharmaceutical compositions comprising these compounds can subsequently be prepared. The screening method comprises (1) contacting a sample with a compound, and (2) comparing expression profile or biological activity of MRCK1 in the sample to determine whether the compound substantially decreases the expression level or activities of MRCK1. The screening method can be carried out either in vivo or in vitro.

[0239] The present invention further includes a method for screening for compounds capable of modulating the binding between MRCK1 and a binding partner. As used herein, the term "binding partner" refers to a bioactive agent which serves as either a substrate for MRCK1, or a ligand having a binding affinity to MRCK1. The bioactive agent may be selected from a variety of naturally-occurring or synthetic compounds, proteins, peptides, polysaccharides, nucleotides or polynucleotides.

[0240] Inhibitors of the expression, activity or binding ability of MRCK1 may be used as therapeutic compositions. These inhibitors can be formulated in suitable pharmaceutical compositions, as described herein below.

[0241] The present invention also provides methods for conducting high-throughput screening for compounds capable of inhibiting activity or expression of MRCK1. In one embodiment, the high-throughput screening method involves contacting test compounds with MRCK1, and then detecting the effect of the test compounds on MRCK1. Functional assays, such as cytosensor microphysiometer-based assays, calcium flux assays (e.g. FLIPR®, Molecular Devices Corp, Sunnyvale, Calif.), or the TUNEL assay, can be employed to measure MRCK1 cellular activity. Fluorescence-based techniques can be used for high-throughput and ultra high-throughput screening. They include, but are not limited to, BRET® and FRET® (both by Packard Instrument Co., Meriden, Conn.).

[0242] In a preferred embodiment, the high-throughput screening assay uses label-free plasmon resonance technology as provided by BIACORE® systems (Biacore International AB, Uppsala, Sweden). Plasmon free resonance occurs when surface plasmon waves are excited at a metal/liquid interface. By reflecting directed light from the surface as a result of contact with a sample, the surface plasmon resonance causes a change in the refractive index at the surface layer. The refractive index change for a given change of mass concentration at the surface layer is similar for many bioactive agents (including proteins, peptides, lipids and polynucleotides), and since the BIACORE® sensor surface can be functionalized to bind a variety of these bioactive agents, detection of a wide selection of test compounds can thus be accomplished.

Monitoring Efficacy of a Drug During Clinical Trials

[0243] Using the MRCK1 detection methods of this invention, the efficacy of a therapeutic agent for MRCK1-related diseases can be monitored during clinical trials. The therapeutic agent may be a drug, small molecule, agonist, antagonist, peptidomimetic, protein, peptide, or polynucleotide. The changes in the expression or activity of the MRCK1 gene in response to the treatment of the agent can be used to evaluate the therapeutic effect of the agent on patients with MRCK1-related diseases. In addition, the expression or activity of MRCK1 in response to the agent can be measured at various points during the clinical trial.

[0244] In a preferred embodiment, the method for monitoring the effectiveness of the therapeutic agent includes the steps of (i) obtaining a pre-administration sample from a subject; (ii) detecting the level of expression or activity of MRCK1 in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of MRCK1 in the post-administration samples; (v) comparing the level of expression or activity of MRCK1 in the pre-administration sample to the level of expression or activity of MRCK1 in the post administration samples. The dose or frequency of the administration of the agent may be adjusted based on the effectiveness of the agent in a particular patient. Therefore, MRCK1 expression or activity can be used as an indicator of the effectiveness of a therapeutic agent for MRCK1-related diseases, even if the agent does not produce an observable phenotypic response.

Prognostic Assays

[0245] The detection methods described herein can be used to identify subjects having or at risk of developing MRCK1-related diseases. In addition, the detection methods can be used to determine whether an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, polynucleotide, small molecule, or other drug candidate) can be administered to a subject for effectively treating or preventing MRCK1-related diseases.

[0246] MRCK1 expression profiles at different progression stages of MRCK1-related diseases can be established. In addition, MRCK1 expression profiles in different patients who have different responses to a drug treatment are determined. A pattern may emerge such that a particular expression profile may be correlated to an increased likelihood of a poor prognosis. Therefore, the prognostic assay of the present invention may be used to determine whether a subject undergoing a treatment for an MRCK1-related disease has a poor outlook for long term survival or disease progression. Preferably, prognosis is performed shortly after diagnosis, such as within a few days after diagnosis. The result of prognosis can then be used to devise individualized treatment program, thereby enhancing the effectiveness of the treatment as well as the likelihood of long-term survival and well being.

[0247] The method of the invention can also be used to detect genetic alterations in the MRCK1 gene, thereby determining if a subject with the altered gene is at risk for damages characterized by aberrant regulation in MRCK1 activity or expression. In a preferred embodiment, the method includes detecting the presence or absence of a genetic alteration that affects the integrity of the MRCK1 gene, or detecting the aberrant expression of the MRCK1 gene. The genetic alteration can be detected by ascertaining the existence of at least one of the following: 1) deletion of one or more nucleotides from the MRCK1 gene; 3) substitution of one or more nucleotides of the MRCK1 gene; 4) a chromosomal rearrangement in the MRCK1 gene; 5) alteration in the level of a messenger RNA transcript of the MRCK1 gene, 6) aberrant

modification of the MRCK1 gene, 7) the presence of a nonwild-type splicing pattern of a messenger RNA transcript of the MRCK1 gene, 8) non-wild-type level MRCK1, 9) allelic loss of an MRCK1 gene, and 10) inappropriate post-translational modification of MRCK1.

[0248] In one embodiment, detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (such as anchor PCR or RACE PCR) or alternatively, in a ligation chain reaction (LCR). LCR can be particularly useful for detecting point mutations in the MRCK1 gene. This method includes the steps of collecting a sample from a subject, isolating polynucleotides (e.g., genomic DNA, mRNA, or both) from the sample, contacting the polynucleotide with one or more primers which specifically hybridize to the MRCK1 gene or gene product, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing its length to a control. It is understood that PCR and/or LCR can be used as a preliminary amplification step in conjunction with any other techniques described herein.

[0249] Alternative amplification methods include: self sustained sequence replication (Guatelli et al., Proc. Natl. Acad. Sci. USA, 87:1874-1878, 1990), transcriptional amplification system (Kwoh et al., Proc. Natl. Acad. Sci. USA, 86:1173-1177, 1989), and Q-Beta Replicase (Lizardi et al., Bio-Technology, 6:1197, 1988).

[0250] In another embodiment, mutations in the MRCK1 gene can be identified using restriction enzymes. Differences in restriction enzyme digestion patterns indicates mutation(s) in the MRCK1 gene or its transcripts. Moreover, sequence specific ribozymes can be used to detect the presence of specific mutations. See e.g., U.S. Pat. No. 5,498,531.

[0251] In yet another embodiment, genetic mutations in the MRCK1 gene can be identified using high density arrays which contain a large number of oligonucleotides probes. For example, genetic mutations in the MRCK1 gene can be identified in two dimensional arrays. In this example, a first hybridization array of probes is used to scan through long stretches of DNA in a sample and a control in order to identify base changes between the two sequences. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller and specialized probe arrays which are complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

[0252] In still another embodiment, any sequencing reactions known in the art can be used to directly sequence the MRCK1 gene in order to detect mutations. It is contemplated that any automated sequencing procedures can be utilized, including sequencing by mass spectrometry.

[0253] In one embodiment, protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. In general, the "mismatch cleavage" technique involves forming heteroduplexes by hybridizing an RNA or DNA (labeled) containing the wild-type MRCK1 gene sequence to a potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex. The agent may be RNase (for RNA/DNA duplexes), or S1 nuclease (for DNA/DNA hybrids). In one case, either DNA/DNA or RNA/DNA duplexes are treated with piperidine and hydroxylamine, or piperidine and

osmium tetroxide, in order to digest mismatched regions. After the digestion, the resulting material is separated by size on a denaturing polyacrylamide gel from which the site(s) of mutation may be determined.

[0254] In a preferred embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA. Examples of these proteins include "DNA mismatch repair" enzymes. For instance, the mutY enzyme of *E. coli* cleaves A at G/A mismatches, and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. In one case, cDNAs are prepared from mRNAs isolated from test cells. The cDNAs are then hybridized to a probe derived from the MRCK1 gene. The duplex thus formed is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See e.g., U.S. Pat. No. 5,459,039.

[0255] In another embodiment, alterations in electrophoretic mobility are used to identify mutations in the MRCK1 gene. Differences in electrophoretic mobility between mutant and wild-type polynucleotides can be detected using single strand conformation polymorphism (SSCP). The resulting alteration in electrophoretic mobility enables the detection of a single base change. The DNA fragments can be labeled or detected with probes. In one case, the sensitivity of the assay is enhanced by using RNA, in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the assay utilizes heteroduplex analysis to separate double-stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al., Trends Genet., 7:5, 1991).

[0256] In yet another embodiment, the movement of mutant or wild-type fragments is evaluated using denaturing gradient gel electrophoresis (DGGE). For this purpose, DNA fragments can be modified to insure that they do not completely denature. For instance, a GC clamp of approximately 40 GC-rich base pairs can be added to the DNA fragment using PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient (Rosenbaum and Reissner Biophys Chem, 265:12753, 1987).

[0257] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. In one embodiment, oligonucleotide primers for specific amplification carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent or reduce polymerase extension. See e.g., Saiki et al., Proc. Natl. Acad. Sci. USA, 86:6230, 1989. In addition, it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection.

[0258] The methods described herein can be performed using prepackaged diagnostic kits which comprise at least one polynucleotide probe or one antibody of the present invention. These kits can be used in clinical settings to diagnose subjects exhibiting symptoms or family history of an MRCK1-related disease. Any cell type or tissue in which MRCK1 is expressed can be used for prognostic or diagnostic purposes.

Prophylactic Methods

[0259] This invention also provides methods for preventing diseases associated with aberrant MRCK1 expression or

activity. The methods comprise administering to a target subject an agent which modulates MRCK1 expression or activity.

[0260] Subjects at risk of diseases which are caused by or attributed to aberrant MRCK1 expression or activity can be identified using the diagnostic or prognostic assays described herein. A prophylactic agent can be administered prior to the manifestation of MRCK1-related disease symptoms in order to prevent or delay MRCK1-related diseases. Suitable prophylactic agents include mutant MRCK1 proteins, MRCK1 antagonist agents, or MRCK1 antisense polynucleotides.

[0261] The prophylactic methods of this invention can be specifically tailored or modified, based on knowledge obtained from the study of pharmacogenomics. Pharmacogenomics includes the application of genomics technologies, such as gene sequencing, statistical genetics, and gene expression analysis, to drugs which are either in clinical development or on the market. Pharmacogenomics can be used to determine a subject's response to a drug (e.g., a subject's "drug response phenotype" or "drug response genotype"). Thus, another aspect of this invention is to provide methods for tailoring an individual's prophylactic or therapeutic treatment using MRCK1 modulators according to the individual's drug response genotype. Pharmacogenomics allows a clinician or physician to target prophylactic or therapeutic treatments to subjects who will most benefit from the treatment and to avoid treatment of subjects who will experience toxic drug-related side effects.

[0262] One pharmacogenomics approach to identify genes that predict drug response, known as "a genome-wide association," relies primarily on a high-resolution map of the human genome consisting of already known gene-related sites (e.g., a "bi-allelic" gene marker map which consists of 60,000-100,000 polymorphic or variable sites on the human genome, each of which has two variants). Such a high-resolution genetic map can be compared to a map of the genome of each of a statistically substantial number of subjects taking part in a Phase II/III drug trial in order to identify genes associated with a particular observed drug response or side effect. Alternatively, such a high resolution map can be generated from a combination of some ten-million known single nucleotide polymorphisms (SNPs) in the human genome. A "SNP" is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, a SNP may occur once per every 1000 bases of DNA. A SNP may be involved in a disease process. However, the vast majority of SNPs may be not related to diseases. Given a genetic map based on the occurrence of SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome. In such a manner, treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals. Thus, mapping of the MRCK1 gene to SNP maps of patients with MRCK1-related diseases may facilitate the identification of drug-response-prediction genes.

[0263] Alternatively, the "candidate gene approach" can be utilized to identify genes that predict drug response. According to this method, if a gene that encodes a drug target is known, all common variants of that gene can be easily identified in the population. It then can be determined if a particular drug response is associated with one version of the gene versus another.

[0264] The activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYPZC19) has provided an explanation as to why some subjects do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, extensive metabolizer and poor metabolizer. The prevalence of poor metabolizer phenotypes is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in poor metabolizers, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, poor metabolizers show no therapeutic response. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

[0265] In one embodiment, the "gene expression profiling" method can be utilized to identify genes that predict drug response. In this regard, the gene expression profile of an animal dosed with a drug can give an indication of whether the gene pathways related to toxicity have been turned on.

[0266] Information generated from the above pharmacogenomics approaches can be used to determine the appropriate dosage or treatment regimen suitable for a particular individual. This knowledge can avoid adverse reactions or therapeutic failure, and therefore enhance therapeutic or prophylactic efficiency when treating a subject with an MRCK1 modulator.

Therapeutic Methods

[0267] As described above, the present invention includes therapeutic methods for treating a subject at risk for, susceptible to, or diagnosed with MRCK1-related diseases. The therapeutic methods can be individually tailored based on the subject's drug response genotype. Typically, the therapeutic methods comprise modulating the expression or activity of MRCK1 in the subject. In one embodiment, the method comprises contacting a plurality of cells in the subject with an agent that inhibits the expression or activity of MRCK1. Suitable agents include polynucleotides (e.g., an antisense oligonucleotides of MRCK1), polypeptides (e.g., a dominant negative mutant of MRCK1), or polysaccharides, naturallyoccurring target molecules of MRCK1 protein (e.g., an MRCK1 protein substrate or receptor), anti-MRCK1 antibodies, MRCK1 antagonists, or other small organic and inorganic molecule. They may also include vectors comprising polynucleotides encoding MRCK1 inhibitors or antisense sequences. Moreover, the agents can be anti-MRCK1 antibodies conjugated with therapeutic moieties. Suitable agents can be identified using the screening assays of the present invention.

Pharmaceutical Compositions

[0268] The present invention is further directed to pharmaceutical compositions comprising an MRCK1 modulator and a pharmaceutically acceptable carrier. As used herein, a "pharmaceutically acceptable carrier" is intended to include any and all solvents, solubilizers, fillers, stabilizers, binders, absorbents, bases, buffering agents, lubricants, controlled release vehicles, diluents, emulsifying agents, humectants, lubricants, dispersion media, coatings, antibacterial or antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well-known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary agents can also be incorporated into the compositions.

[0269] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine; propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfate; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

[0270] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL[™] (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the injectable composition should be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

[0271] Sterile injectable solutions can be prepared by incorporating the active modulator (e.g., an anti-MRCK1 antibody, an MRCK1 activity inhibitor, or a gene therapy vector expressing antisense nucleotide to MRCK1) in the

required amount in an appropriate solvent, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active, ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0272] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Stertes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[0273] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

[0274] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the bioactive compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

[0275] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

[0276] In one embodiment, the therapeutic moieties, which may contain a bioactive compound, are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from e.g. Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.

[0277] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein includes physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

[0278] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

[0279] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

[0280] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

Kits

[0281] The invention also encompasses kits for detecting the presence of an MRCK1 gene product in a biological sample. An example kit comprises reagents for assessing expression of MRCK1 at mRNA or protein level. Preferably, the reagents include an antibody or fragment thereof, wherein the antibody or fragment specifically binds to MRCK1. Optionally, the kits may comprise a polynucleotide probe capable of specifically binding to a transcript of the MRCK1 gene. The kit may also contain means for determining the amount of MRCK1 protein or mRNA in the test sample, and/or means for comparing the amount of MRCK1 protein or mRNA in the test sample to a control or standard. The compound or agent can be packaged in a suitable container. **[0282]** The invention further provides kits for assessing the suitability of each of a plurality of compounds for inhibiting MRCK1-related diseases in cells or human subjects. Such kits include a plurality of compounds to be tested, and a reagent (such as an antibody specific to MRCK1 proteins, or a polynucleotide probe or primer capable of hybridizing to the MRCK1 gene) for assessing expression of MRCK1.

[0283] It should be understood that the above-described embodiments are given by way illustration, not limitation. Various changes and modifications within the spirit and scope of the present invention will become apparent to those skilled in the art from the present description.

Host Cells

[0284] Another aspect of the invention pertains to host cells into which a polynucleotide molecule of the invention is introduced, e.g., an MRCK1 gene or homolog thereof, within an expression vector, a gene delivery vector, or a polynucleotide molecule of the invention containing sequences which allow it to homologously recombine into a specific site of the host cell's genome. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

[0285] A host cell can be any prokaryotic or eukaryotic cell. For example, an MRCK1 gene can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (e.g., Chinese hamster ovary cells (CHO), COS cells, Fischer 344 rat cells, HLA-B27 rat cells, HeLa cells, A549 cells, or 293 cells). Other suitable host cells are known to those skilled in the art.

[0286] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of artrecognized techniques for introducing foreign polynucleotide (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextranmediated transfection, lipofection, or electoporation.

[0287] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable flag (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable flags include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Polynucleotides encoding a selectable flag can be introduced into a host cell by the same vector as that encoding MRCK1 or can be introduced by a separate vector. Cells stably transfected with the introduced polynucleotide can be identified by drug selection (e.g., cells that have incorporated the selectable flag gene will survive, while the other cells die).

[0288] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) MRCK1. Accordingly, the invention further provides methods for producing MRCK1 using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector containing an MRCK1 gene has been introduced) in a suitable medium such that MRCK1 is produced. In another embodiment, the method further comprises isolating MRCK1 from the medium or the host cell.

Transgenic and Knockout Animals

[0289] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which MRCK1-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous sequences encoding MRCK1 have been introduced into their genome or homologous recombinant animals in which endogenous sequences encoding MRCK1 have been altered. Such animals are useful for studying the function and/or activity of MRCK1 and for identifying and/or evaluating modulators of MRCK1 activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include nonhuman primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" or "knockout animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous MRCK1 gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

[0290] A transgenic animal of the invention can be created by introducing an MRCK1-encoding polynucleotide into the mate pronuclei of a fertilized oocyte, e.g., by microinjection or retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to a transgene to direct expression of MRCK1 to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of a transgene of the invention in its genome and/or expression of mRNA corresponding to a gene of the invention in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding MRCK1 can further be bred to other transgenic animals carrying other transgenes.

[0291] To create a homologous recombinant animal (knockout animal), a vector is prepared which contains at

least a portion of a gene of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene. The gene can be a human gene, but more preferably, is a non-human homolog of a human gene of the invention (e.g., a homolog of the MRCK1 gene). For example, a mouse gene can be used to construct a homologous recombination polynucleotide molecule, e.g., a vector, suitable for altering an endogenous gene of the invention in the mouse genome. In a preferred embodiment, the homologous recombination polynucleotide molecule is designed such that, upon homologous recombination, the endogenous gene of the invention is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knockout" vector). Alternatively, the homologous recombination polynucleotide molecule can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous MRCK1 gene). In the homologous recombination polynucleotide molecule, the altered portion of the gene of the invention is flanked at its 5' and 3' ends by additional polynucleotide sequence of the gene of the invention to allow for homologous recombination to occur between the exogenous gene carried by the homologous recombination polynucleotide molecule and an endogenous gene in a cell, e.g., an embryonic stem cell. The additional flanking polynucleotide sequence is of sufficient length for successful homologous recombination with the endogenous gene.

[0292] Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the homologous recombination polynucleotide molecule. The homologous recombination polynucleotide molecule is introduced into embryonic stem cells by electroporation. The cells in which the introduced gene has homologously recombined with the endogenous gene are selected. The selected cells can then be injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the homologously recombined DNA. Methods for constructing homologous recombination polynucleotide molecules, e.g., vectors, or homologous recombinant animals are well-known in the art.

[0293] In another embodiment, transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. Another example of a recombinase system is the FLP recombinase system of *Saccharomyces cerevisiae* (See e.g., O'Gorman et al., Science, 251:1351-1355, 1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

[0294] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al., Nature, 385:810-813, 1997, and PCT International Publication Nos. WO97/07668 and WO97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter Go phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

EXAMPLES

Example 1

Identification of MRCK1 Sequence in Human Genome Database

[0295] The nucleic acid sequence of MRCK1 is obtained from a newly developed genomic prediction pipeline. Briefly, the X-ray crystal structures of the catalytic domains of protein kinases were collected and aligned together according to their structural identity/similarities. The alignment was converted into a "scoring matrix" which carried the structural profile of the kinase catalytic domains. This scoring matrix was then used to search the Celera Human Genome database for sequences that have kinase catalytic domains.

Example 2

BLAST Analysis

[0296] Sequence alignments between MRCK1 and other sequences in GenBank database were performed using the standard protein-protein BLAST(blastp), standard nucle-otide-nucleotide BLAST(blastn), BLAST2 Sequences, and human genome BLAST programs that are available at NCBI's BLAST website.

[0297] A standard protein-protein BLAST search in the "nr" database (available at NCBI's BLAST website) with "Filter" setting unchecked, "Expect" setting at 10.0, "Word Size" setting at 3, "Matrix" setting at BLOSUM62, "Gap costs" setting at Existence: 11 and Extension: 1, revealed that MRCK1 shares sequence homologies with rat MRCK alpha (Entrez accession number: NP-_446109.1, FIGS. 1 and 2), a putative mouse MRCK alpha (XP_140553.1, 70% alignment to amino acid residues 40-1548 of MRCK1), and two putative human MRCK-related proteins (Entrez accession number Y12337, 100% alignment to amino acid residues 113-399 of MRCK1 and Entrez accession number U59305, 65% alignment to amino acid residues 40-434 of MRCK1).

[0298] A conserved domain search was performed within the standard protein-protein BLAST search with the RPS-BLAST 2.2.3 [Apr-24-2002] program. The amino acid residues 71-337 of MRCK1 are highly homologous to the consensus sequence of the catalytic domain of a family of ser/thr protein kinase (accession number smart00220, 100% alignment, FIG. **3**), the pkinase domain (accession number pfam00069, 100% alignment, FIG. **4**), and the catalytic domain of tyrosine kinase (accession number smart00219, 89.1% alignment, FIG. 5). The amino acid residues 339-398 of MRCK1 are highly homologous to the consensus sequence of an extension to ser/thr type protein kinase (accession number smart00133, 95.2% alignment, FIG. 6). The amino acid residues 339-398 of MRCK1 also aligns to the consensus sequence of the protein kinase C terminal domain (accession number pfam00433, 91.0% alignment, FIG. 7). The amino acid residues 882-920 of MRCK1 aligns to the consensus sequence of DAG_PE-binding domain (accession number pfam00130, 78.0% alignment, FIG. 8). The amino acid residues 953-1060 of MRCK1 aligns to the consensus sequence of the Pleckstrin homology (PH) domain (accession number smart00233, 87.5% alignment, FIG. 9). The amino acid residues 953-1060 of MRCK1 also aligns to another consensus sequence of the PH domain (accession number pfam00169, 88.0% alignment, FIG. 10). The amino acid residues 1102-1345 of MRCK1 aligns to the consensus sequence of the CNH domain (accession number pfam00780, 85.7% alignment, FIG. 11). The amino acid residues 1440-1471 of MRCK1 aligns to the consensus sequence of the P21-Rhobinding domain (accession number smart00285, 86.1% alignment, FIG. 12). The amino acid residues 648-786 of MRCK1 also weakly aligns to the consensus sequence of the myosin tail (accession number pfam01576, 17.8% alignment, FIG. 13).

[0299] A standard nucleotide-nucleotide BLAST search in the "geneseqn" database (available at NCBI's BLAST website) with "Matrix" setting at blastn matrix: 1-3, "Gap Penalties" setting at Existence: 5, Extension: 2, identified significant alignment of MRCK1 nucleotide sequence to the human kinase polypeptide PKIN-20 from PCT patent application WO02/08399 (Entrez accession number: AAD30567). Further analysis using Pairwise BLAST program (BLASTN setting: Match: 1, Mismatch: -2, gap open: 5, gap extension: 2, x_dropoff: 500, expect: 10.0, wordsize: 11, filter: unchecked; BALSTP setting: Matrix: BLOSUM62, gap open: 11, gap extension: 1, x dropoff: 50, expect: 10.0, wordsize: 3, filter: unchecked) showed sequence homologies of 95% at nucleotide level and 90% at amino acid level between MRCK1 and PKIN-20. The amino acid and nucleotide sequences of PKIN-20 are recited in SEQ ID NOS:4 and 5. The standard nucleotide-nucleotide BLAST search in the "geneseqn" database also revealed significant sequence homologies between MRCK1 and a human Cdc42-binding kinase homologueencoding cDNA (Entrez accession number: ABA08323, SEQ ID NO:6, 99% identities to nucleotide residues 2741-4398 of MRCK1).

[0300] A human genome search was carried out using blastn program with Expect setting at 0.01, Filter setting at default, Descriptions setting at 100, and Alignment settings at 100. The MRCK1 gene was mapped to or near loci 11p13 of human chromosome 11. Specifically, MRCK1 gene is located between genes LOC196204 and LOC143732, and overlaps with gene LOC196205. The exons/introns in the MRCK1 gene were determined using the program "sim4" described by Florea et al., in "A computer program for aligning a cDNA sequence with a genomic DNA sequence" Genome Res. 8:967-974, 1998.

Example 3

Hydrophobicity Analysis

[0301] The hydrophobicity profile of MRCK1 sequence (FIG. **14**) was generated using the GES (Goldman, Engelman

and Steitz) hydrophobicity scale (Engelman et al., Ann. Rev. Biophys. Biophys. Chem. 15:321-353, 1986). Briefly, the GES scale is used to identify nonpolar transbilayer helices. The curve is the average of a residue-specific hydrophobicity scale over a window of 20 residues. When the line is in the upper half of the frame (positive), it indicates a hydrophobic region and when it is in the lower half (negative), a hydrophilic region.

[0302] In FIG. **14**, the X-axis represents the length of the protein in amino acids (aa), while the Y-axis represents the GES score. The curve line shows the GES pattern of the entire protein, while the straight line represents certain cutoff for potential membrane spanning domains. The hydrophobicity profile indicates that MRCK1 is probably not a membrane protein.

Example 4

MTN and MTA Analysis

[0303] The DNA probe for the MTN and MTA analysis is a PCR amplified 447 nucleotide fragment (SEQ ID NO:9) from human cDNA library. The probe located at exon 29-33, pos#3898-4344 of the MRCK1 cDNA. The PCR primers were designed based on the cDNA prediction. The Forward primer sequence is: 5' GCTGGCATCTACGTGGATG 3' (SEQ ID NO:7). The reverse primer sequence is: 5' GTGGT-TGAAGTTGGTAGGCG 3' (SEQ ID NO:8). The PCR amplified probe was sequence verified. The positions of the probe and the primers relative to the MRCK1 gene are shown in FIG. **15**.

[0304] The MTN analysis was performed using the Multiple Tissue Northern (MTN®) Blot Kit (Clontech Laboratories, Inc., Palo Alto, Calif.) under conditions specified in the User Manual. Briefly, the human MRCK1 probe was labeled with ³²P. The MTN Blot was prehybridized in ExpressHyb solution at 68° C. for 30 min, and then hybridized with the labeled probe at 68° C. for 1 hr. The blot was washed two times with Wash Solution 1 for 30 min at room temperature and two times with Wash Solution 2 for 30 min at 50° C., and was then exposed to X-ray film. Two transcripts of MRCK1, a 4 kb and a 6 kb transcript, were detected in human brain, heart, skeletal muscle, colon, thymus, spleen, kidney, liver, small intestine, placenta, lung, and peripheral blood leukocyte. The highest expression was in placenta while the lowest expression was in small intestine. The MTA analysis was performed using the Multiple Tissue Expression (MTE®) Array Kit (Clontech Laboratories, Inc., Palo Alto, Calif.) under conditions specified in the User Manual. Briefly, the MTE array was hybridized to ³²P-labeled human MRCK1 probe in ExpressHyb solution at 65° C. overnight with continuous agitation. The array was washed four times with Wash Solution 1 for 20 min at 65° C. and two times with Wash Solution 2 for 20 min at 55° C., and was then exposed to X-ray film. MRCK1 expression was found in all 76 tissues contained in the array.

[0305] Having described the preferred embodiments of compositions, organisms and methodologies employing a novel human gene MRCK1 (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. Therefore, it is understood that changes may be made in the particular embodiments disclosed which are within the scope and spirit of what is described as defined by the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 306 <210> SEO ID NO 1 <211> LENGTH: 4698 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 1 atggagcggc ggctgcgcgc gctggagcag ctggcgcggg gcgaggccgg cggctgcccg gggetegaeg geeteetaga tetgetgetg gegetgeaee aegageteag eageggeeee 120 ctacggcggg agcgcagcgt ggcgcagttc ctgagctggg ccagcccctt cgtatcaaag 180 gtgaaagaac tgcgtctgca gagagatgac tttgagatct tgaaggtgat cggccgagga 240 300 gcctttgggg aggtcaccgt ggtgaggcag agggacactg ggcagatttt tgccatgaaa atgctgcaca agtgggagat gctgaagagg gctgagacag cctgtttccg ggaggagcgg 360 gatgtgctcg tgaaagggga cagccgttgg gtgaccactc tgcactatgc cttccaagac 420 gaggagtacc tgtaccttgt gatggactac tatgctggtg gggacctcct gacgctgctg 480 agcogottog aggacogtot coogcoogag otggoocagt totacotggo tgagatggtg 540 ctggccatcc actcgctgca ccagctgggt tatgtccaca gggatgtcaa gccagacaac 600 gteetgetgg atgtgaaegg geacattege etggetgaet teggeteetg eetgegtete 660 720 aacaccaacg gcatggtgga ttcatcagtg gcagtaggga cgccggacta tatctcccct gagateetge aggeeatgga ggagggeaag ggeeaetaeg geeeaeagtg tgaetggtgg 780 tegettggag tetgegeeta tgagetgete tttggggaga egeeetteta tgetgagtee 840 900 ttggtggaaa cctacggcaa gatcatgaac cacgaggacc acctgcagtt ccccccggac 960 qtqcctqacq tqccaqccaq cqcccaaqac ctqatccqcc aqctqctqtq tcqccaqqaa gageggetag geegtggtgg getggatgae tteeggaace atcettett egaaggegtg 1020 1080 gactgggage ggetggegag cageaeggee cectatatte etgagetgeg gggacceatg 1140 gacacctcca actttgatgt ggatgacgac accctcaacc atccagggac cctgccaccg ccctcccacg gggccttctc cggccatcac ctgccattcg tgggcttcac ctacacctca 1200 ggcagtcaca gtcctgagag cagctctgag gcttgggctg ccctggagcg gaagctccag 1260 tgtctggagc aggagaaggt ggagctgagc aggaagcacc aagggggctgc tgctgcggga 1320 1380 cagaccatcg ggagctggag cagctacgga aggaagtgca gactctgcgg gacaggctgc 1440 caggagetgg cegagggteg ggeagggetg caggeteagg ageaggaget etgeagggee 1500 1560 caggggcagc aggaggagct gcttcagagg ctacaggagg cccaggagag agaggcggcc 1620 acagetagee agaeeeggge cetgagetee cagetggagg aageeeggge tgeeeagagg 1680 gagetggagg cccaggtgtc ctccctgagc cggcaggtga cgcagetgca gggacagtgg gagcaacgcc ttgaggagtc gtcccaggcc aagaccatcc acacagcctc tgagaccaac 1740 gggatgggac cccctgaggg tgggcctcag gaggcccaac tgaggaagga ggtggccgcc 1800 ctgcgagagc agctggagca ggcccacagc cacaggccga gtggtaagga ggaggctctg 1860 toccaptor appaggaaaa coppageto appopgade appageget apaageagag 1920

30

				-contir	nued	
ctggcccagg	agcaggagag	caagcagcgg	ctggagggtg	agcggcggga	gacggagagc	1980
aactgggagg	cccagctcgc	cgacatcctc	agctgggtga	atgatgagaa	ggtctcaaga	2040
ggctacctgc	aggeeetgge	caccaagatg	gcagaggagc	tggagteett	gaggaacgta	2100
ggcacccaga	cgctccctgc	ccggccactg	gaccaccagt	ggaaggcgcg	gcgactgcag	2160
aagatggagg	cctcggccag	gctggagctg	cagtcagcgc	tggaggccga	gateegegee	2220
aagcagggcc	tgcaggagcg	gctgacacag	gtgcaggagg	cccagctgca	ggetgagege	2280
cgtctgcagg	aggccgagaa	gcagagccag	gccctgcaac	aggagetege	catgctgcgg	2340
gaggagctgc	gggcccgagg	gccagtggac	accaageeet	caaactccct	gattecette	2400
ctgtccttcc	ggagctcaga	gaaggattct	gccaaggacc	ctggcatctc	aggagaggcc	2460
acaaggcatg	gaggagagcc	agatctgagg	ccggagggcc	gacgcagcct	gcgcatgggg	2520
gctgtgttcc	ccagagcacc	cactgccaac	acagceteta	cagaaggtct	tcctgctaag	2580
ggatggggca	tggggccctg	ggaggccttg	ggtaatggct	gtccccctcc	ccagcccggc	2640
tcacacacgc	tgcgcccccg	gagetteeca	tccccgacca	agtgtctccg	ctgcacctcg	2700
ctgatgctgg	gcctgggccg	ccagggcctg	ggttgtgatg	cctgcggcta	cttttgtcac	2760
acaacctgtg	ccccacaggc	cccaccctgc	cccgtgcccc	ctgacctcct	ccgcacagcc	2820
ctgggagtac	accccgaaac	aggcacaggc	actgcctatg	agggetttet	gtcggtgccg	2880
cggccctcag	gtgtccggcg	gggctggcag	cgcgtgtttg	ctgccctgag	tgactcacgc	2940
ctgctgctgt	ttgacgcccc	tgacctgagg	ctcagcccgc	ccagtggggc	cctcctgcag	3000
gtcctagatc	tgagggaccc	ccagttctcg	gctacccctg	tcctggcctc	tgatgttatc	3060
catgcccaat	ccagggacct	gccacgcatc	tttagggtga	caacctccca	gctggcagtg	3120
ccgcccacca	cgtgcactgt	gctgctgctg	gcagagagcg	aggggggagcg	ggaacgctgg	3180
ctgcaggtgc	tgggtgagct	gcagcggctg	ctgctggacg	cgcggccaag	accccggccc	3240
gtgtacacac	tcaaggaggc	ttacgacaac	gggctgccgc	tgctgcctca	cacgctctgc	3300
gctgccatcc	tcgaccagga	tcgacttgcg	cttggcaccg	aggagggggt	ctttgtcatc	3360
catctgcgca	gcaacgacat	cttccaggtg	ggggagtgcc	ggcgcgtgca	gcagctgacc	3420
ttgagcccca	gtgcaggcct	gctggtcgtg	ctgtgtggcc	gcggccccag	cgtgcgtctc	3480
tttgccctgg	cggagctgga	gaacatagag	gtagcaggtg	ccaagatccc	cgagtctcga	3540
ggctgccagg	tgctggcagc	tggaagcatc	ctgcaggccc	gcaccccggt	gctctgtgta	3600
gccgtcaagc	gccaggtgct	ctgctaccag	ctgggcccgg	geeetgggee	ctggcagcgc	3660
cgcatccgtg	agctgcaggc	acctgccact	gtgcagagcc	tggggctgct	gggcgaccgg	3720
ctatgtgtgg	gcgccgccgg	tggctttgca	ctctacccgc	tgctcaacga	ggctgcgccg	3780
ttggcgctgg	gggccggttt	ggtgcctgag	gagetgeeac	catcccgcgg	gggcctgggt	3840
gaggcactgg	gtgccgtgga	gcttagcctc	agcgagttcc	tgctactctt	caccactgct	3900
ggcatctacg	tggatggcgc	aggccgcaag	tctcgtggcc	acgagctgtt	gtggccagca	3960
gcgcccatgg	gctgggggta	tgcggccccc	tacctgacag	tgttcagcga	gaactccatc	4020
gatgtgtttg	acgtgaggag	ggcagaatgg	gtgcagaccg	tgccgctcaa	gaaggtgcgg	4080
cccctcaatc	cagagggctc	cctgttcctc	tacggcaccg	agaaggtccg	cctgacctac	4140
ctcaggaacc	agctggcaga	gaaggacgag	ttcgacatcc	cggacctcac	cgacaacagc	4200

-continued	
eggegeeage tgtteegeae caagageaag egeegettet tttteegegt gteggaggag	4260
cagcagaagc agcagcgcag ggagatgctg aaggaccett ttgtgegete caageteate	4320
tegeegeeta ceaaetteaa eeacetagta eaegtgggee etgeeaaegg geggeeegge	4380
gccagggaca agtccccgcc tccatgggca gcgaaggcct cggtggagac gcagacccca	4440
gtaagggcag cccctcagcc tccagtgtgc caccccccac cccaagtttc tacccccttt	4500
ggatccctga aatctgatct tggtattttt gtctcctcgt ctgctgctgg agcagtgaag	4560
aggaaaccet ggacateeet gteeagegag tetgtgteet geeeeaggg ategetgage	4620
cctgcaacct ccctaatgca ggtctcagaa cggccccgaa gcctccccct atcccctgaa	4680
ttggagagct ctccttga	4698
<210> SEQ ID NO 2 <211> LENGTH: 1565 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 2	
Met Glu Arg Arg Leu Arg Ala Leu Glu Gln Leu Ala Arg Gly Glu Ala	
1 5 10 15	
Gly Gly Cys Pro Gly Leu Asp Gly Leu Leu Asp Leu Leu Ala Leu 20 25 30	
His His Glu Leu Ser Ser Gly Pro Leu Arg Arg Glu Arg Ser Val Ala 35 40 45	
Gln Phe Leu Ser Trp Ala Ser Pro Phe Val Ser Lys Val Lys Glu Leu 50 55 60	
Arg Leu Gln Arg Asp Asp Phe Glu Ile Leu Lys Val Ile Gly Arg Gly 65 70 75 80	
Ala Phe Gly Glu Val Thr Val Val Arg Gln Arg Asp Thr Gly Gln Ile 85 90 95	
Phe Ala Met Lys Met Leu His Lys Trp Glu Met Leu Lys Arg Ala Glu 100 105 110	
Thr Ala Cys Phe Arg Glu Glu Arg Asp Val Leu Val Lys Gly Asp Ser 115 120 125	
Arg Trp Val Thr Thr Leu His Tyr Ala Phe Gln Asp Glu Glu Tyr Leu 130 135 140	
Tyr Leu Val Met Asp Tyr Tyr Ala Gly Gly Asp Leu Leu Thr Leu Leu 145 150 155 160	
Ser Arg Phe Glu Asp Arg Leu Pro Pro Glu Leu Ala Gln Phe Tyr Leu 165 170 175	
Ala Glu Met Val Leu Ala Ile His Ser Leu His Gln Leu Gly Tyr Val 180 185 190	
His Arg Asp Val Lys Pro Asp Asn Val Leu Leu Asp Val Asn Gly His 195 200 205	
Ile Arg Leu Ala Asp Phe Gly Ser Cys Leu Arg Leu Asn Thr Asn Gly 210 215 220	
Met Val Asp Ser Ser Val Ala Val Gly Thr Pro Asp Tyr Ile Ser Pro 225 230 235 240	
Glu Ile Leu Gln Ala Met Glu Glu Gly Lys Gly His Tyr Gly Pro Gln 245 250 255	
Cys Asp Trp Trp Ser Leu Gly Val Cys Ala Tyr Glu Leu Leu Phe Gly 260 265 270	

Glu	Thr	Pro 275	Phe	Tyr	Ala	Glu	Ser 280	Leu	Val	Glu	Thr	Tyr 285	Gly	Lys	Ile
Met	Asn 290	His	Glu	Asp	His	Leu 295	Gln	Phe	Pro	Pro	Aap 300	Val	Pro	Asp	Val
Pro 305	Ala	Ser	Ala	Gln	Asp 310	Leu	Ile	Arg	Gln	Leu 315	Leu	Суз	Arg	Gln	Glu 320
Glu	Arg	Leu	Gly	Arg 325	Gly	Gly	Leu	Asp	Asp 330	Phe	Arg	Asn	His	Pro 335	Phe
Phe	Glu	Gly	Val 340	Asp	Trp	Glu	Arg	Leu 345	Ala	Ser	Ser	Thr	Ala 350	Pro	Tyr
Ile	Pro	Glu 355	Leu	Arg	Gly	Pro	Met 360	Asp	Thr	Ser	Asn	Phe 365	Asp	Val	Asp
Asp	Asp 370	Thr	Leu	Asn	His	Pro 375	Gly	Thr	Leu	Pro	Pro 380	Pro	Ser	His	Gly
Ala 385	Phe	Ser	Gly	His	His 390	Leu	Pro	Phe	Val	Gly 395	Phe	Thr	Tyr	Thr	Ser 400
Gly	Ser	His	Ser	Pro 405	Glu	Ser	Ser	Ser	Glu 410	Ala	Trp	Ala	Ala	Leu 415	Glu
Arg	Lys	Leu	Gln 420	Суз	Leu	Glu	Gln	Glu 425	Lys	Val	Glu	Leu	Ser 430	Arg	Lys
His	Gln	Gly 435	Ala	Ala	Ala	Ala	Gly 440	Met	Glu	Glu	Trp	Thr 445	His	Leu	Trp
	450					455		Сув			460				-
465	-			-	470	-	-	Cys	-	475	-	-		-	480
				485	-	-		Gly	490					495	
	-	-	500		-			Glu 505					510		
		515		-			520	Thr				525	-		
	530					535	-	Ala			540				
545					550	-		Val		555			-		560
		-		565				Gln	570	-				575	
			580	-		-		Pro 585		-	-		590		
		595	-				600	Leu	-			605			
	610					615		Glu			620				
625			5	5	630		5	Glu		635	5				640
				645			-	Gln	650			-		655	-
Glu	Thr	Glu	Ser 660	Asn	Trp	Glu	Ala	Gln 665	Leu	Ala	Aap	Ile	Leu 670	Ser	Trp

-continued

											-	con	tin	ued							
Val	Asn	Asp 675	Glu	ГЛа	Val	Ser	Arg 680	Gly	Tyr	Leu	Gln	Ala 685		Ala	Thr						
ГЛа	Met 690	Ala	Glu	Glu	Leu	Glu 695	Ser	Leu	Arg	Asn	Val 700		Thr	Gln	Thr						
Leu 705	Pro	Ala	Arg	Pro	Leu 710	Asp	His	Gln	Trp	Lys 715	Ala	Arg	Arg	Leu	Gln 720						
LYa	Met	Glu	Ala	Ser 725	Ala	Arg	Leu	Glu	Leu 730	Gln	Ser	Ala	Leu	Glu 735	Ala						
Glu	Ile	Arg	Ala 740	ГЛа	Gln	Gly	Leu	Gln 745	Glu	Arg	Leu	Thr	Gln 750		Gln						
Glu	Ala	Gln 755	Leu	Gln	Ala	Glu	Arg 760		Leu	Gln	Glu	Ala 765		Lys	Gln						
Ser	Gln 770	Ala	Leu	Gln	Gln	Glu 775	Leu	Ala	Met	Leu	Arg 780		Glu	Leu	Arg						
Ala 785	Arg	Gly	Pro	Val	Asp 790		Lys	Pro	Ser	Asn 795	Ser	Leu	Ile	Pro	Phe 800						
	Ser	Phe	Arg	Ser 805		Glu	Lys	Asp	Ser 810		Lys	Asp	Pro	Gly 815							
Ser	Gly	Glu	Ala 820		Arg	His	Gly	Gly 825		Pro	Asp	Leu	Arg 830	Pro	Glu						
Gly	Arg	Arg 835		Leu	Arg	Met	Gly 840		Val	Phe	Pro	Arg 845	Ala		Thr						
Ala	Asn 850		Ala	Ser	Thr	Glu 855		Leu	Pro	Ala	Lys 860	Gly		Gly	Met						
Gly 865	Pro	Trp	Glu	Ala	Leu 870		Asn	Gly	Cys	Pro 875			Gln	Pro	Gly 880						
	His	Thr	Leu			Arg	Ser	Phe			Pro	Thr	Lys								
Arg	Сув	Thr		885 Leu	Met	Leu	Gly		890 Gly	Arg	Gln	Gly		895 Gly	Суз						
Asp	Ala	Суз	900 Gly	Tyr	Phe	Суз	His	905 Thr	Thr	Сув	Ala	Pro	910 Gln	Ala	Pro						
Pro	Cys	915 Pro	Val	Pro	Pro	Asp	920 Leu	Leu	Arg	Thr	Ala	925 Leu		Val	His						
Pro	930 Glu	Thr	Gly	Thr	Gly	935 Thr	Ala	Tyr	Glu	Gly	940 Phe	Leu	Ser	Val	Pro						
945	Pro		-		950			-		955					960						
	Asp			965					970					975							
	_		980					985			-		990								
F10	PTO	995 ser	σтλ	нта	цец	цец	1000		г пе	l AS]	р пе		д А 05	⊳Р Р	ro Gln						
Phe	Ser 1010		a Th:	r Pro	o Val	l Leu 101		la Se	er A	sp V		le 020	His .	Ala	Jln						
Ser	Arg 1025) Le	u Pro	o Arg	g Ile 103		ne Ai	rg Va	al Tl		hr 035	Ser	Gln	Leu						
Ala	Val 1040		> Pro	o Th:	r Thi	r Cys 104		nr Vá	al Le	eu L		eu 050	Ala	Glu	Ser						
Glu	Gly 1055		ı Arg	g Glı	u Arç	g Tr <u>p</u> 106		eu GI	ln Va	al L		ly 065	Glu i	Leu	Gln						
Arg	Leu	Leu	ı Le	u Asj	p Ala	a Arç	g Pi	ro Ai	rg P:	ro A:	rg P	ro	Val	Tyr	「hr						

-continued

											-001		iucc	
	1070					1075					1080			
Leu	Lys 1085		Ala	Tyr	Asp	Asn 1090		Leu	Pro	Leu	Leu 1095	Pro	His	Thr
Leu	Cys 1100		Ala	Ile	Leu	Asp 1105	Gln	Asp	Arg	Leu	Ala 1110	Leu	Gly	Thr
Glu	Glu 1115		Leu	Phe	Val	Ile 1120	His	Leu	Arg	Ser	Asn 1125	Asp	Ile	Phe
Gln	Val 1130		Glu	Суз	Arg	Arg 1135		Gln	Gln	Leu	Thr 1140	Leu	Ser	Pro
Ser	Ala 1145	-	Leu	Leu	Val	Val 1150		Сув	Gly	Arg	Gly 1155	Pro	Ser	Val
Arg	Leu 1160		Ala	Leu	Ala	Glu 1165	Leu	Glu	Asn	Ile	Glu 1170	Val	Ala	Gly
Ala	Lys 1175		Pro	Glu	Ser	Arg 1180	-	Суз	Gln	Val	Leu 1185	Ala	Ala	Gly
Ser	Ile 1190		Gln	Ala	Arg	Thr 1195	Pro	Val	Leu	Сув	Val 1200	Ala	Val	Lys
Arg	Gln 1205		Leu	Суз	Tyr	Gln 1210	Leu	Gly	Pro	Gly	Pro 1215	Gly	Pro	Trp
Gln	Arg 1220		Ile	Arg	Glu	Leu 1225	Gln	Ala	Pro	Ala	Thr 1230	Val	Gln	Ser
Leu	Gly 1235		Leu	Gly	Asp	Arg 1240	Leu	Суз	Val	Gly	Ala 1245	Ala	Gly	Gly
Phe	Ala 1250		Tyr	Pro	Leu	Leu 1255	Asn	Glu	Ala	Ala	Pro 1260	Leu	Ala	Leu
Gly	Ala 1265		Leu	Val	Pro	Glu 1270	Glu	Leu	Pro	Pro	Ser 1275	Arg	Gly	Gly
Leu	Gly 1280		Ala	Leu	Gly	Ala 1285	Val	Glu	Leu	Ser	Leu 1290	Ser	Glu	Phe
Leu	Leu 1295		Phe	Thr	Thr	Ala 1300	Gly	Ile	Tyr	Val	Asp 1305	Gly	Ala	Gly
Arg	Lys 1310		Arg	Gly	His	Glu 1315	Leu	Leu	Trp	Pro	Ala 1320	Ala	Pro	Met
Gly	Trp 1325		Tyr	Ala	Ala	Pro 1330		Leu	Thr	Val	Phe 1335	Ser	Glu	Asn
Ser	Ile 1340	Asp	Val	Phe	Asp		Arg	Arg	Ala	Glu	Trp 1350	Val	Gln	Thr
Val	Pro 1355	Leu	Lys	Lys	Val	Arg 1360		Leu	Asn	Pro	Glu 1365	Gly	Ser	Leu
Phe	Leu 1370	Tyr	Gly	Thr	Glu	Lys 1375	Val	Arg	Leu	Thr	Tyr 1380	Leu	Arg	Asn
Gln	Leu 1385	Ala	Glu	Lys	Asp	Glu 1390	Phe	Asp	Ile	Pro	Asp 1395	Leu	Thr	Asp
Asn	Ser 1400	Arg	Arg	Gln	Leu	Phe 1405	Arg	Thr	Lys	Ser	Lys 1410	Arg	Arg	Phe
Phe	Phe 1415	Arg	Val	Ser	Glu	Glu 1420	Gln	Gln	Lys	Gln	Gln 1425	Arg	Arg	Glu
Met	Leu 1430	Lys	Asp	Pro	Phe	Val 1435	Arg	Ser	Lys	Leu	Ile 1440	Ser	Pro	Pro
Thr	Asn 1445	Phe	Asn	His	Leu	Val 1450	His	Val	Gly	Pro	Ala 1455	Asn	Gly	Arg

```
-continued
```

Pro Gly Ala Arg Asp Lys Ser Pro Pro Pro Trp Ala Ala Lys Ala 1470 1460 1465 Ser Val Glu Thr Gln Thr Pro Val Arg Ala Ala Pro Gln Pro Pro 1475 1480 1485 Val Cys His Pro Pro Pro Gln Val Ser Thr Pro Phe Gly Ser Leu 1490 1495 1500 Lys Ser Asp Leu Gly Ile Phe Val Ser Ser Ser Ala Ala Gly Ala 1515 1505 1510 Val Lys Arg Lys Pro Trp Thr Ser Leu Ser Ser Glu Ser Val Ser 1520 1525 1530 Cys Pro Gln Gly Ser Leu Ser Pro Ala Thr Ser Leu Met Gln Val 1535 1540 1545 Ser Glu Arg Pro Arg Ser Leu Pro Leu Ser Pro Glu Leu Glu Ser 1550 1555 1560 Ser Pro 1565 <210> SEQ ID NO 3 <211> LENGTH: 20097 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 60 atqqaqcqqc qqctqcqcqc qctqqaqcaq ctqqcqcqqq qcqaqqccqq cqqctqcccq 120 gggetegaeg geeteetaga tetgetgetg gegetgeace aegageteag eageggeece ctacggcqgg agcgcagcgt ggcgcagttc ctgagctggg gtgagtggcg gggcggcacg 180 gageggggge gggeetaggg atategegee gagaeeeeg caeeegcaga ettteeegca 240 qqqacccqca cccccacqqq cttccctcqc aqactccctq caqtqqccct qacqcqtacc 300 accggaccee egeggeeege acactegeet geacacetea ceeteactee aatteteaca 360 420 cacgetetet ceeteteaca gaceeegaca catgeacaca cacaceaact tgtgeteagg tategacege agaegeatgt acceagtgea eegeetagag teeettaeag attteettge 480 ttacaggeca cacetgaege aggacaeaca cagaceetea tgeatgteae ceaetgatae 540 acgggctctg tttctccttc ctctcggatg cattgagaca cacaactcat ggagagaccc 600 agggagcgct gcagaccacc ccgaccgcat tggcactgca aaacacacag atctgtaggt 660 atcgcacact tgcagacctt ccccccacca acacacacac ccccagctcc ctgggtacaa 720 gaccactgca gcctggactc aggaaccgat ctccaaccct tggcctgtgc aggctgctgg 780 840 ctgtaccttt cctggtagac tcatctgagt cattgggagt ggctggcccg gggtgaccct 900 gaacccactg tgggcactgg cgccagctgg agggttccct ggtcacaccc tgccgggcca 960 tggggaaaag gcacgggggc ctggccaggg cggggtgagg caggtgtttg cccagtgggc 1020 aactagcgtt cctggcactc ctgagctctg ggaaggcaca aggcctgggg tagaggggga 1080 ggctgccacc tagatgtgcc agggagttgt cccctagccc caaccettec atccagggcg 1140 aggragtrag aggreetige ctctgtgeet gteteetigg tatgeeteeg tgetatgeet 1200 qtctqcctqt qttqttqtca cccccccat qacaccccaca cacqtqtqtq tqtttqcaca 1260 cacatgtgtg ctcctccctg actgcctcca gcacctctgc ctgggacccc ggcatggggg 1320

ccctctgttg	acaatctccc	aaggtaactc	aaagggctgt	gactcattcc	tctcctgctt	1380
gtctctactt	gtccctgctc	ctgcccggag	cccccatgcc	ctgtgggagg	ccagaggatt	1440
aggcagcctg	tccagggggcc	tggatcctcc	tgcctgtggg	cctgggcttc	ggccctcttc	1500
tggcgggtgg	gtccctatgg	tgetggette	aactcccacg	gggaggcccg	gggctgctcc	1560
tccccagctc	cacacacaga	cctgggaaag	agacaatgaa	tttctgtaat	gaggtttcca	1620
ccccgccccc	gctgcgggct	tctgcctgat	aaacctgtgg	aacagctctc	tgtcccaccc	1680
acagacccgc	ccagctggca	gggagtttac	ctcctggcag	ggggaaactg	aggcagggcg	1740
ccagaccaca	gctgcccccc	atcctgactg	atcactcctg	cctccctaag	acccaattcc	1800
ttcccaaaac	ctggggctaa	tccaggcctg	gaaagtgcct	gggagtggct	ggagttgccc	1860
ttcctggagg	tatctgggat	gtgaggaaag	aggacgttct	tgaccagaca	aaagcttcgt	1920
ccagacaggg	aggcagggct	gggagtgaga	gagccggtca	ggcctggagg	catcctgagc	1980
actcacgcct	tcaggggcta	gtgctagcac	cagggaaagg	catctttgtc	ctgtttgtga	2040
gtctcagcac	cttggcagac	tggcatccat	gcctccagcc	tgaggggccc	cacgtgggaa	2100
gcatagagcc	tgtcctccct	gccctagggg	ctgcaggcct	cacccccaac	caggcacctc	2160
tatgcctaca	gggtcccggg	acccaggccc	acageteetg	aatgggagag	aagcetetet	2220
ggggataagg	aatgtcaccc	gtccagtttc	ctaagacagg	ccctggcctg	aacctgtgag	2280
ggggccaaga	actgtgaggt	ggggggtagga	atggtgtccc	catggtcccc	agggtgacct	2340
ggccaagcag	agtcaggccg	cagactgggc	aggactacaa	gtcccatcag	cccctgggat	2400
ggaggetgee	tagagtctgg	ggccaggggt	ccagggaggt	ccagggacca	ggcggtcagc	2460
tgagcccggc	ctctgacctt	ccgcacttcc	tgatcatggc	caaaggagca	ccagttcctg	2520
ccacaacccc	ttggcccgag	gctgtccctg	gggaggtcat	ccctgcctgg	gctcacagga	2580
gcggcagctc	ctggcttgcc	caaggtgaga	gggggaatgg	agecetecet	ccctgcactc	2640
tgagtcccgc	cctgtgtccc	ctcagccagc	cccttcgtat	caaaggtgaa	agaactgcgt	2700
ctgcagagag	atgactttga	gatcttgaag	gtgatcggcc	gaggagcctt	tggggaggtg	2760
agcaaagggc	ctggggtagg	tggggggagg	tgttcacacc	gggctgggct	caccccggtc	2820
ctccctgtgg	ccttaggtca	ccgtggtgag	gcagagggac	actgggcaga	tttttgccat	2880
gaaaatgctg	cacaagtggg	agatgctgaa	gagggctgag	gtcagtgtgg	agtctggggg	2940
gcccttgggc	accctacaaa	tgggtgtggg	ggaggtgtat	gctgccaggg	cctatggcgc	3000
aaaaaaaaca	ggcaaggctg	cagaccaggc	aaagggtgcc	accctcagca	gccactgatt	3060
tgttatcttt	ctcacaataa	accctttatt	taattttta	aattttttt	tttttttga	3120
gacggaatct	tgctctgtca	actaggctgg	agttcaacgg	tgctatcttg	gctcactgca	3180
acctccgcct	cccagttcaa	gtaattctcc	tgcctcagcc	tcccgagtag	ctgggattac	3240
aggcacctgc	caccacaccc	agctaatttt	tgtatttta	gtagagatga	ggttttgcta	3300
tgttggacag	gctggtctcg	aactcctgac	ctcagatgat	ccttctgcct	tggcctcccg	3360
	attacaggcg					3420
agatagagtc	tcactctgtc	acccaggctg	gagtgcggtg	gcgtgatctc	ggeteactge	3480
aacctccacc	tcctgggtgc	aagggattct	catgcctcag	cctcccaagt	agctgggatt	3540
acaggcgtgt	gccacgacac	ccagctaagt	ttcttgtatt	tttagtagag	atggagtttc	3600

accacattgg	ccaggctggt	ctccaactct	tgatctcaag	tgatctgcct	gcettggeet	3660
cccaaagtgc	tgggattaca	ggcctaataa	acccttttga	aagcaagcag	agtcgttccc	3720
attttccata	tggtcacact	gaggcccaga	gctgtagagc	gtgggcttgg	gctcagtcgc	3780
agccagacag	gggacagtag	agctatgacc	tccatctgag	ctcccagact	cacagaatct	3840
ttctccatcc	cctgagctgg	caaggggggca	tcctgggctc	tgatcccacc	ccacccctta	3900
cttccccaaa	cctgctgcag	acagcctgtt	tccgggagga	gcgggatgtg	ctcgtgaaag	3960
gggacagccg	ttgggtgacc	actctgcact	atgccttcca	agacgaggag	tacctggtga	4020
ggatacgtgg	cgggggctgga	ggggaacatc	ctagggacac	aggagagggc	ccttggggcc	4080
aggggcactg	ggcccaaaga	gagacccctc	ttgggaccaa	gagactccca	cttcccacca	4140
gtteetggge	ttggcgcctc	ctgcctgagc	cctggctggg	aactggccag	cccagagctg	4200
ctgggagatg	caggcctgcc	ttcccagagc	cctgcgggac	cgcggtgaag	tggccaggtg	4260
caccetteee	ccgggtctga	ttcttgtccg	ccacctccag	taccttgtga	tggactacta	4320
tgctggtggg	gacctcctga	cgctgctgag	ccgcttcgag	gaccgtctcc	cgcccgagct	4380
ggcccagttc	tacctggctg	agatggtgct	ggccatccac	tcgctgcacc	agctgggtta	4440
tgtccacagg	tggagcccca	accccgctgc	cctgcccaac	cccgctgccc	tgeccaaccc	4500
ctgccagctg	tgctggggac	agctgatgtc	agctgagcac	tcatcatgtg	ccaggcactt	4560
ctctgggtgc	ctcatccgtg	tgetteettg	gaatcatacc	aaagagccct	ctgtggcagg	4620
ggctgctgct	gtgtccggcc	tgcagctgag	ggggtcagag	cttagcacag	ggaaacacct	4680
gtctcaaggt	gactcggctc	tcgggtggca	agctgtggtc	tgcactgggg	aagtctgact	4740
cctgcgtccc	ccatagcaca	ctctgccacc	tccaagggtt	gtccccacac	atcctttcta	4800
caatctagcc	atcttcctcc	ttctggcctg	tgggatcatc	tacacacaca	cacgttgctc	4860
atcacatgag	cacctacaca	caggaatgtg	tgtgagctgg	tgctggcaca	caccgtgcat	4920
gtgcacctgg	gcgtgtgcct	aaatggccac	ttacacacag	gtcaaacgcc	tcactctccc	4980
tgcctgccat	cccccaggga	tgtcaagcca	gacaacgtcc	tgctggatgt	gaacgggcac	5040
attcgcctgg	ctgacttcgg	ctcctgcctg	cgtctcaaca	ccaacggcat	ggtaaggacc	5100
ccgccccaga	gtgggagcag	gggatacaag	gcgggccaag	ctctcaggaa	aatgggaggc	5160
cccaggccta	gtgcagaggc	atcaggcccc	ccggggaagg	tgggtgagac	ccaggcccca	5220
ggtgggcagc	agcaggccag	cctggcagag	taggggtgac	agggccatcg	cgaggggcca	5280
gcagtcccag	ccaagcccaa	agctgtcctc	atggcttcac	caccaccacc	cacaggtgga	5340
ttcatcagtg	gcagtaggga	cgccggacta	tatctcccct	gagatcctgc	aggccatgga	5400
ggagggcaag	ggccactacg	gcccacagtg	tgactggtgg	tcgcttggag	tctgcgccta	5460
tgagctgctc	tttggggaga	cgcccttcta	tgctgagtcc	ttggtggaaa	cctacggcaa	5520
gatcatgaac	cacgaggtct	ggacaccagg	ctctgggctt	ccagaggggg	cagtgggacc	5580
cctgagtctg	tgtggttgga	agtaccggca	ggtgaggetg	ggttcctgga	cacttgaccc	5640
agcgtgcccc	ctcccccgac	ccacaggacc	acctgcagtt	ccccccggac	gtgcctgacg	5700
tgccagccag	cgcccaagac	ctgatccgcc	agctgctgtg	tcgccaggaa	gagcggctag	5760
gccgtggtgg	gctggatgac	ttccggaacc	atcctttctt	cgaaggcgtg	gactgggagc	5820
ggctggcgag	cagcacggcc	ccctatattc	ctgagctgcg	gggacccatg	gacacctcca	5880

-	CC	nt	ıl	n	u١	ed

actttgatgt	ggatgacgac	accctcaacc	atccagtgag	tggcaaaggc	cactgcagga	5940
ggggagctgc	cctaccccct	tgttggctgg	gggaaccctc	cctctgaagt	cccctggggt	6000
gggctggggg	tgaggccttc	agacaccggg	gcttatgatt	tatggactcc	cagactgacc	6060
cgttccagcc	accatccgct	ggcccagcct	cttccagcca	aactggggtg	ggggagcatc	6120
tcccacaggc	tccccatgct	tgcctgcact	gaggtgggct	gtgtcaaggg	aagggcctct	6180
gaccacaggt	atcattctat	taactagaat	ccgtataagg	aagaaaactc	ccagcagctc	6240
ctaggagact	tgtgggagct	gggggtttgt	ttgggttggg	ctgtgttacc	cccctgagtt	6300
cccacctgtg	caggaggtgg	tcgcacctgg	tcccaggggg	ctcctgggcc	tcgggcctcg	6360
ggccttggcc	tgtggactct	gactctcctt	ccctctccct	ctgcagggga	ccctgccacc	6420
gccctcccac	ggggccttct	ccggccatca	cctgccattc	gtgggcttca	cctacacctc	6480
aggcaggtga	ggctagtcct	cacacacctg	gtgggaggct	cggggttgcc	tgacctggag	6540
gacactgggc	gcgtagccca	ctggggccct	gggaaggagg	gcagaagggc	tccccagtat	6600
ctgcatgtgg	caggtgctct	agccctcatc	ctcggggtcc	tggtgaagcc	acacccaggt	6660
cctgctgggc	cacatgccag	cacatggctc	tcatggcgcc	ttccacgaag	gtcgagggtg	6720
cgctgcacct	agagccagag	gtgcagggtt	cgaaggcccc	tactgeteee	aggeeteact	6780
ttgtggctct	gtaaaatggg	tgggatggac	caggcgtggt	ggettatggt	tgtaatccca	6840
gcacttaggg	aggtcgaggc	gggtggatcg	cctgaggtca	ggagttcgag	accagcctgg	6900
ccaacatagt	gaaaccccat	ctctactaaa	aatacaaaaa	ttagccgggc	gtggtggcgg	6960
gcgcctgtaa	tcccagctac	ttgggaggct	gaggcagcga	gaatcgcttg	aacgcgggag	7020
gcggaggttg	cagtgagctg	agattgcgcc	actgcactcc	agcctgggtg	acagagcgac	7080
tctgtctcaa	aatgggtggg	attatctcca	cctactccca	ttcgagggggc	tggcctgaga	7140
ccgcagtgag	gtcctggtgc	ggtgtgctct	gaggtggaag	gaaatgggtc	agatccccac	7200
tcctctagac	cagccgggcc	actgtcacca	catcctgtcc	tcgacagccc	tggggagagg	7260
ccttgtcacc	accatcttcc	cctggggaaa	ctgagggtaa	aatacattgg	gttcgaggtg	7320
atacagcttg	taagggccag	gatgagggtt	taaacctggg	cctggacccg	gagcctgtgc	7380
cctgcagctg	ctaccccggg	ctgccacccg	tggcaccagt	ctggggtctc	ccgagggcag	7440
ggtctgtttt	ggctgtttca	caattaatga	gtgattcggt	ccaggaggat	ggaggagact	7500
ctgtggggtg	aggtttctac	caacaaacat	ggcccctgtc	cccctacagt	cacagtcctg	7560
agagcagctc	tgaggcttgg	gctgccctgg	agcggaagct	ccagtgtctg	gagcaggaga	7620
aggtggagct	gagcaggaag	caccaaggta	ctgggagcgg	ctgggccggg	cctgggtgtg	7680
ctggccctag	gggctgctgc	tgcgggaatg	gaggagtgga	ctcacctgtg	ggtaccacct	7740
cccctccaga	ggccctgcac	gcccccacag	accatcggga	gctggagcag	ctacggaagg	7800
aagtgcagac	tctgcgggac	aggctgccag	gtatcccttc	cgcccacccc	ccccccccc	7860
cccccggggc	tgagtcccac	ctgggctcgg	gteetgeeet	gccctggaca	agctgtatga	7920
tcctgggaga	gcattttata	ctctctgagc	ccgcgtgtgg	gaaacaggcc	aaggagactt	7980
gctcctgggc	tgagaggctg	gggccgccag	cactcgaggt	ctcagtgact	cttcctggca	8040
gagatgctga	gggacaaggc	ctcattgtcc	cagacggatg	ggcccccagc	tggtagccca	8100
ggtcaggaca	gtgacctacg	gcaggagctt	gaccgacttc	accgggtgag	ggctgggtga	8160

40

-continued

ggtgggtgag	ggctgggtga	ggtgggtgag	gtgggtgagt	ggccctgggc	tccatggacg	8220	
gttcgtgcct	gactctgggc	cttgtccttc	cccgctccct	cccctgcctc	ctcaggagct	8280	
ggccgagggt	cgggcagggc	tgcaggctca	ggagcaggag	ctctgcaggg	cccaggggca	8340	
gcaggaggag	ctgcttcaga	ggctacagga	ggcccaggag	agagaggcgg	ccacagctag	8400	
ccagacccgg	gccctgagct	cccagctgga	ggaagcccgg	gctgcccaga	gggaggtgag	8460	
tgaccagggt	gggtagggac	agcacctggg	ccctgccccc	agtgtgcctg	gagggagcat	8520	
ggggagcttg	gtgggagatg	ctgcctcccg	gttgtagctg	gcagaggcta	ggccagggga	8580	
tggtggctgg	gacgggggcag	tctgggagtc	catgcctcct	catgtccact	gtggctggca	8640	
ggtctggagt	ccatggtaag	gtgggcagag	gggctgccga	gggcagagtt	ggcagtggcc	8700	
tgcctctgca	cccctcacag	ctggaggccc	aggtgtcctc	cctgagccgg	caggtgacgc	8760	
agctgcaggg	acagtgggag	caacgccttg	aggagtcgtc	ccaggccaag	gtagtcaagt	8820	
cctccccctt	ggcaagaggt	gcttccccac	cagcctgacc	ccactcagag	cctcagggcc	8880	
aggcctgtgt	cccaggtggg	tgggccatgg	catcttgggt	ctctgccctg	accccctcca	8940	
tgtccccaag	accatccaca	cagcetetga	gaccaacggg	atgggacccc	ctgagggtgg	9000	
gcctcaggag	gcccaactga	ggaaggaggt	ggccgccctg	cgagagcagc	tggagcaggc	9060	
ccacagccac	aggtgagcca	ggcagctggt	ggcagggagg	ggccgggcct	ggcctgggcg	9120	
gtgagtcacg	geettggeet	tctcctcccc	aggccgagtg	gtaaggagga	ggetetgtge	9180	
cagetgeagg	aggaaaaccg	gaggetgage	cgggagcagg	agcgggtgag	cagggtacaa	9240	
cagacggagg	gtacaacaga	cggacaaggc	aatggggagc	cagttggggg	gtgggcaagc	9300	
tgcagccagt	gagcagggtg	gacatggacg	gggctcgggg	tgctggggta	cctacaggga	9360	
gacggcagtc	ccaggactgc	tggggcctgg	ggctgacctt	tcctctggcc	ggccccagct	9420	
agaagcagag	ctggcccagg	agcaggagag	caagcagcgg	ctggagggtg	agcggcggga	9480	
gacggagagc	aactgggagg	cccagctcgc	cgacatcctc	agctggtggg	tgccaggggt	9540	
gggtcggggt	ggggaacgca	ggcgagactg	agggcccagc	ccatgaccct	gagccccttc	9600	
ccattcaggg	tgaatgatga	gaaggtctca	agaggctacc	tgcaggccct	ggccaccaag	9660	
atggcagagg	agctggagtc	cttgaggaac	gtaggcaccc	agacgctccc	tgcccggcca	9720	
ctggtgagcc	ccagagatgc	ccctgggggc	tggcttgggc	aagtcactga	ccttccgtga	9780	
gctcagcatc	cctgctactg	aaggtcacta	ctggaggtgg	ggacaccaag	ctcatgagag	9840	
atagtgattt	ccctgagctc	acagtgggtc	attggctgag	ctggagcttt	gagcetgget	9900	
gggtggcatg	ggtagcagga	tgctctggta	gcaggggggtc	cctgaggcag	ccaggcctag	9960	
aaagcatctt	atacgggtgc	tccgtggcca	ccaggaccac	cagtggaagg	cgcggcgact	10020	
gcagaagatg	gaggcctcgg	ccaggctgga	gctgcagtca	gcgctggagg	ccgagatccg	10080	
cgccaagcag	ggcctgcagg	agcggctgac	acaggtgcag	gaggcccagc	tgcaggctga	10140	
gcggtgaggc	taggggcagg	cactggggggc	cagggcccgc	acagaggcca	gtggcgagcc	10200	
cttgccattc	tccccagccg	tctgcaggag	gccgagaagc	agagccaggc	cctgcaacag	10260	
gagetegeea	tgctgcggga	ggagetgegg	gcccgagggc	cagtgggtga	gtggctgcca	10320	
actgcttgcc	ccggagccag	gctcccccgc	ggcctcccac	ttgccaaggg	ggctccacga	10380	
tggcctggca	gggtggtgga	gacaggagtc	tgttcctgga	ctctgccgct	tactccatca	10440	

tctgtgacca	gcacttctgg	agtgcctgct	gtgcccagcc	ctgccccacc	ctgtggtcat	10500
ttcccatttt	actgaggtgg	gaactgaggc	ccctcctgga	ccctagttcc	tcaggccagg	10560
gaccccaggc	cagtgaccca	ccctttcttt	gcagacacca	agccctcaaa	ctccctgatt	10620
cccttcctgt	ccttccggag	ctcagaggta	aggaccaggc	caagggggctt	gttggggaga	10680
agttctggga	gaggcacagg	gaccttgact	ttgeteetet	ctctcccacc	cccagaagga	10740
ttctgccaag	gaccctggca	tctcaggaga	ggccacaagg	catggaggag	agccagatct	10800
gaggccggag	ggccgacgca	gcctgcgcat	gggggtgagg	acaggtgggt	ccatcgtagg	10860
gggcctgggc	cccgcccttg	cccgtctcac	ctgctccccc	gccctcctgc	aggctgtgtt	10920
ccccagagca	cccactgcca	acacagcctc	tacagaaggt	cttcctgcta	aggtcagtgc	10980
ccagaggggc	aagcagggtg	ggggcaccaa	gcagttctgc	caggctgaat	gggcactgtg	11040
gggacactcc	acgtgcatcg	tggctagcag	gcacaattgg	ggtggaggtg	gtggcgatga	11100
gcttgcctgc	cgccatagat	tggctgggac	tcggaggtca	ctgttgcctg	gctcagcccc	11160
ttgtctttcc	tgacccctca	gggatggggc	atggggccct	gggaggcctt	gggtaatggc	11220
tgtccccctc	cccagcccgg	ctcacacacg	ctgcgccccc	ggagcttccc	atccccgacc	11280
aagtgtctcc	getgeacete	gctgatgctg	ggcctgggcc	gccagggcct	gggttgtgat	11340
ggtgagagtc	cccacccact	atgctccagc	cacggtccca	ggtgtgtggc	cctggcatac	11400
ccaggctgtt	tctcccatcc	cagggtcact	ggcacctgct	ggtcaaattt	cctcctgctc	11460
agctttgttc	cttttctcac	ttgatgagga	attggggaca	gttcgggtgc	caccgtggct	11520
tcagggaagc	tggctctgga	catgcccccg	tcctggtttg	gggetgteee	ctcccagcct	11580
cacctcatcc	accttctcca	ctttccccac	agcetgegge	tacttttgtc	acacaacctg	11640
tgccccacag	geeceaccet	gccccgtgcc	ccctgacctc	ctccgcacag	ccctgggagt	11700
acaccccgaa	acaggcacag	gcactgccta	tgagggcttt	ctgtcggtga	gtgggggccg	11760
agggagggga	agatgggcat	gggggggctga	gggtccctgc	agccctccca	tgcttgcctt	11820
tccgccaggt	gccgcggccc	tcaggtgtcc	ggcgggggctg	gcagcgcgtg	tttgctgccc	11880
tgagtgactc	acgcctgctg	ctgtttgacg	cccctgacct	gaggctcagc	ccgcccagtg	11940
gggccctcct	gcaggtccta	gatctgaggt	aggtgccggg	cagtggcatg	gggcaaggga	12000
ctagtggtaa	gggggggcagt	cagggacagg	gagatttctg	aactgttctg	tgaacctccc	12060
agggaccccc	agttctcggc	tacccctgtc	ctggcctctg	atgttatcca	tgcccaatcc	12120
agggacctgc	cacgcatctt	tagggtgagt	gcctgggatg	agatggagca	gccaccatcc	12180
acctccccat	gctgtcccag	ctctggccac	tgtcccccca	cttcatactg	ccctcttggg	12240
ccagcccaca	accacagcac	gctttccacg	tgagcacctg	gcccggtctc	acctcgttta	12300
ggatctgctg	tggcttccca	tcgtctgcgg	ggctcggggt	gctcctgacc	tagcccttga	12360
ggccccaagg	ctctgaccct	gcaggcctcc	cagccctctc	ccttggcacc	tgtctctgct	12420
ctggtcacac	cttgctctct	ccagttctga	aggcgccctg	tgcctgtgtg	caccacattc	12480
tcagtccttc	acatctgtct	ttgcacgaaa	ttgccggccc	tgcactggag	cccagcccct	12540
cacctacctt	gactactcct	ggttagttac	tcgtccctca	ggetteagea	gaaatgtctg	12600
gtctcctggg	aagtcatcct	tcacctcccg	gccccggttt	gggtccctct	gtgttcccac	12660
taggcccgtc	cttgccccat	tatggcgctg	gtcgcatggc	tctggagttg	tctgtttgcc	12720

tgtctggcct actccctgct gctgacagtg cacgctaggc ccccggggca cagcggctgc 12780 tggaggcagg aagggaggga ggacagatgg ctctggtcca cggccctcca gctggggtcc 12840 ttqcccacaq qtqacaacct cccaqctqqc aqtqccqccc accacqtqca ctqtqctqct 12900 gctggcagag agcgaggggg agcgggaacg ctggctgcag gtgctggggtg agctgcagcg 12960 getgetgetg gaegegege caagaceeg geeegtgtae acaeteaagg aggettaega 13020 caacgggetg cegetgetge etcacaeget etgegetgee atceteggtg agetggtgga 13080 ggggactgga ggaagcagtc caggcctgcg ggagtgctgg tgtctaggaa tagtcccaag 13140 ggccactgct actgcccatt ccctgcagcc acgagacaca gactgccttg caccacgtat 13200 gtgctccagc ctcctgtgtg catggctggg cccccaggta gggggcctgg cttatcccca 13260 ctccatttcg ctgtgcctca gtttctgctt tttccaaaag aatctcaagc aagtggaagg 13320 aacaaagget ttttttttt tettttett tttttgagae agagtetege teggtegeee 13380 aggetggage teageagtge aateteaget caetgeaace tecaecteee agatteaage 13440 gatteteetg teteageete cagagtaget gggattgeag geatgeacea eetegeetgg 13500 ctattttttg tatttttagt agagacgggg tttcagcatg ttggccaggc tggtctcgaa 13560 ctcctgacct caggtgatcc acccaccttg gcctcccaaa gtgctggaat tataggcatg 13620 ggccaccgtg cccagctgga acaaaggctt tagaaagaga gaaacgaagg ttcagtcctg 13680 gctgtctcac tacaagctgg gggactgggg gagctgctgt agaaccaccc agagcctcat 13740 aacateteet gggtggaget gegaagaget teaettgtge teageettga aeetgggget 13800 cagcagggct cttctgtaac taaggctggg aaagaggcat gaaacagagc tccttggcgt 13860 tccccagcag ctgaggccct gagccaggcc cggctctcag ggcgggagac acaggagagg 13920 ttqtqcqqqt ccctqqaqca qtcqqqaacc aqaqqqqaqq qqatttattq aqcaaqqqqc 13980 tetgetgaac ceteccetge atcactteet egetteetea gagttgetet gtgaggaagt 14040 accatcgttg tccccagttt acataaggaa accaaggctc tgagaggtga catgacttac 14100 ccaaaatccc acagetcaag atgatgggee teaceceaac ecetetggaa aageetgtee 14160 agactgggag agaagggtca gtgaggcagg gacagcggga ttattgccac ccccatttcc 14220 tcaagataaa caggcacagc agggcaggtg gactgcccaa tctccgtgtc attgagtggg 14280 actgetgace tetgaceete tgeeteete taecagacea ggategaett gegettggea 14340 ccgaggaggg gctctttgtc atccatctgc gcagcaacgg tacctatcaa agctgggcta 14400 gggtgggcgt gggcaggggc agccccagcg ggcagaggag gatggggatg ggtcactctt 14460 caaccacety ceagtgacae teteceeteg ceaaccetye agacatette caggtggggg 14520 agtgccggcg cgtgcagcag ctgaccttga gccccagtgc aggcctgctg gtcgtgctgt 14580 gtggccgcgg ccccagcgtg cgtctctttg ccctggcgga gctggagaac atagaggtag 14640 caggtgccaa gatccccgag tctcgaggct gccaggtgct ggcagctgga agcatcctgc 14700 aggecegeae eceggtgete tgtgtageeg teaagegeea ggtgetetge taceagetgg 14760 gcccgggccc tgggccctgg cagcgccgca tccgtgagct gcaggcacct gccactgtgc 14820 agageetggg getgetggge gaeeggetat gtgtgggege egeeggtgge tttgeactet 14880 accorded caacqaqqet gogcogttqq cqctqqqqqc cqqtttqqtq cctqaqqaqc 14940 tgccaccatc ccgcgggggc ctgggtgagg cactgggtgc cgtggagctt agcctcagcg 15000

43

agtteetget actetteace actgetggea tetacgtgga tggegeagge egeaagtete 15060 gtggccacga gctgttgtgg ccagcagcgc ccatgggctg gggtaaggcc tgctgagggc 15120 ttggcagggg ggccaggcac cttcagtggg tgggtgaaga cagggtcccg cctcaactca 15180 tgageetgge attggaggee tttggtgeea gtttgeatee tecageeeaa caacaeeetg 15240 teccaccete tgtggettge aggggaeett eetttteeat ggetgagete atgeteetet 15300 cctgcctgag ccgctctcct tttgtttcta tctagcaaac tttttttttc ttttgagaca 15360 gggtetetgt etgteaceag getggagtae agtggeacaa tetegaetea etgeeacete 15420 cgcctcctgg ggtcaagtga tcctcccacc tcaccctctc gagtaactgg gggcacaggt 15480 ctgtcgccag gctggagtgc agtggtgtga tctcggctca ctgcaacctt tgcttcccgg 15600 gttcaggtga ttctcctgcc tcagcctccc tagtagctgg gactacaggt gcacgccacc 15660 acacccagct aatttttgta tttttagtgg agacggggtt tcaccatgtt ggccaggctg 15720 gtotcaaact ootgaccaag tgatocacot goottggoot oocaaagtgo tgggattaca 15780 ggcgttagcc aacgcgtcca gcctaatttt tgtatttttt cagagatggg gtttcgccat 15840 attgcgcagg ctgggagtct caaacteetg aacteaagea ateeteecge geggeeteee 15900 aaagtgctgg gattacaggt gtgagccacc ggccccggcc tgtacctggc aaactcttaa 15960 ctaggtacca ccccagtgtc agctcagggc ctggagctgg taggcgctcc aaagataacc 16020 getgegattg etgtggteac cattgeette gtgeteeeeg ecetgettee eegteattgg 16080 teettteett etetttgeee cactatetet ceqtecagae etqtgteacg getetcateg 16140 cctccacttc atqactqqct tqqtqcactq qqqtcccaca qaatqqqccq qqqctqqttt 16200 cctcatccac atcaaqcccc caqcccaqqq tqqcacactc caqqqqcqat qqqcttqqaq 16260 gaatgagtgg aagagtgaat gaatgaatga ggcagtgggg cagtctggtg catgcacaag 16320 taactagcat gatgggtaag ggctggaaga gaggggcaga gtgtccttcg tgagcaatgg 16380 ctctttgggg tggggcctgc aggttgggtg ccgcatatca cccaagctgc ccagggccaa 16440 atcgcagete teaggaceag etgagtgace tgacettgae cateaeatgg etceaggggt 16500 tccattccct catctggaaa ttagggatta taacagtagt acttgctcag agttgttaga 16560 aaattaaggc aggaaaagca tgtcgtgttt agaactgagc caggcatgtg gtgagtggtc 16620 cagggttatc tctgatttga tgtggaggct gggccgggcg acagggagtc ttcagaggaa 16680 ggaccttagc gtggggcatg gtagttactg tgctgtggca ggggacaagg tgttccctgt 16740 ggaacagagg gggaaacagc tcagaggtgc ctggcgtgcc cgcagggtat gcggccccct 16800 acctgacagt gttcagcgag aactccatcg atgtgtttga cgtgaggagg gcagaatggg 16860 tgcagaccgt gccgctcaag aaggtgaggg tccgccagag ccctggggta gcgccggggg 16920 tggaggegtg geetgacege tgtgeetget geeteaggtg eggeeeetea ateeagaggg 16980 ctccctgttc ctctacggca ccgagaaggt ccgcctgacc tacctcagga accagctggc 17040 aggtgaggga gtgcgtgtgt acgggtgtgt gcgttcccca gtgcgcacgt gtggctgtgt 17100 ggccctgaat gccagctgac tgggccccgg gaatgtgtga gcacagccca gctctccact 17160 teteceacag agaaggaega gttegaeate eeggaeetea eegaeaacag eeggegeeag 17220 ctgttccgca ccaagagcaa gcgccgcttc tttttccgcg tgtcggagga gcagcagaag 17280 44

-continued

cagcagcgca ggtgcgcgtg cacgacgcgg gggctgaggc tgggtggggc cgcctccgct 17340 tgtggacggg tcgaagggag ggtggagctt cgccacccac tacttacacc tccgcccaca 17400 gggagatget gaaggaceet tttgtgeget ceaageteat etegeegeet aceaaettea 17460 accacctagt acacgtgggc cctgccaacg ggcggcccgg cgccagggac aagtccccgg 17520 ttagtcetet ggagecaate acaagecaet etggtgagge tgagecaata aceggeetet 17580 gtggtgaget ctagecaate acgggeeget gtaattacte ctaaggeetg ggaeteacae 17640 ttctgctccc tgggacttaa gtaaaaccag gctgggggcc cagtggcgtt catttgtcct 17700 ggtetgttgt geettgggee tettgteete ettgtgeetg etagteeeag ecceteegea 17760 ctgtcaccca acaggctccc gaagagaagg gccgagttgc ccgcggctcc ggcccacagc 17820 ggccccacag cttctccgag gcgttgcggc gcccagcctc catgggcagc gaaggcctcg 17880 gtggagacgc agaccccagt aagggcagcc cctcagcctc cagtgtgcca ccccccaccc 17940 caagttteta ecceetttgg atecetgaaa tetgatettg gtatttttgt eteetegtet 18000 gctgctggag cagtgaagag gaaaccctgg acatccctgt ccagcgagtc tgtgtcctgc 18060 ccccagggat cgctgagccc tgcaacctcc ctaatgcagg tgagcgggtc cgggaggctt 18120 gtccgtcccc tattcaaacg tcaggcagtt ccgttttatg ctaggccttg cacagtgacc 18180 taggctaggg aacaagctga gcccatccct gccctcgatt ctacgagatg cagattctta 18240 cctgtctcac cccaccagtg ggcaccagca ggatcctgga tgcaggccag cctaggtggg 18300 aatcttggct ctgactgttc cagctgtgtg gctctgggca aaatgcccaa cctccctgat 18360 cttgtcttac ctgtaaaatg atgtggtttc tgggaggcct gcatgagctg atgatacctg 18420 cqaaqqqctc aqcataqtac ctqqcatqqq qaaqqtqcca caqaaqqqqa qctcttqqqa 18480 ttctttttt ttttttttt ttccagacgg agtctcactc tgtcacccag actggagtgc 18540 aqtqqcacaa tctcqqtcaq tqcaaccccc acctcccaca tttqaqcaaq tctcctacct 18600 cagectetee caagtegetg gtattacagg catgeateae catgeecage taattettgt 18660 attttaagta gagatggggt ttcattatgt tggccaggct ggtctcgaac tcctgacctc 18720 aagtgateeg eecacettgg eeteecaaag tgttgggatt aetgatgtga geeaceatge 18780 ccggccactc ttgggattct taatagaggc ccagtccaca gcagggagtt gggggggtcag 18840 aggagggagc agtccattct gaatgagggc aggggaaaac ctaagagaag ccagggaggt 18900 teccatteee estgeageea egtetacage acacacatee acceaeteee gteacaceag 18960 gccacttgga gccctggggc ttgccatgtt cttccacacc tgcaggctct tgcccctgca 19020 gtcccctctg ttttgaatgc cttttctcta tcttcacctt aaccaacatc agactgccct 19080 ccaggtgacc caccaggatc atcttcaaag gagccttcct ggccgcttgg tcaggtagtc 19140 attgeeteec tggggetggt gecaeetttg ceaeeeeget eeeteeaeae etteettgea 19200 gettetgetg tgetgtgggt ttettetggt geetgttete etetgttgae tgtgggetee 19260 ttggtggtgg gggtcaggct tcattcttct gcccagagta aagcatgtgg tcgactgaag 19320 gaagaatgga gtgaatgaac aaagggactt tgaggctggg cgctgtggct cacccctgta 19380 atcgcagcac tttgggaggc tgaggcaggc agatcacttg aggtcaagag ttcaagacca 19440 gcctggccaa catggtgaaa ccctgtctct actaaaaata caaaaattag ctgggcctgg 19500 tggtgcatgc ttgtaatccc agctacctgg tgggccgagg caggagaatc acttgaacct 19560

gggaggcgga ggttgcagtg agccaagatc atgccactgc attccagcct ccagagcgag 19620 actctgtctc caaaaaaaaa aacgaaaaac aaaaattaac taqqcatqqt qqtqcatqcc 19680 tgtcatccca gctacctggg aggcagaggc aggagaatca ctagaacctg ggaggcagag 19740 gttgcagtga gccaagatca tgccattatt gcactccagg ctaggcgaca gagcaagact 19800 ctgtctcaga aaaaaagaaa aaaaaaagga ctttgagtcc attcaaagtt aagtaggagc 19860 tetecaggtt ettecagtga eccatttace acetetacte etcaceteae atetggette 19920 ctccaggggc cctgatacag tgggtgatgg gtcctaaggg ggcctccagg acccaccagc 19980 cctatgagga aagagttett eetgateeta eeeettgaet teetttett teteetgeag 20040 gtotcagaac ggccccgaag cotcocccta toccctgaat tggagagoto toottga 20097 <210> SEQ ID NO 4 <211> LENGTH: 1572 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 4 Met Glu Arg Arg Leu Arg Ala Leu Glu Gln Leu Ala Arg Gly Glu Ala 5 10 1 Gly Gly Cys Pro Gly Leu Asp Gly Leu Leu Asp Leu Leu Leu Ala Leu 20 25 His His Glu Leu Ser Ser Gly Pro Leu Arg Arg Glu Arg Ser Val Ala 35 40 45 Gln Phe Leu Ser Trp Ala Ser Pro Phe Val Ser Lys Val Lys Glu Leu 50 55 60 Arg Leu Gln Arg Asp Asp Phe Glu Ile Leu Lys Val Ile Gly Arg Gly65707580 Ala Phe Gly Glu Val Thr Val Val Arg Gln Arg Asp Thr Gly Gln Ile 90 85 95 Phe Ala Met Lys Met Leu His Lys Trp Glu Met Leu Lys Arg Ala Gly 100 105 110 Ala Ala Cys Phe Arg Glu Glu Arg Asp Val Leu Val Lys Val Asn Ser 115 120 125 Arg Trp Val Thr Thr Leu His Tyr Ala Phe Gln Asp Glu Glu Tyr Leu 130 135 140 Tyr Leu Val Met Asp Tyr Tyr Ala Gly Gly Asp Leu Leu Thr Leu Leu 155 145 150 160 Ser Arg Phe Glu Asp Arg Leu Pro Pro Glu Leu Ala Gln Phe Tyr Leu 165 170 175 Ala Glu Met Val Leu Ala Ile His Ser Leu His Gln Leu Gly Tyr Val 185 180 190 His Arg Asp Cys Lys Pro Asp Asn Val Leu Leu Asp Val Asn Gly His 200 195 205 Ile Arg Leu Ala Asp Phe Gly Ser Cys Leu Arg Leu Asn Thr Asn Gly 215 220 Leu Ala Asp Ser Ser Val Ala Val Gly Thr Pro Asp Tyr Ile Ser Pro 225 230 235 Glu Ile Leu Gln Val Leu Glu Glu Gly Lys Gly His Tyr Gly Pro Gln 245 250 255 Cys Ile Trp Arg Ser Leu Gly Val Cys Ala Tyr Glu Leu Leu Phe Gly

-continued

											-	con	tin	ued	
			260					265					270		
Glu	Thr	Pro 275	Phe	Tyr	Ala	Glu	Ser 280		Val	Glu	Thr	Tyr 285	Gly	Lys	Ile
Met	Asn 290	His	Glu	Asp	His	Leu 295	Gln	Phe	Pro	Pro	Asp 300	Val	Pro	Asp	Val
Pro 305	Ala	Ser	Ala	Gln	Asp 310	Leu	Ile	Arg	Gln	Leu 315	Leu	Суа	Arg	Gln	Glu 320
Glu	Arg	Leu	Gly	Arg 325	Val	Gly	Leu	Asp	Asp 330	Phe	Arg	Asn	His	Pro 335	Phe
Phe	Glu	Gly	Val 340	Asp	Trp	Glu	Arg	Leu 345	Ala	Ser	Ser	Ser	Ala 350	Pro	Tyr
Ile	Pro	Glu 355	Leu	Arg	Gly	Pro	Gly 360	Asp	Thr	Ser	Asn	Phe 365	Asp	Val	Asp
Asp	Asp 370	Thr	Leu	Asn	His	Pro 375	Gly	Thr	Leu	Pro	Arg 380	Pro	Ser	His	Gly
Ala 385	Phe	Ser	Gly	His	His 390	Leu	Pro	Phe	Val	Gly 395	Phe	Thr	Tyr	Thr	Ser 400
Gly	Ser	His	Ser	Pro 405	Glu	Ser	Ser	Ser	Glu 410	Ala	Trp	Ala	Ala	Leu 415	Glu
Arg	Lys	Leu	Gln 420	Сүз	Leu	Glu	Gln	Glu 425	Lys	Val	Glu	Leu	Ser 430	Arg	Lys
His	Gln	Glu 435	Ala	Leu	His	Ala	Pro 440	Thr	Asp	His	Arg	Glu 445	Leu	Glu	Gln
Leu	Arg 450	Lys	Glu	Val	Gln	Thr 455	Leu	Arg	Asp	Arg	Leu 460	Pro	Glu	Met	Leu
Arg 465	Asp	Lys	Ala	Ser	Leu 470	Ser	Gln	Thr	Asp	Gly 475	Pro	Pro	Ala	Gly	Ser 480
Pro	Gly	Gln	Asp	Ser 485	Asp	Leu	Arg	Gln	Glu 490	Leu	Asp	Arg	Leu	His 495	Arg
Glu	Leu	Ala	Glu 500	Gly	Arg	Ala	Gly	Leu 505	Ala	Thr	Gln	Glu	Gln 510	Glu	Leu
Суа	Arg	Ala 515	Gln	Gly	Leu	Gln	Glu 520	Glu	Leu	Leu	Gln	Arg 525	Leu	Gln	Glu
Ala	Gln 530		Arg	Glu	Ala	Ala 535		Ala	Ser	Gln	Thr 540		Ala	Leu	Ser
Ser 545		Leu	Gln	Glu	Ala 550	Arg	Ala	Ala	Gln	Trp 555		Leu	Glu	Ala	Gln 560
	Ser	Ser	Leu	Ser 565	Arg	Gln	Val	Thr	Gln 570		Gln	Gly	Gln	Trp 575	
Gln	Arg	Leu	Glu 580			Ser	Gln	Ala 585	Lys	Thr	Ile	His	Thr 590		Ser
Glu	Thr	Asn 595		Met	Gly	Pro	Pro 600			Gly	Pro	Gln 605		Ala	Gln
Leu	Arg 610	Lys	Glu	Val	Ala	Ala 615		Arg	Glu	Gln	Leu 620		Gln	Ala	His
Ser 625			Pro	Ser	Gly 630	Lys	Glu	Glu	Ala	Leu 635		Gln	Leu	Gln	Glu 640
	Asn	Arg	Arg	Leu 645		Arg	Glu	Gln	Glu 650		Leu	Glu	Ala	Glu 655	
Pro	Gln	Glu			Ser	Lys	Gln	-		Glu	Gly	Met	-		Glu
			660					665					670		

	1	- 7
-cont	inue	a

Thr	Glu	Ser 675	Asn	Trp	Glu	Ala	Gln 680	Leu	Ala	Asp	Ile	Leu 685	Ser	Trp	Val
Asn	Asp 690	Glu	Lys	Val	Ser	Arg 695	Gly	Tyr	Leu	Gln	Ala 700	Leu	Ala	Thr	Lys
Met 705	Ala	Glu	Glu	Leu	Arg 710	Ser	Leu	Arg	Asn	Val 715	Gly	Thr	Gln	Thr	Leu 720
Pro	Ala	Arg	Pro	Leu 725	Lys	Met	Glu	Ala	Ser 730	Ala	Arg	Leu	Glu	Leu 735	Gln
Ser	Ala	Leu	Glu 740	Ala	Glu	Ile	Arg	Ala 745	Lys	Gln	Gly	Leu	Gln 750	Glu	Arg
Leu	Thr	Gln 755	Val	Gln	Glu	Ala	Gln 760	Leu	Gln	Ala	Glu	Arg 765	Arg	Leu	Gln
Glu	Ala 770	Glu	Lys	Gln	Ser	Gln 775	Ala	Leu	Gln	Gln	Glu 780	Leu	Ala	Met	Leu
Arg 785	Glu	Glu	Leu	Gly	Ala 790	Arg	Gly	Pro	Val	Asp 795	Thr	Lys	Pro	Ser	Asn 800
Ser	Leu	Ile	Pro	Phe 805	Leu	Ser	Phe	Arg	Ser 810	Ser	Glu	Lys	Asp	Ser 815	Ala
Lys	Asp	Pro	Gly 820	Ile	Ser	Gly	Glu	Ala 825	Thr	Arg	His	Gly	Gly 830	Glu	Pro
Asp	Leu	Ser 835	Arg	Gln	Gly	Arg	Arg 840	Ser	Leu	Arg	Met	Gly 845	Ala	Val	Phe
Pro	Arg 850	Ala	Pro	Thr	Ala	Asn 855	Thr	Ala	Ser	Thr	Glu 860	Gly	Leu	Pro	Ala
Lys 865	Gly	Trp	Gly	Met	Gly 870	Pro	Trp	Ser	Ala	Leu 875	Gly	Asn	Gly	Cys	Pro 880
Pro	Pro	Gln	Pro	Gly 885	Ser	His	Thr	Leu	Arg 890	Pro	Arg	Ser	Phe	Pro 895	Ser
Pro	Thr	Lys	Cys 900	Leu	Arg	Суз	Thr	Phe 905	Leu	Leu	Leu	Gly	Leu 910	Gly	Pro
Arg	Gly	Leu 915	Gly	Суз	Asp	Ala	Сув 920	Gly	Tyr	Phe	Суз	His 925	Thr	Thr	Суз
Ala	Pro 930	Arg	Pro	Ser	Pro	Сув 935	Pro	Val	Pro	Pro	Asp 940	Leu	Leu	Arg	Thr
Ala 945	Leu	Gly	Val	His	Pro 950	Glu	Thr	Gly	Thr	Gly 955	Thr	Ala	Tyr	Glu	Gly 960
Phe	Leu	Ser	Val	Pro 965	Arg	Pro	Ser	Gly	Val 970	Arg	Arg	Gly	Trp	Gln 975	Arg
Val	Phe	Ala	Ala 980	Leu	Ser	Asp	Ser	Ala 985	Leu	Leu	Leu	Phe	Asp 990	Ala	Pro
Asp	Leu	Arg 995	Leu	Ser	Pro	Pro	Ser 1000		/ Ala	a Lei	ı Leı	1 Gli 100		al Le	eu Asp
Leu	Arg 1010) Pro	Glr	n Phe	e Sei 101		la Tł	nr Pi	ro Va		∋u 2 020	Ala S	Ser (Jlu
Val	Ile 1025		a Ala	a Glr	ı Sei	r Arg 103	-	зр Le	eu Pi	ro A:	-	le 1 035	Phe A	Arg N	/al
Thr	Thr 1040		r Glr	ı Leı	ı Ala	a Asp 104		ro Pi	ro Tì	nr Tl		ខ្ទ រី 250	Thr V	/al I	Leu
Leu	Leu 1055		a Glu	ı Sei	: Glu	1 Gly 100		зр Ті	rp GI	lu A:	-	rp 1 065	Leu (Gln V	/al

											- COI	ntir	nuec	1
Leu	Gly 1070	Glu	Leu	Gln	Arg	Leu 1075	Leu	Leu	Asp	Ala	Arg 1080	Pro	Arg	Pro
Arg	Pro 1085		Tyr	Thr	Leu	Lys 1090	Glu		Tyr		Asn 1095	Gly	Leu	Pro
Leu	Leu 1100	Pro	His	Thr	Leu	Cys 1105		Ala	Ile	Leu	Asp 1110	Gln	Asp	Arg
Leu	Ala 1115		-	Thr	Glu	Glu 1120		Leu	Phe	Val	Ile 1125	His	Leu	Arg
Ser	Asn 1130		Ile	Phe	Gln	Trp 1135					Arg 1140	Val	Gln	Gln
Leu	Thr 1145		Ser	Thr	Gly	Ala 1150						Leu	Суз	Gly
Arg	Gly 1160		Ser	Val	Arg		Phe	Ala	Leu	Ala		Leu	Glu	Asn
Ile	Glu	Val				Lys	Ile	Pro	Glu	Ser	Ala	Gly	Суз	Gln
Val	1175 Leu	Ala		Gly	Ser		Leu					Pro	Val	Leu
Cys	1190 Val		Val			1195 Gln		Leu			1200 Gln	Leu	Gly	Pro
Glv	1205 Pro					1210 Arg					1215 Leu	Gln	- Ala	Pro
-	1220	-		-		1225	-		-		1230			
	Thr 1235					1240			-	_	1245		-	
Gly	Ala 1250		Gly			Ala 1255		Tyr			Leu 1260	Asn	Glu	Ala
Ala	Pro 1265		Ala			Ala 1270					Glu 1275	Glu	Leu	Pro
Pro	Ser 1280		Gly			Gly 1285		Ala			Ala 1290	Val	Glu	Leu
Ser	Leu 1295		Glu	Phe	Leu	Leu 1300		Phe	Thr	Thr	Ala 1305	Gly	Ile	Tyr
Val	Asp 1310										Glu 1320	Leu	Leu	Trp
Pro	Ala 1325					Trp 1330					Pro 1335		Leu	Thr
Val	Phe 1340	Ser	Glu	Asn	Ser	Ile 1345		Val	Phe	Asp	Val 1350	Arg	Arg	Ala
Glu	Trp	Val	Gln	Thr	Val	Pro		Lys	Lys	Val	Arg	Pro	Leu	Asn
Pro	1355 Glu	Gly	Ser	Leu	Phe		-	Gly	Thr	Glu	-	Val	Arg	Leu
Thr	1370 Tyr	Leu	Arg	Asn	Gln	1375 Leu		Glu	Lys	Asp	1380 Glu	Phe	Asp	Ile
Pro	1385 Asp	Leu	Thr	Asp	Asn	1390 Ser	Arq	Arq	Gln	Leu	1395 Phe	Arq	Thr	Lys
	1400 Lys					1405					1410			
	1415	-	-			1420	-	-			1425			-
Gln	Gln 1430	Arg	Arg	Glu	Met	Leu 1435	гла	Asp	Pro	Phe	Val 1440	Arg	Ser	гла
Leu	Ile	Ser	Pro	Pro	Thr	Asn	Phe	Asn	His	Leu	Val	His	Val	Gly

-continued

-continued	
1445 1450 1455	
Pro Ala Asn Gly Arg Pro Gly Ala Arg Asp Lys Ser Pro Ser Gln 1460 1465 1470	
Pro Leu Arg Thr Val Thr Gln Gln Ala Pro Glu Glu Lys Gly Arg 1475 1480 1485	
Val Ala Arg Gly Ser Gly Pro Gln Arg Pro His Ser Phe Ser Glu 1490 1495 1500	
Ala Leu Arg Arg Pro Ala Ser Met Gly Ser Glu Gly Leu Gly Gly 1505 1510 1515	
Asp Ala Asp Pro Thr Gly Ala Val Lys Arg Lys Pro Trp Thr Ser 1520 1525 1530	
Leu Ser Ser Glu Ser Val Ser Cys Pro Gln Gly Ser Leu Ser Pro 1535 1540 1545	
Ala Thr Ser Leu Met Gln Val Ser Glu Arg Pro Arg Ser Leu Pro 1550 1555 1560	
Leu Ser Pro Glu Leu Glu Ser Ser Pro 1565 1570	
<210> SEQ ID NO 5 <211> LENGTH: 5373 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5	
atggagegge ggetgegege getggageag etggegeggg gegaggeegg eggetgeeeg	60
gggetegaeg geeteetaga tetgetgetg gegetgeaec acgageteag cageggeece	120
ctacggcggg agcgcagcgt ggcgcagttc ctgagctggg ccagcccctt cgtatcaaag	180
gtgaaagaac tgcgtctgca gagagatgac tttgagatct tgaaggtgat cggccgagga	240
gcctttgggg aggtcaccgt ggtgaggcag agggacactg ggcagatttt tgccatgaaa	300
atgctgcaca agtgggagat gctgaagagg gctggagcag cctgtttccg ggaggagcgg	360
gatgtgctcg tgaaggtgaa cagccgttgg gtgaccactc tgcactatgc cttccaagac	420
gaggagtacc tgtaccttgt gatggactac tatgctggtg gggacctcct gacgctgctg	480
agccgcttcg aggaccgtct cccgcccgag ctggcccagt tctacctggc tgagatggtg	540
ctggccatcc actcgctgca ccagctgggt tatgtccaca gggactgcaa gccagacaac	600
gteetgetgg atgtgaaegg geacattege etggetgaet teggeteetg eetgegtete	660
aacaccaacg geetggegga tteateagtg geagtaggga egeeggaeta tateteeet	720
gagateetge aggteetgga ggagggeaag ggeeactaeg geeeacagtg tatetggagg	780
tegettggag tetgegeeta tgagetgete tttggggaga egeeetteta tgetgagtee	840
ttggtggaaa cctacggcaa gatcatgaac cacgaggacc acctgcagtt ccccccggac	900
gtgcctgacg tgccagccag cgcccaagac ctgatccgcc agctgctgtg tcgccaggaa	960
gageggetgg geegagtggg getggatgae tteeggaaee ateettett egaaggegtg	1020
gactgggagc ggctggcgag cagcagcgcc ccctatattc ctgagctgcg gggcccaggg	1080
gacaceteca actitgatgt ggatgaegae acceteaace atecagggae eetgeeeegg	1140
contendance gggeettete eggeeateae etgeeatteg tgggetteae etacacetea	1200
ggcagtcaca gtcctgagag cagctctgag gcttgggctg ccctggagcg gaagctccag	1260

		-continued	
tgtctggagc aggagaaggt	ggagetgage aggaageace	aagaggccct gcacgccccc	1320
acagaccatc gggagctgga	gcagctacgg aaggaagtgc	agactctgcg ggacaggctg	1380
ccagagatgc tgagggacaa	ggcctcattg tcccagacgg	atgggccccc agctggtagc	1440
ccaggtcagg acagtgacct	acggcaggag cttgaccgac	ttcaccggga gctggccgag	1500
ggtcgggcag ggctggcgad	tcaggagcag gagctctgca	gggcccaggg gctgcaggag	1560
gagctgcttc agaggctaca	u ggaggcccag gagagagagg	cggccacagc tagccagacc	1620
cgggccctga gctcccagct	gcaggaggcc cgggctgccc	agtgggagct ggaggcccag	1680
gtgtcctccc tgagccggca	u ggtgacgcag ctgcagggac	agtgggagca acgccttgag	1740
gagtcgtccc aggccaagac	e catecacaca geetetgaga	ccaacgggat gggaccccct	1800
gagggtgggc ctcaggaggc	ccaactgagg aaggaggtgg	ccgccctgcg agagcagctg	1860
gagcaggccc acagccacag	gccgagtggt aaggaggagg	ctctgtgcca gctgcaggag	1920
gaaaaccgga ggctgagccg	ggagcaggag cggctagaag	ctgagctgcc ccaggagcag	1980
gagagcaagc agcggctgga	u gggtatgcgg cgggagacgg	agagcaactg ggaggcccag	2040
ctcgccgaca tcctcagctg	ı ggtgaatgat gagaaggtct	caagaggcta cctgcaggcc	2100
ctggccacca agatggcaga	u ggagetgagg teettgagga	acgtaggcac ccagacgctc	2160
cctgcccggc cactgaagat	ggaggcctcg gccaggctgg	agctgcagtc agcgctggag	2220
gccgagatcc gcgccaagca	. gggcctgcag gagcggctga	cacaggtgca ggaggcccag	2280
ctgcaggctg agcgccgtct	gcaggaggcc gagaagcaga	gccaggccct gcaacaggag	2340
ctcgccatgc tgcgggagga	getgggggee egagggeeag	tggacaccaa gccctcaaac	2400
teeetgatte eetteetgte	cttccggagc tcagagaagg	attetgeeaa ggaeeetgge	2460
atctcaggag aggccacaag	gcatggagga gagccagatc	tgagccggca gggccgacgc	2520
agcctgcgca tggggggctgt	gttccccaga gcacccactg	ccaacacagc ctctacagaa	2580
ggtcttcctg ctaagggatg	ı gggcatgggg ccctggagcg	ccttgggtaa tggctgtccc	2640
cctccccagc ccggctcaca	cacgetgege ceeeggaget	tcccatcccc gaccaagtgt	2700
ctccgctgca ccttcctgtt	gettgggetg gggeecaggg	gcttgggctg tgatgcctgc	2760
ggctactttt gtcacacaac	ctgtgcccca cggccatcac	cctgccccgt gccccctgac	2820
ctcctccgca cagccctggg	agtacacccc gaaacaggca	caggcactgc ctatgagggc	2880
tttctgtcgg tgccgcggcc	ctcaggtgtc cggcggggct	ggcagcgcgt gtttgctgcc	2940
ctgagtgact ccgccctgct	gctgtttgac gcccctgacc	tgaggctcag cccgcccagt	3000
ggggccctcc tgcaggtcct	agatetgagg gaeeecagt	tctcggctac ccctgtcctg	3060
gcctctgagg ttatccatgc	ccaatccagg gacctgccac	gcatctttag ggtgacaacc	3120
teccagetgg etgateegee	caccacgtgc actgtgctgc	tgctggcaga gagcgagggg	3180
gactgggagc gctggctgca	ggtgctgggt gagctgcagc	ggetgetget ggaegegegg	3240
ccaagacccc ggcccgtgta	a cacactcaag gaggcttacg	acaacgggct gccgctgctg	3300
ceteacaege tetgegetge	catcctcgac caggatcgac	ttgcgcttgg caccgaggag	3360
gggctctttg tcatccatct	gcgcagcaac gacatcttcc	agtgggagca gtgccggcgc	3420
gtgcagcagc tgaccttgag	ı cacaggtgca ggcctgctgg	tegtgetgtg tggeegegge	3480
cccagcgtgc gtctctttgc	cctggcggag ctggagaaca	tagaggtagc aggtgccaag	3540

<400> SEQUI	ENCE: 6					
cctgcggcta	cttttgtcac	acaacctgtg	ccccacaggc	cccaccctgc	cccgtgcccc	60
ctgacctcct	ccgcacagcc	ctgggagtac	accccgaaac	aggcacaggc	actgcctatg	120
agggctttct	gtcggtgccg	cggccctcag	gtgtccggcg	gggctggcag	cgcgtgtttg	180

<210> SEQ ID NO 6 <211> LENGTH: 1660 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

atccccgagt ctgcaggctg ccaggtgctg gcagctggaa gcatcctgca ggcccgcacc 3660 ccggtgctct gtgtagccgt caagcgccag gtgctctgct accagctggg cccgggccct 3720 gggccctggc agcgccgcat ccgtgagctg caggcacctg ccactgtgca gagcctgggg ctgctgggag accggctatg tgtggggggcc gccggtggct ttgcactcta cccgctgctc 3780 aacgaggetg egeegttgge getggggggee ggtttggtge etgaggaget gecaecatee 3840 cgcggggggcc tgggtgaggc actgggtgcc gtggagctta gcctcagcga gttcctgcta 3900 ctcttcacca ctgctggcat ctacgtggat ggcgcaggcc gcaagtctcg tggccacgag 3960 ctgttgtggc cagcagcgcc catgggctgg gggtatgcgg ccccctacct gacagtgttc 4020 agcgagaact ccatcgatgt gtttgacgtg aggagggcag aatgggtgca gaccgtgccg 4080 ctcaagaagg tgcggcccct caatccagag ggctccctgt tcctctacgg caccgagaag 4140 4200 gtccgcctga cctacctcag gaaccagctg gcagagaagg acgagttcga catcccggac ctcaccgaca acagccggcg ccagctgttc cgcaccaaga gcaagcgccg cttcttttc 4260 cgcggctccg aggagcagca gaagcagcag cgcagggaga tgctgaagga cccttttgtg 4320 cgctccaage teatetegee gectaceaae tteaaceaee tagtacaegt gggeeetgee 4380 aacgggcggc ccggcgccag ggacaagtcc ccgtcccagc ccctccgcac tgtcacccaa 4440 caggeteeeg aagagaaggg eegagttgee egeggeteeg geecaageg geeceacage 4500 tteteegagg egttgeggeg eccageetee atgggeageg aaggeetegg tggagaegea 4560 gaccccactg gagcagtgaa gaggaaaccc tggacatccc tgtccagcga gtctgtgtcc 4620 tgcccccaqq gatcgctgaq ccctgcaacc tccctaatgc aggtctcaga acggccccga 4680 agecteecce tgteccetga attggagage teteettgat geeetetgtt agggeeeace 4740 4800 ccaatcccag ggcagaagga catgagggag caaagagctt gaggaatgcc atactccggc tggtccggga catggaaatt cggactcagg gaggacccgg gctgggcaat gactgggaga 4860 cttgcctggg ttcccaggac ttgggggtcc tgactcccag ccctcatcct gcctaccaac 4920 tctgttccca gccccagcct ttctaagcca ttgggaatag aatggcccct tttgttctgg 4980 tgtccagggg tgattgtgcc aaagctctta tttccagtgc caagccccca gaggcttgta 5040 agagttggga tgagggatgg agagggactg ggtctctggg aacaggttgg aggtcttatc 5100 tgtggactgt ctgactccca gctgaggcca agatggggca tgtccccgtc tctgcttagc 5160 gtctgggtga gaaaaacagg ctgtgatcca gaagaaggga agatagagaa ggagggagag 5220 gatgtaggcg aaggaggtga gagacaggat aggaggaagg aagtggagga ggaggtggta 5280 ggaattggaa ggaggtagaa gccgtgcaga ggaagagggg agagggacga aggaggagcg 5340 atgaagaaga ggagggagac aaaaaaaggg aag 5373

US 2008/0153147 A1

-continued

-continued	
ctgccctgag tgactcacgc ctgctgctgt ttgacgcccc tgacctgagg ctcagcccgc	240
ccagtggggc cctcctgcag gtcctagatc tgagggaccc ccagttctcg gctacccctg	300
tcctggcctc tgatgttatc catgcccaat ccagggacct gccacgcatc tttagggtga	360
caacctccca gctggcagtg ccgcccacca cgtgcactgt gctgctgctg gcagagagcg	420
agggggagcg ggaacgctgg ctgcaggtgc tgggtgagct gcagcggctg ctgctggacg	480
cgcggccaag accccggccc gtgtacacac tcaaggaggc ttacgacaac gggctgccgc	540
tgetgeetea caegetetge getgeeatee tegaceagga tegaettgeg ettggeaeeg	600
aggaggggct ctttgtcatc catctgcgca gcaacgacat cttccaggtg ggggagtgcc	660
ggegegtgea geagetgaee ttgageeeea gtgeaggeet getggtegtg etgtgtggee	720
gcggccccag cgtgcgtctc tttgccctgg cggagctgga gaacatagag gtagcaggtg	780
cccaagatcc ccgagtctcg aggctgccag gtgctggcag ctggaagcat cctgcaggcc	840
cgcaccccgg tgctctgtgt agccgtcaag cgccaggtgc tctgctacca gctgggcccg	900
ggccctgggc cctggcagcg ccgcatccgt gagctgcagg cacctgccac tgtgcagagc	960
ctggggctgc tgggcgaccg gctatgtgtg ggcgccgccg gtggctttgc actctacccg	1020
ctgctcaacg aggctgcgcc gttggcgctg ggggccggtt tggtgcctga ggagctgcca	1080
ccatcccgcg ggggcctggg tgaggcactg ggtgccgtgg agettageet cagegagtte	1140
ctgctactct tcaccactgc tggcatctac gtggatggcg caggccgcaa gtctcgtggc	1200
cacgagetgt tgtggeeage agegeeeatg ggetgggggt atgeggeeee etaeetgaea	1260
gtgttcagcg agaactccat cgatgtgttt gacgtgagga gggcagaatg ggtgcagacc	1320
gtgeegetea agaagggtge ggeeeeteaa teeagaggge teeetgttee tetaeggeae	1380
cgagaaggtc cgcctgacct acctcaggaa ccagctggca gagaaggacg agttcgacat	1440
cccggacete accgacaaca geeggegeea getgtteege accaagagea agegeegett	1500
ctttttccgc gtgtcggagg agcagcagaa gcagcagcgc agggagatgc tgaaggaccc	1560
ttttgtgcgc tecaagetea tetegeegee taceaaette aaceaeetag tacaegtggg	1620
ccctgccaac gggcggcccg gcgccaggga caagtccccg	1660
<210> SEQ ID NO 7 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 7	
gctggcatct acgtggatg	19
<210> SEQ ID NO 8 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 8	
gtggttgaag ttggtaggcg	20
<210> SEQ ID NO 9 <211> LENGTH: 447 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	

<400> SEQUENCE: 9	
gctggcatct acgtggatgg cgcaggccgc aagtctcgtg gccacgagct gttgtggcca	60
gcagegeeca tgggetgggg gtatgeggee eeetaeetga cagtgtteag egagaaetee	120
atcgatgtgt ttgacgtgag gagggcagaa tgggtgcaga ccgtgccgct caagaaggtg	180
cggcccctca atccagaggg ctccctgttc ctctacggca ccgagaaggt ccgcctgacc	240
tacctcagga accagctggc agagaaggac gagttcgaca tcccggacct caccgacaac	300
ageeggegee agetgtteeg caccaagage aagegeeget tettttteeg egtgteggag	360
gagcagcaga agcagcagcg cagggagatg ctgaaggacc cttttgtgcg ctccaagctc	420
atctcgccgc ctaccaactt caaccac	447
<210> SEQ ID NO 10 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 10	
aaaggtgaaa gaactgcgtc t	21
<210> SEQ ID NO 11 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 11	
aggugaaaga acugcgucuu u	21
<210> SEQ ID NO 12 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 12	
uuuccacuuu cuugacgcag a	21
<210> SEQ ID NO 13 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 13	
aaggtgaaag aactgcgtct g	21
<210> SEQ ID NO 14 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 14	
ggugaaagaa cugcgucugu u	21
<210> SEQ ID NO 15 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 15	

- C·	continued	
uuccacuuuc uugacgcaga c	21	
-010- CEO ID NO 16		
<210> SEQ ID NO 16 <211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 16		
aaagaactgc gtctgcagag a	21	
<210> SEQ ID NO 17		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 17		
agaacugcgu cugcagagau u	21	
<210> SEQ ID NO 18		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 18		
uuucuugacg cagacgucuc u	21	
<210> SEQ ID NO 19		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 19		
aacggcatgg tggattcatc a	21	
<210> SEQ ID NO 20		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 20		
cggcauggug gauucaucau u	21	
<210> SEQ ID NO 21		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
- <400> SEQUENCE: 21		
uugccguacc accuaaguag u	21	
<210> SEQ ID NO 22		
<211> LENGTH: 21		
<212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 22		
aaacctacgg caagatcatg a	21	
-010, CEO TO NO 02		
<210> SEQ ID NO 23 <211> LENGTH: 21		
<211> HENGIN: 21 <212> TYPE: RNA		

	-continued	
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 23		
accuacggca agaucaugau u	21	
<210> SEQ ID NO 24 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 24		
uuuggaugcc guucuaguac u	21	
<210> SEQ ID NO 25 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 25		
aacctacggc aagatcatga a	21	
<210> SEQ ID NO 26 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 26		
ccuacggcaa gaucaugaau u	21	
<210> SEQ ID NO 27 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 27		
uuggaugccg uucuaguacu u	21	
<210> SEQ ID NO 28 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 28		
aagatcatga accacgagga c	21	
<210> SEQ ID NO 29 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 29		
gaucaugaac cacgaggacu u	21	
<210> SEQ ID NO 30 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 30		
uucuaguacu uggugcuccu g	21	

	-continued
<210> SEQ ID NO 31	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
-	
<400> SEQUENCE: 31	
aaccatcctt tcttcgaagg c	21
<210> SEQ ID NO 32	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 32	
ccauccuuuc uucgaaggcu u	21
2105 SEO ID NO 22	
<210> SEQ ID NO 33 <211> LENGTH: 21	
<211> DENGIR: 21 <212> TYPE: RNA	
<212> IIIE. NWA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 33	
uugguaggaa agaagcuucc g	21
<210> SEQ ID NO 34	
<211> LENGTH: 21 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Homo sapiens	
(213) OKGANISH: HOMO Sapiens	
<400> SEQUENCE: 34	
aactttgatg tggatgacga c	21
<210> SEQ ID NO 35	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
(213) OKGANISH: HOMO Sapiens	
<400> SEQUENCE: 35	
cuuugaugug gaugacgacu u	21
<210> SEQ ID NO 36	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 36	
<400> SEQUENCE: 36	
uugaaacuac accuacugcu g	21
<210> SEQ ID NO 37	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 37	
astratrana arritraser s	21
aatgatgaga aggtctcaag a	21
<210> SEQ ID NO 38	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	

	concinaca
<400> SEQUENCE: 38	
ugaugagaag gucucaagau u	21
<210> SEQ ID NO 39 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 39	
uuacuacucu uccagaguuc u	21
<210> SEQ ID NO 40 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 40	
aacacageet etacagaagg t	21
<210> SEQ ID NO 41 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 41	
cacagccucu acagaagguu u	21
<pre><210> SEQ ID NO 42 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens </pre>	
<400> SEQUENCE: 42 uugugucgga gaugucuucc a	21
<210> SEQ ID NO 43 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 43	
aactccatcg atgtgtttga c	21
<210> SEQ ID NO 44 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 44	
cuccaucgau guguuugacu u	21
<210> SEQ ID NO 45 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 45	
uugagguagc uacacaaacu g	21

<210> SEQ ID NO 46

	-continued
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
- <400> SEQUENCE: 46	
aacttcaacc acctagtaca c	21
<210> SEQ ID NO 47	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 47	
cuucaaccac cuaguacacu u	21
5	
<210> SEQ ID NO 48	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 48	
uugaaguugg uggaucaugu g	21
<210> SEQ ID NO 49	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
-	
<400> SEQUENCE: 49	
caaaggtgaa agaactgcgt c	21
<210> SEQ ID NO 50	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 50	
aaggugaaag aacugcgucu u	21
ALL CEA ID NO FI	
<210> SEQ ID NO 51 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 51	
uuuuccacuu ucuugacgca g	21
AND SEC ID NO FO	
<210> SEQ ID NO 52 <211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 52	
cagagagatg actttgagat c	21
<210> SEQ ID NO 53	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<u>r</u>	

<400> SEQUENCE: 53

-continued		
gagagaugac uuugagaucu u	21	
<210> SEQ ID NO 54 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
- <400> SEQUENCE: 54		
uucucucuac ugaaacucua g	21	
<210> SEQ ID NO 55 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 55		
cactctgcac tatgccttcc a	21	
<210> SEQ ID NO 56 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 56		
cucugcacua ugccuuccau u	21	
<210> SEQ ID NO 57 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 57		
uugagacgug auacggaagg u	21	
<210> SEQ ID NO 58 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 58		
cactatgeet tecaagaega g	21	
<210> SEQ ID NO 59 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 59		
cuaugccuuc caagacgagu u	21	
<210> SEQ ID NO 60 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 60		
uugauacgga agguucugcu c	21	
<210> SEQ ID NO 61 <211> LENGTH: 21 <212> TYPE: DNA		

-continued <213> ORGANISM: Homo sapiens <400> SEQUENCE: 61 21 caagacgagg agtacctgta c <210> SEQ ID NO 62 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 62 agacgaggag uaccuguacu u 21 <210> SEQ ID NO 63 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 63 uuucugcucc ucauggacau g 21 <210> SEQ ID NO 64 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 64 cagttetace tggetgagat g 21 <210> SEQ ID NO 65 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 65 21 guucuaccug gcugagaugu u <210> SEQ ID NO 66 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 66 21 uucaagaugg accgacucua c <210> SEQ ID NO 67 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 67 caacgtcctg ctggatgtga a 21 <210> SEQ ID NO 68 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 68 21 acguccugcu ggaugugaau u

- COI	ltinued
<210> SEQ ID NO 69	
<211> LENGTH: 21	
<212> TYPE: RNA	
213> ORGANISM: Homo sapiens	
400> SEQUENCE: 69	
uugcaggac gaccuacacu u	21
:210> SEQ ID NO 70	
:211> LENGTH: 21	
212> TYPE: DNA	
213> ORGANISM: Homo sapiens	
400> SEQUENCE: 70	
aacggcatg gtggattcat c	21
210> SEQ ID NO 71	
211> LENGTH: 21	
212> TYPE: RNA	
213> ORGANISM: Homo sapiens	
400> SEQUENCE: 71	
cggcauggu ggauucaucu u	21
210> SEQ ID NO 72	
211> LENGTH: 21	
212> TYPE: RNA	
213> ORGANISM: Homo sapiens	
400> SEQUENCE: 72	
uugccguac caccuaagua g	21
<210> SEQ ID NO 73	
:211> LENGTH: 21	
212> TYPE: DNA	
212> TIFE: DNA 213> ORGANISM: Homo sapiens	
ATOS ONORMIDIN. HOMO BAPICHB	
400> SEQUENCE: 73	
100× DEQUENCE: 10	
etaataaet toetoeataa o	21
atggtggat tcatcagtgg c	21
210- CEO ID NO 74	
210> SEQ ID NO 74	
211> LENGTH: 21	
212> TYPE: RNA	
213> ORGANISM: Homo sapiens	
400> SEQUENCE: 74	
gguggauuc aucaguggcu u	21
ALA, CHA ID NO TE	
210> SEQ ID NO 75	
211> LENGTH: 21	
212> TYPE: RNA	
213> ORGANISM: Homo sapiens	
400> SEQUENCE: 75	
uaccaccua aguagucacc g	21
210> SEQ ID NO 76	
211> LENGTH: 21	
212> TYPE: DNA	
213> ORGANISM: Homo sapiens	

	concentrated
<400> SEQUENCE: 76	
caagatcatg aaccacgagg a	21
<210> SEQ ID NO 77 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 77	
agaucaugaa ccacgaggau u	21
<210> SEQ ID NO 78 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 78	
uuucuaguac uuggugcucc u	21
<210> SEQ ID NO 79 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 79	
cateettet tegaaggegt g	21
<pre><210> SEQ ID NO 80 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens </pre>	
<400> SEQUENCE: 80	21
uccuuucuuc gaaggcgugu u	21
<210> SEQ ID NO 81 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 81	
uuaggaaaga agcuuccgca c	21
<210> SEQ ID NO 82 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 82	
catggacacc tccaactttg a	21
<210> SEQ ID NO 83 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 83	
uggacaccuc caacuuugau u	21

<210> SEQ ID NO 84

<211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 84 21 uuaccugugg agguugaaac u <210> SEQ ID NO 85 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 85 cacctccaac tttgatgtgg a 21 <210> SEQ ID NO 86 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 86 ccuccaacuu ugauguggau u 21 <210> SEQ ID NO 87 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 87 uuggagguug aaacuacacc u 21 <210> SEQ ID NO 88 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 88 caactttgat gtggatgacg a 21 <210> SEQ ID NO 89 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 89 21 acuuugaugu ggaugacgau u <210> SEQ ID NO 90 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 90 uuugaaacua caccuacugc u 21 <210> SEQ ID NO 91 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 91

63

64

- C	continued	
cagagaagga ttctgccaag g	21	
<210> SEQ ID NO 92		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 92		
gagaaggauu cugccaaggu u	21	
<210> SEQ ID NO 93		
<2105 SEQ 15 NO 93 <2115 LENGTH: 21		
<211> HENGIN: 21 <212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 93		
uucucuuccu aagacgguuc c	21	
<210> SEQ ID NO 94 <211> LENGTH: 21		
<211> LENGIH: 21 <212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 94		
caacacagcc tctacagaag g	21	
<210> SEQ ID NO 95		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
- <400> SEQUENCE: 95		
acacagecuc uacagaaggu u	21	
<210> SEQ ID NO 96		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 96		
uuugugucgg agaugucuuc c	21	
<210> SEQ ID NO 97		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 97		
cacageetet acagaaggte t	21	
<210> SEQ ID NO 98		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 98		
	21	
cagccucuac agaaggucuu u	21	
<210> SEQ ID NO 99		
<211> LENGTH: 21		
<212> TYPE: RNA		

<212> TYPE: RNA

	-continued	
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 99		
uugucggaga ugucuuccag a	21	
<210> SEQ ID NO 100 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 100		
cagcetetac agaaggtett c	21	
<210> SEQ ID NO 101 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 101		
gccucuacag aaggucuucu u	21	
<210> SEQ ID NO 102 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 102		
uucggagaug ucuuccagaa g	21	
<210> SEQ ID NO 103 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 103		
cagaaggtct tcctgctaag g	21	
<210> SEQ ID NO 104 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 104		
gaaggucuuc cugcuaaggu u	21	
<210> SEQ ID NO 105 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 105		
uucuuccaga aggacgauuc c	21	
<210> SEQ ID NO 106 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 106		
cacactcaag gaggcttacg a	21	

66

	-continued
<210> SEQ ID NO 107 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 107	
cacucaagga ggcuuacgau u	21
<210> SEQ ID NO 108 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 108	
uugugaguuc cuccgaaugc u	21
<210> SEQ ID NO 109 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 109	
cactcaagga ggcttacgac a	21
<210> SEQ ID NO 110 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 110	
cucaaggagg cuuacgacau u	21
<210> SEQ ID NO 111 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 111	
uugaguuccu ccgaaugcug u	21
<210> SEQ ID NO 112 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 112	
cagcaacgac atcttccagg t	21
<210> SEQ ID NO 113 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 113	
gcaacgacau cuuccagguu u	21
<210> SEQ ID NO 114 <211> LENGTH: 21 <212> TYPE: RNA <213> DEGENISM: Homo sapiens	

<213> ORGANISM: Homo sapiens

	concinaca
<400> SEQUENCE: 114	
uucguugcug uagaaggucc a	21
<210> SEQ ID NO 115 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 115	
catagaggta gcaggtgcca a	21
<210> SEQ ID NO 116 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 116	
uagagguagc aggugccaau u	21
<210> SEQ ID NO 117 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 117	
uuaucuccau cguccacggu u	21
<210> SEQ ID NO 118 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 118	
cagcgagttc ctgctactct t	21
<210> SEQ ID NO 119 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 119	
gcgaguuccu gcuacucuuu u	21
<210> SEQ ID NO 120 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 120	
uucgcucaag gacgaugaga a	21
<210> SEQ ID NO 121 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 121	
cagtgttcag cgagaactcc a	21
-210- CEO ID NO 100	

<210> SEQ ID NO 122

<211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 122 21 guguucagcg agaacuccau u <210> SEQ ID NO 123 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 123 uucacaaguc gcucuugagg u 21 <210> SEQ ID NO 124 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 124 cagegagaac tecategatg t 21 <210> SEQ ID NO 125 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 125 gcgagaacuc caucgauguu u 21 <210> SEQ ID NO 126 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 126 uucgcucuug agguagcuac a 21 <210> SEQ ID NO 127 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 127 21 catcgatgtg tttgacgtga g <210> SEQ ID NO 128 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 128 ucgauguguu ugacgugagu u 21 <210> SEQ ID NO 129 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 129

68

-continued			
uuagcuacac aaacugcacu c	21		
<210> SEQ ID NO 130			
<211> LENGTH: 21			
<212> TYPE: DNA			
<213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 130			
cagagaagga cgagttcgac a	21		
<210> SEQ ID NO 131 <211> LENGTH: 21			
<212> TYPE: RNA			
<213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 131			
gagaaggacg aguucgacau u	21		
<210> SEQ ID NO 132			
<211> LENGTH: 21			
<212> TYPE: RNA <213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 132			
uucucuuccu gcucaagcug u	21		
<210> SEQ ID NO 133			
<211> LENGTH: 21			
<212> TYPE: DNA			
<213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 133			
caacttcaac cacctagtac a	21		
<210> SEQ ID NO 134			
<211> LENGTH: 21			
<212> TYPE: RNA <213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 134			
acuucaacca ccuaguacau u	21		
<210> SEQ ID NO 135			
<2103 SEQ 1D NO 135 <211> LENGTH: 21			
<212> TYPE: RNA			
<213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 135			
uuugaaguug guggaucaug u	21		
<210> SEQ ID NO 136			
<211> LENGTH: 21			
<212> TYPE: DNA <213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 136			
gaaagaactg cgtctgcaga g	21		
<210> SEQ ID NO 137			
<211> LENGTH: 21 <212> TYPE: RNA			
<212> IIFE: RNA			

-continued <213> ORGANISM: Homo sapiens <400> SEQUENCE: 137 21 aagaacugcg ucugcagagu u <210> SEQ ID NO 138 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 138 uuuucuugac gcagacgucu c 21 <210> SEQ ID NO 139 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 139 gaactgcgtc tgcagagaga t 21 <210> SEQ ID NO 140 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 140 acugcgucug cagagagauu u 21 <210> SEQ ID NO 141 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 141 21 uuugacgcag acgucucucu a <210> SEQ ID NO 142 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 142 21 gagagatgac tttgagatct t <210> SEQ ID NO 143 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 143 gagaugacuu ugagaucuuu u 21 <210> SEQ ID NO 144 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 144 21 uucucuacug aaacucuaga a

	-continued
<210> SEQ ID NO 145	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 145	
(100) Shyohnel. 115	
gagatgactt tgagatcttg a	21
010 (EO TR NO 146	
<210> SEQ ID NO 146 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 146	
gaugacuuug agaucuugau u	21
gaagacaaag agaacaagaa a	21
<210> SEQ ID NO 147	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
aptend	
<400> SEQUENCE: 147	
uucuacugaa acucuagaac u	21
<210> SEQ ID NO 148	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 148	
(100) BEQUERCE. 110	
gatgactttg agatcttgaa g	21
<210> SEQ ID NO 149	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 149	
ugacuuugag aucuugaagu u	21
<210> SEQ ID NO 150	
<211> LENGTH: 21 <212> TYPE: RNA	
<212> IIIE. NAA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 150	
	21
uuacugaaac ucuagaacuu c	21
<210> SEQ ID NO 151	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 151	
gactttgaga tettgaaggt g	21
<210> SEQ ID NO 152	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	

	concinaca	
<400> SEQUENCE: 152		
cuuugagauc uugaaggugu u	21	
<210> SEQ ID NO 153 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 153		
uugaaacucu agaacuucca c	21	
<210> SEQ ID NO 154 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 154		
gagatettga aggtgategg e	21	
<210> SEQ ID NO 155 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 155		
gaucuugaag gugaucggcu u	21	
<210> SEQ ID NO 156 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 156		
uucuagaacu uccacuagcc g	21	
<210> SEQ ID NO 157 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 157		
gaccactctg cactatgcct t	21	
<210> SEQ ID NO 158 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 158		
ccacucugca cuaugccuuu u	21	
<210> SEQ ID NO 159 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 159		
uuggugagac gugauacgga a	21	
<210> SEQ ID NO 160		

	concinaca	
<211> LENGTH: 21 <212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 160		
gacgaggagt acctgtacct t	21	
<210> SEQ ID NO 161 <211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 161		
cgaggaguac cuguaccuuu u	21	
<210> SEQ ID NO 162 <211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 162		
uugcuccuca uggacaugga a	21	
<210> SEQ ID NO 163		
<211> LENGTH: 21 <212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 163		
gaggagtacc tgtaccttgt g	21	
<210> SEQ ID NO 164		
<211> LENGTH: 21 <212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 164		
ggaguaccug uaccuugugu u	21	
<210> SEQ ID NO 165		
<211> LENGTH: 21 <212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 165		
uuccucaugg acauggaaca c	21	
<210> SEQ ID NO 166		
<211> LENGTH: 21 <212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 166		
gagtacctgt accttgtgat g	21	
<210> SEQ ID NO 167		
<211> LENGTH: 21 <212> TYPE: RNA		
<212> IFFE: INA <213> ORGANISM: Homo sapiens		

<400> SEQUENCE: 167

	-continued	
guaccuguac cuugugaugu u	21	
<210> SEQ ID NO 168		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 168		
uucauggaca uggaacacua c	21	
<210> SEQ ID NO 169		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 169		
gatggactac tatgctggtg g	21	
<210> SEQ ID NO 170		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 170		
uggacuacua ugcugguggu u	21	
<210> SEQ ID NO 171		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 171		
uuaccugaug auacgaccac c	21	
<210> SEQ ID NO 172		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 172		
gatgtcaagc cagacaacgt c	21	
<210> SEQ ID NO 173		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 173		
ugucaagcca gacaacgucu u	21	
-210- CEO ID NO 174		
<210> SEQ ID NO 174 <211> LENGTH: 21		
<211> LENGTH: 21 <212> TYPE: RNA		
<212> IIFE: INA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 174		
uuacaguucg gucuguugca g	21	
<210> SEQ ID NO 175		
<211> LENGTH: 21		
<212> TYPE: DNA		

	concinaca	
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 175		
gagteettgg tggaaaeeta e	21	
<210> SEQ ID NO 176 <211> LENGTH: 21 <212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 176		
guccuuggug gaaaccuacu u	21	
<210> SEQ ID NO 177 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 177		
uucaggaacc accuuuggau g	21	
<210> SEQ ID NO 178 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 178		
gaaacctacg gcaagatcat g	21	
<210> SEQ ID NO 179 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 179		
aaccuacggc aagaucaugu u	21	
<210> SEQ ID NO 180 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 180		
uuuuggaugc cguucuagua c	21	
<210> SEQ ID NO 181 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 181		
gatcatgaac cacgaggacc a	21	
<210> SEQ ID NO 182 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 182		
ucaugaacca cgaggaccau u	21	

75

- C	continued
<210> SEQ ID NO 183	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 183	
uuaguacuug gugcuccugg u	21
<210> SEQ ID NO 184	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
LISS ONORADA. Homo Supremb	
<400> SEQUENCE: 184	
gatgacttcc ggaaccatcc t	21
<210> SEQ ID NO 185	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
2152 OKOMATSM. Homo saprens	
<400> SEQUENCE: 185	
ugacuuccgg aaccauccuu u	21
<210> SEQ ID NO 186	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
(213) OKGANISH. Nomo sapiens	
<400> SEQUENCE: 186	
uuacugaagg ccuugguagg a	21
<210> SEQ ID NO 187	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
1	
<400> SEQUENCE: 187	
asattaaaas saastaattt a	21
gactteegga accateettt e	2 ±
<210> SEQ ID NO 188	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
*	
<400> SEQUENCE: 188	
сииссддаас саиссиииси и	21
<210> SEQ ID NO 189	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 189	
uugaaggccu ugguaggaaa g	21
010 GEO ID NO 100	
<210> SEQ ID NO 190 <211> LENGTH: 21	
<211> HENGIN: 21 <212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	

	concinaca	
<400> SEQUENCE: 190		
gaaccatcct ttcttcgaag g	21	
<210> SEQ ID NO 191 <211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 191		
accauccuuu cuucgaaggu u	21	
<210> SEQ ID NO 192		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 192		
uuugguagga aagaagcuuc c	21	
<210> SEQ ID NO 193		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 193		
gacacctcca actttgatgt g	21	
<210> SEQ ID NO 194		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 194		
caccuccaac uuugaugugu u	21	
<210> SEQ ID NO 195		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 195		
uuguggaggu ugaaacuaca c	21	
00 0		
<210> SEQ ID NO 196		
<211> LENGTH: 21 <212> TYPE: DNA		
<212> IIFE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 196		
gaatgatgag aaggteteaa g	21	
<210> SEQ ID NO 197		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 197		
augaugagaa ggucucaagu u	21	
040 GEO TE NO 400		

<210> SEQ ID NO 198

<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 198	
	21
uuuacuacuc uuccagaguu c	21
<210> SEQ ID NO 199	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 199	
gatgagaagg teteaagagg e	21
-010- CEO ID NO 000	
<210> SEQ ID NO 200 <211> LENGTH: 21	
<211> HENGIN: 21 <212> TYPE: RNA	
<pre><213> ORGANISM: Homo sapiens</pre>	
<u>-</u>	
<400> SEQUENCE: 200	
ugagaagguc ucaagaggcu u	21
<210> SEQ ID NO 201	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 201	
~	
uuacucuucc agaguucucc g	21
<210> SEQ ID NO 202	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 202	
~	
gagaaggtct caagaggcta c	21
<210> SEQ ID NO 203	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 203	
-	
gaaggucuca agaggcuacu u	21
<210> SEQ ID NO 204	
<211> LENGTH: 21	
<212> TYPE: RNA <213> OPGANISM: Homo, sapiens	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 204	
~	
uucuuccaga guucuccgau g	21
<210> SEQ ID NO 205	
<211> LENGTH: 21	
<212> TYPE: DNA <213> OPGANISM: Homo gapieng	
<213> ORGANISM: Homo sapiens	

<400> SEQUENCE: 205

79

- C	continued
gaaggtetea agaggetaee t	21
<210> SEQ ID NO 206	
<211> LENGTH: 21	
<211> HENGIN. 21 <212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
-	
<400> SEQUENCE: 206	
aggucucaag aggcuaccuu u	21
<210> SEQ ID NO 207	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 207	
uuuccagagu ucuccgaugg a	21
<210> SEQ ID NO 208	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 208	
gageteagag aaggattetg e	21
<210> SEQ ID NO 209	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 209	
gcucagagaa ggauucugcu u	21
<210> SEQ ID NO 210	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 210	
uucgagucuc uuccuaagac g	21
<210> SEQ ID NO 211	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<213> ORGANISM: HOMO Sapiens	
<400> SEQUENCE: 211	
gagaaggatt ctgccaagga c	21
<210> SEQ ID NO 212	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 212	
gaaggauucu gccaaggacu u	21
2	
<210> SEQ ID NO 213	
<211> LENGTH: 21	
<212> TYPE: RNA	

<213> ORGANISM: Homo sapiens <400> SEQUENCE: 213 21 uucuuccuaa gacgguuccu g <210> SEQ ID NO 214 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 214 gagctggaga acatagaggt a 21 <210> SEQ ID NO 215 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 215 gcuggagaac auagagguau u 21 <210> SEQ ID NO 216 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 216 uucgaccucu uguaucucca u 21 <210> SEQ ID NO 217 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 217 21 gagaacatag aggtagcagg t <210> SEQ ID NO 218 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 218 21 gaacauagag guagcagguu u <210> SEQ ID NO 219 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 219 uucuuguauc uccaucgucc a 21 <210> SEQ ID NO 220 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 220 21 gaacatagag gtagcaggtg c

80

	-continued
<210> SEQ ID NO 221	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 221	
	21
acauagaggu agcaggugcu u	21
<210> SEQ ID NO 222	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 222	
uuuguaucuc caucguccac g	21
<210> SEQ ID NO 223	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 223	
	A 1
gagtteetge tactetteae e	21
<210> SEQ ID NO 224	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 224	
guuccugcua cucuucaccu u	21
AND SEC ID NO 225	
<210> SEQ ID NO 225 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
400 CEOUENCE 225	
<400> SEQUENCE: 225	
uucaaggacg augagaagug g	21
<210> SEQ ID NO 226	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 226	
gacagtgttc agcgagaact c	21
5 9-99-9 ~9 ~~~~ 0	
<210> SEQ ID NO 227	
<210> SEQ 1D NO 227 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 227	
caguguucag cgagaacucu u	21
<210> SEQ ID NO 228	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: Homo sapiens	
Let. onerhibit. neme suprens	

	concinaca
<400> SEQUENCE: 228	
uugucacaag ucgcucuuga g	21
<210> SEQ ID NO 229	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 229	
gagaacteea tegatgtgtt t	21
<210> SEQ ID NO 230	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 230	
gaacuccauc gauguguuuu u	21
<210> SEQ ID NO 231	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 231	
uucuugaggu agcuacacaa a	21
<210> SEQ ID NO 232	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 232	
gaactccatc gatgtgtttg a	21
<210> SEQ ID NO 233 <211> LENGTH: 21	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 233	
acuccaucga uguguuugau u	21
<210> SEQ ID NO 234	
<211> LENGTH: 21 <212> TYPE: RNA	
<pre><212> TIFE: RNA <213> ORGANISM: Homo sapiens</pre>	
<400> SEQUENCE: 234	
uuugagguag cuacacaaac u	21
ALL CENTENNO DE	
<210> SEQ ID NO 235 <211> LENGTH: 21	
<211> DENGIN: 21 <212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 235	
gatgtgtttg acgtgaggag g	21
-2105 SEO ID NO 226	

<210> SEQ ID NO 236

<211> LENGTH: 21

<212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 236 21 uguguuugac gugaggaggu u <210> SEQ ID NO 237 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 237 uuacacaaac ugcacuccuc c 21 <210> SEQ ID NO 238 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 238 gagaaggacg agttcgacat c 21 <210> SEQ ID NO 239 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 239 gaaggacgag uucgacaucu u 21 <210> SEQ ID NO 240 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 240 uucuuccugc ucaagcugua g 21 <210> SEQ ID NO 241 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 241 21 tatcaaaggt gaaagaactg c <210> SEQ ID NO 242 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 242 ucaaagguga aagaacugcu u 21 <210> SEQ ID NO 243 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 243

83

- C(ontinued	
uuaguuucca cuuucuugac g	21	
<210> SEQ ID NO 244		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 244		
tacetgtace ttgtgatgga e	21	
<210> SEQ ID NO 245		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 245		
ccuguaccuu gugauggacu u	21	
<210> SEQ ID NO 246		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 246		
uuggacaugg aacacuaccu g	21	
<210> SEQ ID NO 247		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 247		
tacettgtga tggactaeta t	21	
<210> SEQ ID NO 248		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 248		
ccuugugaug gacuacuauu u	21	
<210> SEQ ID NO 249		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 249		
uuggaacacu accugaugau a	21	
<210> SEQ ID NO 250		
<2103 SEQ 1D NO 250 <211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 250		
tatgctgagt ccttggtgga a	21	
<210> SEQ ID NO 251		
<211> LENGTH: 21		
<212> TYPE: RNA		

	-continued	
<pre><213> ORGANISM: Homo sapiens</pre>		
<400> SEQUENCE: 251		
ugcugagucc uugguggaau u	21	
<210> SEQ ID NO 252 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 252		
uuacgacuca ggaaccaccu u	21	
<210> SEQ ID NO 253 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 253		
tacggcaaga tcatgaacca c	21	
<210> SEQ ID NO 254 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 254		
cggcaagauc augaaccacu u	21	
<210> SEQ ID NO 255 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 255		
uugeeguueu aguaeuuggu g	21	
<210> SEQ ID NO 256 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 256		
tacagaaggt cttcctgcta a	21	
<210> SEQ ID NO 257 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 257		
cagaaggucu uccugcuaau u	21	
<210> SEQ ID NO 258 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 258		
uugucuucca gaaggacgau u	21	

- C·	continued	
<210> SEQ ID NO 259		
<211> LENGTH: 21		
212> TYPE: DNA		
213> ORGANISM: Homo sapiens		
AAA, CHOURNER DEA		
:400> SEQUENCE: 259		
acacactca aggaggctta c	21	
:210> SEQ ID NO 260		
<211> LENGTH: 21		
212> TYPE: RNA		
213> ORGANISM: Homo sapiens		
:400> SEQUENCE: 260		
cacacucaag gaggcuuacu u	21	
acacacady gaggeaaaca a	21	
<210> SEQ ID NO 261		
:211> LENGTH: 21		
212> TYPE: RNA		
213> ORGANISM: Homo sapiens		
:400> SEQUENCE: 261		
	0.1	
ugugugagu uccuccgaau g	21	
<210> SEQ ID NO 262		
<211> LENGTH: 21		
:212> TYPE: DNA		
213> ORGANISM: Homo sapiens		
-		
400> SEQUENCE: 262		
caccaacttc aaccacctag t	21	
<210> SEQ ID NO 263		
<211> LENGTH: 21		
<212> TYPE: RNA		
213> ORGANISM: Homo sapiens		
-		
<400> SEQUENCE: 263		
ccaacuucaa ccaccuaguu u	21	
-010- CEO TO NO 064		
<pre><210> SEQ ID NO 264 <211> LENCTH, 21</pre>		
211> LENGTH: 21 212> TYPE: RNA		
212> TIFE: RWA 213> ORGANISM: Homo sapiens		
22. Storatori, nono suprens		
:400> SEQUENCE: 264		
uugguugaag uugguggauc a	21	
210> SEQ ID NO 265		
211> LENGTH: 21		
:212> TYPE: DNA :213> ORGANISM: Homo sapiens		
2132 OKOMMISH: HOMO SAPIENS		
:400> SEQUENCE: 265		
~~~~~~		
aacggcatgg tggattcatc a	21	
210> SEQ ID NO 266		
211> LENGTH: 21		
212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		

	concinaca	
<400> SEQUENCE: 266		
cggcauggug gauucaucau u	21	
010. CEO TE NO 005		
<210> SEQ ID NO 267 <211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 267		
uugccguacc accuaaguag u	21	
<210> SEQ ID NO 268		
<211> LENGTH: 21		
<212> TYPE: DNA <213> ORGANISM: Homo sapiens		
	21	
aacctacggc aagatcatga a	21	
<210> SEQ ID NO 269		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 269		
ccuacggcaa gaucaugaau u	21	
<210> SEQ ID NO 270		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
- <400> SEQUENCE: 270		
~ uuggaugccg uucuaguacu u	21	
<210> SEQ ID NO 271		
<211> LENGTH: 21		
<212> TYPE: DNA <213> ORGANISM: Homo sapiens		
	01	
cactatgcct tccaagacga g	21	
<210> SEQ ID NO 272		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 272		
cuaugccuuc caagacgagu u	21	
<210> SEQ ID NO 273		
<211> LENGTH: 21 <212> TYPE: RNA		
<212> IIFE: INA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 273		
uugauacgga agguucugcu c	21	

<210> SEQ ID NO 274

		-concinued	
<pre>&lt;211&gt; LENGTH: 2 &lt;212&gt; TYPE: DNF &lt;213&gt; ORGANISM:</pre>	A		
<400> SEQUENCE:	274		
caacggcatg gtg	gattcat c		21
<210> SEQ ID NO <211> LENGTH: 2 <212> TYPE: RNA <213> ORGANISM:	21		
<400> SEQUENCE:	275		
acggcauggu ggau	ucaucu u		21
<pre>&lt;210&gt; SEQ ID NC &lt;211&gt; LENGTH: 2 &lt;212&gt; TYPE: RNA &lt;213&gt; ORGANISM: &lt;400&gt; SEQUENCE:</pre>	1 A Homo sapiens		
uuugccguac caco			21
<210> SEQ ID NC <211> LENGTH: 2 <212> TYPE: DNA <213> ORGANISM:	21		
<400> SEQUENCE:			
catggtggat tcat	ccagtgg c		21
<210> SEQ ID NC <211> LENGTH: 2 <212> TYPE: RNA <213> ORGANISM:	1 A Homo sapiens		
<400> SEQUENCE:			21
ugguggauuc auca	aguggeu u		21
<210> SEQ ID NC <211> LENGTH: 2 <212> TYPE: RNA <213> ORGANISM:	21		
<400> SEQUENCE:	279		
uuaccaccua agua	agucacc g		21
<210> SEQ ID NC <211> LENGTH: 2 <212> TYPE: DNA <213> ORGANISM:	21		
<400> SEQUENCE:	280		
cagcetetae agaa	aggtett e		21
<210> SEQ ID NC <211> LENGTH: 2 <212> TYPE: RNA <213> ORGANISM:	21		

<400> SEQUENCE: 281

89

- 0	continued	
gccucuacag aaggucuucu u	21	
<210> SEQ ID NO 282		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 282		
uucggagaug ucuuccagaa g	21	
<210> SEQ ID NO 283		
<211> LENGTH: 21		
<212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 283		
cagcgagaac tccatcgatg t	21	
<210> SEQ ID NO 284		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 284		
gcgagaacuc caucgauguu u	21	
<210> SEQ ID NO 285		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 285		
uucgcucuug agguagcuac a	21	
<210> SEQ ID NO 286		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 286		
cagagaagga cgagttcgac a	21	
<210> SEQ ID NO 287		
<211> LENGTH: 21		
<212> TYPE: RNA		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 287		
gagaaggacg aguucgacau u	21	
<210> SEQ ID NO 288		
<211> LENGTH: 21		
<212> TYPE: RNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 288		
uucucuuccu gcucaagcug u	21	
<210> SEQ ID NO 289		
<211> LENGTH: 21		
<212> TYPE: DNA		

-continued <213> ORGANISM: Homo sapiens <400> SEQUENCE: 289 21 gagatettga aggtgategg e <210> SEQ ID NO 290 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 290 gaucuugaag gugaucggcu u 21 <210> SEQ ID NO 291 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 291 uucuagaacu uccacuagcc g 21 <210> SEQ ID NO 292 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 292 21 gaaggtetea agaggetace t <210> SEQ ID NO 293 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 293 21 aggucucaag aggcuaccuu u <210> SEQ ID NO 294 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 294 21 uuuccagagu ucuccgaugg a <210> SEQ ID NO 295 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 295 gagaacatag aggtagcagg t 21 <210> SEQ ID NO 296 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 296 21 gaacauagag guagcagguu u

- CC	ontinued
<210> SEQ ID NO 297	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: Homo sapiens	
AAAA CEOURNOE 207	
<400> SEQUENCE: 297	
ucuuguauc uccaucgucc a	21
accudude accudegace a	21
<210> SEQ ID NO 298	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
AAAAN CEOUENCE, 200	
<400> SEQUENCE: 298	
gacagtgttc agcgagaact c	21
,	
<210> SEQ ID NO 299	
<211> LENGTH: 21	
<212> TYPE: RNA	
<pre>&lt;213&gt; ORGANISM: Homo sapiens</pre>	
<400> SEQUENCE: 299	
caguguucag cgagaacucu u	21
<210> SEQ ID NO 300	
<pre>&lt;211&gt; LENGTH: 21 &lt;212&gt; TYPE: RNA</pre>	
212> IIFE. NWA 213> ORGANISM: Homo sapiens	
alo, ondialion. Nomo supremo	
<400> SEQUENCE: 300	
uugucacaag ucgcucuuga g	21
<210> SEQ ID NO 301	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 301	
gagaaggacg agttcgacat c	21
, , , , , , , , , , , , , , , , , , ,	
<210> SEQ ID NO 302	
<211> LENGTH: 21	
212> TYPE: RNA	
213> ORGANISM: Homo sapiens	
<pre>&lt;400&gt; SEQUENCE: 302</pre>	
~~~~~	
gaaggacgag uucgacaucu u	21
-010- CEO TO NO 202	
2210> SEQ ID NO 303	
:211> LENGTH: 21 :212> TYPE: RNA	
212> HIFE: ANA 213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 303	
uucuuccugc ucaagcugua g	21
<210> SEQ ID NO 304	
<211> LENGTH: 21	
:212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	

			-
-	cont	inue	ed.

<400> SEQUENCE: 304	
tacggcaaga tcatgaacca c	21
<210> SEQ ID NO 305 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 305	
cggcaagauc augaaccacu u	21
<210> SEQ ID NO 306 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 306	
uugeeguueu aguaeuuggu g	21

1. An isolated polynucleotide comprising a nucleic acid sequence which encodes the amino acid sequence depicted in SEQ ID NO:2.

2. The polynucleotide according to claim 1, wherein the nucleic acid sequence is selected from the group consisting of

(a) the nucleic acid sequence as shown in SEQ ID NO:1; (b) the complement of (a); and

(c) a nucleic acid sequence that differs from (a) or (b) due to the degeneracy of genetic code.

3. The polynucleotide according to claim 1, wherein the nucleic acid sequence is selected from the group consisting of:

(a) the nucleic acid sequence as shown in SEQ ID NO:3; (b) the complement of (a); and

- (c) a nucleic acid sequence that differs from (a) or (b) due to the degeneracy of genetic code.
- 4. (canceled)

5. An isolated polynucleotide comprising a nucleic acid sequence which has at least 96% sequence identity with the sequence depicted in SEQ ID NO:1, or the complement thereof.

6. The polynucleotide according to claim 5, wherein said nucleic acid sequence encodes a protein having MRCK activity. 7. (canceled)

8. An isolated polypeptide comprising a fragment of SEQ ID NO:2, wherein said fragment comprises at least 260 consecutive amino acid residues.

9. The isolated polypeptide according to claim 8, wherein said fragment comprises amino acid residues 70-337 of SEQ ID NO:2.

10-23. (canceled)