(54) 发明名称
电信设备配置方法、系统和电信设备

(57) 摘要
本发明提供一种电信设备的配置方法、系统和电信设备。方法包括：接收用户下发的配置数据及试运行命令，进行试运行；当接收到用户下发的中止命令时，中止试运行；将所述配置数据保存在临时配置数据集中；接收修改后的配置数据及试运行命令，以重新进行试运行；其中，所述修改后的配置数据及试运行命令，是所述用户针对所述临时配置数据集进行修改后得到的。本发明通过中止试运行和保留配置临时数据集，为用户提供主动干预试运行机制，提高配置效率，减轻数据传输压力。
1. 一种电信设备的配置方法，其特征在于，该方法包括：
接收用户下发的配置数据及试运行命令，进行试运行；
当接收到用户下发的中止命令时，中止试运行；
将所述配置数据保存在临时配置数据集中；
接收修改后的配置数据及试运行命令，以重新进行试运行；
其中，所述修改后的配置数据及试运行命令，是所述用户针对所述临时配置数据集进行修改后得到的。

2. 根据权利要求1所述的方法，其特征在于：
所述接收用户下发的配置数据及试运行命令，具体为：通过网络管理设备接收用户下发的配置数据及试运行命令；
所述接收修改后的配置数据及试运行命令，具体为：通过网络管理设备接收修改后的配置数据及试运行命令。

3. 根据权利要求1或2所述的方法，其特征在于：所述修改后的配置数据为全部的配置数据或者修改的配置数据。

4. 根据权利要求1或2所述的方法，其特征在于，还包括：接收当所述电信设备的试运行状态达到所述用户的预定要求时，接收所述用户下发的配置数据提交命令，按照所述配置数据进行设备配置。

5. 一种电信设备，其特征在于，该电信设备包括：
运行接收模块，用于接收用户下发的配置数据及试运行命令，或修改后的配置数据及试运行命令；
中止接收模块，用于接收用户下发的中止试运行命令并中止试运行；
存储模块，用于当所述中止接收模块接收到中止试运行命令时，将所述运行接收模块接收到的配置数据保存在临时配置数据集中；
运行模块，用于根据接所述运行接收模块接收到的配置数据及试运行命令进行试运行；或根据接所述运行接收模块接收到的所述修改的配置数据及试运行命令进行重新试运行。

6. 根据权利要求5所述的电信设备，其特征在于，还包括：
提交接收模块，用于接收当所述电信设备的试运行状态达到所述用户的预定要求时，所述用户下发的配置数据提交命令；
配置模块，用于按照所述配置数据进行所述电信设备的配置。

7. 根据权利要求5或6所述的电信设备，其特征在于：所述试运行命令和中止命令为XML报文。

8. 根据权利要求5或6所述的电信设备，其特征在于：所述修改后的配置数据为全部的配置数据或者修改的配置数据。

9. 一种电信设备的配置系统，其特征在于，该系统包括：
用户端设备，用于下发配置数据及试运行命令；还用于当所述电信设备的试运行状态未达到预定要求时，下发中止试运行命令，并针对电信设备的当前临时配置数据集进行修改，重新下发修改的配置数据及试运行命令；
电信设备，用于接收所述用户端设备下发的配置数据及试运行命令，以进行试运行；当
接收到所属用户设备下发的中止试运行命令时，还用于中止试运行，并将所述配置数据保存在临时配置数据集中，接收修改的配置数据及试运行命令，以重新进行试运行。

10. 根据权利要求9所述的系统，其特征在于：所述系统还包括：
网络管理设备，将所述用户设备发送的配置数据、试运行命令、和终止试运行命令传送至所述电信设备。
电信设备配置方法、系统和电信设备

技术领域

[0001] 本发明涉及通信技术领域，尤其涉及一种通过网络进行电信设备配置方法、系统和电信设备。

背景技术

[0002] 在网络设备自动化配置中，采用网络配置协议 (Netconf, Network Configuration Protocol) 作为电信设备的基础配置协议，此协议类似于简单网络管理协议 (SNMP, Simple Network Management Protocol)，可以减少网络设备因配置不当而造成的网络崩溃问题和配置过程中的编程工作量。

[0003] 电信设备通过网络配置协议接收用户下发的配置信息，为保证配置信息的正确性，网络配置协议提供了二次提交机制，即执行 (Confirmed-commit)机制，电信设备将用户下发的配置保存在设备的临时数据集 (Candidate DB)，不影响当前运行数据集 (Running DB)。

[0004] 电信设备对临时数据集进行执行，用户可以在正常运行期间观察业务的状态，以确保用户配置信息的可靠性，尽量减少对当前业务的影响。由于网络配置协议中还规定了执行默认超时时间，因此，如果在正常运行期间达到该超时时间，电信设备会停止此次执行，清除当前执行的临时数据集，而在执行默认超时时间之前，如果用户对执行结果满意，可以确认配置生效。但是，如果在执行期间，用户对业务不满意或其它原因，网络配置协议允许用户取消执行，电信设备会丢弃当前执行的临时数据集。

[0005] 在正常执行期间，电信设备往往多次接收到用户下发的配置信息，直到执行的业务完全达到要求。基于现有技术，如果用户对执行的配置进行修改，则电信设备会丢弃当前执行的临时配置数据集，按照用户重新下发的配置再次进行执行，直到达到用户的要求。现有技术中的这种方法，需要用户重新进行配置，操作复杂，效率低下。此外，用户将当前执行的配置提交生效，再进行下一次配置修改，但此种情况可能会影响当前业务的运行，对用户来说是不安全的配置方法，也不能发挥网络配置协议的二次提交机制的优势。

发明内容

[0006] 本发明实施例的目的在于提供一种电信设备配置方法、系统和电信设备，解决基于网络配置协议的执行期间配置修改的问题。

[0007] 本发明实施例提供一种电信设备的配置方法，该方法包括：接收用户下发的配置数据及执行命令，进行执行；当接收到用户下发的中止命令时，中止执行；将所述配置数据保存在临时配置数据集中，接收修改后的配置数据及执行命令，以重新进行执行；其中，所述修改后的配置数据及执行命令，是所述用户针对所述临时配置数据集中进行修改后得到的。

[0008] 本发明实施例还提供一种电信设备，该电信设备包括：

[0009] 运行接收模块，用于接收用户下发的配置数据及执行命令，或修改后的配置数
据及试运行命令;中止接收模块，用于接收用户下发的中止试运行命令并中止试运行;存储模块，用于当所述中止接收模块接收到中止试运行命令时，将所述运行接收模块接收到的配置数据保存在临时配置数据集中;运行模块，用于根据接所述运行接收模块接收到的配置数据及试运行命令进行试运行;或根据接所述运行接收模块接收到的所述修改的配置数据及试运行命令进行重新试运行。

[0010] 本发明实施例还提供一种电信设备的配置系统，该系统包括：用户端设备，用于下发配置数据及试运行命令;还用于当所述电信设备的试运行状态未达到预定要求时，下发中止试运行命令;并针对电信设备的当前临时配置数据集进行修改，重新下发修改的配置数据及试运行命令;电信设备，用于接收所述用户端设备下发的配置数据及试运行命令，以进行试运行;当接收到未用户端设备下发的中止试运行命令时，还用于中止试运行，并将所述配置数据保存在临时配置数据集中，接收修改的配置数据及试运行命令，以重新进行试运行。

[0011] 本发明的实施例通过中止试运行和保留配置临时数据集，有效的为用户提供主动干预试运行方法，提高配置效率、当前配置正确性和完整性，减小数据传输压力。

附图说明
[0012] 此处所说明的附图用来提供对本发明实施例的进一步理解，构成本申请的一部分，并不构成对本发明的限定。在附图中：
[0013] 图 1 为本发明一实施例的电信设备的配置方法的流程图；
[0014] 图 2 为本发明又一实施例的电信设备的配置方法的流程图；
[0015] 图 3 为本发明一实施例的电信设备的结构示意图；
[0016] 图 4 为本发明又一实施例的电信设备的结构示意图；
[0017] 图 5 为本发明一实施例的电信设备的配置系统的示意图；
[0018] 图 6 为本发明又一实施例的电信设备的配置系统的示意图。

具体实施方式
[0019] 为使本发明实施例的目的、技术方案和优点更加清楚明白，下面结合实施例和附图，对本发明实施例做进一步详细说明。在此，本发明的示意性实施例及其说明用于解释本发明，但并不作为对本发明的限定。
[0020] 实施例一
[0021] 本实施例一种电信设备的配置方法，如图 1 所示。该方法包括：
[0022] 101：接收用户下发的配置数据及试运行命令，进行试运行；
[0023] 其中，用户可以通过报文下发上述配置数据及试运行命令，如通过 XML (Extensible Markup Language，可扩展标记语言) 报文下发上述配置数据及试运行命令；
[0024] 102：当接收到中止试运行命令时，中止试运行；
[0025] 可选的，在本发明的实施例中，当试运行状态未达到用户的预定要求时，会接到中止试运行的命令。中止试运行命令具体形式也可以采取报文方式，如 XML 报文，其中，中止试运行的标签不限于 <discard-commit>，可以根据需要定义，例如 <stop>、
可选的，本实施例中，修改后的配置数据，可以是全部的配置数据，当然，也可以是涉及修改的配置数据。

可选的，当所述电信设备的试运行状态仍未达到预定要求时，还可能多次接收到用户下发的配置数据及试运行命令。

可选的，在本发明的实施例中，当所述电信设备的试运行状态达到所述用户的预定要求时，还可以接收所述用户下发的配置数据及试运行命令，按照所述配置数据进行配置。

本发明实施例通过中止试运行提高配置效率，减小数据传输压力，通过保留的配置临时数据集以进行针对性修改和调整，可以提高当前配置正确性和完整性。

实施例二

本实施例通过用户、网络管理设备和电信设备之间进行配置的方法进一步说明实施例一和二的电信设备的配置方法。如图 2 所示，该方法包括：

201：用户端通过网络管理设备对电信设备下发配置数据及试运行命令。其中，用户下发的配置数据及试运行命令可以采取报文方式，如 XML 报文。

202：电信设备按当前的临时配置数据集（CDB，Candidate DB）的配置进行试验运行。

203：用户观察电信设备的运行状态，如果电信设备的运行状态未达到用户的预定要求，用户端通过网络管理设备对电信设备下发中止试运行命令，以中止试运行操作。中止试运行命令具体可以采用 XML 报文，其中，中止试运行的标签不限于 <discard-commit>，可以根据需要定义，例如 <stop>，<undo-commit> 等。

204：当电信设备收到了中止命令后，停止当前试运行操作，电信设备不会将 201 中用户下发的配置数据删除，而是将其保存在 CDB 中。配置数据的状态和上次下发试运行命令之前的状态是一致，实际上，电信设备收到中止试运行操作后的处理方式相当于对上一次试运行命令的撤销操作。

205：用户端对当前临时配置数据集进行修改，配置修改完成后，再下发修改后的配置数据及试运行命令。

可选的，本实施例中，修改后的配置数据，可以是全部的配置数据，当然，也可以是涉及修改的配置数据。

206：电信设备再次试运行。如果试运行的结果仍然不满足用户的预定要求，重复 202 到 205，直到配置数据满足用户的预定要求。

可选的，在本发明的实施例中，当所述电信设备的试运行状态达到所述用户的预定要求时，还可以接收所述用户下发的配置数据及试运行命令，按照所述配置数据进行配置。

本发明实施例通过中止试运行和保留配置临时数据集，有效的为用户提供主动干预试运行方法，提高配置效率，当前配置正确性和完整性，减少数据传输压力。

实施例三
[0045] 本实施例提供一种电信设备，如图 3 所示，该电信设备 300 包括：
[0046] 运行接收模块 301，用于接收用户下发的配置数据及试运行命令，或修改后的配置
数据及试运行命令；
[0047] 其中，上述修改后的配置数据及试运行命令为当电信设备的运行状态不满足用
户规定的时，用户重新下发的修改后的配置数据及试运行命令。用户下发的配置数据
及试运行命令可以采取报文方式，如 XML 报文；
[0048] 中止接收模块 302，用于接收用户下发的中止试运行命令并中止试运行；
[0049] 可选的，在本发明的实施例中，当试运行状态未达到用户的规定要求时，会接收到
中止试运行的命令。中止命令具体形式也可以采取报文方式，如 XML 报文，其中中止试运行
的标签不限于<discard-commit>，可以根据需要定义，例如<stop>，<undo-commit> 等。
[0050] 存储模块 303，用于当中止接收模块 302 接收到中止试运行命令时，将运行接收模
块 301 接收到的配置数据保存在临时配置数据集中；
[0051] 运行模块 304，用于根据运行接收模块 301 接收到的配置数据及试运行命令进行
试运行；或根据运行接收模块 301 接收到的所述修改后的配置数据及试运行命令重新进行
试运行。
[0052] 可选的，本实施例中，修改后的配置数据及试运行命令，可以是全部的配置数据；
当然，也可以是涉及修改的配置数据。
[0053] 可选的，当所述电信设备的试运行状态仍未达到预定要求时，还可以通过多次进
行配置数据的修改，直至电信设备的试运行状态达到预定要求。
[0054] 可选的，如图 4 所示，本发明的实施例中，上述电信设备还可以包括：
[0055] 提交接收模块 305，用于当所述电信设备的试运行状态达到所述用户的预定要求
时，接收所述用户下发的配置数据提交命令；
[0056] 配置模块 306，用于按照提交接收模块 305 接收的配置数据进行该电信设备的配
置。
[0057] 本发明实施例通过中止运行提高配置效率，减小数据传输压力，通过保留的配
置临时数据集以进行针对性修改和调整，可以提高当前配置正确性和完整性。
[0058] 实施例四
[0059] 本实施例提供一种电信设备的配置系统，如图 5 所示，该系统包括：
[0060] 用户端设备 401，用于下发配置数据及试运行命令，当所述电信设备 402 的试运
行状态未达到预定要求时，下发中止试运行命令，重新下发修改后的配置数据及试运行命
令；
[0061] 其中，用户下发的配置数据及试运行命令可以采取报文方式，如 XML 报文；中
止命令具体形式也可以采取报文方式，如 XML 报文，其中中止试运行的标签不限于<dis
card-commit>，可以根据需要定义，例如<stop>，<undo-commit> 等。
[0062] 电信设备 402，用于接收用户端设备 401 下发的配置数据及试运行命令，以进行试
运行，当试运行状态未达到用户的预定要求时，接收下发的中止试运行命令并中止试运行，
将所述配置数据保存在临时配置数据集中，接收修改后的配置数据及试运行命令，以重新
进行试运行。
[0063] 本实施例中，用户端设备 401 下发完成试运行命令报文后，电信设备 402 对当前的
临时配置数据集（CDB，Candidate DB）的配置进行试运行。当电信设备 402 收到了试运行中止操作后，停止当前试运行操作，并将用户的配置数据保存在 CDB 中。用户端设备 401 针对当前临时配置数据集进行修改，下发修改完成后的配置数据和试运行命令，下发方式如前所述的报文形式。用户再次确认试运行结果是否满足用户的需求，如果不满足，重复进行修改配置和确认试运行结果，直到配置数据满足用户的需要。

[0064] 可选的，如图 6 所示，本发明的实施例中，上述系统还可以包括：
[0065] 网络管理设备 403，将用户端设备 401 发送的配置数据，试运行命令和中止试运行命令传送给电信设备 402；
[0066] 本发明实施例通过中止试运行和保留配置临时数据集，有效的为用户提供主动干预试运行方法，提高配置效率、当前配置正确性和完整性，减小数据传输压力。
[0067] 以上所述的具体实施例，对本发明的目的、技术方案和有益效果进行了进一步详细说明，所应理解的是，以上所述仅为本发明的具体实施例而已，并不用于限定本发明的保护范围，凡在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图 1

101. 接收用户下发的配置数据及试运行命令，进行试运行

102. 当接收到中止试运行命令时，中止试运行

103. 将步骤101中接收到的配置数据保存在临时配置数据集中

104. 接收修改后的配置数据及试运行命令，重新进行试运行
图 2

300

运行接收模块

中止接收模块

运行模块

存储模块

图 3