Additional objects and advantages of the present invention will be more readily apparent from the following detailed description of an embodiment thereof when taken together with the accompanying drawings in which:

FIG. 1 is a plan view of a lowermost portion of a roving can incorporating the present invention;
FIG. 2 is an enlarged fragmentary sectional view taken on line 2—2 of FIG. 1; and
FIG. 3 is a sectional view of a can bottom taken on line 3—3 of FIG. 1 and omitting can and spring structural details for clarity.

Referring now to the drawings and more specifically to FIGS. 1 and 2, a roving can of a known construction includes a cylindrical open ended body portion 10, about the lower end of which there is placed a kick band 12, preferably of the same material as the body 10 and which, for example, can be vulcanized fiber or the like. A bottom, generally designated 14, is mounted in the bottom opening of the body portion and can preferably include a circular depending flange 16, adapted for frictional engagement against the interior surface of the can body 10. The joint or juncture of the body 10, kick band 12 and flange 16 are preferably secured together by means of a lower rim 18 in the nature of an inverted metal U-shaped member in cross-section to secure the portions together and to give compressible strength to the can construction. The bottom 14 in the present invention includes a peripheral, inwardly extending flange 20 formed as a continuity of the material of flange 16 and preferably upwardly arcuately configured, as shown in FIG. 2.

The central portion of the bottom 14 is open, as generally indicated at 22. This open center construction is designed to permit roving or sliver particles, which might gather in the interior of the roving can between the bottom and the under surface of a piston therein, to be discharged or otherwise falls out of the container.

The arcuate or angular disposition of the peripheral flange provides strength and rigidity not only to the bottom portion of the can but also as support means for the piston supporting spring. The spring, as mentioned hereinafter, is of a coil type construction. To properly locate and fit the lowermost convolution of the spring, clamps are provided on the upper surface of the peripherally extending flange 20. These clamps 24 can be of a construction of the type shown in FIG. 2, consisting of two portions 26 and 28 bent over upon themselves to form a circular portion, generally designated 30, and juxtaposed end portions 32 through which correlated openings 34 are provided for coaction with an opening 36 in flange 26, adapted for reception of a threaded screw 38. Securing means 40, of any desired type, can be provided for attachment and securment of the screw 38. Contemplated construction can include speed nuts or nut, bolt and washer combinations.

A plurality of the clamps are radially disposed around the opening 36 and, as shown in FIG. 1, preferably consist of at least three in number, evenly angularly arranged. Manifestly, a greater or fewer number and/or different arrangements can be used. These clamps are easily assembled and attached in place through the opening 22 which provides free access to the upper surface of the flange 20.

Subsequent to securment of the clamps 24, a spring, as referred to above and as generally indicated at 42, can be assembled within the can by threading the extreme end of the lowermost convolution in and through each of the clamps, much in the same manner as assembling a bolt in the nut. It will be obvious that subsequent to this operation the spring is fixedly positioned
and secured with respect to the can bottom and subsequently the piston can be assembled in a usual manner on the top of the spring and the can thereafter is in completed form for its usual purpose and use.

Manifestly, changes in details of construction can be effected in the present invention without departing from the spirit and scope thereof as defined in and limited solely by the appended claims.

What I claim is:

1. In a roving can, including an open ended cylindrical body, a bottom secured in the lower end of said body, said bottom having a substantially open cylindrical portion and including a downwardly depending flange at the outer periphery thereof for coaction with the interior surface of said body for securement therein, and inwardly extending flange portion formed substantially as a continuation of said depending flange having an opening therein, a material supporting piston movably mounted within said body, a coil spring interposed between said bottom and said piston, and adapted to raise or lower said piston in said body dependent upon the weight of roughing material placed on the upper surface of said bottom, clamping means secured to the upper surface of said bottom in close proximity to the opening therein and adapted for clamping and securing a convolution of said spring to thereby locate the spring with respect to said body and prevent its dislocation thereof, said clamping means including a plurality of clamps basically arranged around and with respect to the opening in said body, said spring having a convolution thereof threadedly inserted therein and secured to said clamps.

2. In a roving can having a movable piston for carrying material thereon, including an open ended cylindrical body, a bottom secured in the lower end of said body, said bottom having a substantially open cylindrical portion and including a downwardly depending flange at the outer periphery thereof for coaction with the interior surface of said body for securement therein, an inwardly extending flange portion formed substantially as a continuation of said depending flange having an opening therein, a coil spring interposed between said bottom and said piston, and adapted to raise or lower said piston in said body dependent upon the weight of roughing material placed on the upper surface of said piston, said inwardly extending flange portion being toward the center thereof whereby increased spring pressure restraining strength is imparted to said bottom, clamping means secured to the upper surface of said bottom in close proximity to the opening therein and adapted for clamping and securing a convolution of said spring to thereby locate the spring with respect to said body and prevent its location thereof, said clamping means basically arranged around and with respect to the opening in said body, said spring having a convolution thereof threadedly inserted therein and secured to said clamping means.

3. The invention as set forth in claim 2 wherein said inwardly extending flange portion is angularly disposed upwardly toward the center of said cylindrical body.

4. In a roving can as claimed in claim 2, said clamping means comprising a plurality of clamps spacedly arranged around and with respect to the opening in said bottom.

5. In a roving can as claimed in claim 2, said spring having a convolution thereof threadedly inserted in and secured by said clamps.

6. In a roving can as claimed in claim 2, said inwardly extending flange of said bottom being arcuate in cross section for increased strength.

References Cited

UNITED STATES PATENTS

2,136,847 11/1938 Grimwood 217—44
2,627,824 2/1953 Schulze 220—19
2,833,442 5/1958 Larsen 220—93
3,053,410 9/1962 Eaddy 220—93

RAPHAELE H. SCHWARTZ, Primary Examiner.