PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7.

GOG6F 13/16 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/57286

28 September 2000 (28.09.00)

(21) International Application Number: PCT/US00/01262

(22) International Filing Date: 18 January 2000 (18.01.00)

(30) Priority Data:

09/273,430 19 March 1999 (19.03.99) Us

(71) Applicant: TIMES N SYSTEMS, INC. [US/US]; 1826 Kramer
Lane, Suite F, Austin, TX 78758 (US).

(72) Inventors: SCARDAMALIA, Theodore, G.; 1910 Clearwater
Drive, Round Rock, TX 78681 (US). WEST, Lynn, Parker;
10201 Pantera Ridge, Austin, TX 78759 (US).

(74) Agent: BRUCKNER, John, J.; Wilson Sonsini Goodrich &
Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050
(US).

(81) Designated States: AU, BR, CA, CN, CR, IL, JP, KR, NO,
RU, SG, European patent (AT, BE, CH, CY, DE, DK, ES,
FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SHARED MEMORY APPARATUS AND METHOD FOR MULTIPROCESSOR SYSTEMS

100

101
200
2017 | 200
300 7 | 2017 ]
300 7

(57) Abstract

A memory alias adapter, coupled to a processor’s memory bus, monitors processor memory accesses. Whenever a memory access
corresponds to shared memory, rather than memory local to the processor, the adapter constructs a memory request message, and transmits
the message over a network link to a shared memory unit. The shared memory unit performs the shared memory access and issues a
response message over the network link. The memory alias adapter accepts the response message, and completes processor’s memory
access on the memory bus. As a result, it is transparent to the processor whether its memory access is to the local memory or to the shared

memory.




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF

CH
CI

CN
Cu

DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ)
™
TR
T
UA
UG
us
UzZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




WO 00/57286

10

15

20

25

SHARED MEMORY APPARATUS AND METHOD
FOR MULTIPROCESSOR SYSTEMS

BACKGROUND OF THE INVENTION

The present invention relates in general to computer systems, and, more
particularly, to apparatuses for sharing memory among multiple processors.
Multiprocessor computer systems have been commercially available for the
past 30 years. Typical systems have multiple processors connected, through a
variety of connection fabrics, to a single, shared memory system. Likewise, all
input and output (I0) devices are connected to the multiple processors through a
single IO channel. The operating system for these typical SMP systems is a single
Operating System that has been parallelized to run over the processor complex.
Several disadvantages, inherent in such a system structure have prevented
the systems from effectively scaling past 5 to 8 processors and have greatly
elongated product delivery schedules. Those disadvantages are: 1. All memory
requests must go through the connection fabric whether the data being requested
is shared by multiple processors or only used by one processor, creating a
bottleneck in the memory connection fabric; 2. The Operating System must be
parallelized; 3. The parallel Operating System creates a great deal of extra memory
requests; 4. All IO requests must go through the IO channel creating a bottleneck.
In recent years, distributed memory computers, such as Massively Parallel
Processors, Clusters, and networked systems have emerged as potential solutions
for the disadvantages of SMPs. Common applications of such networks include
distributed computing environments, client-server systems, and server clustering
implementations. In a typical LAN, information to be passed from one computer
to another computer via the network is first transferred from an application running
on the transmitting computer’s processor to a device driver: an operating system
level, software-based object. The device driver assembles the message to be
transferred into packets conforming to the protocol to be used for data transmission

(such as conventional TCP/IP or IPX/SPX protocols).

PCT/US00/01262



10

15

WO 00/57286

These packets are transferred by the device driver to a conventional
network card, such as a 10 or 100 megabit-per-second Ethernet network card. The
network card then transmits the data over the physical layer of the network, where
a similar network card on the receiving computer captures it. This captured data
is then transferred to a similar software-based device driver on the receiving
computer. This device driver will typically reconstruct the message sent by the
transmitting computer, by decoding and unpacking the individual protocol packets
transferred over the physical layer. The reconstructed message is then made
available to an application running on the receiving computer.

As can be seen from the foregoing description, one disadvantage of such .
typical LAN systems is the delays imposed, on both the transmitting and receiving
ends, from the presence of software-based layers, such as operating systems
network device and transmission protocol drivers.

The present invention overcomes the limitations of the prior art systems.
The invention significantly reduces the bottlenecks in both the memory connection
fabric and the 10 channel and eliminates the requirement to parallelize the
Operating System and maintain the standard load/store (read/write). The invention
also eliminates the requirement to pass messages between processors hence

significantly reducing the data transfer times.

PCT/US00/01262



10

15

20

25

30

WO 00/57286

SUMMARY OF THE INVENTION

The present invention is directed to an adapter for coupling a processor
(single or multiple) system to a shared memory unit over a data link, wherein the
processor system includes a data bus for access to a local memory and a expansion
bus coupled to the data bus, and, the shared memory unit includes at least one bank
of shared memory. The adapter comprises: a expansion bus interface coupling the
adapter to the expansion bus of the processor system; an input/output port coupling
the adapter to the shared memory unit via the data link; means coupled to the
expansion bus interface for monitoring processor memory accesses on the data bus;
means coupled to the data bus monitoring means for detecting when a monitored
Processor memory access is a processor memory access operation to a memory
address value within a range of addresses corresponding to the shared memory;
means coupled to the detecting means for translating the monitored processor
memory access operation into a shared memory access request; means for
outputting the shared memory access request to the input/output port and, in turn,
to the shared memory unit; and means coupled to the expansion bus interface for
placing a memory access completion acknowledgement indication on the standard
expansion bus, whereby it is transparent to the processor system whether the
memory access operation is addressed to the local memory or to the shared
memory.

In a preferred embodiment of the invention, the memory access operation
may comprise at least one of a memory read operation or a memory write
operation.

It is also preferred that the expansion bus interface comprises at least one
of the following: a peripheral component interface bus interface, an Advanced
Graphics Port bus interface, conventional memory module bus interface, or an
Industry Standard Architecture bus interface. It is also contemplated that the
input/output port comprises at least one of a Scalable Coherent Interface, an IEEE
1394 interface, a SCSI bus interface, an Ethernet network interface or an optimized
parallel or serial interface. In one preferred embodiment, the processor system

comprises a conventional IBM-compatible personal computer.

3.

PCT/US00/01262



10

15

20

25

30

WO 00/57286

In another preferred embodiment, the processor system accesses the data
bus and, in turn, the shared memory unit, via memory accesses placed upon the
data bus from an unmodified conventional operating system.

It is also preferred that the unmodified conventional operating system
comprises a uniprocessor build of a Windows NT or similar operating system.

In still another preferred embodiment, a combined memory space
comprises the local memory of the processor system and the shared memory of the
shared memory unit contains at least one memory address corresponding to a
register location.

The present invention also is directed to a shared memory unit for
providing shared memory to a plurality of processor systems. In such an
embodiment, the shared memory unit comprises a shared memory comprising a
plurality of memory banks; a plurality of input/output ports, each input/output port
being connectable to a processor system by a dedicated data link; means coupled
to the input/output ports for receiving a shared memory access request from a
requesting processor; means coupled to the receiving means for determining the
memory bank corresponding to the memory access request; connecting means
coupled to the receiving means, the determining means, and the memory banks, for
providing a data path between the input/output port and the memory bank
associated with the memory access request; a memory controller coupled to the
connecting means and the receiving means, the memory controller performing
memory accesses to the shared memory bank through the connecting means in
accordance with the memory access request; and means coupled to the memory
controller and the input/output ports for generating a shared memory access
response for transmission back to the requesting processor system.

In this preferred embodiment, the connecting means comprises a crossbar
switch, which may comprise a non-blocking crossbar switch.

In a preferred embodiment of the invention of the invention, further
includes means for providing atomic memory operations between at least one of

the processor systems and the shared memory.

PCT/US00/01262



10

15

20

25

30

WO 00/57286

In another preferred embodiment, the invention includes a memory bus
transfer controller for controlling accesses to a local portion of distributed shared
memory. The memory bus transfer controller comprises: a local processor memory
bus interface coupling the memory bus transfer controller to a local processor and
to a memory private to the local processor; a local shared memory bus interface
coupling the memory bus transfer controller to the local portion of distributed
shared memory; a shared memory interconnect bus coupling the memory bus
transfer controller to at least one remote memory bus transfer controller associated
with at least one remote processor; first monitoring means coupled to the local
processor memory bus interface for monitoring local processor memory bus
accesses; first determining means coupled to the first monitoring means for
determining whether a memory address associated with the processor memory bus
access corresponds to one of the memory private to the local processor, the local
portion of distributed shared memory, and a remote portion of distributed shared
memory; second monitoring means coupled to the shared memory interconnect bus
for monitoring remote processor memory access requests; second determining
means coupled to the second monitoring means for determining when a remote
processor memory access request corresponds to the local portion of distributed
shared memory; and a memory controller coupled to the first determining means
the second determining means, the local processor memory bus, and the shared
memory interconnect bus. The memory controller performs a local shared memory
access when the first determining means indicates that a local processor memory
bus access corresponds to the local portion of distributed shared memory. This
sends a shared memory access request to the shared memory interconnect bus
when the first determining means indicates that a local processor memory bus
access corresponds to a remote portion of distributed shared memory, and performs
a local shared memory bus access when the second determining means indicates
that a remote memory access request corresponds to the local portion of distributed
shared memory; whereby it is transparent to the local processor whether each of
its memory access operations is addressed to the local memory, the local portion

of distributed shared memory, or a remote portion of distributed shared memory.

PCT/US00/01262



10

15

WO 00/57286

The invention is also directed to a method for performing processor
memory accesses to a shared memory unit using an adapter coupling a processor
system to the shared memory unit via a data link. The processor system includes
a standard expansion bus. The adapter has a standard expansion bus interface
coupling the adapter to the standard expansion bus of the processor system and an
input/output port coupling the adapter to the data link and, in turn, to the shared
memory unit. The method comprises the steps of: A) monitoring processor
memory accesses on the standard expansion bus; B) detecting when a monitored
processor memory access is a processor memory operation to a memory address
value within a range of addresses corresponding to the shared memory;
C) translating the processor memory operation into a shared memory access
request; D) outputting the shared memory access request to the input/output port
and, in turn, to the shared memory unit via the data link; and E) placing a shared
memory access acknowledgement indication on the standard expansion bus;
whereby it is transparent to the processor whether the memory access operation is

addressed to the local memory or to the shared memory.

PCT/US00/01262



WO 00/57286 PCT/US00/01262

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 of the drawings is a block diagram of an embodiment of the shared
memory system, showing a component based implementation having centralized

shared memory;

5 FIG. 2 of the drawings is a schematic diagram of the memory alias adapter
of FIG. 1;

FIG. 3 of the drawings is a schematic diagram of the address detect ASIC
of FIG. 2;

FIG. 4 of the drawings is a schematic diagram of the interface control
10 ASIC of FIG. 2,

FIG. 5 of the drawings is a state diagram of the system bring-up sequence

of the memory alias adapter of FIG. 2,

FIG. 6 of the drawings is a state diagram of a portion of the operational

mode of the memory alias adapter of FIG. 2;

15 FIG. 7 of the drawings is a state diagram of a further portion of the

operational mode of the memory alias adapter of FIG. 2;

FIG. 8 of the drawings is a schematic diagram of the shared memory unit
of FIG. 1;

FIG. 9 of the drawings is a schematic diagram of the memory banks of
20 FIG. 8;

FIG. 10 of the drawings is a schematic diagram of the crossbar switch of
FIG. 8;

FIG. 11 of the drawings is a state diagram showing the operation of the
state machine controller portion of the memory controller / processor interconnect
25 of FIG 8;

-



WO 00/57286 PCT/US00/01262

FIG. 12 of the drawings is a block diagram of another embodiment of the
shared memory network, showing an integrated implementation with distributed

shared memory,

FIG. 13 of the drawings is a schematic diagram of a processor card of
5 FIG. 12;

FIG. 14 of the drawings is a state diagram of the system bring-up process

of the processor card of FIG. 13;

FIG. 15 of the drawings is a state diagram of the system operation portion

of the memory bus transfer controller of FIG. 13; and

10 FIG. 16 of the drawings is a state diagram of the tag, arbitration and

coherence portions of the memory bus transfer controller of FIG. 13.



10

15

20

25

30

WO 00/57286 PCT/US00/01262

DETAILED DESCRIPTION OF THE DRAWINGS

While the invention is susceptible of embodiment in many different forms,
there is shown in the drawings and will herein be described in detail, several
specific embodiments, with the understanding that the present disclosure is to be
considered as an exemplification of the principles of the invention and is not
intended to limit the invention to the embodiments illustrated.

The present shared memory system is shown in FIG. 1 as comprising
shared memory unit (SMU) 100, and multiple computer systems 200, each
connected by links 101, to the SMU. The SMU is a freestanding unit containing
shared memory accessible by all connected computer systems 200 via its I/O ports
and a cable or bus.

Each computer system 200 may comprise a conventional personal
computer or workstation, such as an IBM-PC compatible computer. Each
computer system 200 includes conventional local memory 201, which may
comprise one or more memory modules closely coupled to the processor on the
system motherboard and alternatively, or in addition, one or more memory
expansion boards coupled to the system bus.

As shown in FIG 1., each computer system connected to the SMU includes
a memory alias adapter (MAA) 300 (shown extended for illustrative purposes only)
coupled to the computer system’s processor. Each MAA provides full physical,
electrical and operational emulation of a traditional memory device, such as a
memory board coupled, for example, to a standard computer bus, such as the PCI
(Peripheral Component Interconnect) bus. Alternatively, the MAA may comprise
a SIMM/DIMM memory module, closely coupled to the computer’s processor via
a socket proximate the processor. Each MAA includes an I/O port to connect the
MAA to the SMU 100 via a cable or bus.

Within each computer system, the MAA is assigned a (preferably
contiguous) range of memory addresses. Whenever a computer system performs
a memory-write operation to a region of memory corresponding to the physical
address space locally assigned to the MAA 300 (as opposed to local memory 201),
the MAA responds by placing the write data, together with the associated address,

9



10

15

20

25

30

WO 00/57286 PCT/US00/01262

upon the network link to the SMU. The SMU responds by storing the specified
write data at the appropriate address within its own memory. In this manner,
memory write operations that appear to be local operations to the computer’s
processor are, in fact, memory write operations to a central shared memory unit.

Whenever a computer system performs a memory-read operation to a
region of memory corresponding to the physical address space locally assigned to
the MAA, the MAA responds by sensing a request for data, together with the
associated address to the SMU. The SMU responds to this request by retrieving
the requested data from its shared memory, at the requested address. The requested
data is then sent back to the requesting computer system. The computer system’s
MAA receives the requested data, and places it upon the computer’s system bus.
In this manner, memory read operations that appear to be local operations to the
computer’s processor are, in fact, memory read operations from a central shared
memory unit.

Similarly, whenever a computer system performs a memory-write
operation to a region of memory corresponding to the physical address space
locally assigned to the MAA, the MAA responds by sending a data write request,
including the associated address and data to the SMU. The SMU responds to this
request by storing the messaged data into its shared memory, at the specified
address. An acknowledgement is then sent back to the requesting computer system
link. The computer system’s MAA receives the acknowledgement, and places an
appropriate handshake signal upon the computer’s system bus in order to complete
the memory access cycle. In this manner, memory write operations that appear to
be local operations to the computer’s processor are, in fact, memory write
operations to a central shared memory unit.

Although three computer systems 200 are shown coupled to SMU 100 in
FIG. 1, it should be noted that the present architecture is scalable, such that any
number of computer systems may be linked to the SMU; provided, of course, that
the SMU itself is scaled to have sufficient I/O ports to accommodate each

computer system 200.

-10-



10

15

20

25

30

WO 00/57286

A preferred embodiment of MAA 300, implemented as a PCI-bus based
card, is shown in FIG. 2 as comprising address detect ASIC (Application Specific
Integrated Circuit) 310 and interface control ASIC 350. A conventional PCI edge
connector 301 is provided for exchanging address, data and control signals with the
system processor when MAA 300 is inserted into an empty PCI slot within the
computer system. Address detect ASIC 310 provides overall PCI bus interface
functions for the MAA, coupling to the PCI edge connector via on-board bus 302.
This ASIC senses PCI bus activity, determining when processor write (store)
operations or read (load) operations correspond to memory addresses assigned to
the MAA and, in turn, to the SMU. When such processor operations are detected,
a transaction manager within ASIC 310 passes the address and data corresponding
to the operation to interface control ASIC 350 via a dedicated interface 303.

Interface control ASIC 350 provides link management functions between
the MAA and the SMU in the form of memory read/write requests sent to the SMU
through I/O port 304 and over the cable or bus 101. For memory write operations,
interface control ASIC 350 receives the operation’s associated address and data
information from address detect ASIC 310 via interface 303. Interface control
ASIC 350 translates the address and data into a shared memory write request, and
handles transmitting the message over the physical layer of the connection to the
SMU. The interface control ASIC receives response messages, such as indications
of successful writes into shared memory, from the SMU. Such acknowledgements
are passed back to address detect ASIC 310 via interface 303. Address detect
ASIC 310 uses this acknowledgement to complete the overall write operation
occurring on the PCI bus.

Similarly, for memory read operations, interface control ASIC 350 receives
the operation’s associated address information from address detect ASIC 310 via
interface 303. Interface control ASIC 350 translates the address into a shared
memory read request, and handles transmitting the request over the physical layer
of the connection to the SMU. The interface control ASIC receives response
requests, such as those containing data stored within the requested address of the

SMU’s shared memory, from the SMU. The data is passed back to address detect

-11-

PCT/US00/01262



10

15

20

25

30

WO 00/57286

ASIC 310 via interface 303. Address detect ASIC 310, in turn, places this data
upon the PCI bus via edge connector 301 to complete the overall read operation
occurring on the PCI bus.

Address detect ASIC 310 is shown in further detail in FIG. 3 as comprising
conventional PCI interface 320 and transaction unit 330. PCI interface 320, which
may be a PCI target/slave unit, or a unit capable of mastering the PCI bus, may
comprise an “off the shelf” intellectual property core, obtainable commercially
from a number of vendors, including Xilinx, Inc. Alternatively, PCI interface 320
may be separated from ASIC 310 as a stand-alone component. Such devices are
commercially available, from vendors such as Applied Microcircuits Corporation.

As shown in FIG. 3, a typical PCI interface 320 includes a PCI protocol
handler 321, PCI configuration manager 322, PCI configuration storage 323, buffer
memory 324, and PCI to local I/O bus interface 325. Protocol handler 321
provides the overall interface to the PCI physical layer, via on-board bus 302. The
PCI configuration manager 322 provides the required PCI-compliant configuration
registers (Vendor ID, Device ID, memory requirements, etc.), polled by the host’s
BIOS system during power-on initialization. The device-specific data is stored
within PCI configuration storage 323. PCI to local I/O bus transfer interface 325
provides a bridge between the complex PCI bus and the simplified, internal local
I/0 bus 326. A buffer memory 324 provides mailbox registers and pass-through
buffering between the PCI bus 302 and local bus 326.

The foregoing discussion of the MAA has focused on the use of a
Peripheral Component Interface (PCI) bus to electrically and physically couple the
MAA to a standard PCI expansion bus of a personal computer or computer
workstation, such as an IBM-PC compatible computer. However, it is also
contemplated by the present invention that other standard expansion busses may
be used. By way of example, rather than limitation, the MAA may be coupled to
the Advanced Graphics Port (AGP) of a computer, rather than the PCI bus. Indeed,
in many applications, the AGP standard expansion bus may be preferred over the
PCI, inasmuch as the AGP generally provides a faster, higher bandwidth

connection to the processor itself.

-12-

PCT/US00/01262



10

15

20

25

30

WO 00/57286

Whenever an AGP port is used, the address detect ASIC should include a
conventional AGP interface, rather than a conventional PCI interface. Referring
to FIG. 3, PCI interface 320 within address detect ASIC 310 is replaced with a
conventional AGP interface. Such AGP interfaces are commercially available in
the form of a synthesizable core for incorporation as a component within an overall
ASIC. Commercially available AGP cores include the SuperAGPTargetCore from
Integrated Intellectual Property, Inc. of Santa Clara, California, as well as the AGP
Master Core product from Phoenix Technologies, Ltd. Of San Jose, California.

Of course, the use of an AGP bus interface, rather than a PCI bus interface,
also requires the substitution of a suitable AGP edge connector for the PCI edge
connector 301, shown in FIG. 2.

Moreover, it is also contemplated that other existing and forthcoming
standard expansion bus interfaces may be used to couple the MAA to a personal
computer’s processor data bus and, in turn, the processor itself For example, the
Industry Standard Architecture (ISA) bus may be used, although its use is generally
not preferred, since the speed of this bus is relatively slow. Moreover, the standard
memory expansion bus present on most personal computer motherboards, in the
form of SIMM/DIMM memory expansion sockets, may also be used.

Whichever standard expansion bus is chosen, a suitable matching bus
interface must be included within the address detect ASIC of the MAA, as well as
a suitable matching edge connector on the MAA circuit card.

Transaction unit 330 is shown in FIG. 3 as including local I/O bus interface
331, buffer memory 332 and transaction manager 333. Local I/O bus interface
provides the physical interface to local /O bus 331 accepting, among other things,
processor write and processor read operations. Transaction manager 333 monitors
the accepted local I/0 bus operations, looking for operations associated with the
shared memory region of the local processor’s overall memory map. Transaction
manager 333 contains an address limit register, containing a value representing a
boundary address between the top of memory local to the present processor, and
higher memory addresses, corresponding to shared memory contained within the

SMU. The transaction manager also contains an address request register, for

-13-

PCT/US00/01262



10

15

20

25

30

WO 00/57286 PCT/US00/01262

storing the address corresponding to the current memory access operation on the
PCI bus, and a magnitude comparator coupled to these two registers for comparing
their relative values. Buffer memory 332 provides storage for ongoing transactions
within the transaction manager.

Addresses and corresponding data (for write operations) are passed from
the transaction manager to the interface control ASIC via a dedicated interface 303.
Interface 303 includes paths for both SMU memory requests 334 and SMU
memory responses 335. For SMU read operations, the requests include the SMU
memory address, and the responses include the contents of the relevant SMU
memory location. For SMU write operations, the requests include both the SMU
memory address and the data to be written, and the responses include
acknowledgements that the data has been successfully written.

Interface control ASIC 350 is shown in further detail in FIG. 4 as
comprising link manager 351 and I/O port physical interface 352. Link manager
351 provides overall processing of SMU memory access from the Memory Alias
Adapter. This ASIC 350 is coupled to the address detect ASIC via interface 303,
including paths for both SMU memory requests 334 and SMU memory responses
335. Among other operations, the link manager maps SMU memory requests into
messages suitable for transmission over bi-directional data port 304 and, in turn,
the network link between the MAA and the SMU. This preferably includes the
generation of error detection and correction information within the messages, such
as conventional Cyclical Redundancy Check (CRC) information.

In a preferred embodiment, the link manager is controlled by traditional,
dedicated state machine circuitry within the ASIC. Alternatively, a conventional
microprocessor core may be included within the ASIC, with microprocessor
firmware stored within the ASIC controlling the link operations between the ASIC
and the SMU. Such microprocessor cores are commercially available, such as the
MCORE family from Motorola, Inc.

As shown in FIG. 4, physical interface 352 provides the bridge between the
link manager 351 and data port 304 and, in turn, the connection link between the

MAA and the SMU. The choice, and design of physical interface 352 depends

-14-



10

15

20

25

30

WO 00/57286 PCT/US00/01262

upon the choice of physical interconnect to the SMU. In a preferred embodiment,
for very close proximity to a crossbar switch, a parallel, high speed connection link
is recommended, such as the ANSI/IEEE standard Scalable Coherent Interface
(SCI). In such cases, physical interface 352 comprises a conventional SCI
interface. |

Moreover, other high speed parallel connections between the MAA and the
SMU may also be used. By way of example, rather than limitation, any of the
several variations of the Small Computer System Interfaces (SCSI) may
alternatively be used, including SCSI, SCSI2, UltraSCSI, etc. Whichever interface
is chosen, a suitable physical interface device should be used for physical interface
352. For example, if UltraSCSI is chosen, a commercially available host adapter
may be used for physical interface 352, such as the AIC-7895 product from
Adaptec, Inc. of Milpitas, California.

Where longer physical connection distances between the MAA and the
SMU are necessary or desirable, a suitable serial link may alternatively be used.
By way of example, rather than limitation, suitable serial links include the Institute
of Electrical and Electronic Engineers (IEEE) standard 1394 (also shown as
FireWire) and Ethernet. When IEEE-1394 is chosen, physical interface 352
preferably comprises a conventional IEEE-1394 host adapter device, such as the
AIC-5800 device from Adaptec, Inc. of Milpitas, California. When Ethernet is
chosen, physical interface 352 preferably comprises a conventional Ethernet media
access controller (MAC) and Ethernet physical interface (PHY). Combined MAC
and PHY devices are commercially available, such as the 82558 device from Intel
Corporation of Santa Clara, California. Several types of data are passed between
link manager 351 and physical interface 352. As shown in FIG. 4, link manager
351 issues SMU access requests 353 and link-level requests 354 to the physical
interface. The physical interface will respond with access grant signals 355, which,
in turn, causes the link manager to issue an acknowledgement 357. When
appropriate, the physical interface will issue link-level responses 358 and network
system configuration information 359 to the link manager, which issues

acknowledgements 356.

-15-



10

15

20

25

30

WO 00/57286

State diagrams of the operation of the MAA are shown in FIGS. 5 through
7. Fig. 5 shows the system bring-up sequence 360 for the MAA. In state 361, the
local memory in the individual processors in the overall system is detected. In
state 362, the amount of local memory in each processor is mapped. In state 363,
the minimum and maximum local memory addresses for the processor is
established. In state 364, the local/shared memory transition address is selected.
Finally, in state 365, this local/shared memory transition address is stored into the
address limit register of the transaction manager portion of the MAA’s address
detect ASIC.

Following the system bring-up sequence, the MAA enters operational
mode 370, as shown in FIGS. 6 and 7. Referring to FIG. 6, a shared memory
access operation begins in state 371, where the processor issues a data request, in
the form of a memory read (load) or memory write (store) operation. In state 372,
the processor issues the memory address for the data request upon its address bus.
In state 373, PCI bridge circuitry, typically proximate processor on its
motherboard, translates the data request into PCI bus signals, which are made
available to the MAA in its PCI bus slot. In state 374, the MAA loads the address
from the PCI bus into its address request register within the address detect ASIC.

In state 375, the contents of the address request register are compared to the
contents of the address limit register. Action is taken, based upon the output of this
comparison, within state 376. If the contents of the address request register are less
than the contents of the address limit register, transition is taken to state 377.
Within state 377, the current PCI bus transaction is deemed to be a local access,
requiring no further MAA intervention. Transaction is taken to state 368, where
MAA processing of the current PCI bus operation is halted. The MAA will then
await the next PCI bus operation, which will begin again at state 371. If, however,
the contents of the address request register is greater than or equal to the contents
of the address limit register, transition is taken from state 376 to state 379. In state
379, the current PCI bus operation is deemed to be a shared memory access. The
contents of the address detect register is passed from the address detect ASIC to the

interface control ASIC, together with an indication of whether the current

-16-

PCT/US00/01262



10

15

20

25

30

WO 00/57286

operation is a memory read or a memory write. If the current operation is a
memory write, the data to be written is also passed to the interface control ASIC
at this time.

The operation of the interface control ASIC, governed by the state machine
controller within its transaction manager, is shown in FIG. 7. Whenever it is idle,
the controller stays within state 385, awaiting data from the address detect ASIC.
When an address (and associated data, for write operations) is received from the
address detect ASIC, transition is taken to state 386. Within state 386, an address
tag is generated. Any suitable hashing algorithm may be used to generate the tag,
which is used as an index for storing information relating to the pending operation
within the interface control ASIC’s buffer memory. Next, within state 387, a
connection to the SMU (via the ASIC’s physical interface and the dedicated
network link) is requested. The system will remain within state 387 until a grant
message is received, at which time a transition is taken to state 388. Within state
388, the SMU memory address, together with the corresponding data (for memory
write operations), is sent to the SMU. If the current operation is a memory write
operation, an acknowledgement is sent from the interface control ASIC to the
address detect ASIC at this time, indicating a successful shared memory write
operation. In a preferred embodiment, the MAA is capable of handling multiple
outstanding (i.e., simultaneous and overlapping) connection requests to the SMU.

If, however, the current operation is a memory read operation, transition is
taken from state 388 to state 389, where the MAA waits for a response from the
SMU. In state 390, the MAA tests to see if an SMU response has been received
by the physical interface portion of the interface control ASIC. If no response is
received, transition is taken back to state 389. If, however, a response is received,
transition is taken to state 391, where the tag portion of a received request from the
SMU is matched against the tags associated with pending requests, stored within
the ASIC’s memory buffer. In state 392, the data from the request received from
the SMU is placed on the internal data bus connecting the interface control ASIC
and the address detect ASIC. In state 393, a link level response message is issued

to the address detect ASIC, indicating that the requested data from the SMU is

-17-

PCT/US00/01262



10

15

20

25

30

WO 00/57286 PCT/US00/01262

available. At this point, the interface controller ASIC’s state machine has
completed the shared memory read operation, and transition is taken back to the
idle state 385 to await the next request from the address detect ASIC.

Referring back to FIG. 6, the link level response request, including the data
requested from the specified SMU memory address, is received by the address
detect ASIC at state 380. In state 381, this ASIC asserting the PCI TRDY signal
and then transition is taken to state 382, where the requested data from the SMU
is placed upon the PCI data bus. Finally, in state 383, the processor loads the
requested data into one of its internal operations, completing the shared memory
read operation.

In a preferred embodiment, the MAA is coupled to a computer running a
conventional uniprocessor operating system, such as a uniprocessor build of the
Windows NT operating system, distributed by Microsoft Corp. of Redmond,
Washington. A set of operating system (OS) enhancements, in the form of an
operating system extension layer, is employed to facilitate use of the MAA and the
SMU by programmers of applications running on the operating system. The OS
extension layer exposes an application programming interface (API) for use by the
application programmer. Among other things, the API permits the programmer to
specify the range of local memory addresses which actually correspond to external
physical memory located within the SMU. The API exposes functions which
permit the user to define, allocate, and manage the SMU’s memory.

The OS extension layer, in turn, makes low-level calls to another API,
provided by the operating system kernel, including kernel-mode and hardware
abstraction layer (HAL) API calls. In this manner, the OS extension layer forms
a bridge between the user applications and the operating system, facilitating the
application programmer’s usage of shared memory, supplied to the computer by
the SMU via the computer’s local MAA.

As an alternative to using OS extension layer, a modified computer system
Basic Input/Output Operating System (BIOS) may be used to make the shared
memory of the SMU available to applications running on the unmodified operating

system. A fundamental function of most system BIOS programs is to test local

-18-



10

15

20

25

30

WO 00/57286 PCT/US00/01262

memory, and inform any subsequently bootstrapped operating system of the
amount of available memory. Since a conventional BIOS is not cognizant of the
additional memory within the SMU and made available to the processor via its
local MAA, the conventional BIOS only indicates the amount of local memory.

However, a system BIOS may be readily modified to indicate to any
subsequently-booted operating system that there is an amount of available memory
which comprises an aggregate of the physical memory coupled to the motherboard
and the total physical memory of the SMU, available via the standard expansion
bus to which the MAA is coupled.

For example, assume a particular computer system has 128 Megabytes
(MB) of local memory, and includes an MAA coupled to its PCI bus. The MAA,
in turn, is linked to an SMU having an additional 128 MB of memory. The
modified system BIOS would be hard coded to inform any subsequently-booted
operating system that there is a total of 256 MB of (apparently) local memory —
128 MB coupled to the local memory bus, and 128 MB coupled to the local PCI
bus.

Applications written for computer systems with a modified system BIOS
must also be “hard-coded” to some degree. In the foregoing example, an
application for the 256 MB system would assume that the first 128 MB of memory
is local, and that the second 128 MB of memory is shared memory residing on the
SMU. In effect, the application programmer must perform, within the application,
many of the functions and services which would otherwise be provided by an OS
extension layer. In the foregoing example, the local processor memory and the
shared memory are contiguous, with respect to their aggregate memory space, as
viewed by the local processor. The 128 MB of shared memory begins at the
address immediately following the end of the 128 MB of local processor memory.
It should be noted, however, that such contiguous memory spaces are not required
by the present invention. For example, a second processor, having only 64 MB
may also be coupled to the SMU. Within the memory space of this processor, the
first 64 MB comprises its local memory. The next 64 MB comprises an unused

and unavailable “hole” within its overall memory space. The next 128 MB

-19-



10

15

20

25

30

WO 00/57286 PCT/US00/01262

comprises the shared memory of the SMU. Applications running on this second
processor may be informed of this discontinuous memory space by executing a
memory map inquiry API call to an OS extension layer. Alternatively, a modified
BIOS may inform the application of the ranges of available memory. In either
case, discontinuous memory spaces are supported by the present invention.

The SMU is shown in further detail in FIG. 8 as comprising shared
memory banks 110, crossbar switch 150, and memory controller / processor
interconnect 400. Memory controller / processor interconnect 400 includes several
physical interface components, each similar to the physical interface portion of the
MAA'’s interface control ASIC. Each physical interface component provides the
SMU with a port, connecting the SMU to one of the computer systems via a
dedicated cable or bus 101. As with the interface control ASIC, the design of the
memory controller / processor interconnect’s physical interface will depend upon
the type of cable or bus 101 selected (i.e., SCI, ATM, FibreChannel, Ethernet,
etc.). Moreover, although three such ports are shown in FIG. 8 for illustrative
purposes, it is contemplated that a large number of such connections (64 or greater)
may be provided.

In addition to a plurality of physical interface components, memory
controller / processor interconnect 400 also includes a state machine for controlling
both memory read operations and memory write operations to the memory banks
110, in response to access requests [messages] received over the cable or bus 101.
Crossbar switch 150 is of the non-blocking variety, and is interposed between
memory controller / processor interconnect 400 and memory banks 110 in order
to provide multiple, simultaneous accesses to the shared memory.

Memory banks 110 are shown in further detail in FIG. 9 as including a
plurality of identically sized, individual memory banks 111, each coupled to a
common address bus 112. The lower order bits of address bus 112 are used to
address the memory contents of each bank 111. The highest order bits of address
bus 112 are decoded to selectively enable one of the multiple memory banks.
Although four memory banks are shown in FIG. 9 for illustrative purposes, it is

contemplated that a large number of such banks (64 or greater) may be provided.

220-



10

15

20

25

30

WO 00/57286

Non-blocking crossbar switch 150 is shown in further detail in FIG. 10 as
including switch controller 151, read port address bus 152, write port address bus
153, read port multiplexers 154, write port multiplexers 155, memory controller
ports 156, and memory bank ports 157. Each memory controller port 156 provides
an individual data path between crossbar switch 150 and the memory controller /
processor interconnect, via a corresponding data path 158. Accordingly, although
three memory controller ports are shown for illustrative purposes in FIG. 10,
crossbar switch 150 preferably includes one memory controller port for each
connection coupled to the memory controller / processor interconnect portion of
the SMU.

Each memory bank port 157 provides an individual data path between
crossbar switch 150 and one of the memory banks, via a corresponding data path
159. Although three memory bank ports are shown for illustrative purposes in
FIG. 10, crossbar switch 150 preferably includes one memory bank port for each
individual memory bank within the SMU.

In response to shared memory read requests forwarded from the memory
controller / processor interconnect portion of the SMU, switch controller 151
places high order address information upon read port address bus 152 and, in turn,
to the select inputs of the read port multiplexers 154. At this time, switch
controller 151 commands one of the read port multiplexers 154, corresponding to
the desired target memory controller port, to latch its current select inputs and, in
turn, to latch the contents of the read port address bus. Since each read port
multiplexer accepts data inputs from each of the memory bank ports, this causes
the selected multiplexer to provide a data link, through the crossbar switch, from
one memory bank port to one memory controller port. Moreover, since each read
port multiplexer 154 latches its select inputs, switch controller 151 may now
change the contents of read port address bus 152, in order to provide another,
non-blocking read link between one of the memory bank ports and a different
memory controller port 156. This is accomplished by commanding a different read
port multiplexer 154 corresponding to another target memory controller port, to

again latch its current select inputs. In this manner, crossbar switch 150 provides

21-

PCT/US00/01262



10

15

20

25

30

WO 00/57286

multiple, simultaneous data paths from the memory banks to the memory controller
/ processor interconnect portion of the SMU. This, in turn, permits multiple,
overlapping read access to the shared memory.

In response to shared memory write requests forwarded from the memory
controller / processor interconnect portion of the SMU, switch controller 151
places high order address information upon of write port address bus 153 and, in
turn, to the select inputs the write port multiplexers 155. At this time, switch
controller 151 commands one of the write port multiplexers 155, corresponding to
the desired target memory bank port, to latch its current select inputs and, in turn,
to latch the contents of the write port address bus. Since each write port
multiplexer accepts data input from each of the memory controller ports, this
causes the selected multiplexer to provide a data link, through the crossbar switch,
from one memory controller port to one memory bank port. Moreover, since each
write port multiplexer 155 latches its select inputs, switch controller 151 may now
change the contents of write port address bus 153, in order to provide another,
non-blocking write link between one of the memory controller ports and a different
memory bank port 157. This is accomplished by commanding a different write
port multiplexer 155 corresponding to another target memory bank port, to again
latch its current select inputs. In this manner, crossbar switch 150 provides
multiple, simultaneous data paths from the memory controller / processor
interconnect portion of the SMU to the memory banks. This, in turn, permits
multiple, overlapping write operations to the shared memory.

Note that overlapping read and write operations will only interfere with one
another when two such operations attempt to access the same memory bank at the
same time. When such collisions occur, the interfering memory requests must be
arbitrated. One or more blocked requests must wait for their associated memory
banks to become available. Although any suitable arbitration scheme may be used
for such collisions, care is taken to avoid any priority-type arbitration method from
resulting in locking out one or more computer systems from accessing shared
memory for a prolonged period of time. In this manner, the SMU provides the

means for performing atomic (i.e., locked/uninterruptable) memory operations

22

PCT/US00/01262



10

15

20

25

30

WO 00/57286 PCT/US00/01262

between processor nodes and the shared memory, by permitting a processor node
to temporarily lock a region of shared memory and block other node accesses.

Although FIG. 10 shows three read port multiplexers 154 and three write
port multiplexers for illustration purposes, many more, on the order of 64 or more,
are contemplated. Note that one read port multiplexer is required for each
individual bank within the SMU’s memory banks;, and that one write port
multiplexer is required for each physical interface (and dedicated network link)
within the SMU’s memory controller / processor interconnect circuitry.

As mentioned above, in addition to a plurality of physical interface
components, memory controller / processor interconnect also includes a state
machine for controlling both memory read operations and memory write operations
to the memory banks 110, in response to access requests received over the cable
or bus 101. The state diagram of the state machine controller portion of memory
controller / processor interconnect 400 is shown in FIG. 11. Although, in a
preferred embodiment, the memory controller / processor interconnect is controlled
by traditional, dedicated state machine circuitry, a conventional microprocessor
core may be included as a separate entity or within the controller’s ASIC, with
microprocessor firmware controlling the physical interface components, crossbar
switch and memory banks.

Referring to FIG. 11, the memory controller’s idle state is state 401, where
the controller continuously tests each of the several physical interface components
for a new memory request. The result of each test is handled in state 402. If no
new request is detected, transition is taken back to state 401. If, however, a new
memory request is detected, transition is taken to state 403, where another test is
conducted to determine if one or more overlapping requests are in progress. The
results of this test are acted upon in state 404. If overlapping requests are detected,
transition is taken to state 405, where the overlapping requests and the new request
are compared, to determine if the new request is for access to the same memory
bank as one of the already-pending requests. Each request’s associated memory
bank is determined by decoding the higher-order address bits of the shared memory

address specified within the overall request message. State 406 takes action upon

-23-



10

15

20

25

30

WO 00/57286 PCT/US00/01262

the results of this test. If a memory bank overlap occurs, transition is taken to state
407, where the current memory request is arbitrated against the overlapping request
for the same memory bank. In state 408, an active request is selected from among
all pending requests for the same bank, and transition is taken to state 409 to
determine if the requested memory bank is still locked.

State 409 can also be reached from state 404, if no overlapping requests are
detected. However when state 409 is reached, action is taken on its test in state
410. Ifthe memory bank is still locked, transition is taken to state 411, where the
lock is retested. If, however, there is no active lock on the selected memory bank,
transition is taken to state 412, where a test is performed to determine whether the
current shared memory request is a write operation or a read operation. The results
of this test are acted upon within state 413. If the operation is a write operation,
transition is taken to state 414, where the use table is updated, and state 415, where
the data write request is forwarded to the controller portion of the crossbar switch.
If, however, the operation is a read operation, transition is taken to state 416, where
the use table is consulted to determine if the current read address is “stale”. The
result of this test is acted upon in state 417. If the determination is “stale”,
transition is taken to state 418 to update the data. Otherwise, transition is taken to
state 419, where the use table is updated. Next, transition is taken to state 420,
where the read request is forwarded to the controller portion of the crossbar switch.

For data read operations, state 421 continuously senses the crossbar switch
controller for an indication that data from a pending operation is available. The
results of each such test is acted upon in state 422. If no data is available,
transition is taken back to state 421 for continual sensing. If, however, read data
is available, transition is taken to state 423, where the read data is matched with its
associated tag information. In state 424, the read and tag data are formatted into
a message for transmission back to the requesting MAA via the dedicated network
link.

In another embodiment of the present invention, the interconnected
processors are more closely integrated, residing within a common enclosure.

Moreover, in this embodiment, the shared memory is distributed into regions

224-



10

15

20

25

30

WO 00/57286

associated with each system processor, rather than centralized, as is the prior
embodiment. This embodiment is shown in FIG. 12 as comprising system
enclosure 500, motherboard 501, power supplies 504, and hard file bays 505.
Power supplies 504 preferably include two or more redundant supplies. For
additional fault tolerance, file bays 505 preferably include a configuration of
redundant hard disk drives, such as mirrored drives or RAID (Redundant Array of
Inexpensive Drives).

Motherboard 501 includes multiple data busses, including conventional
system bus 502 and shared memory interconnect bus 503. Conventional system
bus 502, which may comprise a conventional PCI bus, is used by each system
processor to access common devices and peripherals. Such devices and peripherals
may include, among other things, display controllers, modems, and disk drive
controllers which, in turn, access disk drives within file bays 505. Shared memory
interconnect bus 503 is preferably a high speed, low latency interconnect, such as
the standard SCI bus.

Although not readily shown in Fig. 12, motherboard 501 includes sockets
for accepting a plurality of processor cards 600. Each socket couples a processor
card 600 to both the system bus 502 and the shared memory interconnect bus 503.
Although two processor cards are shown in FIG. 12 for illustrative purposes,
motherboards capable of accepting a large number of processor cards, such as 64
or more, are contemplated.

In the previously discussed embodiment, dedicated network links were
employed to couple each system processor to a centralized shared memory unit. In
this embodiment, the shared memory is not centralized. Instead, each processor
card 600 includes a region of shared memory, which it makes available to all of the
other processors in the system. Each processor dynamically configures its portion
of the overall shared memory to reside at a different global memory address,
relative to all of the other processor’s own portions of shared memory. Via the
shared memory interconnect bus, each processor card can individually address and

access the shared memory portions of all the other processor cards.

25.

PCT/US00/01262



10

15

20

25

30

WO 00/57286

A processor card 600 is shown in FIG. 13 as comprising processor and
support circuitry 601, local memory 602, shared memory 603, and Memory Bus
Transfer controller (MBT) 610. Processor 601 may be a typical microprocessor,
such as an Intel Pentium, together with its support circuitry, or “chip set”. The
processor’s support circuitry includes support for a local memory bus 604, and a
bus controller for communicating on the PCI bus 502. Local memory bus 604
allows the processor to access two separate regions of on-board memory. Local
memory 602 may only be accessed by processor 601. Shared memory 603,
however, may be accessed both by the local processor 601, and other processors
residing on other cards within the system, via shared memory interconnect bus 503.

As shown in FIG. 13, MBT 610 is situated between shared memory 603,
local memory bus 604, and shared memory interconnect bus 503. A dedicated
data, address and control bus 605 couples MBT 610 to the shared memory portion
603 of the processor’s memory. MBT 610, in turn, controls accesses to the local
shared memory from both local processor 601 and other processors which request
access to shared memory 603 via shared memory interconnect bus 503. Moreover,
MBT 610 also permits its local processor 601 to access the shared memory
portions of other processor cards.

In general, the MBT monitors the address specified by its local processor
whenever a memory request (read or write) is placed on the local memory bus. If
the request is for local non-shared memory, private to the processor, no MBT
intervention is necessary. The processor accesses its local memory via its local
memory bus.

If the request is for the local (on-board) shared region, the MBT performs
the requisite memory access. For memory writes, an acknowledgement, or
handshake, is returned to the local processor, via the local memory bus. For
memory reads, the handshake is accompanied by the requested data. If, however,
the local processor is addressing memory shared by another processor card, the
MBT places a corresponding request (read or write) on the shared memory
interconnect bus. For memory write operations, the associated data accompanies

the request. When the MBT accepts a response over the shared memory

26-

PCT/US00/01262



10

15

20

25

30

WO 00/57286 PCT/US00/01262

interconnect bus, it relays the results to the local processor. For memory read
operations, this response includes the requested data. For memory write
operations, the response is an acknowledgement, or handshake.

Moreover, each MBT also monitors the shared memory interconnect bus
for requests from other processors (via their own MBTs) for access to the portion
of shared memory coupled to the MBT. Each MBT services appropriate requests,
performing shared memory writes and reads, and transmitting associated data and
handshake/acknowledgements, over the shared memory interconnect bus.

In a preferred embodiment, the MBT comprises an ASIC, and includes
traditional, dedicated state machine circuitry controlling overall operation of the
MBT. Alternatively, a conventional microprocessor core may be included within
the MBT ASIC, with microprocessor firmware controlling memory access to the
on-board shared memory, as well as the on-board processor's requests to off-board
shared memory. In addition, the MBT ASIC includes a physical interface circuit.
This circuit forms the bridge between the MBT and the shared memory
interconnect bus. In a preferred embodiment, the physical interface includes an
interface to the SCI bus within the MBT ASIC. Alternatively, the SCI interface
may comprise an external SCI interface device, such as those commercially
available from LSI Logic Corp. of Milpitas, California.

State diagrams of the operation of the MBT are shown in FIGS. 14 through
16. FIG. 14 shows the system bring-up sequence 620 for the processor card. In
state 621, upon system power-up, the amount of local memory in each processor
is mapped. In state 622, registers within the MBT are loaded with these local and
shared address ranges. In state 623, the upper address boundary of local memory
is written to a register within the MBT, named LREG; the shared memory low
address boundary is written to an MBT register named SREGL, and the shared
memory high address boundary is written to an MBT register designated SREGH.

The system operation of the MBT following the system bring-up sequence
is shown in FIGS. 15 and 16. Referring to FIG. 15, in state 631, a memory access
transaction begins with a processor issuing a (load or store) data request. In state

632, the processor generates the effective address for the relevant memory location

27-



10

15

20

25

30

WO 00/57286 PCT/US00/01262

and, in state 633, places the address together with its associated control and (for
write operations) data on the processor card’s local memory bus. In state 634, the
MBT loads the address from the local memory bus into its address request register,
designated ARR.

In state 635, the MBT compares the contents of the ARR and LREG
registers, and the result of the comparison is acted upon in state 636. If ARR is
less than or equal to LREG, transition is taken to state 637, where the memory
access is deemed to be to local memory. In state 638, the MBT processing of the
current processor request is halted, since no further MBT action is warranted. The
MBT will then await the next processor memory request, beginning again at state
631.

If, however, ARR is greater than LREG, transition is taken from state 636
to state 639. In state 639, the MBT compares the contents of the ARR and SREGH
registers. If ARR is greater than SREGH, the memory access is deemed to be to
a portion of shared memory which resides on a different processor card. Transition
is taken to state 640, where a tag associated with the memory request is generated.
In state 641, the MBT requests access to the shared memory interconnect bus, in
order to issue the memory request. In state 642, the MBT tests whether access to
the bus was granted. If not, transition is taken back to state 640, in order to retry
the bus request. If, however, access to the shared memory interconnect bus was
granted, transition is taken to state 643, where the MBT issues the request onto the
bus. Transition is taken to state 644, where the MBT waits for a response (data
plus handshake/acknowledge for memory reads, handshake/acknowledge only for
memory writes) over the bus.

If, in state 639, the MBT determines that ARR is less than or equal to
SREGH, the memory access is deemed to be to shared memory located on the
processor card. Transition is then taken to state 651, discussed in reference to
FIG. 16.

FIG. 16 shows the MBT processing of accesses to the portion of overall

shared memory situated on its own processor card. Processing of memory requests

28-



10

15

20

25

30

WO 00/57286 PCT/US00/01262

from both the on-board processor (via the local memory bus) and from external
processors (via the shared memory interconnect bus) are shown.

In state 651, the MBT tests both the local memory bus and the shared
memory interconnect bus for a memory access request for its assigned (i.e., on
board) portion of overall shared memory. The result of the test is acted upon in
state 652, where transition is taken either back to state 651, if such shared memory
access 1s requested, or to state 653, if a shared memory request is detected.

In state 653, a test is performed to determine if the requesting processor is
the local (on-board) processor. The result of the test is acted upon in state 654,
where transition is taken to state 655 if the requesting processor is local, or to state
656 if the requesting processor is off-board. In state 655, a tag is generated for the
local processor’s memory request, and transition is taken to state 656.

In state 656, a test is made to determine if multiple requests are pending for
the MBT’s portion of shared memory. The result of the test is acted upon in state
657. If multiple requests are pending, transition is taken to state 658, where the
requests are arbitrated. Following arbitration, or if no overlapping requests were
detected, transition is taken to state 659, where the MBT tests whether there is a
lock (via a semaphore) on the requested memory location. The result of this test
is acted upon in state 660. If there is an active lock, transition is taken to state 661,
in order to wait for the lock to be released, and then back to state 659, where the
lock is retested.

If, however, there is no active lock on the requested location, or if a prior
lock has been released, transition is taken to state 671, where the MBT tests
whether the current request is a memory read or write operation. The result of this
test is acted upon in state 672. If the request is a write request, transition is taken
to state 673, where the MBT writes the data accompanying the memory request to
the specified address within its portion of shared memory. Transition is taken to
state 674, where the use table is updated to reflect the memory access, and then to
state 675, where the memory write operation is deemed completed.

If, in state 672, the memory request is a read request, transition is taken to

state 676, where the use table is consulted to determine if the current read address

29.



10

15

20

WO 00/57286 PCT/US00/01262

is “stale”. The result of this test is acted upon in state 677. If the determination is
“stale”, transition is taken to state 678 to update the data. Otherwise, or after
updating the data, transition is taken to state 679, where the data within the
specified address in shared memory is read. Next, in state 680, the use table is
updated. Transition is taken to state 681, where the tags from the use table and
data requests are matched. In state 682, the MBT tests whether the processor
issuing the current request is the local (on-board) processor. The result of this test
is acted upon in state 683. If the requesting processor is local, transition is taken
to state 684, where the requested data, together with appropriate
acknowledge/handshaking signals, are placed on the local processor’s memory bus.
If, however, the requesting processor is off-board, transition is taken to state 685,
where the MBT requests the shared memory interconnect bus, then waits until the
bus is granted. Upon receiving a bus grant indication, transition is taken to state
686, where the MBT places the requested data, together with appropriate
acknowledge/handshaking signals, onto the shared memory interconnect bus,
where it is subsequently retrieved by another MBT associated with the requesting
processor.

The foregoing description and drawings merely explain and illustrate the
invention and the invention is not limited thereto except insofar as the appended
claims are so limited, as those skilled in the art who have the disclosure before
them will be able to make modifications and variations therein without departing

from the scope of the invention.

-30-



10

15

20

25

WO 00/57286 PCT/US00/01262

CLAIMS
1. An adapter for coupling a processor system to a shared memory unit over a
data link, the processor system having a data bus for access to a local memory
and a standard expansion bus coupled to the data bus, the shared memory unit
having at least one bank of shared memory, the adapter comprising:
an expansion bus interface coupling the adapter to the expansion bus of the
processor system,;

- an input/output port coupling the adapter to the shared memory unit via the
data link;
means coupled to the expansion bus interface for monitoring processor
memory accesses on the data bus;

- means coupled to the data bus monitoring means for detecting when a
monitored processor memory access is a processor memory access operation
to a memory address value within a range of addresses corresponding to the
shared memory;

- means coupled to the detecting means for translating the monitored
processor memory access operation into a shared memory access request;

- means for outputting the shared memory access request to the input/output
port and, in turn, to the shared memory unit; and

- means coupled to the expansion bus interface for placing a memory access
completion acknowledgement indication on the expansion bus;

whereby it is transparent to the processor system whether the memory access

operation is addressed to the local memory or to the shared memory.

2. The adapter according to Claim 1, wherein the memory access operation is a

memory read operation.

3. The adapter according to Claim 1, wherein the memory access operation is a

memory write operation.

4. The adapter according to Claim 1, wherein the expansion bus interface

comprises a Peripheral Component Interface bus interface.

31-



10

15

20

25

WO 00/57286

5.

10.

11.

12.

13.

14.

15.

The adapter according to Claim 1, wherein the expansion bus interface

comprises an Advanced Graphics Port bus interface.

The adapter according to Claim 1, wherein the expansion bus interface

comprises a conventional memory module bus interface.

The adapter according to Claim 1, wherein the expansion bus interface

comprises an Industry Standard Architecture bus interface.

The adapter according to Claim 1, wherein the input/output port comprises a

Scalable Coherent Interface.

The adapter according to Claim 1, wherein the input/output port comprises an
IEEE 1394 interface.

The adapter according to Claim 1, wherein the input/output port comprises a
SCSI bus interface.

The adapter according to Claim 1, wherein the input/output port comprises an

Ethernet network interface.

The adapter according to Claim 1, wherein the processor system comprises a

conventional IBM-compatible personal computer.

The adapter according to Claim 1, wherein the processor system accesses the
data bus and, in turn, the shared memory unit, via memory accesses placed

upon the data bus from an unmodified conventional operating system.

The adapter according to Claim 1, wherein the unmodified conventional
operating system comprises a uniprocessor build of a Windows NT operating

system.

The adapter according to Claim 1, wherein a combined memory space
comprising the local memory of the processor system and the shared memory
of the shared memory unit contains at least one memory address corresponding

to a registered location.

-32-

PCT/US00/01262



10

15

20

25

WO 00/57286

16. A shared memory unit for providing shared memory to a plurality of processor

17.

18.

19.

20.

21

systems, the shared memory unit comprising:

a shared memory comprising a plurality of memory banks;

a plurality of input/output ports, each input/output port being connectable
to a processor system by a dedicated data link;

means coupled to the input/output ports for receiving a shared memory
access request from a requesting processor;

means coupled to the receiving means for determining the memory bank
corresponding to the memory access request;

connecting means coupled to the receiving means, the determining means,
and the memory banks, for providing a data path between the input/output
port and the memory bank associated with the memory access request;

a memory controller coupled to the connecting means and the receiving
means, the memory controller performing memory accesses to the shared
memory bank through the connecting means in accordance with the
memory access request; and

means coupled to the memory controller and the input/output ports for
generating a shared memory access response for transmission back to the

requesting processor system.

The shared memory unit according to Claim 16, wherein the connecting means

comprises a crossbar switch.

The shared memory unit according to Claim 17, wherein the crossbar switch

comprises a non-blocking crossbar switch.

The shared memory unit according to Claim 16, wherein at least one of the

input/output ports comprises a Scalable Coherent Interface.

The shared memory unit according to Claim 16, wherein at least one of the

input/output ports comprises an IEEE 1394 interface.

. The shared memory unit according to Claim 16, wherein at least one of the

input/output ports comprises a SCSI bus interface.

-33-

PCT/US00/01262



10

15

20

25

30

WO 00/57286 PCT/US00/01262

22.

23.

24.

The shared memory unit according to Claim 16, wherein at least one of the

input/output ports comprises an Ethernet network interface.

The shared memory unit according to Claim 16, wherein the shared memory
unit further includes means for providing atomic memory operations between

at least one of the processor systems and the shared memory.

A memory bus transfer controller for controlling accesses to a local portion of

distributed shared memory, the memory bus transfer controller comprising;

« alocal processor memory bus interface coupling the memory bus transfer
controller to a local processor and to a memory private to the local
processor;

» a local shared memory bus interface coupling the memory bus transfer
controller to the local portion of distributed shared memory;

+ a shared memory interconnect bus coupling the memory bus transfer
controller to at least one remote memory bus transfer controller associated
with at least one remote processor;

«  first monitoring means coupled to the local processor memory bus interface
for monitoring local processor memory bus accesses;

- first determining means coupled to the first monitoring means for
determining whether a memory address associated with the processor
memory bus access corresponds to one of the memory private to the local
processor, the local portion of distributed shared memory, and a remote
portion of distributed shared memory;

»  second monitoring means coupled to the shared memory interconnect bus
for monitoring remote processor memory access requests;

» second determining means coupled to the second monitoring means for
determining when a remote processor memory access request corresponds
to the local portion of distributed shared memory; and

~ a memory controller coupled to the first determining means, the second
determining means, the local processor memory bus, and the shared

memory interconnect bus, the memory controller performing a local shared

-34-



10

15

20

25

30

WO 00/57286

memory access when the first determining means indicates that a local
processor memory bus access corresponds to the local portion of
distributed shared memory, sending a shared memory access request to the
shared memory interconnect bus when the first determining means
indicates that a local processor memory bus access corresponds to a remote
portion of distributed shared memory, and performing a local shared
memory bus access when the second determining means indicates that a
remote memory access request corresponds to the local portion of

distributed shared memory;

whereby it is transparent to the local processor whether each of its memory access

operations is addressed to the local memory, the local portion of distributed shared

memory, or a remote portion of distributed shared memory.

25. A method for performing processor memory accesses to a shared memory unit

using an adapter coupling a processor system to the shared memory unit via a

data link, the processor system having a standard expansion bus, the adapter

having a standard expansion bus interface coupling the adapter to the standard

expansion bus of the processor system and an input/output port coupling the

adapter to the data link and, in turn, to the shared memory unit, the method

comprising the steps of;,

monitoring processor memory accesses on the standard expansion bus;
detecting when a monitored processor memory access is a processor
memory operation to a memory address value within a range of addresses
corresponding to the shared memory;

translating the processor memory operation into a shared memory access
request;

outputting the shared memory access request to the input/output port and,
in turn, to the shared memory unit via the data link; and

placing a shared memory access acknowledgement indication on the

standard expansion bus;,

whereby it is transparent to the processor whether the memory access operation is

addressed to the local memory or to the shared memory.

-35.

PCT/US00/01262



WO 00/57286

100

113

PCT/US00/01262

101

200

2017 |

300 7 |

200
2017 |

SUBSTITUTE SHEET (RULE 26)

300 7 |

FIG. 1



WO 00/57286 PCT/US00/01262

2/13

101

>.<

304

o
[Te]
o
@\
- O
)
3 (L
o
o
R,
o

(3]

1
302 /&I

300 /1

SUBSTITUTE SHEET (RULE 26)



WO 00/57286

11 2}303

3/13

3347 )

Q
o
@ Q )
(39 ™
©
N
™
| «~— N
ol ™ ™ ™ ™
ol ™
v
S N
o o

3107 A

SUBSTITUTE SHEET (RULE 26)

302

PCT/US00/01262

FIG. 3



WO 00/57286

4/13

PCT/US00/01262

304

350
\'

352

FIG. 4

3

>

(=

SUBSTITUTE SHEET (RULE 26)

335



WO 00/57286

wn

5/13

2]

O

PCT/US00/01262

N

4™ 360

~ o - cof |- o
™ ™ ™ ™ 5]
o
~ N~
— &
5 ™
o
N~
™
-~ ™
N~ . -~ - N
™ ™ 5
- o~ ™ < 7o)
© >  © © ) = ©
™ ™ ™ ™ ™

SUBSTITUTE SHEET (RULE 26)

FIG. 6

FIG. 5



WO 00/57286 PCT/US00/01262

6/13

{4}
00
(&)

W

l

387

( s
<= >

\_/

[))
({e}
e

€ = |
N

w
© [
w

FIG. 7

SUBSTITUTE SHEET (RULE 26)



WO 00/57286

PCT/US00/01262

100

7113
re
o o O
-~ V9] o
<~ -« <

&101

*
i\\m

FIG. 8

101

SUBSTITUTE SHEET (RULE 26)



WO 00/57286

110

8/13

112

=

=

<«

PCT/US00/01262

FI1G. 9

10

SUBSTITUTE SHEET (RULE 26)



WO 00/57286 PCT/US00/01262

9/13

150

»
0
| 2
E s
»v > -
> rxl — 10D < © f
wn - n i
= .
A
-] [+]
o ™
n w
-] A el - [}
(- (-
()] ° o
n
-~
: B
>‘f ' -
— ™~ Lt IS} © o
ot/ o m‘ 0
- 2 -~ <« yp—
[’\ 0 .
° 0 0 . &
(- (.
(-] °
(o)) e )
0
-
: B
>v | -—
>~ L 10 - ©
v.n| . = wn m|
- O = le—i
L A <
YA -
2 mjr
nds
-
Yol
-

SUBSTITUTE SHEET (RULE 26)



WO 00/57286

10/13

PCT/US00/01262

SUBSTITUTE SHEET (RULE 26)

< n
-~ F—— oy
< <
NI =
[eo]
-
< _l
(o)) o () <t
-— e B N| P Nl
< < < <
Br——bg
< <t
-
1 v [—
Te) <.0| -
o o
< <
A J
-~ (52 < D
o o o —p > O 8
< < < w < <




WO 00/57286 PCT/US00/01262

11/13

(30
o
wn

(a0} o

o A

© ©

N

S
©
8| ~_ |V

605

'/‘ 600

FIG. 13

/ 600

k 502

503 \

FIG. 12

500 /\

~

—
(=]
w

o
o
©

SUBSTITUTE SHEET (RULE 26)



WO 00/57286

12/13

D

PCT/US00/01262

643
Y
644

620
\'

SUBSTITUTE SHEET (RULE 26)

2]
© 3
2 ©
—t M
© ‘3'
o)
~ o -
L oo 1 D vl—»q—l
© © ©
-— o o™
2] -1 — - ™ - <
© a © 2
o]
by N ™ .
o > e o
¥

FIG. 15



WO 00/57286

13/13

PCT/US00/01262

SUBSTITUTE SHEET (RULE 26)

]
*
o <t [Te] e
| p Py\l . LI
[(e] ©w ©
al-g
‘—>§| QI aabl © ©
[(o] © ©
Y
[(e] I~ (o] (] - N o) <t
i~ ~ | ™ cof 1 o © o ®©
© (o] © ((e] © [(e] © (o]
w0 [+ o] ~
0l — 10 O
o © ©
o ™ < © N~ [e] I
v ) o) w Yo} Vo]
© © © oll ~\o© ©




INTERNATIONAL SEARCH REPORT

Inten nal Application No

PCT/US 00/01262

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F13/16

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7  GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

WPI Data, IBM-TDB, PAJ, EPO-Internal

Electronic data base consuited during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y EP 0 380 844 A (DIGITAL EQUIPMENT 1-3,6,
CORPORATION) 8 August 1990 (1990-08-08) 24,25
page 5, line 30 -page 8, line 15 :
figures 1,2
Y EP 0 747 830 A (HEWLETT-PACKARD COMPANY) 1-3,6,
11 December 1996 (1996-12-11) 24,25
column 1, Tine 55 -column 3, line 35
column 4, line 41 -column 7, line 9
figure 2
X EP 0 374 337 A (IBM CORPORATION) 16
27 June 1990 (1990-06-27)
page 3, line 21 -page 4, line 2
figure 1
-/
Further documents are listed in the continuation of box C. Patent family members are iisted in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the intermnational
filing date

invention

which is cited to establish the publication date of another
citation or other special reason (as specified)

“T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underying the

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s} or involve an inventive step when the document is taken alone

"Y" document of particutar relevance; the claimed invention
cannot be considered to involve an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eponl,

"0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
"P* document published prior to the intemational filing date but in the art.
later than the priority date ctaimed "&" document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the intemational search report
17 July 2000 24/07/2000
Name and mailing address of the ISA Authorized officer

Fax: (+31-70) 340-3016 McDonagh, F

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2




INTERNATIONAL SEARCH REPORT

Inter: nal Application No

PCT/US 00/01262

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

X,P

EP 0 910 021 A (ALCATEL)

21 April 1999 (1999-04-21)

column 2, line 16 -column 5, line 25
figure 1

US 5 878 240 A (TOMKO)

2 March 1999 (1999-03-02)

column 2, line 65 -column 6, line 25
figure 1

EP 0 280 251 A (HONEYWELL BULL
INCORPORATED) 31 August 1988 (1988-08-31)
column 3, line 1 - line 50

claims 1-10; figure 1

24

1-25

1-25

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Intes »nal Application No
information on patent family members PCT/US OO/O 1262
Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 380844 A 08-08-1990 AU 6338938 B 11-02-1993
AU 5393890 A 19-12-1991
CA 1324679 A 23-11-1993
JP 2207368 A 17-08-1990

EP 747830 A 11-12-1996 us 5664152 A 02-09-1997
DE 69607887 D 31-05-2000
JP 9006711 A 10-01-1997
us 5768547 A 16-06-1998

EP 374337 A 27-06-1990 DE 3853363 D 20-04-1995
DE 3853363 T 28-09-1995
JP 1926202 C 25-04-1995
JP 2259944 A 22-10-1990
JP 5081939 B 16-11-1993

EP 910021 A 21-04-1999 FR 2770008 A 23-04-1999

US 5878240 A 02-03-1999 NONE

EP 280251 A 31-08-1988 AU 598101 B " 14-06-1990
AU 1175288 A 01-09-1988
CA 1307352 A 08-09-1992
DE 3851554 D 27-10-1994
DE 3851554 T 18-05-1995
us 5136500 A 04-08-1992

Form PCT/ISA/210 (patent family annex) (July 1992)



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

