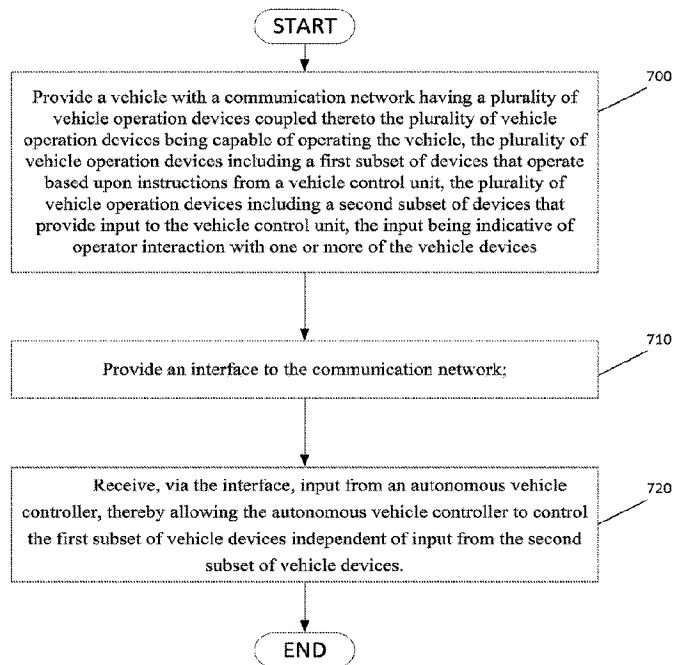


(86) Date de dépôt PCT/PCT Filing Date: 2015/12/14
(87) Date publication PCT/PCT Publication Date: 2016/06/23
(45) Date de délivrance/Issue Date: 2023/10/17
(85) Entrée phase nationale/National Entry: 2017/05/26
(86) N° demande PCT/PCT Application No.: US 2015/065586
(87) N° publication PCT/PCT Publication No.: 2016/100219
(30) Priorité/Priority: 2014/12/15 (US62/091,946)


(51) Cl.Int./Int.Cl. H04W 12/30 (2021.01),
B60W 50/00 (2006.01), G05D 1/00 (2006.01),
G08C 17/02 (2006.01), H04W 12/0471 (2021.01),
H04W 12/069 (2021.01), H04W 12/082 (2021.01)

(72) Inventeurs/Inventors:
MALONE, AMBER P., US;
KOENIG, DAVID J., US;
BLAIR, KEVIN P., US;
WELDON, PATRICK D., US;
SYTSMA, COLE A., US

(73) Propriétaire/Owner:
POLARIS INDUSTRIES INC., US

(74) Agent: MARKS & CLERK

(54) Titre : VEHICULE PRET AUTONOME
(54) Title: AUTONOMOUS READY VEHICLE

(57) Abrégé/Abstract:

A system and method for interfacing an autonomous or remote control drive-by-wire controller with a vehicle's control modules. Vehicle functions including steering, braking, starting, etc. are controllable by wire via a control network. A CAN architecture is used as an interface between the remote/autonomous controller and the vehicle's control modules. A CAN module interface provides communication between a vehicle control system and a supervisory, remote, autonomous, or drive-by-wire controller. The interface permits the supervisory control to control vehicle operation within pre-determined bounds and using control algorithms.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 June 2016 (23.06.2016)

(10) International Publication Number
WO 2016/100219 A1

(51) International Patent Classification:
G05D 1/00 (2006.01) **G07C 9/00** (2006.01)

SYTSMA, Cole A.; 4231 9th Street NW, Rochester, Minnesota 55901 (US).

(21) International Application Number:
PCT/US2015/065586

(74) Agent: **BARKER, Ryan C.**; Faegre Baker Daniels LLP, 300 North Meridian Street, Suite 2700, Indianapolis, Indiana 46204 (US).

(22) International Filing Date:
14 December 2015 (14.12.2015)

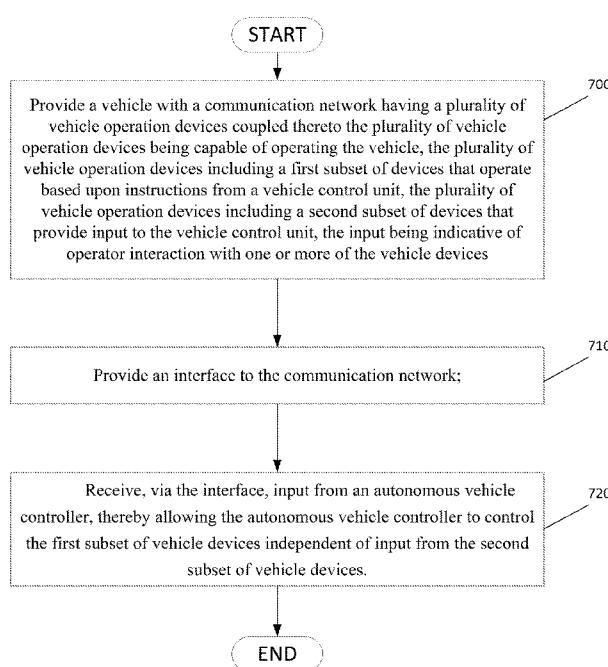
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/091,946 15 December 2014 (15.12.2014) US

(71) Applicant: **POLARIS INDUSTRIES INC.** [US/US];
2100 Highway 55, Medina, Minnesota 55340 (US).


(72) Inventors: **MALONE, Amber P.**; 8210 Fawn Lake Drive NE, Stacy, Minnesota 55079 (US). **KOENIG, David J.**; 3650 Edmar Lane NE, Wyoming, Minnesota 55092 (US). **BLAIR, Kevin P.**; 905 3rd Avenue SW #1202, Roseau, Minnesota 56751 (US). **WELDON, Patrick D.**; 3055 Victoria Street North, Roseville, Minnesota 55113 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: AUTONOMOUS READY VEHICLE

FIG. 6

(57) **Abstract:** A system and method for interfacing an autonomous or remote control drive-by-wire controller with a vehicle's control modules. Vehicle functions including steering, braking, starting, etc. are controllable by wire via a control network. A CAN architecture is used as an interface between the remote/autonomous controller and the vehicle's control modules. A CAN module interface provides communication between a vehicle control system and a supervisory, remote, autonomous, or drive-by-wire controller. The interface permits the supervisory control to control vehicle operation within pre-determined bounds and using control algorithms.

WO 2016/100219 A1

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

— *with international search report (Art. 21(3))*

Declarations under Rule 4.17:

— *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*

AUTONOMOUS READY VEHICLE

PRIORITY

[0001] The present application is a PCT application that claims priority to US Provisional Application Serial Number 62/091,946; filed December 15, 2014, titled 5 Autonomous Ready Vehicle.

BACKGROUND AND SUMMARY

[0002] The present disclosure an autonomous ready vehicle. More particularly, the present disclosure relates to a vehicle configured to receive commands from an autonomous 10 controller or remote controller to control vehicle functions.

[0003] In one illustrated embodiment of the present disclosure, a system and method are provided for interfacing an autonomous or remote control drive-by-wire controller with a vehicle's control modules. Vehicle functions including steering, braking, starting, etc. are controllable by wire via a control network. For example, a CAN architecture available from 15 Polaris Industries, Inc. is used as an interface between the remote/autonomous controller and the vehicle's control modules in an illustrated embodiment of the present disclosure. A CAN module interface illustratively provides communication between a vehicle control system and a supervisory, remote, autonomous, or drive-by-wire controller. The interface permits the supervisory control to control vehicle operation within pre-determined bounds and using 20 control algorithms.

[0004] In another embodiment, a vehicle is provided including a communication network having a plurality of vehicle devices coupled thereto; a vehicle control unit coupled to the communication network and able to control a first subset of the plurality of devices via the communication network to effect vehicle operation; the vehicle control unit operable to receive input from a second subset of the vehicle devices via the network and to control the first subset of the plurality of devices responsive to the input received from the second subset 25 of vehicle devices, input from the second subset of vehicle devices being indicative of operator interaction with one or more of the vehicle devices; and a network interface; the network interface operable to couple to an autonomous vehicle controller such that the autonomous vehicle controller is able to effect vehicle operation via the first subset of vehicle devices independent of input from the second subset of vehicle devices.

[0005] According to another embodiment of the present disclosure, a method of providing autonomous vehicle operation is provided including: providing a vehicle with a

communication network having a plurality of vehicle operation devices coupled thereto, the plurality of vehicle operation devices being capable of operating the vehicle, the plurality of vehicle operation devices including a first subset of devices that operate based upon instructions from a vehicle control unit, the plurality of vehicle operation devices including a 5 second subset of devices that provide input to the vehicle control unit, the input being indicative of operator interaction with one or more of the vehicle devices; and providing an interface to the communication network; receiving, via the interface, input from an autonomous vehicle controller, thereby allowing the autonomous vehicle controller to control the first subset of vehicle devices independent of input from the second subset of vehicle 10 devices.

[0006] According to another embodiment of the present disclosure, a computer readable media having non-transitory instructions thereon is provided that when interpreted by a processor cause the processor to: provide instructions to a first subset of vehicle devices capable of operating a vehicle, the first subset of device operate based upon instructions from a vehicle control unit, the instructions being provided via a vehicle communication network; receive input, via the communication network, from a second subset of vehicle devices, the input being indicative of operator interaction with one or more of the vehicle devices; and receive, via an interface to the communication network, input from an autonomous vehicle controller, thereby allowing the autonomous vehicle controller to control the first subset of 15 vehicle devices independent of input from the second subset of vehicle devices.

[0006a] According to another embodiment of the present disclosure, there is provided a vehicle gateway module installed on a vehicle, the vehicle gateway module comprising: an autonomous controller interface operable to couple with an autonomous controller external to the vehicle, the autonomous controller interface providing a sole communication path for the 25 autonomous controller to communicate with a controller area network (CAN) of the vehicle, the CAN operable to communicate with an engine control module of the vehicle; a command translator operable to cause commands received from the autonomous controller via the autonomous controller interface to be translated into commands operable with the engine control module; an authenticator operable to authenticate the autonomous controller.

[0006b] According to another embodiment of the present disclosure, there is provided a 30 method of operating a vehicle gateway module installed on a vehicle, the method comprising: sending, by an autonomous controller interface, an authentication request containing a seed value to an autonomous controller external to the vehicle, wherein the autonomous controller interface provides a sole communication path for the autonomous controller to communicate

with a controller area network (CAN) of the vehicle; receiving an authentication key value from the autonomous controller; determining if the received authentication key value is a valid value; when the received key value is a valid value, transmitting one or more control signals received from the autonomous controller over the CAN; and when the received key
5 value is not a valid value, preventing transmitting of control signals received from the autonomous controller over the CAN.

[0006c] According to another embodiment of the present disclosure, there is provided a method of operating a vehicle gateway module installed on a vehicle, the method comprising: providing an autonomous controller interface operable to couple with an autonomous controller external to the vehicle; providing a controller area network (CAN) of the vehicle operable to communicate with an engine control module of the vehicle, wherein the autonomous controller interface provides a sole communication path for the autonomous controller to communicate with the CAN; providing a command translator located logically between the autonomous controller interface and the CAN; providing an authenticator located logically between the autonomous controller interface and the CAN; authenticating the autonomous controller coupled to the autonomous controller interface; translating authenticated commands received from the autonomous controller via the autonomous controller interface to be operable with the engine control module; and providing translated commands to the CAN.
10
15

[0006d] According to another embodiment of the present disclosure, there is provided a vehicle comprising: a motor coupled to a plurality of ground engaging members, the motor configured to drive the plurality of ground engaging members; at least one sensor coupled to the vehicle, the at least one sensor being configured to sense at least one operating condition of the vehicle; a communication interface module coupled to the at least one sensor and communicatively coupled to an autonomous controller, the communication interface module being configured to communicate the at least one operating condition to the autonomous controller and receive a command from the autonomous controller based upon the at least one operating condition; and a vehicle control unit coupled to the communication interface and configured to receive the command from the autonomous controller and control operation of the vehicle based upon the command.
20
25
30

[0006e] According to another embodiment of the present disclosure, there is provided a method for operating a vehicle using an autonomous controller, the method comprising: sending, via a communication interface module of the vehicle, at least one operating

condition to the autonomous controller, wherein the at least one operating condition is sensed by at least one sensor coupled to the vehicle, and wherein the vehicle comprises a plurality of ground engaging members and a motor coupled to the plurality of ground engaging members, the motor configured to drive the plurality of ground engaging members; receiving a 5 command from the autonomous controller based upon the at least one operating condition; and controlling, via a vehicle control unit of the vehicle, operation of the vehicle based upon the command.

10 [0007] Additional features of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.

BRIEF DESCRIPTION OF THE DRAWINGS

15 [0008] The detailed description of the drawings particularly refers to the accompanying figures in which:

[0009] Fig. 1 is a block diagram illustrating components of an autonomous ready vehicle 15 of an illustrated embodiment of the present disclosure;

[0010] Fig. 2 is a block diagram illustrating communication between a CAN communication network module of the vehicle and an accessory hardware platform and accessory software;

20 [0011] Fig. 3 is a flowchart illustrating steps performed during normal operation in an autonomous or remote control mode and during a lockout mode of operation;

[0018] A mode switch 16 coupled to module 14 permits a user to select between a manual operation mode and the autonomous or remote control mode. In the manual mode, the vehicle 10 is operated by a driver in a normal manner (via operator action on vehicle devices such as a steering device, (such as handles, wheel, joystick), a brake pedal, a gear shift, an accelerator pedal, and an ignition switch (or a sensor that detects operation of any of the foregoing) that respectively cause operation of other vehicle devices, such as a steering device (such as a steering tie arm), a brake actuator, an transmission shifter controller, a throttle, and an ignition relay (generally any vehicle device or actuators for operating such devices). Overall, it should be appreciated that for any operational input device, embodiments are envisioned that utilize physical connections and embodiments are envisioned where sensors are placed on input devices and operation of the devices is communicated via electrical signals. Likewise, embodiments are envisioned where physical connections are used to drive action in actuators and embodiments are envisioned where actuators receive electrical signals that instruct their operation.

[0019] In one embodiment, the mode switch 16 is a physical switch. In other embodiments, the mode switch 16 is actuated in software using one of a manned and autonomous or remote user input. The communication interface module 14 controls a system on/off function 18 and an ignition interrupt function 20. The communication interface module 14 also communicates with a display 22 within the vehicle 10. The display 22 is preferably a high resolution color display. The display 22 may also be provided by a vehicle gauge display.

[0020] Communication interface module 14 further communicates with an electronic power steering control 24. The power steering control 24 controls a steering position function 26 for guiding the vehicle 10.

[0021] Communication interface module 14 further communicates with an engine control module (ECM) 28. The ECM 28 controls and responds to a pedal position function 30. ECM 28 further controls an engine start/stop function 32. The pedal position function 30 receives instruction from the network interface module 14 whether to accept actual position of the foot pedal or an acceleration command received from controller 12 for controlling the vehicle throttle position. For example, in manual mode the pedal position function 30 takes the physical response from the pedal for throttle application, whereas in autonomous or remote mode the controller 12 provides a percentage of throttle that is to be applied in the same manner as the physical application of the throttle.

[0022] Communication interface module 14 further communicates with a vehicle control module 34. The vehicle control module 34 controls a transmission position function 36, a brake

position function 38, and a parking brake position function 40. Shifting of the vehicle is controlled by a driver during manual mode or by signals received from the controller 12 through communication interface module (CIM) 14 in the autonomous or remote control mode. The vehicle control module 34 also provides vehicle status and sensor information 5 through communication interface module 14 back to the controller 12. The vehicle status and sensor information includes, for example, vehicle speed, steering angle, requested speeds, requested steering angles, brake status, fuel level, accelerometer data, brake sensors, throttle position sensors, wheel speed sensors, gear selection sensors, temperature sensors, pressure sensors, emissions levels, trouble codes, error messages, or the like. The brake position 10 function 38 is illustratively implemented using an i-Booster intelligent brake control available from Bosch.

[0023] Furthermore, in the event of interaction or conflicting messages between the ECM 28 pedal position function 30 and VCM 34 brake position function 38 the CIM 14 will filter the appropriate communication messages to pass to the external controller 12, thus 15 avoiding interaction issues regarding the input or pedal positions.

[0024] The vehicle control module 34 controls the transmission position function 36 by detecting a request to shift gears and then providing a shifting signal when conditions are right. Brake position function receives inputs from a pedal position detector and brake commands received over the communication interface module 14 to apply the vehicle brakes 20 38 or the parking brake 40.

[0025] Autonomous or remote controller 12 may also control suspension components through the communication interface module 14. Vehicle sensors outputs are received and processed by controller 12 and signals are then sent from controller 12 through communication interface module 14 to control adjustable springs or adjustable shocks the 25 vehicle suspension. See, for example, U.S. Patent Application Publication No. 2014/0125018 and U.S. Application Serial No. 14/507,355, filed on October 6, 2014.

[0026] Fig. 2 illustrates an exemplary accessory integration device 50 having an accessory CAN port 52 which communicates through a CAN bus 54 to an accessory hardware platform 56 of the vehicle 10. Specifically, the CAN bus 54 communicates with a 30 hardware CAN transceiver 58. Transceiver 58 communicates with hardware platform firmware 62 of accessory software 60. The hardware platform firmware 62 communicates with CAN accessory application programming interface (API) software 64. The API software 64 communicates with third party application software 66.

[0027] The CAN accessory API software 64 includes a compiled code library. The library provides an interface between a proprietary CAN network and an application programmer's application code. This allows a third party accessory creator to access specific and limited information on the CAN network, therefore enabling the creation of smart accessories, without access to proprietary information of the CAN network, and without the ability to interfere with vehicle communications. Further, this interface does not allow for compromising the vehicles intended operation or network security.

[0028] In one embodiment, the compiled code library includes a set of proprietary, secure, and predefined function calls. The function calls include items such as getEngineRPM(),
10 getVehicleSpeed(), or getEngineTemperature(), for example. The third party application programmer may use these function calls to bring the accessible vehicle information into their application code.

[0029] In one example, the code library may be compatible with large open source electronics platforms. In addition to the software library, a quick start custom accessory includes
15 a durable housing and hardware peripherals that the third party developer may use. The peripherals include, for example, an LED bar and a basic LCD display, etc.

[0030] The present disclosure permits any third party to create software applications for use with the vehicle without interfering with the other functionality of the vehicle. Therefore, third parties can develop smart accessories for use with the vehicle. This enables vehicle users to
20 drive innovation in vehicle accessories.

Conflict Resolution

[0031] In one embodiment, when conflicts arise between individual or multiple manual inputs and input instructions received from the autonomous or remote controller 12 when the vehicle 10 is in the autonomous or remote control mode, the vehicle may respond with a manual
25 override of autonomous control and the CIM 14 may continue to watch the remote input messages without executing the instructions, while continuing to send CAN messages.

[0032] In another embodiment, a user is detected in the vehicle, i.e, via an input torque sensed on the steering wheel, therefore allowing manual operation to override specific or all functions of autonomy.

30 **[0033]** Another embodiment includes autonomous or remote controller 12 override of manual control inputs to the vehicle. For example, messages may be detected from the controller

12 allowing for autonomous control to override specific or all functions of manned mode operation.

[0034] Some vehicles implement a switch to transition from autonomous or remote mode to manned mode. In some examples, the switch position will override the conflicting messages.

5 For example, if the switch is in autonomous mode, and messages are received from the vehicle pedals, the vehicle will continue to operate in autonomous mode.

Brake-Throttle interactions in Autonomy

[0035] In some instances inputs may comprise manned and autonomy or remote messages that are conflicting or occur simultaneously. For example, if commands are sensed for brake application and throttle application, the CIM 14 may be calibrated so that the brake application takes precedence. Furthermore, profiles may determine whether the pedal positions were intended actions. If the actions were unintended the vehicle may enter a lockout mode. Otherwise, the responses of the vehicle controls may be calibrated to pre-selected limits.

15 [0036] In another instance, the vehicle's response may include a blended application of at least one of the manned and autonomous or remote inputs. For example, the CIM 14 may receive messages for throttle application and brake application. A blended response may reduce the throttle to a calibrated level low enough such that the vehicle brakes will overcome the throttle application to the engine. In other situations, alternative calibrations may be desired.

20 These calibrations comprise profiles that pre-select which vehicle features have priority in the event of conflicting messages

[0037] An exemplary vehicle system response of conflicting individual or multiple manual inputs and individual or multiple input instructions received from autonomous or remote controller 12 when the vehicle 10 is in the autonomous or remote control mode, may be as follows:

- Brakes: The vehicle 10 has both mechanical and electrical brake controls. If conflicts occur between the brake pedal input and the brake request command from the controller 12, an override causes the strongest braking request (manned or autonomous/remote) to be implemented. Therefore, an occupant in the vehicle may use the brakes to override remote commands to stop the vehicle 10.
- Steering: the steering will not respond to manual input.
- Transmission: the transmission will not respond to manual input.

- Engine: the accelerator pedal will be non-responsive to manual input.

Lockout Mode

[0038] A lockout function of the present disclosure is implemented in a vehicle 10 which supports both manned and autonomous or remote modes. In manned mode, the vehicle operates normally, receiving inputs from a driver through pedals, a steering wheel, and a shift lever. In remote mode, the vehicle 10 operates by receiving commands from an external controller 12 which communicates through a gateway communication interface module 14 which conditions and translates the commands onto the vehicle's CAN network. The lockout function permits only approved third parties to send commands via the vehicle gateway in remote control or autonomous mode. The vehicle 10 behaves in a known way in the event of the loss of or corruption of communication between the vehicle gateway 14 and the external controller 12.

[0039] The lockout function is illustratively part of the software which allows a third party to communicate with and drive a vehicle via controller 12 and interface module 14. In lockout mode the vehicle operations may comprise coming to a controlled stop, shifting into park, shutting off the engine, locking the steering column/brakes/clutch, shutting off the display/suspending communications, shut off power to the vehicle, inhibit starting of the vehicle. In order to insure only approved third parties are accessing the gateway module 14, the third party's external controller must successfully complete an authentication sequence. In an illustrated embodiment, authentication is based on a J1939 seed key exchange. It is understood that other authentication techniques may also be used. Another embodiment authentication protocol is described below with respect to Fig. 5.

Entering lockout mode

[0040] In order to insure only approved third parties are accessing the gateway module 12 in remote mode the third party's external controller 12 must successfully complete an authentication sequence. In one illustrated example, an authentication sequence is based on the J1939 or other seed key exchange. If an authentication sequence is not initiated and completed successfully at least once every five minutes, for example, then the vehicle enters lockout mode. Additionally, if the integrity of the communication, which may be ensured using checksums, message counters, or other communication errors, in any message coming from the external module to the vehicle gateway is compromised the vehicle enters the lockout mode.

Controlling the vehicle to execute lockout mode

[0041] The gateway control module 14 executes lockout mode by ignoring any incoming CAN message from the external controller 12. Then module 14 sends a throttle command of zero over the vehicles internal CAN network and begins to command breaks to stop the vehicle 10. The braking force used is determined by a calibratable map which is dependent on vehicle 5 speed and steering angle. Once the vehicle has stopped moving the transmission is commanded to shift into park and the engine is turned off. The gateway module 14 ignores incoming messages from external controllers 12, keeps the engine off, the transmission in park, and the brakes depressed until lockout mode is exited.

10 **Exiting lockout mode**

[0042] Exiting the lockout mode may occur by reauthentication, reestablishing communication, by a manual key cycle, etc. In one embodiment, the lockout mode is exited once the vehicle 10 has come to a complete controlled stop, the engine is shut off, and the transmission is shifted into park. In another embodiment, the lockout mode may be exited 15 during the shutdown sequence (i.e. before a complete controlled stop has occurred, before the engine is shut off, or before the transmission is shifted into park) if reauthentication or reestablished communication occurs during the shutdown sequence. If the lockout was caused by loss of or corrupt communication, then lockout mode is exited once communication has been reestablished. If lockout mode was caused by a failure to authenticate, lockout mode is exited 20 once an authentication sequence completes successfully. If the conditions to exit lockout mode are satisfied while the vehicle is in the process of stopping, shutting down the engine, and parking, the lockout mode is exited once the vehicle has come to a complete stop, shutdown the engine, and shifted into park.

[0043] Further details of the normal operation in the autonomous or remote control mode 25 and the lockout mode are illustrated in Fig. 3. During normal operation, as illustrated at block 70, autonomous or remote controller 12 sends drive requests to the communication interface module or gateway interface module 14. The interface module 14 sends vehicle status information to controller 12. Module 14 also sends drive commands to vehicle communication nodes (such as CAN, Ethernet, etc.) based on the drive requests received from controller 12 as 30 discussed above. Vehicle nodes send status information to the interface module 14.

[0044] Next, the communication interface module 14 determines whether the autonomous or remote controller 12 has initiated and successfully completed an authentication, such as, for

example, a seed key exchange as illustrated at block 72. If authentication was successfully completed at block 72, module 14 resets an authentication timer at block 74 and continues with normal operation at block 70. If authentication was not successfully completed at block 72, module 14 determines whether a predetermined period of time, such as 5 minutes, has elapsed 5 since the last successful authentication, as illustrated at block 76. If the predetermined amount of time has not elapsed at block 76, normal operation continues at block 70. If the predetermined amount of time has elapsed at block 76, module 14 enters a lockout mode at block 78.

[0045] Module 14 sends drive commands to the vehicle modes to bring the vehicle to a lockout state in a controlled manner as illustrated at block 78. Module 14 controls braking of the 10 vehicle based upon speed and steering angle of the vehicle to bring the vehicle to a controlled stop. Engine control module 28 then shuts off the engine function at block 32. In the lockout mode, controller 12 may continue sending drive requests to the communication interface module 14. The interface module 14 continues to send vehicle status information to the controller 12. Interface module 14 sends drive commands to the vehicle nodes in order to maintain lockout of 15 the vehicle. The vehicle nodes send status information back to the interface module 14.

[0046] In another illustrated embodiment, communications from controller 12 to the vehicle CIM 14 still occurs regardless of the vehicle being in lockout mode. After a predetermined number of failed authentication attempts or a failure in communication, the CIM 14 stops executing commands to the vehicle. Vehicle CIM 14 will still be receive communications from 20 controller 12, but will no longer send communications to controller 12.

[0047] In yet another illustrated embodiment, when the vehicle 10 enters lockout mode, the entire vehicle communication network is still functional while the external communication network between controller 12 and CIM 14 is shut down.

[0048] In still another illustrated embodiment, active control is provided for individual 25 vehicle nodes of the vehicle communications network. Lockout authentication is applied between any two vehicle nodes or vehicle communications networks to implement lockout functionality. This technique is also be used to prevent an unauthorized vehicle node from being added to the CAN network.

[0049] Next, the interface module 14 determines whether the controller 12 has initiated and 30 successfully completed an authentication, such as by a seed key exchange, as illustrated at block 82. If not, interface module 14 maintains the lockout mode at block 80. If the authentication was successful at block 82, interface module 14 resets the authentication timer at block 74 and resumes normal operation in which the vehicle is again controlled by the autonomous or remote

controller 12.

[0050] When the vehicle 10 is in autonomous or remote control mode, communications failures may occur. In the event of a communications failure, including problems with a message counter and checksum as well as if any J1939 defined “error” messages, the 5 communication interface module 14 enter the lockout mode discussed above. If the remote module commands the brakes at greater than 0% and the throttle at greater than 0%, the communication interface module 14 obeys the brake command, ignores the throttle command, and broadcasts a diagnostic trouble code over the external CAN network. The following are exemplary actions taken by the communication interface module 14 in the event a J1939 “not 10 available” message is received for each subsystem controlled in remote mode. In one example:

- Brakes: brake command interpreted as 0%
- Steering: steering angle maintained at last valid requested angle
- Transmission: requested gear maintained at last valid requested gear
- Engine: pedal command interpreted as 0%, engine on/off command interpreted as engine 15 off

[0051] In one illustrated example, if the CIM 14 receives a brake command and the data says the command is not available, the CIM 14 determines that the command is invalid and waits to see if it receives another message. Limit the number of messages, before a lockout or alternative operation takes place. If multiple input commands (brakes, steering, etc.) are not 20 valid, this could signal a problem and the CIM 14 enters lockout mode to stop these commands from continuing. The CIM 14 may enable options for any pedal commands, any steering commands, pre-set “limp-home” commands, etc. If problems occur with check sum or data errors, then the CIM 14 uses use last valid commands, however, if the conditions are still not valid vehicle will eventually enter a lockout mode or limp home/degrade mode condition.

25

Remote Vehicle Power Up and Remote Mode Selection

[0052] In another embodiment, the system permits remote mode selection and vehicle power up remotely. The communication interface module 14 has a low power mode which wakes when a CAN message is received from controller 12. The mode selection is controlled by 30 a CAN message from the remote controller 12 (if not present default to manual mode). Once woken up, the communication interface module 14 controls the circuit in Fig. 4 in order to bypass the key switch if in remote mode. A conventional wiring harness is modified by adding

an inline connector behind the key switch connector as shown in Fig. 4. An auto start control line for the ECM 28 is routed to a 5 pin connector with existing key switch lines. Fig. 4 also shows both sides of a new pass through connector with an auto/manual bypass circuit in-between.

5 [0053] If communication is lost in autonomous or remote control mode while the vehicle 10 is in motion, a "stop procedure" is implemented. The system monitors ground based vehicle speed and steering angle then applies the brakes based on these two inputs to bring the vehicle to a stop. Applications based on a 3D map calibrated to the vehicle (speed, steering angle and brakes percentage) may be used to provide feedback of the surrounding terrain.

10 [0054] In illustrative embodiments, the controller 12 implements one or more of the following features:

- Vehicle supervisory control to the level of emulating a human driver
- Sensory fusion
- Navigation by GPS corrected inertial navigation or other system capable of required precision in determining position
- Localization
- Lane detection and lane departure
- Extensive terrain and obstacle detection, avoidance and database characterization using real-time or near real-time detection, pre-recorded maps and lane structures, trips planned and tracked, collision avoidance system (LIDAR, Video, sensors), and adaptive cruise control.
- In the absence of communications from a controller 12, the vehicle has the ability to operate in a full autonomous mode.

[0055] The communication interface module 14 may provide:

- Run/Auto Start, Speed /Acceleration Control, Steering, Braking, Gear select, and other chassis functions such as lighting
- Yaw rate models vs. steering command are used at the vehicle control level
- Command modes include target condition and rate with standard and maximum rate of change profiles
- Remote dashboard messages.
- Creating drive profiles from vehicle sensors
- Black out mode

- Infrared (IR) mode
- Automating driveline control, by executing drive modes including 2 wheel drive, 4 wheel drive and turf mode, etc.
- Status messages sent over the CAN include controller conflicting commands, vehicle health data, and state and conditions of vehicle lockout mode.

5

[0056] Still further, embodiments are envisioned where the vehicle 10 (and controller 34) is provided with information regarding the terrain being traversed (via GPS or otherwise, alone or in combination with other sources). This information can include the type of terrain, changes in 10 terrain, or otherwise to inform the vehicle 10 about conditions expected to impact operation thereof. Vehicle 10 then uses this information to impact the operation of the vehicle. In one example, vehicle 10 is determined to be travelling in a cross-hill direction. Vehicle 10 uses this information to impact the stiffness settings of the electrically adjustable shocks to increase vehicle stability. Similarly, other examples include adjusting shock settings by determining 15 whether an on-road or off-road setting is being traversed.

[0057] With reference to Fig. 5, another embodiment authentication protocol is described to ensure only authorized entities are able to access the CAN network to direct operation of the vehicle. Upon enabling autonomous mode, the CIM 14 sends an authentication request to the remote module 12, block 500. The request contains a seed value. The seed value is illustratively 20 a 7-byte long key that is generated to approximate a random number. Remote module 12 receives the request and calculates a key based on the seed value (a private key) and an algorithm, block 510. Module 12 then sends back a public key value to CIM 14, block 520. CIM 14 then compares the returned value to a value it calculated internally and therefore expects 25 to match the returned value to indicate an authentic module 12. Upon receiving the public key value, CIM 14 determines if the response was received within a defined timing window, block 530. This timing requirement limits the ability of a third party to have unlimited time to attempt 30 any number of responses (i.e. a “brute force” hack attempt). If the public key response was received within the required timing window and the public key matches the expected response, block 540, then the module is authenticated and module 12 is permitted to transmit control signals, block 550.

[0058] If the public key received within the timing window does not match or if the public key response was received outside of the required window, CIM 14 locks out module 12 and

enters a lockout mode (which either disables the vehicle or returns it to manual user control), block 560.

[0059] CIM 14 then waits for another authentication request from module 12 (which may be the same or different module 12 that provided the failed public key response), block 570. Upon 5 receiving another authentication request, CIM 14 enforces a delay to again reduce the likelihood of success for a brute-force type attack, block 580. If the delay time has not elapsed, CIM 14 again locks out module 12 and then waits for another authentication request, block 590. If the delay time has elapsed, then CIM 14 returns to block 510 to again attempt to authenticate module 12.

[0060] As noted, once a module 12 is authenticated, it is permitted to transmit commands to CIM module 14 for instructing operation of vehicle 10. As part of this, CIM 14 receives an input command from module 12, block 600. Each received message has a checksum and message counter value attached thereto. CIM 14 compares the checksum and counter within the message to what is internally calculated (and therefore expected from the message), blocks 610, 620, 630. 10 If either the counter or checksum do not match, CIM 14 locks out module 12, block 560. If the counter and checksum match, then the received command input is accepted and distributed within vehicle 10 to achieve invocation thereof, block 640.

[0061] Overall, with reference to Fig. 6, it should be appreciated that a method allowing ready connection of a vehicle with an autonomous controller disclosed. A vehicle is provided 20 with a communication network having a plurality of vehicle operation devices coupled thereto, the plurality of vehicle operation devices being capable of operating the vehicle, the plurality of vehicle operation devices including a first subset of devices that operate based upon instructions from a vehicle control unit, the plurality of vehicle operation devices including a second subset of vehicle operation devices that provide input to the vehicle control unit, the input being indicative of operator 25 interaction with one or more of the vehicle devices, block 700. An interface to the communication network is provided, block 710. Input is received via the interface from an autonomous vehicle controller, thereby allowing the autonomous vehicle controller to control the first subset of vehicle devices independent of input from the second subset of vehicle devices, block 720.

[0062] The logical operations of the various embodiments of the disclosure described herein 30 are implemented as: (1) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a computer, and/or (2) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a

directory system, database, or compiler.

[0063] Embodiments of the disclosure may be practiced using various types of electrical circuits comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors. Embodiments of the disclosure may also be practiced using other technologies capable of performing logical operations such as, for example, AND, OR, and NOT, including but not limited to mechanical, optical, fluidic, and quantum technologies. In addition, aspects of the methods described herein can be practiced within a general purpose computer or in any other circuits or systems.

[0064] Embodiments of the present disclosure are implemented as a computer process (method), a computing system, or as an article of manufacture, such as a computer program product or computer readable media. The computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process. Accordingly, embodiments of the present disclosure may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.). In other words, embodiments of the present disclosure may take the form of a computer program product on a computer-usuable or computer-readable storage medium having computer-usuable or computer-readable program code embodied in the medium for use by or in connection with an instruction execution system. A computer-usuable or computer-readable medium includes any medium that includes media capable of containing or storing the program for use by or in connection with the instruction execution system, apparatus, or device.

[0065] Embodiments of the present disclosure, for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to embodiments of the disclosure. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.

[0066] While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

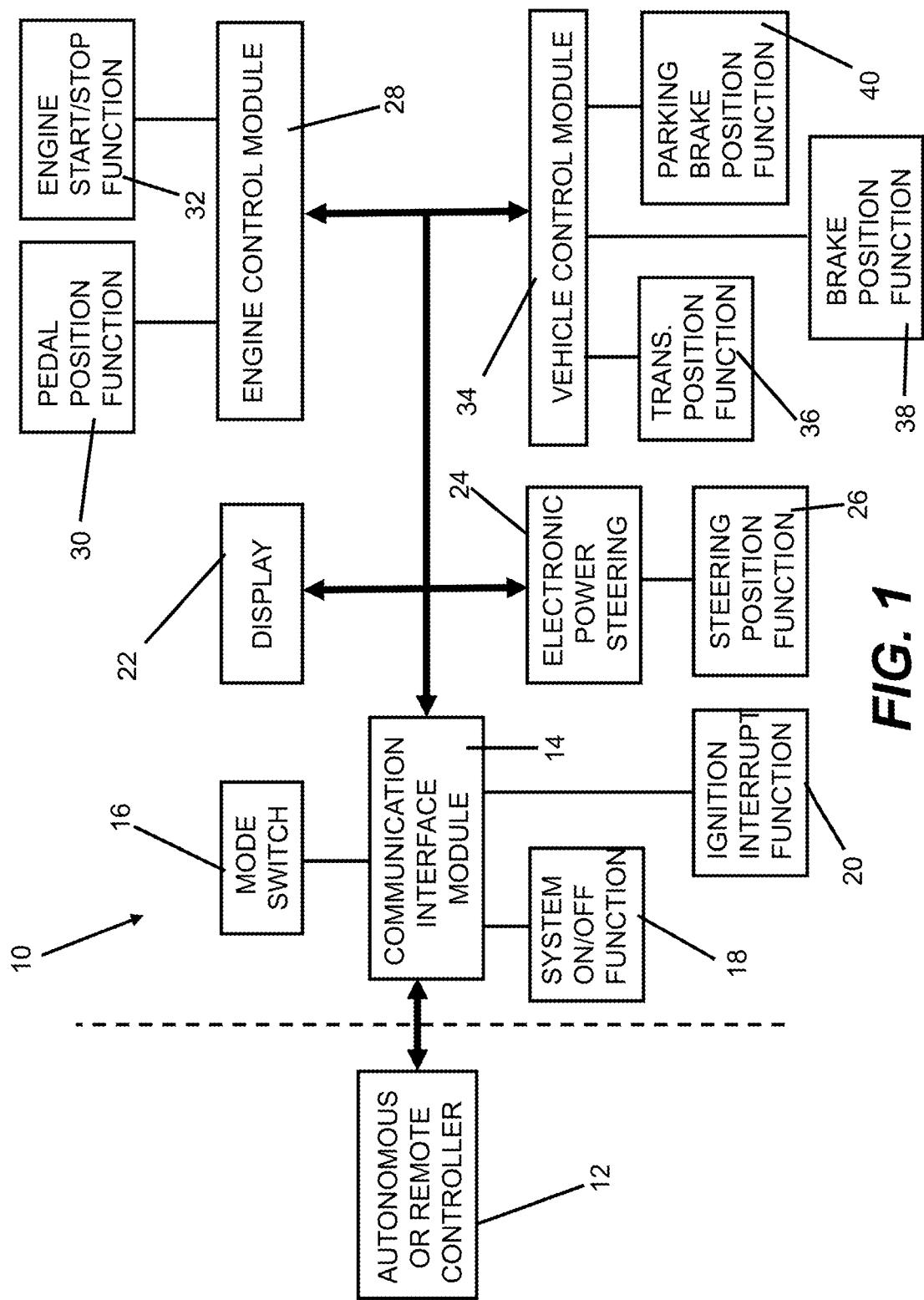
What is claimed is:

1. A vehicle gateway module installed on a vehicle, the vehicle gateway module comprising:
 - an autonomous controller interface operable to couple with an autonomous controller external to the vehicle, the autonomous controller interface providing a sole communication path for the autonomous controller to communicate with a controller area network (CAN) of the vehicle, the CAN operable to communicate with an engine control module of the vehicle;
 - a command translator operable to cause commands received from the autonomous controller via the autonomous controller interface to be translated into commands operable with the engine control module; and
 - an authenticator operable to authenticate the autonomous controller.
2. The vehicle gateway module of claim 1, wherein the authenticator performs a J1939 seed key exchange.
3. The vehicle gateway module of claim 1 or 2, wherein the command translator includes an accessory application programming interface.
4. The vehicle gateway module of claim 3, wherein the accessory application programming interface provides an accessory with access to the CAN.
5. The vehicle gateway module of any one of claims 1 to 4, wherein the authenticator selectively engages a lockout mode that refuses instructions from the autonomous controller.
6. The vehicle gateway module of any one of claims 1 to 5, wherein the command translator is further operable to send vehicle data to the autonomous controller interface.

7. The vehicle gateway module of any one of claims 1 to 6, wherein the authenticator requires authentication operations to be performed within a pre-defined timing window.
8. A method of operating a vehicle gateway module installed on a vehicle, the method comprising:
 - sending, by an autonomous controller interface, an authentication request containing a seed value to an autonomous controller external to the vehicle, wherein the autonomous controller interface provides a sole communication path for the autonomous controller to communicate with a controller area network (CAN) of the vehicle;
 - receiving an authentication key value from the autonomous controller;
 - determining if the received authentication key value is a valid value;
 - when the received key value is a valid value, transmitting one or more control signals received from the autonomous controller over the CAN; and
 - when the received key value is not a valid value, preventing transmitting of control signals received from the autonomous controller over the CAN.
9. The method of claim 8, further comprising:
 - receiving at least one of a checksum and message counter value attached to a control signal received from the autonomous controller;
 - determining if the at least one checksum and message counter match expected values; and
 - when the at least one checksum and message counter fail to match expected values, preventing transmitting of control signals received from the autonomous controller over the CAN.
10. The method of claim 8 or 9, wherein sending the authentication request containing a seed value to the autonomous controller includes sending a private key value.
11. The method of any one of claims 8 to 10, further comprising determining if the received authentication key value was received within a defined time window.

12. The method of claim 11, wherein when the received authentication key was not received within the defined time window, preventing transmitting of control signals received from the autonomous controller over the CAN.

13. The method of claim 11, wherein when the received authentication key was received within the defined time window, permitting transmitting of control signals received from the autonomous controller over the CAN.


14. The method of claim 8, further comprising receiving an authentication request from the autonomous controller and wherein sending the authentication request containing a seed value to the autonomous controller is performed in response to receiving the authentication request from the autonomous controller.

15. A method of operating a vehicle gateway module installed on a vehicle, the method comprising:

- providing an autonomous controller interface operable to couple with an autonomous controller external to the vehicle;
- providing a controller area network (CAN) of the vehicle operable to communicate with an engine control module of the vehicle, wherein the autonomous controller interface provides a sole communication path for the autonomous controller to communicate with the CAN;
- providing a command translator located logically between the autonomous controller interface and the CAN;
- providing an authenticator located logically between the autonomous controller interface and the CAN;
- authenticating the autonomous controller coupled to the autonomous controller interface;
- translating authenticated commands received from the autonomous controller via the autonomous controller interface to be operable with the engine control module; and
- providing translated commands to the CAN.

16. The method of claim 15, wherein authenticating includes performing a J1939 seed key exchange.

17. The method of claim 15 or 16, further comprising an accessory application programming interface that provides an accessory with access to the CAN.
18. The method of any one of claims 15 to 17, further comprising selectively engaging a lockout mode by the authenticator that refuses instructions from the autonomous controller.
19. The method of any one of claims 15 to 18, further comprising sending vehicle data to the autonomous controller interface via the command translator.
20. The method of any one of claims 15 to 17, further comprising determining whether authentication operations are performed within a pre-defined timing window and engaging a lockout mode when the authentication operations fail to be performed within the pre-defined timing window.

FIG. 1

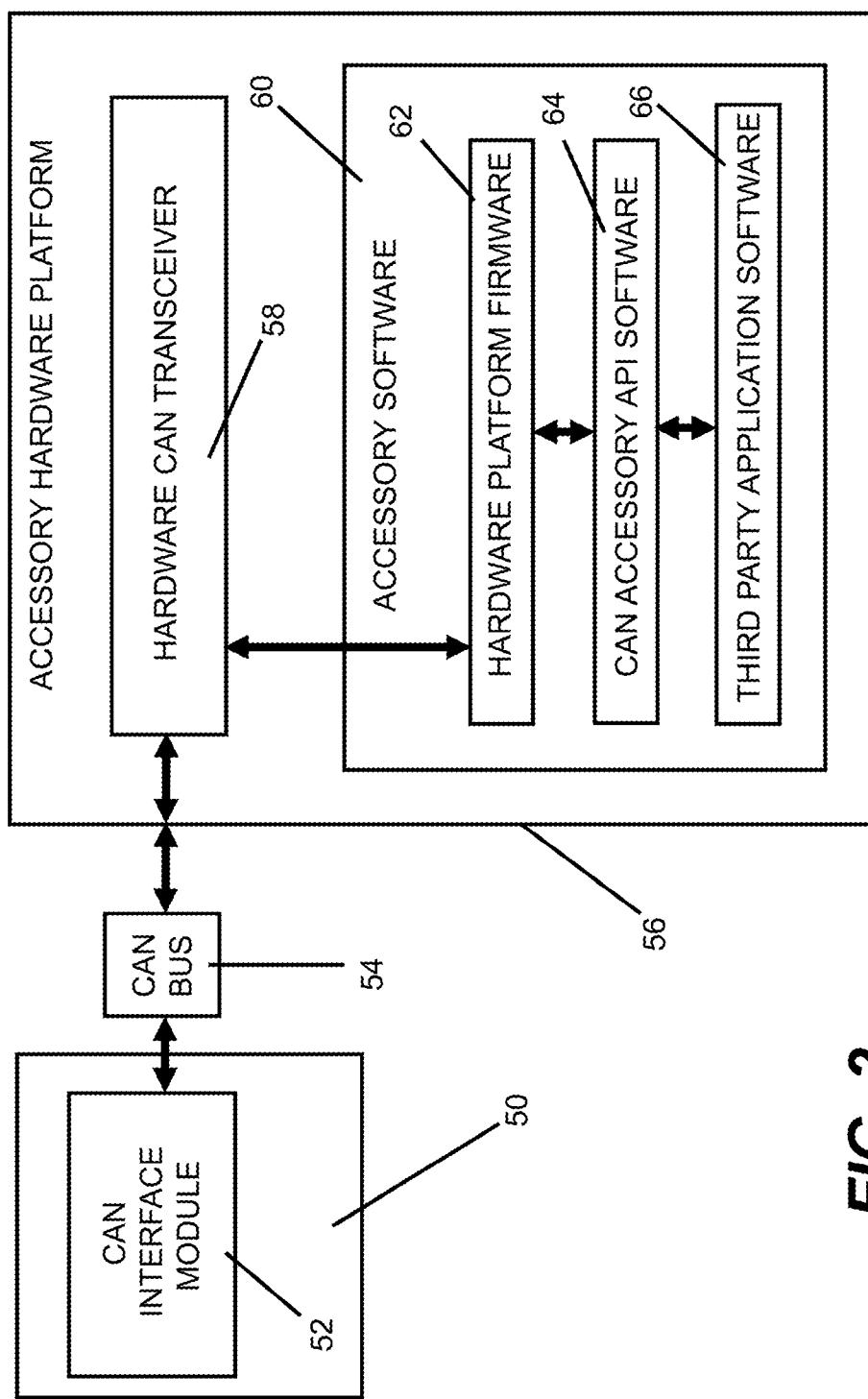


FIG. 2

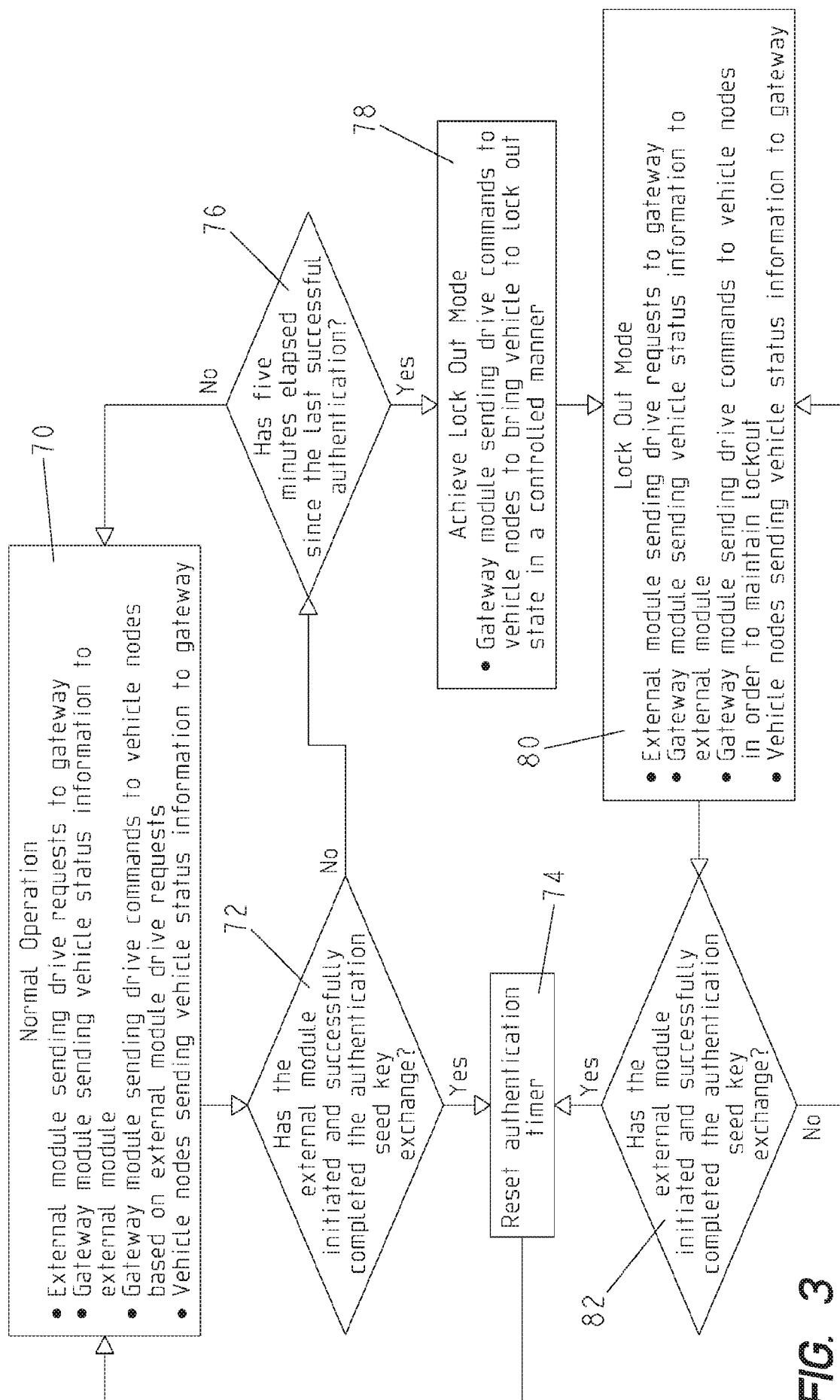


FIG. 3

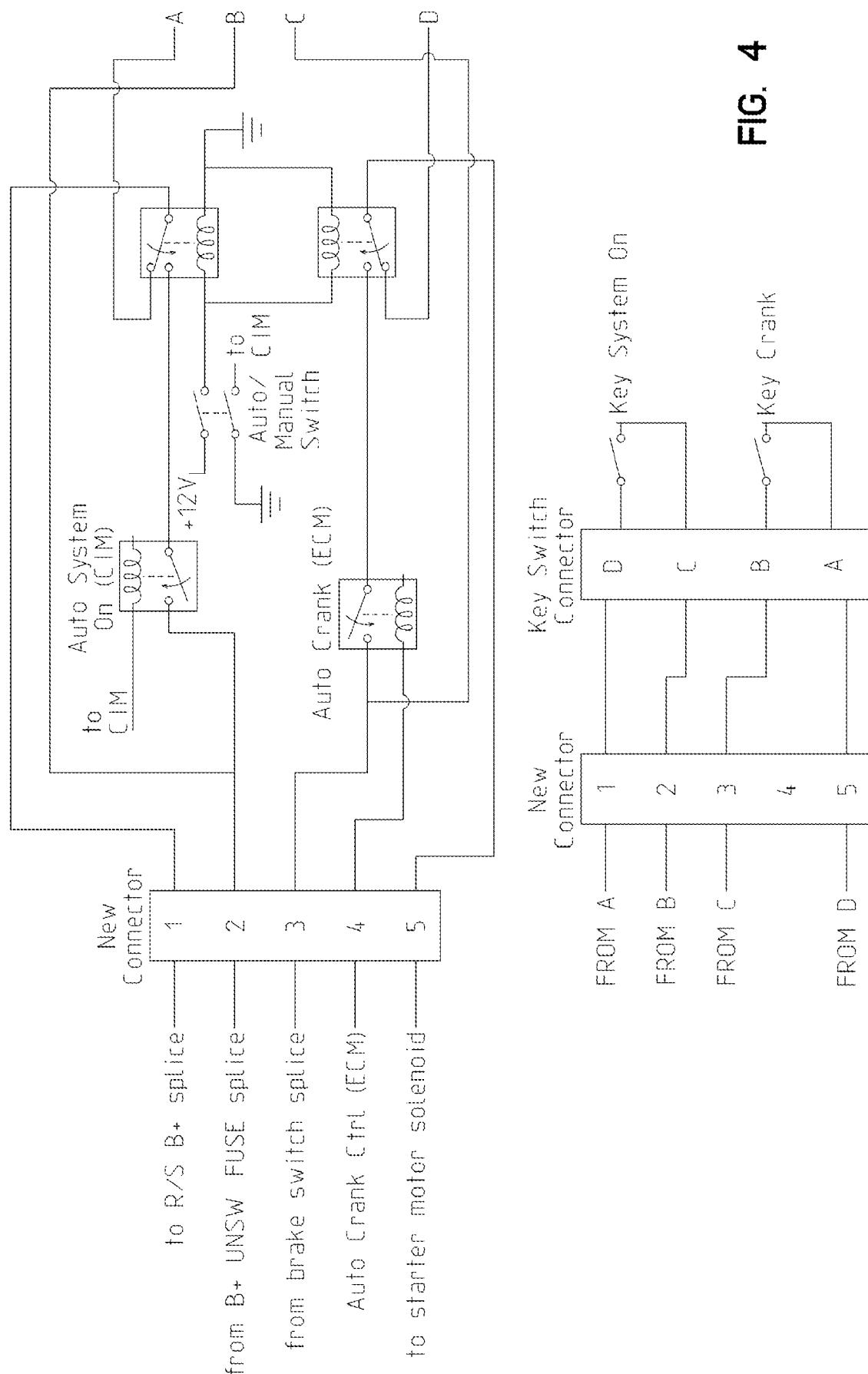


FIG. 4

5/6

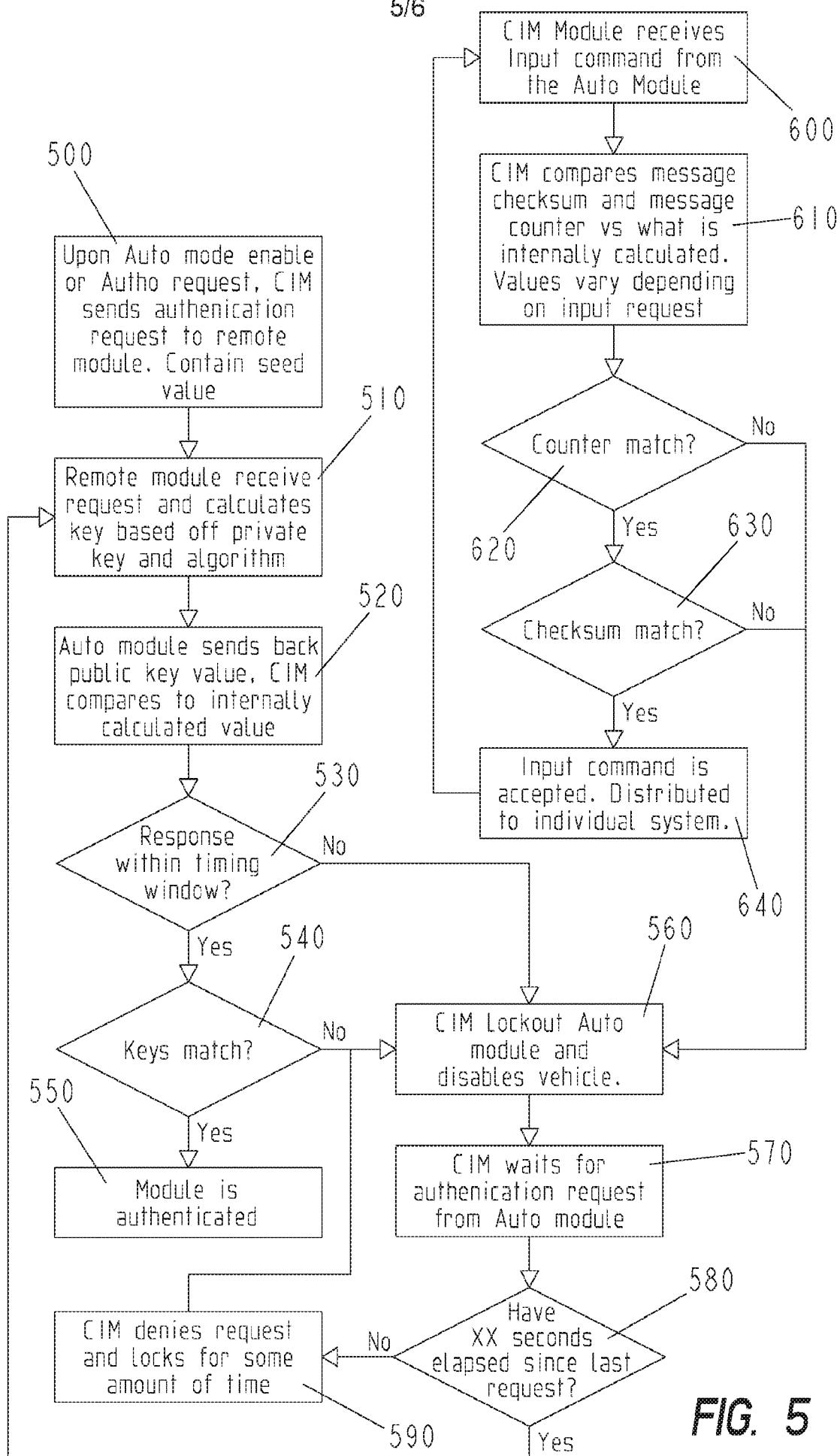


FIG. 5

6/6

START

Provide a vehicle with a communication network having a plurality of vehicle operation devices coupled thereto the plurality of vehicle operation devices being capable of operating the vehicle, the plurality of vehicle operation devices including a first subset of devices that operate based upon instructions from a vehicle control unit, the plurality of vehicle operation devices including a second subset of devices that provide input to the vehicle control unit, the input being indicative of operator interaction with one or more of the vehicle devices

700

Provide an interface to the communication network;

710

Receive, via the interface, input from an autonomous vehicle controller, thereby allowing the autonomous vehicle controller to control the first subset of vehicle devices independent of input from the second subset of vehicle devices.

720

END

FIG. 6

START

Provide a vehicle with a communication network having a plurality of vehicle operation devices coupled thereto the plurality of vehicle operation devices being capable of operating the vehicle, the plurality of vehicle operation devices including a first subset of devices that operate based upon instructions from a vehicle control unit, the plurality of vehicle operation devices including a second subset of devices that provide input to the vehicle control unit, the input being indicative of operator interaction with one or more of the vehicle devices

700

Provide an interface to the communication network;

710

Receive, via the interface, input from an autonomous vehicle controller, thereby allowing the autonomous vehicle controller to control the first subset of vehicle devices independent of input from the second subset of vehicle devices.

720

END