(51) 国際特許分類:
H04W 72/12 (2009.01) H04W 16/28 (2009.01)

(21) 国際出願番号:
PCT/JP2001/070973

(22) 国際出願日:
2001年12月15日 (15.12.2001)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 機関名:

(71) 出願人 (米国を除く全ての国について): 京セラ株式会社 (KYOCERA CORPORATION) [JP/P]: 〒612-8501 京都府京都市伏見区竹田島羽殿町6番3号

(72) 代理人: 京セラ株式会社

(54) Title: WIRELESS BASE STATION, WIRELESS TERMINAL AND COMMUNICATION CONTROL METHOD

(56) 機関名:
株式会社

WIRELESS BASE STATION, WIRELESS TERMINAL AND COMMUNICATION CONTROL METHOD

5.1 本発明は、eNB (1-1) が eNB (2-1) と RRC Connection Reconfiguration Message を交換する方法について記載されている。

5.2 この方法は、eNB (1-1) と eNB (2-1) との間で通信を行うために、RRC Connection Reconfiguration Message を使用して経路情報や設定を共有する。これにより、eNB (1-1) と eNB (2-1) は、共通の設定を基に通信を行うことができる。

5.3 特許の範囲について

本発明は、eNB (1-1) が eNB (2-1) と RRC Connection Reconfiguration Message を交換する方法を特許する。この方法は、eNB (1-1) と eNB (2-1) の間で通信を行うために、RRC Connection Reconfiguration Message を使用して経路情報や設定を共有する。これにより、eNB (1-1) と eNB (2-1) は、共通の設定を基に通信を行うことができる。
(84) 指定国（表示のない限り、全ての種類の広域保

国際調査報告（条約第21条（3））
明細書
発明の名称：無線基地局、無線端末及び通信制御方法
技術分野
[0001]本発明は、無線通信システム内に構成される無線基地局、無線端末、無線基地局における通信制御方法、無線端末における通信制御方法に関する。
背景技術
[0002]3GPP（Third Generation Partnersh ip Project）において、規格化されたLTE（Long Term Evolution）に対応する無線通信システムでは、無線基地局（eNB）と無線端末（UE）との間の無線通信において、eNBがUEに対して無線リソース（リソースブロック：RB）の割り当てを行っている（例えば、非特許文献1参照）。eNBは、適宜、UEに割り当てられるリソースブロックを変更している。例えば、eNBは、大量のデータの送信先のUEや、通信の優先順位の高いUEに対しては、帯域域のリソースブロックを割り当てる。
[0003]また、LTEに対応する無線通信システムでは、6〜12とし、UEとの間の無線通信に、周波数分割複信（FDD：Frequency Division Duplex）と、時分割複信（TDD：Time Division Duplex）の何れかが採用される。
[0004]更に、丁りと比較するUE（TDD—LTE）の無線通信システムでは、eNBと、移動するUEとの間の通信品質を確保すべく、eNBがUEが送信する上りと下りの無線信号であるサウンティング参照信号（SRS）の受信状況に応じて、アンテナウエイトを算出し、下りの無線信号の送信時に送信前のUEの方向へ適応的にビームを向ける制御（ビームフォーミング）や、送信先以外のUEの方向へヌルを向ける制御（ヌルステアリング）を行うことが検討されている。
[0005]UEに割り当てられるリソースブロックが適宜変更される環境内において、ビームフォーミングやヌルステアリングを実現するためには、SRSの周波数帯に、当該UEに割り当てようとするリソースブロックの周波数帯に含
まれている必要がある。すなわち、SRSの周波数帯も、適宜切り替えられる必要がある。

このため、eNBは、以下の処理を行う。eNBは、SRSの送信内容や送信方法等のパラメータを含んだ、RRC (Radio Resource Control) Connection Reconfigurationメッセージを、UEへ送信する。UEは、応答メッセージである、RRC Connection Reconfiguration Completeメッセージを、eNBへ送信し、パラメータに従って、SRSを切り替えて送信する。eNBは、SRSの受信状況に応じて、アンテナウェイトを算出する。

先行技術文献

非特許文献

[0007] 非特許文献1: 3GPP TS 36.211 V8.7.0 "Physical Channels and Modulation", MAY 2009

発明の概要

[0008] しかし、従来、UEにおけるSRSの切り替えタイミングは、当該UEの性質や、RRC Connection Reconfigurationメッセージの伝搬遅延に依存する。このため、eNBが、複数のUEに対して同時にRRC Connection Reconfigurationメッセージを送信しても、各UEにおけるSRSの切り替えタイミングが一致しないことがある。従って、複数のUEが、同時に同一周波数のSRSを送信しても、SRSの衝突が発生する可能性がある。

[0009] 上記問題点に鑑み、本発明は、複数の無線端末が同時に同一周波数の参照信号を送信してしまうことを防止した、無線基地局、無線端末及び通信制御方法を提供することを目的とする。

[0010] 上述した課題を解決するために、本発明は以下のような特徴を有している。本発明の特徴は、無線端末 (UE2 — 1 乃至UE2 — 3) が接続可能な無線基地局 (eNB1 — 1) であって、前記無線端末が送信する参照信号 (SRS) に関するパラメータの適用を前記無線端末に要求する適用要求メッセージ
ジ（RRC Connection Reconfiguration メッセージ）を、前記無線端末へ送信し、前記パラメータの適用のタイミングに関する情報を、前記無線端末へ送信するように構成されることを要旨とする。

[001] このような無線基地局は、無線端末に対して、参照信号に関するパラメータとともに、当該パラメータの適用のタイミングに関する情報をも送信することが従って、無線端末は、タイミングに関する情報を基づくタイミングでパラメータを適用し、参照信号を送信することが可能である。このため、各無線端末における参照信号の切り替えを可能に限り同－タイミングとすることができ、複数の無線端末が同時に同一周波数の参照信号を送信してしまうことが防止できる。

[002] 前記適用要求メッセージは、前記パラメータの適用のタイミングに関する情報を含んでもよい。

[003] 前記パラメータの適用のタイミングに関する情報は、基準となる時刻から遅延時間、及び、前記パラメータの適用のタイミングを示す時刻の少なくともいずれかであってもよい。

[004] 前記パラメータは、前記参照信号の周波数帯域、及び、前記参照信号の送信周期の少なくともいずれかであってもよい。

[005] 本発明の特徴は、無線基地局（eNB1_1）に接続可能な無線端末（UE2_1乃至はUE2_3）であって、前記無線端末が送信する参照信号（RSS）に関するパラメータの適用を前記無線端末に要求する適用要求メッセージ（RRC Connection Reconfiguration メッセージ）を、前記無線基地局から受信し、保持している前記パラメータの適用のタイミングに関する情報を基づいて、前記パラメータの適用のタイミングを制御する、ように構成されることを要旨とする。

[006] このような無線端末は、参照信号に関するパラメータの適用のタイミングに関する情報に基づくタイミングでパラメータを適用し、参照信号を送信することができる。このため、各無線端末における参照信号の切り替えを可能
な限り同一タイミングとすることがで、複数の無線端末が同時に同一周波数の参照信号を送信してしまうことが防止できる。

[0017] 前記無線端末は、前記パラメータの適用のタイミングに関する情報を、前記無線基地局から受信することもよい。

[0018] 本発明の特徴は、無線端末を接続可能な無線基地局における通信制御方法であって、前記無線基地局が、前記無線端末が送信する参照信号に関するパラメータの適用を前記無線端末に要求する適用要求メッセージを、前記無線端末へ送信し、前記無線基地局が、前記パラメータの適用のタイミングに関する情報を、前記無線端末へ送信することを要旨とする。

[0019] 本発明の特徴は、無線基地局に接続可能な無線端末における通信制御方法であって、前記無線端末が、自端末が送信する参照信号に関するパラメータの適用を前記無線端末に要求する適用要求メッセージを、前記無線基地局から受信し、前記無線端末が、保持している前記パラメータの適用のタイミングに関する情報に基づいて、前記パラメータの適用のタイミングを制御することを要旨とする。

図面の簡単な説明

[0020] [図1] 本発明の実施形態に係る無線通信システムの全体概略構成図である。
[図2] 本発明の実施形態に係る、リソースブロックのフォーマットを示す図である。
[図3] 本発明の実施形態に係る、フレームのフォーマットを示す図である。
[図4] 本発明の実施形態に係る、無線基地局と無線端末との間の無線通信において利用可能な無線リソースの周波数帯の構成を示す図である。
[図5] 本発明の実施形態に係る、無線基地局の構成図である。
[図6] 本発明の実施形態に係る、無線端末の構成図である。
[図7] 本発明の実施形態に係る、SRSの送信周波数帯の時間変移を示す図である。
[図8] 本発明の実施形態に係る、無線通信システムの動作を示すシーケンス図である。
発明を実施するための形態

[0021] 次に、図面を参照して、本発明の実施形態を説明する。具体的には、無線通信システムの構成、無線基地局の構成、無線端末の構成、無線通信システムの動作、作用効果、その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。

[0022] （1）無線通信システムの構成

図1は、本発明の実施形態に係る無線通信システム10の全体概略構成図である。

[0023] 図1に示す無線通信システム10は、TDD LTEの無線通信システムである。無線通信システム10は、無線基地局（eNB）1_1と、無線端末（UE）2_1、無線端末（UE）2_2、無線端末（UE）2_3を含む。

[0024] UE2_1乃至UE2_3は、eNB1_1によるリソースブロックの割り当て対象である。この場合、eNB1_1を基準とすると、UE2_1乃至UE2_3は、サービス無線端末である。また、eNB1_1以外の図示しないeNBを基準とすると、UE2_1乃至UE2_3は、非サービス無線端末である。

[0025] eNB1_1とUE2_1乃至UE2_3との間の無線通信には、時分割複信が採用されるとともに、下りの無線通信にはOFDMA（Orthogonal Frequency Division Multiplexing Access）、上りの無線通信にはSC-FDMA（Single Carrier Frequency Division Multiple Access）が採用される。ここで、下りとは、eNB1_1からUE2_1乃至UE2_3へ向かう方向を意味する。上りとは、UE2_1乃至UE2_3からeNB1_1へ向かう方向を意味する。

[0026] eNB1_1は、セル3_1内のUE2_1乃至UE2_3に対して、無線リソースとしてのリソースブロック（RB:Resource BLock）を割り当ててる。
リソースブロックは、下りの無線通信に用いられる下りリソースブロック（下りRB）と、上りの無線通信に用いられる上りリソースブロック（上りRB）と又有る。複数の下りリソースブロックは、周波数方向及び時間方向に配列される。同様に、複数の上りリソースブロックは、周波数方向及び時間方向に配列される。

図2は、リソースブロックのフォーマットを示す図である。図2に示すように、リソースブロックは、時間方向では、1 [ms] の時間長を有する1つのサブフレームによって構成される。サブフレームは、シンボルS1乃至シンボルS14 からなる。これらシンボルS1乃至シンボルS14のうち、シンボルS1乃至シンボルS7は、前半のタイムスロット（タイムスロット1）を構成し、シンボルS8乃至シンボルS14は、後半のタイムスロット（タイムスロット2）を構成する。

図2に示すように、リソースブロックは、周波数方向では、180 [kHz] の周波数幅を有する。また、リソースブロックは、15 [kHz] の周波数幅を有する12 個のサブキャリアF1乃至F12からなる。

また、時間方向においては、複数のサブフレームによって1つのフレームが構成される。図3は、フレームのフォーマットを示す図である。図3に示すフレームは、10個のサブフレームによって構成される。フレームには、10個のサブフレームが、下りリソースブロックのサブフレーム、下りリソースブロック及び上りリソースブロック双方のサブフレーム（スペシャルサブフレーム : SSSF）、上りリソースブロックのサブフレーム、下りリソースブロックのサブフレーム、下りリソースブロックのサブフレーム、スペシャルサブフレーム、スペシャルサブフレーム、上りリソースブロックのサブフレーム、スペシャルサブフレーム、上りリソースブロックのサブフレーム、スペシャルサブフレームの順で含まれている。以下、1フレームに含まれる2つのスペシャルサブフレームのうち、前方のスペシャルサブフレームを第1SSF301と称し、後方のスペシャルサブフレームを第2SSF302と称する。なお、スペシャルサブフレームは、サブフレーム内において、
ガードタイムを挟んで前半のタイムスロットが下りの無線通信に利用され、後半のタイムスロットが上りの無線通信に利用される。

[0031] また、周波数方向においては、eNB1—1とUE2—1乃至UE2—3との間の無線通信において利用可能な無線リソースの周波数帯、換言すれば、UE2—1に対して割り当て可能な周波数帯（割り当て周波数帯）は、複数のリソースブロックの個数分の帯域を有する。

[0032] 図4は、eNB1—1UE2—1乃至UE2—3との間の無線通信において利用可能な周波数帯の構成を示す図である。eNB1—1とUE2—1乃至UE2—3との間の無線通信において利用可能な全周波数帯は、100個のリソースブロック分の帯域であるが、ここで、図4に示すように、eNB1—1とUE2—1乃至UE2—3との間の無線通信において、96個のリソースブロック分の帯域が利用されるものとする。また、周波数帯を、24個のリソースブロック分の帯域を有する周波数帯1乃至周波数帯4に分割する。

[0033] 下りリソースブロックは、時間方向に、下りの制御情報伝送用の制御情報チャネル（PDCCH：Physical Downlink Control CHannel）と、下り方向のユーザデータ伝送用の共有データチャネル（PDSCH：Physical Downlink Shared CHannel）により構成される。

[0034] 一方、上りリソースブロックは、上りの無線通信に使用可能な全周波数帯の両端では、上りの制御情報伝送用の制御情報チャネル（PUCCH：Physical UpLink Control CHannel）が構成され、中央部では、上りのユーザデータ伝送用の共有データチャネル（PUSCH：Physical UpLink Shared CHannel）が構成される。

[0035] （2）無線基地局の構成

図5は、eNB1—1の構成図である。図5に示すように、eNB1—1は、複数のアンテナ素子により構成されるアレイアンテナにアンテナウェイドプローブティブアレイ方式の無線基地局であり、制御部102、記憶部103、L/F部104、無線通信部106、変調・復調部107、
アンテナ素子108A、アンテナ素子108B、アンテナ素子108C、アンテナ素子108Dを含む。アンテナ素子108A乃至アンテナ素子108Dは、アレイアンテナを構成する。

制御部102は、例えばCPUによって構成され、eNB1_1が具備する各種機能を制御する。制御部102は、サウンディング参照信号（SRS）の送信周期帯の設定、UE2_1乃至UE2_3に対するリソースブロック（RB）の割り当て、アンテナウェイトの算出等を行う。記憶部103は、例えばメモリによって構成され、eNB1_1における制御などに用いられる各種情報を記憶する。

IF部104は、X2インタフェースを介して、他のeNBとの間で通信可能である。また、IF部104は、S1インターフェースを介して、図示しないEPC（Evolved Packet Core）、具体的には、MME（Mobility Management Entity）／SGW（Serv ing Gateway）と通信可能である。

無線通信部106は、アンテナ素子108A乃至アンテナ素子108Dを介して、UE2_1から送信される上り無線信号を受信する。更に、無線通信部106は、受信した上り無線信号をベースバンド信号に変換（ダウンコンバート）し、変調・復調部107へ出力する。

変調・復調部107は、入力されたベースバンド信号の復調及び復号処理を行う。これにより、UE2_1が送信した上り無線信号に含まれるデータが得られる。データは制御部102へ出力される。

また、変調・復調部107は、制御部102からのデータの符号化及び変調を行い、ベースバンド信号を得る。無線通信部106は、ベースバンド信号を下り無線信号に変換（アップコンバート）する。更に、無線通信部106は、アンテナ素子108A乃至アンテナ素子108Dを介して、下り無線信号を送信する。

制御部102は、UE2_1乃至UE2_3毎に、スペシャルサブフレームのタイミングで当該UE2_1乃至UE2_3がサウンディング参照信号（SRS）を送信する際に使用する周波数帯（SRS送信周波数帯）を設定
す る。 ここで、 S R S は、 e N B 1 _ 1 におけるアンテナウェイトの算出で
参照すべき信号であり、無線周波数帯の上り無線信号である。

【0042】具 体 的 に は、制御部 1 0 2 は、 S R S 送信周波数帯の帯域幅に対応するパ
ラメータ、 S R S 送信周波数帯の中心周波数に対応するパラメータ、 S R S
の送信周期等の S R S に関するパラメータ (S R S パラメータ) を設定する。
S R S の送信周波数帯は、 U E 2 _ 1 乃至 U E 2 _ 3 毎に S R S 送信周波数帯
数帯が重複しないように設定される。従って、 S R S パラメータは、 U E 2
_ 1 乃至 U E 2 _ 3 毎に異なる。例えば、制御部 1 0 2 は、 U E へ送信すべきデータ量が多いほど、当該 U E に対応する S R S 送信周波数帯を広く設定する。また、制御部 1 0 2 は、無線通信における U E の優先順位が高いほど、
当該 U E に対応する S R S 送信周波数帯を広く設定する。

【0043】次 に、制御部 1 0 2 は、 R R C (R a d i o R e s o u r c e C o n t r o l) C o n n e c t i
o n R e c o n f i g u r a t i o n メッセージの情報要素であ
る、 S o u n d i n g R S - U L - C o n f i g に、 S R S パラメータを設
定する。

【0044】制御部 1 0 2 は、 U E が、 S R S の切り替えに際して S R S パラメータを
適用するタイミングに関するパラメータ（適用タイミングパラメータ）を生
成する。例えば、適用タイミングパラメータは、 R R C C o n n e c t i
t i o n R e c o n f i g u r a t i o n メッセージを受信したフレームか
ら所定数後のフレームで、 U E が S R S パラメータを適用することを要求す
る情報である。あるいは、適用タイミングパラメータは、 S R S パラメータ
の適用タイミングを示す絶対時刻の情報である。

【0045】次 に、制御部 1 0 2 は、 R R C (R a d i o R e s o u r c e C o n t r o l) C o n n e c t i
o n R e c o n f i g u r a t i o n メッセージの情報要素であ
る、 S o u n d i n g R S - U L - C o n f i g に、共通の同一の適用タ
イミングパラメータを設定する。

【0046】更 に、制御部 1 0 2 は、 S R S パラメータと適用タイミングパラメータと
が設定された、 U E 2 _ 1 乃至 U E 2 _ 3 毎の R R C C o n n e c t i
on Reconfigurationメッセージを変調・復調部107へ出力する。

[0047] 変調・復調部107は、RRC Connection Reconfigurationメッセージの符号化及び変調を行い、ベースバンド信号を得る。無線通信部106は、ベースバンド信号を下り無線信号に変換し、アンテナ素子108A乃至アンテナ素子108Dを介して、下り無線信号を送信する。

[0048] なお、UE2—1乃至UE2—3毎のRRC Connection Reconfigurationメッセージの送信は、各UEに対して同時に行われる必要はない。例えば、適用タイミングパラメータが、RRC Connection Reconfigurationメッセージを受信したフレームから所定数後のフレームで、UEがSRSパラメータを適用することを要求する情報である場合には、UE2—1乃至UE2—3におけるRRC Connection Reconfigurationメッセージの受信タイミングが、同一のフレーム内に収まるように、当該RRC Connection Reconfigurationメッセージが送信されればよい。また、適用タイミングパラメータが、SRSパラメータの適用タイミングを示す絶対時刻の情報である場合には、当該絶対時刻が到来するよりも所定時間前までに、RRC Connection Reconfigurationメッセージが送信されればよい。

[0049] UE2—1乃至UE2—3は、RRC Connection Reconfigurationメッセージに対応する下り無線信号を受信する。

[0050] UE2—1乃至UE2—3は、RRC Connection Reconfigurationメッセージに設定されているSRSパラメータに基づいて、SRSパラメータであるSRS送信周波数帯、SRSの送信周期等を認識する。また、UE2—1乃至UE2—3は、RRC Connection Reconfigurationメッセージに設定されている適用タイミングパラメータに基づいて、SRSパラメータの適用タイミング
を認識する。

[0051] U E 2 _ 1 乃至 U E 2 — 3 は、S R S パラメータの適用タイミングに対応するスペシャルサブフレームのタイミングが到来すると、認識したS R S送信周波数帯を用いてS R S を送信する。その後も、し E 2 _ 1 乃至し E 2 _ 3 は、S R S の送信周期で定められる送信タイミングが到来する毎に、S R S を送信する。

[0052] e N B 1 _ 1 内の無線通信部 1 0 6 は、アンテナ素子 1 0 8 A 乃至アンテナ素子 1 0 8 D を介して、U E 2 — 1 乃至 U E 2 _ 3 から送信されるS R S を受信する。更に、無線通信部 1 0 6 は、受信したS R S をベースバンド信号に変換し、変調・復調部 1 0 7 へ出力する。また、無線通信部 1 0 6 は、受信したS R S の周波数帯の情報を制御部 1 0 2 へ出力する。変調・復調部 1 0 7 は、入力されたベースバンド信号の復調及び復号処理を行う。これにより、U E 2 — 1 乃至 U E 2 _ 3 が送信したS R S に含まれるデータが得られる。データは制御部 1 0 2 へ出力される。

[0053] 制御部 1 0 2 は、U E 2 _ 1 乃至 U E 2 — 3 に対して、下りリソースブロックを割り当てる。

[0054] また、制御部 1 0 2 は、各アンテナ素子 1 0 8 A 乃至アンテナ素子 1 0 8 D 毎に、S R S の受信時において信号対干渉雑音比 (S I N R) が最大となるアンテナウエイト (受信ウエイト) を算出し、当該受信ウエイトを送信ウエイトとして設定する。

[0055] その後、制御部 1 0 2 は、割り当てた下りリソースブロックを用いて、変調・復調部 1 0 7 、無線通信部 1 0 6 及びアンテナ素子 1 0 8 A 乃至アンテナ素子 1 0 8 D を介して、U E 2 — 1 へ下り無線信号を送信する。

[0056] (3) 無線端末の構成

図 6 は、U E 2 — 1 の構成図である。図 6 に示すように、U E 2 — 1 は、制御部 2 0 2 、記憶部 2 0 3 、無線通信部 2 0 6 、変調・復調部 2 0 7 、アンテナ 2 0 8 を含む。U E 2 — 2 及び U E 2 — 3 も同様の構成を有する。

[0057] 制御部 2 0 2 は、例えばCPUによって構成され、U E 2 — 1 が具備する
各種機能を制御する。制御部202は、SRSの送信周波数帯を設定する。記憶部203は、例えばメモリによって構成され、UE2_1における制御などに用いられる各種情報を記憶する。

[0058]無線通信部206は、アンテナ208を介して、eNB1_1から送信される下り無線信号を受信する。更に、無線通信部206は、受信した下り無線信号をベースバンド信号に変換（ダウンコンバート）し、変調・復調部207へ出力する。

[0059]変調・復調部207は、入力されたベースバンド信号の復調及び復号処理を行う。これにより、eNB1_1が送信した下り無線信号に含まれるデータが得られる。データは制御部202へ出力される。

[0060]また、変調・復調部207は、制御部202からのデータの符号化及び変調を行い、ベースバンド信号を得る。無線通信部206は、ベースバンド信号を上り無線信号に変換（アップコンバート）する。更に、無線通信部206は、アンテナ208を介して、上り無線信号を送信する。

[0061]制御部202は、アンテナ208、無線通信部206及び変調・復調部207を介して、eNB1_1からの下り無線信号に対応する、RRC Connection Reconfigurationメッセージを受信する。

[0062]制御部202は、RRC Connection Reconfigurationメッセージに設定されているSRSパラメータである、SRS送信周波数帯、SRSの送信周期等を認識する。また、制御部202は、RRC Connection Reconfigurationメッセージに設定されている適用タイミングパラメータに基づいて、SRSパラメータの適用タイミングを認識する。

[0063]制御部202は、SRSパラメータの適用タイミングに対応するスペシャルサブフレームのタイミングが到来すると、認識したSRS送信周波数帯を用いてSRSを、変調・復調部207、無線通信部206及びアンテナ208を介して送信する。
その後も、制御部202は、SRSの送信周期で定められる送信タイミングが到来する毎に、SRSを、変調・復調部207、無線通信部206及びアンテナ208を介して送信する。

図7は、SRSの送信周波数帯の時間遷移を示す図である。図7において、UE2-1乃至UE2-3が、最初に受信したRRC Connection Reconfiguration メッセージに、スペシャルサブフレーム301を示す適用タイミングパラメータが設定され、次に受信したRRC Connection Reconfiguration メッセージに、スペシャルサブフレーム302を示す適用タイミングパラメータが設定されているものとする。

この場合、スペシャルサブフレーム301のタイミングが到来すると、UE2-1乃至UE2-3は、最初に受信したRRC Connection Reconfiguration メッセージに含まれるSRSパラメータに基づいて、SRSの送信周波数帯を切り替えて、当該SRSを送信する。図7の例では、UE2-1は、SRSの送信周波数帯を周波数帯1、周波数帯2及び周波数帯3に切り替えて、当該SRSを送信する。UE2-2は、SRSの送信周波数帯を周波数帯4の半分の周波数帯に切り替えて、当該SRSを送信する。UE2-3は、SRSの送信周波数帯を周波数帯4の他の半分に切り替えて、当該SRSを送信する。その後も、しUE2-1乃至しUE2-3は、スペシャルサブフレームのタイミングで、切り替え後のSRSを送信する。

更に、スペシャルサブフレーム302のタイミングが到来すると、UE2-1乃至UE2-3は、最初に受信したRRC Connection Reconfiguration メッセージに含まれるSRSパラメータに基づいて、SRSの送信周波数帯を切り替えて、当該SRSを送信する。図7の例では、UE2-1は、SRSの送信周波数帯を周波数帯1に切り替え、当該SRSを送信する。UE2-2は、SRSの送信周波数帯を周波数帯2及び周波数帯3に切り替えて、当該SRSを送信する。UE2-3は、
SRSの送信周波数帯を周波数帯4に切り替えて、当該SRSを送信する。その後も、UE2_1乃至UE2_3は、スペシャルサブフレームのタイミングで、切り替え後のSRSを送信する。

(4) 無線通信システムの動作
図8は、無線通信システム10の動作を示すシーケンス図である。

ステップS101において、eNB1_1は、し昼2_1乃至し昼2_3に、SRSパラメータを生成する。

ステップS102において、eNB1_1は、し昼2_1乃至し昼2_3に共通の適用タイミングパラメータを生成する。

ステップS103において、eNB1-1は、UE2-1乃至UE2-3每のRRC Connection Rs configurationメッセージに、SRSパラメータと適用タイミングパラメータとを設定する。

ステップS104において、eNB1-1は、UE2-1乃至UE2-3に、当該UEに対応するRRC Connection Reconfigurationメッセージを送信する。UE2-1乃至UE2-3は、自身に対応するRRC Connection Reconfigurationメッセージを受信する。

ステップS105において、UE2_1乃至UE2-3は、RRC Connection Reconfigurationメッセージに含まれるSRSパラメータを認識する。

ステップS106において、UE2_1乃至UE2-3は、RRC Connection Reconfigurationメッセージに含まれる適用タイミングパラメータを認識する。

ステップS107において、UE2_1乃至UE2-3は、適用タイミングパラメータによって示される、SRSパラメータの適用タイミングが到来したか否かを判定する。

SRSパラメータの適用タイミングが到来した場合、ステップS108において、UE2_1乃至UE2_3は、SRSに対して、SRSパラメータ
を適用する。

ステップS 109において、UE2_1乃至UE2_3は、SRSパラメータが適用されたSRSを送信する。eNB1_1は、SRSを受信する。

（5）作用・効果

以上説明したように、本実施形態によれば、eNB1_1は、UE2_1乃至UE2_3每に異なるSRSパラメータと、UE2_1乃至UE2_3每に共通の適用タイミングパラメータとが設定されたRRC Connection Reconfigurationメッセージを、UE2_1乃至UE2_3へ送信する。UE2_1乃至UE2_3は、RRC Connection Reconfigurationメッセージを受信し、当該メッセージに設定された、SRSパラメータと適用タイミングパラメータとを認識する。更に、UE2_1乃至UE2_3は、適用タイミングパラメータによって示される、SRSパラメータの適用タイミングが到来した場合、SRSに対して、SRSパラメータを適用し、当該SRSを送信する。

eNB1_1からUE2_1乃至UE2_3へ送信される、RRC Connection Reconfigurationメッセージに、適用タイミングパラメータが設定されることにより、UE2_1乃至UE2_3におけるSRSの切り替えを可能な限り同一タイミングとすることが可能、UE2_1乃至UE2_03が同時に同一周波数のSRSを送信してしまうことが防止できる。

また、UE2_1乃至UE2_3が送信するSRSの周波数帯が重複しないため、eNB1_1がSRSの受信状況に応じて、アンテナウエイトを算出し、ビームフォーミングや、ヌルステアリングを行う場合に、これらビームフォーミングや、ヌルステアリングの性能が向上する。

（6）その他の実施形態

上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らか
となる。

[0082] 上述した実施形態では、eNB 1_1 は、RRC Connection Reconfiguration メッセージに、UE2_1 乃至UE2_3 に共通の適用タイミングパラメータを設定して送信した。一方UE2_1 乃至UE2_3 は、受信したRRC Connection Reconfiguration メッセージに設定されている適用タイミングパラメータを認識した。

[0083] しかし、予め、無線通信システム１０の全体において、共通の適用タイミングパラメータを用意しておき、UE2_1 乃至UE2_3 の記憶部２０３に記憶させてもよい。

[0084] この場合、eNB 1_1 内の制御部１０２は、RRC Connection Reconfiguration メッセージに、SRSパラメータのみを設定して送信する。

[0085] 一方、UE2_1 乃至UE2_3 内の制御部２０２は、受信したRRC Connection Reconfiguration メッセージに設定されたSRSパラメータを認識するとともに、記憶部２０３に記憶された適用タイミングパラメータを認識する。更に、制御部２０２は、SRSパラメータの適用タイミングが到来した場合、SRSに対して、SRSパラメータを適用し、当該SRSを送信する。

[0086] また、上述した実施形態では、スペシャルサブフレームのタイミングをUE2_1 乃至UE2_3 におけるSRSの送信タイミングとした。しかし、SRSの送信タイミングは、これに限定されず、予めeNB 1_1 とUE2_1 乃至UE2_3 との関で合意されている共通のタイミングであればよい。但し、SRSの送信タイミングは、少なくとも１フレームの時間内に一度存在することが好ましい。

[0087] また、上述した実施形態では、eNB 1_1 は、受信ウェイトを送信ウェイトとして用いたが、受信ウェイトとは無関係に送信ウェイトを算出するようにしてもよい。このように本発明は、ここでは記載していない様々な実
施形態等を包含するということを理解すべきである。

なお、日本国特許出願第2010-282317号（2010年12月17日出願）の全内容が、参照により、本願明細書に組み込まれている。

産業上の利用可能性

以上のように、本発明に係る無線基地局、無線端末及び通信制御方法は、SRSに関するパラメータの適用のタイミングを無線基地局が制御できるため、無線通信分野において有用である。
請求の範囲

[請求項1] 無線端末が接続可能な無線基地局であって、
前記無線端末が送信する参照信号に関するパラメータの適用を前記
無線端末に要求する適用要求メッセージを、前記無線端末へ送信し、
前記パラメータの適用のタイミングに関する情報を、前記無線端末
へ送信する、
のように構成される無線基地局。

[請求項2] 前記適用要求メッセージは、前記パラメータの適用のタイミングに
関する情報を含む請求項1に記載の無線基地局。

[請求項3] 前記パラメータの適用のタイミングに関する情報は、基準となる時
刻からの遅延時間、及び、前記パラメータの適用のタイミングを示す
時刻の少なくともいずれかである請求項1に記載の無線基地局。

[請求項4] 前記パラメータは、前記参照信号の周波数帯域、及び、前記参照信
号の送信周期の少なくともいずれかである請求項1に記載の無線基地
局。

[請求項5] 無線基地局に接続可能な無線端末であって、
前記無線端末が送信する参照信号に関するパラメータの適用を前記
無線端末に要求する適用要求メッセージを、前記無線基地局から受信
し、
保持している、前記パラメータの適用のタイミングに関する情報を
基づいて、前記パラメータの適用のタイミングを制御する、
のように構成される無線端末。

[請求項6] 前記パラメータの適用のタイミングに関する情報を、前記無線基地
局から受信する請求項5に記載の無線端末。

[請求項7] 無線端末が接続可能な無線基地局における通信制御方法であって、
前記無線基地局が、前記無線端末が送信する参照信号に関するパラ
メータの適用を前記無線端末に要求する適用要求メッセージを、前記
無線端末へ送信し、
前記無線基地局が、前記パラメータの適用のタイミングに関する情報、前記無線端末へ送信する通信制御方法。

[請求項8]
無線基地局に接続可能な無線端末における通信制御方法であって、
前記無線端末が、自端末が送信する参照信号に関するパラメータの適用を前記無線端末に要求する適用要求メッセージを、前記無線基地局から受信し、
前記無線端末が、保持している前記/パラメータの適用のタイミングに関する情報に基づいて、前記パラメータの適用のタイミングを制御する通信制御方法。
図1]
1サブフレーム（1ms）

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
<td>F6</td>
<td>F7</td>
<td>F8</td>
<td>F9</td>
<td>F10</td>
<td>F11</td>
<td>F12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

タイムスロット1の12サブキャリア
（15kHz×12=180kHz）

タイムスロット2
[図3]
[図4]

周波数帯1
（RB24個分）

周波数帯2
（RB24個分）

全周波数帯
（RB96個分）

周波数帯3
（RB24個分）

周波数帯4
（RB24個分）
[図8]
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION

INTERNATIONAL SEARCH REPORT

CLASSIFICATION OF SUBJECT MATTER

A. CLASSIFICATION OF SUBJECT MATTER

H04W72/12 (2009.01) H04W16/25 (2009.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04W72/12, H04W16/28

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2012

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2009-060595 A (Mitsubishi Electric Research Laboratories, Inc.), 19 March 2009 (19.03.2009), paragraph s [0047] to [0053], [0069] to [0075], the classification symbols</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

02 February, 2012 (02.02.12)

Date of mailing of the international search report

14 February, 2012 (14.02.12)

Name and mailing address of the ISA/

Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
国際調査報告

国際出願番号 PCT／JP2011/079073

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. H04W72/12 (2009. 01) 1、H04W16/28 (2009. 01) 1

B. — 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. H04W72/12, H04W16/28

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-19
日本国公開実用新案公報 1971-20
日本国実用新案登録公報 1996-20
日本国登録実用新案公報 1994-20

国際調査で使用した電子データベース （データベースの略称、調査に使用した用語） (2009年7月)

C. 関連すると認められる文献

引用文献のカテゴリ

表

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>引用文献名及し一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求番号の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2009-060959 A (ミツビシ 'エレクトリック・リサーチ・ラボラトリーズ'インコーポレイテッド) 2009. 03. 19, 段落【0047】- D053.</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>D069 1.【0075】第5A, B 図 & US 2009/0042615 AI & US 2009/0042616</td>
<td></td>
</tr>
</tbody>
</table>

Gamma カタログの続きに文献が列挙されている。

Gamma パンフレットファミリーに関する別紙を参照。

「A」特に関連のある文献ではなく、一般的な技術水準を示すもの

「B」国際出願 日前出願または特許であるが、国際出願日以前に公表されたもの

「E」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「F」口頭による開示、使用、展示等に該当する文献

「IP」国際出願 日前で、かつ優先権の主張の基礎となる出願

日のその後に公表された文献

「IT」国際出願 日又は優先 日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性が示されないもの

「Y」特に関連のある文献であって、当該文献を他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「Z」同一パントファミリー文献

国際調査を完了した日

02. 02. 2012

国際調査報告の発送日

14. 02. 2012

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号100—8915
東京都千代田区霞が関三丁目４番3号

特許庁審査官（権限のある職員）

電話番号03-3581-1101 内線3534

様式 PCT／ISA／210（第2ページ）（2009年7月）