

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2492403 C 2008/09/23

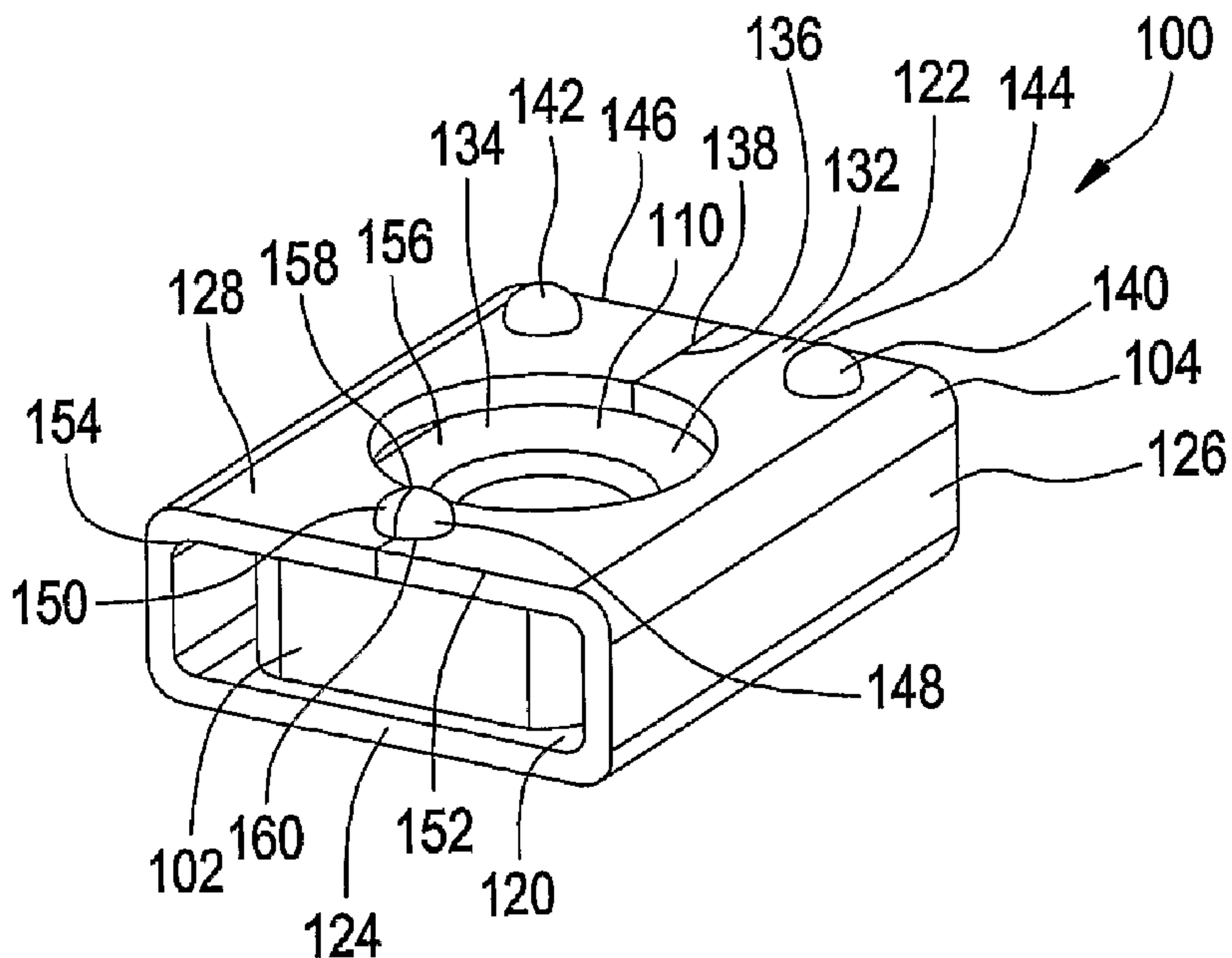
(11)(21) **2 492 403**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2003/06/20
(87) Date publication PCT/PCT Publication Date: 2004/02/26
(45) Date de délivrance/Issue Date: 2008/09/23
(85) Entrée phase nationale/National Entry: 2005/01/12
(86) N° demande PCT/PCT Application No.: US 2003/019423
(87) N° publication PCT/PCT Publication No.: 2004/016383
(30) Priorité/Priority: 2002/08/16 (US10/222,269)

(51) Cl.Int./Int.Cl. *F16B 37/04* (2006.01),
F16B 37/06 (2006.01), *F16B 5/08* (2006.01)


(72) Inventeurs/Inventors:
CLINCH, JAMES P., US;
PUZZELLA, GARY, US

(73) Propriétaire/Owner:
ACUMENT INTELLECTUAL PROPERTIES, LLC, US

(74) Agent: SMART & BIGGAR

(54) Titre : ENSEMBLE DEMI-ECROU CAGE A SOUDER

(54) Title: SPLIT WELD CAGE NUT ASSEMBLY

(57) Abrégé/Abstract:

A cage nut assembly 100, 200, 300, 400, 500, 600, 700 having a nut member 102, 202, 302, 402, 502, 602, 702 and a cage member 104, 204, 304, 404, 504, 604, 704. The nut has a threaded aperture 116, 216, 316, 416, 516, 716, therethrough. The cage 104, 204, 304, 404, 504, 604, 704 is capable of encaging the nut 102, 202, 302, 402, 502, 602, 702 such that the nut 102, 202, 302, 402, 502, 602, 702 has a limited range of movement within the cage 104, 204, 304, 404, 504, 604, 704 in at least one dimension. The cage 104, 204, 304, 404, 504, 604, 704 has an aperture 130, 230, 330, 430, 530, 630, 730 therein sized and located to allow access to the threaded aperture 116, 216, 316, 416, 516, 616, 716 of the nut 102, 202, 302, 402, 502, 602, 702 within the range of movement of the nut 102, 202, 302, 402, 502, 602, 702. The cage 104, 204, 304, 404, 504, 604, 704 has a plurality of protrusions 140, 142, 160, 240, 242, 260a, 260b, 340, 342, 360, 440, 442, 460, 540, 542, 560, 64, 642, 699, 740, 742, 760 such as dimples or tabs, extending therefrom. The protrusions 140, 142, 160, 240, 242, 260a, 260b, 340, 342, 360, 440, 442, 460, 540, 542, 560, 642, 699, 740, 742, 760 are capable of being welded to a mating surface to secure the cage 104, 204, 304, 404, 504, 604, 704 to a mating surface. The cage 104, 204, 304, 404, 504, 604, 704 includes a seam 158, 258, 358, 458, 575, 675, 775.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
26 February 2004 (26.02.2004)

PCT

(10) International Publication Number
WO 2004/016383 A3

(51) International Patent Classification⁷: **F16B 37/08**,
39/26

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2003/019423

(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 20 June 2003 (20.06.2003)

Published:

- with international search report
- with amended claims

(25) Filing Language: English

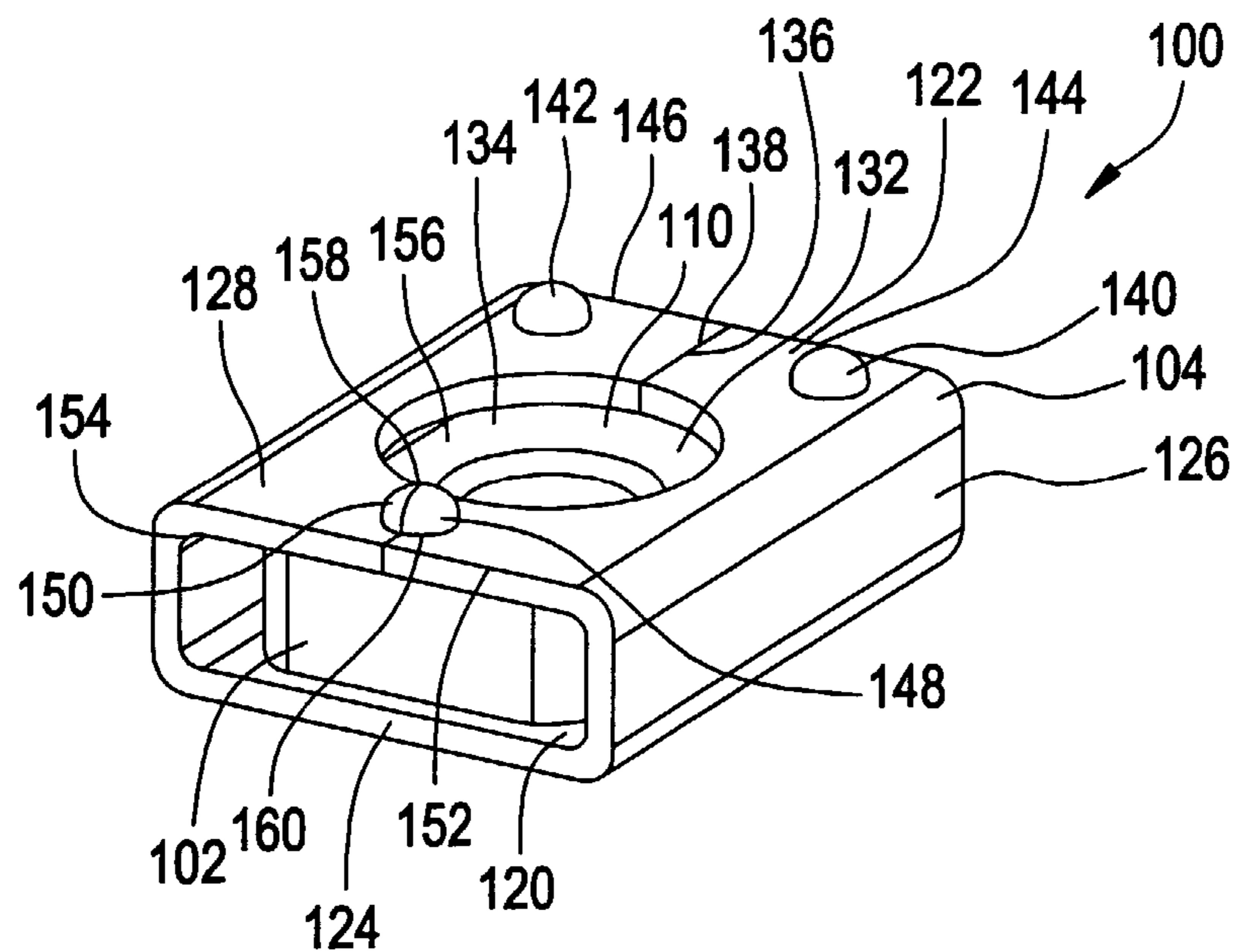
(88) **Date of publication of the international search report:**
29 July 2004

(26) Publication Language: English

Date of publication of the amended claims:
23 September 2004

(30) Priority Data:
10/222,269 16 August 2002 (16.08.2002) US

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.


(71) **Applicant:** TEXTRON INC. [US/US]; 40 Westminster Street, Providence, RI 02903 (US).

(72) **Inventors:** CLINCH, James, P.; 36629 Samoa Drive, Sterling Heights, MI 48312 (US). PUZZELLA, Gary; 3226 North Pennsylvania Ave., Logansport, IN 46947 (US).

(74) **Agents:** GIANGIORGIO, Richard, A. et al.; Trexler, Bushnell, Giangiorgi, Blackstone & Marr, Ltd., Suite 3600, 105 West Adams Street, Chicago, IL 60603 (US).

(81) **Designated States (national):** AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(54) **Title:** SPLIT WELD CAGE NUT ASSEMBLY

(57) **Abstract:** A cage nut assembly 100, 200, 300, 400, 500, 600, 700 having a nut member 102, 202, 302, 402, 502, 602, 702 and a cage member 104, 204, 304, 404, 504, 604, 704. The nut has a threaded aperture 116, 216, 316, 416, 516, 716, therethrough. The cage 104, 204, 304, 404, 504, 604, 704 is capable of encaging the nut 102, 202, 302, 402, 502, 602, 702 such that the nut 102, 202, 302, 402, 502, 602, 702 has a limited range of movement within the cage 104, 204, 304, 404, 504, 604, 704 in at least one dimension. The cage 104, 204, 304, 404, 504, 604, 704 has an aperture 130, 230, 330, 430, 530, 630, 730 therein sized and located to allow access to the threaded aperture 116, 216, 316, 416, 516, 616, 716 of the nut 102, 202, 302, 402, 502, 602, 702 within the range of movement of the nut 102, 202, 302, 402, 502, 602, 702. The cage 104, 204, 304, 404, 504, 604, 704 has a plurality

of protrusions 140, 142, 160, 240, 242, 260a, 260b, 340, 342, 360, 440, 442, 460, 540, 542, 560, 64, 642, 699, 740, 742, 760 such as dimples or tabs, extending therefrom. The protrusions 140, 142, 160, 240, 242, 260a, 260b, 340, 342, 360, 440, 442, 460, 540, 542, 560, 640, 642, 699, 740, 742, 760 are capable of being welded to a mating surface to secure the cage 104, 204, 304, 404, 404, 504, 604, 704 to a mating surface. The cage 104, 204, 304, 404, 504, 604, 704 includes a seam 158, 258, 358, 458, 575, 675, 775.

WO 2004/016383 A3

SPLIT WELD CAGE NUT ASSEMBLY

BACKGROUND OF THE INVENTION

The present invention generally relates to a cage nut assembly, and more specifically relates to a cage nut assembly which is configured such that it meets torque requirements while having a relatively thin wall thickness.

5 Cage nut assemblies are well known in the art and provide a useful function in that they are able to hold a threaded nut at locations in a frame that are difficult or in some cases impossible to reach. Cage nut assemblies are used in vehicles for seat attachments, radiator attachments, chassis to drive train attachments, and for any other nut application that requires 10 the nut to have an "X" and "Y" axis adjustability.

Currently, the thickness of the cage in these cage nut assemblies is determined by the amount of torque that the part can handle as the cage is not a continuous 360 degree connection, meaning that there is a seam/gap in the cage. Thus, to prevent the gap from 15 expanding, the cage must have a material thickness which can take the full force of the torque. If sufficient thickness is not used, during driving torque, the nut will push out the side walls of the cage (thereby causing the seam to expand) until the nut is free to spin, stopping the nut bolt assembly. Thus, cage nut assemblies generally have cage walls which are excessively thick, for instance, a thickness of 2.0 millimeters at a minimum, in order to meet 20 torque requirements.

It would be advantageous to make a cage nut assembly which can accommodate the required torque with a relatively thin cage wall. It would also be advantageous to make a cage nut assembly which can be utilized in any desired application which requires an "X" and "Y" axis adjustability.

63632-1605

OBJECTS AND SUMMARY

An object of an embodiment of the present invention is to provide a cage nut assembly that has a relatively thin wall thickness, but which meets torque requirements in a desired application.

5 Another object of an embodiment of the present invention is to provide a cage nut assembly which is relatively inexpensive to manufacture but which meets torque requirements in a desired application.

Another object of an embodiment of the present invention is to provide a cage nut assembly which can be utilized in any nut application that requires the nut to have an "X" and 10 "Y" axis adjustability.

Briefly, and in accordance with the foregoing, embodiments of the present invention provide a cage member for a cage nut assembly. The cage member has protrusions stamped into the cage member material. At least one of the protrusions is formed in halves. These halves are stamped at the edge of the material exactly opposite of a mating half on the other 15 side. When the cage member is wrapped around to its final position, the two halves butt up against each other to mimic a full protrusion. The other protrusions are not placed on the cage seam. A nut is in the cage member when the final cage member bending operation butts the two cage edges against each other.

A cage member which is in accordance with an embodiment of the present invention 20 can take many forms. For example, the cage member may have flanges on the end thereof which allow access to a nut encaged within the cage member and to allow positioning of the nut after welding of the cage member to the mating surface. The cage member may wrap around and join together with a dove-tail interlocking system. The cage member may provide that the protrusion is not split into halves but rather is off-set such that the protrusion is

63632-1605

designed to interface with the wall of the cage member during the welding process.

According to one aspect of the present invention, there is provided a cage member engageable with a nut member having a threaded aperture, thereby providing a cage nut assembly, said cage member comprising a body configured to encage the nut member and having an aperture formed therein, said aperture configured to allow access to the threaded aperture of the nut member when the nut member is generally 10 encaged by said cage member, said body defining a seam and having at least one protrusion, said protrusion being formed in halves which abut against one another such that said seam is provided therebetween, said protrusion configured to provide that said protrusion is weldable to a mating surface 15 to secure said cage member to the mating surface, and, substantially contemporaneously, said halves of said protrusion configured to provide that said halves are weldable to one another along said seam.

According to another aspect of the present invention, there is provided a cage nut assembly comprising: a nut member having a threaded aperture therethrough; and a cage member having a body configured to encage said nut member and having an aperture formed therein, said aperture configured to allow access to said threaded aperture of said 25 nut member when said nut member is generally encaged by said cage member, said body defining a seam and having at least one protrusion, said protrusion being formed in halves which abut against one another such that said seam is provided therebetween, said protrusion configured to provide that 30 said protrusion is weldable to a mating surface to secure said cage member to the mating surface, and, substantially

63632-1605

contemporaneously, said halves of said protrusion configured to provide that said halves are weldable to one another along said seam.

According to still another aspect of the present
5 invention, there is provided a method of attaching a cage member of a cage nut assembly to a mating surface, said method comprising the steps of: a) providing said cage member, said cage member having a body configured to allow access to a threaded aperture of a nut member when the nut
10 member is generally engaged by said cage member, said body defining a seam and having at least one protrusion, said protrusion being formed in halves which abut against one another such that said seam is provided therebetween; b)
15 positioning said protrusions of said cage member on the mating surface; c) welding said protrusion to the mating surface such that said halves of said protrusion are welded together along said seam.

According to yet another aspect of the present invention, there is provided a method of attaching a cage
20 nut assembly to a mating surface, said method comprising the steps of: a) providing a nut member and a cage member, said cage member having a body defining a seam and at least one protrusion which is formed in halves along said steam; b)
25 encaging said nut member within said cage member to form said cage nut assembly such that said nut member has a limited range of movement within said cage member in at least one direction; c) positioning said protrusion of said cage member on the mating surface; d) welding said protrusion to the mating surface such that said halves of
30 said protrusion are welded together along said seam.

63632-1605

According to a further aspect of the present invention, there is provided a method of attaching a cage nut assembly to a mating surface, said method comprising the steps of: a) providing a nut member and a cage member, said 5 cage member having a body defining a seam and at least one protrusion which overlaps a portion of said cage member and provides said seam therebetween; b) encaging said nut member within said cage member to form said cage nut assembly such that said nut member has a limited range of movement within 10 said cage member in at least one direction; c) positioning said protrusion of said cage member on the mating surface; d) welding said protrusion to the mating surface such that said overlapping protrusion is welded to said portion of said cage member along said seam.

15 According to yet a further aspect of the present invention, there is provided a cage member engageable with a nut member having a threaded aperture, thereby providing a cage nut assembly, said cage member comprising a body configured to engage the nut member and having an aperture 20 formed therein, said aperture configured to allow access to the threaded aperture of the nut member when the nut member is generally engaged by said cage member, said body defining a weldable seam and having at least one protrusion, said protrusion configured to provide that said protrusion is 25 weldable to a mating surface to secure said cage member to the mating surface.

According to still a further aspect of the present invention, there is provided a cage member engageable with a nut member having a threaded aperture, thereby providing a 30 cage nut assembly, said cage member comprising a body configured to engage the nut member and having an aperture formed therein which is configured to allow access to the

63632-1605

threaded aperture of the nut member when the nut member is generally encaged by said cage member, said body having a base portion and first and second arm portions extending from said base portion, and a seam defined between said 5 first and second arm portions, at least one of said first and second arm portions having at least one protrusion, said at least one protrusion configured to be weldable to a mating surface to secure said cage member to the mating surface, said seam being provided proximate to the mating 10 surface.

According to another aspect of the present invention, there is provided a cage member engageable with a nut member having a threaded aperture, thereby providing a cage nut assembly, said cage member comprising a body 15 configured to engage the nut member and having an aperture formed therein which is configured to allow access to the threaded aperture of the nut member when the nut member is generally encaged by said cage member, said body having a plurality of sidewalls, two of said sidewalls having free 20 ends which are proximate to one another, and a seam defined between said free ends of said two sidewalls, at least one of said two sidewalls having at least one protrusion, said at least one protrusion configured to be weldable to a mating surface to secure said cage member to the mating 25 surface, said seam being provided proximate to the mating surface.

According to yet another aspect of the present invention, there is provided a cage nut assembly comprising: a nut member having a threaded aperture therethrough; and a 30 cage member having a body configured to engage said nut member and having an aperture formed therein which is configured to allow access to said threaded aperture of said

63632-1605

nut member when said nut member is generally encaged by said cage member, said body having a base portion and first and second arm portions extending from said base portion, and a seam defined between said first and second arm portions, at 5 least one of said first and second arm portions having at least one protrusion, said at least one protrusion configured to be weldable to a mating surface to secure said cage member to the mating surface, said seam being provided proximate to the mating surface.

10 According to yet another aspect of the present invention, there is provided a cage nut assembly comprising: a nut member having a threaded aperture therethrough; and a cage member having a body configured to encage said nut member and having an aperture formed therein which is 15 configured to allow access to said threaded aperture of said nut member when said nut member is generally encaged by said cage member, said body having a plurality of sidewalls, two of said sidewalls having free ends which are proximate to one another, and a seam defined between said free ends of 20 said two sidewalls, at least one of said two sidewalls having at least one protrusion, said at least one protrusion configured to be weldable to a mating surface to secure said cage member to the mating surface, said seam being provided proximate to the mating surface, said two sidewalls defining 25 a bottom edge of said cage member which faces the mating surface, said at least one protrusion protruding from said bottom edge of said cage member.

BRIEF DESCRIPTION OF THE DRAWINGS

30 The organization and manner of the structure and operation of the invention, together with further objects and advantages thereof, may best be understood by reference

63632-1605

to the following description taken in connection with the accompanying drawings wherein like reference numerals identify like elements in which:

5 FIGURE 1 is a perspective view of a cage nut assembly which is in accordance with an embodiment of the present invention;

FIGURE 2 is a perspective view of the cage nut assembly shown in FIGURE 1, where in FIGURE 2, the cage nut assembly is rotated 180 degrees relative to FIGURE 1;

10 FIGURE 3 is a perspective view of a nut member of the cage nut assembly shown in FIGURES 1 and 2;

FIGURE 4 is a perspective view of a cage nut assembly which is in accordance with a second embodiment of the present invention;

15 FIGURE 5 is a perspective view of the cage nut assembly shown in FIGURE 4, where in FIGURE 5, the cage nut assembly is rotated 180 degrees relative to FIGURE 4;

FIGURE 6 is a perspective view of a nut member of the cage nut assembly shown in FIGURES 4 and 5;

20 FIGURE 7 is a perspective view of a cage nut assembly which is in accordance with a third embodiment of the present invention;

FIGURE 8 is a perspective view of the cage nut assembly shown in FIGURE 7, where in FIGURE 8, the cage nut 25 assembly is rotated 180 degrees relative to FIGURE 7;

FIGURE 9 is a perspective view of a nut member of the cage nut assembly shown in

FIGURES 7 and 8;

FIGURE 10 is a perspective view of a cage nut assembly which is in accordance with a fourth embodiment of the present invention;

5 FIGURE 11 is a perspective view of the cage nut assembly shown in FIGURE 10, where in FIGURE 11, the cage nut assembly is rotated 180 degrees relative to FIGURE 10;

FIGURE 12 is a perspective view of a nut member of the cage nut assembly shown in FIGURES 10 and 11;

FIGURE 13 is a perspective view of a cage nut assembly which is in accordance with a fifth embodiment of the present invention;

10 FIGURE 14 is a perspective view of a cage member of the cage nut assembly shown in FIGURE 13;

FIGURE 15 is a perspective view of a nut member of the cage nut assembly shown in FIGURE 13;

15 FIGURE 16 is a perspective view of a cage nut assembly which is in accordance with a sixth embodiment of the present invention;

FIGURE 17 is a perspective view of a cage member of the cage nut assembly shown in FIGURE 16;

FIGURE 18 is a perspective view of a nut member of the cage nut assembly shown in FIGURE 16;

20 FIGURE 19 is a perspective view of a cage nut assembly which is in accordance with a seventh embodiment of the present invention;

FIGURE 20 is a perspective view of a cage member of the cage nut assembly shown in FIGURE 19;

FIGURE 21 is a perspective view of a nut member of the cage nut assembly shown in

FIGURE 19;

FIGURE 22 illustrates a method of attaching a cage member of the cage nut assembly shown in FIGURES 1, 4, 7, 10, 13 and 19 to a mating surface;

FIGURE 23 illustrates a method of attaching a cage nut assembly shown in FIGURES 5 1, 4, 7, 10, 13 and 19 to a mating surface; and

FIGURE 24 illustrates a method of attaching a cage nut assembly shown in FIGURE 16 to a mating surface.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

While this invention may be susceptible to embodiment in different forms, specific embodiments of the invention are shown in the drawings and will be described herein in detail with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated.

5 The figures show several embodiments of the present invention. Each embodiment provides a cage nut assembly 100, 200, 300, 400, 500, 600, 700 which is configured such that it can have a cage member 104, 204, 304, 404, 504, 604, 704 with a relatively thin wall thickness, yet meet torque requirements in a desired application. Each embodiment also 10 provides a cage nut assembly 100, 200, 300, 400, 500, 600, 700 which is relatively inexpensive to manufacture but which meets torque requirements in a desired application. Further, each embodiment provides a cage nut assembly 100, 200, 300, 400, 500, 600, 700 which can be utilized in any nut application that requires a nut member 102, 202, 302, 402, 15 502, 602, 702 to have an "X" and "Y" axis adjustability.

A cage nut assembly 100 which is in accordance with a first embodiment of the present invention is shown in FIGURES 1-3; a cage nut assembly 200 which is in accordance with a second embodiment of the present invention is shown in FIGURES 4-6; a cage nut assembly 300 which is in accordance with a third embodiment of the present invention is 20 shown in FIGURES 7-9; a cage nut assembly 400 which is in accordance with a fourth embodiment of the present invention is shown in FIGURES 10-12; a cage nut assembly 500 which is in accordance with a fifth embodiment of the present invention is shown in FIGURES 13-15; a cage nut assembly 600 which is in accordance with a sixth embodiment of the present invention is shown in FIGURES 16-18; and a cage nut assembly 700 which is

in accordance with a seventh embodiment of the present invention is shown in FIGURES 19-21. Like elements are denoted with like reference numerals with the first embodiment being in the one hundreds, the second embodiment being in the two hundreds, the third embodiment being in the three hundreds, the fourth embodiment being in the four hundreds, the fifth embodiment being in the five hundreds, the sixth embodiment being in the six hundreds, and the seventh embodiment being in the seven hundreds.

Attention is now directed to FIGURES 1-3 which illustrate a cage nut assembly 100 which is in accordance with a second embodiment of the present invention. The cage nut assembly 100 includes a nut member 102 and a cage member 104.

The nut member 102 is best illustrated in FIGURE 3 and includes a rectangular block 106 having a generally planar upper surface 108, a generally planar lower surface 110 and sidewalls 112 which connect the upper and lower surfaces 108, 110. The nut member 102 also includes a cylindrical member 114 which extends outwardly from the upper surface 108 of the nut member 102. The cylindrical member 114 is preferably in the form of a right circular cylinder. An aperture 116 extends through the nut member 102 from the block 106 into the cylindrical member 114. The aperture 116 may be closed at the lower surface 110 of the block 106 or it may extend all the way through the block 106. The aperture 116 defines an aperture wall 118 which is preferably threaded and is capable of receiving a bolt or screw (not shown) to be attached thereto.

The cage member 104 is best illustrated in FIGURES 1 and 2. The cage member 104 is used for encaging the nut member 102. Prior to encaging the nut member 102, the cage member 104 has generally planar upper and lower surfaces 120, 122. The cage member 104 includes a base portion 124 and bendable first and second arm portions 126, 128 extending from opposite ends of the base portion 124. The first and second arm portions 126, 128 are

preferably integrally formed with the base portion 124.

An aperture 130 is provided through the base portion 124 of the cage member 104 and the first and second arms 126, 128 have generally semicircular cutouts 132, 134 at their free ends 136, 138.

5 The first and second arms 126, 128 have dimples 140, 142 provided on the lower surface 122 thereof which are formed from a stamping process and which extend outwardly from the lower surface 122 thereof. The dimples 140, 142 are provided between the semicircular cutouts 132, 134 and the edges 144, 146 of the arms 126, 128.

10 The first and second arms 126, 128 have half-dimples 148, 150 provided on the lower surface 122 thereof at the free ends 136, 138 of the arms 126, 128. The half-dimples 148, 150 are formed from a stamping process and extend outwardly from the lower surface 122 of the arms 126, 128. The half-dimples 148, 150 are provided between the semicircular cutouts 132, 134 and the edges 152, 154 of the arms 126, 128.

15 In operation, the cylindrical member 114 of the nut member 102 is positioned through the aperture 130 of the cage member 104 such that the upper surface 108 of the nut member 102 is abutted against the upper surface 120 of the base portion 124 of the cage member 104. The first and second arms 126, 128 are then bent around opposite sidewalls 110 of the nut member 102 and onto the lower surface 110 of the nut member 102 to form the cage nut assembly 100.

20 The free ends 136, 138 of the arms 126, 128 then abut against one another such that the half-dimples 148, 150 abut against one another and the semicircular cutouts 132, 134 are in communication with one another to form a circular cutout 156.

Because the arms 126, 128 abut at their free ends 136, 138, the cage member 104 effectively engages the nut member 102. The cage member 104 and the aperture 130 are

sized so that the nut member 102 has a limited range of movement in at least one dimension, and preferably in two dimensions, for example the "X" and "Y" axes as illustrated in FIGURE 2. The circular cutout 156 is provided in the cage member 104 to allow access to the aperture 116 of the nut member 102 through the lower surface 110 thereof, within the range of movement of the nut member 102.

Once the cage nut assembly 100 is formed, the cage nut assembly 100 must then be attached to a mating surface 157. The cage nut assembly 100 is positioned on the mating surface 157 such that the dimples 140, 142, 148, 150 are in contact with the mating surface 157. The cage nut assembly 100 is then welded to the mating surface 157 with the assistance of the dimples 540, 542. During the welding, the free-ends 136, 138 are welded together to form a welded seam 158. The half-dimples 148, 150 also assist in the welding of the cage nut assembly 100 to the mating surface 157 and are welded together to form a welded dimple 160.

Attention is now directed to FIGURES 4-6 which illustrate a cage nut assembly 200 which is in accordance with a second embodiment of the present invention. The cage nut assembly 200 includes a nut member 202 and a cage member 204.

The nut member 202 is best illustrated in FIGURE 6 and includes a rectangular block 206 having a generally planar upper surface 208, a generally planar lower surface 210 and sidewalls 212 which connect the upper and lower surfaces 208, 210. The nut member 202 also includes a cylindrical member 214 which extends outwardly from the upper surface 208 of the nut member 202. The cylindrical member 214 is preferably in the form of a right circular cylinder. An aperture 216 extends through the nut member 202 from the block 206 into the cylindrical member 214. The aperture 216 may be closed at the lower surface 210 of the block 206 or it may extend all the way through the block 206. The aperture 216 defines

an aperture wall 218 which is preferably threaded and is capable of receiving a bolt or screw (now shown) to be attached thereto.

The cage member 204 is best illustrated in FIGURES 4 and 5. The cage member 204 is used for encaging the nut member 202. Prior to encaging the nut member 202, the cage member 204 has generally planar upper and lower surfaces 220, 222. The cage member 204 includes a base portion 224 and bendable first and second arm portions 226, 228 extending from opposite ends of the base portion 224. The first and second arm portions 226, 228 are preferably integrally formed with the base portion 224.

An aperture 230 is provided through the base portion 224 of the cage member 204 and the first and second arms 226, 228 have generally semicircular cutouts 232, 234 at their free ends 236, 238.

The first and second arms 226, 228 have dimples 240, 242 provided on the lower surface 222 thereof which are formed from a stamping process and which extend outwardly from the lower surface 222 thereof. The dimples 240, 242 are provided proximate to the semicircular cutouts 232, 234 and are provided equidistantly between the edges 244, 246 and the edges 252, 254 of the arms 226, 228.

The first and second arms 226, 228 have half-dimples 248a, 248b; 250a, 250b provided on the lower surface 222 thereof at the free ends 236, 238 of the arms 236, 238. The half-dimples 248a, 248b; 250a, 250b are formed from a stamping process and extend outwardly from the lower surface 222 of the arms 226, 228. The half-dimples 248a, 250a are provided between the semicircular cutouts 232, 234 and the edges 244, 246 of the arms 226, 228. The half-dimples 248b, 250b are provided between the semicircular cutouts 232, 234 and the edges 252, 254 of the arms 226, 228.

In operation, the cylindrical member 214 of the nut member 202 is positioned through

the aperture 230 of the cage member 204 such that the upper surface 208 of the nut member 202 is abutted against the upper surface 220 of the base portion 224 of the cage member 204. The first and second arms 226, 228 are then bent around opposite sidewalls 210 of the nut member 202 and onto the lower surface 210 of the nut member 202 to form the cage nut assembly 200.

5 The free ends 236, 238 of the arms 226, 228 then abut against one another such that the half-dimples 148a, 150a abut against one another, the half-dimples 148b, 150b abut against one another, and the semicircular cutouts 232, 234 are in communication with one another to form a circular cutout 256.

10 Because the arms 226, 228 abut at their free ends 236, 238, the cage member 204 effectively encages the nut member 202. The cage member 204 and the aperture 230 are sized so that the nut member 202 has a limited range of movement in at least one dimension, and preferably in two dimensions, for example the "X" and "Y" axes as illustrated in FIGURE 4. The circular cutout 256 is provided in the cage member 204 to allow access to 15 the aperture 216 of the nut member 202 through the lower surface 210 thereof, within the range of movement of the nut member 202.

Once the cage nut assembly 200 is formed, the cage nut assembly 200 must then be attached to a mating surface 257. The cage nut assembly 200 is positioned on the mating surface 257 such that the dimples 240, 242, 248a, 248b, 250a, 250b are in contact with the 20 mating surface 257. The cage nut assembly 200 is then welded to the mating surface 257 with the assistance of the dimples 240, 242. During the welding, the free-ends 236, 238 are welded together to form a welded seam 258. The half-dimples 248a, 250a; 248b, 250b also assist in the welding of the cage nut assembly 200 to the mating surface 257 and the half-dimples 248a, 250a are welded together to form a welded dimple 260a and the half-dimples

248b, 250b are welded together to form a welded dimple 260b.

Attention is now directed to FIGURES 7-9 which illustrate a cage nut assembly 300 which is in accordance with a second embodiment of the present invention. The cage nut assembly 300 includes a nut member 302 and a cage member 304.

5 The nut member 302 is best illustrated in FIGURE 9 and includes a rectangular block 306 having a generally planar upper surface 308, a generally planar lower surface 310 and sidewalls 312 which connect the upper and lower surfaces 308, 310. An aperture 316 extends through the block 306 of the nut member 302. The aperture 316 may be closed at the lower surface 310 of the block 306 or it may extend all the way through the block 306. The 10 aperture 316 defines an aperture wall 318 which is preferably threaded and is capable of receiving a bolt or screw (now shown) to be attached thereto.

The cage member 304 is best illustrated in FIGURES 7 and 8. The cage member 304 is used for encaging the nut member 302. Prior to encaging the nut member 302, the cage member 304 has generally upper and lower surfaces 320, 322. The cage member 304 15 includes a base portion 324 and bendable first and second arm portions 326, 328 extending from opposite ends of the base portion 324. The first and second arm portions 326, 328 are preferably integrally formed with the base portion 324.

As best illustrated in FIGURE 8, the cage member 304 further includes a pair of L-shaped flanges 362, 364 which extend from opposite ends of the base portion 324, but not the 20 opposite ends from which the arm portions 326, 328 extend from the base portion 324. The L-shaped flange 362 has a first portion 366 which extends perpendicularly upwardly from the base portion 324 proximate to the second arm portion 328, and a second portion 368 which extends perpendicularly from the first portion 366 toward the first arm portion 326. The L-shaped flange 364 has a first portion 370 which extends perpendicularly outwardly from the

base portion 324 proximate to the first arm portion 326, and a second portion 372 which extends perpendicularly from the first portion 370 toward the second arm portion 328. The L-shaped flange 364 is bendable. The L-shaped flanges 362, 364 are preferably integrally formed with the base portion 324 of the cage member 304.

5 An aperture 330 is provided through the base portion 324 of the cage member 304 and the first and second arms 326, 328 have generally semicircular cutouts 332, 334 at their free ends 336, 338.

10 The first and second arms 326, 328 have dimples 340, 342 provided on the lower surface 322 thereof which are formed from a stamping process and which extend outwardly from the lower surface 322 thereof. The dimples 340, 342 are provided between the semicircular cutouts 332, 334 and the edges 344, 346 of the arms 326, 328.

15 The first and second arms 326, 328 have half-dimples 348, 350 provided on the lower surface 322 thereof at the free ends 336, 338 of the arms 326, 328. The half-dimples 348, 350 are formed from a stamping process and extend outwardly from the lower surface 322 of the arms 326, 328. The half-dimples 348, 350 are provided between the semicircular cutouts 332, 334 and the edges 352, 354 of the arms 326, 328.

20 In operation, the first and second arms 326, 328 are bent such that the free ends 336, 338 of the arms 326, 328 abut against one another such that the half-dimples 348, 350 abut against one another and the semicircular cutouts 332, 334 are in communication with one another to form a circular cutout 356.

The nut member 302 is then slid into the cage member 304 at the end of the cage member 304 where the L-shaped flange 364 is provided for such that the upper surface 108 of the nut member 302 is facing the upper surface 320 of the base portion 324 of the cage member 304. The L-shaped flange 362 prevents the nut member 302 from sliding out of the

cage member 302. Once the nut member 302 is positioned within the cage member 304, the L-shaped flange 364 is bent to prevent the nut member 302 from sliding out of the cage member 302, thus effectively encaging the nut member 302 within the cage member 304 and forming the cage nut assembly 300, as best illustrated in FIGURE 7.

5 The cage member 304 is sized so that the nut member 302 has a limited range of movement in at least one dimension, and preferably in two dimensions, for example the "X" and "Y" axes as illustrated in FIGURE 7. The circular cutout 356 is provided in the cage member 304 to allow access to the aperture 316 of the nut member 302 through the lower surface 310 thereof, within the range of movement of the nut member 302.

10 Once the cage nut assembly 300 is formed, the cage nut assembly 300 must then be attached to a mating surface 357. The cage nut assembly 300 is positioned on the mating surface 357 such that the dimples 340, 342, 348, 350 are in contact with the mating surface 357. The cage nut assembly 300 is then welded to the mating surface 357 with the assistance of the dimples 340, 342. During the welding, the free-ends 336, 338 are welded together to form a welded seam 358. The half-dimples 348, 350 also assist in the welding of the cage nut assembly 300 to the mating surface 357 and are welded together to form a welded dimple 360.

15 It should be noted that the cage nut assembly 300 could also be formed to have four dimples, similar to that disclosed in the second embodiment of the cage nut assembly 200, rather than three dimples.

20 Attention is now directed to FIGURES 10-12 which illustrate a cage nut assembly 400 which is in accordance with a fourth embodiment of the present invention. The cage nut assembly 400 includes a nut member 402 and a cage member 404.

The nut member 402 is best illustrated in FIGURE 12 and includes a rectangular

block 406 having a generally planar upper surface 408, a generally planar lower surface 410 and sidewalls 412 which connect the upper and lower surfaces 408, 410. The nut member 402 also includes a cylindrical member 414 which extends outwardly from the upper surface 408 of the nut member 402. The cylindrical member 414 is preferably in the form of a right circular cylinder. An aperture 416 extends through the nut member 402 from the block 406 into the cylindrical member 414. The aperture 416 may be closed at the lower surface 410 of the block 406 or it may extend all the way through the block 406. The aperture 416 defines an aperture wall 418 which is preferably threaded and is capable of receiving a bolt or screw (now shown) to be attached thereto.

10 The cage member 404 is best illustrated in FIGURES 10-11. The cage member 404 is used for encaging the nut member 402. Prior to encaging the nut member 402, the cage member 404 has generally planar upper and lower surfaces 420, 422. The cage member 404 includes a base portion 424 and bendable first and second arm portions 426, 428 extending from opposite ends of the base portion 424. The first and second arm portions 426, 428 are preferably integrally formed with the base portion 424.

15 The cage member 404 further includes a pair of flanges 462, 464 which extend from opposite ends of the base portion 424, but not the opposite ends from which the arm portions 426, 428 extend from the base portion 424. The flange 462 extends perpendicularly upwardly from the base portion 424 and extends substantially between the arm portions 426, 428. The flange 464 is L-shaped such that it has a first portion 470 which extends perpendicularly outwardly from the base portion 424 proximate to the first arm portion 426, and a second portion 472 which extends perpendicularly from the first portion 470 toward the second arm portion 428. The L-shaped flange 464 is bendable. The flanges 462, 464 are preferably integrally formed with the base portion 424 of the cage member 404.

An aperture 430 is provided through the base portion 424 of the cage member 404 and the first and second arms 426, 428 have generally semicircular cutouts 432, 434 at their free ends 436, 438.

The first and second arms 426, 428 have tabs 440, 442 provided on the lower surface 422 thereof which extend outwardly from the lower surface 422 thereof. The tabs 440, 442 are provided between the semicircular cutouts 432, 434 and the edges 444, 446 of the arms 426, 428.

The first and second arms 426, 428 have half-tabs 448, 450 provided on the lower surface 422 thereof at the free ends 436, 438 of the arms 426, 428. The half-tabs 448, 450 extend outwardly from the lower surface 422 of the arms 426, 428. The half-tabs 448, 450 are provided between the semicircular cutouts 432, 434 and the edge 452, 454 of the arms 426, 428.

In operation, the cylindrical member 414 of the nut member 402 is positioned through the aperture 430 of the cage member 404 such that the upper surface 408 of the nut member 402 is abutted against the upper surface 420 of the base portion 424 of the cage member 404. The first and second arms 426, 428 are bended around opposite sidewalls 412 of the nut member 402 and onto the lower surface 410 of the nut member 402 to form the cage nut assembly 400.

The free ends 436, 438 of the arms 426, 428 then abut against one another such that the half-tabs 448, 450 abut against one another and the semicircular cutouts 432, 434 are in communication with one another to form a circular cutout 456. The tabs 440, 442 extend outwardly from the lower surface 422 of the cage member 404 at the bend of the first and second arms 426, 428 around the lower surface 410 of the nut member 402 such that the tabs 440, 442 extend in an opposite direction as does the cylindrical member 414 of the nut

member 402.

Because the arms 426, 428 abut at their free ends 436, 438, the cage member 404 effectively encages the nut member 402. The cage member 404 and the aperture 430 are sized so that the nut member 402 has a limited range of movement in at least one dimension, and preferably in three dimensions, for example the "X", "Y" and "Z" axes as illustrated in FIGURE 11. The circular cutout 456 is provided in the cage member 404 to allow access to the aperture 416 of the nut member 402 through the lower surface 410 thereof, within the range of movement of the nut member 402.

Once the cage nut assembly 400 is formed, the cage nut assembly 400 must then be attached to a mating surface 457. The cage nut assembly 400 is positioned on the mating surface 457 such that the tabs 440, 442, 448, 450 are in contact with the mating surface 457. The cage nut assembly 400 is then welded to the mating surface 457 with the assistance of the tabs 440, 442. During the welding, the free-ends 436, 438 are welded together to form a welded seam 458. The half-tabs 448, 450 also assist in the welding of the cage nut assembly 400 to the mating surface 457 and are welded together to form a welded tab 460.

It should be noted that the nut member 402 could be formed without the cylindrical member 414 and the cage member 404 sized so that the nut member 402 has a limited range of movement in at least one direction, and preferably in two dimensions, for example the "X" and "Y" axes as illustrated in FIGURE 11.

It should further be noted that the cage nut assembly 400 could also be formed to have four tabs, similar to that disclosed in the second embodiment of the cage nut assembly 200, except with dimples, rather than three tabs.

Attention is now directed to FIGURES 13-15 which illustrate a cage nut assembly 500 which is in accordance with a fifth embodiment of the present invention. The cage nut

assembly 500 includes a nut member 502 and a cage member 504.

The nut member 502 is best illustrated in FIGURE 15 and includes a rectangular block 506 having a generally planar upper surface 508, a generally planar lower surface (not shown) and sidewalls 512 which connect the upper and lower surfaces 508. The nut member 502 also includes a cylindrical member 514 which extends outwardly from the upper surface 508 of the nut member 502. The cylindrical member 514 is preferably in the form of a right circular cylinder. An aperture 516 extends through the nut member 502 from the block 506 into the cylindrical member 514. The aperture 516 may be closed at the lower surface 510 of the block 506 or it may extend all the way through the block 506. The aperture 516 defines an aperture wall 518 which is preferably threaded and is capable of receiving a bolt or screw (now shown) to be attached thereto.

The cage member 504 is best illustrated in FIGURES 13 and 14. The cage member 504 is used for encaging the nut 502. Prior to encaging the nut member 502, the cage member 504 is formed such that it has a first sidewall 521 having top and bottom edges 523, 525 and first and second side ends 527, 529.

The cage member 504 further is formed to include a second side wall 531 having top and bottom edges 533, 535 and first and second side ends 537, 539. The second side wall 531 is integrally formed with the first side wall 521 such that the first side end 537 of the second side wall 531 is equivalent to the second side end 529 of the first side wall 521. The second side wall 531 extends perpendicularly along the "X" axis, as illustrated in FIGURE 13, from the first side wall 521. The bottom edge 535 of the second side wall 531 is provided in the same plane as the bottom edge 525 of the first side wall 521; the top edge 533 of the second side wall 531 is provided in a different plane than the top edge 535 of the first side wall 521.

The cage member 504 further is formed to include a third side wall 541 having top and bottom edges 543, 545 and first and second side ends 547, 549. The third side wall 541 is integrally formed with the second side wall 531 such that the first side end 547 of the third side wall 541 is equivalent to the second side end 539 of the second side wall 531. The third side wall 541 extends perpendicularly along the "Y" axis, as illustrated in FIGURE 13, from the second side wall 531 such that the third side wall 541 is parallel to the first side wall 521. The top and bottom edges 543, 545 of the third side wall 541 are provided in the same plane as the top and bottom edges 523, 525 of the first side wall 521.

5 The cage member 504 further is formed to include a fourth side wall 551 having top and bottom edges 553, 555 and first and second side ends 557, 559. The fourth side wall 551 is integrally formed with the third side wall 541 such that the first side end 557 of the fourth side wall 551 is equivalent to the second side end 549 of the third side wall 541. The fourth side wall 551 extends perpendicularly along the "X" axis, as illustrated in FIGURE 13, from the third side wall 541 such that the fourth side wall 551 is parallel to the second side wall 531. The top and bottom edges 553, 555 of the fourth side wall 551 are provided in the same plane as the top and bottom edges 523, 525 of the first side wall 521. The second side end 10 15 559 of the fourth side wall 551 is also formed with a dove-tail pocket 561 provided therein.

10 The cage member 504 further includes a fifth side wall 563 having top and bottom edges 565, 567 and first and second side ends 569, 571. The fifth side wall 563 is integrally formed with the first side wall 521 such that the second side end 571 of the fifth side wall 563 is equivalent to the first side end 527 of the first side wall 521. The fifth side wall 563 extends perpendicularly along the "X" axis, as illustrated in FIGURE 13, from the first side wall 521 such that the fifth side wall 563 is parallel to the second side wall 531. The top and bottom edges 565, 567 of the fifth side wall 563 are provided in the same plane as the top and 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 71

bottom edges 523, 525 of the first side wall 521. The first side end 569 of the fifth side wall 563 is also formed with a dove-tail extension 573 provided thereon. The dove-tail extension 573 is inserted into the dove-tail pocket 561 in order to lock the fourth side wall 551 to the fifth side wall 563 such that the second side end 559 of the fourth side wall 551 abuts against the first side end 569 of the fifth side wall 563. A seam 575 is provided between the second side end 559 of the fourth side wall 551 and the first side end 569 of the fifth side wall 563.

5 A tab 540 is provided on the bottom edge 525 of the first side wall 521 proximate to the connection of the first and second side walls 521, 531. A tab 542 is provided on the bottom edge 545 of the third side wall 541 proximate to the connection of the second and 10 third side walls 531, 541. A half tab 548 is provided on the bottom edge 555 of the fourth side wall 551 proximate to the connection of the fourth and fifth side walls 551, 563. A half tab 550 is provided on the bottom edge 567 of the fifth side wall 563 proximate to the connection of the fourth and fifth side walls 551, 563. The half tabs 548, 550 abut against one another such that the seam 575 is provided therebetween.

15 A first flap 577 extends from the top edge 523 of the first side wall 521 and has a generally semicircular cutout 579 at its free end 581. The first flap 577 is bendable. A second flap 583 extends from the top edge 543 of the third side wall 541 and has a generally semicircular cutout 585 at its free end 587. The second flap 583 is bendable. The first and second flaps 577, 583 are bent toward one another such that the free ends 581, 587 abut 20 against one another and such that the semicircular cutouts 579, 585 are in communication with one another to form a circular cutout 589.

A window 591 is provided between the first, second and third side walls 521, 531, 541 and the flaps 577, 583. A flange 593 covers a portion of the window 591 and extends from the connection of the second and third side walls 531, 541. The flange 593 is bendable.

The first side wall 521 also has a fold-out arm 595 provided thereon which is integrally formed with the first side wall 521 and is positioned equidistant from the first and second side ends 527, 529 of the first side wall 521. The fold-out arm 595 is also bendable. The third side wall 541 also has a fold-out arm 597 provided thereon which is integrally formed with the third side wall 541 and is positioned equidistantly from the first and second side ends 547, 549 of the third side wall 541. The fold out arm 597 is further bendable.

5 In operation, nut member 502 is positioned between the sidewalls 521, 531, 541, 551, 563 of the cage member 504 such that the cylindrical member 514 of the nut member 502 is positioned through the circular cutout 589 of the cage member 504. The fold-out arms 595, 597 are then bended to abut against the lower surface 510 of the nut member 502 to form the 10 cage nut assembly 500, such that the cage member 504 effectively encages the nut member 502. The cage member 504 and the circular cutout 589 are sized so that the nut member 502 has a limited range of movement in at least one dimension, and preferably in two dimensions, 15 for example the "X" and "Y" axes as illustrated in FIGURE 13.

15 Once the cage nut assembly 500 is formed, the cage nut assembly 500 must then be attached to a mating surface 557. The cage nut assembly 500 is positioned on the mating surface 557 such that the tabs 540, 542, 548, 550 are in contact with the mating surface 557. The cage nut assembly 500 is then welded to the mating surface 557 with the assistance of the 20 tabs 540, 542. During the welding, the fourth and fifth sidewalls 551, 563 are welded together along the seam 575. The half-tabs 548, 550 also assist in the welding of the cage nut assembly 500 to the mating surface 557 and are welded together to form a welded tab 560.

The window 591 acts as a nut member removal window for servicing the nut member 502 if need be. The flange 593 acts to help retain the nut member 502 within the cage member 504, but also can be bended outwardly to provide access to the nut member 502 if

the nut member 502 needs to be serviced.

It should be noted that the nut member 502 could be formed without the cylindrical member 514 and the cage member 504 sized so that the nut member 502 has a limited range of movement in at least one direction, and preferably in two dimensions, for example the "X" and "Y" axes as illustrated in FIGURE 13.

Attention is now directed to FIGURES 16-18 which illustrate a cage nut assembly 600 which is in accordance with a sixth embodiment of the present invention. The cage nut assembly 600 includes a nut member 602 and a cage member 604.

The nut member 602 is best illustrated in FIGURE 18 and includes a rectangular block 606 having a generally planar upper surface 608, a generally planar lower surface 610 and sidewalls 612 which connect the upper and lower surfaces 608, 610. The nut member 602 also includes a cylindrical member 614 which extends outwardly from the upper surface 608 of the nut member 602. The cylindrical member 614 is preferably in the form of a right circular cylinder. An aperture 616 extends through the nut member 602 from the block 606 into the cylindrical member 614. The aperture 616 may be closed at the lower surface 610 of the block 606 or it may extend all the way through the block 606. The aperture 616 defines an aperture wall 618 which is preferably threaded and is capable of receiving a bolt or screw (now shown) to be attached thereto.

The cage member 604 is best illustrated in FIGURES 16-17. The cage member 604 is used for encaging the nut 602. Prior to encaging the nut member 602, the cage member 604 is formed such that it has a first sidewall 621 having top and bottom edges 623, 625 and first and second side ends 627, 629.

The cage member 604 further is formed to include a second side wall 631 having top and bottom edges 633, 635 and first and second side ends 637, 639. The second side wall

631 is integrally formed with the first side wall 621 such that the first side end 637 of the second side wall 631 is equivalent to the second side end 629 of the first side wall 621. The second side wall 631 extends perpendicularly along the “X” axis, as illustrated in FIGURE 16, from the first side wall 621. The bottom edge 636 of the second side wall 631 is provided in the same plane as the bottom edge 625 of the first side wall 621; the top edge 633 of the second side wall 631 is provided in a different plane than the top edge 623 of the first side wall 621.

5 The cage member 604 further is formed to include a third side wall 641 having top and bottom edges 643, 645 and first and second side ends 647, 649. The third side wall 641 is integrally formed with the second side wall 631 such that the first side end 647 of the third side wall 641 is equivalent to the second side end 639 of the second side wall 631. The third side wall 641 extends perpendicularly along the “Y” axis, as illustrated in FIGURE 16, from the second side wall 631 such that the third side wall 641 is parallel to the first side wall 621. The top and bottom edges 643, 645 of the third side wall 641 are provided in the same plane as the top and bottom edges 623, 625 of the first side wall 621.

10

15

The cage member 604 further is formed to include a fourth side wall 651 having top and bottom edges 653, 655 and first and second side ends 657, 659. The fourth side wall 651 is integrally formed with the third side wall 641 such that the first side end 657 of the fourth side wall 651 is equivalent to the second side end 649 of the third side wall 641. The fourth side wall 651 extends perpendicularly along the “X” axis, as illustrated in FIGURE 16, from the third side wall 641 such that the fourth side wall 651 is parallel to the second side wall 631. The top and bottom edges 653, 655 of the fourth side wall 651 are provided in the same plane as the top and bottom edges 623, 625 of the first side wall 621. The second side end 659 of the fourth side wall 651 is also formed with a dove-tail pocket 661 provided therein.

20

The cage member 604 further includes a fifth side wall 663 having top and bottom edges 665, 667 and first and second side ends 669, 671. The fifth side wall 663 is integrally formed with the first side wall 621 such that the second side end 671 of the fifth side wall 663 is equivalent to the first side end 627 of the first side wall 621. The fifth side wall 663 extends perpendicularly along the "X" axis, as illustrated in FIGURE 16, from the first side wall 621 such that the fifth side wall 663 is parallel to the second side wall 631. The top and bottom edges 665, 667 of the fifth side wall 663 are provided in the same plane as the top and bottom edges 623, 625 of the first side wall 621. The first side end 669 of the fifth side wall 663 is also formed with a dove-tail extension 673 provided thereon. The dove-tail extension 673 is inserted into the dove-tail pocket 661 in order to lock the fourth side wall 651 to the fifth side wall 663 such that the second side end 659 of the fourth side wall 651 abuts against the first side end 669 of the fifth side wall 663. A seam 675 is provided between the second side end 659 of the fourth side wall 651 and the first side end 669 of the fifth side wall 663.

A tab 640 is provided on the bottom edge 625 of the first side wall 621 proximate to the connection of the first and second side walls 621, 631. A tab 642 is provided on the bottom edge 645 of the third side wall 641 proximate to the connection of the second and third side walls 631, 641. A tab 699 is provided on the bottom edge 667 of the fifth side wall 663 proximate to the connection of the fourth and fifth side walls 651, 663. The tab 699 abuts against the bottom edge 655 of the fourth side wall 651 proximate to the connection of the fourth and fifth side walls 651, 663 such that the seam 675 is provided therebetween.

A first flap 677 extends from the top edge 623 of the first side wall 621 and has a generally semicircular cutout 679 at its free end 681. The first flap 677 is bendable. A second flap 683 extends from the top edge 643 of the third side wall 641 and has a generally semicircular cutout 685 at its free end 687. The second flap 683 is bendable. The first and

second flaps 677, 683 are bent toward one another such that the free ends 681, 687 abut against one another and such that the semicircular cutouts 679, 685 are in communication with one another to form a circular cutout 689.

A window 691 is provided between the first, second and third side walls 621, 631, 5 641 and the flaps 677, 683. A flange 693 covers a portion of the window 691 and extends from the connection of the second and third side walls 631, 641. The flange 693 is bendable.

The first side wall 621 also has a fold-out arm 695 provided thereon which is integrally formed with the first side wall 621 and is positioned equidistant from the first and second side ends 627, 629 of the first side wall 621. The fold-out arm 695 is also bendable. 10 The third side wall 641 also has a fold-out arm 697 provided thereon which is integrally formed with the third side wall 641 and is positioned equidistantly from the first and second side ends 647, 649 of the third side wall 641. The fold out arm 697 is further bendable.

In operation, nut member 602 is positioned between the sidewalls 621, 631, 641, 651, 15 663 of the cage member 604 such that the cylindrical member 614 of the nut member 602 is positioned through the circular cutout 689 of the cage member 604. The fold-out arms 695, 697 are then bended to abut against the lower surface 610 of the nut member 602 to form the cage nut assembly 600, such that the cage member 604 effectively encages the nut member 602. The cage member 604 and the circular cutout 689 are sized so that the nut member 602 has a limited range of movement in at least one dimension, and preferably in two dimensions, 20 for example the "X" and "Y" axes as illustrated in FIGURE 16.

Once the cage nut assembly 600 is formed, the cage nut assembly 600 must then be attached to a mating surface 657. The cage nut assembly 600 is positioned on the mating surface 657 such that the tabs 640, 642, 699 are in contact with the mating surface 657. The cage nut assembly 600 is then welded to the mating surface 657 with the assistance of the

tabs 640, 642. During the welding, the fourth and fifth sidewalls 651, 663 are welded together along the seam 675. The tab 699 also assists in the welding of the cage nut assembly 600 to the mating surface 657 and is welded to the bottom surface 655 of the fourth side wall 651 to form a welded tab 660.

5 The window 691 acts as a nut member removal window for servicing the nut member 602 if need be. The flange 693 acts to help retain the nut member 602 within the cage member 604, but also can be bended outwardly to provide access to the nut member 602 if the nut member 602 needs to be serviced.

10 It should be noted that the nut member 602 could be formed without the cylindrical member 614 and the cage member 604 sized so that the nut member 602 has a limited range of movement in at least one direction, and preferably in two dimensions, for example the "X" and "Y" axes as illustrated in FIGURE 16.

15 Attention is now directed to FIGURES 19-21 which illustrate a cage nut assembly 700 which is in accordance with a seventh embodiment of the present invention. The cage nut assembly 700 includes a nut member 702 and a cage member 704.

The nut member 702 is best illustrated in FIGURE 21 and includes a rectangular block 706 having a generally planar upper surface 708, a generally planar lower surface (not shown) and sidewalls 712 which connect the upper and lower surfaces 708. An aperture 716 extends through the block 706 of the nut member 702. The aperture 716 may be closed at the lower surface 710 of the block 706 or it may extend all the way through the block 706. The aperture 716 defines an aperture wall 718 which is preferably threaded and is capable of receiving a bolt or screw (now shown) to be attached thereto.

20 The cage member 704 is best illustrated in FIGURES 19-20. The cage member 704 is used for encaging the nut 702. Prior to encaging the nut member 702, the cage member 704

is formed such that it has a first sidewall 721 having top and bottom edges 723, 725 and first and second sides 727, 729.

The cage member 704 further is formed to include a second side wall 731 having top and bottom edges 733, 735 and first and second side ends 737, 739. The second side wall 731 is integrally formed with the first side wall 721 such that the first side end 737 of the second side wall 731 is equivalent to the second side end 729 of the first side wall 721. The second side wall 731 extends perpendicularly along the "X" axis, as illustrated in FIGURE 21, from the first side wall 721. The bottom edge 735 of the second side wall 731 is provided in the same plane as the bottom edge 725 of the first side wall 721; the top edge 733 of the second side wall 731 is provided in a different plane than the top edge 722 of the first side wall 721.

The cage member 704 further is formed to include a third side wall 741 having top and bottom edges 743, 745 and first and second side ends 747, 749. The third side wall 741 is integrally formed with the second side wall 731 such that the first side end 747 of the third side wall 741 is equivalent to the second side end 739 of the second side wall 731. The third side wall 741 extends perpendicularly along the "Y" axis, as illustrated in FIGURE 19, from the second side wall 731 such that the third side wall 741 is parallel to the first side wall 721. The top and bottom edges 743, 745 of the third side wall 741 are provided in the same plane as the top and bottom edges 723, 725 of the first side wall 721.

The cage member 704 further is formed to include a fourth side wall 751 having top and bottom edges 753, 755 and first and second side ends 757, 759. The fourth side wall 751 is integrally formed with the third side wall 741 such that the first side end 757 of the fourth side wall 751 is equivalent to the second side end 749 of the third side wall 741. The fourth side wall 751 extends perpendicularly along the "X" axis, as illustrated in FIGURE 19, from

the third side wall 741 such that the fourth side wall 751 is parallel to the second side wall 731. The top and bottom edges 753, 755 of the fourth side wall 751 are provided in the same plane as the top and bottom edges 723, 725 of the first side wall 721. The second side end 759 of the fourth side wall 751 is also formed with a dove-tail pocket 761 provided therein.

5 The cage member 704 further includes a fifth side wall 763 having top and bottom edges 765, 767 and first and second side ends 769, 771. The fifth side wall 763 is integrally formed with the first side wall 721 such that the second side end 771 of the fifth side wall 763 is equivalent to the first side end 727 of the first side wall 721. The fifth side wall 763 extends perpendicularly along the “X” axis, as illustrated in FIGURE 19, from the first side wall 721 such that the fifth side wall 763 is parallel to the second side wall 731. The top and bottom edges 765, 767 of the fifth side wall 763 are provided in the same plane as the top and bottom edges 723, 725 of the first side wall 721. The first side end 769 of the fifth side wall 763 is also formed with a dove-tail extension 773 provided thereon. The dove-tail extension 773 is inserted into the dove-tail pocket 761 in order to lock the fourth side wall 751 to the fifth side wall 763 such that the second side end 759 of the fourth side wall 751 abuts against the first side end 769 of the fifth side wall 763. A seam 775 is provided between the second side end 759 of the fourth side wall 751 and the first side end 769 of the fifth side wall 763.

10

15

A tab 740 is provided on the bottom edge 725 of the first side wall 721 proximate to the connection of the first and second side walls 721, 731. A tab 742 is provided on the bottom edge 745 of the third side wall 741 proximate to the connection of the second and third side walls 731, 741. A half tab 748 is provided on the bottom edge 755 of the fourth side wall 751 proximate to the connection of the fourth and fifth side walls 751, 763. A half tab 750 is provided on the bottom edge 767 of the fifth side wall 763 proximate to the connection of the fourth and fifth side walls 751, 763. The half tabs 748, 750 abut against

20

one another such that the seam 775 is provided therebetween.

A first flap 777 extends from the top edge 723 of the first side wall 721 and has a generally semicircular cutout 779 at its free end 781. The first flap 777 is bendable. A second flap 783 extends from the top edge 743 of the third side wall 741 and has a generally semicircular cutout 785 at its free end 787. The second flap 783 is bendable. The first and second flaps 777, 783 are bent toward one another such that the free ends 781, 787 abut against one another and such that the semicircular cutouts 779, 785 are in communication with one another to form a circular cutout 789.

A third flap 778 extends from the bottom edge 725 of the first side wall 721 and has a generally semicircular cutout 780 at its free end 782. The third flap 778 is bendable. A fourth flap 784 extends from the bottom edge 745 of the third side wall 741 and has a generally semicircular cutout 786 at its free end 788. The fourth flap 784 is bendable. The third and fourth flaps 778, 784 are bent toward one another such that the free ends 782, 788 abut against one another and such that the semicircular cutouts 780, 786 are in communication with one another to form a circular cutout 790.

A window 791 is provided between the first, second and third side wall 721, 731, 741 and the flaps 777, 783, 778, 784. A flange 793 covers a portion of the window 791 and extends from the connection of the second and third side walls 731, 741. The flange 793 is bendable.

In operation, the nut member 702 is slid into the cage member 704 through the window 791 such that the nut member 702 is positioned between the sidewalls 721, 731, 741, 751, 763 and the flaps 777, 783, 778, 784, and such that the aperture 716 of the nut member 718 is accessible through either of the circular cutouts 789, 790. The flange 793 is then bended to be positioned parallel with the second side wall 731 in order to cover a portion of

the window 791 and to help retain the nut member 702 within the cage member 704. The cage member 704 effectively encages the nut member 702 and is sized so that the nut member 702 has a limited range of movement in at least one dimension, and preferably in two dimensions, for example the "X" and "Y" axes as illustrated in FIGURE 19.

5 Once the cage nut assembly 700 is formed, the cage nut assembly 700 must then be attached to a mating surface 757. The cage nut assembly 700 is positioned on the mating surface 757 such that the tabs 740, 742, 748, 750 are in contact with the mating surface 757. The cage nut assembly 700 is then welded to the mating surface 757 with the assistance of the tabs 740, 742. During the welding, the fourth and fifth sidewalls 751, 763 are welded together along the seam 775. The half-tabs 748, 750 also assist in the welding of the cage nut assembly 700 to the mating surface 757 and are welded together to form a welded tab 760.

10

The window 791 acts as a nut member removal window for servicing the nut member 702 if need be. The flange 793 can be bended outwardly to provide access to the nut member 702 if the nut member 702 needs to be serviced.

15 Thus, the welding of the cage nut assemblies 100, 200, 300, 400, 500, 600, 700 to the mating surface 157, 257, 357, 457, 557, 657, 757 provides a 4-sided continuous box, because of the welded seams 158, 258, 358, 458, 558, 658, 758, and the welded dimples and tabs 160, 260, 360, 460, 560, 660, 760, which has improved strength characteristics in comparison to cage nut assemblies of the prior art. Because the cage nut assemblies 100, 200, 300, 400, 500, 600, 700 has improved strength characteristics, the cage nut assemblies 100, 200, 300, 400, 500, 600, 700 can be formed with material that is formed with a maximum thickness of 1.8 millimeters whereas the prior art cage nut assemblies were formed with a minimum thickness of 2.0 millimeters. Thus, the cage nut assemblies 100, 200, 300, 400, 500, 600, 700 provides for at least a 10% decrease in the thickness of the material used to form the cage nut

20

assemblies 100, 200, 300, 400, 500, 600, 700, such that substantial savings in cost are realized in the manufacture of the cage nut assemblies 100, 200, 300, 400, 500, 600, 700.

FIGURE 22 illustrates a method of attaching the cage member 104, 204, 304, 404, 504 and 704 to the mating surface 157, 257, 357, 457, 557, 757. FIGURE 23 illustrates a 5 method of attaching the cage nut assembly 100, 200, 300, 400, 500 and 700 to the mating surface 157, 257, 357, 457, 557, 757. FIGURE 24 illustrates a method of attaching the cage nut assembly 600 to the mating surface 657.

Thus, the figures show several embodiments and methods of the present invention. Each embodiment provides a cage nut assembly 100, 200, 300, 400, 500, 600, 700 which is 10 configured such that it can have a cage member 104, 204, 304, 404, 504, 604, 704 with a relatively thin wall thickness, yet meet torque requirements in a desired application. Each embodiment also provides a cage nut assembly 100, 200, 300, 400, 500, 600, 700 which is relatively inexpensive to manufacture but which meets torque requirements in a desired application. Further, each embodiment provides a cage nut assembly 100, 200, 300, 400, 15 500, 600, 700 which can be utilized in any nut application that requires a nut member 102, 202, 302, 402, 502, 602, 702 to have an "X" and "Y" axis adjustability.

While several specific embodiments of the present invention are shown and described, it is envisioned that those skilled in the art may devise various modifications without departing from the spirit and scope of the foregoing description.

AMENDED CLAIMS

[Received by the International Bureau on 17 August 2004 (17.08.2004) ;
original claims 1 – 19, unchanged ; claims 20 – 61, new]

1. A cage member engageable with a nut member having a threaded aperture, thereby providing a cage nut assembly, said cage member comprising a body configured to engage the nut member and having an aperture formed therein, said aperture configured to allow access to the threaded aperture of the nut member when the nut member is generally engaged by said cage member, said body defining a seam and having at least one protrusion, said protrusion being formed in halves which abut against one another such that said seam is provided therebetween, said protrusion configured to provide that said protrusion is weldable to a mating surface to secure said cage member to the mating surface, and, substantially contemporaneously, said halves of said protrusion configured to provide that said halves are weldable to one another along said seam.
2. A cage member as defined in claim 1, wherein said body defines three protrusions with one of said three protrusions being formed in halves which abut against one another.
3. A cage member as defined in claim 2, wherein each of said protrusions are formed as dimples.
4. A cage member as defined in claim 2, wherein each of said protrusions are formed as tabs.
5. A cage member as defined in claim 1, wherein said body defines four protrusions with two of said four protrusions being formed in halves which abut against one another.
6. A cage member as defined in claim 5, wherein each of said protrusions are formed as dimples.

7. A cage member as defined in claim 1, wherein said body has a base portion configured to support the nut member and a pair of arms extending from opposite ends of said base portion which are configured to bend around the nut member to encage the nut member, said aperture of said body being provided through said base portion thereof, each said arm having a free end, each said arm having said halves of said at least one protrusion provided thereon which abut against one another to provide said seam therebetween, said seam further being provided between said free ends of said arms.

5 8. A cage member as defined in claim 7, wherein flange members extend from opposite ends of said base portion between said arms toward said seam, at least one of said flange members being bendable, said flange members configured to limit a range of movement of the nut member when the nut member is engaged within the cage member.

10 9. A cage member as defined in claim 1, wherein said body has a plurality of sidewalls which are integrally formed, two of said sidewalls having free ends which abut against one another and which have said halves of said at least one protrusion extending therefrom along said free ends such that said seam is provided between said halves of said at least one protrusion and between said free ends of said two sidewalls.

15 20 10. A cage member as defined in claim 9, wherein one of said sidewalls having a free end has a dove-tail pocket provided therein and wherein said other one of said sidewalls having a free-end has a dove-tail extension provided thereon which is capable of being positioned within said dove-tail pocket to interlock said two sidewalls together.

25 11. A cage member as defined in claim 9, wherein two of said sidewalls have flaps extending therefrom having free ends thereon which abut against one another, each said flap having semicircular cutouts at said free ends thereof which are in communication with one another to form a circular cutout.

30

12. A cage member as defined in claim 9, wherein a nut servicing window is provided proximate to one of said sidewalls and wherein a flange is provided which covers a portion of said window and which is bendable to allow access to the nut member when the nut member is engaged within said cage member.

5

13. A cage member as defined in claim 9, wherein two of said sidewalls have foldable arms extending therefrom which are configured to fold around a lower surface of the nut member to support the nut member when the nut member is engaged within said cage member.

10

14. A cage nut assembly comprising:

a nut member having a threaded aperture therethrough; and
a cage member having a body configured to engage said nut member and having an aperture formed therein, said aperture configured to allow access to said threaded aperture of said nut member when said nut member is generally engaged by said cage member, said body defining a seam and having at least one protrusion, said protrusion being formed in halves which abut against one another such that said seam is provided therebetween, said protrusion configured to provide that said protrusion is weldable to a mating surface to secure said cage member to the mating surface, and, substantially contemporaneously, said halves of said protrusion configured to provide that said halves are weldable to one another along said seam.

20

15. A cage nut assembly as defined in claim 14, wherein said body of said cage member has a plurality of sidewalls which are integrally formed, two of said sidewalls having free ends which abut against one another to provide said seam therebetween, one of said protrusions being formed on an edge of one of said two sidewalls at said free end thereof such that said one protrusion overlaps onto an edge of said other of said two sidewalls at said free end thereof.

30

16. A method of attaching a cage member of a cage nut assembly to a mating surface, said method comprising the steps of:

- a) providing said cage member, said cage member having a body configured to allow access to a threaded aperture of a nut member when the nut member is generally encaged by said cage member, said body defining a seam and having at least one protrusion, said protrusion being formed in halves which abut against one another such that said seam is provided therebetween;
- b) positioning said protrusions of said cage member on the mating surface;
- c) welding said protrusion to the mating surface such that said halves of said protrusion are welded together along said seam.

17. A method of attaching a cage nut assembly to a mating surface, said method comprising the steps of:

- a) providing a nut member and a cage member, said cage member having a body defining a seam and at least one protrusion which is formed in halves along said seam;
- b) encaging said nut member within said cage member to form said cage nut assembly such that said nut member has a limited range of movement within said cage member in at least one direction;
- c) positioning said protrusion of said cage member on the mating surface;
- d) welding said protrusion to the mating surface such that said halves of said protrusion are welded together along said seam.

25

30

18. A method of attaching a cage nut assembly to a mating surface, said method comprising the steps of:

- a) providing a nut member and a cage member, said cage member having a body defining a seam and at least one protrusion which overlaps a portion of said cage member and provides said seam therebetween;
- b) encaging said nut member within said cage member to form said cage nut assembly such that said nut member has a limited range of movement within said cage member in at least one direction;
- c) positioning said protrusion of said cage member on the mating surface;
- d) welding said protrusion to the mating surface such that said overlapping protrusion is welded to said portion of said cage member along said seam.

19. A cage member engageable with a nut member having a threaded aperture, thereby providing a cage nut assembly, said cage member comprising a body configured to engage the nut member and having an aperture formed therein, said aperture configured to allow access to the threaded aperture of the nut member when the nut member is generally engaged by said cage member, said body defining a weldable seam and having at least one protrusion, said protrusion configured to provide that said protrusion is weldable to a mating surface to secure said cage member to the mating surface.

20. A cage member engageable with a nut member having a threaded aperture, thereby providing a cage nut assembly, said cage member comprising a body configured to engage the nut member and having an aperture formed therein which is configured to allow access to the threaded aperture of the nut member when the nut member is generally engaged by said cage member, said body having a base portion and first and second arm portions extending from said base portion, and a seam defined between said first and second arm portions, at least one of said first and second arm portions having at least one protrusion, said at least one protrusion configured to be weldable to a mating surface to secure said cage member to the mating surface, said seam being provided proximate to the mating surface.

21. A cage member as defined in claim 20, wherein said at least one protrusion is positioned proximate to said seam.

22. A cage member as defined in claim 20, wherein said first arm portion and said second arm portion define a lower surface of said cage member which faces the mating surface, said at least one protrusion protruding from said lower surface of said cage member.

5

23. A cage member as defined in claim 20, wherein said at least one protrusion is a single protrusion which is segmented by said seam to define adjacent segments of said single protrusion which are proximate to one another such that said seam is provided therebetween and such that said adjacent segments of said protrusion form a generally whole protrusion, said adjacent segments of said protrusion being weldable to the mating surface and to one another along said seam.

10

15 24. A cage member as defined in claim 23, wherein said seam extends between said adjacent segments of said protrusion such that each said adjacent segment of said protrusion comprises generally half of said generally whole protrusion.

25

20 25. A cage member as defined in claim 20, wherein said at least one protrusion is a pair of protrusions, each said protrusion being segmented by said seam to define adjacent segments of each said protrusion which are proximate to one another such that said seam is provided therebetween and such that said adjacent segments of each said protrusion form a generally whole protrusion, said adjacent segments of each said protrusion being weldable to the mating surface and to one another along said seam.

25

26. A cage member as defined in claim 25, wherein said seam extends between said adjacent segments of each said protrusion such that each said adjacent segment of each said protrusion comprises generally half of said generally whole protrusions.

30 27. A cage member as defined in claim 20, wherein said at least one protrusion is formed as a dimple.

28. A cage member as defined in claim 20, wherein said at least one protrusion is formed as a tab.

29. A cage member as defined in claim 20, wherein said body includes at least one flange member which is configured to be moved in a first direction in order to engage the nut member within the body.

30. A cage member as defined in claim 29, wherein said at least one flange member is further configured to be moved in a second direction, which is opposite said first direction, in order to allow for removal of the nut member from within said body.

31. A cage member as defined in claim 29, wherein said at least one flange member is integrally formed with said body.

15 32. A cage member as defined in claim 29, wherein said body includes two flange members.

33. A cage member as defined in claim 29, wherein said at least one flange member extends from said base portion of said body.

20 34. A cage member as defined in claim 33, wherein said at least one flange member is generally L-shaped such that it has a first portion and a second portion which is generally angled from said first portion.

25

30

35. A cage member engageable with a nut member having a threaded aperture, thereby providing a cage nut assembly, said cage member comprising a body configured to engage the nut member and having an aperture formed therein which is configured to allow access to the threaded aperture of the nut member when the nut member is generally engaged by said cage member, said body having a plurality of sidewalls, two of said sidewalls having free ends which are proximate to one another, and a seam defined between said free ends of said two sidewalls, at least one of said two sidewalls having at least one protrusion, said at least one protrusion configured to be weldable to a mating surface to secure said cage member to the mating surface, said seam being provided proximate to the mating surface.

10

36. A cage member as defined in claim 35, wherein said at least one protrusion is positioned proximate to said seam.

37. A cage member as defined in claim 35, wherein two sidewalls define a bottom edge of said cage member which faces the mating surface, said at least one protrusion protruding from said bottom edge of said cage member.

38. A cage member as defined in claim 37, wherein said at least one protrusion is a single protrusion which is segmented by said seam to define adjacent segments of said single protrusion which are proximate to one another such that said seam is provided therebetween and such that said adjacent segments of said protrusion form a generally whole protrusion, said adjacent segments of said protrusion being weldable to the mating surface and to one another along said seam.

39. A cage member as defined in claim 38, wherein said seam extends between said adjacent segments of said protrusion such that each said adjacent segment of said protrusion comprises generally half of said generally whole protrusion.

30

40. A cage member as defined in claim 37, wherein said at least one protrusion is formed on said bottom edge of one of said two sidewalls proximate to said free end thereof such that said one protrusion overlaps onto said bottom edge of said other of said two sidewalls proximate to said free end thereof.

5

41. A cage member as defined in claim 40, wherein said seam extends between said one overlapping protrusion and said bottom edge of said other of said two sidewalls proximate to said free end thereof such that said one overlapping protrusion and said bottom edge are weldable to one another along said seam.

10

42. A cage member as defined in claim 35, wherein said at least one protrusion is formed as a tab.

15

43. A cage member as defined in claim 35, wherein one of said sidewalls having a free end has a dove-tail pocket provided therein and wherein said other one of said sidewalls having a free end has a dove-tail extension provided thereon which is capable of being positioned within said dove-tail pocket to interlock said two sidewalls together.

20

44. A cage member as defined in claim 35, wherein a nut servicing window is provided proximate to one of said plurality of sidewalls and wherein a flange is provided which covers a portion of said window and which is bendable to allow access to the nut member when the nut member is encaged within said cage member.

25

45. A cage member as defined in claim 35, wherein at least one of said plurality of sidewalls has a foldable arm extending therefrom which is configured to fold around a portion of a lower surface of the nut member to support the nut member when the nut member is encaged within said cage member.

30

46. A cage member as defined in claim 45, wherein two of said plurality of sidewalls have foldable arms extending therefrom which are configured to fold around said lower surface of the nut member to support the nut member when the nut member is encaged within said cage member.

5

47. A cage nut assembly comprising:
a nut member having a threaded aperture therethrough; and
a cage member having a body configured to encage said nut member and having an aperture formed therein which is configured to allow access to said threaded aperture of said nut member when said nut member is generally encaged by said cage member, said body having a base portion and first and second arm portions extending from said base portion, and a seam defined between said first and second arm portions, at least one of said first and second arm portions having at least one protrusion, said at least one protrusion configured to be weldable to a mating surface to secure said cage member to the mating surface, said seam being provided proximate to the mating surface.

10

15

48. A cage nut assembly as defined in claim 47, wherein said at least one protrusion is a single protrusion which is segmented by said seam to define adjacent segments of said single protrusion which are proximate to one another such that said seam is provided therebetween and such that said adjacent segments of said protrusion form a generally whole protrusion, said adjacent segments of said protrusion being weldable to the mating surface and to one another along said seam.

20

25

49. A cage nut assembly as defined in claim 47, wherein said at least one protrusion is a pair of protrusions, each said protrusion being segmented by said seam to define adjacent segments of each said protrusion which are proximate to one another such that said seam is provided therebetween and such that said adjacent segments of each said protrusion form a generally whole protrusion, said adjacent segments of each said protrusion being weldable to the mating surface and to one another along said seam.

30

50. A cage nut assembly as defined in claim 47, wherein said body includes at least one flange member which is configured to be moved in a first direction in order to engage said nut member within said body.

5 51. A cage nut assembly as defined in claim 50, wherein said at least one flange member is further configured to be moved in a second direction, which is opposite said first direction, in order to allow for removal of said nut member from within said body.

10 52. A cage nut assembly as defined in claim 50, wherein said at least one flange is integrally formed with said body.

53. A cage nut assembly as defined in claim 50, wherein said body includes two flange members.

15 54. A cage nut assembly as defined in claim 50, wherein said at least one flange member extends from said base portion of said body.

20 55. A cage nut assembly as defined in claim 54, wherein said at least one flange member is generally L-shaped such that it has a first portion and a second portion which is generally angled from said first portion.

25

30

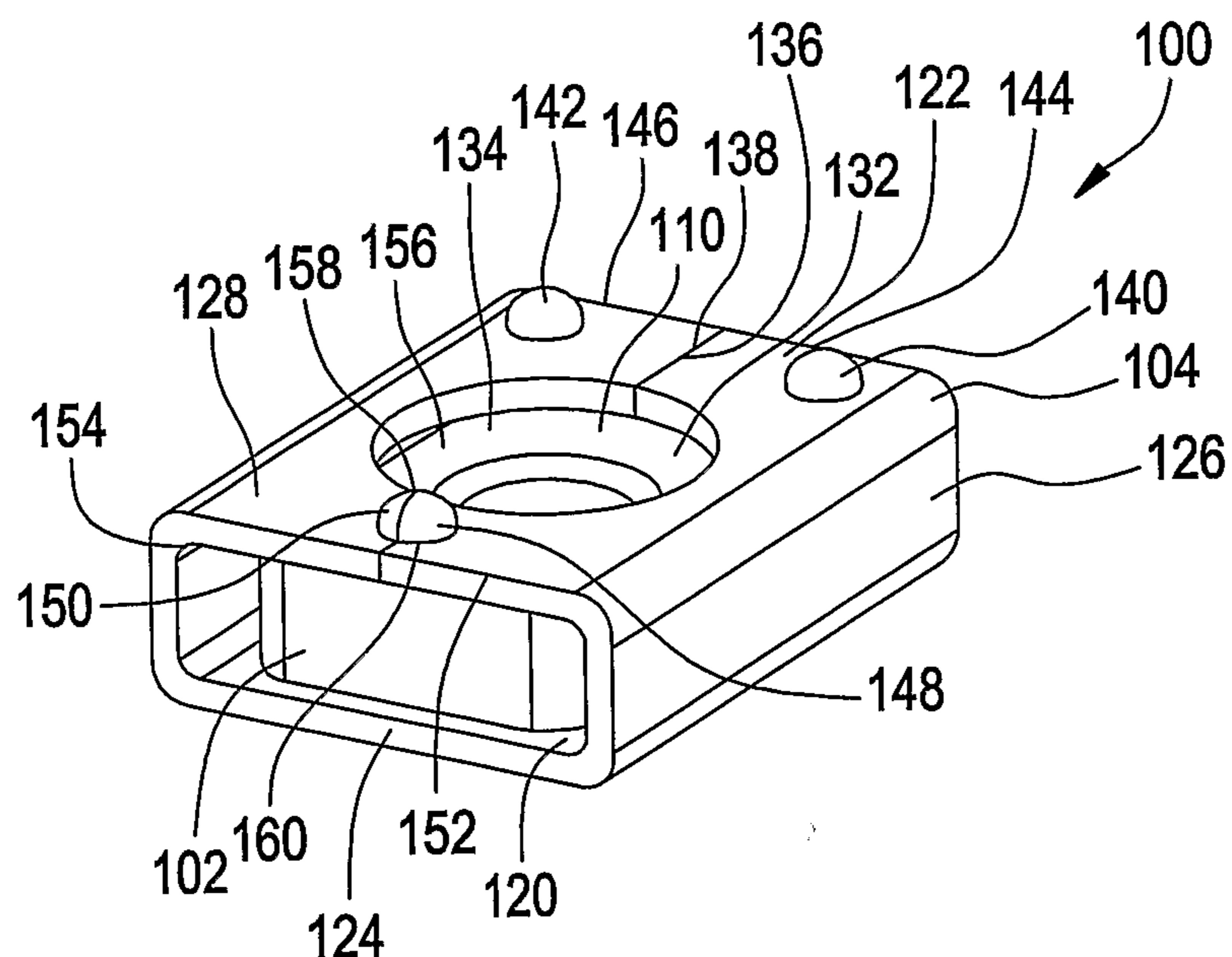
56. A cage nut assembly comprising:
a nut member having a threaded aperture therethrough; and
a cage member having a body configured to engage said nut member and having an
aperture formed therein which is configured to allow access to said threaded aperture of said
nut member when said nut member is generally engaged by said cage member, said body
having a plurality of sidewalls, two of said sidewalls having free ends which are proximate to
one another, and a seam defined between said free ends of said two sidewalls, at least one of
said two sidewalls having at least one protrusion, said at least one protrusion configured to be
weldable to a mating surface to secure said cage member to the mating surface, said seam
10 being provided proximate to the mating surface, said two sidewalls defining a bottom edge of
said cage member which faces the mating surface, said at least one protrusion protruding
from said bottom edge of said cage member.

57. A cage nut assembly as defined in claim 56, wherein said at least one protrusion is a
15 single protrusion which is segmented by said seam to define adjacent segments of said single
protrusion which are proximate to one another such that said seam is provided therebetween
and such that said adjacent segments of said protrusion form a generally whole protrusion,
said adjacent segments of said protrusion being weldable to the mating surface and to one
another along said seam.

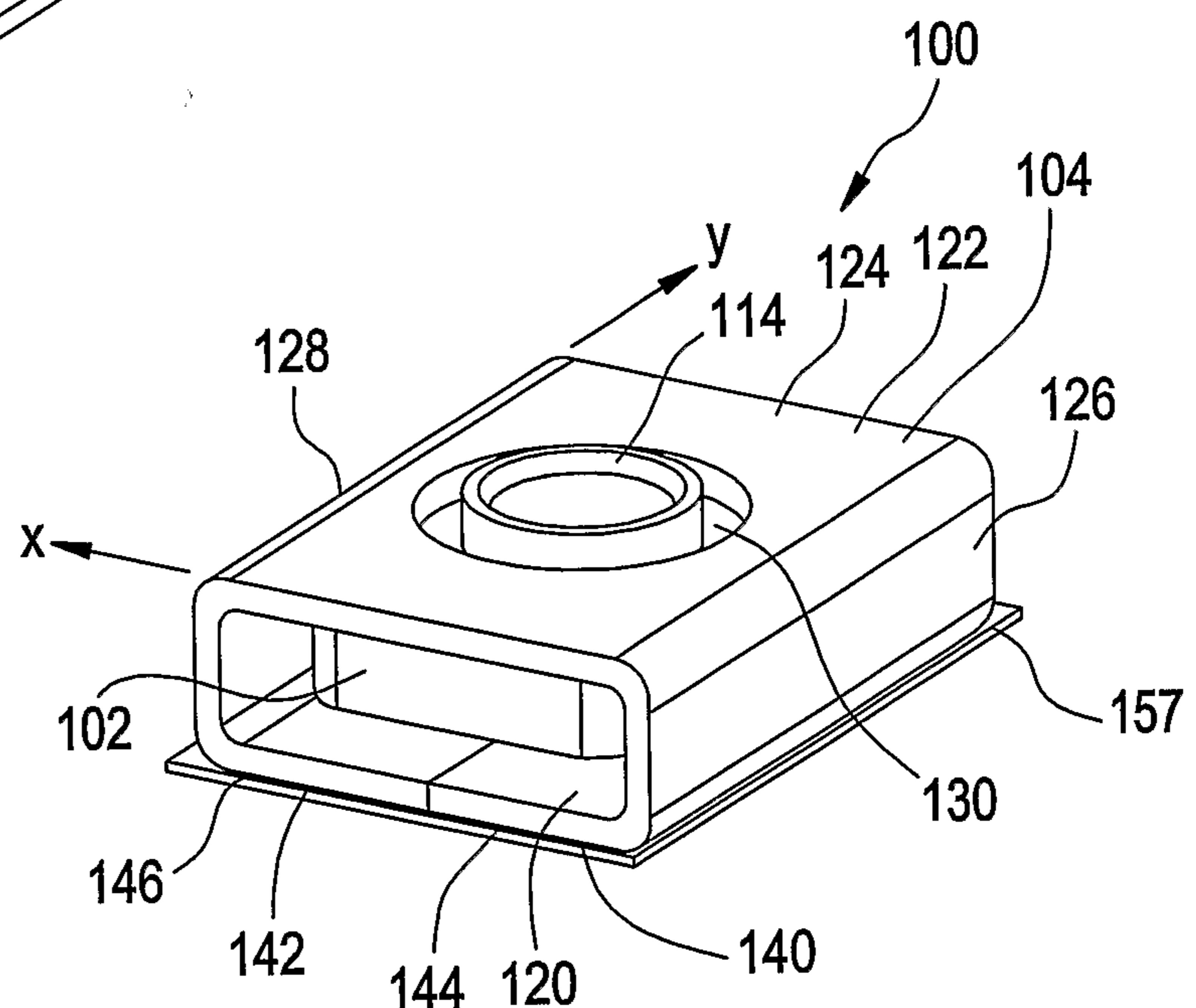
20 58. A cage nut assembly as defined in claim 56, wherein said at least one protrusion is
formed on said bottom edge of one of said two sidewalls proximate to said free end thereof
such that said one protrusion overlaps onto said bottom edge of said other of said two
sidewalls proximate to said free end thereof.

25 59. A cage nut assembly as defined in claim 56, wherein said cage member has a nut
servicing window provided proximate to one of said plurality of sidewalls and wherein a
flange is provided which covers a portion of said window and which is bendable to allow
access to said nut member when said nut member is engaged within said cage member.

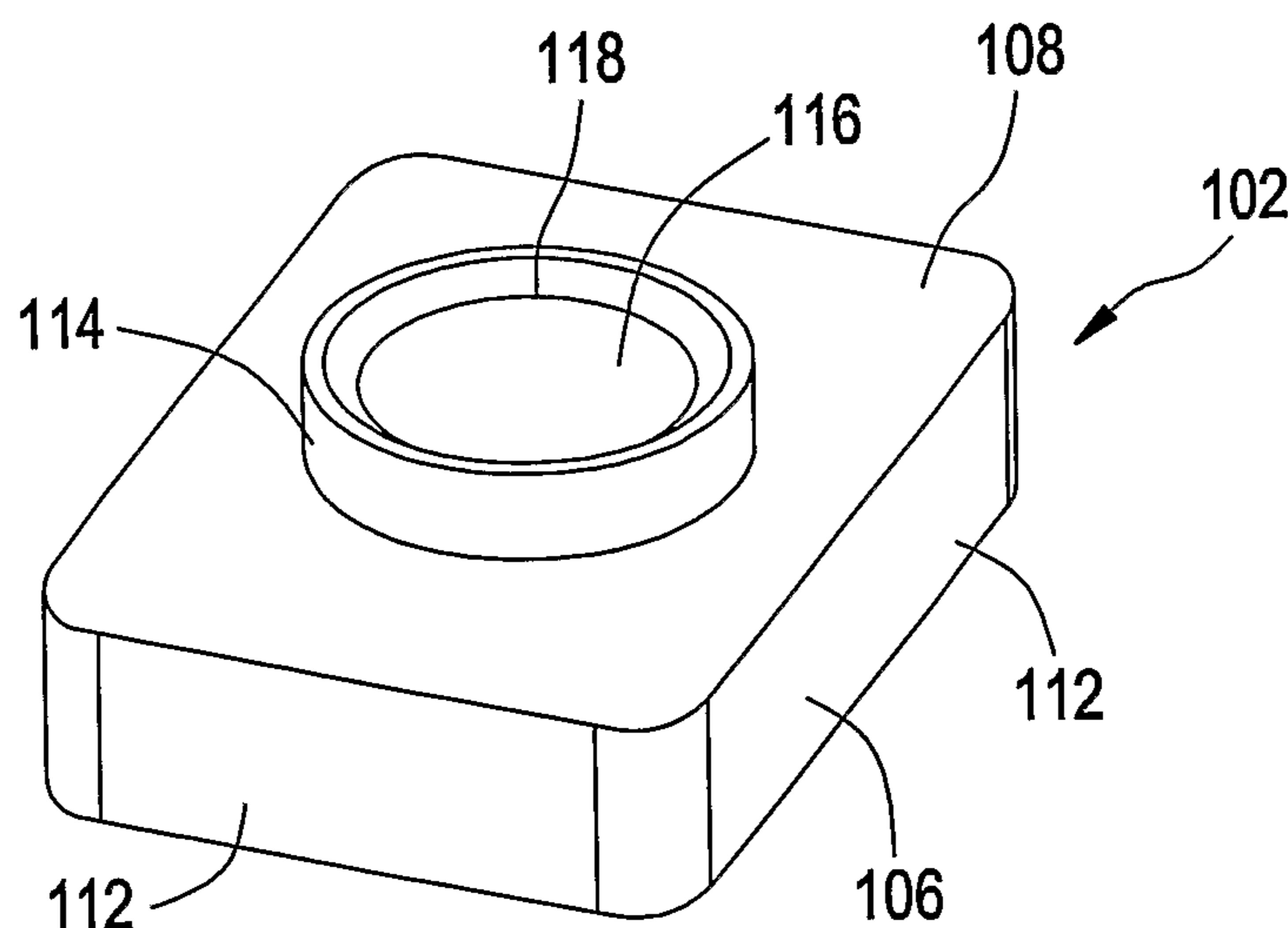
60. A cage nut assembly as defined in claim 56, wherein at least one of said plurality of sidewalls of said cage member has a foldable arm extending therefrom which is configured to fold around a portion of a lower surface of said nut member to support said nut member when said nut member is encaged within said cage member.

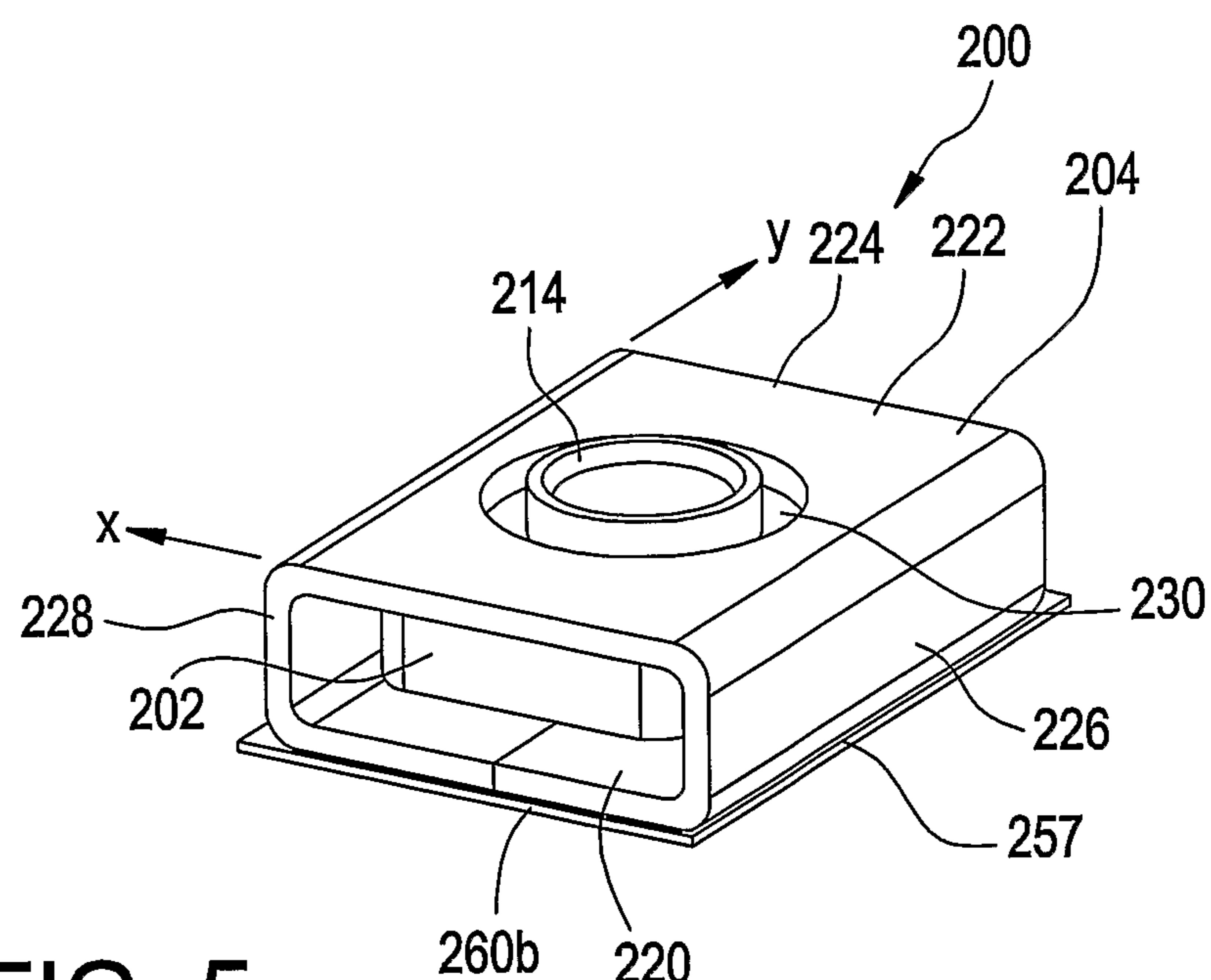
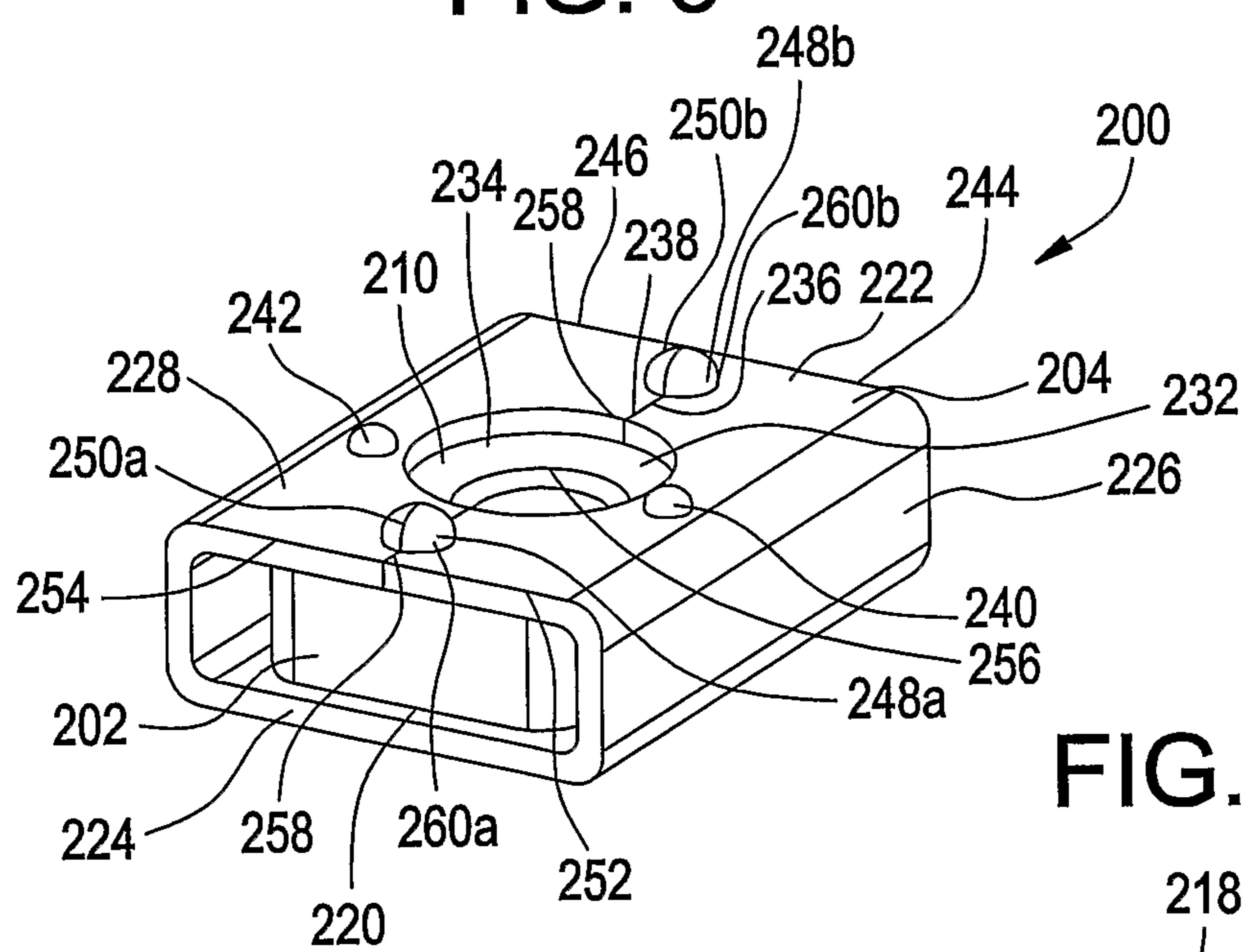
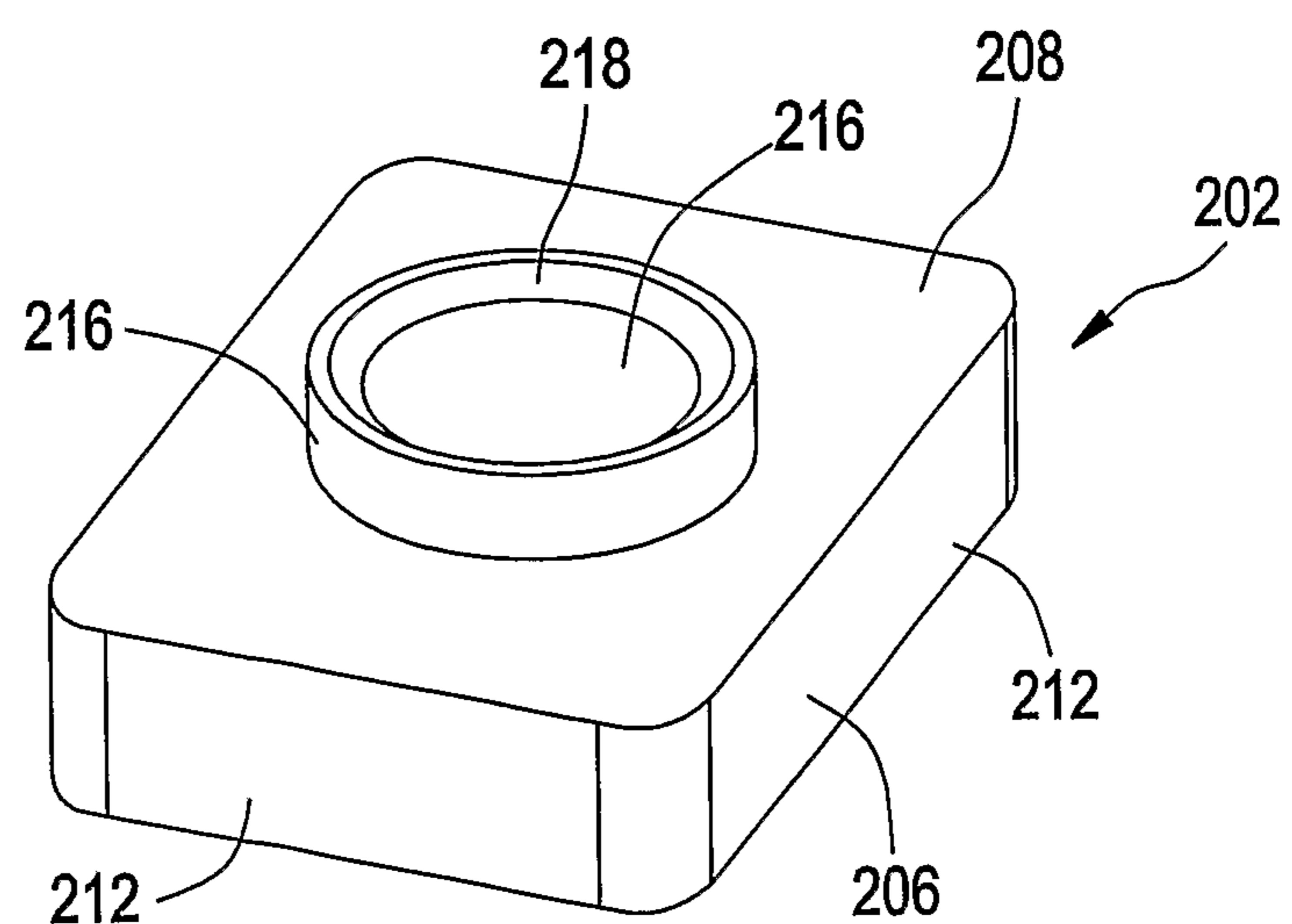

5

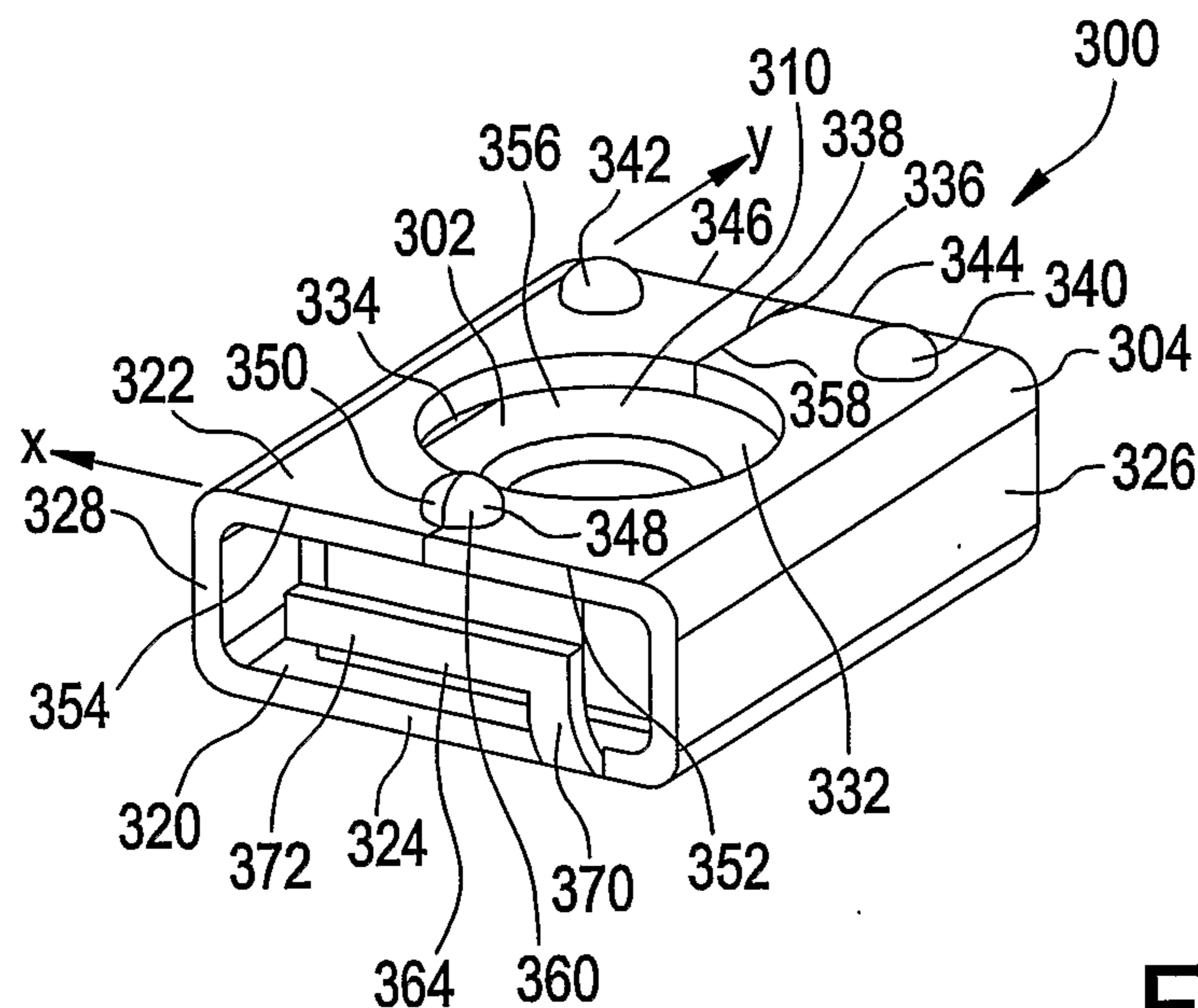
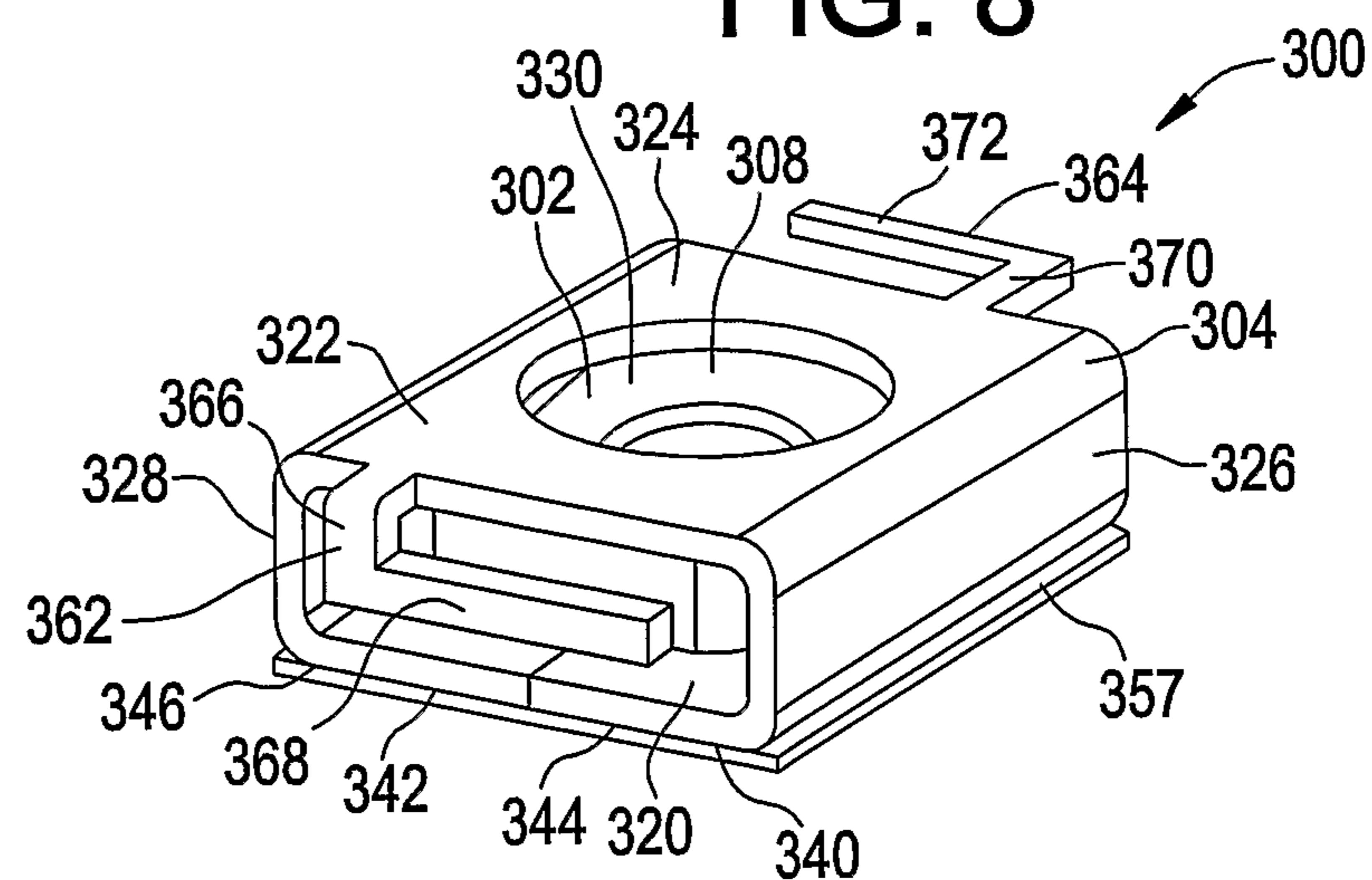
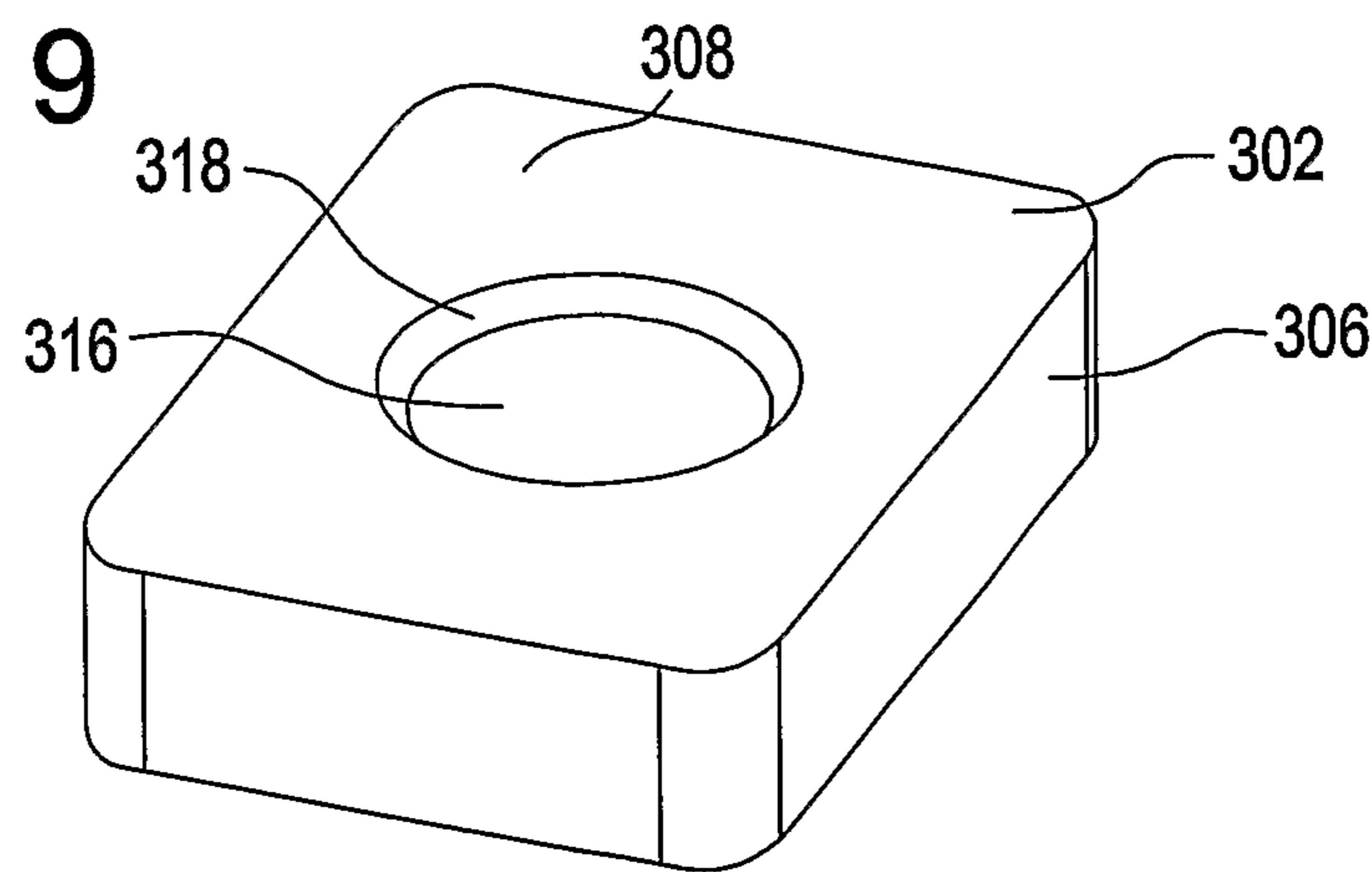
61. A cage nut assembly as defined in claim 60, wherein two of said plurality of sidewalls of said cage member have foldable arms extending therefrom which are configured to fold around said portion of said lower surface of said nut member to support said nut member when said nut member is encaged within said cage member.


10

1/10


FIG. 1




FIG. 2




FIG. 3

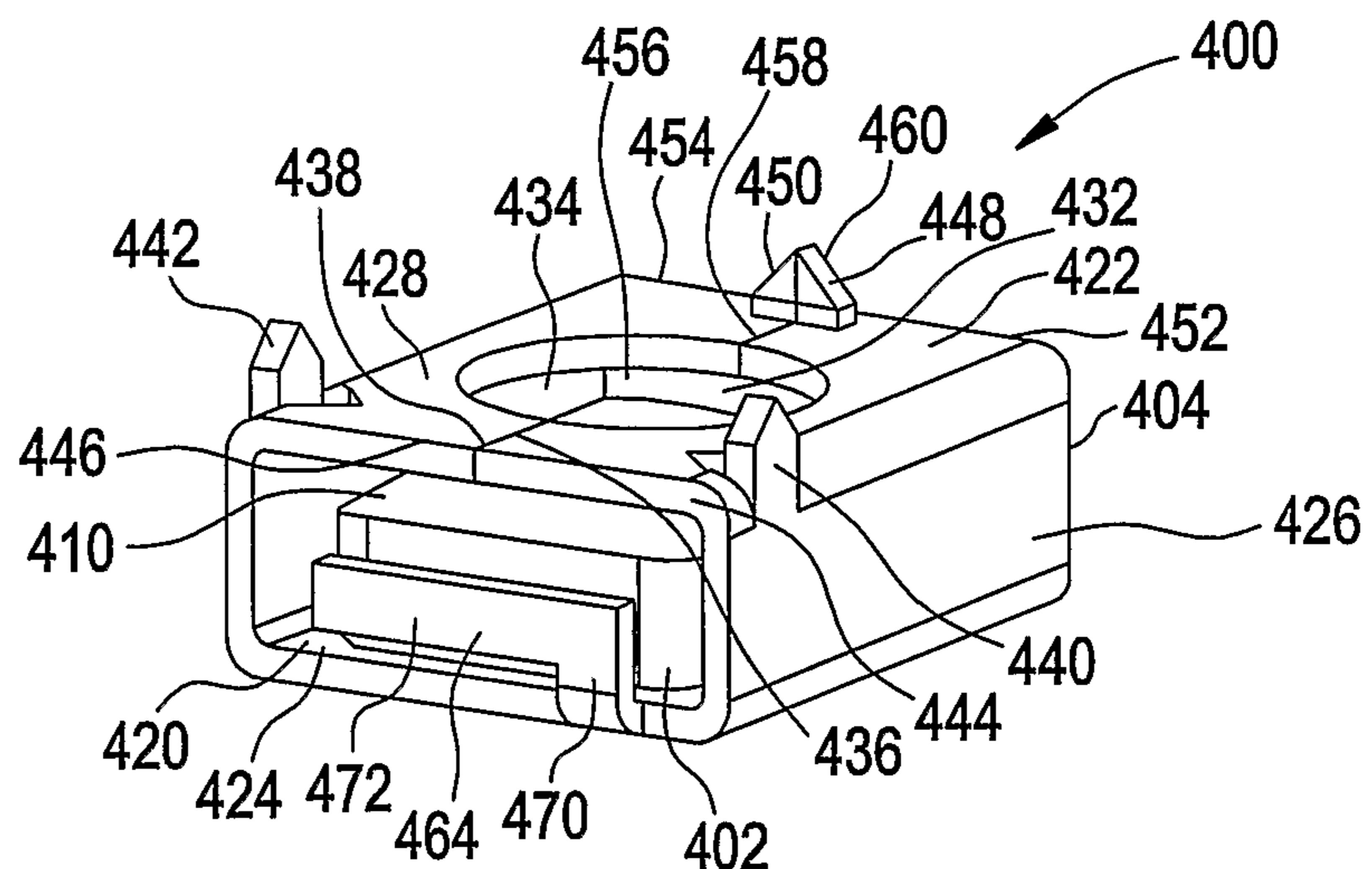
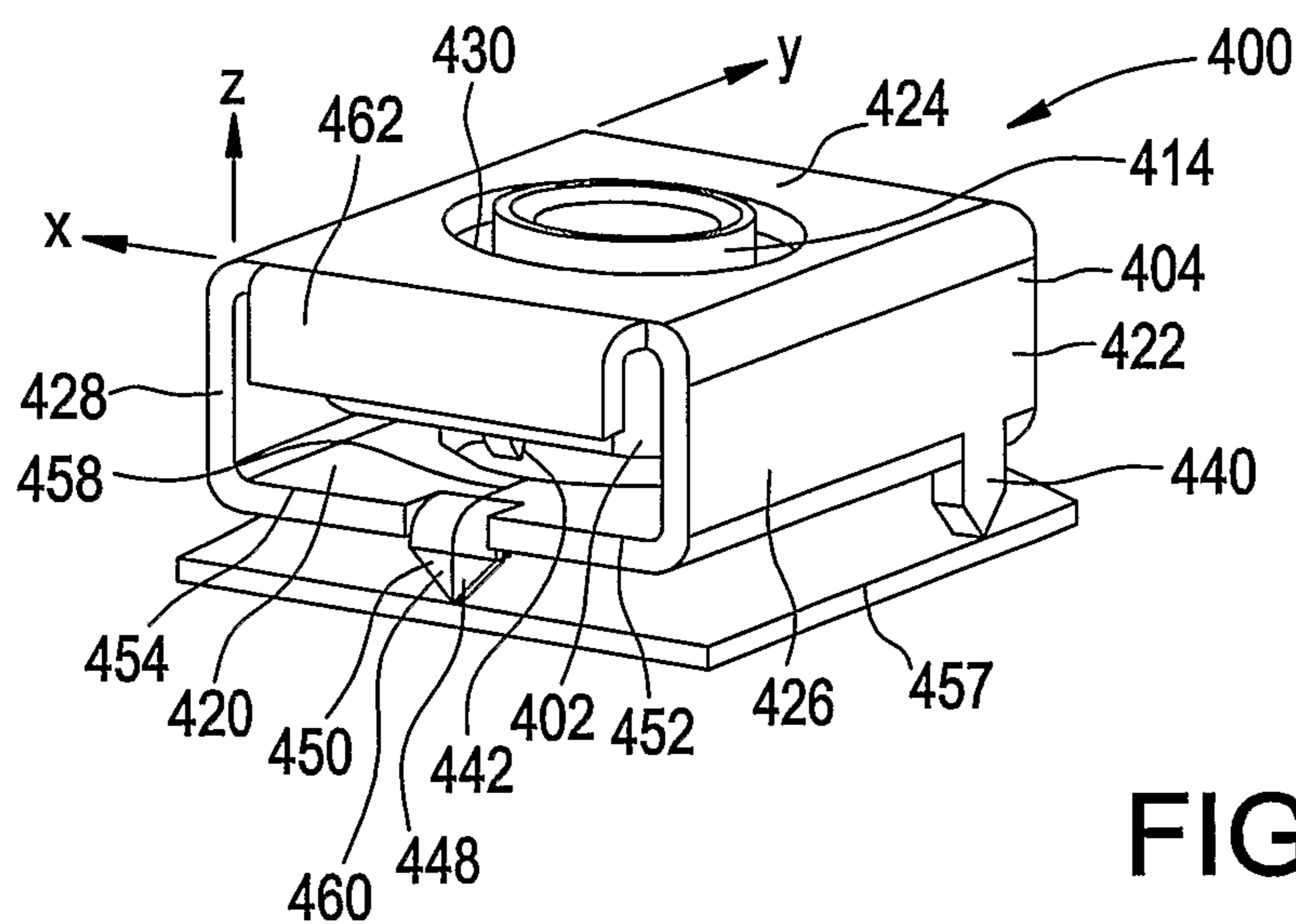
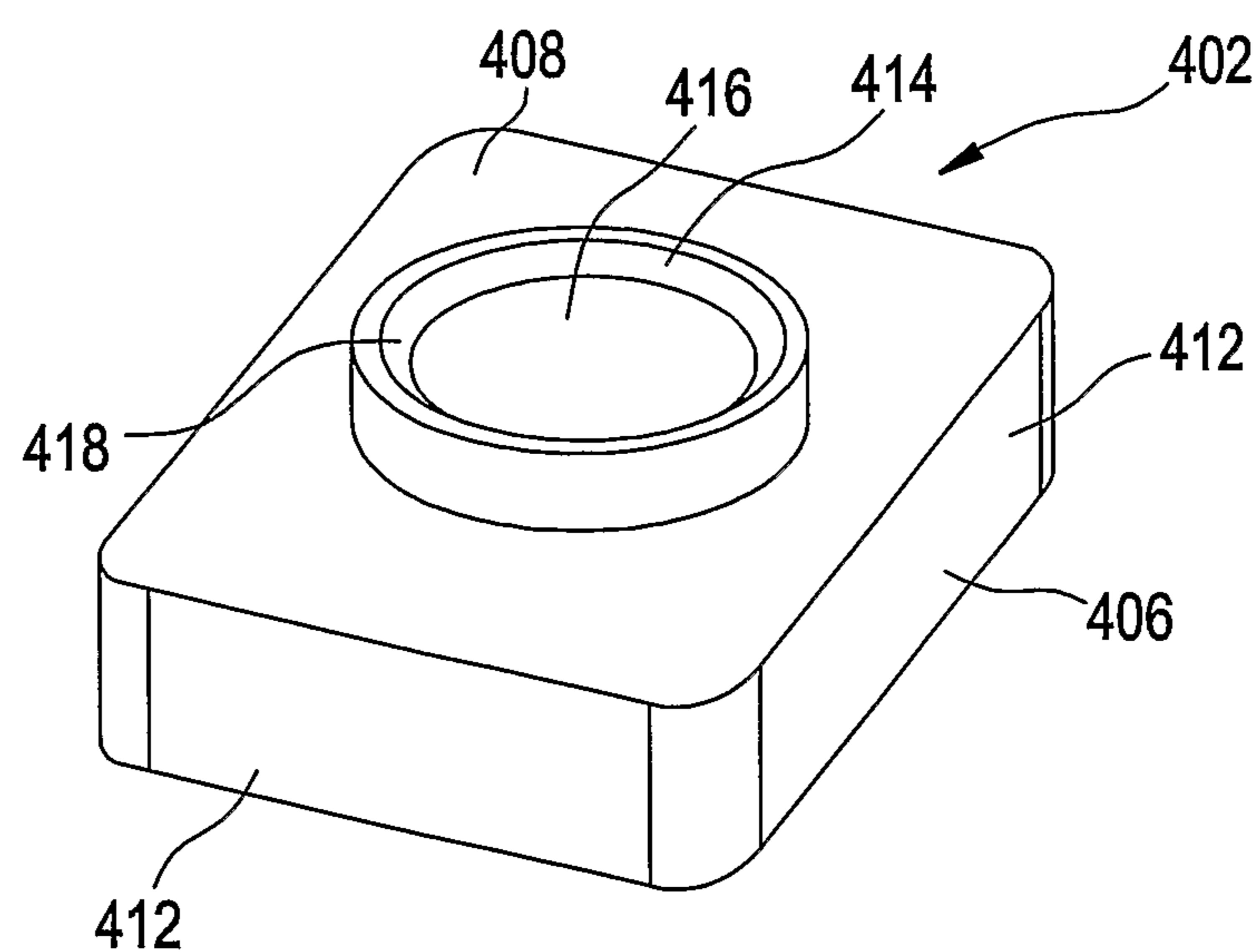



2/10

FIG. 4**FIG. 5****FIG. 6**

3/10

FIG. 7**FIG. 8****FIG. 9**

4/10

FIG. 10**FIG. 11****FIG. 12**

5/10

FIG. 13

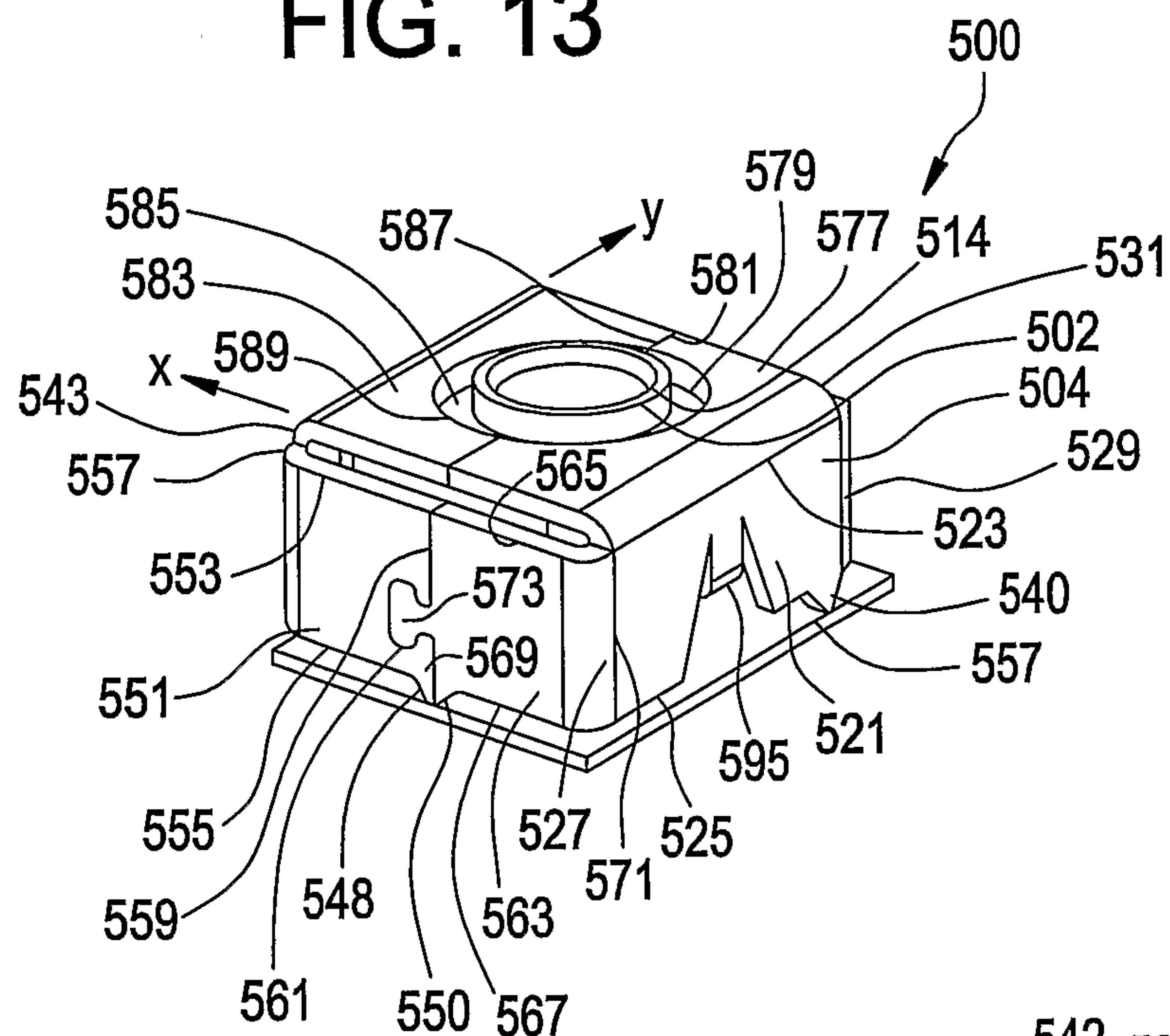
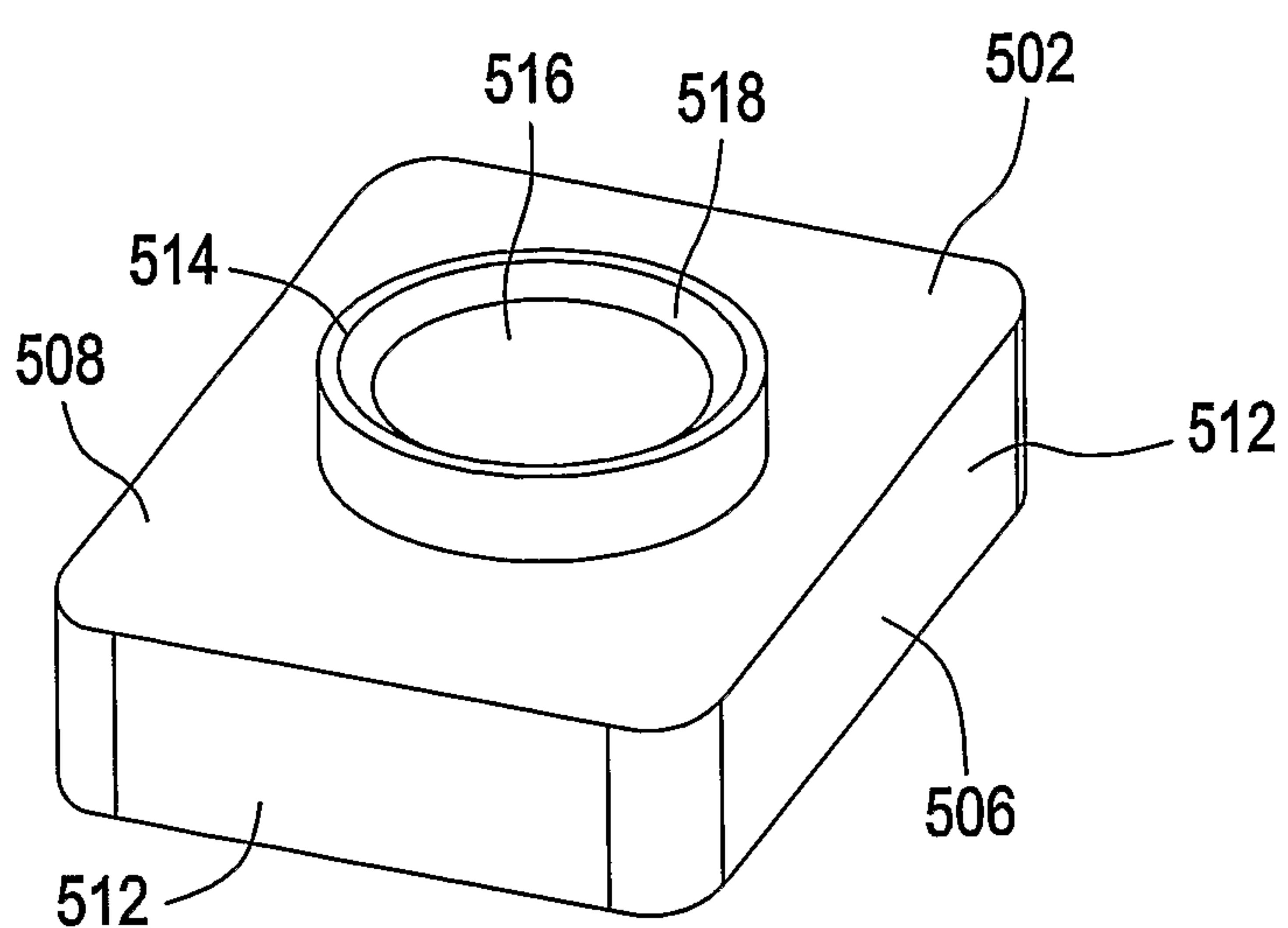
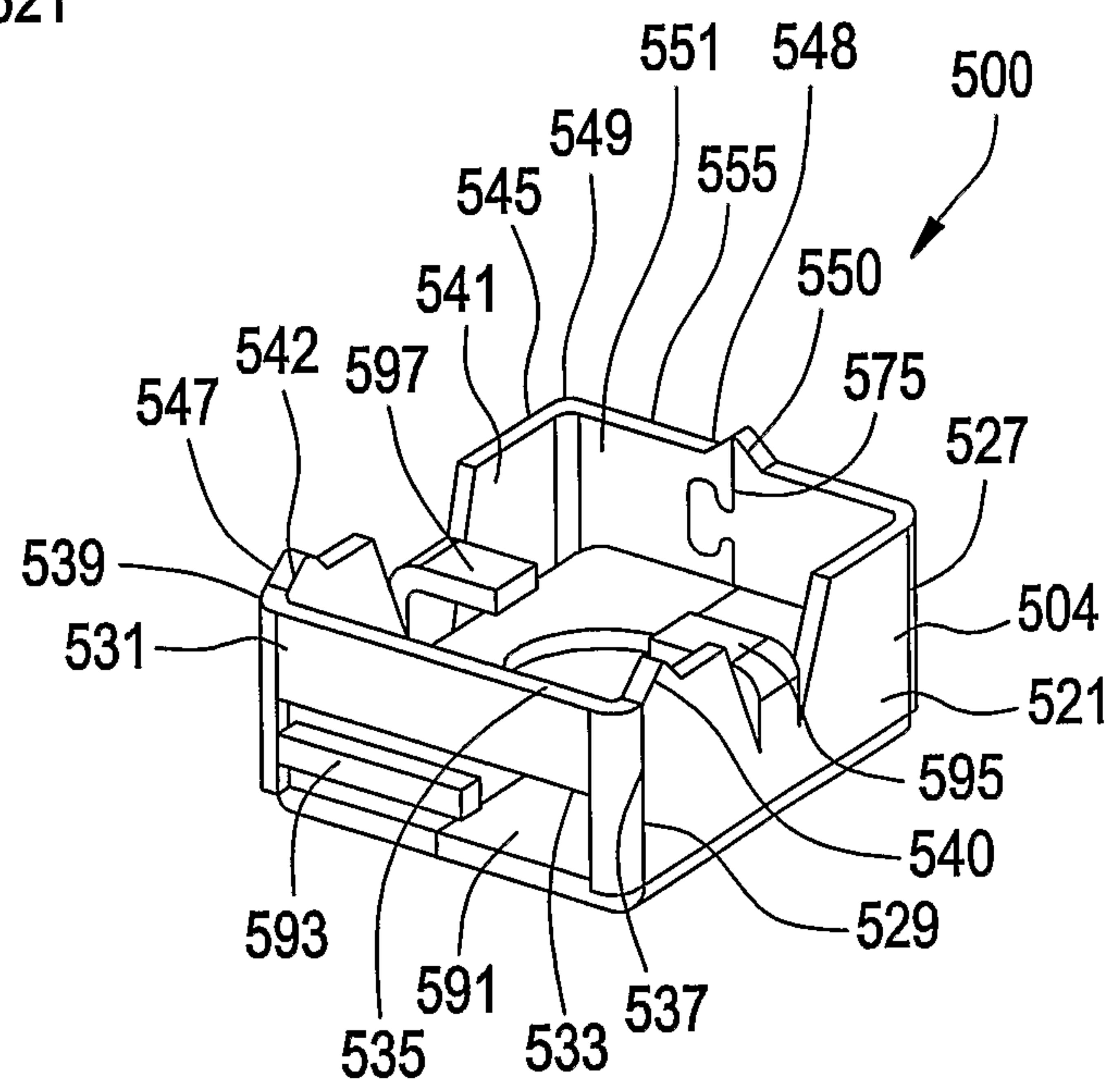




FIG. 14

6/10

FIG. 16

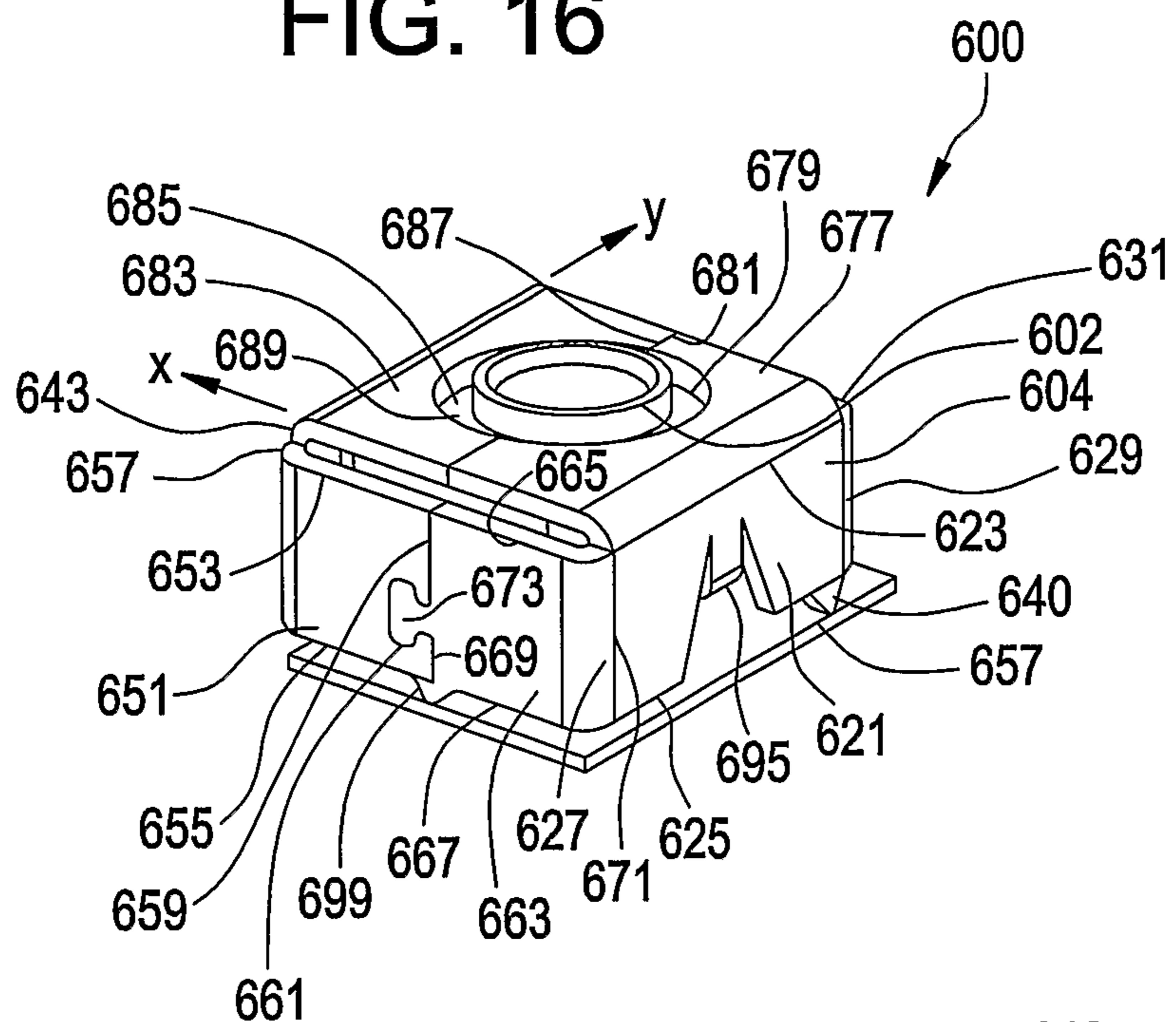
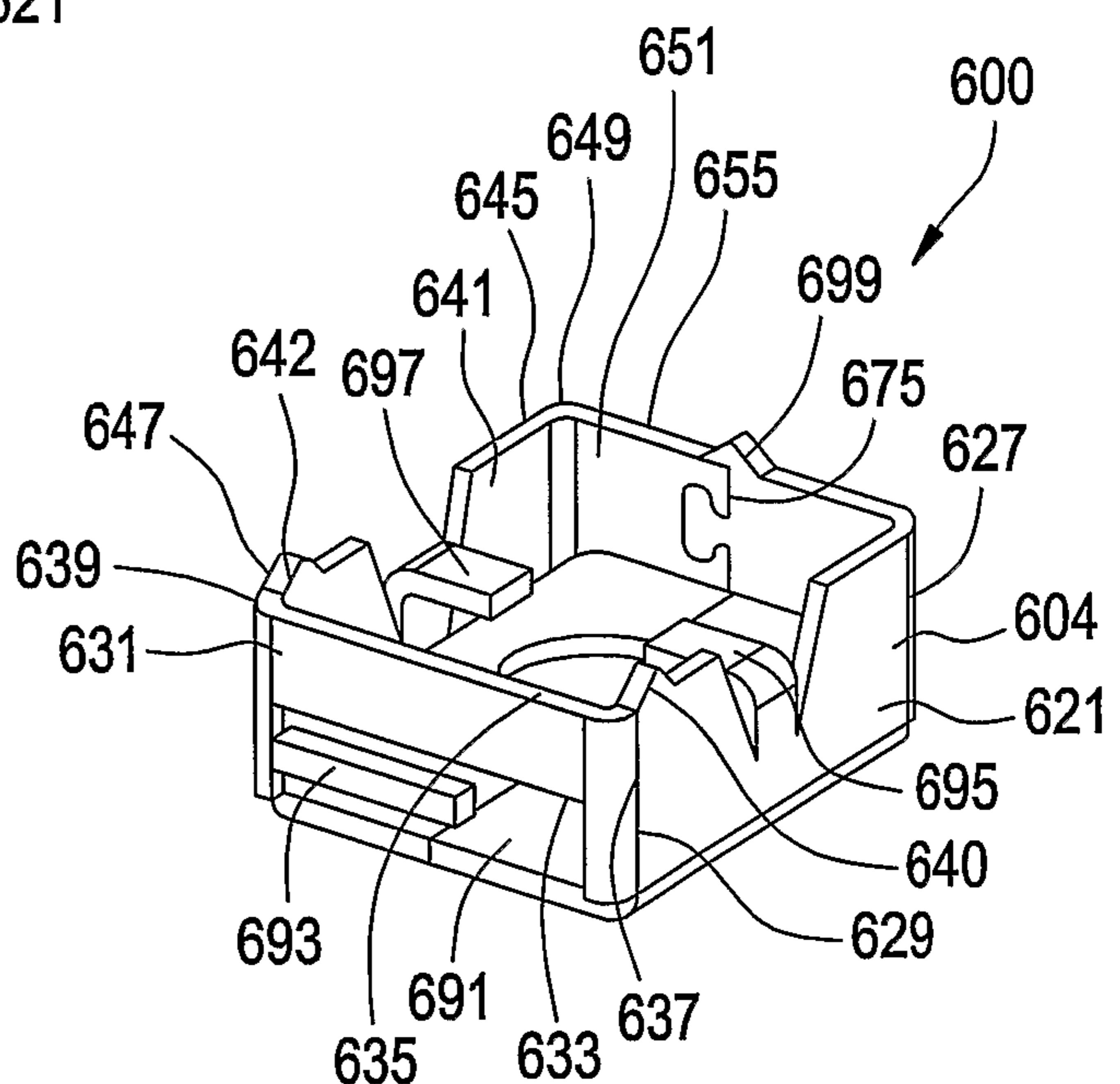



FIG. 17

FIG. 18

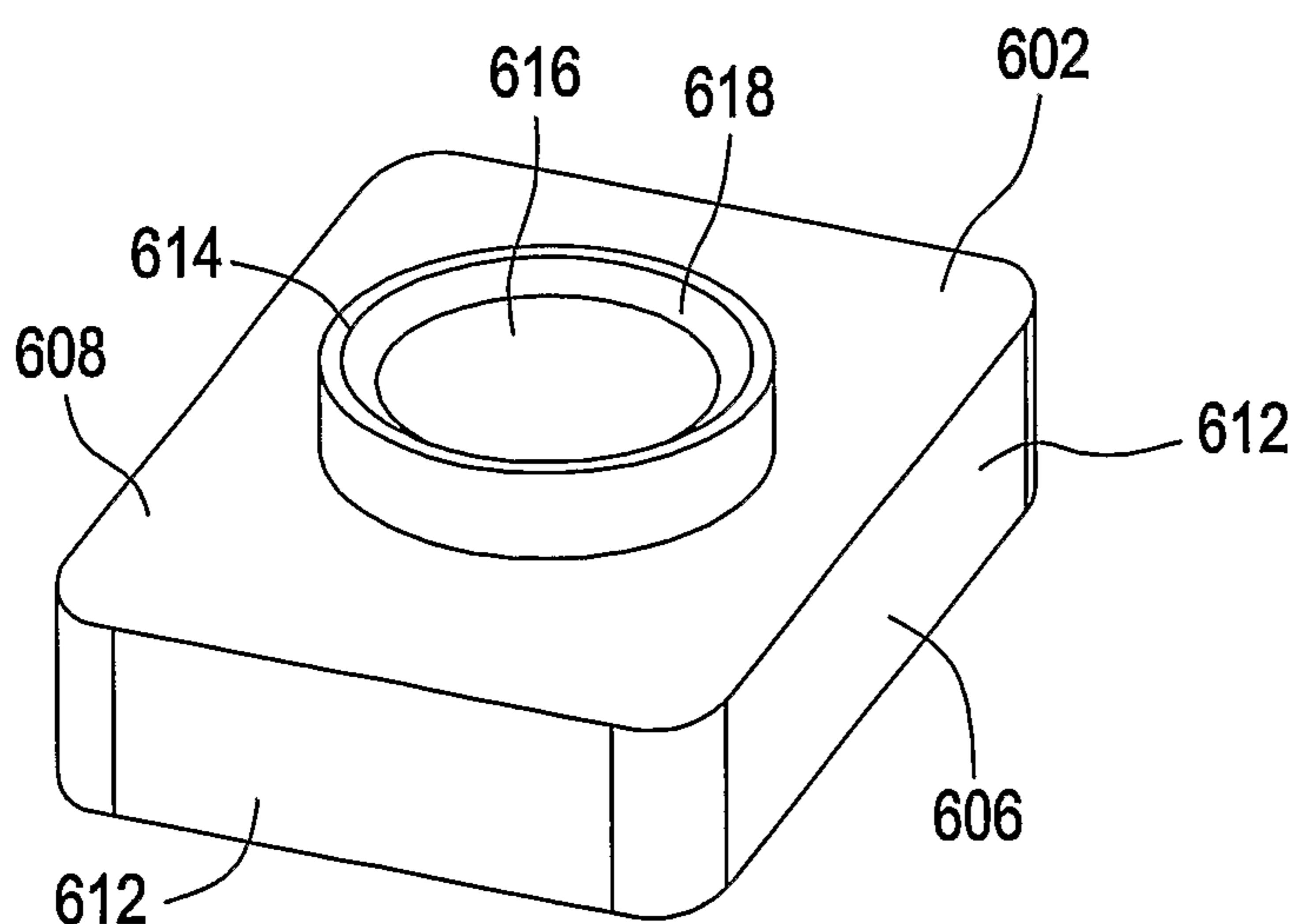
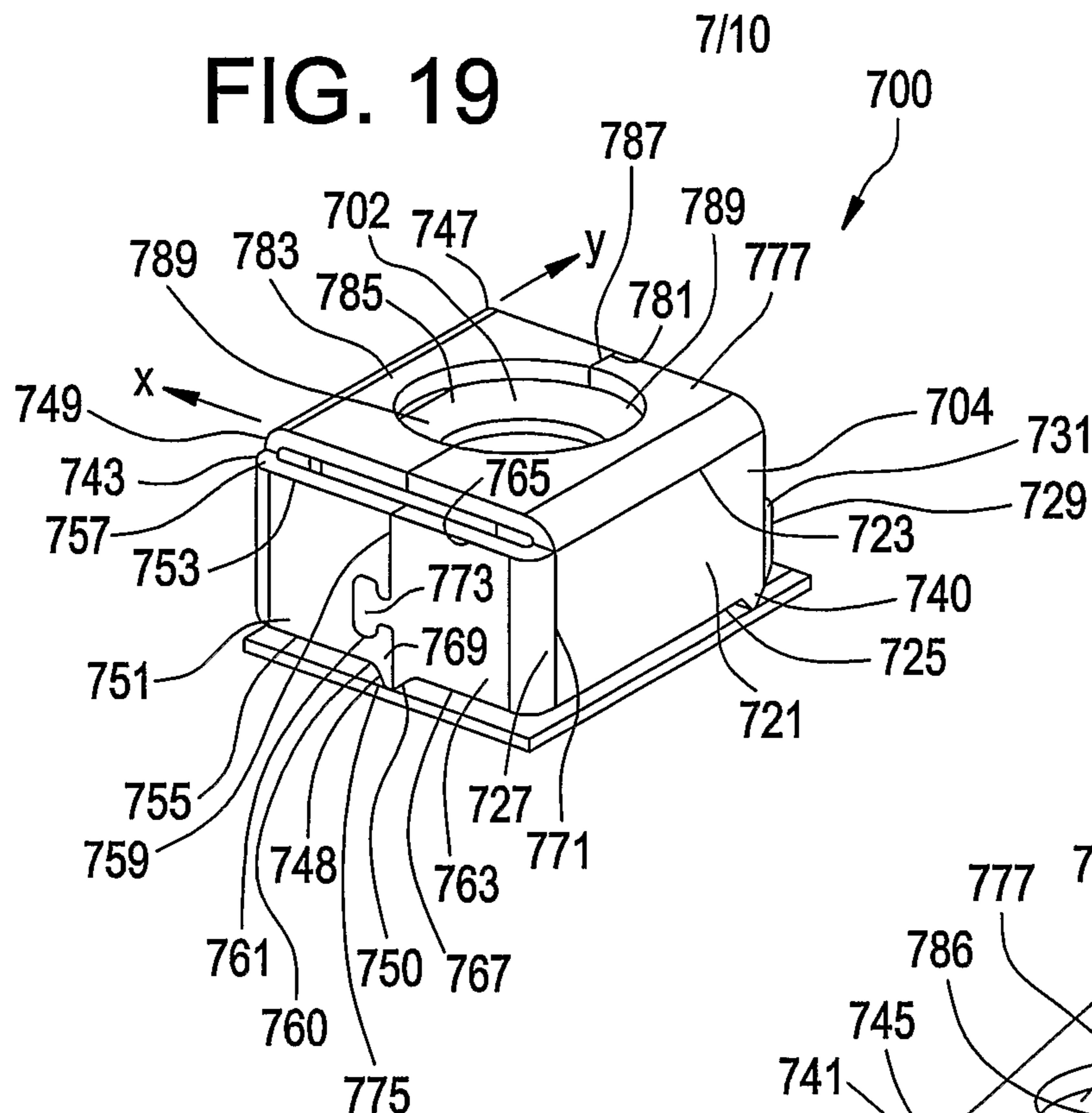
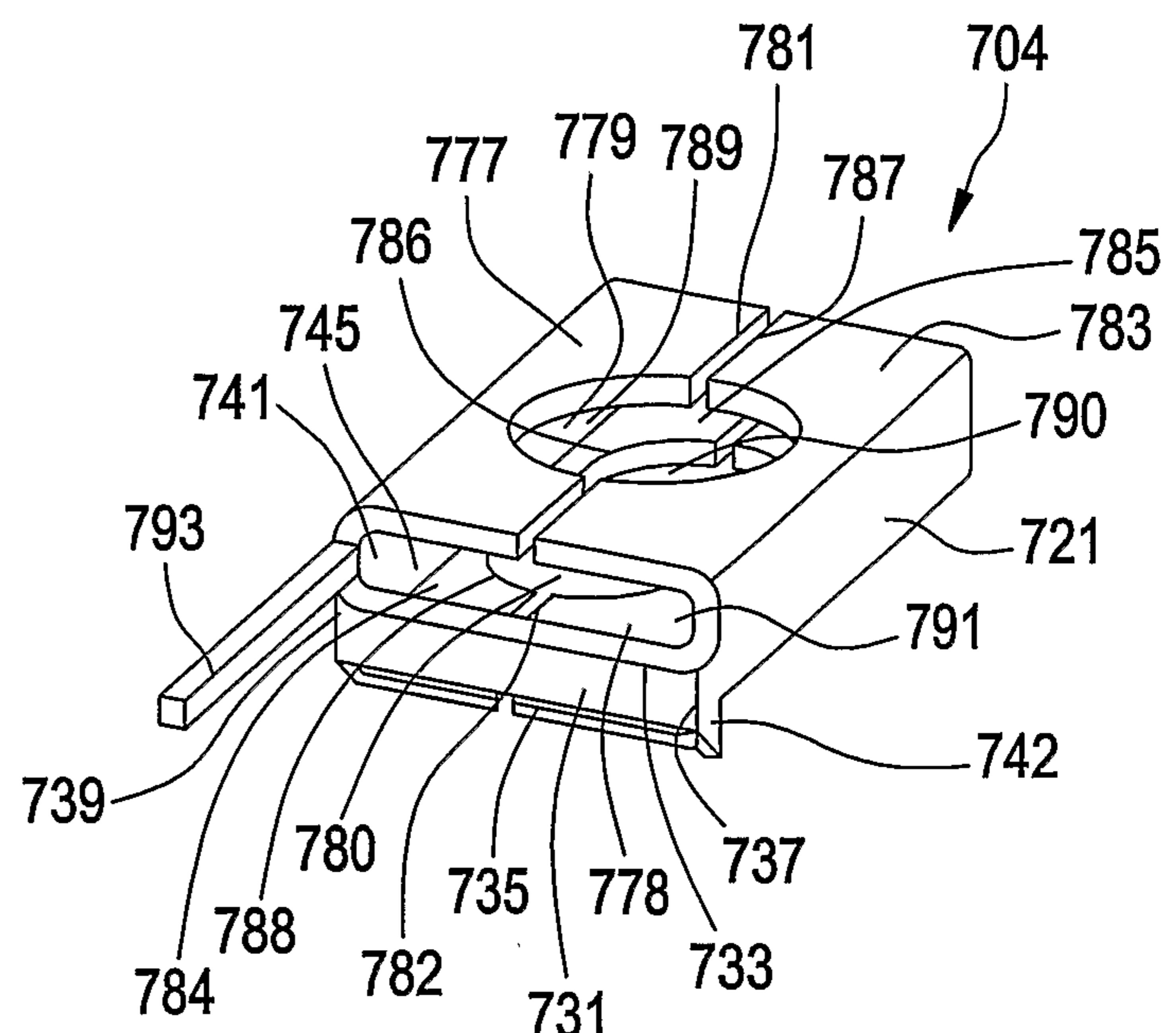
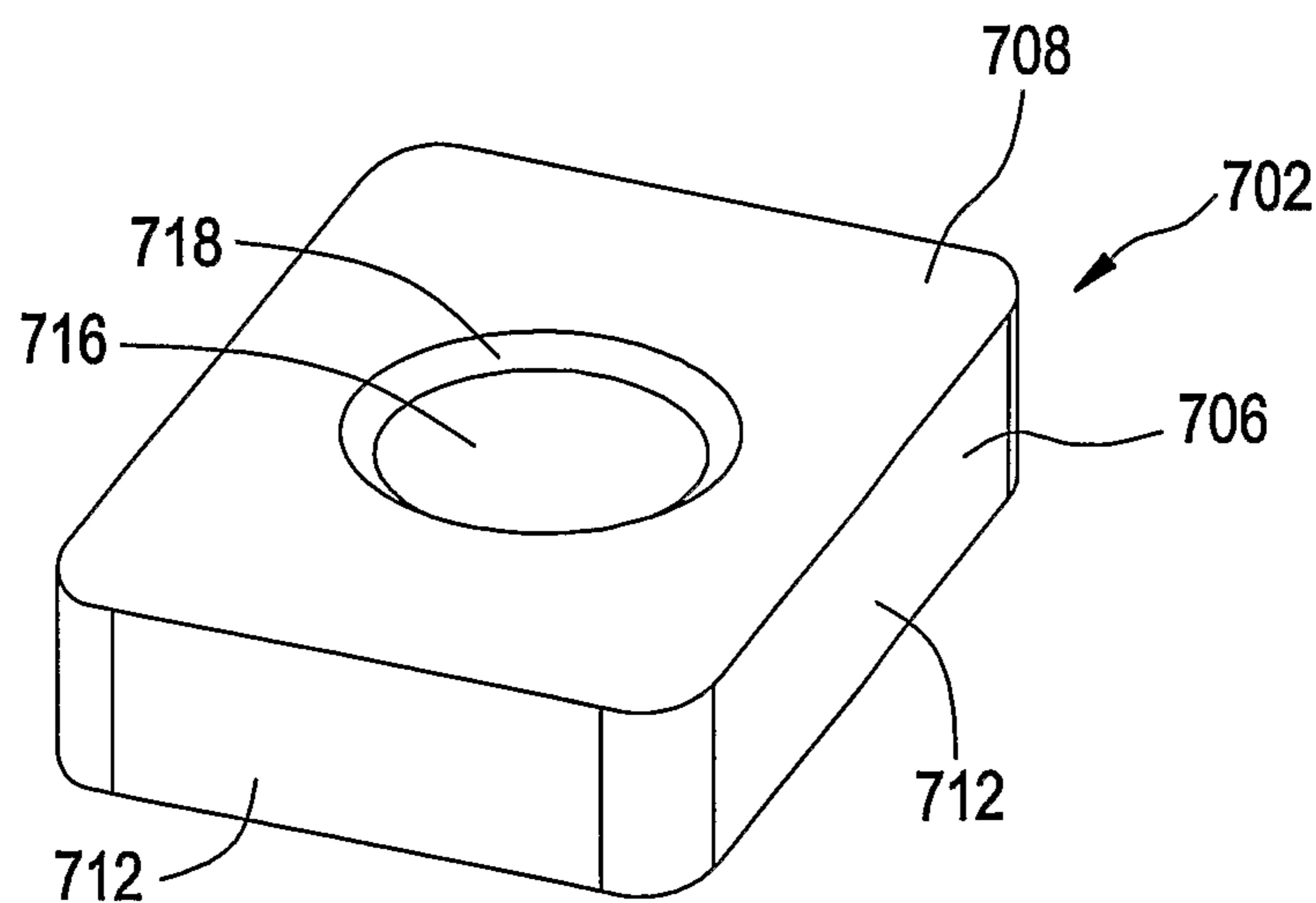
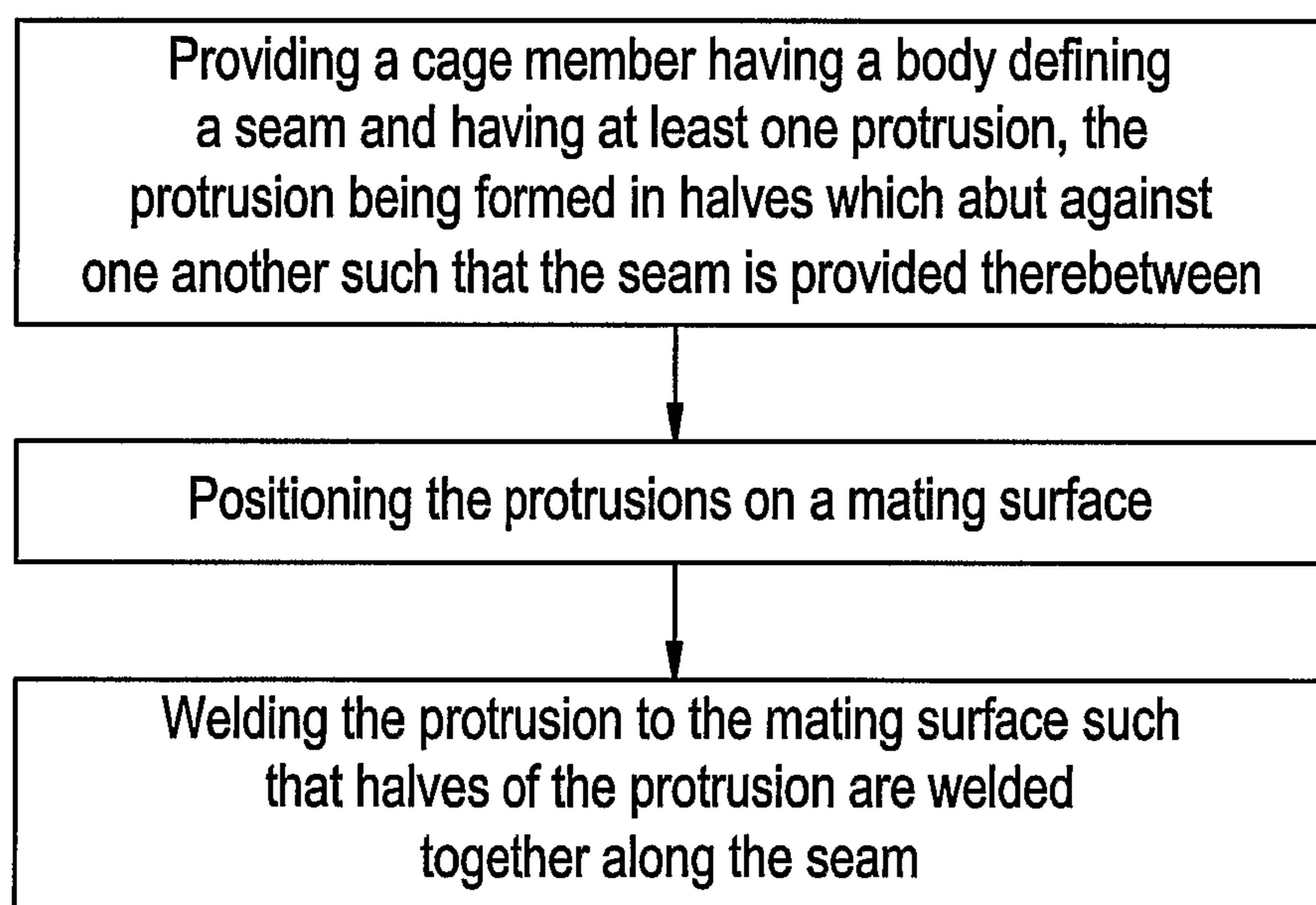


FIG. 19


FIG. 20

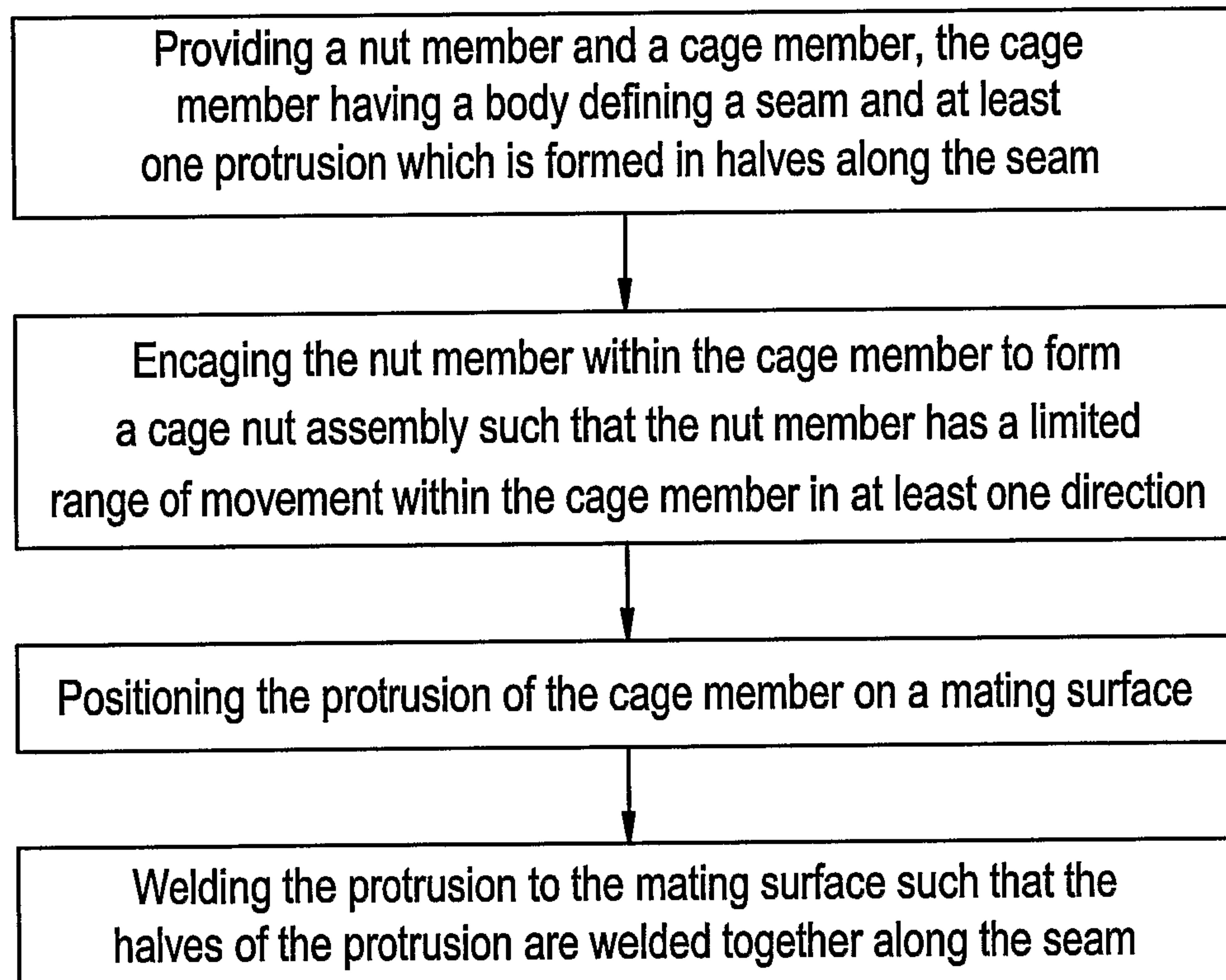
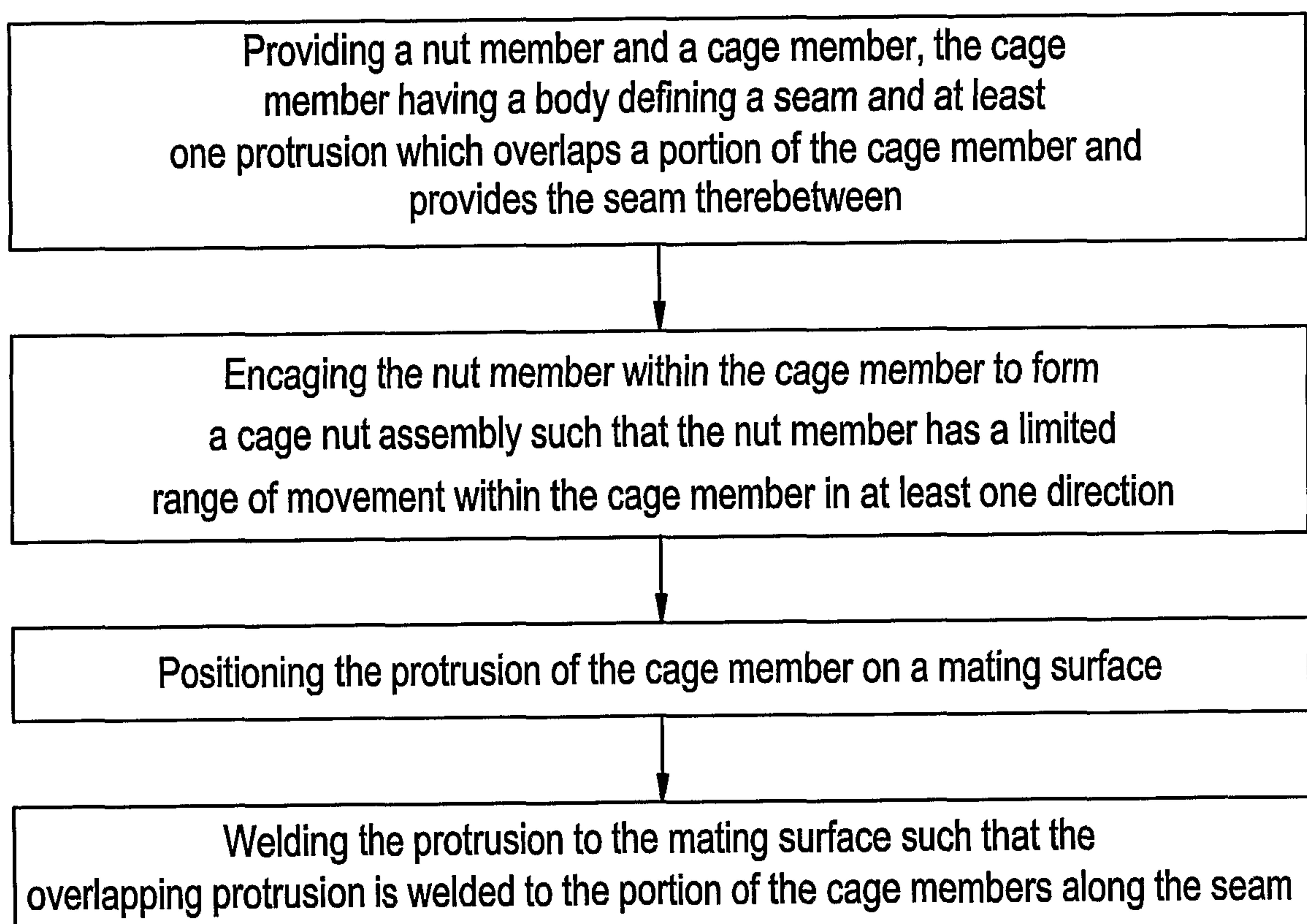
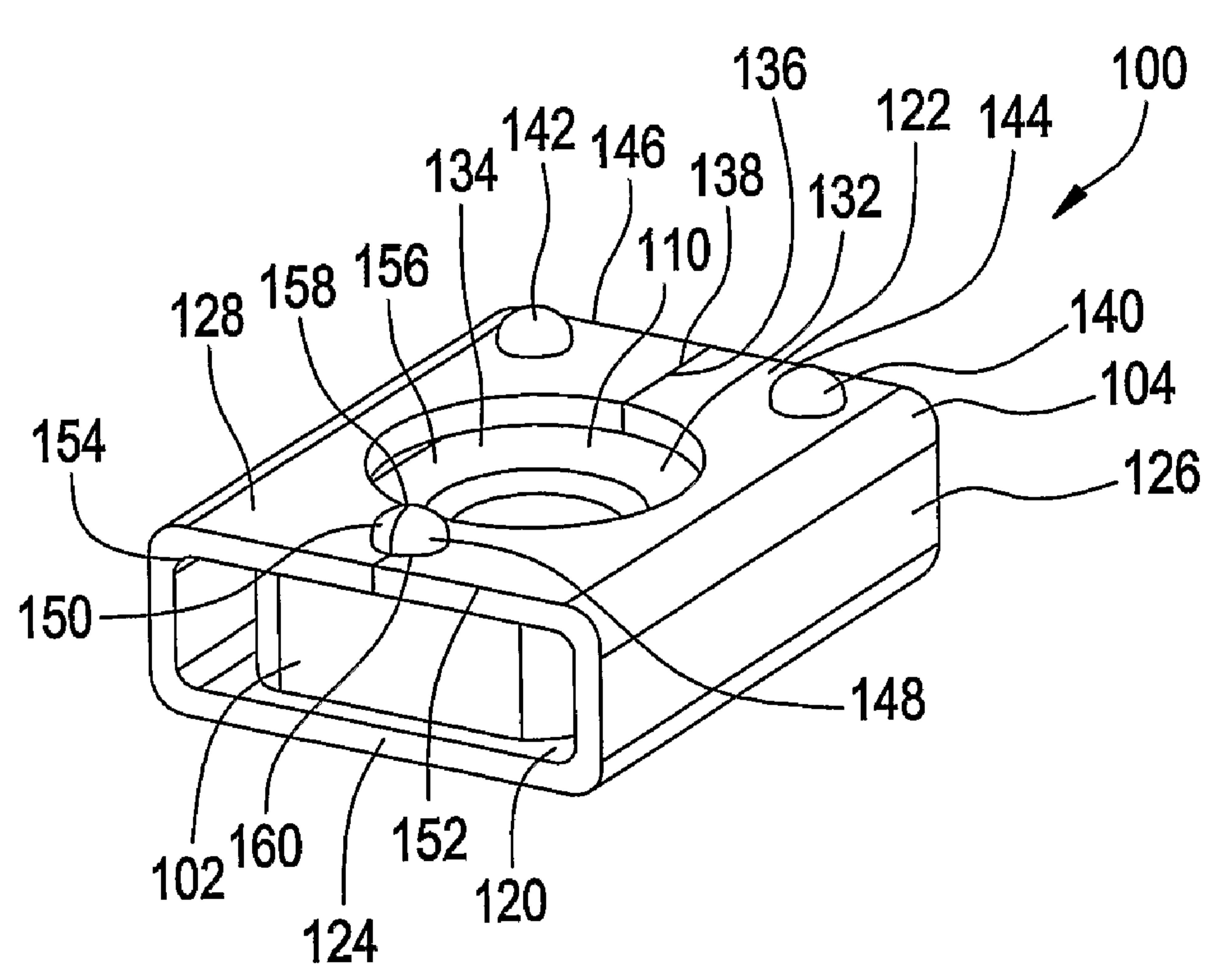

FIG. 21

FIG. 22




FIG. 23

10/10

FIG. 24

