发明名称
一种促进鱼类肝脏健康的饲料添加剂

摘要
本发明公开一种促进鱼类肝脏健康的饲料添加剂，按质量百分数100％计，由以下组分组成：胆汁酸15～20％，牛磺酸10～15％，β-葡萄糖10～15％，甘露寡糖8～12％，L-肉碱5～8％，胆碱6～10％，其余为填充物。本发明的促进鱼类肝脏健康的饲料添加剂的添加量为饲料总质量的0.1～0.2％。本发明能够减少脂肪在鱼类肝脏中的积累，提高鱼类肝脏转运脂肪的能力，减轻肝脏代谢负担，改善鱼体健康状况和促进生长。本发明的使用不需要对饲料配方做出特殊的调整，降低了饲料生产过程中的人力物力成本。本发明的原料主要从动物组织和啤酒酵母中制取，来源稳定，并且具有天然环保、安全无毒的特点。
1. 一种促进鱼类肝脏健康的饲料添加剂，其特征在于，按质量百分数 100% 计，由以下组分组成：胆汁酸 15～20%，牛磺酸 10～15%，β - 葡聚糖 10～15%，甘露寡糖 8～12%，L - 肉碱 5～8%，胆碱 6～10%，其余为填充物。

2. 根据权利要求 1 所述的促进鱼类肝脏健康的饲料添加剂，其特征在于，所述的填充物为糠粉。

3. 根据权利要求 1 所述的促进鱼类肝脏健康的饲料添加剂，其特征在于，所述的鱼类为罗非鱼、乌鳢、加州鲈、草鱼。

4. 根据权利要求 1 所述的促进鱼类肝脏健康的饲料添加剂，其特征在于，按质量百分数 100% 计，由以下组分组成：胆汁酸 18%，牛磺酸 12%，β - 葡聚糖 12%，甘露寡糖 10%，L - 肉碱 8%，胆碱 8%，填充物 32%。

5. 根据权利要求 1 所述的促进鱼类肝脏健康的饲料添加剂，其特征在于，按质量百分数 100% 计，由以下组分组成：胆汁酸 15%，牛磺酸 10%，β - 葡聚糖 10%，甘露寡糖 8%，L - 肉碱 8%，胆碱 6%，填充物 43%。

6. 根据权利要求 1 所述的促进鱼类肝脏健康的饲料添加剂，其特征在于，按质量百分数 100% 计，由以下组分组成：胆汁酸 20%，牛磺酸 15%，β - 葡聚糖 15%，甘露寡糖 12%，L - 肉碱 5%，胆碱 10%，填充物 23%。
一种促进鱼类肝脏健康的饲料添加剂

技术领域：
[0001] 本发明涉及一种饲料添加剂，具体涉及一种促进鱼类肝脏健康的饲料添加剂。

背景技术：
[0002] 我国是水产养殖大国，水产养殖量常年位居全球第一，2012年以水产养殖产量即已占到全球产量的70%，2013年我国水产饲料产量达到1900万吨，约占全球产量的50%。但是随着高密度养殖模式主导的水产养殖业的快速发展，养殖鱼类疾病暴发的频率和规模也日渐上升，给养殖业的进一步发展造成了严重的影响。究其原因，主要是鱼粉等优质饲料原料的缺乏和价格高企导致其它廉价植物性饲料原料如豆粕、菜粕、花生麸、棉粕等的使用范围和用量不断增大，从而导致饲料营养不平衡性破坏，抗营养因子含量增加，饲料消化吸收效率下降以及损伤肠道和肝脏健康等问题，这些都对养殖鱼类的生长、健康和养殖水域的生态环境带来了严重的后果。

[0003] 肝脏是鱼类最重要的代谢器官之一，肝脏的健康直接影响到整个鱼体的生长和健康，目前业内对养殖鱼类的肝脏健康相当重视。文献报道了某些营养素或降脂因子对鱼类肝脏脂肪代谢的影响（杜震宇等，2002；张海涛等，2004），并对肝脏脂肪代谢机理进行了研究探讨。王华等公开了一种预防鱼脂肪肝的复合添加剂（ZL200810028597.5），王卓等公开了一种能够改善海水鱼脂肪肝及体色的配合饲料及制备方法（ZL201110152285.7），张瑞等公开了一种防治淡水养殖鱼类营养性肝脏综合症的中草药饲料添加剂（ZL201110161326.9），但是这些公开的相关专利主要是从营养处方或中草药添加剂出发，在实际使用过程中需要对饲料配方作出很大的调整，而中草药添加剂由于成分复杂，难以对其中的有效成分进行定性和定量分析，这些因素都给实际推广使用带来很大难度。

发明内容：
[0004] 本发明的目的是提供一种能够促进养殖鱼类肝脏健康，减少肝脏脂肪沉积和其它肝脏病变，并且能够广泛应用于各类水产养殖鱼类的饲料添加剂。本发明的促进鱼类肝脏健康的饲料添加剂是一种简单、功能性成分和含量清晰并且易于广泛推广使用的功能性饲料添加剂。

[0005] 本发明的促进鱼类肝脏健康的饲料添加剂，其特征在于，按质量百分数100%计，由以下组分组成：胆汁酸15～20%，牛磺酸10～15%，β-葡聚糖10～15%，甘露寡糖8～12%，L-肉碱5～8%，胆碱6～10%，其余为填充物。

[0006] 所述的胆汁酸从动物胆汁中制取，具体制备方法参考文献（陆进等，猪去氧胆酸提取工艺研究，2004年），所述的β-葡聚糖和甘露寡糖从啤酒酵母细胞壁中提取，具体提取方法参考文献（段胜林等，采用催化白溶和生物破壁技术提取啤酒酵母细胞壁多糖，2012年）。

[0007] 所述的填充物，优选为粮粉。
本发明中使用的牛磺酸、L-肉碱、胆碱和糖粉及甘露醇为公知的常用物质，均可从市场购得。

本发明的一种促进鱼类肝脏健康的饲料添加剂的制备方法为：将胆汁酸、牛磺酸、β-甘露糖、甘露寡糖、胆碱和糖粉按质量百分比充分混合并干燥制成粉状物，即得到促进鱼类肝脏健康的饲料添加剂。

本发明的促进鱼类肝脏健康的饲料添加剂是这样使用的：在饲料制粒时，添加本发明的饲料添加剂，其添加量为饲料总质量的0.1～0.2%。

本发明首次使用牛磺酸、牛磺酸与酵母免疫多糖（β-甘露糖和甘露寡糖）、维生素类似物（L-肉碱和胆碱）等进行合理配伍，能够有效改善鱼类肝脏代谢功能，促进脂肪转运出肝细胞，加快鱼体对脂肪的代谢速率，并增强肝脏解毒功能，预防和修复肝损伤等。对使用配合饲料饲喂鱼体过程中的出现的肝肿、白肝、肝炎，肝脏坏死等病状均能起到很好的防治作用。

本发明针对使用配合饲料饲喂养殖鱼类过程中出现的肝脏脂肪沉积、肝脏病变等问题，制备出一种功能性饲料添加剂，其有效成分为胆汁酸、牛磺酸、β-甘露糖、L-肉碱和胆碱等生物活性物质。胆汁酸和牛磺酸能够增加脂质和胆固醇的溶解性，有效地改善动物对脂肪、脂溶性维生素及胆固醇的吸收利用；β-甘露糖和甘露寡糖能够维护动物肠道健康，吸附细菌和病毒并使其加快排泄体外，增强鱼类免疫功能，促进动物生长并提高饲料利用率；L-肉碱和胆碱促进肌肉中的脂质进入线粒体氧化分解，促进肝脏中的脂肪以磷脂形式由肝脏通过血液转运出去，从而防止脂肪在肝细胞中的沉积。

本发明的促进鱼类肝脏健康的饲料添加剂的主要功能性成分胆汁酸来源于动物组织，β-甘露糖和甘露寡糖来源于酵母酵母细胞壁，均属于天然物质，使用过程安全、无毒的特点。

本发明的促进鱼类肝脏健康的饲料添加剂所涉及的成分均能进行定量分析，其推广使用更好科学可靠，制取工艺和使用过程简单。

经过罗非鱼、乌鳢、加州鲈、草鱼等养殖鱼类长期养殖试验说明，本发明提供的促进鱼类肝脏健康的饲料添加剂能够有效减少鱼体肝脏中的脂肪沉积量，改善肝脏健康，减少脂肪肝发病率，降低血液中脂肪含量，同时能增强鱼类免疫功能和机体抗氧化能力，并有效促进鱼体生长，提高饲料利用率。

本发明的促进鱼类肝脏健康的饲料添加剂的促生长效果优于文献报道的单一胆汁酸产品（谭永刚等，2008）和单一牛磺酸产品（罗莉等，2006），降低肝脏和血液脂肪含量以及维护肝脏健康的效果优于单一胆碱产品（黄等，2007）和单一牛磺酸产品（骆艺等，2013）。

本发明具有以下技术效果：(1) 减少脂肪在鱼类肝脏中的积累，提高鱼类肝脏转运脂肪的能力，减轻肝脏代谢负担，改善鱼体健康状况和促进生长；(2) 本产品为粉末，其在饲料中的添加量为0.1～0.2%，制造和添加过程均十分便捷；(3) 与通过调整饲料原料来促进鱼体健康和生长相比，本产品的使用不需要对饲料大配方做出特别的调整，降低了饲料生产过程中的人力和物力成本；(4) 该饲料添加剂原料主要从动物组织和啤酒酵母中制取，来源稳定，并且具有天然环保、安全无毒的特点。
附属说明：
[0018] 图 1 是鱼体肝脏解剖图，其中，A 是对照组肝脏，B 是实验组肝脏；
[0019] 图 2 是鱼体肝脏组织切片图，其中，A 是对照组肝脏，B 是实验组肝脏。

具体实施方式：
[0020] 以下实施例是对本发明的进一步说明，而不是对本发明的限制。
[0021] 实施例 1：
[0022] 按质量百分数 100% 计，分别取胆汁酸 15%，牛磺酸 10%，β-葡聚糖 10%，甘露
 糖 8%，L- 肉碱 8%，胆碱 6%，糖粉 43% 充分混合并干燥制成粉状物，即得到促进鱼类肝
 脏健康的饲料添加剂；
[0023] 选取初始体重为 245.56±1.34g/ 尾的罗非鱼进行为期 2 个月的网箱养殖实验，
 实验组投喂添加了本实施例所制备的饲料添加剂的饲料，添加量为普通商业饲料质量的
 0.2%，对照组投喂普通商业饲料。实验未测定实验鱼增重率、饲料系数、肝体比和肝脏脂
 肪含量，并对血清中的丙二醛、胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白和谷丙转
 氨酶的含量和活力进行取样检测。结果见表 1。
[0024] 表 1. 对照组与实验组各指标测定结果
[0025]
<table>
<thead>
<tr>
<th>指标名称</th>
<th>对照组</th>
<th>实验组</th>
<th>实验组相比对照组的升降变化</th>
</tr>
</thead>
<tbody>
<tr>
<td>增重率（%）</td>
<td>77.48±4.95b</td>
<td>83.68±2.24b</td>
<td>8.00%</td>
</tr>
<tr>
<td>饲料系数</td>
<td>1.54±0.09b</td>
<td>1.43±0.04a</td>
<td>-7.14%</td>
</tr>
<tr>
<td>肝脏脂肪含量（%干重）</td>
<td>29.87±1.35b</td>
<td>23.02±0.47a</td>
<td>-22.93%</td>
</tr>
<tr>
<td>丙二醛（mmol/l）</td>
<td>11.22±8.55b</td>
<td>7.16±0.97a</td>
<td>-36.19%</td>
</tr>
<tr>
<td>胆固醇（mmol/l）</td>
<td>4.38±0.20</td>
<td>4.30±0.35</td>
<td>-1.83%</td>
</tr>
<tr>
<td>甘油三酯（mmol/l）</td>
<td>4.27±0.78</td>
<td>3.77±1.43</td>
<td>-11.71%</td>
</tr>
<tr>
<td>高密度脂蛋白（mmol/l）</td>
<td>0.50±0.06</td>
<td>0.42±0.06</td>
<td>-16.00%</td>
</tr>
<tr>
<td>低密度脂蛋白（mmol/l）</td>
<td>0.29±0.08</td>
<td>0.28±0.10</td>
<td>-3.45%</td>
</tr>
<tr>
<td>谷丙转氨酶（U/l）</td>
<td>539.15±146.30</td>
<td>357.86±85.13</td>
<td>-33.63%</td>
</tr>
</tbody>
</table>

[0026] 结果表明，本实施例制备的饲料添加剂按 0.2% 质量比添加到饲料中，能显著提
高罗非鱼增重率，显著降低饲料系数，显著降低肝脏脂肪含量和血清中丙二醛含量，并有
效降低血清中胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白和谷丙转氨酶的含量和活
性，对罗非鱼肝脏健康起到了很好的预防作用。
[0027] 实施例 2：
[0028] 按质量百分数 100% 计，分别取胆汁酸 20%，牛磺酸 15%，β- 葡聚糖 15%，甘露
 糖 12%，L- 肉碱 5%，胆碱 10%，糖粉 23% 充分混合并干燥制成粉状物，即得到促进鱼类
肝脏健康的饲料添加剂

[0029] 选育体重158.94±1.63g、重尾的乌鳢进行为期3个月的网箱养殖实验。实验组投喂添加了本发明实施例二所述的添加剂，添加量为普通商业饲料质量和的0.1%，对照组投喂普通商业饲料。实验未测定实验鱼增重率，饲料系数、肝体比、脏体比和肥满度，并对血清中的丙二醛、胆固醇甘油三酯、高密度脂蛋白、低密度脂蛋白含量以及谷丙转氨酶和超氧化物歧化酶活力进行取样检测。结果见表2。

[0030] 表2 对照组与实验组各指标测定结果

<table>
<thead>
<tr>
<th></th>
<th>对照组</th>
<th>实验组</th>
<th>实验组相比对照组的升降变化</th>
</tr>
</thead>
<tbody>
<tr>
<td>增重率（%）</td>
<td>162.62±11.95a</td>
<td>181.66±11.30a</td>
<td>11.71%</td>
</tr>
<tr>
<td>饲料系数</td>
<td>1.19±0.01b</td>
<td>1.11±0.03x</td>
<td>-6.72%</td>
</tr>
<tr>
<td>肌肉脂肪含量（%干重）</td>
<td>10.88±0.88b</td>
<td>8.37±0.46a</td>
<td>-23.07%</td>
</tr>
<tr>
<td>肥满度</td>
<td>1.67±0.17</td>
<td>1.61±0.13</td>
<td>-3.59%</td>
</tr>
<tr>
<td>甘油三酯（mmol/l）</td>
<td>1.23±0.24</td>
<td>1.09±0.08</td>
<td>-11.38%</td>
</tr>
<tr>
<td>谷丙转氨酶（U/L）</td>
<td>76.50±6.44b</td>
<td>50.56±3.26a</td>
<td>-33.91%</td>
</tr>
<tr>
<td>丙二醛（mmol/l）</td>
<td>8.22±2.39</td>
<td>7.90±0.85</td>
<td>-3.89%</td>
</tr>
<tr>
<td>超氧化物歧化酶（U/ml）</td>
<td>62.13±3.24a</td>
<td>79.05±7.68b</td>
<td>27.23%</td>
</tr>
</tbody>
</table>

[0032] 结果表明，本实施例制备的饲料添加剂按0.1%质量比添加到饲料中，显著提高了乌鳢的增重率，显著降低了饲料系数、肌肉脂肪含量和血清谷丙转氨酶的活性，同时肥满度和血清中甘油三酯、丙二醛的含量有所降低，此外血清中超氧化物歧化酶活性显著升高，说明本发明所述添加剂使乌鳢对氧自由基损伤的抵抗性增强，促进了鱼体肝脏的健康。

[0033] 实施例3

[0034] 按质量百分数100%计，分别取胆汁酸10%，牛磺酸12%，β- 葡聚糖12%，甘露糖10%，L- 肌酸8%，胆碱8%，糖粉32%充分混合并干燥制成粉状物，即得到促进鱼类肝脏健康的饲料添加剂。

[0035] 在加州鲈普通商业饲料中添加本实施例制备的饲料添加剂0.15%，进行为期7个月的池塘养殖实验，即从鱼苗一直饲养到达到上市规格的成鱼，对照组投喂普通商业饲料。分别对实验组和对照组鱼体进行解剖并观察期肝脏健康状况，结果如图1所示。从图1可以明显看出，对照组肝脏颜色变浅，呈现出典型的花肝和白肝等肝脏病变症状，实验组肝脏鲜红色，外表平滑有光泽，为健康的肝脏。

[0036] 分别对实验组和对照组鱼体肝脏组织进行切片染色和显微镜检，结果如图2所示。从图2可以看出，对照组肝脏切片中肝细胞溶解、细胞边界模糊、细胞核边缘化现象，且观察到了明显的肝脏空泡细胞和脂肪滴，实验组肝脏切片中，肝细胞边界明显，细胞核位于细胞中央，细胞形态正常，无脂肪滴。
图 1