THREE-PHASE VACUUM SWITCH

Jo Emmett Jennings, San Jose, Calif., assignor to Jennings Radio Manufacturing Corporation, San Jose, Calif., a corporation of California

Application January 3, 1956, Serial No. 556,943
9 Claims. (Cl. 200—144)

My invention relates to vacuum switches having multiple contacts enclosed within a vacuumized envelope and adaptable for separate or simultaneous operation.

One of the objects of my invention is the provision of a 3-phase switch in which the three pairs of contact points are arranged within a single vacuumized chamber.

Another object is the provision of a multiple contact vacuum switch of such rugged construction as to be highly resistant to physical injury from external forces.

Another object is the provision of a multiple-contact vacuum switch in which each fixed contact rod is concentrically supported in a ceramic tube which constitutes part of the switch housing and also a shield for the deposit and controlled dispersal of vaporized metal emanating from the contact spots.

Another object of my invention is the provision of a vacuum switch structure in which the degassing temperature may be substantially raised with corresponding benefits in improvement of the vacuum.

Another object of my invention is the provision in a vacuum switch of an improved housing structure and shield for the contact rods.

Still another object of the invention is the provision of a vacuum switch in which the ratio of contact area to the inside area of the envelope is very small so that a long operating life is assured.

Other objects of the invention together with the foregoing will be set forth in the following description of my invention. I do not limit myself to the showing made by the said description as I may adopt variant embodiments of my invention within the scope of the appended claims.

Referring to the drawings:

Fig. 1 is a vertical sectional view of a 3-phase vacuum switch embodying my invention. The plane of section is indicated by the line 1—1 of Fig. 2.

Fig. 2 is an end view of my switch taken from the position indicated by the numeral 2 in Fig. 1.

Fig. 3 is a fragmentary view of the left hand end of a switch such as shown in Fig. 1, but with a dielectric connection between the movable contacts to enable their simultaneous operation.

In broad terms my vacuum switch comprises a generally cylindrical metal housing designed to withstand the high pressure of substantially complete evacuation; and having a plurality of pairs of aligned and oppositely disposed ceramic tubes extending from inside the main housing through its circular ends. Each tube terminates in a hermetically closed or sealed end cap; and each is also fixedly mounted in and hermetically sealed to the circular housing wall through which it extends. Within the main housing, the aligned ends of each pair of tubes are spaced apart, the gap being nearer to one end of the main housing than to the other. In each pair of aligned housing tubes, a mated pair of fixed and movable contact rods are concentrically supported on the end caps of the housing tubes; and operating means is provided to close and open a circuit through each mated pair at a point spaced equally from the main housing end walls and to one side of the gap between the aligned tubes, so that one of the tubes of each pair forms a cylindrical shield about the contact points. The gap permits dispersal of vaporized metal from the contact points into the large chamber within the main housing.

In the operation of my switch metal is vaporized at the contact points. The metallic deposit from this vapor within the tubular shield is mainly adjacent its open end and is negligible adjacent its capped end. Vapor emerging from the open end of the shield is directed by a baffle against the metallic wall of the main housing and any deposit thereon is innocuous. There is therefore no build-up of a metallic conducting film within the vacuumized chamber of my switch, and which could cause shorting and failure.

In the embodiment of my invention shown herein, three pairs of aligned contact rods are shown. One rod of each pair is fixed within the envelope or housing and the other is spaced 120° apart. Means are provided for movably mounting one of the contact rods of each pair and these movable contact rods may be connected if desired for simultaneous operation to close or open all circuits through my switch at the same time.

This mounting of a plurality of switches within a single vacuumized housing effects an important saving in space and weight over separate mounting of the switches, besides giving a more rugged structure at lower costs. It also simplifies assembly and speeds the labor of making connections.

By the use of stainless steel in the housing and the elimination of glass, the bake-out temperature can be considerably increased, perhaps as much as 400° to 500° F. Since degassing of metals is a function of time and temperature, I am able to achieve a higher degree of degassing and cleaner internal parts by using a temperature of about 1250° F.

My multiple pole switch design increases the amount of evacuated area to several times the area found in an evacuated single pole switch, thus materially increasing the life expectancy of the implement. The ratio of contact area of the contact points to the inside area of the envelope subject to deposit of metal is very small.

Where safety is a paramount factor in the switching of heavy currents, my design lends itself readily to connections with lead shielded high potential conductors by means of the conventional wiped joint connections and insulation.

In greater detail and with specific reference to the embodiment in the drawings, my switch comprises a cylindrical metallic main housing formed of two like parts 2 and 3, in the opposite circular ends 4 and 5 of which are seal-mounted three pairs of aligned or mated dielectric tubes 7 and 8, preferably ceramic. The two conductive cup-shaped main housing parts are identical and are welded at their rims to the annular mounting flange 9, by which the switch is mounted in its supporting panel. The housing is preferably stainless steel or nickel and ribs 11 are formed in the ends to provide stiffening against atmospheric pressure which follows evacuation of the housing achieved through tubulation 12.

The tubes 7 and 8 are aligned in pairs spaced equally around each end of the housing; and are seal-mounted in the housing ends over openings therein, by vacuum tight seals, comprising in each case a copper or nickel metal annulus 13 of C-shaped radial section, integrally united, as by brazing, on one rim 14 to the metallized annular bead 15 formed integrally on the ceramic tube, and on the other rim 16 integrally united to the adjacent surface of the housing end. This union permits small relative changes between the parts due to their different coefficients of expansion. Thus each ceramic tube ex-
tends through and is sealed in the end wall of the main housing, and terminates within the housing, but with a gap 17 between the inner ends of each mated pair. One of the tubes 8 extends further into the main housing than its aligned mate 7, and is therefore longer, so that the gap between the inner ends of the aligned tubes lies well to one side of the central plane between the main housing ends.

The outer end of each tube 8 is closed hermetically by a copper closure plate or end cap 18, sealed to the tube by the copper or nickel annulus 19. The free end of each ceramic tube 7 is closed hermetically by a copper closure plate or end cap 21, sealed to the tube by the ceramic or copper annulus 22. Each ceramic tube provides a dielectric extension of the conductive main housing, the vacuumized chamber extending throughout the whole housing including the tubes. It will be noted that in addition to the inherent mechanical rigidity imparted to the structure by the integral union of the seal 33, evacuation of the hollow space of the ceramic tube 7, and the additional rigidity to the mounting of the tubes, reduction of pressure within the housing results in the tubes being pressed inwardly by atmospheric pressure. This considerable inward pressure is carried by the annular bead 15 tightly abutting the inherently strong and rigid ends 4 and 5 of the main housing. The seals 33 are subjected to undue mechanical stresses, and long life is assured.

Means are provided for moving the mobile contact point 26, of tungsten, into and out of engagement with the fixed contact point 27. The means for moving the mobile contact into and out of engagement with the fixed point include a contact rod rigidly fixed on said closure plate and extending concentrically through the tube into the housing, a second closure plate hermetically closing the free end of each of said tubes, a contact rod rigidly fixed on said closure plate and extending concentrically through the tube into the housing, a second closure plate hermetically closing the free end of the second tube and including a slide bearing concentric with the tube, a bellows enclosing the inner end of the bearing and hermetically sealed to the second closure plate, an actuating shaft slidably extending through the bearing and rigidly fixed at its inner end to the bellows, and a second contact rod rigidly fixed on the end of the bellows and extending concentrically through said second tube into the housing.

A vacuum switch as specified in claim 1 in which a shield plate is disposed on the second contact rod between its contact end and the edge of the associated dielectric tube.

A vacuum switch as specified in claim 1 in which the vacuumized conductive housing is a hollow steel cylinder closed by parallel end plates, and three said pairs of aligned dielectric tube assemblies are evenly spaced circumferentially on the housing ends.

A vacuum switch as specified in claim 1 in which the conductive housing comprises a pair of like cylindrical steel cups integratedly united at their rims to a common annealed annulus constituting a mounting flange.

A vacuum switch as specified in claim 1 in which the proportions of the parts are such that the contact points lie substantially equidistant from the ends of the housing.

A vacuum switch as specified in claim 1 in which the end of each dielectric tube opposite its free end extends into the housing.

A vacuum switch as specified in claim 3 in which a dielectric disk rigidly connects the three slidable shafts for simultaneous operation of the three movable contacts.

A vacuum switch comprising a vacuumized conductive housing, a pair of aligned dielectric tubes disposed on opposite ends of the housing and hermetically sealed thereto, a closure plate hermetically closing the free end of one of said tubes, a contact rod rigidly fixed on said closure plate and extending concentrically through the tube into the housing, a second closure plate hermetically closing the free end of the second tube and including a slide bearing concentric with the tube, a bellows enclosing the inner end of the bearing and hermetically sealed to the second closure plate, an actuating shaft slidably extending through the bearing and rigidly fixed at its inner end to the bellows, and a second contact rod rigidly fixed on the end of the bellows and extending concentrically through said second tube into the housing, at least one of said dielectric tubes extending into...
the housing past the end of the enclosed contact rod to form a shield therearound.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,972,362</td>
<td>Sorensen</td>
<td>Sept. 4, 1934</td>
</tr>
<tr>
<td>2,181,586</td>
<td>Perrymen et al.</td>
<td>Nov. 28, 1939</td>
</tr>
<tr>
<td>2,443,545</td>
<td>Schwennesen</td>
<td>June 15, 1948</td>
</tr>
<tr>
<td>2,557,928</td>
<td>Atkinson</td>
<td>June 26, 1951</td>
</tr>
<tr>
<td>2,740,867</td>
<td>Jennings</td>
<td>Apr. 3, 1956</td>
</tr>
<tr>
<td>2,906,841</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Mar. 3, 1941</td>
</tr>
<tr>
<td>France</td>
<td>Nov. 17, 1941</td>
</tr>
</tbody>
</table>