

US 20130237585A1

(19) **United States**

(12) **Patent Application Publication**
Bennett et al.

(10) **Pub. No.: US 2013/0237585 A1**
(43) **Pub. Date: Sep. 12, 2013**

(54) **MODULATION OF DYSTROPHIA
MYOTONICA-PROTEIN KINASE (DMPK)
EXPRESSION**

(75) Inventors: **C. Frank Bennett**, Carlsbad, CA (US);
Susan M. Freier, San Diego, CA (US);
Robert A. MacLeod, San Diego, CA
(US); **Sanjay K. Pandey**, Encinitas, CA
(US); **Charles A. Thornton**, Rochester,
NY (US); **Thurman Wheeler**,
Rochester, NY (US); **Seng H. Cheng**,
Natick, MA (US); **Andrew Leger**,
Boston, MA (US); **Bruce M.
Wentworth**, Northborough, MA (US)

(73) Assignees: **UNIVERSITY OF ROCHESTER**,
Rochester, NY (US); **ISIS
PHARMACEUTICALS, INC.**,
Carlsbad, CA (US)

(21) Appl. No.: **13/811,181**

(22) PCT Filed: **Jul. 19, 2011**

(86) PCT No.: **PCT/US11/44555**

§ 371 (c)(1),
(2), (4) Date: **May 15, 2013**

Related U.S. Application Data

(60) Provisional application No. 61/365,762, filed on Jul.
19, 2010, provisional application No. 61/365,775,
filed on Jul. 19, 2010, provisional application No.
61/478,021, filed on Apr. 21, 2011.

Publication Classification

(51) **Int. Cl.**
C12N 15/113 (2006.01)

(52) **U.S. Cl.**
CPC *C12N 15/1137* (2013.01)
USPC **514/44 A**; 536/24.5

ABSTRACT

Provided herein are methods, compounds, and compositions
for reducing expression of a DMPK mRNA and protein in an
animal. Also provided herein are methods, compounds, and
compositions for preferentially reducing CUGexp DMPK
RNA, reducing myotonia or reducing spliceopathy in an animal.
Such methods, compounds, and compositions are useful
to treat, prevent, delay, or ameliorate type 1 myotonic dystro-
phy, or a symptom thereof.

**MODULATION OF DYSTROPHIA
MYOTONICA-PROTEIN KINASE (DMPK)
EXPRESSION**

SEQUENCE LISTING

[0001] The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled BIOL0134USL2SEQ.txt created Jul. 19, 2011, which is approximately 216 Mb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.

FIELD

[0002] Provided herein are methods, compounds, and compositions for reducing expression of DMPK mRNA and protein in an animal. Also, provided herein are methods, compounds, and compositions comprising a DMPK inhibitor for preferentially reducing CUGexp DMPK RNA, reducing myotonia, or reducing spliceopathy in an animal. Such methods, compounds, and compositions are useful, for example, to treat, prevent, or ameliorate type 1 myotonic dystrophy (DM1) in an animal.

BACKGROUND

[0003] Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults with an estimated frequency of 1 in 7,500 (Harper P S., *Myotonic Dystrophy*. London: W.B. Saunders Company; 2001). DM1 is an autosomal dominant disorder caused by expansion of a non-coding CTG repeat in DMPK1. DMPK1 is a gene encoding a cytosolic serine/threonine kinase (Brook J D, et al., *Cell.*, 1992, 68(4):799-808). The physiologic functions and substrates of this kinase have not been fully determined. The expanded CTG repeat is located in the 3' untranslated region (UTR) of DMPK1. This mutation leads to RNA dominance, a process in which expression of RNA containing an expanded CUG repeat (CUGexp) induces cell dysfunction (Osborne R J and Thornton C A., *Human Molecular Genetics.*, 2006, 15(2): R162-R169).

[0004] The DMPK gene normally has 5-37 CTG repeats in the 3' untranslated region. In myotonic dystrophy type I, this number is significantly expanded and is, for example, in the range of 50 to greater than 3,500 (Harper, *Myotonic Dystrophy* (Saunders, London, ed. 3, 2001); Arum. *Rev. Neurosci.* 29: 259, 2006; *EMBO J.* 19: 4439, 2000; *Curr Opin Neurol.* 20: 572, 2007).

[0005] The CUGexp tract interacts with RNA binding proteins including muscleblind-like (MBNL) protein, a splicing factor, and causes the mutant transcript to be retained in nuclear foci. The toxicity of this RNA stems from sequestration of RNA binding proteins and activation of signaling pathways. Studies in animal models have shown that phenotypes of DM1 can be reversed if toxicity of CUGexp RNA is reduced (Wheeler T M, et al., *Science.*, 2009, 325(5938):336-339; Mulders S A, et al., *Proc Natl Acad Sci USA.*, 2009, 106(33):13915-13920).

[0006] In DM1, skeletal muscle is the most severely affected tissue, but the disease also has important effects on cardiac and smooth muscle, ocular lens, and brain. The cranial, distal limb, and diaphragm muscles are preferentially affected. Manual dexterity is compromised early, which causes several decades of severe disability. The median age at

death is 55 years, usually from respiratory failure (de Die-Smulders C E, et al., *Brain.*, 1998, 121(Pt 8):1557-1563).

[0007] Antisense technology is emerging as an effective means for modulating expression of certain gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of DMPK1. Intramuscular injection of fully modified oligonucleotides targeting with the CAG-repeat were shown in mice to block formation of CUGexp-MBNL1 complexes, disperse nuclear foci of CUGexp transcripts, enhance the nucleocytoplasmic transport and translation of CUGexp transcripts, release MBNL proteins to the nucleoplasm, normalize alternative splicing of MBNL-dependent exons, and eliminate myotonia in CUGexp-expressing transgenic mice (Wheeler T M, et al., *Science.*, 2009, 325(5938): 336-339; WO2008/036406).

[0008] Presently there is no treatment that can modify the course of DM1. The burden of disease, therefore, is significant. It is, therefore, an object herein to provide compounds, compositions, and methods for treating DM1

SUMMARY

[0009] Provided herein are methods, compounds, and compositions for inhibiting expression of DMPK and treating, preventing, delaying or ameliorating a DMPK related disease and or a symptom thereof. In certain embodiments, the compounds and compositions inhibit mutant DMPK or CUGexp DMPK.

[0010] Certain embodiments provide a method of reducing DMPK expression in an animal comprising administering to the animal a compound comprising a modified oligonucleotide as further described herein targeted to DMPK.

[0011] Certain embodiments provide a method of preferentially reducing CUGexp DMPK, reducing myotonia, or reducing spliceopathy in an animal comprising administering to the animal a compound comprising a modified oligonucleotide, as further described herein, targeted to CUGexp DMPK. CUGexp DMPK transcripts are believed to be particularly sensitive to antisense knockdown via nuclear ribonucleases, because of their longer residence time in the nucleus, and this sensitivity is thought to permit effective antisense inhibition of CUGexp DMPK transcripts in relevant tissues such as muscle despite the biodistribution barriers to tissue uptake of antisense oligonucleotides. Antisense mechanisms that do not elicit cleavage via nuclear ribonucleases, such as the CAG-repeat ASOs described in, for example, Wheeler TM, et al., *Science.*, 2009, 325(5938):336-339 and WO2008/036406, do not provide the same therapeutic advantage.

[0012] Certain embodiments provide a method of treating an animal with type 1 myotonic dystrophy. In certain embodiments, the method includes administering to the animal a therapeutically effective amount of a compound comprising a modified oligonucleotide as further described herein targeted to DMPK. In certain embodiments, the method includes identifying an animal with type 1 myotonic dystrophy.

[0013] Certain embodiments provide a method of treating, preventing, delaying, or ameliorating symptoms and outcomes associated with development of DM1 including muscle stiffness, myotonia, disabling distal weakness, weakness in face and jaw muscles, difficulty in swallowing, drooping of the eyelids (ptosis), weakness of neck muscles, weakness in arm and leg muscles, persistent muscle pain, hypersomnia, muscle wasting, dysphagia, respiratory insuf-

ficiency, irregular heartbeat, heart muscle damage, apathy, insulin resistance, and cataracts. Certain embodiments provide a method of treating, preventing, delaying, or ameliorating symptoms and outcomes associated with development of DM1 in children, including, developmental delays, learning problems, language and speech issues, and personality development issues.

[0014] Certain embodiments provide a method of administering an antisense oligonucleotide to counteract RNA dominance by directing the cleavage of pathogenic transcripts.

[0015] In certain embodiments, the DMPK has a sequence as set forth in GenBank Accession No. NM_001081560.1 (incorporated herein as SEQ ID NO: 1). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NT_011109.15 truncated from nucleotides 18540696 to 18555106 (incorporated herein as SEQ ID NO: 2). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NT_039413.7 truncated from nucleotides 16666001 to 16681000 (incorporated herein as SEQ ID NO: 3). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NM_032418.1 (incorporated herein as SEQ ID NO: 4). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. AI007148.1 (incorporated herein as SEQ ID NO: 5). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. AI304033.1 (incorporated herein as SEQ ID NO: 6). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BC024150.1 (incorporated herein as SEQ ID NO: 7). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BC056615.1 (incorporated herein as SEQ ID NO: 8). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BC075715.1 (incorporated herein as SEQ ID NO: 793). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BU519245.1 (incorporated herein as SEQ ID NO: 794). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. CB247909.1 (incorporated herein as SEQ ID NO: 795). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. CX208906.1 (incorporated herein as SEQ ID NO: 796). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. CX732022.1 (incorporated herein as SEQ ID NO: 797). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. S60315.1 (incorporated herein as SEQ ID NO: 798). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. S60316.1 (incorporated herein as SEQ ID NO: 799). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NM_001081562.1 (incorporated herein as SEQ ID NO: 800). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NM_001100.3 (incorporated herein as SEQ ID NO: 801).

DETAILED DESCRIPTION

[0016] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Herein, the use of the singular includes the plural unless specifically stated otherwise. Herein, the use of "or" means "and/or" unless stated otherwise. Furthermore, the use of the term "including" as well as other forms, such as

"includes" and "included", is not limiting. Also, terms such as "element" or "component" encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise.

[0017] The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including, but not limited to, patents, patent applications, articles, books, and treatises, are hereby expressly incorporated-by-reference for the portions of the document discussed herein, as well as in their entirety.

DEFINITIONS

[0018] Unless specific definitions are provided, the nomenclature utilized in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques can be used for chemical synthesis, and chemical analysis. Where permitted, all patents, applications, published applications and other publications, GENBANK Accession Numbers and associated sequence information obtainable through databases such as National Center for Biotechnology Information (NCBI) and other data referred to throughout in the disclosure herein are incorporated by reference for the portions of the document discussed herein, as well as in their entirety.

[0019] Unless otherwise indicated, the following terms have the following meanings:

[0020] "2'-O-methoxyethyl" (also 2'-MOE and 2'-O(CH₂)₂-OCH₃) refers to an O-methoxy-ethyl modification of the 2' position of a furanosyl ring. A 2'-O-methoxyethyl modified sugar is a modified sugar.

[0021] "2'-O-methoxyethyl nucleotide" means a nucleotide comprising a 2'-O-methoxyethyl modified sugar moiety.

[0022] "5-methylcytosine" means a cytosine modified with a methyl group attached to position 5. A 5-methylcytosine is a modified nucleobase.

[0023] "About" means within $\pm 7\%$ of a value. For example, if it is stated, "the compound affected at least 70% inhibition of DMPK", it is implied that the DMPK levels are inhibited within a range of 63% and 77%.

[0024] "Active pharmaceutical agent" means the substance or substances in a pharmaceutical composition that provide a therapeutic benefit when administered to an individual. For example, in certain embodiments an antisense oligonucleotide targeted to DMPK is an active pharmaceutical agent.

[0025] "Active target region" or "target region" means a region to which one or more active antisense compounds is targeted. "Active antisense compounds" means antisense compounds that reduce target nucleic acid levels or protein levels.

[0026] "Administered concomitantly" refers to the co-administration of two agents in any manner in which the pharmacological effects of both are manifest in the patient at the same time. Concomitant administration does not require that both agents be administered in a single pharmaceutical composition, in the same dosage form, or by the same route of administration. The effects of both agents need not manifest themselves at the same time. The effects need only be overlapping for a period of time and need not be coextensive.

[0027] "Administering" means providing an agent to an animal, and includes, but is not limited to, administering by a medical professional and self-administering.

[0028] "Agent" means an active substance that can provide a therapeutic benefit when administered to an animal. "First Agent" means a therapeutic compound of the invention. For example, a first agent can be an antisense oligonucleotide targeting DMPK. "Second agent" means a second therapeutic compound of the invention (e.g. a second antisense oligonucleotide targeting DMPK) and/or a non-DMPK therapeutic compound.

[0029] "Amelioration" refers to a lessening of at least one indicator, sign, or symptom of an associated disease, disorder, or condition. The severity of indicators can be determined by subjective or objective measures, which are known to those skilled in the art.

[0030] "Animal" refers to a human or non-human animal, including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and non-human primates, including, but not limited to, monkeys and chimpanzees.

[0031] "Antisense activity" means any detectable or measurable activity attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid.

[0032] "Antisense compound" means an oligomeric compound that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding. Examples of antisense compounds include single-stranded and double-stranded compounds, such as, antisense oligonucleotides, siRNAs, shRNAs, snoRNAs, miRNAs, and satellite repeats.

[0033] "Antisense inhibition" means reduction of target nucleic acid levels or target protein levels in the presence of an antisense compound complementary to a target nucleic acid compared to target nucleic acid levels or target protein levels in the absence of the antisense compound.

[0034] "Antisense oligonucleotide" means a single-stranded oligonucleotide having a nucleobase sequence that permits hybridization to a corresponding region or segment of a target nucleic acid.

[0035] "Bicyclic sugar" means a furanose ring modified by the bridging of two non-geminal carbon ring atoms. A bicyclic sugar is a modified sugar.

[0036] "Bicyclic nucleic acid" or "BNA" refers to a nucleoside or nucleotide wherein the furanose portion of the nucleoside or nucleotide includes a bridge connecting two carbon atoms on the furanose ring, thereby forming a bicyclic ring system.

[0037] "Cap structure" or "terminal cap moiety" means chemical modifications, which have been incorporated at either terminus of an antisense compound.

[0038] "Chemically distinct region" refers to a region of an antisense compound that is in some way chemically different than another region of the same antisense compound. For example, a region having 2'-O-methoxyethyl nucleotides is chemically distinct from a region having nucleotides without 2'-O-methoxyethyl modifications.

[0039] "Chimeric antisense compound" means an antisense compound that has at least two chemically distinct regions.

[0040] "Co-administration" means administration of two or more agents to an individual. The two or more agents can be in a single pharmaceutical composition, or can be in sepa-

rate pharmaceutical compositions. Each of the two or more agents can be administered through the same or different routes of administration. Co-administration encompasses parallel or sequential administration.

[0041] "Complementarity" means the capacity for pairing between nucleobases of a first nucleic acid and a second nucleic acid.

[0042] "Contiguous nucleobases" means nucleobases immediately adjacent to each other.

[0043] "CUGexp DMPK" means mutant DMPK RNA containing an expanded CUG repeat (CUGexp). The wild-type DMPK gene has 5-37 CTG repeats in the 3' untranslated region. In a "CUGexp DMPK" (such as in a myotonic dystrophy type I patient) this number is significantly expanded and is, for example, in the range of 50 to greater than 3,500 (Harper, *Myotonic Dystrophy* (Saunders, London, ed. 3, 2001); *Annu. Rev. Neurosci.* 29: 259, 2006; *EMBO J.* 19: 4439, 2000; *Curr Opin Neurol.* 20: 572, 2007).

[0044] "Diluent" means an ingredient in a composition that lacks pharmacological activity, but is pharmaceutically necessary or desirable. For example, the diluent in an injected composition can be a liquid, e.g. saline solution.

[0045] "DMPK" means any nucleic acid or protein of DMPK. DMPK can be a mutant DMPK including CUGexp DMPK nucleic acid.

[0046] "DMPK expression" means the level of mRNA transcribed from the gene encoding DMPK or the level of protein translated from the mRNA. DMPK expression can be determined by art known methods such as a Northern or Western blot.

[0047] "DMPK nucleic acid" means any nucleic acid encoding DMPK. For example, in certain embodiments, a DMPK nucleic acid includes a DNA sequence encoding DMPK, an RNA sequence transcribed from DNA encoding DMPK (including genomic DNA comprising introns and exons), and an mRNA or pre-mRNA sequence encoding DMPK. "DMPK mRNA" means an mRNA encoding a DMPK protein.

[0048] "Dose" means a specified quantity of a pharmaceutical agent provided in a single administration, or in a specified time period. In certain embodiments, a dose can be administered in one, two, or more boluses, tablets, or injections. For example, in certain embodiments where subcutaneous administration is desired, the desired dose requires a volume not easily accommodated by a single injection, therefore, two or more injections can be used to achieve the desired dose. In certain embodiments, the pharmaceutical agent is administered by infusion over an extended period of time or continuously. Doses can be stated as the amount of pharmaceutical agent per hour, day, week, or month.

[0049] "Effective amount" or "therapeutically effective amount" means the amount of active pharmaceutical agent sufficient to effectuate a desired physiological outcome in an individual in need of the agent. The effective amount can vary among individuals depending on the health and physical condition of the individual to be treated, the taxonomic group of the individuals to be treated, the formulation of the composition, assessment of the individual's medical condition, and other relevant factors.

[0050] "Fully complementary" or "100% complementary" means each nucleobase of a nucleobase sequence of a first nucleic acid has a complementary nucleobase in a second nucleobase sequence of a second nucleic acid. In certain

embodiments, a first nucleic acid is an antisense compound and a target nucleic acid is a second nucleic acid.

[0051] "Gapmer" means a chimeric antisense compound in which an internal region having a plurality of nucleosides that support RNase H cleavage is positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions. The internal region can be referred to as a "gap segment" and the external regions can be referred to as "wing segments."

[0052] "Gap-widened" means a chimeric antisense compound having a gap segment of 12 or more contiguous 2'-deoxyribonucleosides positioned between and immediately adjacent to 5' and 3' wing segments having from one to six nucleosides.

[0053] "Hybridization" means the annealing of complementary nucleic acid molecules. In certain embodiments, complementary nucleic acid molecules include an antisense compound and a target nucleic acid.

[0054] "Identifying an animal with type 1 myotonic dystrophy" means identifying an animal having been diagnosed with a type 1 myotonic dystrophy, disorder or condition or identifying an animal predisposed to develop a type 1 myotonic dystrophy, disorder or condition. For example, individuals with a familial history can be predisposed to type 1 myotonic dystrophy, disorder or condition. Such identification can be accomplished by any method including evaluating an individual's medical history and standard clinical tests or assessments.

[0055] "Immediately adjacent" means there are no intervening elements between the immediately adjacent elements.

[0056] "Individual" means a human or non-human animal selected for treatment or therapy.

[0057] "Internucleoside linkage" refers to the chemical bond between nucleosides.

[0058] "Linked nucleosides" means adjacent nucleosides which are bonded or linked together by an internucleoside linkage.

[0059] "Mismatch" or "non-complementary nucleobase" refers to the case when a nucleobase of a first nucleic acid is not capable of pairing with the corresponding nucleobase of a second or target nucleic acid.

[0060] "Modified internucleoside linkage" refers to a substitution or any change from a naturally occurring internucleoside bond (i.e. a phosphodiester internucleoside bond).

[0061] "Modified nucleobase" refers to any nucleobase other than adenine, cytosine, guanine, thymidine, or uracil. An "unmodified nucleobase" means the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C), and uracil (U).

[0062] "Modified nucleotide" means a nucleotide having, independently, a modified sugar moiety, modified internucleoside linkage, or modified nucleobase. A "modified nucleoside" means a nucleoside having, independently, a modified sugar moiety or modified nucleobase.

[0063] "Modified oligonucleotide" means an oligonucleotide comprising at least one modified nucleotide.

[0064] "Modified sugar" refers to a substitution or change from a natural sugar.

[0065] "Motif" means the pattern of chemically distinct regions in an antisense compound.

[0066] "Myotonia" means an abnormally slow relaxation of a muscle after voluntary contraction or electrical stimulation.

[0067] "Nuclear ribonuclease" means a ribonuclease found in the nucleus. Nuclear ribonucleases include, but are not limited to, RNase H including RNase H1 and RNase H2, the double stranded RNase drosha and other double stranded RNases.

[0068] "Naturally occurring internucleoside linkage" means a 3' to 5' phosphodiester linkage.

[0069] "Natural sugar moiety" means a sugar found in DNA (2'-H) or RNA (2'-OH).

[0070] "Nucleic acid" refers to molecules composed of monomeric nucleotides. A nucleic acid includes ribonucleic acids (RNA), deoxyribonucleic acids (DNA), single-stranded nucleic acids, double-stranded nucleic acids, small interfering ribonucleic acids (siRNA), and microRNAs (miRNA). A nucleic acid can also comprise a combination of these elements in a single molecule.

[0071] "Nucleobase" means a heterocyclic moiety capable of pairing with a base of another nucleic acid.

[0072] "Nucleobase sequence" means the order of contiguous nucleobases independent of any sugar, linkage, or nucleobase modification.

[0073] "Nucleoside" means a nucleobase linked to a sugar.

[0074] "Nucleoside mimetic" includes those structures used to replace the sugar or the sugar and the base and not necessarily the linkage at one or more positions of an oligomeric compound such as for example nucleoside mimetics having morpholino, cyclohexenyl, cyclohexyl, tetrahydropyranyl, bicyclo or tricyclo sugar mimetics e.g. non furanose sugar units.

[0075] "Nucleotide" means a nucleoside having a phosphate group covalently linked to the sugar portion of the nucleoside.

[0076] "Nucleotide mimetic" includes those structures used to replace the nucleoside and the linkage at one or more positions of an oligomeric compound such as for example peptide nucleic acids or morpholinos (morpholinos linked by $-\text{N}(\text{H})-\text{C}(\text{=O})-\text{O}-$ or other non-phosphodiester linkage).

[0077] "Oligomeric compound" or "oligomer" means a polymer of linked monomeric subunits which is capable of hybridizing to at least a region of a nucleic acid molecule.

[0078] "Oligonucleotide" means a polymer of linked nucleosides each of which can be modified or unmodified, independent one from another.

[0079] "Parenteral administration" means administration through injection or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g. intrathecal or intracerebroventricular administration. Administration can be continuous, or chronic, or short or intermittent.

[0080] "Peptide" means a molecule formed by linking at least two amino acids by amide bonds. Peptide refers to polypeptides and proteins.

[0081] "Pharmaceutical composition" means a mixture of substances suitable for administering to an individual. For example, a pharmaceutical composition can comprise one or more active agents and a sterile aqueous solution.

[0082] "Pharmaceutically acceptable salts" means physiologically and pharmaceutically acceptable salts of antisense

compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.

[0083] “Phosphorothioate linkage” means a linkage between nucleosides where the phosphodiester bond is modified by replacing one of the non-bridging oxygen atoms with a sulfur atom. A phosphorothioate linkage is a modified internucleoside linkage.

[0084] “Portion” means a defined number of contiguous (i.e. linked) nucleobases of a nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of a target nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of an antisense compound.

[0085] “Preferentially reducing CUG exp DMPK RNA” refers to a preferential reduction of RNA transcripts from a CUGexp DMPK allele relative to RNA transcripts from a normal DMPK allele.

[0086] “Prevent” refers to delaying or forestalling the onset or development of a disease, disorder, or condition for a period of time from minutes to indefinitely. Prevent also means reducing risk of developing a disease, disorder, or condition.

[0087] “Prodrug” means a therapeutic agent that is prepared in an inactive form that is converted to an active form within the body or cells thereof by the action of endogenous enzymes or other chemicals or conditions.

[0088] “Side effects” means physiological responses attributable to a treatment other than the desired effects. In certain embodiments, side effects include injection site reactions, liver function test abnormalities, renal function abnormalities, liver toxicity, renal toxicity, central nervous system abnormalities, myopathies, and malaise. For example, increased aminotransferase levels in serum can indicate liver toxicity or liver function abnormality. For example, increased bilirubin can indicate liver toxicity or liver function abnormality.

[0089] “Single-stranded oligonucleotide” means an oligonucleotide which is not hybridized to a complementary strand.

[0090] “Specifically hybridizable” refers to an antisense compound having a sufficient degree of complementarity between an antisense oligonucleotide and a target nucleic acid to induce a desired effect, while exhibiting minimal or no effects on non-target nucleic acids under conditions in which specific binding is desired, i.e. under physiological conditions in the case of in vivo assays and therapeutic treatments.

[0091] “Spliceopathy” means a change in the alternative splicing of one or more RNAs that leads to the expression of altered splice products in a particular tissue.

[0092] “Subcutaneous administration” means administration just below the skin.

[0093] “Sugar surrogate” overlaps with the slightly broader term “nucleoside mimetic” but is intended to indicate replacement of the sugar unit (furanose ring) only. The tetrahydropyranyl rings provided herein are illustrative of an example of a sugar surrogate wherein the furanose sugar group has been replaced with a tetrahydropyranyl ring system.

[0094] “Targeting” or “targeted” means the process of design and selection of an antisense compound that will specifically hybridize to a target nucleic acid and induce a desired effect.

[0095] “Target nucleic acid,” “target RNA,” and “target RNA transcript” all refer to a nucleic acid capable of being targeted by antisense compounds.

[0096] “Target segment” means the sequence of nucleotides of a target nucleic acid to which an antisense compound is targeted. “5’ target site” refers to the 5'-most nucleotide of a target segment.

[0097] “3’ target site” refers to the 3'-most nucleotide of a target segment.

[0098] “Therapeutically effective amount” means an amount of an agent that provides a therapeutic benefit to an individual.

[0099] “Treat” refers to administering a pharmaceutical composition to effect an alteration or improvement of a disease, disorder, or condition.

[0100] “Type 1 myotonic dystrophy” or “DM1” means an autosomal dominant disorder caused by expansion of a non-coding CTG repeat in DMPK. This mutation leads to RNA dominance, a process in which expression of RNA containing an expanded CUG repeat (CUGexp) induced cell dysfunction. The CUGexp tract interacts with RNA binding proteins and causes the mutant transcript to be retained in nuclear foci. The toxicity of this RNA stems from sequestration of RNA binding proteins and activation of signaling pathways.

[0101] “Unmodified nucleotide” means a nucleotide composed of naturally occurring nucleobases, sugar moieties, and internucleoside linkages. In certain embodiments, an unmodified nucleotide is an RNA nucleotide (i.e. β -D-ribonucleosides) or a DNA nucleotide (i.e. β -D-deoxyribonucleoside).

Certain Embodiments

[0102] Certain embodiments provide methods, compounds, and compositions for inhibiting DMPK expression.

[0103] Certain embodiments provide a method of reducing DMPK expression in an animal comprising administering to the animal a compound comprising a modified oligonucleotide targeting DMPK.

[0104] Certain embodiments provide a method of preferentially reducing CUGexp DMPK RNA, reducing myotonia or reducing spliceopathy in an animal comprising administering to the animal a compound comprising a modified oligonucleotide targeted to DMPK, wherein the modified oligonucleotide preferentially reduces CUGexp DMPK RNA, reduces myotonia or reduces spliceopathy in the animal.

[0105] Certain embodiments provide a method of administering an antisense oligonucleotide to counteract RNA dominance by directing the cleavage of pathogenic transcripts.

[0106] Certain embodiments provide a method of reducing spliceopathy of Sercal1. In certain embodiments, methods provided herein result in exon 22 inclusion. In certain embodiments, the corrective splicing occurs in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0107] Certain embodiments provide a method of reducing spliceopathy of m-Titin. In certain embodiments, methods provided herein result in exon 5 inclusion. In certain embodiments, the corrective splicing occurs in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0108] Certain embodiments provide a method of reducing spliceopathy of Clcn1. In certain embodiments, methods provided herein result in exon 7a inclusion. In certain embodiments, the corrective splicing occurs in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0109] Certain embodiments provide a method of reducing spliceopathy of Zasp. In certain embodiments, methods provided herein result in exon 11 inclusion. In certain embodiments, the corrective splicing occurs in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0110] Certain embodiments provide a method for treating an animal with type 1 myotonic dystrophy comprising: a) identifying said animal with type 1 myotonic dystrophy, and b) administering to said animal a therapeutically effective amount of a compound comprising a modified oligonucleotide targeted to DMPK. In certain embodiments, the therapeutically effective amount of the compound administered to the animal preferentially reduces CUGexp DMPK RNA, reduces myotonia or reduces spliceopathy in the animal.

[0111] Certain embodiments provide a method of achieving a preferential reduction of CUGexp DMPK RNA, including administering to the subject suspected of having type 1 myotonic dystrophy or having a CUGexp DMPK RNA a modified antisense oligonucleotide complementary to a non-repeat region of said CUGexp DMPK RNA. The modified antisense oligonucleotide, when bound to said CUGexp DMPK RNA, achieves a preferential reduction of the CUGexp DMPK RNA.

[0112] Certain embodiments provide a method of achieving a preferential reduction of CUGexp DMPK RNA, including selecting a subject having type 1 myotonic dystrophy or having a CUGexp DMPK RNA and administering to said subject a modified antisense oligonucleotide complementary to a non-repeat region of said CUGexp DMPK RNA. The modified antisense oligonucleotide, when bound to the CUGexp DMPK RNA, activates a ribonuclease or nuclear ribonuclease, thereby achieving a preferential reduction of the CUGexp DMPK RNA in the nucleus.

[0113] Certain embodiments provide a method of achieving a preferential reduction of CUGexp DMPK RNA, including selecting a subject having type 1 myotonic dystrophy or having a mutant or CUGexp DMPK RNA and systemically administering to said subject a modified antisense oligonucleotide complementary to a non-repeat region of said CUGexp DMPK RNA. The modified antisense oligonucleotide, when bound to the mutant or CUGexp DMPK RNA, achieves a preferential reduction of the mutant or CUGexp DMPK RNA.

[0114] Certain embodiments provide a method of reducing myotonia in a subject in need thereof. The method includes administering to the subject a modified antisense oligonucleotide complementary to a non-repeat region of a DMPK RNA, wherein the modified antisense oligonucleotide, when bound to the DMPK RNA, activates a ribonuclease or nuclear ribonuclease, thereby reducing myotonia. In certain embodiments, the subject has or is suspected of having type 1 myotonic dystrophy or having a mutant DMPK RNA or CUGexp DMPK RNA. In certain embodiments, the DMPK RNA is nuclear retained.

[0115] Certain embodiments provide a method of reducing spliceopathy in a subject in need thereof. The method includes administering to the subject a modified antisense oligonucleotide complementary to a non-repeat region of a DMPK RNA, wherein the modified antisense oligonucleotide, when bound to the DMPK RNA, activates a ribonuclease or nuclear ribonuclease, thereby reducing spliceopathy. In certain embodiments, the subject has or is suspected of having type 1 myotonic dystrophy or having a nuclear retained CUGexp DMPK RNA. In certain embodiments, the

DMPK RNA is nuclear retained. In certain embodiments, the spliceopathy is MBNL dependent spliceopathy.

[0116] In certain embodiments, the modified antisense oligonucleotide of the methods is chimeric. In certain embodiments, the modified antisense oligonucleotide of the methods is a gapmer.

[0117] In certain embodiments of the methods provided herein, the administering is subcutaneous. In certain embodiments, the administering is intravenous.

[0118] In certain embodiments, the modified antisense oligonucleotide of the methods targets a non-coding sequence within the non-repeat region of a DMPK RNA. In certain embodiments, the oligonucleotide targets a coding region, an intron, a 5'UTR, or a 3'UTR of the mutant DMPK RNA.

[0119] In certain embodiments of the methods provided herein, the nuclear ribonuclease is RNase H1.

[0120] In certain embodiments of the methods, the DMPK RNA is reduced in muscle tissue. In certain embodiments, the mutant DMPK RNA CUGexp DMPK RNA is preferentially reduced.

[0121] In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NM_001081560.1 (incorporated herein as SEQ ID NO: 1). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NT_011109.15 truncated from nucleotides 18540696 to 18555106 (incorporated herein as SEQ ID NO: 2). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NT_039413.7 truncated from nucleotides 16666001 to 16681000 (incorporated herein as SEQ ID NO: 3). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NM_032418.1 (incorporated herein as SEQ ID NO: 4). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. AI007148.1 (incorporated herein as SEQ ID NO: 5). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. AI304033.1 (incorporated herein as SEQ ID NO: 6). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BC024150.1 (incorporated herein as SEQ ID NO: 7). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BC056615.1 (incorporated herein as SEQ ID NO: 8). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BC075715.1 (incorporated herein as SEQ ID NO: 793). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. BU519245.1 (incorporated herein as SEQ ID NO: 794). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. CB247909.1 (incorporated herein as SEQ ID NO: 795). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. CX208906.1 (incorporated herein as SEQ ID NO: 796). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. CX732022.1 (incorporated herein as SEQ ID NO: 797). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. S60315.1 (incorporated herein as SEQ ID NO: 798). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. S60316.1 (incorporated herein as SEQ ID NO: 799). In certain embodiments, the DMPK has the sequence as set forth in GenBank Accession No. NM_001081562.1 (incorporated herein as SEQ ID NO: 800). In certain embodiments, the DMPK has the sequence as

set forth in GenBank Accession No. NM_001100.3 (incorporated herein as SEQ ID NO: 801).

[0122] In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 8 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 9, at least 10, or at least 11, contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792.

[0123] In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 12 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 13, or at least 14, contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792.

[0124] In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 15 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 16, or at least 17, contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792.

[0125] In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 18 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 19 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792.

[0126] In certain embodiments, the modified oligonucleotides provided herein are targeted to any one of the following regions of SEQ ID NO: 1: 1178-1206, 2159-2182, 2174-2196, 2426-2447, 2450-2518, 2679-2704, and 2697-2725.

[0127] In certain embodiments, the modified oligonucleotides provided herein are targeted to any one of the following regions of SEQ ID NO 1: 178-223, 232-253, 279-299, 366-399, 519-541, 923-975, 1073-1105, 1171-1196, 1215-1246, 1263-1324, 1706-1734, 1743-1763, 1932-1979, 1981-2003, 2077-2108, and 2152-2173.

[0128] In certain embodiments, the modified oligonucleotides provided herein are targeted to any one of the following regions of SEQ ID NO: 2: 1251-1303, 1305-1326, 1352-1372, 3762-3795, 4170-4192, 5800-5852, 6124-6149, 6168-6199, 6216-6277, 11979-12007, 12016-12036, 12993-13042, 13044-13066, 13140-13171, and 13215-13236.

[0129] In certain embodiments, the animal is a human.

[0130] In certain embodiments, the compounds or compositions of the invention are designated as a first agent and the methods of the invention further comprise administering a second agent. In certain embodiments, the first agent and the second agent are co-administered. In certain embodiments the first agent and the second agent are co-administered sequentially or concomitantly.

[0131] In certain embodiments, administration comprises parenteral administration.

[0132] In certain embodiments, the compound is a single-stranded modified oligonucleotide. In certain embodiments, the nucleobase sequence of the modified oligonucleotide is at least 95% complementary to any one of SEQ ID NOs: 1-8 and

793-801 as measured over the entirety of said modified oligonucleotide. In certain embodiments, the nucleobase sequence of the modified oligonucleotide is 100% complementary to any one of SEQ ID NOs: 1-8 and 793-801 as measured over the entirety of said modified oligonucleotide.

[0133] In certain embodiments, at least one internucleoside linkage of said modified oligonucleotide is a modified internucleoside linkage. In certain embodiments, each internucleoside linkage is a phosphorothioate internucleoside linkage.

[0134] In certain embodiments, at least one nucleoside of said modified oligonucleotide comprises a modified sugar. In certain embodiments, at least one modified sugar is a bicyclic sugar. In certain embodiments, at least one modified sugar comprises a 2'-O-methoxyethyl or a 4'-(CH₂)_n—O-2' bridge, wherein n is 1 or 2.

[0135] In certain embodiments, at least one nucleoside of said modified oligonucleotide comprises a modified nucleobase. In certain embodiments, the modified nucleobase is a 5-methylcytosine.

[0136] In certain embodiments, the modified oligonucleotide comprises: a) a gap segment consisting of linked deoxy-nucleosides; b) a 5' wing segment consisting of linked nucleosides; and c) a 3' wing segment consisting of linked nucleosides. The gap segment is positioned between the 5' wing segment and the 3' wing segment and each nucleoside of each wing segment comprises a modified sugar.

[0137] In certain embodiments, the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5' wing segment consisting of five linked nucleosides; and c) a 3' wing segment consisting of five linked nucleosides. The gap segment is positioned between the 5' wing segment and the 3' wing segment, each nucleoside of each wing segment comprises a 2'-O-methoxyethyl sugar, each internucleoside linkage of said modified oligonucleotide is a phosphorothioate linkage, and each cytosine in said modified oligonucleotide is a 5'-methylcytosine.

[0138] In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides.

[0139] Certain embodiments provide a method of preferentially reducing CUGexp DMPK RNA, reducing myotonia or reducing spliceopathy in an animal comprising administering to the animal a compound comprising a modified oligonucleotide having a gap segment consisting of ten linked deoxy-nucleosides, a 5' wing segment consisting of five linked nucleosides and a 3' wing segment consisting of five linked nucleosides. The gap segment is positioned between the 5' wing segment and the 3' wing segment, each nucleoside of each wing segment comprises a 2'-O-methoxyethyl sugar, each internucleoside linkage of said modified oligonucleotide is a phosphorothioate linkage, each cytosine in said modified oligonucleotide is a 5'-methylcytosine.

[0140] Certain embodiments provide the use of any compound as described herein in the manufacture of a medicament for use in any of the therapeutic methods described herein. For example, certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for treating, ameliorating, or preventing type 1 myotonic dystrophy. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for inhibiting expression of DMPK and treating, preventing, delaying or ameliorating a DMPK related disease and/or a symptom thereof. Certain embodiments provide the use of a compound as described herein in the manufacture of

a medicament for reducing DMPK expression in an animal. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for preferentially reducing CUGexp DMPK, reducing myotonia, or reducing spliceopathy in an animal. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for treating an animal with type 1 myotonic dystrophy. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for treating, preventing, delaying, or ameliorating symptoms and outcomes associated with development of DM1 including muscle stiffness, myotonia, disabling distal weakness, weakness in face and jaw muscles, difficulty in swallowing, drooping of the eyelids (ptosis), weakness of neck muscles, weakness in arm and leg muscles, persistent muscle pain, hypersomnia, muscle wasting, dysphagia, respiratory insufficiency, irregular heartbeat, heart muscle damage, apathy, insulin resistance, and cataracts. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for counteracting RNA dominance by directing the cleavage of pathogenic transcripts.

[0141] Certain embodiments provide a kit for treating, preventing, or ameliorating type 1 myotonic dystrophy as described herein wherein the kit comprises: a) a compound as described herein; and optionally b) an additional agent or therapy as described herein. The kit can further include instructions or a label for using the kit to treat, prevent, or ameliorate type 1 myotonic dystrophy.

[0142] Certain embodiments provide any compound or composition as described herein, for use in any of the therapeutic methods described herein. For example, certain embodiments provide a compound or composition as described herein for inhibiting expression of DMPK and treating, preventing, delaying or ameliorating a DMPK related disease and/or a symptom thereof. Certain embodiments provide a compound or composition as described herein for use in reducing DMPK expression in an animal. Certain embodiments provide a compound or composition as described herein for use in preferentially reducing CUGexp DMPK, reducing myotonia, or reducing spliceopathy in an animal. Certain embodiments provide a compound or composition as described herein for use in treating an animal with type 1 myotonic dystrophy. Certain embodiments provide a compound or composition as described herein for use in treating, preventing, delaying, or ameliorating symptoms and outcomes associated with development of DM1 including muscle stiffness, myotonia, disabling distal weakness, weakness in face and jaw muscles, difficulty in swallowing, drooping of the eyelids (ptosis), weakness of neck muscles, weakness in arm and leg muscles, persistent muscle pain, hypersomnia, muscle wasting, dysphagia, respiratory insufficiency, irregular heartbeat, heart muscle damage, apathy, insulin resistance, and cataracts. Certain embodiments provide a compound or composition as described herein for use in counteracting RNA dominance by directing the cleavage of pathogenic transcripts. Certain embodiments provide compounds comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides having a nucleobase sequence comprising at least 12 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 12-156, 160-770, and 774-792.

[0143] Other compounds which can be used in the methods described herein are also provided.

[0144] For example, certain embodiments provide compounds comprising a modified oligonucleotide consisting of 10 to 80, 12 to 50, 12 to 30, 15 to 30, 18 to 24, 19 to 22, or 20 linked nucleosides having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19, contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 41, 44, 76, 109, 153, 320, 321, 322, 325, 329, 335, and 657.

[0145] Certain embodiments provide compounds comprising a modified oligonucleotide consisting of 10 to 80, 12 to 50, 12 to 30, 15 to 30, 18 to 24, 19 to 22, or 20, linked nucleosides having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 15, 73, 77, 79, 83, 85, 130, 602, 648, 655, 674, and 680.

[0146] Certain embodiments provide compounds comprising a modified oligonucleotide consisting of 10 to 80, 12 to 50, 12 to 30, 15 to 30, 18 to 24, 19 to 22, or 20, linked nucleosides having a nucleobase sequence comprising a portion of at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19, or more, contiguous nucleobases complementary to an equal length portion of nucleobases 664-683, 773-792, 926-945, 927-946, 928-947, 931-950, 935-954, 941-960, 2089-2108, 2163-2182, 2490-2509, 2499-2518, 2676-2695, 2685-2704, 2676-2695, 2688-2707, 2697-2716, 2764-2783, and 2770-2789 of SEQ ID NO: 1, wherein the nucleobase sequence is complementary to SEQ ID NO: 1.

[0147] Certain embodiments provide compounds comprising a modified oligonucleotide consisting of 10 to 80, 12 to 50, 12 to 30, 15 to 30, 18 to 24, 19 to 22, or 20, linked nucleosides having a nucleobase sequence comprising a portion of at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19, or more, contiguous nucleobases complementary to an equal length portion of nucleobases 812-831, 3629-3648, 4447-4466, 4613-4632, 5803-5822, 5804-5823, 5805-5824, 5808-5827, 5818-5837, 6794-6813, 12463-12482, 13152-13171, and 13553-13572 of SEQ ID NO: 2, wherein the nucleobase sequence is complementary to SEQ ID NO: 2.

[0148] In certain embodiments, the modified oligonucleotide is a single-stranded oligonucleotide.

[0149] In certain embodiments, the nucleobase sequence of the modified oligonucleotide is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or 100%, complementary to any of SEQ ID NOs: 1-8 and 793-801.

[0150] In certain embodiments, at least one internucleoside linkage is a modified internucleoside linkage.

[0151] In certain embodiments, each internucleoside linkage is a phosphorothioate internucleoside linkage.

[0152] In certain embodiments, at least one nucleoside comprises a modified sugar.

[0153] In certain embodiments, at least one modified sugar is a bicyclic sugar.

[0154] In certain embodiments, at least one modified sugar comprises a 2'-O-methoxyethyl.

[0155] In certain embodiments, at least one nucleoside comprises a modified nucleobase.

[0156] In certain embodiments, the modified nucleobase is a 5-methylcytosine.

[0157] In certain embodiments, the modified oligonucleotide comprises:

[0158] a gap segment consisting of linked deoxynucleosides;

[0159] a 5' wing segment consisting of linked nucleosides; and

[0160] a 3' wing segment consisting of linked nucleosides;

[0161] wherein the gap segment is positioned between the 5' wing segment and the 3' wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.

[0162] In certain embodiments, the modified oligonucleotide comprises:

[0163] a gap segment consisting of ten linked deoxynucleosides;

[0164] a 5' wing segment consisting of five linked nucleosides; and

[0165] a 3' wing segment consisting of five linked nucleosides;

[0166] wherein the gap segment is positioned between the 5' wing segment and the 3' wing segment, wherein each nucleoside of each wing segment comprises a 2'-O-methoxyethyl sugar; and wherein each internucleoside linkage is a phosphorothioate linkage.

[0167] In certain embodiments, the modified oligonucleotide consists of 14 linked nucleosides.

[0168] In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.

[0169] In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides.

Antisense Compounds

[0170] Oligomeric compounds include, but are not limited to, oligonucleotides, oligonucleosides, oligonucleotide analogs, oligonucleotide mimetics, antisense compounds, anti-sense oligonucleotides, and siRNAs. An oligomeric compound can be "antisense" to a target nucleic acid, meaning that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding.

[0171] In certain embodiments, an antisense compound has a nucleobase sequence that, when written in the 5' to 3' direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted. In certain such embodiments, an antisense oligonucleotide has a nucleobase sequence that, when written in the 5' to 3' direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted.

[0172] In certain embodiments, an antisense compound targeted to DMPK as described herein is 10 to 30 nucleotides in length. In other words, the antisense compounds are in some embodiments from 10 to 30 linked nucleobases. In other embodiments, the antisense compound comprises a modified oligonucleotide consisting of 8 to 80, 10 to 80, 12 to 30, 12 to 50, 15 to 30, 18 to 24, 19 to 22, or 20 linked nucleobases. In certain such embodiments, the antisense compound comprises a modified oligonucleotide consisting of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 linked nucleobases in length, or a range defined by any two of the above values. In certain embodiments, antisense compounds of any of these lengths contain at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19,

contiguous nucleobases of the nucleobase sequence of any of the exemplary antisense compounds described herein (e.g., at least 8 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792).

[0173] In certain embodiments, the antisense compound comprises a shortened or truncated modified oligonucleotide. The shortened or truncated modified oligonucleotide can have a single nucleoside deleted from the 5' end (5' truncation), or alternatively from the 3' end (3' truncation). A shortened or truncated oligonucleotide can have two nucleosides deleted from the 5' end, or alternatively can have two subunits deleted from the 3' end. Alternatively, the deleted nucleosides can be dispersed throughout the modified oligonucleotide, for example, in an antisense compound having one nucleoside deleted from the 5' end and one nucleoside deleted from the 3' end.

[0174] When a single additional nucleoside is present in a lengthened oligonucleotide, the additional nucleoside can be located at the 5' or 3' end of the oligonucleotide. When two or more additional nucleosides are present, the added nucleosides can be adjacent to each other, for example, in an oligonucleotide having two nucleosides added to the 5' end (5' addition), or alternatively to the 3' end (3' addition), of the oligonucleotide. Alternatively, the added nucleoside can be dispersed throughout the antisense compound, for example, in an oligonucleotide having one nucleoside added to the 5' end and one subunit added to the 3' end.

[0175] It is possible to increase or decrease the length of an antisense compound, such as an antisense oligonucleotide, and/or introduce mismatch bases without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), a series of antisense oligonucleotides 13-25 nucleobases in length were tested for their ability to induce cleavage of a target RNA in an oocyte injection model. Antisense oligonucleotides 25 nucleobases in length with 8 or 11 mismatch bases near the ends of the antisense oligonucleotides were able to direct specific cleavage of the target mRNA, albeit to a lesser extent than the antisense oligonucleotides that contained no mismatches. Similarly, target specific cleavage was achieved using 13 nucleobase antisense oligonucleotides, including those with 1 or 3 mismatches.

[0176] Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001) demonstrated the ability of an oligonucleotide having 100% complementarity to the bcl-2 mRNA and having 3 mismatches to the bcl-xL mRNA to reduce the expression of both bcl-2 and bcl-xL in vitro and in vivo. Furthermore, this oligonucleotide demonstrated potent anti-tumor activity in vivo.

[0177] Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) tested a series of tandem 14 nucleobase antisense oligonucleotides, and a 28 and 42 nucleobase antisense oligonucleotides comprised of the sequence of two or three of the tandem antisense oligonucleotides, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase antisense oligonucleotides alone was able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase antisense oligonucleotides.

Antisense Compound Motifs

[0178] In certain embodiments, antisense compounds targeted to a DMPK nucleic acid have chemically modified subunits arranged in patterns, or motifs, to confer to the

antisense compounds properties such as enhanced the inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by *in vivo* nucleases.

[0179] Chimeric antisense compounds typically contain at least one region modified so as to confer increased resistance to nuclease degradation, increased cellular uptake, increased binding affinity for the target nucleic acid, and/or increased inhibitory activity. A second region of a chimeric antisense compound can optionally serve as a substrate for the cellular endonuclease RNase H, which cleaves the RNA strand of an RNA:DNA duplex.

[0180] Antisense compounds having a gapmer motif are considered chimeric antisense compounds. In a gapmer an internal region having a plurality of nucleotides that supports RNaseH cleavage is positioned between external regions having a plurality of nucleotides that are chemically distinct from the nucleosides of the internal region. In the case of an antisense oligonucleotide having a gapmer motif, the gap segment generally serves as the substrate for endonuclease cleavage, while the wing segments comprise modified nucleosides. In certain embodiments, the regions of a gapmer are differentiated by the types of sugar moieties comprising each distinct region. The types of sugar moieties that are used to differentiate the regions of a gapmer can in some embodiments include β -D-ribonucleosides, β -D-deoxyribonucleosides, 2'-modified nucleosides (such 2'-modified nucleosides can include 2'-MOE, and 2'-O—CH₃, among others), and bicyclic sugar modified nucleosides (such bicyclic sugar modified nucleosides can include those having a 4'-(CH₂)_n—O-2' bridge, where n=1 or n=2). Preferably, each distinct region comprises uniform sugar moieties. The wing-gap-wing motif is frequently described as "X-Y-Z", where "X" represents the length of the 5' wing region, "Y" represents the length of the gap region, and "Z" represents the length of the 3' wing region. As used herein, a gapmer described as "X-Y-Z" has a configuration such that the gap segment is positioned immediately adjacent each of the 5' wing segment and the 3' wing segment. Thus, no intervening nucleotides exist between the 5' wing segment and gap segment, or the gap segment and the 3' wing segment. Any of the antisense compounds described herein can have a gapmer motif. In some embodiments, X and Z are the same, in other embodiments they are different. In a preferred embodiment, Y is between 8 and 15 nucleotides. X, Y or Z can be any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30 or more nucleotides. Thus, gapmers include, but are not limited to, for example 5-10-5, 4-8-4, 4-12-3, 4-12-4, 3-14-3, 2-13-5, 2-16-2, 1-18-1, 3-10-3, 2-10-2, 1-10-1, 2-8-2, 6-8-6, 5-8-5, 1-8-1, or 2-6-2.

[0181] In certain embodiments, the antisense compound as a "wingmer" motif, having a wing-gap or gap-wing configuration, i.e. an X-Y or Y-Z configuration as described above for the gapmer configuration. Thus, wingmer configurations include, but are not limited to, for example 5-10, 8-4, 4-12, 12-4, 3-14, 16-2, 18-1, 10-3, 2-10, 1-10, 8-2, 2-13, or 5-13.

[0182] In certain embodiments, antisense compounds targeted to a DMPK nucleic acid possess a 5-10-5 gapmer motif.

[0183] In certain embodiments, an antisense compound targeted to a DMPK nucleic acid has a gap-widened motif.

[0184] In certain embodiments, antisense compounds of any of these gapmer or wingmer motifs contain at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19, contiguous nucleobases of the nucleobase sequence of any of

the exemplary antisense compounds described herein (e.g., at least 8 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOS: 12-156, 160-770, and 774-792).

Target Nucleic Acids, Target Regions and Nucleotide Sequences

[0185] Nucleotide sequences that encode DMPK include, without limitation, the following sequences as set forth in GenBank Accession No. NM_001081560.1 (incorporated herein as SEQ ID NO: 1), GenBank Accession No. NT_011109.15 truncated from nucleotides 18540696 to 18555106 (incorporated herein as SEQ ID NO: 2), GenBank Accession No. NT_039413.7 truncated from nucleotides 16666001 to 16681000 (incorporated herein as SEQ ID NO: 3), GenBank Accession No. NM_032418.1 (incorporated herein as SEQ ID NO: 4), GenBank Accession No. AI007148.1 (incorporated herein as SEQ ID NO: 5), GenBank Accession No. AI304033.1 (incorporated herein as SEQ ID NO: 6), GenBank Accession No. BC024150.1 (incorporated herein as SEQ ID NO: 7), GenBank Accession No. BC056615.1 (incorporated herein as SEQ ID NO: 8), GenBank Accession No. BC075715.1 (incorporated herein as SEQ ID NO: 793), GenBank Accession No. BU519245.1 (incorporated herein as SEQ ID NO: 794), GenBank Accession No. CB247909.1 (incorporated herein as SEQ ID NO: 795), GenBank Accession No. CX208906.1 (incorporated herein as SEQ ID NO: 796), GenBank Accession No. CX732022.1 (incorporated herein as SEQ ID NO: 797), GenBank Accession No. S60315.1 (incorporated herein as SEQ ID NO: 798), GenBank Accession No. S60316.1 (incorporated herein as SEQ ID NO: 799), GenBank Accession No. NM_001081562.1 (incorporated herein as SEQ ID NO: 800), and GenBank Accession No. NM_001100.3 (incorporated herein as SEQ ID NO: 801). It is understood that the sequence set forth in each SEQ ID NO in the Examples contained herein is independent of any modification to a sugar moiety, an internucleoside linkage, or a nucleobase. As such, antisense compounds defined by a SEQ ID NO can comprise, independently, one or more modifications to a sugar moiety, an internucleoside linkage, or a nucleobase. Antisense compounds described by Isis Number (Isis No) indicate a combination of nucleobase sequence and motif.

[0186] In certain embodiments, a target region is a structurally defined region of the target nucleic acid. For example, a target region can encompass a 3' UTR, a 5' UTR, an exon, an intron, an exon/intron junction, a coding region, a translation initiation region, translation termination region, or other defined nucleic acid region. The structurally defined regions for DMPK can be obtained by accession number from sequence databases such as NCBI and such information is incorporated herein by reference. In certain embodiments, a target region can encompass the sequence from a 5' target site of one target segment within the target region to a 3' target site of another target segment within the target region.

[0187] Targeting includes determination of at least one target segment to which an antisense compound hybridizes, such that a desired effect occurs. In certain embodiments, the desired effect is a reduction in mRNA target nucleic acid levels. In certain embodiments, the desired effect is reduction of levels of protein encoded by the target nucleic acid or a phenotypic change associated with the target nucleic acid.

[0188] A target region can contain one or more target segments. Multiple target segments within a target region can be

overlapping. Alternatively, they can be non-overlapping. In certain embodiments, target segments within a target region are separated by no more than about 300 nucleotides. In certain embodiments, target segments within a target region are separated by a number of nucleotides that is, is about, is no more than, is no more than about, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 nucleotides on the target nucleic acid, or is a range defined by any two of the preceding values. In certain embodiments, target segments within a target region are separated by no more than, or no more than about, 5 nucleotides on the target nucleic acid. In certain embodiments, target segments are contiguous. Contemplated are target regions defined by a range having a starting nucleic acid that is any of the 5' target sites or 3' target sites listed herein. [0189] Suitable target segments can be found within a 5' UTR, a coding region, a 3' UTR, an intron, an exon, or an exon/intron junction. Target segments containing a start codon or a stop codon are also suitable target segments. A suitable target segment can specifically exclude a certain structurally defined region such as the start codon or stop codon.

[0190] The determination of suitable target segments can include a comparison of the sequence of a target nucleic acid to other sequences throughout the genome. For example, the BLAST algorithm can be used to identify regions of similarity amongst different nucleic acids. This comparison can prevent the selection of antisense compound sequences that can hybridize in a non-specific manner to sequences other than a selected target nucleic acid (i.e., non-target or off-target sequences).

[0191] There can be variation in activity (e.g., as defined by percent reduction of target nucleic acid levels) of the antisense compounds within an active target region. In certain embodiments, reductions in DMPK mRNA levels are indicative of inhibition of DMPK protein expression. Reductions in levels of a DMPK protein are also indicative of inhibition of target mRNA expression. Further, phenotypic changes, such as a reducing myotonia or reducing spliceopathy, can be indicative of inhibition of DMPK mRNA and/or protein expression.

Hybridization

[0192] In some embodiments, hybridization occurs between an antisense compound disclosed herein and a DMPK nucleic acid. The most common mechanism of hybridization involves hydrogen bonding (e.g., Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary nucleobases of the nucleic acid molecules.

[0193] Hybridization can occur under varying conditions. Stringent conditions are sequence-dependent and are determined by the nature and composition of the nucleic acid molecules to be hybridized.

[0194] Methods of determining whether a sequence is specifically hybridizable to a target nucleic acid are well known in the art (Sambrooke and Russell, Molecular Cloning: A Laboratory Manual, 3rd Ed., 2001). In certain embodiments, the antisense compounds provided herein are specifically hybridizable with a DMPK nucleic acid.

Complementarity

[0195] An antisense compound and a target nucleic acid are complementary to each other when a sufficient number of

nucleobases of the antisense compound can hydrogen bond with the corresponding nucleobases of the target nucleic acid, such that a desired effect will occur (e.g., antisense inhibition of a target nucleic acid, such as a DMPK nucleic acid).

[0196] An antisense compound can hybridize over one or more segments of a DMPK nucleic acid such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).

[0197] In certain embodiments, the antisense compounds provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to a DMPK nucleic acid, a target region, target segment, or specified portion thereof. In certain embodiments, the antisense compounds are at least 70%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% complementary to a DMPK nucleic acid, a target region, target segment, or specified portion thereof, and contain at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19, contiguous nucleobases of the nucleobase sequence of any of the exemplary antisense compounds described herein (e.g., at least 8 contiguous nucleobases of a nucleobase sequence recited in any one of SEQ ID NOs: 12-156, 160-770, and 774-792). Percent complementarity of an antisense compound with a target nucleic acid can be determined using routine methods, and is measured over the entirety of the antisense compound.

[0198] For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases can be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489).

[0199] In certain embodiments, the antisense compounds provided herein, or specified portions thereof, are fully complementary (i.e. 100% complementary) to a target nucleic acid, or specified portion thereof. For example, antisense compound can be fully complementary to a DMPK nucleic acid, or a target region, or a target segment or target sequence thereof. As used herein, "fully complementary" means each nucleobase of an antisense compound is capable of precise base pairing with the corresponding nucleobases of

a target nucleic acid. For example, a 20 nucleobase antisense compound is fully complementary to a target sequence that is 400 nucleobases long, so long as there is a corresponding 20 nucleobase portion of the target nucleic acid that is fully complementary to the antisense compound. Fully complementary can also be used in reference to a specified portion of the first and/or the second nucleic acid. For example, a 20 nucleobase portion of a 30 nucleobase antisense compound can be "fully complementary" to a target sequence that is 400 nucleobases long. The 20 nucleobase portion of the 30 nucleobase oligonucleotide is fully complementary to the target sequence if the target sequence has a corresponding 20 nucleobase portion wherein each nucleobase is complementary to the 20 nucleobase portion of the antisense compound. At the same time, the entire 30 nucleobase antisense compound can be fully complementary to the target sequence, depending on whether the remaining 10 nucleobases of the antisense compound are also complementary to the target sequence.

[0200] The location of a non-complementary nucleobase can be at the 5' end or 3' end of the antisense compound. Alternatively, the non-complementary nucleobase or nucleobases can be at an internal position of the antisense compound. When two or more non-complementary nucleobases are present, they can be either contiguous (i.e. linked) or non-contiguous. In one embodiment, a non-complementary nucleobase is located in the wing segment of a gapmer antisense oligonucleotide.

[0201] In certain embodiments, antisense compounds that are, or are up to 10, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleobases in length comprise no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a DMPK nucleic acid, or specified portion thereof.

[0202] In certain embodiments, antisense compounds that are, or are up to 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length comprise no more than 6, no more than 5, no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a DMPK nucleic acid, or specified portion thereof.

[0203] The antisense compounds provided herein also include those which are complementary to a portion of a target nucleic acid. As used herein, "portion" refers to a defined number of contiguous (i.e. linked) nucleobases within a region or segment of a target nucleic acid. A "portion" can also refer to a defined number of contiguous nucleobases of an antisense compound. In certain embodiments, the antisense compounds, are complementary to at least an 8 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 10 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 15 nucleobase portion of a target segment. Also contemplated are antisense compounds that are complementary to at least an 8, at least a 9, at least a 10, at least an 11, at least a 12, at least a 13, at least a 14, at least a 15, at least a 16, at least a 17, at least a 18, at least a 19, at least a 20, or more nucleobase portion of a target segment, or a range defined by any two of these values.

Identity

[0204] The antisense compounds provided herein can also have a defined percent identity to a particular nucleotide

sequence, SEQ ID NO, or compound represented by a specific Isis number, or portion thereof. As used herein, an antisense compound is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in a disclosed DNA sequence would be considered identical to the DNA sequence since both uracil and thymidine pair with adenine. Shortened and lengthened versions of the antisense compounds described herein as well as compounds having non-identical bases relative to the antisense compounds provided herein also are contemplated. The non-identical bases can be adjacent to each other or dispersed throughout the antisense compound. Percent identity of an antisense compound is calculated according to the number of bases that have identical base pairing relative to the sequence to which it is being compared.

[0205] In certain embodiments, the antisense compounds, or portions thereof, are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to one or more of the exemplary antisense compounds or SEQ ID NOs, or a portion thereof, disclosed herein.

Modifications

[0206] A nucleoside is a base-sugar combination. The nucleobase (also known as base) portion of the nucleoside is normally a heterocyclic base moiety. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2', 3' or 5' hydroxyl moiety of the sugar. Oligonucleotides are formed through the covalent linkage of adjacent nucleosides to one another, to form a linear polymeric oligonucleotide. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside linkages of the oligonucleotide.

[0207] Modifications to antisense compounds encompass substitutions or changes to internucleoside linkages, sugar moieties, or nucleobases. Modified antisense compounds are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target, increased stability in the presence of nucleases, or increased inhibitory activity.

[0208] Chemically modified nucleosides can also be employed to increase the binding affinity of a shortened or truncated antisense oligonucleotide for its target nucleic acid. Consequently, comparable results can often be obtained with shorter antisense compounds that have such chemically modified nucleosides.

Modified Internucleoside Linkages

[0209] The naturally occurring internucleoside linkage of RNA and DNA is a 3' to 5' phosphodiester linkage. Antisense compounds having one or more modified, i.e. non-naturally occurring, internucleoside linkages are often selected over antisense compounds having naturally occurring internucleoside linkages because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for target nucleic acids, and increased stability in the presence of nucleases.

[0210] Oligonucleotides having modified internucleoside linkages include internucleoside linkages that retain a phosphorus atom as well as internucleoside linkages that do not

have a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known.

[0211] In certain embodiments, antisense compounds targeted to a DMPK nucleic acid comprise one or more modified internucleoside linkages. In certain embodiments, the modified internucleoside linkages are phosphorothioate linkages. In certain embodiments, each internucleoside linkage of an antisense compound is a phosphorothioate internucleoside linkage.

Modified Sugar Moieties

[0212] Antisense compounds of the invention can optionally contain one or more nucleosides wherein the sugar group has been modified. Such sugar modified nucleosides may impart enhanced nuclease stability, increased binding affinity, or some other beneficial biological property to the antisense compounds. In certain embodiments, nucleosides comprise chemically modified ribofuranose ring moieties. Examples of chemically modified ribofuranose rings include without limitation, addition of substituent groups (including 5' and 2' substituent groups, bridging of non-geminal ring atoms to form bicyclic nucleic acids (BNA), replacement of the ribosyl ring oxygen atom with S, N(R), or C(R₁)(R₂) (R, R₁ and R₂ are each independently H, C₁-C₁₂ alkyl or a protecting group) and combinations thereof. Examples of chemically modified sugars include 2'-F-5'-methyl substituted nucleoside (see PCT International Application WO 2008/101157 Published on Aug. 21, 2008 for other disclosed 5',2'-bis substituted nucleosides) or replacement of the ribosyl ring oxygen atom with S with further substitution at the 2'-position (see published U.S. Patent Application US2005-0130923, published on Jun. 16, 2005) or alternatively 5'-substitution of a BNA (see PCT International Application WO 2007/134181 Published on Nov. 22, 2007 wherein LNA is substituted with for example a 5'-methyl or a 5'-vinyl group).

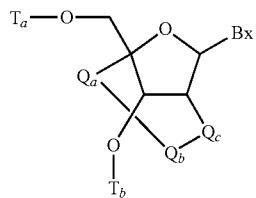
[0213] Examples of nucleosides having modified sugar moieties include without limitation nucleosides comprising 5'-vinyl, 5'-methyl (R or S), 4'-S, 2'-F, 2'-OCH₃, 2'-OCH₂CH₃, 2'-OCH₂CH₂F and 2'-O(CH₂)₂OCH₃ substituent groups. The substituent at the 2' position can also be selected from allyl, amino, azido, thio, O-allyl, O—C₁-C₁₀ alkyl, OCF₃, OCH₂F, O(CH₂)₂SCH₃, O(CH₂)₂—O—N(R_m) (R_n), O—CH₂—C(=O)—N(R_m)(R_n), and O—CH₂—C(=O)—N(R_n)—(CH₂)₂—N(R_m)(R_n), where each R_p, R_m and R_n is, independently, H or substituted or unsubstituted C₁-C₁₀ alkyl.

[0214] Examples of bicyclic nucleic acids (BNAs) include without limitation nucleosides comprising a bridge between the 4' and the 2' ribosyl ring atoms. In certain embodiments, antisense compounds provided herein include one or more BNA nucleosides wherein the bridge comprises one of the formulas: 4'-(CH₂)—O-2' (LNA); 4'-(CH₂)—S-2'; 4'-(CH₂)₂—O-2' (ENA); 4'-CH(CH₃)—O-2' and 4'-CH(CH₂OCH₃)—O-2' (and analogs thereof see U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008); 4'-C(CH₃)(CH₃)—O-2' (and analogs thereof see PCT/US2008/068922 published as WO/2009/006478, published Jan. 8, 2009); 4'-CH₂—N(OCH₃)—2' (and analogs thereof see PCT/US2008/064591 published as WO/2008/150729, published Dec. 11, 2008); 4'-CH₂—O—N(CH₃)—2' (see published U.S. Patent Applica-

tion US2004-0171570, published Sep. 2, 2004); 4'-CH₂—N(R)—O-2', wherein R is H, C₁-C₁₂ alkyl, or a protecting group (see U.S. Pat. No. 7,427,672, issued on Sep. 23, 2008); 4'-CH₂—C(H)(CH₃)—2' (see Chattopadhyaya et al., *J. Org. Chem.*, 2009, 74, 118-134); and 4'-CH₂—C(=CH₂)—2' (and analogs thereof see PCT/US2008/066154 published as WO 2008/154401, published on Dec. 8, 2008).

[0215] Further bicyclic nucleosides have been reported in published literature (see for example: Srivastava et al., *J. Am. Chem. Soc.*, 2007, 129(26) 8362-8379; Frieden et al., *Nucleic Acids Research*, 2003, 21, 6365-6372; Elayadi et al., *Curr. Opinion Invens. Drugs*, 2001, 2, 558-561; Braasch et al., *Chem. Biol.*, 2001, 8, 1-7; Orum et al., *Curr. Opinion Mol. Ther.*, 2001, 3, 239-243; Wahlestedt et al., *Proc. Natl. Acad. Sci. U.S.A.*, 2000, 97, 5633-5638; Singh et al., *Chem. Commun.*, 1998, 4, 455-456; Koskin et al., *Tetrahedron*, 1998, 54, 3607-3630; Kumar et al., *Bioorg. Med. Chem. Lett.*, 1998, 8, 2219-2222; Singh et al., *J. Org. Chem.*, 1998, 63, 10035-10039; U.S. Pat. Nos. 7,399,845; 7,053,207; 7,034,133; 6,794,499; 6,770,748; 6,670,461; 6,525,191; 6,268,490; U.S. Patent Publication Nos.: US2008-0039618; US2007-0287831; US2004-0171570; U.S. patent application Ser. Nos. 12/129,154; 61/099,844; 61/097,787; 61/086,231; 61/056,564; 61/026,998; 61/026,995; 60/989,574; International applications WO 2007/134181; WO 2005/021570; WO 2004/106356; WO 94/14226; and PCT International Applications Nos.: PCT/US2008/068922; PCT/US2008/066154; and PCT/US2008/064591). Each of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α -L-ribofuranose and β -D-ribofuranose (see PCT international application PCT/DK98/00393, published on Mar. 25, 1999 as WO 99/14226).

[0216] In certain embodiments, bicyclic nucleosides comprise a bridge between the 4' and the 2' carbon atoms of the pentofuranosyl sugar moiety including without limitation, bridges comprising 1 or from 1 to 4 linked groups independently selected from —[C(R_a)(R_b)]_n—, —C(R_a)—C(R_b)—, —C(R_a)=N—, —C(=NR_a)—, —C(=O)—, —C(=S)—, —O—, —Si(R_a)₂—, —S(=O)_x—, and —N(R_a)—; wherein: x is 0, 1, or 2; n is 1, 2, 3, or 4; each R_a and R_b is, independently, H, a protecting group, hydroxyl, C₁-C₁₂ alkyl, substituted C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, substituted C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, substituted C₂-C₁₂ alkynyl, C₅-C₂₀ aryl, substituted C₅-C₂₀ aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C₅-C₇ alicyclic radical, substituted C₅-C₇ alicyclic radical, halogen, OH, NJ₁J₂, SJ₁, N₃, COOJ₁, acyl (C(=O)—H), substituted acyl, CN, sulfonyl (S(=O)₂J₁), or sulfoxyl (S(=O)J₁); and


[0217] each J₁ and J₂ is, independently, H, C₁-C₁₂ alkyl, substituted C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, substituted C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, substituted C₂-C₁₂ alkynyl, C₅-C₂₀ aryl, substituted C₅-C₂₀ aryl, acyl (C(=O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C₁-C₁₂ aminoalkyl, substituted C₁-C₁₂ aminoalkyl or a protecting group.

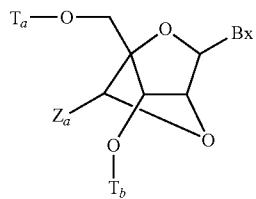
[0218] In certain embodiments, the bridge of a bicyclic sugar moiety is, —[C(R_a)(R_b)]_n—, —[C(R_a)(R_b)]_n—O—, —C(R_aR_b)—N(R)—O— or —C(R_aR_b)—O—N(R)—. In certain embodiments, the bridge is 4'-CH₂-2', 4'-(CH₂)₂-2', 4'-CH₂-O-2', 4'-CH₂—O-2', 4'-CH₂—O—N(R)—2' and 4'-CH₂—N(R)—O-2' wherein each R is, independently, H, a protecting group or C₁-C₁₂ alkyl.

[0219] In certain embodiments, bicyclic nucleosides are further defined by isomeric configuration. For example, a nucleoside comprising a 4'-(CH₂)—O-2' bridge, may be in the α -L configuration or in the β -D configuration. Previously, α -L-methyleneoxy (4'-CH₂—O-2') BNA's have been incorporated into antisense oligonucleotides that showed antisense activity (Frieden et al., *Nucleic Acids Research*, 2003, 21, 6365-6372).

[0220] In certain embodiments, bicyclic nucleosides include those having a 4' to 2' bridge wherein such bridges include without limitation, α -L-4'-(CH₂)—O-2', β -D-4'-CH₂—O-2', 4'-(CH₂)₂—O-2', 4'-CH₂—O—N(R)-2', 4'-CH₂—N(R)—O-2', 4'-CH(CH₃)—O-2', 4'-CH₂—S-2', 4'-CH₂—N(R)-2', 4'-CH₂—CH(CH₃)-2', and 4'-(CH₂)₃-2', wherein R is H, a protecting group or C₁-C₁₂ alkyl.

[0221] In certain embodiments, bicyclic nucleosides have the formula:

wherein:


[0222] Bx is a heterocyclic base moiety;

[0223] -Q_a—Q_b—Q_c- is —CH₂—N(R_c)—CH₂—, —C(=O)—N(R_c)—CH₂—, —CH₂—O—N(R_c)—, —CH₂—N(R_c)—O— or —N(R_c)—O—CH₂—;

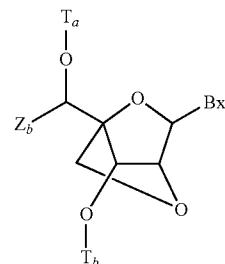
[0224] R_c is C₁-C₁₂ alkyl or an amino protecting group; and

[0225] T_a and T_b are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;

[0226] In certain embodiments, bicyclic nucleosides have the formula:

wherein:

[0227] Bx is a heterocyclic base moiety;

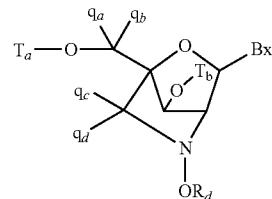

[0228] T_a and T_b are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;

[0229] Z_a is C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, substituted C₁-C₆ alkyl, substituted C₂-C₆ alkenyl, substituted C₂-C₆ alkynyl, acyl, substituted acyl, substituted amide, thiol or substituted thiol.

[0230] In one embodiment, each of the substituted groups, is, independently, mono or poly substituted with substituent groups independently selected from halogen, oxo, hydroxyl, OJ_c, NJ_cJ_d, SJ_c, N₃, OC(=X)J_c, and NJ_eC(=X)NJ_cJ_d;

wherein each J_c, J_d and J_e is, independently, H, C₁-C₆ alkyl, or substituted C₁-C₆ alkyl and X is O or NJ_c.

[0231] In certain embodiments, bicyclic nucleosides have the formula:


wherein:

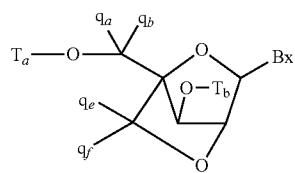
[0232] Bx is a heterocyclic base moiety;

[0233] T_a and T_b are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;

[0234] Z_b is C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, substituted C₁-C₆ alkyl, substituted C₂-C₆ alkenyl, substituted C₂-C₆ alkynyl or substituted acyl (C(=O)—).

[0235] In certain embodiments, bicyclic nucleosides have the formula:

wherein:


[0236] Bx is a heterocyclic base moiety;

[0237] T_a and T_b are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;

[0238] R_d is C₁-C₆ alkyl, substituted C₁-C₆ alkyl, C₂-C₆ alkenyl, substituted C₂-C₆ alkenyl, C₂-C₆ alkynyl or substituted C₂-C₆ alkynyl;

[0239] each q_a, q_b, q_c and q_d is, independently, H, halogen, C₁-C₆ alkyl, substituted C₁-C₆ alkyl, C₂-C₆ alkenyl, substituted C₂-C₆ alkenyl, C₂-C₆ alkynyl or substituted C₂-C₆ alkynyl, C₁-C₆ alkoxy, substituted C₁-C₆ alkoxy, acyl, substituted acyl, C₁-C₆ aminoalkyl or substituted C₁-C₆ aminoalkyl;

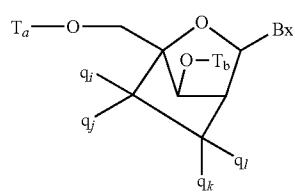
[0240] In certain embodiments, bicyclic nucleosides have the formula:

wherein:

[0241] Bx is a heterocyclic base moiety;

[0242] T_a and T_b are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;

[0243] q_a, q_b, q_e and q_f are each, independently, hydrogen, halogen, C₁-C₁₂ alkyl, substituted C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, substituted C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, substituted C₂-C₁₂ alkynyl, C₁-C₁₂ alkoxy, substituted C₁-C₁₂ alkoxy, OJ_j, SJ_j, SOJ_j, SO₂J_j, NJ_jJ_k, N₃, CN, C(=O)OJ_j, C(=O)NJ_jJ_k, C(=O)OJ_j, O—C(=O)NJ_jJ_k, N(H)C(=NH)NJ_jJ_k, N(H)C(=O)NJ_jJ_k or N(H)C(=S)NJ_jJ_k;


[0244] or q_e and q_f together are ==C(q_g)(q_h);

[0245] q_g and q_h are each, independently, H, halogen, C₁-C₁₂ alkyl or substituted C₁-C₁₂ alkyl.

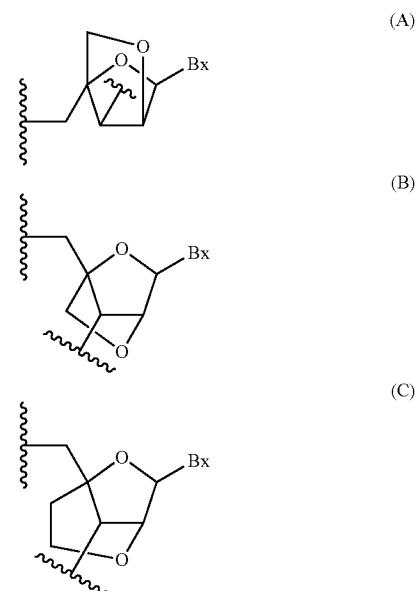
[0246] The synthesis and preparation of adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil bicyclic nucleosides having a 4'-CH₂—O-2' bridge, along with their oligomerization, and nucleic acid recognition properties have been described (Koshkin et al., *Tetrahedron*, 1998, 54, 3607-3630). The synthesis of bicyclic nucleosides has also been described in WO 98/39352 and WO 99/14226.

[0247] Analogs of various bicyclic nucleosides that have 4' to 2' bridging groups such as 4'-CH₂—O-2' and 4'-CH₂—S-2', have also been prepared (Kumar et al., *Bioorg. Med. Chem. Lett.*, 1998, 8, 2219-2222). Preparation of oligodeoxyribonucleotide duplexes comprising bicyclic nucleosides for use as substrates for nucleic acid polymerases has also been described (Wengel et al., WO 99/14226). Furthermore, synthesis of 2'-amino-BNA, a novel conformationally restricted high-affinity oligonucleotide analog has been described in the art (Singh et al., *J. Org. Chem.*, 1998, 63, 10035-10039). In addition, 2'-amino- and 2'-methylamino-BNA's have been prepared and the thermal stability of their duplexes with complementary RNA and DNA strands has been previously reported.

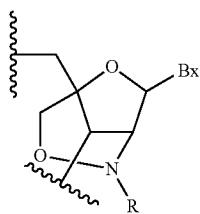
[0248] In certain embodiments, bicyclic nucleosides have the formula:

wherein:

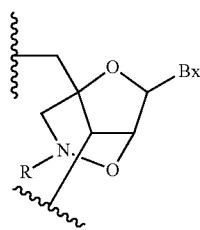
[0249] Bx is a heterocyclic base moiety;

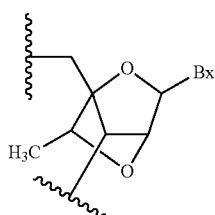

[0250] T_a and T_b are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;

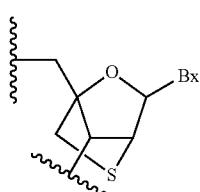
[0251] each q_i, q_j, q_k and q_l is, independently, H, halogen, C₁-C₁₂ alkyl, substituted C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, substituted C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, substituted C₂-C₁₂ alkynyl, C₁-C₁₂ alkoxy, substituted C₁-C₁₂ alkoxy, OJ_j, SJ_j, SOJ_j, SO₂J_j, NJ_jJ_k, N₃, CN, C(=O)OJ_j, C(=O)NJ_jJ_k, C(=O)J_j, O—C(=O)NJ_jJ_k, N(H)C(=NH)NJ_jJ_k, N(H)C(=O)NJ_jJ_k or N(H)C(=S)NJ_jJ_k; and

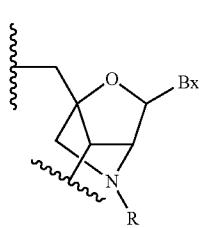

[0252] q_i and q_j or q_j and q_k together are ==C(q_g)(q_h), wherein q_g and q_h are each, independently, H, halogen, C₁-C₁₂ alkyl or substituted C₁-C₁₂ alkyl.

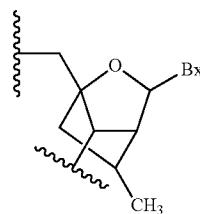
[0253] One carbocyclic bicyclic nucleoside having a 4'-(CH₂)₃-2' bridge and the alkenyl analog bridge 4'-CH=CH—CH₂-2' have been described (Frier et al., *Nucleic Acids Research*, 1997, 25(22), 4429-4443 and Albaek et al., *J. Org. Chem.*, 2006, 71, 7731-7740). The synthesis and preparation of carbocyclic bicyclic nucleosides along with their oligomerization and biochemical studies have also been described (Srivastava et al., *J. Am. Chem. Soc.* 2007, 129(26), 8362-8379).

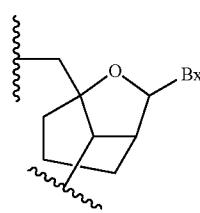

[0254] In certain embodiments, bicyclic nucleosides include, but are not limited to, (A) α -L-methyleneoxy (4'-CH₂—O-2') BNA, (B) β -D-methyleneoxy (4'-CH₂—O-2') BNA, (C) ethyleneoxy (4'-(CH₂)₂—O-2') BNA, (D) aminoxy (4'-CH₂—O—N(R)-2') BNA, (E) oxyamino (4'-CH₂—N(R)—O-2') BNA, (F) methyl(methyleneoxy)(4'-CH(CH₃—O-2') BNA (also referred to as constrained ethyl or cEt), (G) methylene-thio (4'-CH₂—S-2') BNA, (H) methylene-amino (4'-CH₂—N(R)-2') BNA, (I) methyl carbocyclic (4'-CH₂—CH(CH₃)-2') BNA, (J) propylene carbocyclic (4'-CH₂)₃-2') BNA, and (K) vinyl BNA as depicted below.


-continued

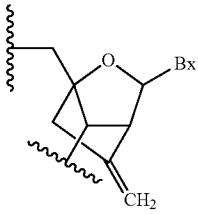

(D)


(E)


(F)

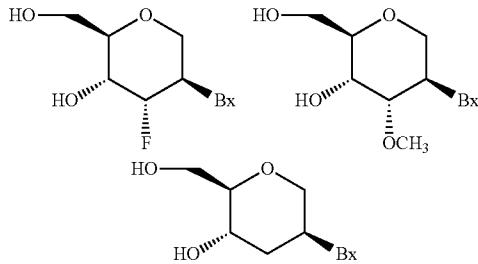

(G)

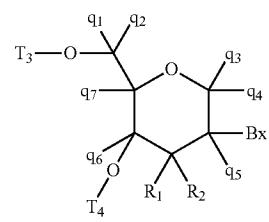
(H)


(I)

(J)

-continued


(K)


(K)

wherein Bx is the base moiety and R is, independently, H, a protecting group, C₁-C₆ alkyl or C₁-C₆ alkoxy.

[0255] In certain embodiments, nucleosides are modified by replacement of the ribosyl ring with a sugar surrogate. Such modification includes without limitation, replacement of the ribosyl ring with a surrogate ring system (sometimes referred to as DNA analogs) such as a morpholino ring, a cyclohexenyl ring, a cyclohexyl ring or a tetrahydropyran ring such as one having one of the formula:

[0256] In certain embodiments, sugar surrogates are selected having the formula:

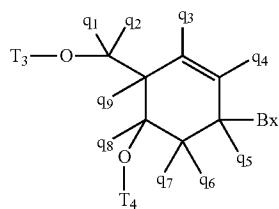
(L)

wherein:

[0257] Bx is a heterocyclic base moiety;

[0258] T₃ and T₄ are each, independently, an internucleoside linking group linking the tetrahydropyran nucleoside analog to the oligomeric compound or one of T₃ and T₄ is an internucleoside linking group linking the tetrahydropyran nucleoside analog to an oligomeric compound or oligonucleotide and the other of T₃ and T₄ is H, a hydroxyl protecting group, a linked conjugate group or a 5' or 3'-terminal group;

[0259] q₁, q₂, q₃, q₄, q₅, q₆ and q₇ are each independently, H, C₁-C₆ alkyl, substituted C₁-C₆ alkyl, C₂-C₆ alkenyl, substituted C₂-C₆ alkenyl, C₂-C₆ alkynyl or substituted C₂-C₆ alkynyl; and


[0260] one of R₁ and R₂ is hydrogen and the other is selected from halogen, substituted or unsubstituted alkoxy, NJ₁J₂, SJ₁, N₃, OC(=X)J₁, OC(=X)NJ₁J₂, NJ₃C(=X)

NJ₁J₂ and CN, wherein X is O, S or NJ₁ and each J₁, J₂ and J₃ is, independently, H or C₁-C₆ alkyl.

[0261] In certain embodiments, q₁, q₂, q₃, q₄, q₅, q₆ and q₇ are each H. In certain embodiments, at least one of q₁, q₂, q₃, q₄, q₅, q₆ and q₇ is other than H. In certain embodiments, at least one of q₁, q₂, q₃, q₄, q₅, q₆ and q₇ is methyl. In certain embodiments, THP nucleosides are provided wherein one of R₁ and R₂ is F. In certain embodiments, R₁ is fluoro and R₂ is H; R₁ is methoxy and R₂ is H, and R₁ is methoxyethoxy and R₂ is H.

[0262] Such sugar surrogates include, but are not limited to, what is referred to in the art as hexitol nucleic acid (HNA), altritol nucleic acid (ANA), and mannitol nucleic acid (MNA) (see Leumann, C. J., *Bioorg. & Med. Chem.*, 2002, 10, 841-854).

[0263] In certain embodiments, antisense compounds comprise one or more modified cyclohexenyl nucleosides, which is a nucleoside having a six-membered cyclohexenyl in place of the pentofuranosyl residue in naturally occurring nucleosides. Modified cyclohexenyl nucleosides include, but are not limited to those described in the art (see for example commonly owned, published PCT Application WO 2010/036696, published on Apr. 10, 2010, Robeyns et al., *J. Am. Chem. Soc.*, 2008, 130(6), 1979-1984; Horvath et al., *Tetrahedron Letters*, 2007, 48, 3621-3623; Nauwelaerts et al., *J. Am. Chem. Soc.*, 2007, 129(30), 9340-9348; Gu et al., *Nucleosides, Nucleotides & Nucleic Acids*, 2005, 24(5-7), 993-998; Nauwelaerts et al., *Nucleic Acids Research*, 2005, 33(8), 2452-2463; Robeyns et al., *Acta Crystallographica, Section F: Structural Biology and Crystallization Communications*, 2005, F61(6), 585-586; Gu et al., *Tetrahedron*, 2004, 60(9), 2111-2123; Gu et al., *Oligonucleotides*, 2003, 13(6), 479-489; Wang et al., *J. Org. Chem.*, 2003, 68, 4499-4505; Verbeure et al., *Nucleic Acids Research*, 2001, 29(24), 4941-4947; Wang et al., *J. Org. Chem.*, 2001, 66, 8478-82; Wang et al., *Nucleosides, Nucleotides & Nucleic Acids*, 2001, 20(4-7), 785-788; Wang et al., *J. Am. Chem.*, 2000, 122, 8595-8602; Published PCT application, WO 06/047842; and Published PCT Application WO 01/049687; the text of each is incorporated by reference herein, in their entirety). Certain modified cyclohexenyl nucleosides have the formula:

wherein:

[0264] Bx is a heterocyclic base moiety;

[0265] T₃ and T₄ are each, independently, an internucleoside linking group linking the cyclohexenyl nucleoside analog to an antisense compound or one of T₃ and T₄ is an internucleoside linking group linking the tetrahydropyran nucleoside analog to an antisense compound and the other of T₃ and T₄ is H, a hydroxyl protecting group, a linked conjugate group, or a 5'- or 3'-terminal group; and q₁, q₂, q₃, q₄, q₅, q₆, q₇, q₈ and q₉ are each, independently, H, C₁-C₆ alkyl,

substituted C₁-C₆ alkyl, C₂-C₆ alkenyl, substituted C₂-C₆ alkenyl, C₂-C₆ alkynyl, substituted C₂-C₆ alkynyl or other sugar substituent group.

[0266] Many other bicyclic and tricyclic sugar surrogate ring systems are also known in the art that can be used to modify nucleosides for incorporation into antisense compounds (see for example review article: Leumann, Christian J., *Bioorg. & Med. Chem.*, 2002, 10, 841-854). Such ring systems can undergo various additional substitutions to enhance activity.

[0267] Methods for the preparations of modified sugars are well known to those skilled in the art. Some representative U.S. patents that teach the preparation of such modified sugars include without limitation, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,670,633; 5,700,920; 5,792,847 and 6,600,032 and International Application PCT/US2005/019219, filed Jun. 2, 2005 and published as WO 2005/121371 on Dec. 22, 2005, and each of which is herein incorporated by reference in its entirety.

[0268] In nucleotides having modified sugar moieties, the nucleobase moieties (natural, modified or a combination thereof) are maintained for hybridization with an appropriate nucleic acid target.

[0269] In certain embodiments, antisense compounds targeted to a DMPK nucleic acid comprise one or more nucleotides having modified sugar moieties. In certain embodiments, the modified sugar moiety is 2'-MOE. In certain embodiments, the 2'-MOE modified nucleotides are arranged in a gapmer motif.

Modified Nucleobases

[0270] Nucleobase (or base) modifications or substitutions are structurally distinguishable from, yet functionally interchangeable with, naturally occurring or synthetic unmodified nucleobases. Both natural and modified nucleobases are capable of participating in hydrogen bonding. Such nucleobase modifications can impart nucleic acid stability, binding affinity or some other beneficial biological property to antisense compounds. Modified nucleobases include synthetic and natural nucleobases such as, for example, 5-methylcytosine (5-me-C). Certain nucleobase substitutions, including 5-methylcytosine substitutions, are particularly useful for increasing the binding affinity of an antisense compound for a target nucleic acid. For example, 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., eds., *Antisense Research and Applications*, CRC Press, Boca Raton, 1993, pp. 276-278).

[0271] Additional unmodified nucleobases include 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C≡C-CH₃) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-aza-

guanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine.

[0272] Heterocyclic base moieties can also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Nucleobases that are particularly useful for increasing the binding affinity of antisense compounds include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2 aminopropyladenine, 5-propynyluracil and 5-propynylcytosine.

[0273] In certain embodiments, antisense compounds targeted to a DMPK nucleic acid comprise one or more modified nucleobases. In certain embodiments, gap-widened antisense oligonucleotides targeted to a DMPK nucleic acid comprise one or more modified nucleobases. In certain embodiments, the modified nucleobase is 5-methylcytosine. In certain embodiments, each cytosine is a 5-methylcytosine.

Compositions and Methods for Formulating Pharmaceutical Compositions

[0274] Antisense oligonucleotides can be admixed with pharmaceutically acceptable active or inert substance for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.

[0275] Antisense compound targeted to a DMPK nucleic acid can be utilized in pharmaceutical compositions by combining the antisense compound with a suitable pharmaceutically acceptable diluent or carrier. A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS). PBS is a diluent suitable for use in compositions to be delivered parenterally. Accordingly, in one embodiment, employed in the methods described herein is a pharmaceutical composition comprising an antisense compound targeted to a DMPK nucleic acid and a pharmaceutically acceptable diluent. In certain embodiments, the pharmaceutically acceptable diluent is PBS. In certain embodiments, the antisense compound is an antisense oligonucleotide.

[0276] Pharmaceutical compositions comprising antisense compounds encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other oligonucleotide which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of antisense compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.

[0277] A prodrug can include the incorporation of additional nucleosides at one or both ends of an antisense compound which are cleaved by endogenous nucleases within the body, to form the active antisense compound.

Conjugated Antisense Compounds

[0278] Antisense compounds can be covalently linked to one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the resulting antisense oligonucleotides. Typical conjugate groups include cholesterol moieties and lipid moieties. Additional conjugate

groups include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.

[0279] Antisense compounds can also be modified to have one or more stabilizing groups that are generally attached to one or both termini of antisense compounds to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the antisense compound having terminal nucleic acid from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5'-terminus (5'-cap), or at the 3'-terminus (3'-cap), or can be present on both termini. Cap structures are well known in the art and include, for example, inverted deoxy abasic caps. Further 3' and 5'-stabilizing groups that can be used to cap one or both ends of an antisense compound to impart nuclease stability include those disclosed in WO 03/004602 published on Jan. 16, 2003.

Cell Culture and Antisense Compounds Treatment

[0280] The effects of antisense compounds on the level, activity or expression of DMPK nucleic acids can be tested in vitro in a variety of cell types. Cell types used for such analyses are available from commercial vendors (e.g. American Type Culture Collection, Manassas, Va.; Zen-Bio, Inc., Research Triangle Park, N.C.; Clonetics Corporation, Walkersville, Md.) and cells are cultured according to the vendor's instructions using commercially available reagents (e.g. Invitrogen Life Technologies, Carlsbad, Calif.). Illustrative cell types include, but are not limited to, HepG2 cells, Hep3B cells, primary hepatocytes, A549 cells, GM04281 fibroblasts and LLC-MK2 cells.

In Vitro Testing of Antisense Oligonucleotides

[0281] Described herein are methods for treatment of cells with antisense oligonucleotides, which can be modified appropriately for treatment with other antisense compounds.

[0282] In general, cells are treated with antisense oligonucleotides when the cells reach approximately 60-80% confluence in culture.

[0283] One reagent commonly used to introduce antisense oligonucleotides into cultured cells includes the cationic lipid transfection reagent LIPOFECTIN® (Invitrogen, Carlsbad, Calif.). Antisense oligonucleotides are mixed with LIPOFECTIN® in OPTI-MEM® 1 (Invitrogen, Carlsbad, Calif.) to achieve the desired final concentration of antisense oligonucleotide and a LIPOFECTIN® concentration that typically ranges 2 to 12 ug/mL per 100 nM antisense oligonucleotide.

[0284] Another reagent used to introduce antisense oligonucleotides into cultured cells includes LIPOFECTAMINE 2000® (Invitrogen, Carlsbad, Calif.). Antisense oligonucleotide is mixed with LIPOFECTAMINE 2000® in OPTI-MEM® 1 reduced serum medium (Invitrogen, Carlsbad, Calif.) to achieve the desired concentration of antisense oligonucleotide and a LIPOFECTAMINE® concentration that typically ranges 2 to 12 ug/mL per 100 nM antisense oligonucleotide.

[0285] Another reagent used to introduce antisense oligonucleotides into cultured cells includes Cytofectin® (Invitrogen, Carlsbad, Calif.). Antisense oligonucleotide is mixed with Cytofectin® in OPTI-MEM® 1 reduced serum medium (Invitrogen, Carlsbad, Calif.) to achieve the desired concen-

tration of antisense oligonucleotide and a Cytofectin® concentration that typically ranges 2 to 12 ug/mL per 100 nM antisense oligonucleotide.

[0286] Another technique used to introduce antisense oligonucleotides into cultured cells includes electroporation.

[0287] Cells are treated with antisense oligonucleotides by routine methods. Cells are typically harvested 16-24 hours after antisense oligonucleotide treatment, at which time RNA or protein levels of target nucleic acids are measured by methods known in the art and described herein. In general, when treatments are performed in multiple replicates, the data are presented as the average of the replicate treatments.

[0288] The concentration of antisense oligonucleotide used varies from cell line to cell line. Methods to determine the optimal antisense oligonucleotide concentration for a particular cell line are well known in the art. Antisense oligonucleotides are typically used at concentrations ranging from 1 nM to 300 nM when transfected with LIPOFECTAMINE2000®, Lipofectin or Cytofectin. Antisense oligonucleotides are used at higher concentrations ranging from 625 to 20,000 nM when transfected using electroporation.

RNA Isolation

[0289] RNA analysis can be performed on total cellular RNA or poly(A)+mRNA. Methods of RNA isolation are well known in the art. RNA is prepared using methods well known in the art, for example, using the TRIZOL® Reagent (Invitrogen, Carlsbad, Calif.) according to the manufacturer's recommended protocols.

Analysis of Inhibition of Target Levels or Expression

[0290] Inhibition of levels or expression of a DMPK nucleic acid can be assayed in a variety of ways known in the art. For example, target nucleic acid levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or quantitative real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+mRNA. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Quantitative real-time PCR can be conveniently accomplished using the commercially available ABI PRISM® 7600, 7700, or 7900 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions.

Quantitative Real-Time PCR Analysis of Target RNA Levels

[0291] Quantitation of target RNA levels can be accomplished by quantitative real-time PCR using the ABI PRISM® 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer's instructions. Methods of quantitative real-time PCR are well known in the art.

[0292] Prior to real-time PCR, the isolated RNA is subjected to a reverse transcriptase (RT) reaction, which produces complementary DNA (cDNA) that is then used as the substrate for the real-time PCR amplification. The RT and real-time PCR reactions are performed sequentially in the same sample well. RT and real-time PCR reagents are obtained from Invitrogen (Carlsbad, Calif.). RT, real-time-PCR reactions are carried out by methods well known to those skilled in the art.

[0293] Gene (or RNA) target quantities obtained by real time PCR are normalized using either the expression level of

a gene whose expression is constant, such as cyclophilin A, or by quantifying total RNA using RIBOGREEN® (Invitrogen, Inc. Carlsbad, Calif.). Cyclophilin A expression is quantified by real time PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RIBOGREEN® RNA quantification reagent (Invitrogen, Inc. Eugene, Oreg.). Methods of RNA quantification by RIBOGREEN® are taught in Jones, L. J., et al., (Analytical Biochemistry, 1998, 265, 368-374). A CYTOFLUOR® 4000 instrument (PE Applied Biosystems) is used to measure RIBOGREEN® fluorescence.

[0294] Probes and primers are designed to hybridize to a DMPK nucleic acid. Methods for designing real-time PCR probes and primers are well known in the art, and can include the use of software such as PRIMER EXPRESS® Software (Applied Biosystems, Foster City, Calif.).

Analysis of Protein Levels

[0295] Antisense inhibition of DMPK nucleic acids can be assessed by measuring DMPK protein levels. Protein levels of DMPK can be evaluated or quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA), quantitative protein assays, protein activity assays (for example, caspase activity assays), immunohistochemistry, immunocytochemistry or fluorescence-activated cell sorting (FACS). Antibodies directed to a target can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art.

In Vivo Testing of Antisense Compounds

[0296] Antisense compounds, for example, antisense oligonucleotides, are tested in animals to assess their ability to inhibit expression of DMPK and produce phenotypic changes. Testing can be performed in normal animals, or in experimental disease models, for example, the HSA^{LR} mouse model of myotonic dystrophy (DM1).

[0297] The HSA^{LR} mouse model is an established model for DM1 (Mankodi, A. et al. Science, 289: 1769, 2000). The mice carry a human skeletal actin (hACTA1) transgene with 220 CTG repeats inserted in the 3' UTR of the gene. The hACTA1-CUG^{exp} transcript accumulates in nuclear foci in skeletal muscles and results in myotonia similar to that in human DM1 (Mankodi, A. et al. Mol. Cell 10: 35, 2002; Lin, X. et al. Hum. Mol. Genet. 15: 2087, 2006). Hence, it is expected that amelioration of DM1 symptoms in the HSA^{LR} mouse by antisense inhibition of the hACTA1 transgene would predict amelioration of similar symptoms in human patients by antisense inhibition of the DMPK transcript.

[0298] Expression of CUG^{exp} RNA in mice causes extensive remodeling of the muscle transcriptome, much of which is reproduced by ablation of MBNL1. Hence, it is expected that normalization of the transcriptome in HSA^{LR} mice would predict normalization of the human transcriptome in DM1 patients by antisense inhibition of the DMPK transcript.

[0299] For administration to animals, antisense oligonucleotides are formulated in a pharmaceutically acceptable diluent, such as phosphate-buffered saline. Administration includes parenteral routes of administration. Following a period of treatment with antisense oligonucleotides, RNA is

isolated from tissue and changes in DMPK nucleic acid expression are measured. Changes in DMPK protein levels are also measured.

Splicing

[0300] Myotonic dystrophy (DM1) is caused by CTG repeat expansions in the 3' untranslated region of the DMPK gene (Brook, J. D. et al. *Cell*. 68: 799, 1992). This mutation leads to RNA dominance, a process in which expression of RNA containing an expanded CUG repeat (CUGexp) induces cell dysfunction (Osborne R J and Thornton C A., *Human Molecular Genetics.*, 2006, 15(2): R162-R169). Such CUGexp are retained in the nuclear foci of skeletal muscles (Davis, B. M. et al. *Proc. Natl. Acad. Sci. U.S.A.* 94:7388, 1997). The accumulation of CUGexp in the nuclear foci leads to the sequestration of poly(CUG)-binding proteins, such as, Muscleblind-like 1 (MBLN1) (Miller, J. W. et al. *EMBO J.* 19: 4439, 2000). MBLN1 is a splicing factor and regulates the splicing of genes such as Serc1, CIC-1, Titin, and Zasp. Therefore, sequestration of MBLN1 by CUGexp triggers misregulated alternative splicing of the exons of genes that MBLN1 normally controls (Lin, X. et al. *Hum. Mol. Genet.* 15: 2087, 2006). Correction of alternative splicing in an animal displaying such disregulation, such as, for example, in a DM1 patient and the HSALR mouse model, is a useful indicator for the efficacy of a treatment, including treatment with an antisense oligonucleotide.

Certain Biomarkers

[0301] DM1 severity in mouse models is determined, at least in part, by the level of CUG^{exp} transcript accumulation in the nucleus or nuclear foci. A useful physiological marker for DM1 severity is the development of high-frequency runs of involuntary action potentials (myotonia).

Certain Indications

[0302] In certain embodiments, provided herein are methods of treating an individual comprising administering one or more pharmaceutical compositions as described herein. In certain embodiments, the individual has type 1 myotonic dystrophy (DM1).

[0303] Accordingly, provided herein are methods for ameliorating a symptom associated with type 1 myotonic dystrophy in a subject in need thereof. In certain embodiments, provided is a method for reducing the rate of onset of a symptom associated with type 1 myotonic dystrophy. In certain embodiments, provided is a method for reducing the severity of a symptom associated with type 1 myotonic dystrophy. In certain embodiments, symptoms associated with DM1 include muscle stiffness, myotonia, disabling distal weakness, weakness in face and jaw muscles, difficulty in swallowing, drooping of the eyelids (ptosis), weakness of neck muscles, weakness in arm and leg muscles, persistent muscle pain, hypersomnia, muscle wasting, dysphagia, respiratory insufficiency, irregular heartbeat, heart muscle damage, apathy, insulin resistance, and cataracts. In children, the symptoms may also be developmental delays, learning problems, language and speech issues, and personality development issues.

[0304] In certain embodiments, the methods comprise administering to an individual in need thereof a therapeutically effective amount of a compound targeted to a DMPK nucleic acid.

[0305] In certain embodiments, administration of an anti-sense compound targeted to a DMPK nucleic acid results in reduction of DMPK expression by at least about 15%, by at least about 20%, by at least about 25%, by at least about 30%, by at least about 35%, by at least about 40%, by at least about 45%, by at least about 50%, by at least about 55%, by at least about 60%, by least about 65%, by least about 70%, by least about 75%, by least about 80%, by at least about 85%, by at least about 90%, by at least about 95% or by at least about 99%, or a range defined by any two of these values.

[0306] In certain embodiments, pharmaceutical compositions comprising an antisense compound targeted to DMPK are used for the preparation of a medicament for treating a patient suffering or susceptible to type 1 myotonic dystrophy.

[0307] In certain embodiments, the methods described herein include administering a compound comprising a modified oligonucleotide having a contiguous nucleobases portion as described herein of a sequence recited in SEQ ID NO: 12-156, 160-770, and 774-792.

Administration

[0308] In certain embodiments, the compounds and compositions as described herein are administered parenterally.

[0309] In certain embodiments, parenteral administration is by infusion. Infusion can be chronic or continuous or short or intermittent. In certain embodiments, infused pharmaceutical agents are delivered with a pump. In certain embodiments, parenteral administration is by injection (e.g., bolus injection). The injection can be delivered with a syringe.

[0310] Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g., intrathecal or intracerebroventricular administration. Administration can be continuous, or chronic, or short, or intermittent.

[0311] In certain embodiments, the administering is subcutaneous, intravenous, intracerebral, intracerebroventricular, intrathecal or another administration that results in a systemic effect of the oligonucleotide (systemic administration is characterized by a systemic effect, i.e., an effect in more than one tissue) or delivery to the CNS or to the CSF.

[0312] The duration of action as measured by inhibition of alpha 1 actin and reduction of myotonia in the HSA^{LR} mouse model of DM1 is prolonged in muscle tissue including quadriceps, gastrocnemius, and the tibialis anterior (see Examples, below). Subcutaneous injections of antisense oligonucleotide for 4 weeks results in inhibition of alpha 1 actin by at least 70% in quadriceps, gastrocnemius, and the tibialis anterior in HSA^{LR} mice for at least 11 weeks (77 days) after termination of dosing. Subcutaneous injections of antisense oligonucleotide for 4 weeks results in elimination of myotonia in quadriceps, gastrocnemius, and the tibialis anterior in HSA^{LR} mice for at least 11 weeks (77 days) after termination of dosing.

[0313] In certain embodiments, delivery of a compound of composition, as described herein, results in at least 70% down-regulation of a target mRNA and/or target protein for at least 77 days. In certain embodiments, delivery of a compound or composition, as described herein, results in 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% down-regulation of a target mRNA and/or target protein for at least 30 days, at least 35 days, at least 40 days, at least 45 days, at least 50 days, at least 55 days, at least 60 days, at least 65 days, at least 70 days, at least 75 days, at least 76 days, at least

77 days, at least 78 days, at least 79 days, at least 80 days, at least 85 days, at least 90 days, at least 95 days, at least 100 days, at least 105 days, at least 110 days, at least 115 days, at least 120 days, at least 1 year.

[0314] In certain embodiments, an antisense oligonucleotide is delivered by injection or infusion once every 77 days. In certain embodiments, an antisense oligonucleotide is delivered by injection or infusion once every month, every two months, every three months, every 6 months, twice a year or once a year.

Certain Combination Therapies

[0315] In certain embodiments, a first agent comprising the modified oligonucleotide of the invention is co-administered with one or more secondary agents. In certain embodiments, such second agents are designed to treat the same type 1 myotonic dystrophy as the first agent described herein. In certain embodiments, such second agents are designed to treat a different disease, disorder, or condition as the first agent described herein. In certain embodiments, such second agents are designed to treat an undesired side effect of one or more pharmaceutical compositions as described herein. In certain embodiments, second agents are co-administered with the first agent to treat an undesired effect of the first agent. In certain embodiments, second agents are co-administered with the first agent to produce a combinational effect. In certain embodiments, second agents are co-administered with the first agent to produce a synergistic effect.

[0316] In certain embodiments, a first agent and one or more second agents are administered at the same time. In certain embodiments, the first agent and one or more second agents are administered at different times. In certain embodiments, the first agent and one or more second agents are prepared together in a single pharmaceutical formulation. In certain embodiments, the first agent and one or more second agents are prepared separately.

EXAMPLES

Non-Limiting Disclosure and Incorporation by Reference

[0317] While certain compounds, compositions and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references recited in the present application is incorporated herein by reference in its entirety.

Example 1

Antisense Inhibition of Human Dystrophin Myotonia Protein Kinase (DMPK) in Human Skeletal Muscle Cells (hSKMC)

[0318] Antisense oligonucleotides targeted to a human DMPK nucleic acid were tested for their effect on DMPK RNA transcript in vitro. Cultured hSKM cells at a density of 20,000 cells per well were transfected using electroporation with 100 nM antisense oligonucleotide. After approximately 24 hours, RNA was isolated from the cells and DMPK RNA transcript levels were measured by quantitative real-time PCR with human primer probe set RTS3164 (forward sequence AGCCTGAGCCGGGAGATG, designated herein

as SEQ ID NO: 9; reverse sequence GCGTAGTTGACTG-GCGAAGTT, designated herein as SEQ ID NO: 10; probe sequence AGGCCATCCGCACGGACAAACX, designated herein as SEQ ID NO: 11). DMPK RNA transcript levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of hDMPK, relative to untreated control cells.

[0319] The antisense oligonucleotides in Tables 1 and 2 are 5-10-5 gapmers, where the gap segment comprises ten 2'-deoxyribonucleosides and each wing segment comprises five 2'-MOE nucleosides. The internucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. 'Target start site' indicates the 5'-most nucleoside to which the antisense oligonucleotide is targeted. 'Target stop site' indicates the 3'-most nucleoside to which the antisense oligonucleotide is targeted. All the antisense oligonucleotides listed in Table 1 target SEQ ID NO: 1 (GENBANK Accession No. NM_001081560.1). All the antisense oligonucleotides listed in Table 2 target SEQ ID NO: 2 (the complement of GENBANK Accession No. NT_011109.15 truncated from nucleotides 18540696 to 18555106).

[0320] Several antisense oligonucleotides demonstrated significant inhibition of human DMPK mRNA levels under the conditions specified above.

TABLE 1

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 gapmers targeting SEQ ID NO: 1					
Target Start Site	Target Stop Site	ISIS No.	Sequence	% inhibition	SEQ ID NO.
93	112	299476	CTGGCTGCATGTCTGCCTGT	81	12
277	296	299479	CCAGGAGAAGGTCGAGCAGG	57	13
737	756	299493	TCTATGGCCATGACAATCTC	57	14
773	792	299494	ATGTCCCTGTGCACGTAGCC	77	15
1194	1213	299501	ATGTGTCCGGAAAGTCGCCCTG	50	16
1628	1647	299511	CTCAGGCTCTGCCGGGTGAG	70	17
1855	1874	299517	GGCACTGGCCCACAGCCACG	78	18
2379	2398	299526	CCTGGCCGAAAGAAAGAAAT	31	19
2367	2386	444380	AAAGAAATGGTCTGTGATCC	56	20
2370	2389	444381	AAGAAAGAAATGGTCTGTGA	77	21
2376	2395	444382	GGCCGAAAGAAAGAAATGGT	61	22
2385	2404	444383	CCTCAGCCTGGCCGAAAGAA	57	23
2388	2407	444384	GGGCCTCAGCCTGGCCGAAA	65	24
2391	2410	444385	TCAGGGCCTCAGCCTGGCCG	61	25
2411	2430	444386	CTGCAGTTGCCCATCCACG	68	26
2414	2433	444387	GGCCTGCAGTTGCCCATCC	77	27
2417	2436	444388	CCAGGCCTGCAGTTGCCCA	54	28
2423	2442	444389	GCCTTCCCAGGCCTGCAGTT	77	29
2426	2445	444390	GCTGCCTCCCAGGCCTGCA	83	30

TABLE 1-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 qapmers targeting SEQ ID NO: 1					
Target Start Site	Target Stop Site	Target ISIS No.	Target Sequence	% inhibi- tion	SEQ ID NO.
2429	2448	444391	CTTGCTGCCTTCCCAGGCCT	69	31
2435	2454	444392	GCCCCGGCTTGCTGCCTTCCC	82	32
2438	2457	444393	ACGGCCCCGGCTTGCTGCCTT	78	33
2441	2460	444394	CGGACGGCCCGGCTTGCTGC	57	34
2444	2463	444395	ACACGGACGGCCCGGCTTG	73	35
2450	2469	444396	GATGGAACACGGACGGCCCG	80	36
2453	2472	444397	GAGGATGGAACACGGACGGC	86	37
2456	2475	444398	GTGGAGGATGGAACACGGAC	84	38
2481	2500	444399	GCGAACCAAACGATAGGTGGG	80	39
2484	2503	444400	TTGCGAACCAAACGATAGGT	86	40
2490	2509	444401	TTGCACTTTGCGAACCAAACG	89	41
2493	2512	444402	GCTTTGCACTTTGCGAACCA	89	42
2496	2515	444403	AAAGCTTGCACTTGCGA	83	43
2499	2518	444404	AAGAAAGCTTGCACTTGC	91	44
2502	2521	444405	CACAAGAAAGCTTGCACTT	70	45
2508	2527	444406	GTCATGCACAAGAAAGCTT	34	46
2527	2546	444407	ACGCTCCCCAGAGCAGGGCG	39	47
2543	2562	444408	GCAGAGATCCGCCAGACGC	85	48
2546	2565	444409	CAGGAGAGATCGGCCAGA	65	49
2549	2568	444410	AAGCAGGCAGAGATCGGCC	84	50
2555	2574	444411	CCGAGTAAGCAGGGAGAGAT	58	51
2558	2577	444412	TTCCCGAGTAAGCAGGCAGA	70	52
2564	2583	444413	GCAAATTCCCAGTAAGCA	62	53
2567	2586	444414	AAAGCAAATTCCCAGTAA	53	54
2573	2592	444415	TGGCAAAAGCAAATTCCC	64	55
2576	2595	444416	GGTTTGGCAAAAGCAAATT	23	56
2579	2598	444417	GCGGGTTTGGCAAAAGCAA	70	57
2582	2601	444418	AAAGCGGGTTGGCAAAAGC	43	58
2588	2607	444419	CCCGAAAAAGCGGGTTGGC	71	59
2591	2610	444420	ATCCCCGAAAAGCGGGTT	53	60
2595	2614	444421	CGGGATCCCCGAAAAGCGG	45	61
2598	2617	444422	GCGCGGGATCCCCGAAAAG	48	62
2623	2642	444423	GAGAGCAGCGCAAGTGA	77	63
2626	2645	444424	TCCGAGAGCAGCGCAAGTGA	62	64
2629	2648	444425	GGCTCCGAGAGCAGCGCAAG	79	65

TABLE 1-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 qapmers targeting SEQ ID NO: 1					
Target Start Site	Target Stop Site	Target ISIS No.	Target Sequence	% inhibi- tion	SEQ ID NO.
2649	2668	444426	AAGCGGGCGGAGCCGGCTGG	20	66
2652	2671	444427	CCGAAAGCGGGCGGAGCCGGC	0	67
2658	2677	444428	AAACCGCCGAAGCGGGCGGA	0	68
2661	2680	444429	TCCAAACCGCCGAAGCGGGC	45	69
2664	2683	444430	ATATCCAAACCGCCGAAGCG	31	70
2667	2686	444431	TAAATATCCAAACCGCCGAA	42	71
2670	2689	444432	CAATAAATATCCAAACCGCC	53	72
2676	2695	444433	CGAGGTCAATAAAATATCAA	63	73
2679	2698	444434	GGACGAGGTCAATAAAATATC	83	74
2682	2701	444435	GGAGGACGAGGTCAATAAAAT	82	75
2685	2704	444436	GTCGGAGGACGAGGTCAATA	86	76
2688	2707	444437	CGAGTCGGAGGACGAGGTCA	73	77
2694	2713	444438	TGTCAGCGAGTCGGAGGACG	79	78
2697	2716	444439	GCCTGTCAGCGAGTCGGAGG	83	79
2700	2719	444440	GTAGCCTGTCAGCGAGTCGG	94	80
2703	2722	444441	CCTGTAGCCTGTCAGCGAGT	90	81
2706	2725	444442	GGTCCTGTAAGCCTGTCAGCG	90	82
2764	2783	444443	AAATACCGAGGAATTCGGG	82	83
2767	2786	444444	AATAAATACCGAGGAATGTC	66	84
2770	2789	444445	GACAATAAATACCGAGGAAT	67	85
2093	2112	445546	CGGGGCCCGGAGTCGAAGA	0	86
2097	2116	445547	CCAACGGGGCCCCGGAGTCG	38	87
2099	2118	445548	TTCCAACGGGGCCCCGGAGT	22	88
2102	2121	445549	GTCCTCCAACGGGGCCCCGG	50	89
2104	2123	445550	CAGTCTCCAACGGGGCCCC	27	90
2106	2125	445551	CTCAGTCTCCAACGGGGCC	57	91
2109	2128	445552	GCACTCAGTCTCCAACGGG	69	92
2115	2134	445553	CCCCGGCACTCAGTCTCC	76	93
2117	2136	445554	TGCCCCGGGCACTCAGTCTT	59	94
2119	2138	445555	CGTCCCCGGGCACTCAGTC	61	95
2123	2142	445556	GTGCCGTCCCCGGGCACTC	26	96
2126	2145	445557	TCTGTGCCGTCCCCGGCA	50	97
2129	2148	445558	GCTTCTGTGCCGTCCCCGG	57	98
2132	2151	445559	GCGGCTTCTGTGCCGTGCC	27	99
2134	2153	445560	GCGCGGCTCTGTGCCGTGC	0	100

TABLE 1-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 gapmers targeting SEQ ID NO: 1

Target Start Site	Target Stop Site	Target ISIS No.	Target Sequence	% inhibi- tion	SEQ ID NO.
2136	2155	445561	GGGC GCGGGCTCTGTGCCGT	8	101
2142	2161	445562	GGCGGTGGCGCGGGCTCTG	62	102
2146	2165	445563	GGCAGGCGGTGGCGCGGCT	49	103
2148	2167	445564	CTGGCAGGC GGTTGGCGCGG	51	104
2150	2169	445565	AACTGGCAGGC GGTTGGCGC	38	105
2153	2172	445566	GTGAACTGGCAGGC GGTTGG	64	106
2157	2176	445567	GGTTGTGA ACTGGCAGGC GG	66	107
2159	2178	445568	GCGGTTGTGA ACTGGCAGGC	85	108
2163	2182	445569	C GGAGCGGGTTGTGA ACTGGC	92	109
2167	2186	445570	CGCTCGGAGCGGGTTGTGAAC	51	110
2171	2190	445571	CCCACGCTCGGAGCGGGTTGT	74	111
2174	2193	445572	AGACCCACGCTCGGAGCGGT	80	112
2177	2196	445573	CGGAGACCCACGCTCGGAGC	83	113
2180	2199	445574	GGGCGGAGACCCACGCTCGG	62	114
2183	2202	445575	GCTGGCGGAGACCCACGCT	11	115
2186	2205	445576	GGAGCTGGCGGAGACCCAC	42	116
2188	2207	445577	CTGGAGCTGGCGGAGACCC	17	117
2191	2210	445578	GGACTGGAGCTGGCGGAGA	53	118
2193	2212	445579	CAGGACTGGAGCTGGCGGA	46	119
2197	2216	445580	ATCACAGGACTGGAGCTGG	66	120
2209	2228	445581	GGCGGGCGGGGATCACAGG	85	121
2211	2230	445582	GGGGGCGGGCCGGATCAC	96	122
179	198	445583	AGGCAGCACCATGGCCCCCTC	88	123
235	254	445584	GGTCAAACACCAGCTGCTGG	84	124
418	437	445585	CGATCACCTTCAGAATCTCG	11	125
498	517	445586	CTTGTTCATGATCTTCATGG	0	126
565	584	445587	CCCCATTCAACACACGTCC	83	127
583	602	445588	GGGTGATCCACCGCCGGTCC	59	128
639	658	445589	GTAATACCTCATGACCAGGT	86	129
664	683	445590	GCAGTGTCA GCAGGTCCCCG	83	130
744	763	445591	CACCGAGTCTATGCCATGA	60	131
761	780	445592	ACGTAGCCAAGCCGGTGCAC	68	132
812	831	445593	ATGTGGCCACAGCGGTCCAG	56	133
1099	1118	445594	CTTCGTCCACCAGCGGCAGA	32	134
1104	1123	445595	GACCCCTTCGTCACCAGCG	83	135

TABLE 1-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 gapmers targeting SEQ ID NO: 1

Target Start Site	Target Stop Site	Target ISIS No.	Target Sequence	% inhibi- tion	SEQ ID NO.
1178	1197	445596	CCTGCTCCACCCCGGCCAG	82	136
1187	1206	445597	CGGAAGTCGCCTGCTCCACC	81	137
1229	1248	445598	CGGAGACCATCCCAGTCGAG	67	138
1402	1421	445599	TGAGGGCCATGCAGGAGTAG	26	139
1443	1462	445600	CTCCAGTTCCATGGGTGTGG	80	140
1477	1496	445601	GCGCTTGCACGTGTGGCTCA	94	141
1526	1545	445602	GCCACTTCAGCTGTTCATC	54	142
1562	1581	445603	GCCTCAGCCTCTGCCGCAGG	71	143
1576	1595	445604	GCAGCGTCACCTCGGCCCTCA	31	144
1630	1649	445605	GGCTCAGGCTCTGCCGGGTG	86	145
1700	1719	445606	TTCCGAGCCTCTGCCCTCGCG	73	146
1708	1727	445607	GGTCCCGGTTCCGAGCCTCT	76	147
1742	1761	445608	ATCCGCTCTGCAACTGCCG	93	148
1750	1769	445609	GCAACTCCATCCGCTCCCTGC	60	149
1812	1831	445610	AGGTGGATCCGTGGCCGGG	48	150
2133	2152	445611	CGCGCTTCTGTGCCGTGCC	24	151
2428	2447	445612	TTGCTGCCTCCAGGCCTG	80	152

TABLE 2

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 gapmers targeting SEQ ID NO: 2

Target Start Site	Target Stop Site	Target ISIS No.	Target Sequence	% inhibi- tion	SEQ ID NO.
812	831	299471	TGCTCCCGACAA GCTCCAGA	95	153
876	895	299473	AGAACCTGCCATTGCTGAA	68	154
2381	2400	299535	CACTGAGGCCAGACATATG	68	155
3289	3308	299544	CTCTAGATTCA GATGCCAGGT	88	156

[0321] The antisense oligonucleotides from Tables 1 and 2 were also tested in an assay with similar conditions as described above, and mRNA levels measured with the human primer probe RTS3162 (forward sequence CGGGCCGTC-CGTGTT, designated herein as SEQ ID NO: 157; reverse sequence CTTGCACTTGCAGACCAA, designated herein as SEQ ID NO: 158; probe sequence CATCCTCACGCACCCCCACCA, designated herein as SEQ ID NO: 159). The results are presented in Table 3. DMPK mRNA expression was also assessed by RTS3162 which targets the DMPK gene near the 3'UTR. The use of a second primer probe was employed to confirm that the expression of the entire DMPK gene had been inhibited

TABLE 3

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5
gapmers measured using primer probe set RTS3162

ISIS No	% inhibition
299471	91
299473	65
299476	76
299479	53
299493	60
299494	66
299501	44
299511	39
299517	71
299526	39
299535	75
299544	84
444380	72
444381	82
444382	67
444383	63
444384	66
444385	66
444386	74
444387	85
444388	60
444389	81
444390	88
444391	79
444392	94
444393	88
444394	94
444395	96
444396	96
444397	95
444398	96
444399	95
444400	95
444401	95
444402	91
444403	84
444404	89
444405	71
444406	47
444407	42
444408	80
444409	56
444410	79
444411	66
444412	67
444413	55
444414	45
444415	57
444416	18
444417	64
444418	51
444419	66
444420	0
444421	46
444422	33
444423	74
444424	73
444425	78
444426	0
444427	0
444428	0
444429	75
444430	28
444431	58
444432	52
444433	60
444434	87
444435	76
444436	83
444437	71
444438	76

TABLE 3-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5
gapmers measured using primer probe set RTS3162

ISIS No	% inhibition
444439	73
444440	91
444441	87
444442	93
444443	77
444444	64
444445	67
445546	0
445547	59
445548	49
445549	77
445550	62
445551	74
445552	84
445553	70
445554	63
445555	75
445556	52
445557	78
445558	81
445559	58
445560	12
445561	42
445562	70
445563	76
445564	69
445565	60
445566	86
445567	84
445568	92
445569	93
445570	59
445571	84
445572	88
445573	84
445574	74
445575	26
445576	56
445577	38
445578	69
445579	70
445580	75
445581	85
445582	95
445583	88
445584	87
445585	34
445586	0
445587	82
445588	66
445589	87
445590	82
445591	68
445592	64
445593	54
445594	52
445595	77
445596	84
445597	78
445598	73
445599	29
445600	68
445601	92
445602	53
445603	70
445604	32
445605	61
445606	84
445607	80
445608	91
445609	68

TABLE 3-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5'-10-5 gapmers measured using primer probe set RTS3162

ISIS No	% inhibition
445610	63
445611	44
445612	91

Example 2

Design of Antisense Oligonucleotides Targeting CUG Repeats

[0322] Antisense oligonucleotides were designed targeting mRNA transcripts that contain multiple CUG repeats. The

chemistry of these oligonucleotides as well as their sequence is shown in Table 4. The symbols designated to the sugar type are shown after the base in subscript and are as follows: b=2'-O—N-[2-(dimethylamino)ethyl]acetamido ribose; d=2'-deoxyribose; e=2'- β -methoxyethyl ribose; f=T-alpha-fluoro-T-deoxyribose; g=2'-O-2[2-(2-methoxyethoxy) ethoxy]ethyl ribose; h=3'-fluoro-HNA; k=(S)-cEt; l=LNA (Locked Nucleic Acids); n=2'-O-(N-methylacetamide) ribose; o=2'-O-dimethylaminoxyethyl (DMAOE) ribose; p=PNA; r=propylribose; and x=amino acid core. The heterocycle names are defined with standard symbols for adenine, cytosine, thymine and guanine, 'mC' for 5-methylcytosine, and 'K' for Lysine Side Chain. Linkers are shown after the sugar type in subscript and designated with the following symbols: g=PNA-glycine full; a=amino acid; and s=thioate ester.

TABLE 4

Design of antisense oligonucleotides targeting CUG repeats			
ISIS No	Sequence	Chemistry	SEQ ID NO
431896	G _{ds} C _{ds} A _{ls} G _{ds} C _{ds} A _{ls} G _{ds} C _{ds} A _{ls} G _{ds} C _{ds} A _{ls} G _{ds} C _{ds} A _{ls} G _{ds} C _{ds} A _{ls} G _d	Deoxy and LNA units	Phosphorothioate 802
433804	K _{xo} G _{pg} C _{pg} A _{pg} G _{pg} C _{pg} A _{pg} G _{pg} C _{pg} A _{pg} G _{pg} K _{xa}	PNA and Amino Acid Core units with a Carboxy-amide endcap	mixed 803
444745	A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es}	Uniform MOE	Phosphorothioate 789
444746	A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es}	Uniform MOE	Phosphorothioate 804
444747	G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es}	Uniform MOE	Phosphorothioate 802
444748	G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es} G _{es} mC _{es} A _{es}	Uniform MOE	Phosphorothioate 805
444750	G _{ks} C _{ks} A _{ds} G _{ds} C _{ks} A _{ds} G _{ds} C _{ks} A _{ds} G _{ds} C _{ks} A _{ds} G _{ds} C _{ks} A _{ds} G _{ds} C _{ks} A _{ks}	Deoxy and (S)-cEt units	Phosphorothioate 805
444752	G _{es} C _{ks} A _{es} G _{es} C _{ks} A _{es} G _{es} C _{ks} A _{es} G _{es} C _{ks} A _{es} G _{es} C _{ks} A _{es} G _{es} C _{ks} A _{es}	MOE and (S)-cEt units	Phosphorothioate 805
444754	G _{es} mC _{es} A _{js} G _{js} C _{js} A _{js} G _{js} C _{js} A _{js} G _{js} C _{js} A _{js} G _{js} C _{js} A _{js} G _{js} mC _{es} A _{es}	MOE and 2'-alpha-fluoro units	Phosphorothioate 805
444759	G _{hs} mC _{hs} A _{hs} G _{hs} mC _{hs} A _{hs} G _{hs} mC _{hs} A _{hs} G _{hs} mC _{hs} A _{hs} G _{hs} mC _{hs} A _{hs} G _{hs} mC _{hs} A _{hs}	Uniform 3'-fluoro-HNA	Phosphorothioate 805
444761	G _{rs} mC _{rs} A _{rs} G _{rs} mC _{rs} A _{rs} G _{rs} mC _{rs} A _{rs} G _{rs} mC _{rs} A _{rs} G _{rs} mC _{rs} A _{rs} G _{rs} mC _{rs} A _{rs}	Uniform 2'-O-propylribose	Phosphorothioate 805
444762	G _{ns} mC _{ns} A _{ns} G _{ns} mC _{ns} A _{ns} G _{ns} mC _{ns} A _{ns} G _{ns} mC _{ns} A _{ns} G _{ns} mC _{ns} A _{ns} G _{ns} mC _{ns} A _{ns}	Uniform 2'-O-(N-methylacetamide) ribose	Phosphorothioate 805
444763	G _{os} mC _{es} A _{os} G _{os} mC _{es} A _{os} G _{os} mC _{es} A _{os} G _{os} mC _{es} A _{os} G _{os} mC _{es} A _{os} G _{os} mC _{es} A _{os}	MOE and 2'-O-dimethylaminoxyethyl (DMAOE) ribose units	Phosphorothioate 805
444764	G _{gs} mC _{es} A _{es} G _{gs} mC _{es} A _{es} G _{gs} mC _{es} A _{es} G _{gs} mC _{es} A _{es} G _{gs} mC _{es} A _{es} G _{gs} mC _{es} A _{es} G _{es}	MOE and 2'-O-2[2-(2-methoxyethoxy)ethoxy]ethyl ribose units	Phosphorothioate 802
444765	G _{bs} mC _{es} A _{es} G _{bs} mC _{es} A _{es} G _{bs} mC _{es} A _{es} G _{bs} mC _{es} A _{es} G _{bs} mC _{es} A _{es} G _{bs} mC _{es} A _{es} G _b	MOE and 2'-O-N-[2-(dimethylamino)ethyl]acetamido ribose units	Phosphorothioate 802

TABLE 4-continued

Design of antisense oligonucleotides targeting CUG repeats					
ISIS No.	Sequence	Chemistry	Backbone	SEQ ID NO	
473810	A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks}	Deoxy and (S)-cEt units	Phosphorothioate 806		
473811	A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks} G _{ds} mC _{ds} A _{ks}	Deoxy and (S)-cEt units	Phosphorothioate 807		

Example 3

Dose-Dependent Antisense Inhibition of Human DMPK in Human Skeletal Muscle Cells

[0323] Several of the antisense oligonucleotides exhibiting in vitro inhibition of DMPK in hSKMC (see Example 1) were tested at various doses. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 1,250 nM, 2,500 nM, 5,000 nM, 10,000 nM and 20,000 nM concentrations of each antisense oligonucleotide. After approximately 16 hours, RNA was isolated from the cells and DMPK mRNA transcript levels were measured by quantitative real-time PCR using primer probe set RTS3164, described hereinabove. DMPK mRNA transcript levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 5 as percent inhibition of DMPK, relative to untreated control cells.

[0324] The tested antisense oligonucleotides demonstrated dose-dependent inhibition of DMPK mRNA levels under the conditions specified above.

TABLE 5

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No.	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
299471	34	65	87	91	94	1.60
299473	2	33	60	89	92	4.31
299476	15	17	49	81	91	4.89
299535	0	12	34	62	59	9.95
299535	20	33	47	67	80	5.11
299544	32	63	81	85	87	1.82
444397	10	30	58	85	82	4.51
444398	33	57	74	85	87	2.07
444400	52	46	63	82	88	1.76
444401	51	71	84	89	91	0.71
444402	53	79	83	87	84	<1.25
444404	48	68	77	86	90	0.95
444408	26	47	70	87	87	2.80
444410	22	47	67	83	87	3.12
444436	28	67	76	89	92	1.94
444440	70	77	83	89	85	<1.25
444441	33	55	81	87	86	1.99
444442	54	73	84	89	88	<1.25
445568	65	83	85	84	76	<1.25
445569	60	77	87	93	91	<1.25
445581	16	44	78	86	94	3.13
445582	0	7	26	96	99	5.60
445583	39	53	73	89	94	2.00
445584	20	26	61	81	93	4.02
445589	42	61	81	91	87	1.36
445601	49	79	87	93	94	0.66

TABLE 5-continued

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No.	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
445608	26	59	71	85	97	2.41
445612	46	59	72	88	93	1.51

[0325] The antisense oligonucleotides from Table 5 were also tested with primer probe set RTS3162, described hereinabove. The results are presented in Table 6. DMPK mRNA expression was also assessed by RTS3162 which targets the DMPK gene near the 3'UTR. The use of a second primer probe was employed to confirm that the expression of the entire DMPK gene had been inhibited.

TABLE 6

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No.	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
299471	40	72	86	91	93	1.17
299473	6	43	63	87	89	3.86
299476	3	21	48	74	86	5.58
299535	9	22	36	62	77	7.05
299535	6	19	49	68	70	6.70
299544	35	66	81	84	87	1.52
444397	88	90	95	97	96	<1.25
444398	91	97	97	97	98	<1.25
444400	72	87	93	96	96	<1.25
444401	86	92	97	98	97	<1.25
444402	83	91	94	95	95	<1.25
444404	49	69	81	90	93	0.92
444408	21	46	70	84	86	3.10
444410	35	55	77	89	91	2.02
444436	37	66	81	89	92	1.50
444440	66	79	89	92	89	<1.25
444441	40	62	85	89	89	1.40
444442	55	75	86	90	91	<1.25
444444	21	46	70	84	86	3.10
444446	35	55	77	89	91	2.02
444447	37	66	81	89	92	1.50
444448	66	79	89	92	89	<1.25
444449	40	62	85	89	89	1.40
444450	55	75	86	90	91	<1.25
444451	21	46	70	84	86	3.10
444452	35	55	77	89	91	2.02
444453	37	66	81	89	92	1.50
444454	66	79	89	92	89	<1.25
444455	40	62	85	89	89	1.40
444456	55	75	86	90	91	<1.25
444457	21	46	70	84	86	3.10
444458	35	55	77	89	91	2.02
444459	37	66	81	89	92	1.50
444460	66	79	89	92	92	<1.25
444461	40	62	85	91	94	1.25
444462	55	75	86	93	93	<1.25
444463	21	46	70	84	86	3.10
444464	35	55	77	89	91	2.02
444465	37	66	81	89	92	1.50
444466	66	79	89	92	92	<1.25
444467	40	62	85	91	94	1.25
444468	55	75	86	93	93	<1.25
444469	21	46	70	84	86	3.10
444470	35	55	77	89	91	2.02
444471	37	66	81	89	92	1.50
444472	66	79	89	92	92	<1.25
444473	40	62	85	91	94	1.25
444474	55	75	86	93	93	<1.25
444475	21	46	70	84	86	3.10
444476	35	55	77	89	91	2.02
444477	37	66	81	89	92	1.50
444478	66	79	89	92	92	<1.25
444479	40	62	85	91	94	1.25
444480	55	75	86	93	93	<1.25
444481	21	46	70	84	86	3.10
444482	35	55	77	89	91	2.02
444483	37	66	81	89	92	1.50
444484	66	79	89	92	92	<1.25
444485	40	62	85	91	94	1.25
444486	55	75	86	93	93	<1.25
444487	21	46	70	84	86	3.10
444488	35	55	77	89	91	2.02
444489	37	66	81	89	92	1.50
444490	66	79	89	92	92	<1.25
444491	40	62	85	91	94	1.25
444492	55	75	86	93	93	<1.25
444493	21	46	70	84	86	3.10
444494	35	55	77	89	91	2.02
444495	37	66	81	89	92	1.50
444496	66	79	89	92	92	<1.25
444497	40	62	85	91	94	1.25
444498	55	75	86	93	93	<1.25
444499	21	46	70	84	86	3.10
444500	35	55	77	89	91	2.02
444501	37	66	81	89	92	1.50
444502	66	79	89	92	92	<1.25
444503	40	62	85	91	94	1.25
444504	55	75	86	93	93	<1.25
444505	21	46	70	84	86	3.10
444506	35	55	77	89	91	2.02
444507	37	66	81	89	92	1.50
444508	66	79	89	92	92	<1.25
444509	40	62	85	91	94	1.25
444510	55	75	86	93	93	<1.25
444511	21	46	70	84	86	3.10
444512	35	55	77	89	91	2.02
444513	37	66	81	89	92	1.50
444514	66	79	89	92	92	<1.25
444515	40	62	85	91	94	1.25
444516	55	75	86	93	93	<1.25
444517	21	46	70	84	86	3.10
444518	35	55	77	89	91	2.02
444519	37	66	81	89	92	1.50
444520	66	79	89	92	92	<1.25
444521	40	62	85	91	94	1.25
444522	55	75	86	93	93	<1.25
444523	21	46	70	84	86	3.10
444524	35	55	77	89	91	2.02
444525	37	66	81	89	92	1.50
444526	66	79	89	92	92	<1.25
444527	40	62	85	91	94	1.25
444528	55	75	86	93	93	<1.25
444529	21	46	70	84	86	3.10
444530	35	55	77	89	91	2.02
444531	37	66	81	89	92	1.50
444532	66	79	89	92	92	<1.25
444533	40	62	85	91	94	1.25
444534	55	75	86	93	93	<1.25
444535	21	46	70	84	86	3.10
444536	35	55				

Example 4

Dose-Dependent Antisense Inhibition of Human DMPK in Human Skeletal Muscle Cells

[0326] Several of the antisense oligonucleotides exhibiting in vitro inhibition of DMPK in hSKMC (see Example 3) were tested at various doses. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 1,250 nM, 2,500 nM, 5,000 nM, 10,000 nM and 20,000 nM concentrations of each antisense oligonucleotide. After approximately 16 hours, RNA was isolated from the cells and DMPK mRNA transcript levels were measured by quantitative real-time PCR using primer probe set RTS3164, described hereinabove. DMPK mRNA transcript levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 7 as percent inhibition of DMPK, relative to untreated control cells.

[0327] The majority of the tested antisense oligonucleotides demonstrated dose-dependent inhibition of DMPK mRNA levels under the conditions specified above.

TABLE 7

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No.	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
299471	34	65	87	91	94	1.59
299473	2	33	60	89	92	4.31
299476	15	17	49	81	91	4.89
299535	0	12	34	62	59	9.95
299535	20	33	47	67	80	5.11
299544	32	63	81	85	87	1.82
444397	10	30	58	85	82	4.51
444398	33	57	74	85	87	2.07
444400	52	46	63	82	88	1.76
444401	51	71	84	89	91	<1.25
444402	53	79	83	87	84	<1.25
444404	48	68	77	86	90	0.95
444408	26	47	70	87	87	2.80
444410	22	47	67	83	87	3.12
444436	28	67	76	89	92	1.94
444440	66	77	83	89	85	<1.25
444441	33	55	81	87	86	1.99
444442	54	73	84	89	88	<1.25
445568	65	83	85	84	76	<1.25
445569	60	77	87	93	91	<1.25
445581	16	44	78	86	94	3.13
445582	0	7	26	96	99	5.62
445583	39	53	73	89	94	1.97
445584	20	26	61	81	93	4.20
445589	42	61	81	91	87	1.36
445601	49	79	87	93	94	0.66

TABLE 7-continued

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No.	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
445608	26	59	71	85	97	2.41
445612	46	59	72	88	93	1.51

Example 5

Dose-Dependent Antisense Inhibition of Human DMPK in Human Skeletal Muscle Cells

[0328] Several antisense oligonucleotides were designed to target human DMPK mRNA and were tested in hSKMC at various doses. Several other antisense oligonucleotides were designed to target human actin mRNA and were also tested in hSKMC at various doses. The newly designed gapmers are 2-10-2 MOE or 3-10-3 MOE gapmers. The 2-10-2 MOE gapmers are 14 nucleosides in length and where the gap segment comprises ten 2'-deoxynucleosides and each wing segment comprises two 2'-MOE nucleosides. The 3-10-3 MOE gapmers are 16 nucleosides in length and where the gap segment comprises ten 2'-deoxynucleosides and each wing segment comprises three 2'-MOE nucleosides. The internucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. 'Target start site' indicates the 5'-most nucleoside to which the antisense oligonucleotide is targeted. 'Target stop site' indicates the 3'-most nucleoside to which the antisense oligonucleotide is targeted. The antisense oligonucleotides listed in Table 8 target either the human DMPK genomic sequence, designated herein as SEQ ID NO: 2 (the complement of GENBANK Accession No. NT_011109.15 truncated from nucleotides 18540696 to 18555106) or the human actin sequence, designated herein as SEQ ID NO: 801 (GENBANK Accession No. NM_001100.3).

[0329] Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 1,250 nM, 2,500 nM, 5,000 nM, 10,000 nM and 20,000 nM concentrations of each antisense oligonucleotide. After approximately 16 hours, RNA was isolated from the cells and DMPK mRNA transcript levels were measured by quantitative real-time PCR using primer probe set RTS3162, described hereinabove. DMPK mRNA transcript levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 8 as percent inhibition of DMPK, relative to untreated control cells. The antisense oligonucleotides were also tested under similar conditions with RTS3164. The results are presented in Table 9.

[0330] Many of the tested antisense oligonucleotides demonstrated dose-dependent inhibition of DMPK mRNA levels under the conditions specified above.

TABLE 8

Dose-dependent antisense inhibition of human DMPK and human actin in hSKMC tested with primer probe set RTS3162										
ISIS No.	Sequence	Motif	Target							SEQ ID NO.
			SEQ ID NO.	Start Site	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	
468787	CTCCCGACAAAGCTCCA	3-10-3	2	814	28	47	51	84	88	3.27
468772	TCCCGACAAAGCTCC	2-10-2	2	815	17	39	67	72	80	4.04
468795	GCTTGCACGTGTGGCT	3-10-3	2	10935	32	58	77	85	75	1.94

TABLE 8-continued

Dose-dependent antisense inhibition of human DMPK and human actin in hSKMC tested with primer probe set RTS3162											
ISIS No	Sequence	Motif	Target SEQ ID Start1,2502,5005,000 10,000 20,000						IC ₅₀ (nM)	SEQ ID NO	
			NO	Site	nM	nM	nM	nM			
468780	CTTGCACGTGTGGC	2-10-2	2	10936	22	17	43	66	77	6.23	811
468793	GGTTGTGAACCTGGCAG	3-10-3	2	13224	69	77	93	96	96	<1.25	812
468778	GTTGTGAACCTGGCA	2-10-2	2	13225	60	69	89	95	97	<1.25	813
468794	GAGCGGTTGTGAAC TG	3-10-3	2	13228	21	32	61	70	86	4.27	814
468779	AGCGGTTGTGAAC T	2-10-2	2	13229	40	45	72	91	97	2.20	815
468796	GCTGCCTTCCCAGGCC	3-10-3	2	13493	73	79	91	96	95	<1.25	816
468781	CTGCCTTCCCAGGC	2-10-2	2	13494	36	53	66	86	90	2.28	817
468788	GCACCTTGCGAACCAA	3-10-3	2	13555	55	80	84	94	96	<1.25	818
468773	CACTTGCGAACCA	2-10-2	2	13556	31	52	82	91	93	2.16	819
468789	GAAAGCTTTGCACTTT	3-10-3	2	13564	42	66	83	91	98	1.31	820
468774	AAAGCTTTGCACTTT	2-10-2	2	13565	21	0	31	41	55	1.87	821
468790	CGGAGGACGAGGTCAA	3-10-3	2	13750	43	57	79	87	89	1.51	822
468775	GGAGGACGAGGTCA	2-10-2	2	13751	27	51	58	78	81	3.18	823
468791	AGCCTGTCAGCGAGTC	3-10-3	2	13765	49	63	85	62	95	1.04	824
468776	GCCTGTCAGCGAGT	2-10-2	2	13766	65	47	81	88	93	<1.25	825
468792	TCCTGTAGCCTGTCAG	3-10-3	2	13771	38	57	73	85	93	1.91	826
468777	CCTGTAGCCTGTCA	2-10-2	2	13772	15	58	66	85	92	2.99	827
468783	GAAGCGAGGCTTCACT	3-10-3	801	22	0	20	5	0	0	>20.00	828
468768	AAGCGAGGCTTCAC	2-10-2	801	23	25	22	5	17	0	>20.00	829
468784	ACCTGCCGTCTGGCA	3-10-3	801	836	15	25	32	18	25	>20.00	830
468769	CCTGCCGTCTGGC	2-10-2	801	837	32	11	11	20	32	>20.00	831
468782	GGTCAGCGATCCCAGG	3-10-3	801	1030	0	0	0	0	0	>20.00	832
468767	GTCAGCGATCCCAG	2-10-2	801	1031	15	0	11	0	0	>20.00	833
468785	ATTTCTTCCACAGGG	3-10-3	801	1432	12	0	0	0	0	>20.00	834
468770	TTTTCTTCCACAGGG	2-10-2	801	1433	36	2	0	0	28	>20.00	835
468786	GAATGACTTTAATGCT	3-10-3	801	1462	0	0	0	4	0	>20.00	836
468771	AATGACTTTAATGC	2-10-2	801	1463	8	16	0	5	0	>20.00	837

TABLE 9

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
468777	20	66	72	87	96	2.41
468776	68	48	86	90	96	<1.25
468794	18	23	58	65	86	4.97
468787	36	50	51	88	92	2.69

TABLE 9-continued

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
468772	12	47	69	80	86	3.57
468773	33	48	82	91	96	2.21
468774	21	0	30	42	59	1.60
468790	50	57	77	91	91	1.26

TABLE 9-continued

Dose-dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164						
ISIS No	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
468780	23	22	55	73	85	4.69
468775	29	52	55	79	84	3.03
468782	9	0	0	0	0	>20.00
468786	2	0	0	0	0	>20.00
468785	15	0	1	0	5	>20.00
468788	57	74	76	94	96	<1.25
468791	45	66	88	61	97	1.10
468789	26	65	82	90	97	2.02
468781	28	46	59	82	84	3.08
468779	26	31	66	90	97	3.29
468784	7	23	26	7	18	>20.00
468783	0	16	8	0	0	>20.00
468792	26	49	73	84	92	2.72
468795	30	53	83	86	85	2.14
468793	49	66	90	96	95	0.93
468768	23	3	5	9	0	>20.00
468767	0	0	14	0	0	>20.00
468769	31	0	0	16	25	>20.00
468771	4	0	0	0	0	>20.00
468770	33	0	0	0	32	>20.00
468796	62	72	84	96	95	<1.25
468778	44	58	86	96	98	1.44

Example 6

Dose Response Studies with Antisense Oligonucleotides Targeting Human Dystrophia Myotonica-Protein Kinase (DMPK) in DM1 Fibroblast Cells

[0331] The mutant form of the DMPK mRNA, harboring large CUG repeats, are fully transcribed and polyadenylated, but remain trapped in the nucleus (Davis et al, 1997, *Proc. Natl. Acad. Sci. U.S.A.* 94, 7388-7393). These mutant nuclear-retained mRNAs are one of the most important pathological features of myotonic dystrophy 1 (DM1). Antisense inhibition of mutant DMPK mRNA in DM1 fibroblast cells was studied.

[0332] The DMPK gene normally has 5-37 CTG repeats in the 3' untranslated region. In myotonic dystrophy type I, this number is significantly expanded and may be in the range of 50 to greater than 3,500 (Harper, Myotonic Dystrophy (Saunders, London, ed. 3, 2001); *Annu. Rev. Neurosci.* 29: 259, 2006; *EMBO J.* 19: 4439, 2000; *Curr Opin Neurol.* 20: 572, 2007). DM1 fibroblast cells were plated at a density of 4,500 cells per well and transfected using Cytofectin reagent with 9.4 nM, 18.8 nM, 37.5 nM, 75.0 nM, 150.0 nM, and 300.0 nM concentrations of each antisense oligonucleotide. After approximately 16 hours, RNA was isolated from the cells and DMPK RNA transcript levels were measured by quantitative real-time PCR using primer probe set RTS3164, described hereinabove. DMPK RNA transcript levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 10 as percent inhibition of DMPK, relative to untreated control cells.

[0333] An assay with similar conditions was also performed with primer probe set RTS3162, described hereinabove, which targets the 3'-end of the DMPK transcript. Results are presented in Table 11 as percent inhibition of DMPK, relative to untreated control cells.

[0334] The tested antisense oligonucleotides demonstrated dose-dependent inhibition of DMPK mRNA levels under the conditions specified above.

TABLE 10

Dose-dependent antisense inhibition of DMPK mRNA in DM1 fibroblast cells with RTS3164							
ISIS No.	9.4 nM	18.8 nM	37.5 nM	75.0 nM	150.0 nM	300.0 nM	IC ₅₀ (nM)
299471	10	25	31	47	61	73	86.3
444401	8	27	41	60	67	74	64.3
444404	10	21	31	43	55	73	100.0
444436	7	17	36	64	68	70	72.3
445569	19	31	41	59	46	77	72.2

TABLE 11

Dose-dependent antisense inhibition of DMPK mRNA in DM1 fibroblast cells with RTS3162							
ISIS No.	9.4 nM	18.8 nM	37.5 nM	75.0 nM	150.0 nM	300.0 nM	IC ₅₀ (nM)
299471	7	25	29	46	48	69	115.3
444401	20	34	52	72	83	89	35.8
444404	5	20	28	42	54	77	98.8
444436	12	15	27	61	68	75	74.3
445569	5	25	33	53	50	76	89.6

Example 7

Antisense Inhibition of Human DMPK in Human Skeletal Muscle Cells (hSKMc)

[0335] Antisense oligonucleotides targeted to a human DMPK nucleic acid were tested for their effect on DMPK RNA transcript in vitro. Cultured hSKMc at a density of 20,000 cells per well were transfected using electroporation with 10,000 nM antisense oligonucleotide. After approximately 24 hours, RNA was isolated from the cells and DMPK transcript levels were measured by quantitative real-time PCR. DMPK RNA transcript levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of DMPK, relative to untreated control cells.

[0336] The antisense oligonucleotides in Tables 12 and 13 are 5-10-5 gapmers, where the gap segment comprises ten 2'-deoxyribonucleosides and each wing segment comprises five 2'-MOE nucleosides. The internucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. 'Target start site' indicates the 5'-most nucleoside to which the antisense oligonucleotide is targeted in the human genomic gene sequence. 'Target stop site' indicates the 3'-most nucleoside to which the antisense oligonucleotide is targeted in the human genomic sequence. All the antisense oligonucleotides listed in Table 12 target SEQ ID NO: 1 (GENBANK Accession No. NM_001081560.1). All the antisense oligonucleotides listed in Table 13 target SEQ ID NO: 2 (the complement of GENBANK Accession No. NT_011109.15 truncated from nucleotides 18540696 to 18555106).

[0337] Several of the antisense oligonucleotides demonstrated significant inhibition of DMPK mRNA levels under the conditions specified above.

TABLE 12

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 gapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
124	143	502369	GCCTGGCAGCCCCCTGTCCAG	16	160	
125	144	502370	GGCCTGGCAGCCCCCTGTCCA	58	161	
126	145	502371	GGGCCTGGCAGCCCCCTGTCC	62	162	
169	188	502372	ATGGCCCCCTCCCCGGGCCG	41	163	
170	189	502373	CATGGCCCCCTCCCCGGGCCG	29	164	
171	190	502374	CCATGGCCCCCTCCCCGGCC	34	165	
172	191	502375	ACCATGGCCCCCTCCCCGGGC	60	166	
173	192	502376	CACCATGGCCCCCTCCCCGGG	68	167	
174	193	502377	GCACCATGGCCCCCTCCCCGG	75	168	
175	194	502378	AGCACCATGGCCCCCTCCCCG	65	169	
176	195	502379	CAGCACCATGGCCCCCTCCCC	63	170	
177	196	502380	GCAGCACCATGGCCCCCTCCC	73	171	
178	197	502381	GGCAGCACCATGGCCCCCTCC	80	172	
180	199	502382	CAGGCAGCACCATGGCCCC	82	173	
181	200	502383	ACAGGCAGCACCATGGCCCC	72	174	
183	202	502384	GGACAGGCAGCACCATGGC	70	175	
184	203	502385	TGGACAGGCAGCACCATGG	71	176	
185	204	502386	TTGGACAGGCAGCACCATGG	73	177	
186	205	502387	GTTGGACAGGCAGCACCATG	73	178	
187	206	502388	TGTTGGACAGGCAGCACCAT	60	179	
188	207	502389	ATGTTGGACAGGCAGCACCA	75	180	
189	208	502390	CATGTTGGACAGGCAGCAC	81	181	
190	209	502391	ACATGTTGGACAGGCAGCAC	67	182	
191	210	502392	GACATGTTGGACAGGCAGCA	71	183	
192	211	502393	TGACATGTTGGACAGGCAGC	81	184	
193	212	502394	CTGACATGTTGGACAGGCAG	76	185	
194	213	502395	GCTGACATGTTGGACAGGC	70	186	
195	214	502396	GGCTGACATGTTGGACAGGC	77	187	
196	215	502397	CGGCTGACATGTTGGACAGG	74	188	
197	216	502398	TCGGCTGACATGTTGGACAG	63	189	
198	217	502399	CTCGGCTGACATGTTGGACA	80	190	
199	218	502400	CCTCGGCTGACATGTTGGAC	71	191	
200	219	502401	ACCTCGGCTGACATGTTGG	64	192	
201	220	502402	CACCTCGGCTGACATGTTGG	71	193	
202	221	502403	GCACCTCGGCTGACATGTTG	77	194	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 gapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
203	222	502404	CGCACCTCGGCTGACATGTT	80	195	
204	223	502405	CCGCACCTCGGCTGACATGT	80	196	
205	224	502406	GCCGCACCTCGGCTGACATG	79	197	
206	225	502407	AGCCGCACCTCGGCTGACAT	74	198	
207	226	502408	CAGCCGCACCTCGGCTGACA	66	199	
208	227	502409	TCAGCCGCACCTCGGCTGAC	15	200	
209	228	502410	CTCAGCCGCACCTCGGCTGA	32	201	
210	229	502411	CCTCAGCCGCACCTCGGCTG	65	202	
211	230	502412	GCCTCAGCCGCACCTCGGCT	81	203	
232	251	502413	CCAACACCAGCTGGAGC	90	204	
233	252	502414	TCCAACACCAGCTGGAG	78	205	
234	253	502415	GTCCAACACCAGCTGGAG	84	206	
236	255	502416	GGGTCCAACACCAGCTGCTG	69	207	
257	276	502417	GGCTCCAGCCCCAGGAAGCC	46	208	
258	277	502418	GGGCTCCAGCCCCAGGAAGC	28	209	
276	295	502419	CAGGAGAAGGTCGAGCAGG	41	210	
278	297	502420	CCCAGGAGAAGGTCGAGCAG	71	211	
279	298	502421	GCCCCAGGAGAAGGTCGAGCA	85	212	
280	299	451364	CGCCAGGAGAAGGTCGAGC	84	213	
281	300	502422	ACGCCCAGGAGAAGGTCGAG	67	214	
317	336	502423	TCCTGGGCCAGTTCGGAGGC	58	215	
318	337	502424	GTCCTGGGCCAGTTCGGAGG	71	216	
319	338	502425	TGTCCTGGGCCAGTTCGGAG	69	217	
320	339	502426	TTGTCTGGGCCAGTTCGGA	71	218	
321	340	502427	CTTGTCTGGGCCAGTTCGG	66	219	
322	341	502428	ACTTGTCTGGGCCAGTTCG	59	220	
323	342	502429	TACTTGTCTGGGCCAGTT	75	221	
324	343	502430	GTACTTGTCTGGGCCAGTT	78	222	
325	344	502431	CGTACTTGTCTGGGCCAGT	74	223	
343	362	502432	ACTGCAAGAAGTGGCCACG	73	224	
345	364	502433	CCACTGCAAGAAGTCGGCCA	65	225	
346	365	451364	CCCCTGCAAGAAGTCGGCC	32	226	
347	366	502434	GCCCCACTGCAAGAAGTCGG	70	227	
348	367	502435	CGCCCCACTGCAAGAAGTCG	61	228	
349	368	502436	CCGCCCCACTGCAAGAAGTC	54	229	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
350	369	502437	TCCGCCCACTGCAAGAAGTC	40	230	
351	370	502438	CTCCGCCCACTGCAAGAAGT	33	231	
352	371	502439	GCTCCGCCCACTGCAAGAAG	23	232	
353	372	502440	GGCTCCGCCCACTGCAAGAA	23	233	
354	373	502441	GGGCTCCGCCCACTGCAAGA	17	234	
355	374	502442	TGGGCTCCGCCCACTGCAAG	22	235	
356	375	502443	ATGGGCTCCGCCCACTGCAA	14	236	
357	376	502444	GATGGGCTCCGCCCACTGCA	43	237	
358	377	502445	CGATGGGCTCCGCCCACTG	37	238	
359	378	502446	ACGATGGGCTCCGCCCACTG	0	239	
360	379	502447	CACGATGGGCTCCGCCACT	59	240	
361	380	502448	CCACGATGGGCTCCGCCAC	69	241	
362	381	502449	ACCACGATGGGCTCCGCCCA	63	242	
363	382	502450	CACCACGATGGGCTCCGCC	73	243	
364	383	502451	TCACCACGATGGGCTCCGCC	77	244	
365	384	502452	CTCACACGATGGGCTCCGC	66	245	
366	385	502453	CCTCACACGATGGGCTCCG	81	246	
367	386	502454	GCCTCACACGATGGGCTCC	77	247	
368	387	502455	AGCCTCACACGATGGGCTC	63	248	
369	388	502456	AAGCCTCACACGATGGGCT	70	249	
370	389	502457	TAAGCCTCACACGATGGG	78	250	
371	390	502458	TTAAGCCTCACACGATGGG	76	251	
372	391	502459	CTTAAGCCTCACACGATGG	78	252	
373	392	502460	CCTTAAGCCTCACACGATG	68	253	
374	393	502461	TCCTTAAGCCTCACACGAT	67	254	
375	394	502462	CTCCTTAAGCCTCACACGA	84	255	
376	395	502463	CCTCCTTAAGCCTCACACG	76	256	
377	396	502464	ACCTCCTTAAGCCTCACAC	64	257	
378	397	502465	GACCTCCTTAAGCCTCACCA	72	258	
379	398	502466	GGACCTCCTTAAGCCTCAC	69	259	
380	399	502467	CGGACCTCCTTAAGCCTCAC	81	260	
381	400	502468	TCGGACCTCCTTAAGCCTCA	78	261	
382	401	502469	GTCGGACCTCCTTAAGCCTC	57	262	
384	403	502470	CAGTCGGACCTCCTTAAGCC	62	263	
385	404	502471	GCAGTCGGACCTCCTTAAGC	45	264	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
386	405	502472	TGCAGTCGGACCTCCTTAAG	60	265	
412	431	502473	CCTTCAGAATCTCGAAGTCG	67	266	
413	432	502474	ACCTTCAGAATCTCGAAGTC	50	267	
415	434	502475	TCACCTTCAGAATCTCGAAG	54	268	
416	435	502476	ATCACCTTCAGAATCTCGAA	38	269	
417	436	502477	GATCACCTTCAGAATCTCGA	35	270	
419	438	502478	CCGATCACCTTCAGAATCTC	52	271	
420	439	502479	TCCGATCACCTTCAGAATCT	50	272	
421	440	502480	GTCCGATCACCTTCAGAATC	44	273	
422	441	502481	CGTCCGATCACCTTCAGAAT	41	274	
467	486	502482	CCCGTCTGCTTCATCTTCAC	67	275	
468	487	502483	GCCCGTCTGCTTCATCTTC	76	276	
469	488	502484	GGCCCGTCTGCTTCATCTTC	57	277	
470	489	502485	TGGCCCGTCTGCTTCATCTT	64	278	
471	490	502486	CTGGCCCGTCTGCTTCATCT	64	279	
472	491	502487	CCTGGCCCGTCTGCTTCATC	73	280	
473	492	502488	ACCTGGCCCGTCTGCTTCAT	64	281	
474	493	502489	CACCTGGCCCGTCTGCTTCAT	80	282	
475	494	502490	ACACCTGGCCCGTCTGCTTC	71	283	
476	495	502491	TACACCTGGCCCGTCTGCTT	74	284	
497	516	502492	TTGTTCATGATCTCATGGC	56	285	
499	518	502493	ACTTGTTCATGATCTCATG	23	286	
500	519	502494	CACTTGTTCATGATCTTCAT	43	287	
501	520	502495	CCACTTGTTCATGATCTTCAT	43	288	
502	521	502496	CCCACTGTTCATGATCTTC	47	289	
503	522	502497	TCCCACTGTTCATGATCTT	34	290	
504	523	502498	GTCCCACTGTTCATGATCT	34	291	
505	524	502499	TGTCCCACTGTTCATGATC	27	292	
506	525	502500	ATGTCCCACTGTTCATGAT	23	293	
507	526	502501	CATGTCCCACTGTTCATGA	51	294	
508	527	502502	GCATGTCCCACTGTTCATG	20	295	
509	528	502503	AGCATGTCCCACTGTTCAT	52	296	
510	529	502504	CAGCATGTCCCACTGTTCA	72	297	
511	530	502505	TCAGCATGTCCCACTGTTTC	70	298	
512	531	502506	TTCAGCATGTCCCACTGTT	53	299	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
513	532	502507	CTTCAGCATGTCCCACTTGT	52	300	
514	533	502508	TCTTCAGCATGTCCCACTTG	45	301	
516	535	502509	CCTCTTCAGCATGTCCCAC	68	302	
517	536	502510	CCCTCTTCAGCATGTCCCAC	68	303	
518	537	502511	CCCCTCTTCAGCATGTCCCAC	79	304	
519	538	502512	GCCCCTCTTCAGCATGTCCC	85	305	
520	539	502513	CGCCCTCTTCAGCATGTCC	84	306	
521	540	502514	TCGCCCCCTCTTCAGCATGT	80	307	
522	541	502515	CTCGCCCCCTCTTCAGCATG	82	308	
523	542	502516	CCTCGCCCCCTCTTCAGCATG	78	309	
524	543	502517	ACCTCGCCCCCTCTTCAGCAT	73	310	
525	544	502518	CACCTCGCCCCCTCTTCAGCA	76	311	
526	545	502519	ACACCTCGCCCCCTCTTCAGC	79	312	
527	546	502520	GACACCTCGCCCCCTCTTCAG	73	313	
821	840	502521	GCCAGGCCGATGTGGCCACA	57	314	
868	887	502522	ACCGCACCGTTCCATTCGCC	62	315	
869	888	502523	GACCGCACCGTTCCATTCGC	29	316	
923	942	502524	ACAGCCTGCAGGATCTCGG	86	317	
924	943	502525	CACAGCCTGCAGGATCTCG	81	318	
925	944	502526	CCACAGCCTGCAGGATCTCG	83	319	
926	945	502527	CCCACAGCCTGCAGGATCTC	84	320	
927	946	502528	GCCCACAGCCTGCAGGATCT	91	321	
928	947	502529	CGCCCACAGCCTGCAGGATC	90	322	
929	948	502530	CCGCCACAGCCTGCAGGAT	82	323	
930	949	502531	ACCGCCCACAGCCTGCAGGA	83	324	
931	950	502532	CACCGCCCACAGCCTGCAGG	85	325	
932	951	502533	CCACCGCCCACAGCCTGCAG	84	326	
933	952	502534	CCCACCGCCCACAGCCTGCA	80	327	
934	953	502535	GCCCACCGCCCACAGCCTGC	90	328	
935	954	502536	GGCCCACCGCCCACAGCCTG	94	329	
936	955	502537	AGGCCACCGCCCACAGCCT	88	330	
937	956	502538	CAGGCCACCGCCCACAGCC	91	331	
938	957	502539	CCAGGCCACCGCCCACAGC	73	332	
939	958	502540	CCCAGGCCACCGCCCACAG	86	333	
940	959	502541	TCCCAGGCCACCGCCCACA	88	334	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
941	960	502542	GTCCAGGCCACCGCCCAC	84	335	
942	961	502543	TGTCCCAGGCCACCGCCC	85	336	
943	962	502544	CTGTCCCAGGCCACCGCCC	65	337	
944	963	502545	CCTGTCCCAGGCCACCGCC	81	338	
945	964	502546	GCCTGTCCCAGGCCACCGC	90	339	
946	965	502547	TGCCTGTCCCAGGCCACCG	85	340	
947	966	502548	CTGCCTGTCCCAGGCCAC	89	341	
948	967	502549	GCTGCCTGTCCCAGGCCAC	91	342	
949	968	502550	AGCTGCCTGTCCCAGGCCA	94	343	
950	969	502551	TAGCTGCCTGTCCCAGGCC	92	344	
951	970	502552	GTAGCTGCCTGTCCCAGGCC	88	345	
952	971	502553	CGTAGCTGCCTGTCCCAGGC	85	346	
953	972	502554	CCGTAGCTGCCTGTCCCAGG	83	347	
954	973	502555	CCCGTAGCTGCCTGTCCCAG	64	348	
955	974	502556	GCCCCTAGCTGCCTGTCCC	83	349	
956	975	502557	GGCCCGTAGCTGCCTGTCCC	89	350	
1004	1023	502558	TAGAACATTTCATAGCGA	68	351	
1042	1061	502559	TCTCCGCCGTGGAATCCG	75	352	
1043	1062	502560	GTCTCCGCCGTGGAATCCG	79	353	
1044	1063	502561	GGTCTCCGCCGTGGAATCCG	66	354	
1045	1064	502562	AGGTCTCCGCCGTGGAATCC	50	355	
1046	1065	502563	TAGGTCTCCGCCGTGGAATC	71	356	
1067	1086	502564	TTGTAGTGGACGATCTGCC	68	357	
1068	1087	502565	CTTGTAGTGGACGATCTGC	70	358	
1069	1088	502566	CCTTGTAGTGGACGATCTG	61	359	
1070	1089	502567	TCCCTGTAGTGGACGATCTT	72	360	
1071	1090	502568	CTCCTGTAGTGGACGATCT	75	361	
1072	1091	502569	GCTCCTGTAGTGGACGATC	75	362	
1073	1092	502570	TGCTCCTGTAGTGGACGAT	83	363	
1074	1093	502571	GTGCTCCTGTAGTGGACGA	72	364	
1075	1094	502572	GGTGCTCCTGTAGTGGACG	66	365	
1076	1095	502573	AGGTGCTCCTGTAGTGGAC	51	366	
1077	1096	502574	GAGGTGCTCCTGTAGTGG	46	367	
1078	1097	502575	AGAGGTGCTCCTGTAGTGG	70	368	
1079	1098	502576	GAGAGGTGCTCCTGTAGTG	47	369	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
1080	1099	502577	AGAGAGGTGCTCCTTGTAGT	65	370	
1081	1100	502578	GAGAGAGGTGCTCCTTGTAG	45	371	
1082	1101	502579	AGAGAGAGGTGCTCCTTGT	63	372	
1083	1102	502580	CAGAGAGAGGTGCTCCTTGT	77	373	
1085	1104	502581	GGCAGAGAGAGGTGCTCCTT	70	374	
1086	1105	502582	CGGCAGAGAGAGGTGCTCCT	80	375	
1087	1106	502583	GCGGCAGAGAGAGGTGCTCC	62	376	
1088	1107	502584	AGCGGCAGAGAGAGAGGTGCTC	44	377	
1089	1108	502585	CAGCGGCAGAGAGAGAGGTGCT	78	378	
1090	1109	502586	CCAGCGGCAGAGAGAGAGGTGC	71	379	
1165	1184	502587	GGCCCAGCCGTGTCCTCGGG	77	380	
1166	1185	502588	CGGCCAGCCGTGTCCTCGG	69	381	
1167	1186	502589	CCGGCCCAGCCGTGTCCTCG	70	382	
1168	1187	502590	CCCGGCCAGCCGTGTCCTCC	75	383	
1169	1188	502591	CCCCGGCCAGCCGTGTC	77	384	
1170	1189	502592	ACCCCGGCCAGCCGTGTC	73	385	
1171	1190	502593	CACCCGGCCAGCCGTGTC	84	386	
1172	1191	502594	CCACCCGGCCAGCCGTGT	78	387	
1173	1192	502595	TCCACCCGGCCAGCCGTG	71	388	
1174	1193	502596	CTCCACCCGGCCAGCCGT	81	389	
1175	1194	502597	GCTCCACCCGGCCAGCCG	86	390	
1176	1195	502598	TGCTCCACCCGGCCAGCC	83	391	
1177	1196	502599	CTGCTCCACCCGGCCAGC	88	392	
1199	1218	502600	AAGGGATGTGTCGGAAAGTC	60	393	
1200	1219	502601	GAAGGGATGTGTCGGAAAGT	58	394	
1201	1220	502602	AGAAGGGATGTGTCGGAAAG	63	395	
1202	1221	502603	AAGAAGGGATGTGTCGGAA	62	396	
1203	1222	502604	GAAGAAGGGATGTGTCGG	61	397	
1204	1223	502605	AGAAGAAGGGATGTGTCGG	62	398	
1205	1224	502606	AAGAAGAAGGGATGTGTCGG	56	399	
1206	1225	502607	AAAGAAGAAGGGATGTGTC	58	400	
1207	1226	502608	CAAAGAAGAAGGGATGTGT	50	401	
1208	1227	502609	CCAAAAGAAGAAGGGATGT	61	402	
1210	1229	502610	GGCCAAGAAGAAGGGATGT	73	403	
1211	1230	502611	AGGCCAAAGAAGAAGGGATG	56	404	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
1212	1231	502612	GAGGCCAAAGAAGAAGGGAT	73	405	
1213	1232	502613	CGAGGCCAAAGAAGAAGGG	75	406	
1214	1233	502614	TCGAGGCCAAAGAAGAAGGG	75	407	
1215	1234	502615	GTCGAGGCCAAAGAAGAAGG	83	408	
1216	1235	502616	AGTCGAGGCCAAAGAAGAAG	58	409	
1217	1236	502617	CAGTCGAGGCCAAAGAAGAA	52	410	
1218	1237	502618	CCAGTCGAGGCCAAAGAAGA	68	411	
1219	1238	502619	CCCAGTCGAGGCCAAAGAAG	78	412	
1220	1239	502620	TCCCACTCGAGGCCAAAGAA	66	413	
1221	1240	502621	ATCCCAGTCGAGGCCAAAGA	75	414	
1222	1241	502622	CATCCCAGTCGAGGCCAAAG	70	415	
1223	1242	502623	CCATCCCAGTCGAGGCCAA	81	416	
1224	1243	502624	ACCATCCCAGTCGAGGCCAA	82	417	
1225	1244	502625	GACCATCCCAGTCGAGGCCA	88	418	
1226	1245	502626	AGACCATCCCAGTCGAGGCC	79	419	
1227	1246	502627	GAGACCATCCCAGTCGAGGC	82	420	
1228	1247	502628	GGAGACCATCCCAGTCGAGG	60	421	
1263	1282	502629	TTCGAAATCCGGTGTAAAGG	84	422	
1264	1283	502630	CTTCGAAATCCGGTGTAAAG	57	423	
1265	1284	502631	CCTTCGAAATCCGGTGTAAA	64	424	
1266	1285	502632	ACCTTCGAAATCCGGTGTAA	73	425	
1267	1286	502633	CACCTTCGAAATCCGGTGT	77	426	
1268	1287	502634	GCACCTTCGAAATCCGGTGT	59	427	
1269	1288	502635	GGCACCTTCGAAATCCGGT	85	428	
1270	1289	502636	TGGCACCTTCGAAATCCGGT	86	429	
1271	1290	502637	GTGGCACCTTCGAAATCCGG	74	430	
1272	1291	502638	GGTGGCACCTTCGAAATCCG	79	431	
1273	1292	502639	CGGTGGCACCTTCGAAATCC	85	432	
1274	1293	502640	TCGGTGGCACCTTCGAAATC	71	433	
1275	1294	502641	GTCGGTGGCACCTTCGAAAT	88	434	
1276	1295	502642	TGTCGGTGGCACCTTCGAAA	89	435	
1277	1296	502643	GTGTCGGTGGCACCTTCGAA	88	436	
1278	1297	502644	TGTGTCGGTGGCACCTTCGA	87	437	
1279	1298	502645	ATGTGTCGGTGGCACCTTCG	88	438	
1280	1299	502646	CATGTGTCGGTGGCACCTTC	88	439	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
1281	1300	502647	GCATGTGTCGGTGGCACCTT	91	440	
1282	1301	502648	TGCATGTGTCGGTGGCACCT	87	441	
1283	1302	502649	TTGCATGTGTCGGTGGCAC	86	442	
1284	1303	502650	GTTGCATGTGTCGGTGGCAC	83	443	
1285	1304	502651	AGTTGCATGTGTCGGTGGCA	81	444	
1286	1305	502652	AAGTTGCATGTGTCGGTGGC	79	445	
1287	1306	502653	GAAGTTGCATGTGTCGGTGG	58	446	
1288	1307	502654	CGAACAGTTGCATGTGTCGGTG	85	447	
1290	1309	502655	GTCGAAGTTGCATGTGTCGG	77	448	
1291	1310	502656	AGTCGAAGTTGCATGTGTCG	79	449	
1292	1311	502657	AAGTCGAAGTTGCATGTGTC	74	450	
1293	1312	502658	CAAGTCGAAGTTGCATGTGT	82	451	
1294	1313	502659	CCAAGTCGAAGTTGCATGTG	82	452	
1295	1314	502660	ACCAAGTCGAAGTTGCATGT	70	453	
1296	1315	502661	CACCAAGTCGAAGTTGCATG	76	454	
1297	1316	502662	CCACCAAGTCGAAGTTGCAT	79	455	
1298	1317	502663	TCCACCAAGTCGAAGTTGCA	68	456	
1299	1318	502664	CTCCACCAAGTCGAAGTTGC	71	457	
1300	1319	502665	CCTCCACCAAGTCGAAGTTG	67	458	
1301	1320	502666	TCCTCCACCAAGTCGAAGTT	70	459	
1302	1321	502667	GTCCTCCACCAAGTCGAAGT	80	460	
1303	1322	502668	CGTCCTCCACCAAGTCGAAG	76	461	
1304	1323	502669	CCGTACACCAAGTCGAAG	78	462	
1305	1324	502670	CCCGTCCTCCACCAAGTCGA	83	463	
1306	1325	502671	GCCCCTCCACCAAGTCGA	76	464	
1307	1326	502672	AGCCCCTCCACCAAGTCGA	72	465	
1308	1327	502673	GAGCCCGTCCTCCACCAAGT	71	466	
1309	1328	502674	TGAGCCCGTCCTCCACCAAG	60	467	
1702	1721	502675	GGTTCCGAGCCTCTGCCTCG	44	468	
1703	1722	502676	CGGTTCCGAGCCTCTGCCTC	74	469	
1704	1723	502677	CCGGTTCCGAGCCTCTGCCT	72	470	
1705	1724	502678	CCCGGTTCCGAGCCTCTGCC	73	471	
1706	1725	502679	TCCCGGTTCCGAGCCTCTGC	84	472	
1707	1726	502680	GTCCCGGTTCCGAGCCTCTG	66	473	
1709	1728	502681	AGGTCCCGGTTCCGAGCCTC	82	474	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
1710	1729	502682	TAGGTCCCGGTTCCGAGCCT	83	475	
1711	1730	502683	CTAGGTCCCGGTTCCGAGCC	81	476	
1712	1731	502684	TCTAGGTCCCGGTTCCGAGC	74	477	
1713	1732	502685	CTCTAGGTCCCGGTTCCGAG	78	478	
1714	1733	502686	CCTCTAGGTCCCGGTTCCGA	75	479	
1715	1734	502687	GCCTCTAGGTCCCGGTTCCG	80	480	
1743	1762	502688	CATCCGCTCCTGCAACTGCC	89	481	
1744	1763	502689	CCATCCGCTCCTGCAACTGC	81	482	
1745	1764	502690	TCCATCCGCTCCTGCAACTG	71	483	
1746	1765	502691	CTCCATCCGCTCCTGCAACT	75	484	
1747	1766	502692	ACTCCATCCGCTCCTGCAAC	64	485	
1748	1767	502693	AACTCCATCCGCTCCTGCAA	52	486	
1749	1768	502694	CAACTCCATCCGCTCCTGCA	45	487	
1751	1770	502695	AGCAACTCCATCCGCTCCTG	78	488	
1752	1771	502696	CAGCAACTCCATCCGCTCCT	64	489	
1753	1772	502697	GCAGCAACTCCATCCGCTCC	56	490	
1774	1793	502698	CAGCTGTGGCTCCCTCTGCC	60	491	
1775	1794	502699	ACAGCTGTGGCTCCCTCTGC	45	492	
1776	1795	502700	GACAGCTGTGGCTCCCTCTG	49	493	
1777	1796	502701	TGACAGCTGTGGCTCCCTCT	26	494	
1778	1797	502702	GTGACAGCTGTGGCTCCCTC	32	495	
1779	1798	502703	CGTGACAGCTGTGGCTCCCT	28	496	
1780	1799	502704	CCGTGACAGCTGTGGCTCCC	35	497	
1781	1800	502705	CCCGTGACAGCTGTGGCTCC	33	498	
1782	1801	502706	CCCCGTGACAGCTGTGGCTC	53	499	
1783	1802	502707	CCCCCGTGACAGCTGTGGCT	39	500	
1784	1803	502708	ACCCCCGTGACAGCTGTGGC	53	501	
1785	1804	502709	GACCCCCGTGACAGCTGTGG	51	502	
1786	1805	502710	GGACCCCCGTGACAGCTGTG	58	503	
1787	1806	502711	GGGACCCCCGTGACAGCTGT	71	504	
1814	1833	502712	GAAGGTGGATCCGTGGCCCG	73	505	
1815	1834	502713	GGAAGGTGGATCCGTGGCCC	70	506	
1816	1835	502714	GGGAAGGTGGATCCGTGGCC	72	507	
1817	1836	502715	TGGGAAGGTGGATCCGTGGC	50	508	
1818	1837	502716	ATGGGAAGGTGGATCCGTGG	62	509	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1					
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.
1819	1838	502717	GATGGGAAGGTGGATCCGTG	75	510
1821	1840	502718	TAGATGGGAAGGTGGATCCG	52	511
1822	1841	502719	CTAGATGGGAAGGTGGATCC	56	512
1823	1842	502720	TCTAGATGGGAAGGTGGATC	21	513
1824	1843	502721	ATCTAGATGGGAAGGTGGAT	34	514
1826	1845	502722	CCATCTAGATGGGAAGGTGG	43	515
1827	1846	502723	GCCATCTAGATGGGAAGGTG	17	516
1828	1847	451383	GGCCATCTAGATGGGAAGGT	0	517
1863	1882	502724	CACCAGCGGGCACTGGCCA	51	518
1864	1883	502725	CCACCAGCGGGCACTGGCC	55	519
1865	1884	502726	CCCACCAGCGGGCACTGGCC	61	520
1866	1885	502727	CCCCACCAGCGGGCACTGGC	43	521
1868	1887	502728	GGCCCCACCAGCGGGCACTG	16	522
1869	1888	502729	TGGCCCCACCAGCGGGCACT	43	523
1870	1889	502730	CTGGCCCCACCAGCGGGCAC	43	524
1871	1890	502731	CCTGGCCCACCAGCGGGCA	41	525
1872	1891	502732	GCCTGGCCCCACCAGCGGGC	30	526
1874	1893	502733	GGGCCTGGCCCCACCAGCGG	66	527
1892	1911	502734	AGGTGGCGGGGTGCATGG	31	528
1893	1912	502735	CAGGTGGCGGGGTGCATGG	23	529
1894	1913	502736	GCAGGTGGCGGGGTGCATG	57	530
1895	1914	502737	AGCAGGTGGCGGGGTGCAT	54	531
1896	1915	502738	CAGCAGGTGGCGGGGTGCA	61	532
1897	1916	502739	GCAGCAGGTGGCGGGGTGC	57	533
1898	1917	502740	AGCAGCAGGTGGCGGGTGT	36	534
1899	1918	502741	GAGCAGCAGGTGGCGGGTGT	53	535
1900	1919	502742	GGAGCAGCAGGTGGCGGGC	39	536
1901	1920	502743	GGGAGCAGCAGGTGGCGGC	36	537
1902	1921	502744	AGGGAGCAGCAGGTGGCGG	62	538
1903	1922	502745	CAGGGAGCAGCAGGTGGCG	56	539
1904	1923	502746	GCAGGGAGCAGCAGGTGGC	58	540
1905	1924	502747	GGCAGGGAGCAGCAGGTGG	65	541
1906	1925	502748	TGGCAGGGAGCAGCAGGTG	47	542
1907	1926	502749	CTGGCAGGGAGCAGCAGGT	41	543
1909	1928	451432	CCCTGGCAGGGAGCAGCAGG	53	544

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 qapmers targeting SEQ ID NO: 1					
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.
1910	1929	502750	ACCCCTGGCAGGGAGCAGCAG	52	545
1911	1930	502751	GACCCCTGGCAGGGAGCAGCA	77	546
1912	1931	502752	GGACCCCTGGCAGGGAGCAGC	0	547
1919	1938	502753	GGCCTAGGGACCCCTGGCAGG	39	548
1920	1939	502754	AGGCCTAGGGACCCCTGGCAG	35	549
1922	1941	502755	CCAGGCCTAGGGACCCCTGGC	44	550
1923	1942	502756	GCCAGGCCTAGGGACCCCTGG	60	551
1924	1943	502757	GGCCAGGCCTAGGGACCCCTG	58	552
1925	1944	502758	AGGCCAGGCCTAGGGACCCCT	57	553
1926	1945	502759	TAGGCCAGGCCTAGGGACCC	52	554
1927	1946	502760	ATAGGCCAGGCCTAGGGACC	51	555
1928	1947	502761	GATAGGCCAGGCCTAGGGAC	41	556
1929	1948	502762	CGATAGGCCAGGCCTAGGG	69	557
1930	1949	502763	CCGATAGGCCAGGCCTAGGG	80	558
1931	1950	502764	TCCGATAGGCCAGGCCTAGG	78	559
1932	1951	502765	CTCCGATAGGCCAGGCCTAG	89	560
1933	1952	502766	CCTCCGATAGGCCAGGCCTA	79	561
1934	1953	502767	GCCTCCGATAGGCCAGGCCT	73	562
1936	1955	502768	GCGCCTCCGATAGGCCAGGC	83	563
1952	1971	502769	AACAGGAGCAGGGAAAGCGC	83	564
1953	1972	502770	GAACAGGAGCAGGGAAAGCG	70	565
1954	1973	502771	CGAACAGGAGCAGGGAAAGC	43	566
1955	1974	502772	GCGAACAGGAGCAGGGAAAG	47	567
1956	1975	502773	GGCGAACAGGAGCAGGGAAA	61	568
1957	1976	502774	CGCGAACAGGAGCAGGGAA	74	569
1958	1977	502775	ACGGCGAACAGGAGCAGGG	60	570
1959	1978	502776	AACGGCGAACAGGAGCAGGG	86	571
1960	1979	502777	CAACGGCGAACAGGAGCAGG	84	572
1981	2000	502778	GGCGGGCGGCACGAGACAGA	80	573
1982	2001	502779	AGGGCGGGCGGCACGAGACAG	76	574
1983	2002	502780	CAGGGCGGGCGGCACGAGAC	58	575
1984	2003	502781	CCAGGGCGGGCGGCACGAGAC	80	576
1985	2004	502782	CCCAGGGCGGGCGGCACGAGA	59	577
1986	2005	502783	GCCCCAGGGCGGGCGGCACGAG	68	578
1987	2006	502784	AGGCCAGGGCGGGCGGCACGA	75	579

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 gapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
1988	2007	502785	CAGCCCAGGGCGGGCGACG	76	580	
1989	2008	502786	GCAGCCCAGGGCGGGCGAC	70	581	
2026	2045	502787	CTGCGGTGAGTTGGCCGGC	68	582	
2027	2046	502788	ACTGCGGTGAGTTGGCCGG	67	583	
2028	2047	502789	GACTGCGGTGAGTTGGCCGG	58	584	
2029	2048	502790	AGACTGCGGTGAGTTGGCCG	71	585	
2030	2049	502791	CAGACTGCGGTGAGTTGGCC	70	586	
2031	2050	502792	CCAGACTGCGGTGAGTTGGC	79	587	
2032	2051	502793	GCCAGACTGCGGTGAGTTGG	76	588	
2033	2052	502794	CGCCAGACTGCGGTGAGTTG	66	589	
2077	2096	502795	AAGACAGTTCTAGGGTTCA	87	590	
2078	2097	502796	GAAGACAGTTCTAGGGTTCA	78	591	
2079	2098	502797	CGAACAGTTCTAGGGTT	85	592	
2080	2099	502798	TCGAAGACAGTTCTAGGGT	78	593	
2081	2100	502799	GTCGAAGACAGTTCTAGGG	92	594	
2082	2101	502800	AGTCGAAGACAGTTCTAGGG	85	595	
2083	2102	502801	GAGTCGAAGACAGTTCTAGG	83	596	
2084	2103	502802	GGAGTCGAAGACAGTTCTAG	86	597	
2085	2104	502803	CGGAGTCGAAGACAGTTCTA	91	598	
2086	2105	502804	CCGGAGTCGAAGACAGTTCT	76	599	
2087	2106	502805	CCCGGAGTCGAAGACAGTT	90	600	
2088	2107	502806	CCCCGGAGTCGAAGACAGTT	83	601	

TABLE 12-continued

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 gapmers targeting SEQ ID NO: 1						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
2089	2108	502807	GCCCCGGAGTCGAAGACAGT	82	602	
2090	2109	502808	GGCCCCGGAGTCGAAGACAG	73	603	
2091	2110	502809	GGGCCCCGGAGTCGAAGACA	67	604	
2143	2162	502810	AGGCAGGTGGCGCGGCTTCT	73	605	
2144	2163	502811	CAGGCAGGTGGCGCGGCTTC	57	606	
2145	2164	502812	GCAGGCAGGTGGCGCGGCTT	69	607	
2147	2166	502813	TGGCAGGCAGGTGGCGCGC	73	608	
2149	2168	502814	ACTGGCAGGCAGGTGGCGC	56	609	
2151	2170	502815	GAACACTGGCAGGCAGGTGGC	71	610	
2152	2171	502816	TGAACACTGGCAGGCAGGTGGC	80	611	
2154	2173	502817	TGTGAACACTGGCAGGCAGGTGG	85	612	
2187	2206	502818	TGGAGCTGGCGAGACCCA	55	613	
2189	2208	502819	ACTGGAGCTGGCGAGACACC	53	614	
2190	2209	502820	GACTGGAGCTGGCGAGAC	55	615	
2192	2211	502821	AGGACTGGAGCTGGCGAG	76	616	
2194	2213	502822	ACAGGACTGGAGCTGGCGG	77	617	
2195	2214	502823	CACAGGACTGGAGCTGGCG	74	618	
2196	2215	502824	TCACAGGACTGGAGCTGGC	90	619	
2386	2405	502825	GCCTCAGCCTGGCCGAAAGA	80	620	
2387	2406	502826	GGCCTCAGCCTGGCCGAAAG	72	621	
2490	2509	444401	TTGCACTTTGCGAACCAACG	97	41	

TABLE 13

Inhibition of human DMPK RNA transcript in hSKMc by 5-10-5 gapmers targeting SEQ ID NO: 2						
Target Start Site	Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	
503	522	502983	TGGTGGAGCCAAGCCCTCCC	83	622	
561	580	502984	GGGCACCCCTCAGAGCCTGAA	82	623	
1197	1216	502369	GCCTGGCAGCCCCCTGTCCAG	16	160	
1198	1217	502370	GGCCTGGCAGCCCCCTGTCCA	58	161	
1199	1218	502371	GGGCCTGGCAGCCCCCTGTCC	62	162	
1242	1261	502372	ATGGCCCTCCCCGGGGCGG	41	163	
1243	1262	502373	CATGGCCCTCCCCGGGGCG	29	164	
1244	1263	502374	CCATGGCCCTCCCCGGGGCC	34	165	

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5'-10-5 gapmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
1245	1264		502375	ACCATGGCCCTCCCCGGC	60
1246	1265		502376	CACCATGGCCCTCCCCGG	68
1247	1266		502377	GCACCATGGCCCTCCCCGG	75
1248	1267		502378	AGCACCATGGCCCTCCCCG	65
1249	1268		502379	CAGCACCATGGCCCTCCCC	63
1250	1269		502380	GCAGCACCATGGCCCTCCC	73
1251	1270		502381	GGCAGCACCATGGCCCTCC	80
1253	1272		502382	CAGGCAGCACCATGGCCCT	82
1254	1273		502383	ACAGGCAGCACCATGGCCC	72
1256	1275		502384	GGACAGGCAGCACCATGGC	70
1257	1276		502385	TGGACAGGCAGCACCATGG	71
1258	1277		502386	TTGGACAGGCAGCACCATGG	73
1259	1278		502387	GTTGGACAGGCAGCACCATG	73
1260	1279		502388	TGTTGGACAGGCAGCACCAT	60
1261	1280		502389	ATGTTGGACAGGCAGCACCA	75
1262	1281		502390	CATGTTGGACAGGCAGCAC	81
1263	1282		502391	ACATGTTGGACAGGCAGCAC	67
1264	1283		502392	GACATGTTGGACAGGCAGCA	71
1265	1284		502393	TGACATGTTGGACAGGCAGC	81
1266	1285		502394	CTGACATGTTGGACAGGCAG	76
1267	1286		502395	GCTGACATGTTGGACAGGC	70
1268	1287		502396	GGCTGACATGTTGGACAGGC	77
1269	1288		502397	CGGCTGACATGTTGGACAGG	74
1270	1289		502398	TCGGCTGACATGTTGGACAG	63
1271	1290		502399	CTCGGCTGACATGTTGGACA	80
1272	1291		502400	CCTCGGCTGACATGTTGGAC	71
1273	1292		502401	ACCTCGGCTGACATGTTGGA	64
1274	1293		502402	CACCTCGGCTGACATGTTGG	71
1275	1294		502403	GCACCTCGGCTGACATGTTG	77
1276	1295		502404	CGCACCTCGGCTGACATGTT	80
1277	1296		502405	CCGCACCTCGGCTGACATGT	80
1278	1297		502406	GCCGCACCTCGGCTGACATG	79
1279	1298		502407	AGCCGCACCTCGGCTGACAT	74
1280	1299		502408	CAGCCGCACCTCGGCTGACA	66
1281	1300		502409	TCAGCCGCACCTCGGCTGAC	15
1282	1301		502410	CTCAGCCGCACCTCGGCTGA	32

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5'-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition SEQ ID NO.
1283	1302	502411	CCTCAGCCGCACCTCGGCTG	65	202
1284	1303	502412	GCCTCAGCCGCACCTCGGCT	81	203
1305	1324	502413	CCAACACCAGCTGCTGGAGC	90	204
1306	1325	502414	TCCAACACCAGCTGCTGGAG	78	205
1307	1326	502415	GTCCAACACCAGCTGCTGGA	84	206
1309	1328	502416	GGGTCCAACACCAGCTGCTG	69	207
1330	1349	502417	GGCTCCAGCCCCAGGAAGCC	46	208
1331	1350	502418	GGGCTCCAGCCCCAGGAAGC	28	209
1349	1368	502419	CAGGAGAAGGTCGAGCAGGG	41	210
1351	1370	502420	CCCAGGGAGAAGGTCGAGCAG	71	211
1352	1371	502421	GCCCAGGAGAAGGTCGAGCA	85	212
1353	1372	451363	CGCCCAGGAGAAGGTCGAGC	84	213
1354	1373	502422	ACGCCAGGAGAAGGTCGAG	67	214
1390	1409	502423	TCCTGGGCCAGTTCGGAGGC	58	215
1391	1410	502424	GTCCTGGGCCAGTTCGGAGG	71	216
1392	1411	502425	TGTCCTGGGCCAGTTCGGAG	69	217
1393	1412	502426	TTGTCTGGGCCAGTTCGGA	71	218
1394	1413	502427	CTTGTCTGGGCCAGTCGG	66	219
1395	1414	502428	ACTTGTCTGGGCCAGTTCG	59	220
1396	1415	502429	TACTTGTCTGGGCCAGTT	75	221
1397	1416	502430	GTACTTGTCTGGGCCAGTT	78	222
1398	1417	502431	CGTACTTGTCTGGGCCAGT	74	223
1416	1435	502432	ACTGCAAGAAGTCGGCCACG	73	224
1418	1437	502433	CCACTGCAAGAAGTCGGCCA	65	225
1419	1438	451364	CCCACTGCAAGAAGTCGGCC	32	226
1421	1440	502985	ACCCCCACTGCAAGAAGTCGG	60	624
1551	1570	502986	GCCCCAGGATGGGAGGATCT	58	625
1597	1616	502987	CATAGGACAGAGAAATGTTG	70	626
1630	1649	502988	TGCTGACCTACTCTGCC	86	627
1666	1685	502989	TAAGCCATGGCTCTGAGTCA	51	628
1712	1731	502990	AGAGAGGCCATGGGAGGCTG	42	629
1841	1860	502991	CTGGCCCTCCTGGCTTGCCC	72	630
1853	1872	502992	AGCTGCCCATGCTGGCC	76	631
1862	1881	502993	GCCCCCTGGCAGCTGCCCAT	70	632
1873	1892	502994	CTGTCGGCTGCGCCCCCTGGC	78	633

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5'-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No.	Sequence	% inhibition
					SEQ ID NO.
1887	1906		502995	CGCCGAACACCTGCCTGTCG	68
1931	1950		502996	CCTCCCAGTGCCCTGGGCACC	52
1981	2000		502998	GCGCCTGTCCTGCAAAGCTGG	84
2025	2044		502999	CCCAAAGTTGTCCTCCTGG	83
2038	2057		503000	ACACCCAGAAGAACCCAAAG	75
2117	2136		503001	CTGACCCACACGGCTCATAG	65
2235	2254		503002	TGGCCCCAGGCCCTGGAAAG	67
2278	2297		503003	GACAAGGCAGCTGGCAGAAG	79
2331	2350		503004	AAGAAACCAGTGACCAGTGA	85
2523	2542		503005	CTGTGAAATGGGAGGGAGGAG	0
2578	2597		503006	GAAGGTTTTCCAGAGGCTG	88
2615	2634		503007	GGCCAGGAGAGTCATTAGGG	84
2710	2729		503008	CCACAAAAGGAGTGCTCCTC	79
2789	2808		503009	CCTTTAAGGCAGCAGGAAC	78
3629	3648		503010	CTAGGACTGTCTGCTTCCCA	88
3761	3780		502452	CTCACACGATGGGCTCCGC	66
3762	3781		502453	CCTCACACGATGGGCTCCG	81
3763	3782		502454	GCCTCACACGATGGGCTCC	77
3764	3783		502455	AGCCTCACACGATGGGCTC	63
3765	3784		502456	AAGCCTCACACGATGGGCT	70
3766	3785		502457	TAAGCCTCACACGATGGG	78
3767	3786		502458	TTAACGCTCACACGATGGG	76
3768	3787		502459	CTTAAGCCTCACACGATGG	78
3769	3788		502460	CCTTAAGCCTCACACGATG	68
3770	3789		502461	TCCTTAAGCCTCACACGAT	67
3771	3790		502462	CTCCTTAAGCCTCACACG	84
3772	3791		502463	CCTCCTTAAGCCTCACACG	76
3773	3792		502464	ACCTCCTTAAGCCTCACAC	64
3774	3793		502465	GACCTCCTTAAGCCTCACCA	72
3775	3794		502466	GGACCTCCTTAAGCCTCAC	69
3776	3795		502467	CGGACCTCCTTAAGCCTCAC	81
3777	3796		502468	TCGGACCTCCTTAAGCCTCA	78
3778	3797		502469	GTCGGACCTCCTTAAGCCTC	57
3780	3799		502470	CAGTCGGACCTCCTTAAGCC	62
3781	3800		502471	GCAGTCGGACCTCCTTAAGC	45
3782	3801		502472	TGCAGTCGGACCTCCTTAAG	60

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5'-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
3808	3827	502473	CCTTCAGAATCTCGAAGTCG	67	266
3809	3828	502474	ACCTTCAGAATCTCGAAGTC	50	267
3811	3830	502475	TCACCTTCAGAATCTCGAAG	54	268
3812	3831	502476	ATCACCTTCAGAATCTCGAA	38	269
3813	3832	502477	GATCACCTTCAGAATCTCGA	35	270
3815	3834	502478	CCGATCACCTTCAGAATCTC	52	271
3816	3835	502479	TCCGATCACCTTCAGAATCT	50	272
3817	3836	502480	GTCCGATCACCTTCAGAATC	44	273
3818	3837	502481	CGTCCGATCACCTTCAGAAT	41	274
3921	3940	503011	GTCATTCAATTCTAAG	44	649
4118	4137	502482	CCCGTCTGCTTCATCTTCAC	67	275
4119	4138	502483	GCCCGTCTGCTTCATCTTC	76	276
4120	4139	502484	GGCCCGTCTGCTTCATCTTC	57	277
4121	4140	502485	TGGCCCGTCTGCTTCATCTT	64	278
4122	4141	502486	CTGGCCCGTCTGCTTCATCT	64	279
4123	4142	502487	CCTGGCCCGTCTGCTTCATC	73	280
4124	4143	502488	ACCTGGCCCGTCTGCTTCAT	64	281
4125	4144	502489	CACCTGGCCCGTCTGCTTC	80	282
4126	4145	502490	ACACCTGGCCCGTCTGCTTC	71	283
4127	4146	502491	TACACCTGGCCCGTCTGCTT	74	284
4148	4167	502492	TTGTTCATGATCTTCATGGC	56	285
4150	4169	502493	ACTTGTTCATGATCTTCATG	23	286
4151	4170	502494	CACTTGTTCATGATCTTCAT	43	287
4152	4171	502495	CCACTTGTTCATGATCTTC	43	288
4153	4172	502496	CCCACTTGTTCATGATCTTC	47	289
4154	4173	502497	TCCCACCTGTTCATGATCTT	34	290
4155	4174	502498	GTCCCCACCTGTTCATGATCT	34	291
4156	4175	502499	TGTCCCCACCTGTTCATGATC	27	292
4157	4176	502500	ATGTCCCCACCTGTTCATGAT	23	293
4158	4177	502501	CATGTCCCCACCTGTTCATGA	51	294
4159	4178	502502	GCATGTCCCCACCTGTTCATG	20	295
4160	4179	502503	AGCATGTCCCCACCTGTTCAT	52	296
4161	4180	502504	CAGCATGTCCCCACCTGTTCA	72	297
4162	4181	502505	TCAGCATGTCCCCACCTGTT	70	298
4163	4182	502506	TTCAAGCATGTCCCCACCTGTT	53	299

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
4164	4183	502507	CTTCAGCATGTCCCAC TTGT	52	300
4165	4184	502508	TCTTCAGCATGTCCCAC TTG	45	301
4167	4186	502509	CCTCTTCAGCATGTCCCAC T	68	302
4168	4187	502510	CCCTCTTCAGCATGTCCCAC	68	303
4169	4188	502511	CCCCTCTTCAGCATGTCCC A	79	304
4170	4189	502512	GCCCCTCTTCAGCATGTCCC	85	305
4171	4190	502513	CGCCCCCTCTTCAGCATGTCC	84	306
4172	4191	502514	TCGCCCCCTCTTCAGCATGTC	80	307
4173	4192	502515	CTCGCCCCCTCTTCAGCATGT	82	308
4174	4193	502516	CCTCGCCCCCTCTTCAGCATG	78	309
4175	4194	502517	ACCTCGCCCCCTCTTCAGCAT	73	310
4176	4195	502518	CACCTCGCCCCCTCTTCAGCA	76	311
4239	4258	503012	GGAGGGAGCTGCAGCCGGAGA	7	650
4245	4264	503013	GCACCCGGAGGGAGCTGCAGC	0	651
4261	4280	503014	GCACGACACCTGCAGGGCAC	23	652
4355	4374	503015	AGCTCACCAAGGTAGTTCTCA	49	653
4427	4446	503016	GCTTCCTCTCCCCACCTCCT	65	654
4447	4466	503017	GCAGCACCCCAATCCTAGA	67	655
4508	4527	503018	GCCCCCTCATCCACCTGACAC	62	656
4613	4632	503019	TTCCAGGTAAGAGACCCCCC	87	657
4679	4698	503020	AGAATAGGTCCCAGACACTC	81	658
4731	4750	503021	CTCCCCCTGAGATGTTCTGG	53	659
4858	4877	503022	CCCCAGCCCAGAGATAACCA	74	660
4927	4946	503023	CCTGATCCATCACGGATGGC	69	661
4987	5006	503024	TACTCCATGACCAGGTA CTG	81	662
5185	5204	503025	GCTCTGACCTTCCAAGAACCC	56	663
5354	5373	503026	CTCCCCCTCTGTGGTCCCACC	0	664
5407	5426	503027	GTCGGGTTTGATGTCCCCTGC	75	665
5445	5464	502521	GCCAGGGCGGATGTGGCCACA	57	314
5500	5519	503028	AGGGCACTGGCTCACCGTTC	45	666
5681	5700	503029	GGGCCCTCCTTCCAACCACT	28	667
5708	5727	503030	GCCCACCCCTCTGGGCCAC	45	668
5728	5747	503031	AGGAGCAGAGCGAGGCTTGG	38	669
5800	5819	502524	ACAGCCTGCAGGATCTCGGG	86	317
5801	5820	502525	CACAGCCTGCAGGATCTCGG	81	318
5802	5821	502526	CCACAGCCTGCAGGATCTCG	83	319

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition SEQ ID NO.
5803	5822	502527	CCACAGCCTGCAGGATCTC	84	320
5804	5823	502528	GCCCCACAGCCTGCAGGATCT	91	321
5805	5824	502529	CGCCCCACAGCCTGCAGGATC	90	322
5806	5825	502530	CCGCCACAGCCTGCAGGAT	82	323
5807	5826	502531	ACCGCCCACAGCCTGCAGGA	83	324
5808	5827	502532	CACCGCCCACAGCCTGCAGG	85	325
5809	5828	502533	CCACCGCCCACAGCCTGCAG	84	326
5810	5829	502534	CCCACCGCCCACAGCCTGCA	80	327
5811	5830	502535	GCCCACCGCCCACAGCCTGC	90	328
5812	5831	502536	GGCCCACCGCCCACAGCCTG	94	329
5813	5832	502537	AGGCCCACCGCCCACAGCCT	88	330
5814	5833	502538	CAGGCCACCGCCCACAGCC	91	331
5815	5834	502539	CCAGGCCACCGCCCACAGC	73	332
5816	5835	502540	CCCAGGCCACCGCCCACAG	86	333
5817	5836	502541	TCCCAGGCCACCGCCCACA	88	334
5818	5837	502542	GTCCCAGGCCACCGGCCAC	84	335
5819	5838	502543	TGTCCCAGGCCACCGCCCA	85	336
5820	5839	502544	CTGTCCCAGGCCACCGCCC	65	337
5821	5840	502545	CCTGTCCCAGGCCACCGCC	81	338
5822	5841	502546	GCCTGTCCCAGGCCACCGC	90	339
5823	5842	502547	TGCCTGTCCCAGGCCACCG	85	340
5824	5843	502548	CTGCCTGTCCCAGGCCACC	89	341
5825	5844	502549	GCTGCCTGTCCCAGGCCAC	91	342
5826	5845	502550	AGCTGCCTGTCCCAGGCCA	94	343
5827	5846	502551	TAGCTGCCTGTCCCAGGCC	92	344
5828	5847	502552	GTAGCTGCCTGTCCCAGGCC	88	345
5829	5848	502553	CGTAGCTGCCTGTCCCAGGC	85	346
5830	5849	502554	CCGTAGCTGCCTGTCCCAGG	83	347
5831	5850	502555	CCCGTAGCTGCCTGTCCCAG	64	348
5832	5851	502556	GCCCCGTAGCTGCCTGTCCC	83	349
5833	5852	502557	GGCCCGTAGCTGCCTGTCCC	89	350
5881	5900	502558	TAGAACATTTCATAGGCGAA	68	351
5919	5938	502559	TCTCCGCCGTGGAATCCGCG	75	352
5920	5939	502560	GTCTCCGCCGTGGAATCCG	79	353
5921	5940	502561	GGTCTCCGCCGTGGAATCCG	66	354

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
5922	5941		502562	AGGTCTCCGCCGTGGAATCC	50
5923	5942		502563	TAGGTCTCCGCCGTGGAATC	71
5944	5963		502564	TTGTAGTGGACGATCTGCC	68
5945	5964		502565	CTTGTAGTGGACGATCTTG	70
5946	5965		502566	CCTTGTAGTGGACGATCTT	61
5948	5967		503032	CACCTTGTAGTGGACGATCT	62
6039	6058		502582	CGGCAGAGAGAGGGTGCCT	80
6040	6059		502583	GCGGCAGAGAGAGGGTGCCT	62
6041	6060		502584	AGCGGCAGAGAGAGGGTGC	44
6042	6061		502585	CAGCGGCAGAGAGAGGGTGC	78
6043	6062		502586	CCAGCGGCAGAGAGAGGGTGC	71
6118	6137		502587	GGCCCAGCCGTGTCTCCGG	77
6119	6138		502588	CGGCCAGCCGTGTCTCCGG	69
6120	6139		502589	CCGGCCCAGCCGTGTCTCC	70
6121	6140		502590	CCCGGCCAGCCGTGTCTCC	75
6122	6141		502591	CCCCGGCCCAGCCGTGTCTC	77
6123	6142		502592	ACCCCGGCCAGCCGTGTCT	73
6124	6143		502593	CACCCCGGCCAGCCGTGT	84
6125	6144		502594	CCACCCGGCCCCAGCCGTGT	78
6126	6145		502595	TCCACCCGGCCCCAGCCGTG	71
6127	6146		502596	CTCCACCCGGCCCCAGCCGT	81
6128	6147		502597	GCTCCACCCGGCCCCAGCCG	86
6129	6148		502598	TGCTCCACCCGGCCCCAGCC	83
6130	6149		502599	CTGCTCCACCCGGCCCCAGC	88
6152	6171		502600	AAGGGATGTGTCCGGAAAGTC	60
6153	6172		502601	GAAGGGATGTGTCCGGAAAGT	58
6154	6173		502602	AGAAGGGATGTGTCCGGAAAG	63
6155	6174		502603	AAGAAGGGATGTGTCCGGAA	62
6156	6175		502604	GAAGAAGGGATGTGTCCGGA	61
6157	6176		502605	AGAAGAAGGGATGTGTCCGG	62
6158	6177		502606	AAGAAGAAGGGATGTGTCCG	56
6159	6178		502607	AAAGAAGAAGGGATGTGTCC	58
6160	6179		502608	CAAAGAAGAAGGGATGTGT	50
6161	6180		502609	CCAAAGAAGAAGGGATGTGT	61
6163	6182		502610	GGCCAAAGAAGAAGGGATGT	73
6164	6183		502611	AGGCCAAAGAAGAAGGGATG	56

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5'-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
6165	6184	502612	502612	GAGGCCAAAGAAGAAGGGAT	73
6166	6185	502613	502613	CGAGGCCAAAGAAGAAGGGA	75
6167	6186	502614	502614	TCGAGGCCAAAGAAGAAGGG	75
6168	6187	502615	502615	GTCGAGGCCAAAGAAGAAGG	83
6169	6188	502616	502616	AGTCGAGGCCAAAGAAGAAG	58
6170	6189	502617	502617	CAGTCGAGGCCAAAGAAGAA	52
6171	6190	502618	502618	CCAGTCGAGGCCAAAGAAGA	68
6172	6191	502619	502619	CCCAGTCGAGGCCAAAGAAG	78
6173	6192	502620	502620	TCCCAGTCGAGGCCAAAGAA	66
6174	6193	502621	502621	ATCCCAGTCGAGGCCAAAGA	75
6175	6194	502622	502622	CATCCCAGTCGAGGCCAAAG	70
6176	6195	502623	502623	CCATCCCAGTCGAGGCCAA	81
6177	6196	502624	502624	ACCATCCCAGTCGAGGCCAA	82
6178	6197	502625	502625	GACCATCCCAGTCGAGGCCA	88
6179	6198	502626	502626	AGACCATCCCAGTCGAGGCC	79
6180	6199	502627	502627	GAGACCATCCCAGTCGAGGC	82
6181	6200	502628	502628	GGAGACCATCCCAGTCGAGG	60
6216	6235	502629	502629	TTCGAAATCCGGTGTAAAGG	84
6217	6236	502630	502630	CTTCGAAATCCGGTGTAAAG	57
6218	6237	502631	502631	CCTTCGAAATCCGGTGTAAA	64
6219	6238	502632	502632	ACCTTCGAAATCCGGTGTAA	73
6220	6239	502633	502633	CACCTTCGAAATCCGGTGT	77
6221	6240	502634	502634	GCACCTTCGAAATCCGGTGT	59
6222	6241	502635	502635	GGCACCTTCGAAATCCGGT	85
6223	6242	502636	502636	TGGCACCTTCGAAATCCGGT	86
6224	6243	502637	502637	GTGGCACCTTCGAAATCCGG	74
6225	6244	502638	502638	GGTGGCACCTTCGAAATCCG	79
6226	6245	502639	502639	CGGTGGCACCTTCGAAATCC	85
6227	6246	502640	502640	TCGGTGGCACCTTCGAAATC	71
6228	6247	502641	502641	GTCGGTGGCACCTTCGAAAT	88
6229	6248	502642	502642	TGTCGGTGGCACCTTCGAAA	89
6230	6249	502643	502643	GTGTCGGTGGCACCTTCGAA	88
6231	6250	502644	502644	TGTGTCGGTGGCACCTTCG	87
6232	6251	502645	502645	ATGIGICGGTGGCACCTTCG	88
6233	6252	502646	502646	CATGTGTCGGTGGCACCTTC	88

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
6234	6253	502647 GCATGTGTCGGTGGCACCTT	91	440	
6235	6254	502648 TGCATGTGTCGGTGGCACCT	87	441	
6236	6255	502649 TTGCATGTGTCGGTGGCAC	86	442	
6237	6256	502650 GTTGCATGTGTCGGTGGCAC	83	443	
6238	6257	502651 AGTTGCATGTGTCGGTGGCA	81	444	
6239	6258	502652 AAGTTGCATGTGTCGGTGGC	79	445	
6240	6259	502653 GAAGTTGCATGTGTCGGTGG	58	446	
6241	6260	502654 CGAAGTTGCATGTGTCGGTGG	85	447	
6243	6262	502655 GTCGAAGTTGCATGTGTCGG	77	448	
6244	6263	502656 AGTCGAAGTTGCATGTGTCG	79	449	
6245	6264	502657 AAGTCGAAGTTGCATGTGTC	74	450	
6246	6265	502658 CAAGTCGAAGTTGCATGTGT	82	451	
6247	6266	502659 CCAAGTCGAAGTTGCATGTG	82	452	
6248	6267	502660 ACCAAGTCGAAGTTGCATGT	70	453	
6249	6268	502661 CACCAAGTCGAAGTTGCATG	76	454	
6250	6269	502662 CCACCAAGTCGAAGTTGCAT	79	455	
6251	6270	502663 TCCACCAAGTCGAAGTTGCA	68	456	
6252	6271	502664 CTCCACCAAGTCGAAGTTGC	71	457	
6253	6272	502665 CCTCCACCAAGTCGAAGTTG	67	458	
6254	6273	502666 TCCTCCACCAAGTCGAAGTT	70	459	
6255	6274	502667 GTCCTCCACCAAGTCGAAGT	80	460	
6256	6275	502668 CGTCCTCCACCAAGTCGAAG	76	461	
6257	6276	502669 CCGTCCTCCACCAAGTCGAA	78	462	
6258	6277	502670 CCCGTCTCCACCAAGTCGA	83	463	
6259	6278	502671 GCCCGTCCTCCACCAAGTCG	76	464	
6260	6279	502672 AGCCCGTCCTCCACCAAGTC	72	465	
6261	6280	502673 GAGCCCGTCCTCCACCAAGT	71	466	
6262	6281	502674 TGAGCCCGTCCTCCACCAAG	60	467	
6289	6308	503033 CTACCCGGCCCCGCTCAC	60	671	
6445	6464	503034 CTAGGTCACTGCTGGGTCT	86	672	
6596	6615	503035 CTCAGATAGCTCCCCACTCC	55	673	
6794	6813	503036 AATTCTCTAATTCTCTAGAC	19	674	
8666	8685	503037 TACCTGAGGGCCATGCAGGA	51	675	
8765	8784	503038 GTTCCAAGACTGATCCTGCA	69	676	
11975	11994	502675 GGTTCCGAGCCTCTGCCTCG	44	468	
11976	11995	502676 CGGTTCCGAGCCTCTGCCTC	74	469	

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKM _c by 5'-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
11977	11996	502677	CCGGTTCCGAGCCTCTGCCT	72	470
11978	11997	502678	CCCGGTTCCGAGCCTCTGCC	73	471
11979	11998	502679	TCCC GGTTCCGAGCCTCTGC	84	472
11980	11999	502680	GTCCC GGTTCCGAGCCTCTG	66	473
11982	12001	502681	AGGTCCC GGTTCCGAGCCTC	82	474
11983	12002	502682	TAGGTCCC GGTTCCGAGCCT	83	475
11984	12003	502683	CTAGGTCCC GGTTCCGAGCC	81	476
11985	12004	502684	TCTAGGTCCC GGTTCCGAGC	74	477
11986	12005	502685	CTCTAGGTCCC GGTTCCGAG	78	478
11987	12006	502686	CCTCTAGGTCCC GGTTCCGA	75	479
11988	12007	502687	GCCTCTAGGTCCC GGTTCCG	80	480
12016	12035	502688	CATCCGCTCCTGCAACTGCC	89	481
12017	12036	502689	CCATCCGCTCCTGCAACTGC	81	482
12018	12037	502690	TCCATCCGCTCCTGCAACTG	71	483
12019	12038	502691	CTCCATCCGCTCCTGCAACT	75	484
12020	12039	502692	ACTCCATCCGCTCCTGCAAC	64	485
12021	12040	502693	AACTCCATCCGCTCCTGCAA	52	486
12022	12041	502694	CAACTCCATCCGCTCCTGCA	45	487
12024	12043	502695	AGCAACTCCATCCGCTCCTG	78	488
12025	12044	502696	CAGCAACTCCATCCGCTCCT	64	489
12026	12045	502697	GCAGCAACTCCATCCGCTCCT	56	490
12173	12192	503039	AGGAGGGCGGTGGCGCGCG	0	677
12221	12240	503040	TGACAGCTGGAAAGGAGAAGA	41	678
12258	12277	502712	GAAGGTGGATCCGTGGCCG	73	505
12259	12278	502713	GGAAGGTGGATCCGTGGCC	70	506
12260	12279	502714	GGGAAGGTGGATCCGTGGC	72	507
12261	12280	502715	TGGGAAGGTGGATCCGTGGC	50	508
12262	12281	502716	ATGGGAAGGTGGATCCGTGG	62	509
12263	12282	451417	CATGGGAAGGTGGATCCGTG	77	679
12463	12482	503041	GGAGGTTATCTAGGGAGATC	42	680
12542	12561	503042	GAAGGGACAGGTGACCCGAT	69	681
12596	12615	502724	CACCAGCGGGCACTGGCCA	51	518
12597	12616	502725	CCACCAGCGGGCACTGGCC	55	519
12598	12617	502726	CCCACCAGCGGGCACTGGCC	61	520
12599	12618	502727	CCCCACCAGCGGGCACTGGC	43	521

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
12601	12620	502728	GGCCCCACCAGCGGGCACTG	16	522
12602	12621	502729	TGGCCCCACCAGCGGGCACT	43	523
12603	12622	502730	CTGGCCCCACCAGCGGGCAC	43	524
12604	12623	502731	CCTGGCCCCACCAGCGGGCA	41	525
12605	12624	502732	GCCTGGCCCCACCAGCGGGC	30	526
12607	12626	502733	GGGCCTGGCCCCACCAGCGG	66	527
12625	12644	502734	AGGTGGCGGGCGGTGCATGG	31	528
12626	12645	502735	CAGGTGGCGGGCGGTGCATGG	23	529
12627	12646	502736	GCAGGTGGCGGGCGGTGCATG	57	530
12628	12647	502737	AGCAGGTGGCGGGCGGTGCAT	54	531
12629	12648	502738	CAGCAGGTGGCGGGCGGTGCA	61	532
12630	12649	502739	GCAGCAGGTGGCGGGCGGTGC	57	533
12631	12650	502740	AGCAGCAGGTGGCGGGCGGTG	36	534
12632	12651	502741	GAGCAGCAGGTGGCGGGCGGT	53	535
12633	12652	502742	GGAGCAGCAGGTGGCGGGCG	39	536
12634	12653	502743	GGGAGCAGCAGGTGGCGGGCG	36	537
12635	12654	502744	AGGGAGCAGCAGGTGGCGGC	62	538
12636	12655	502745	CAGGGAGCAGCAGGTGGCGG	56	539
12637	12656	502746	GCAGGGAGCAGCAGGTGGCG	58	540
12638	12657	502747	GGCAGGGAGCAGCAGGTGGC	65	541
12639	12658	502748	TGGCAGGGAGCAGCAGGTGG	47	542
12640	12659	502749	CTGGCAGGGAGCAGCAGGTG	41	543
12642	12661	451432	CCCTGGCAGGGAGCAGCAGG	53	544
12643	12662	502750	ACCCTGGCAGGGAGCAGCAG	52	545
12646	12665	503043	CGTACCCCTGGCAGGGAGCAG	59	682
12918	12937	502977	GGACTCGCCCCGCTACGCC	71	683
12924	12943	502978	CTCCTGGGACTCGCCCCGCC	67	684
12925	12944	503044	GCTCCTGGGACTCGCCCCGC	66	685
12929	12948	503045	ATTGGCTCTGGGACTCGCC	77	686
12930	12949	502979	GATTGGCTCTGGGACTCGC	70	687
12936	12955	502980	GCCTCTGATTGGCTCTGGG	56	688
12942	12961	502981	GCATGGGCCTCTGATTGGCT	20	689
12948	12967	502982	CACCCGGCATGGGCCTCTGA	20	690
12986	13005	503046	GCCAGGCCTAGGGACCTGCG	58	691
12990	13009	502760	ATAGGCCAGGCCTAGGGACC	51	555
12991	13010	502761	GATAGGCCAGGCCTAGGGAC	41	556

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5'-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
12992	13011	502762	CGATAGGCCAGGCCTAGGGA	69	557
12993	13012	502763	CCGATAGGCCAGGCCTAGGG	80	558
12994	13013	502764	TCCGATAGGCCAGGCCTAGG	78	559
12995	13014	502765	CTCCGATAGGCCAGGCCTAG	89	560
12996	13015	502766	CCTCCGATAGGCCAGGCCTA	79	561
12997	13016	502767	GCCTCCGATAGGCCAGGCCT	73	562
12999	13018	502768	GCGCCTCCGATAGGCCAGGGC	83	563
13015	13034	502769	AACAGGAGCAGGGAAAGCGC	83	564
13016	13035	502770	GAACAGGAGCAGGGAAAGCG	70	565
13017	13036	502771	CGAACAGGAGCAGGGAAAGC	43	566
13018	13037	502772	GCGAACAGGAGCAGGGAAAG	47	567
13019	13038	502773	GGCGAACAGGAGCAGGGAAA	61	568
13020	13039	502774	CGCGAACAGGAGCAGGGAA	74	569
13021	13040	502775	ACGGCGAACAGGAGCAGGG	60	570
13022	13041	502776	AACGGCGAACAGGAGCAGGG	86	571
13023	13042	502777	CAACGGCGAACAGGAGCAGG	84	572
13044	13063	502778	GGGCGGCGGCACGAGACAGA	80	573
13045	13064	502779	AGGGCGGCGGCACGAGACAG	76	574
13046	13065	502780	CAGGGCGGCGGCACGAGACA	58	575
13047	13066	502781	CCAGGGCGGCGGCACGAGAC	80	576
13048	13067	502782	CCCAGGGCGGCGGCACGAGA	59	577
13049	13068	502783	GCCCAGGGCGGCGGCACGAG	68	578
13050	13069	502784	AGCCCAGGGCGGCGGCACGA	75	579
13051	13070	502785	CAGCCCAGGGCGGCGGCACG	76	580
13052	13071	502786	GCAGCCCAGGGCGGCGGCAC	70	581
13089	13108	502787	CTGCGGTGAGTTGGCGGGC	68	582
13090	13109	502788	ACTGCGGTGAGTTGGCGGC	67	583
13091	13110	502789	GACTGCGGTGAGTTGGCGG	58	584
13092	13111	502790	AGACTGCGGTGAGTTGGCC	71	585
13093	13112	502791	CAGACTGCGGTGAGTTGGCC	70	586
13094	13113	502792	CCAGACTGCGGTGAGTTGGC	79	587
13095	13114	502793	GCCAGACTGCGGTGAGTTGG	76	588
13096	13115	502794	CGCCAGACTGCGGTGAGTTG	66	589
13140	13159	502795	AAGACAGTTCTAGGGTTCA	87	590
13141	13160	502796	GAAGACAGTTCTAGGGTTCA	78	591

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 capmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition
					SEQ ID NO.
13142	13161	502797	CGAAGACAGTTCTAGGGTC	85	592
13143	13162	502798	TCGAAGACAGTTCTAGGGTT	78	593
13144	13163	502799	GTCGAAGACAGTTCTAGGGT	92	594
13145	13164	502800	AGTCGAAGACAGTTCTAGGG	85	595
13146	13165	502801	GAGTCGAAGACAGTTCTAGG	83	596
13147	13166	502802	GGAGTCGAAGACAGTTCTAG	86	597
13148	13167	502803	CGGAGTCGAAGACAGTTCTA	91	598
13149	13168	502804	CCGGAGTCGAAGACAGTTCT	76	599
13150	13169	502805	CCCGGAGTCGAAGACAGTT	90	600
13151	13170	502806	CCCCGGAGTCGAAGACAGTT	83	601
13152	13171	502807	GCCCCGGAGTCGAAGACAGT	82	602
13153	13172	502808	GGCCCCGGAGTCGAAGACAG	73	603
13154	13173	502809	GGGCCCCGGAGTCGAAGACA	67	604
13206	13225	502810	AGGCGGTGGCGCGGGCTCT	73	605
13207	13226	502811	CAGGCGGTGGCGCGGGCTTC	57	606
13208	13227	502812	GCAGGCGGTGGCGCGGGCTT	69	607
13210	13229	502813	TGGCAGGCGGTGGCGCGGGC	73	608
13212	13231	502814	ACTGGCAGGCGGTGGCGCG	56	609
13214	13233	502815	GAACCTGGCAGGCGGTGGCG	71	610
13215	13234	502816	TGAACCTGGCAGGCGGTGGC	80	611
13217	13236	502817	TGTGAACCTGGCAGGCGGTGG	85	612
13250	13269	502818	TGGAGCTGGCGGGAGACCCA	55	613
13252	13271	502819	ACTGGAGCTGGCGGGAGACC	53	614
13253	13272	502820	GACTGGAGCTGGCGGGAGAC	55	615
13255	13274	502821	AGGACTGGAGCTGGCGGGAG	76	616
13257	13276	502822	ACAGGACTGGAGCTGGCGG	77	617
13258	13277	502823	CACAGGACTGGAGCTGGCG	74	618
13259	13278	502824	TCACAGGACTGGAGCTGGCG	90	619
13449	13468	502825	GCCTCAGCCTGGCCGAAAGA	80	620
13450	13469	502826	GGCCTCAGCCTGGCCGAAAG	72	621
13553	13572	444401	TTGCACCTTGCGAACCAACG	97	41
14037	14056	503047	TTCCCTCCCCAACCTTGATT	34	692
14255	14274	503048	AAGTTTGCAGCAACTTTCT	0	693
14325	14344	503049	GCCCCTCGGAATTCCCGCT	0	694
14343	14362	503050	CATCTCGGCCTGCGCTCCGC	39	695

TABLE 13-continued

Inhibition of human DMPK RNA transcript in hSKMC by 5-10-5 gapmers targeting SEQ ID NO: 2					
Target Site	Start Site	Target Stop Site	ISIS No	Sequence	% inhibition SEQ ID NO.
14361	14380	503051	GCAGGGCCCCACATTCCTTCA	0	696
14392	14411	503052	CTTCTGCACGCCCTCCGTCTC	30	697

Example 8

Antisense Inhibition of Murine DMPK in Mouse Primary Hepatocytes

[0338] Antisense oligonucleotides targeted to a murine DMPK nucleic acid were tested for their effect on DMPK RNA transcript in vitro. Cultured mouse primary hepatocytes at a density of 35,000 cells per well were transfected using electroporation with 8,000 nM antisense oligonucleotide. After approximately 24 hours, RNA was isolated from the cells and DMPK transcript levels were measured by quantitative real-time PCR. DMPK RNA transcript levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of DMPK, relative to untreated control cells.

[0339] The antisense oligonucleotides in Tables 14, 15, and 16 are 5-10-5 gapmers, where the gap segment comprises ten 2'-deoxynucleosides and each wing segment comprises five 2'-MOE nucleosides. The internucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. ‘Murine Target start site’ indicates the 5'-most nucleoside to which the antisense oligonucleotide is targeted in the murine gene sequence. ‘Murine Target stop site’ indicates the 3'-most nucleoside to which the antisense oligonucleotide is targeted in the murine gene sequence. All the antisense oligonucleotides listed in Table 12 target SEQ ID NO: 3 (GENBANK Accession No. NT_039413.7 truncated from nucleotides 16666001 to 16681000). All the antisense oligonucleotides listed in Table 13 target SEQ ID NO: 4 (GENBANK Accession No. NM_032418.1). The antisense oligonucleotides of Table 14 target SEQ ID NO: 5 (GEN-

BANK Accession No. AI007148.1), SEQ ID NO: 6 (GENBANK Accession No. AI304033.1), SEQ ID NO: 7 (GENBANK Accession No. BC024150.1), SEQ ID NO: 8 (GENBANK Accession No. BC056615.1), SEQ ID NO: 793 (GENBANK Accession No. BC075715.1), SEQ ID NO: 794 (GENBANK Accession No. BU519245.1), SEQ ID NO: 795 (GENBANK Accession No. CB247909.1), SEQ ID NO: 796 (GENBANK Accession No. CX208906.1), SEQ ID NO: 797 (GENBANK Accession No. CX732022.1), SEQ ID NO: 798 (GENBANK Accession No. S60315.1), or SEQ ID NO: 799 (GENBANK Accession No. S60316.1). In addition, the human antisense oligonucleotide ISIS 451421 targeting SEQ ID NO: 800 (GENBANK Accession No. NM_001081562.1) was also included in this assay and is listed in Table 14.

[0340] The murine oligonucleotides of Tables 14, 15, and 16 may also be cross-reactive with human gene sequences. ‘Mismatches’ indicate the number of nucleobases by which the murine oligonucleotide is mismatched with a human gene sequence. The greater the complementarity between the murine oligonucleotide and the human sequence, the more likely the murine oligonucleotide can cross-react with the human sequence. The murine oligonucleotides in Tables 14, 15, and 16 were compared to SEQ ID NO: 800 (GENBANK Accession No. NM_001081562.1). ‘Human Target start site’ indicates the 5'-most nucleoside to which the gapmer is targeted in the human gene sequence. ‘Human Target stop site’ indicates the 3'-most nucleoside to which the gapmer is targeted human gene sequence.

[0341] Several of the tested antisense oligonucleotides demonstrated significant inhibition of DMPK mRNA levels under the conditions specified above. Certain of the tested antisense oligonucleotides are cross-reactive with human gene sequences.

TABLE 14

Inhibition of murine DMPK RNA transcript in mouse primary hepatocytes by 5-10-5 gapmers targeting SEQ ID NO: 800							
Murine Target Start Site	Murine Target Stop Site	ISIS No	Sequence	% inhibition	SEQ ID NO.	Human Target Start Site	Human Target Stop Site
11904	11923	299516	TGGCCCACAGCCACGGCCGG	47	698	1850	1869
11927	11946	299520	GGCCTGGCCCCACCAGCGGG	58	699	1873	1892
11962	11981	299521	CCTGGCAGGGAGGCAGCAGGT	44	700	1908	1927
3345	3364	451360	CAGCCGCACTTCGGCTGACA	29	701	207	226
3378	3397	451361	GCCTGGGTCCAGCACCAGCT	67	702	240	259
3388	3407	451362	GTCCCAGGAAGCCTGGTCC	62	703	250	269

TABLE 14-continued

Inhibition of murine DMPK RNA transcript in mouse primary hepatocytes by 5-10-5 capmers targeting SEQ ID NO: 800									
Murine Target Start Site	Murine Target Stop Site	ISIS No.	Sequence	% inhibition	SEQ ID NO.	Human Target Start Site	Human Target Stop Site	Mismatches	
3418	3437	451363	CGCCCCAGGAGAAGGTCGAGC	69	213	280	299	0	
3484	3503	451364	CCCAC TGCAAGAAGTCGGCC	69	226	346	365	0	
6264	6283	451366	CGTTAGCAGGTCCCCGCCA	73	704	660	679	2	
6342	6361	451367	GTCTATGGCCATGACAATCT	61	705	738	757	0	
6363	6382	451368	GTAGCCCAGCGGTGCACGG	54	706	759	778	2	
6851	6870	451370	GGGTGCCACAGCCACCAGC	72	707	889	908	0	
6919	6938	451371	TGGCCCGTAGCTGCCTGCC	80	708	957	976	2	
7448	7467	451373	GGAAATCACCTGCCAACCT	80	709	n/a	n/a	n/a	
7458	7477	451374	GGATGTTCTGGAAATCACC	84	710	n/a	n/a	n/a	
7533	7552	451375	GTGGCACCTCGAAGTCTGG	77	711	1271	1290	3	
7589	7608	451376	CCCCGCTCACCATGGCAGTG	31	712	n/a	n/a	n/a	
10278	10297	451378	GGTCGGGACCTGATTGTCT	85	713	n/a	n/a	n/a	
3229	3248	451385	GCTGCATGTCTGCCGTCCC	74	714	90	109	1	
3244	3263	451386	GGCCCCAGAACCCCTAGCTGC	73	715	n/a	n/a	n/a	
3270	3289	451387	TCACAGGGCCTGGCTGCC	62	716	131	150	1	
3333	3352	451388	GGCTGACATGTTGGCAGGC	60	717	195	214	1	
3250	3269	451389	TGTCCAGGCCCCAGAACCC	68	718	111	130	3	
12295	12314	451391	GGCCAGGCCTAGGGATCTGC	51	719	n/a	n/a	n/a	
12306	12325	451392	CGCCTCGGATAGGGCAGGCC	52	720	1935	1954	1	
12450	12469	451393	GGCTTGGAGTCTAGGGTTC	85	721	n/a	n/a	n/a	
12623	12642	451394	TCCCCGGCCGCCAGGTGGCA	43	722	2224	2243	3	
12651	12670	451395	GGTGCTGGCACGAGCCCTG	62	723	n/a	n/a	n/a	
12698	12717	451396	GCCCCAGCTGCTGCAGCAGCG	66	724	n/a	n/a	n/a	
12876	12895	451397	CCGTGTGTGCTGGCAGAGGT	76	725	n/a	n/a	n/a	
13084	13103	451398	ATAAAATACCGAGGAATGTCG	77	726	2766	2785	0	
13094	13113	451399	GGGACAGACAATAAACCG	80	727	2776	2795	0	
12362	12381	451405	GTGCAGCCCAGTGTGGCGGC	69	728	1991	2010	3	
11175	11194	451415	CCTGGAGAAGTTCTGGTTGG	48	729	1674	1693	3	
11585	11604	451417	CATGGGAAGGTGGATCGTG	65	679	1819	1838	1	
11854	11873	451419	GGTGACCCGATCGGAGCCCA	11	730	n/a	n/a	n/a	
11874	11893	451420	AGCTGGAGAGAGAAGGGACA	37	731	n/a	n/a	n/a	
11379	11398	451422	GTGAGGGACTCGCCTGCGGC	36	732	n/a	n/a	n/a	
11479	11498	451423	GCGGCTGCGGTGCCAGGCC	50	733	n/a	n/a	n/a	
11883	11902	451424	GGGCCATCTAGCTGGAGAGA	45	734	n/a	n/a	n/a	
3485	3504	451427	CCCCACTGCAAGAAGTCGGC	57	735	347	366	1	

TABLE 14-continued

Inhibition of murine DMPK RNA transcript in mouse primary hepatocytes by 5-10-5 gapmers targeting SEQ ID NO: 800										
Murine Target Start Site	Murine Target Stop Site	ISIS No.	Sequence	% inhibition	SEQ ID NO.	Human Target Start Site	Human Target Stop Site	Mismatches		
4621	4640	451428	TTGAGCCCTTTAAGGCAGC	43	736	n/a	n/a	n/a		
6232	6251	451429	TGACCAGGTACTGGAGCGG	47	737	n/a	n/a	n/a		
10985	11004	451430	CCTGGAGCTGGATCAGTCCC	6	738	n/a	n/a	n/a		
11586	11605	451431	ACATGGGAAGGTGGATCCGT	70	739	1820	1839	1		
11963	11982	451432	CCCTGGCAGGGAGCAGCAGG	42	544	1909	1928	0		
11973	11992	451433	GTGGGACATAACCTGGCAGG	34	740	n/a	n/a	n/a		
12294	12313	451434	GCCAGGCCTAGGGATCTGCA	35	741	n/a	n/a	n/a		

TABLE 15

Inhibition of murine DMPK RNA transcript in mouse primary hepatocytes by 5-10-5 gapmers targeting SEQ ID NO: 800										
Murine Target Start Site	Murine Target Stop Site	ISIS No.	Sequence	% inhibition	SEQ ID NO.	Human Target Start Site	Human Target Stop Site	Mismatches		
330	349	451365	GGAAGCACGACACCTCGCCT	67	742	535	554	1		
662	681	451369	CCTCACCATTCATCAGGCT	81	743	n/a	n/a	n/a		
881	900	451372	CGGCAGCGACAAGTGTTC	90	744	n/a	n/a	n/a		
1217	1236	451377	GTCTCTGAAGGCCATGCAGC	69	745	1407	1426	3		
1329	1348	451379	CAGCCACTTGATCCGGTGGG	62	746	n/a	n/a	n/a		
1342	1361	451380	AGGTCTGGCTCTTCAGCCAC	74	747	n/a	n/a	n/a		
1494	1513	451381	GTTGGCTGGAGAAGTTCTGG	39	748	1678	1697	2		
1598	1617	451382	CCCCGTGATGGCTGCGGCTC	54	749	1782	1801	3		
1644	1663	451383	GGCCATCTAGATGGGAGGT	21	517	1828	1847	0		
1741	1760	451384	AGGCCAGGCCTAGGGATCCT	39	750	1925	1944	1		

TABLE 16

Inhibition of murine DMPK RNA transcript in mouse primary hepatocytes by 5-10-5 gapmers targeting SEQ ID NOS: 5-8 and 793-799										
Murine Target Start Site	Murine Target Stop Site	Murine Target SEQ ID NO.	ISIS No.	Sequence	% inhibition	SEQ ID NO.	Human Target Start Site	Human Target Stop Site	Mismatches	
324	343	5	451410	GGCGCGGGTGCCCCAGCCTGG	67	751	n/a	n/a	n/a	
485	504	5	451411	GTCCCTGGCCCCACCAGCGGG	66	752	1873	1892	1	
534	553	5	451412	CCAGGCCTAGGAATCCTGGC	17	753	1922	1941	2	
547	566	5	451413	GCGCCTCGGATAGCCAGGCC	51	754	n/a	n/a	n/a	
594	613	5	451414	CCCAGTGTGGCGCAGCAGCC	65	755	n/a	n/a	n/a	

TABLE 16-continued

Inhibition of murine DMPK RNA transcript in mouse primary hepatocytes by 5'-10-5' gapmers targeting SEQ ID NOS: 5-8 and 793-799											
Murine Target Start Site	Murine Target Stop Site	Murine Target SEQ ID NO	ISIS No	Murine Target Sequence	% inhibition	Human SEQ ID NO.	Human Target Start Site	Human Target Stop Site	Human Target Mismatches		
393	412	6	451402	GTGTTTCATCTTCACCACCG	80	756	462	481	3		
1475	1494	7	451390	AGGTCAGCCTCTCAGGCCAC	60	757	n/a	n/a	n/a		
n/a	n/a	n/a	451425	GGCCATATGGGAAGGGTGGAT	48	758	1824	1843	0		
1763	1782	8	451418	GGAGGATTGGCGAGAGAGCA	48	759	n/a	n/a	n/a		
1032	1051	793	451403	CGAAGTCTGCCACACCTCGA	58	760	n/a	n/a	n/a		
1042	1061	793	451404	GTGGCACCCCTCGAAGTCTGC	72	761	n/a	n/a	n/a		
217	236	794	451400	GGGTCCATTGTAAGGAAGCT	4	762	n/a	n/a	n/a		
754	773	794	451401	GGTGCCCACAGCCACAGGG	82	763	888	907	1		
322	341	795	451406	TCCATGGCAGTGAGCCGGTC	55	764	1319	1338	1		
523	542	795	451407	GGGACCACTTGATCCGGTGG	63	765	n/a	n/a	n/a		
534	553	795	451408	GGATCAGAGTTGGGACCACT	0	766	n/a	n/a	n/a		
492	511	796	451416	CCCCGTGATGGCTGCGGTTC	49	767	n/a	n/a	n/a		
469	488	797	451409	GTGTGTCCTCATACCCGCC	60	768	n/a	n/a	n/a		
629	648	798	451421	GCACCCCTCGAAGTCTCGACC	72	769	n/a	n/a	n/a		
854	873	799	451426	GCTCTGAAGGCCATGCAGCA	52	770	n/a	n/a	n/a		

Example 9

Dose-Dependent Antisense Inhibition of Murine DMPK in Mouse Primary Hepatocytes

[0342] Several of the antisense oligonucleotides exhibiting in vitro inhibition of DMPK in mouse primary hepatocytes (see Example 8) were tested at various doses. Cells were plated at a density of 35,000 cells per well and transfected using electroporation with 1,000 nM, 2,000 nM, 4,000 nM, 8,000 nM, and 16,000 nM concentrations of each antisense oligonucleotide. After approximately 16 hours, RNA was isolated from the cells and DMPK transcript levels were measured by quantitative real-time PCR using primer probe set RTS3181 (forward sequence GACATATGCCAAGAT-TGTGCACTAC, designated herein as SEQ ID NO: 771; reverse sequence CACGAATGAGGTGCTGAGCTT, designated herein as SEQ ID NO: 772; probe sequence AACACT-TGTCGCTGCCGCTGGCX, designated herein as SEQ ID NO: 773). DMPK transcript levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 17 as percent inhibition of DMPK, relative to untreated control cells.

[0343] The majority of the tested antisense oligonucleotides demonstrated dose-dependent inhibition of DMPK mRNA levels under the conditions specified above.

TABLE 17

Dose-dependent antisense inhibition of murine DMPK in mouse primary hepatocytes						
ISIS No	1,000 nM	2,000 nM	4,000 nM	8,000 nM	16,000 nM	IC ₅₀ (μM)
451369	33	59	78	87	94	1.57
451371	60	77	84	90	91	0.24
451373	53	62	82	89	92	0.74
451374	33	42	76	88	94	2.00
451375	43	62	81	89	88	1.05
451378	39	79	80	87	94	0.87
451385	22	57	80	78	93	2.01
451393	49	63	86	80	80	0.59
451397	63	75	74	81	92	0.22
451398	29	72	84	83	90	1.29
451399	27	53	81	68	80	2.07
451401	34	71	87	86	92	1.12
451402	34	69	75	86	74	1.14

Example 10

Antisense Inhibition of Human Alpha1 Skeletal Actin in HepG2 Cells

[0344] Antisense oligonucleotides targeted to a human alpha1 skeletal actin nucleic acid, a gene which may carry an expanded CTG repeat capable of causing symptoms of DM1 when inserted into mouse models, were tested for their effect on alpha1 actin RNA transcript in vitro. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using

electroporation with 10,000 nM antisense oligonucleotide. After approximately 24 hours, RNA was isolated from the cells and alpha1 actin RNA transcript levels were measured by quantitative real-time PCR. Alpha1 actin RNA transcript levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of alpha1 actin, relative to untreated control cells. [0345] The antisense oligonucleotides in Table 18 are 5'-10-5' gapmers, where the gap segment comprises ten 2'-deoxynucleosides and each wing segment comprises five 2'-MOE nucleosides. The internucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. 'Target start site' indicates the 5'-most nucleoside to which the antisense oligonucleotide is targeted. 'Target stop site' indicates the 3'-most nucleoside to which the antisense oligonucleotide is targeted. All the antisense oligonucleotides listed in Table 18 target SEQ ID NO: 801 (GENBANK Accession No. NM_001100.3).

[0346] The tested antisense oligonucleotide sequences demonstrated dose-dependent inhibition of alpha 1 actin mRNA levels under the conditions specified above.

reverse sequence CCCCCCATTGAGAAGATTC, designated herein as SEQ ID NO: 786; probe sequence CTCCAC-CTCCAGCACGCGACTTCTX, designated herein as SEQ ID NO: 787). Alpha1 actin RNA transcript levels were normalized to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 19 as percent inhibition of alpha1 actin, relative to untreated control cells. [0348] Several of the antisense oligonucleotides demonstrated dose-dependent inhibition of alpha 1 actin mRNA levels under the conditions specified above.

TABLE 19

ISIS No.	Dose-dependent antisense inhibition of human alpha1 actin in HepG2 cells						
	625 nM	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
445233	21	72	63	82	96	83	1.1
445236	26	68	82	91	90	91	0.8
445237	36	59	76	84	83	90	0.8
445232	14	42	54	59	80	91	2.6

TABLE 18

Inhibition of human alpha1 actin RNA transcript in HepG2 cells by 5'-10-5' gapmers targeting SEQ ID NO: 801						
Target Site	Start Site	Target Stop Site	ISIS No.	Sequence	% inhibition	SEQ ID NO.
16	35		445205	AGCGAGGCTTCAC TTGGCGC	74	774
20	39		190403	GGGAAGCGAGGCTTCAC TTG	75	775
1028	1047		190401	GCGGT CAGCGATCCCAGGGT	78	776
1058	1077		445225	GGGTGCCAGCGCGGTGATCT	73	777
1320	1339		445231	TGTTACAAAGAAAGTGA CTG	74	778
1339	1358		445232	CGATGGCAGCACGGAA GTT	96	779
1348	1367		445233	GTCAGTTACGATGGCAGCA	100	780
1417	1436		445235	CAGGGCTTGTTCGAAAAA	91	781
1430	1449		445236	CCATTTCTCCACAGGGCT	99	782
1447	1466		445237	ATGCTTCTCAAGTTTCCA	97	783
1460	1479		445238	CAGAATGACTTAATGCTTC	95	784

Example 11

Dose-Dependent Antisense Inhibition of Human Alpha1 Actin in HepG2 Cells

[0347] Several of the antisense oligonucleotides exhibiting in vitro inhibition of alpha1 actin in HepG2 cells (see Example 8) were tested at various doses. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 625 nM, 1,250 nM, 2,500 nM, 5,000 nM, 10,000 nM and 20,000 nM concentrations of each antisense oligonucleotide. After approximately 16 hours, RNA was isolated from the cells and alpha1 actin RNA transcript levels were measured by quantitative real-time PCR using primer probe set RTS3154 (forward sequence CCACCGCAAAT-GCTTCTAGAC, designated herein as SEQ ID NO: 785;

TABLE 19-continued

ISIS No.	Dose-dependent antisense inhibition of human alpha1 actin in HepG2 cells						
	625 nM	1,250 nM	2,500 nM	5,000 nM	10,000 nM	20,000 nM	IC ₅₀ (μM)
445238	27	43	54	73	76	90	2.0
445235	26	52	29	58	59	24	0.7
190403	25	29	36	25	61	54	11.9
190401	17	14	40	68	76	72	3.9
445225	25	23	49	28	52	50	15.8
445205	26	31	34	28	55	36	7.6
445231	30	25	39	26	42	36	>20.0

Example 12

In Vivo Antisense Inhibition of Human Alpha1 Actin by Intramuscular Administration in Transgenic Mice

[0349] To test the effect of antisense inhibition for the treatment of myotonic dystrophy, an appropriate mouse model was required. The HSA^{LR} mouse model is an established model for DM1 (Mankodi, A. et al. *Science*. 289: 1769, 2000). The mice carry a human skeletal actin (hACTA1) transgene with 220 CTG repeats inserted in the 3' UTR of the gene. The hACTA1-CUGexp transcript accumulates in nuclear foci in skeletal muscles and results in myotonia similar to that in human DM1 (Mankodi, A. et al. *Mol. Cell* 10: 35, 2002; Lin, X. et al. *Hum. Mol. Genet.* 15: 2087, 2006). Hence, it was expected that amelioration of DM1 symptoms in the HSA^{LR} mouse by antisense inhibition of the hACTA1 transgene would predict amelioration of similar symptoms in human patients by antisense inhibition of the DMPK transcript.

[0350] HSA (human skeletal actin)^{LR} (long repeat) DM1 mice were generated by insertion in FVB/N mice of a transgene with 250 CUG repeats in the 3' UTR of human skeletal actin. The transgene is expressed in the mice as a CUG repeat RNA, which is retained in the nucleus, forming nuclear inclusions or foci, similar to that seen in human tissue samples of patients with myotonic dystrophy (DM1).

[0351] ISIS 190403 and ISIS 445238, which demonstrated statistically significant dose-dependent inhibition in vitro (see Example 11), were evaluated for their ability to reduce human alpha1 actin RNA transcript in vivo.

Treatment

[0352] HSA^{LR} mice were maintained on a 12-hour light/dark cycle and fed ad libitum normal Purina mouse chow. Animals were acclimated for at least 7 days in the research facility before initiation of the experiment. Antisense oligonucleotides (ASOs) were prepared in PBS and sterilized by filtering through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

[0353] The mice were divided into two treatment groups. The two groups received direct intramuscular injections of ISIS 190403 or ISIS 445238 at a dose of 0.8 nM into the tibialis anterior muscle on one side. The contralateral tibialis anterior muscle in each mouse received a single dose intramuscular injection of PBS. The PBS-injected muscle acted as the control.

Inhibition of Alpha1 Actin RNA

[0354] Twenty four hours after the final dose, the animals were sacrificed and tissue from the tibialis anterior muscles of both sides was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 20, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the PBS control.

[0355] The results indicate that treatment with ISIS 190403 and ISIS 445238 resulted in inhibition of alpha 1 actin RNA levels in the mice.

TABLE 20

Percent inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice		
ISIS No.		% inhibition
190403		38
445238		40

Example 13

Dose Dependent Antisense Inhibition of Human Alpha1 Actin by Intramuscular Administration in Transgenic Mice

[0356] ISIS 445236, which demonstrated statistically significant dose-dependent inhibition in vitro (see Example 11), was evaluated for its ability to reduce human alpha1 actin RNA transcript in vivo.

Treatment

[0357] HSA^{LR} mice were maintained on a 12-hour light/dark cycle and fed ad libitum normal Purina mouse chow. Animals were acclimated for at least 7 days in the research facility before initiation of the experiment. Antisense oligonucleotides (ASOs) were prepared in PBS and sterilized by filtering through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

[0358] The mice were divided into three treatment groups. The groups received direct intramuscular injections of ISIS 445236 at doses of 0.2 nM, 0.4 nM or 0.8 nM into the tibialis anterior muscle of one side. The contralateral tibialis anterior muscle in each mouse received a single dose intramuscular injection of PBS. The PBS-injected muscle acted as the control.

Inhibition of Alpha1 Actin RNA

[0359] Twenty four hours after the final dose, the animals were sacrificed and tissue from the tibialis anterior muscles of both sides was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 21, treatment with ISIS 445236 reduced human alpha1 actin RNA transcript expression at all dosages. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the control.

[0360] The results indicate that treatment with ISIS 445236 resulted in significant inhibition of alpha 1 actin mRNA levels under the conditions specified above.

TABLE 21

Inhibition of human alpha1 actin RNA transcript by ISIS 445236 in HSA ^{LR} mice		
Dose (nM)		% inhibition
0.2		70
0.4		54
0.8		78

Assessment of Myotonia by Electromyography

[0361] Myotonia refers to repetitive action potential that is due to delayed relaxation of muscle fibers. This phenomenon is observed in patients of myotonic dystrophy as well as in the HSA^{LR} mice. When the EMG needle is inserted into a myotonic muscle, the electrical activity is prolonged for up to several seconds past when the insertional activity should normally cease. The frequency of myotonic discharges ranges from 50 to 100 impulses per second.

[0362] Myotonia was measured via electromyography and graded in the following manner: grade 0 refers to no myotonia elicited by any needle insertion (0%); grade 1 refers to myotonia elicited by less than 50% needle insertions; grade 2 refers to myotonia elicited by more than 50% needle insertions; and grade 3 refers to myotonia elicited by 100% needle insertions.

[0363] Before electromyography, mice were anesthetized by using i.p. a cocktail of 100 mg/kg ketamine, 10 mg/kg xylazine, and 3 mg/kg acepromazine. Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, *Science*, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 22 as the average myotonia grade observed in four mice of each group and demonstrates significant reduction of myotonia in mice treated with ISIS 445236.

TABLE 22

Average reduction of myotonia in various muscles of antisense oligonucleotide-treated HSA ^{LR} mice		
Treatment	Dose (nM)	Myotonia grade
PBS		2.7
ISIS 455236	0.2	1.3
	0.4	1.0
	0.8	1.0

Correction of Alternative Splicing

[0364] In DM1/HSA^{LR} mouse model, the accumulation of expanded CUG RNA in the nucleus leads to the sequestration of poly(CUG)-binding proteins, such as Muscleblind-like 1 (MBNL1) (Miller, J. W. et al. *EMBO J.* 19: 4439, 2000). The splicing factor MBLN1, which controls alternative splicing of the Serca1 gene is sequestered in expanded CUG foci. This triggers dysregulation of the alternative splicing of this gene. To evaluate the effect of antisense inhibition of human alpha 1 actin on such alternative splicing, total RNA was purified from the tibialis anterior, gastrocnemius, and quadriceps muscle using RNeasy Lipid Tissue Mini Kit (Qiagen), according to the manufacturer's instructions. RT-PCR was performed with the SuperScript III One-Step RT-PCR System and Platinum Taq Polymerase (Invitrogen), using gene-specific primers for cDNA synthesis and PCR amplification. The forward and reverse primers for Serca-1 have been described in Bennett and Swayze (Annu. Rev. Pharmacol. 2010; 50: 259-93). PCR products were separated on agarose gels, stained with SybrGreen I Nucleic Acid Gel Stain (Invitrogen), and imaged using a Fujifilm LAS-3000 Intelligent Dark Box.

[0365] The PCR products of Serca1 splicing in the PBS control demonstrated exon 22 exclusion as a result of dysregulation of MBLN1. Treatment with ISIS 445236 resulted in exon 22 inclusion and normalization of alternative splicing of the Serca1 gene in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0366] Therefore, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, which indicates that treatment with antisense oligonucleotide reduced accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci corrects MBLN1 sequestration thereby allowing normal splicing to occur.

Example 14

In Vivo Antisense Inhibition of Human Alpha1 Actin by Subcutaneous Administration in Transgenic Mice

[0367] ISIS 190403, ISIS 445236 and ISIS 445238 were evaluated for their ability to reduce human alpha1 actin RNA transcript in vivo.

Treatment

[0368] HSA^{LR} mice were maintained on a 12-hour light/dark cycle and fed ad libitum normal Purina mouse chow. Animals were acclimated for at least 7 days in the research facility before initiation of the experiment. Antisense oligonucleotides (ASOs) were prepared in PBS and sterilized by filtering through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

[0369] The mice were divided into four treatment groups. The first three groups received subcutaneous injections of ISIS 190403, ISIS 445236 or ISIS 445238 at a dose of 25 mg/kg twice per week for 4 weeks. The fourth group received subcutaneous injections of PBS twice weekly for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Inhibition of Alpha1 Actin RNA

[0370] Twenty four hours after the final dose, the animals were sacrificed and tissue from the quadriceps muscles (left and right), gastrocnemius muscles (left and right), and tibialis anterior muscles (left and right) was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 23, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the control.

[0371] Both ISIS 445236 and ISIS 445238 demonstrated significant inhibition of alpha1 actin mRNA levels under the conditions specified above.

TABLE 23

Muscle Type	Percent inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice		
	ISIS 190403	ISIS 445236	ISIS 445238
Quadriceps	16	83	72
Gastrocnemius	0	85	73
Tibialis anterior	2	81	71

Fluorescence In Situ Hybridization of Alpha1 Actin in Muscles

[0372] Frozen muscle tissue sections were fixed in fresh 3% paraformaldehyde in PBS solution for 15-20 minutes, after which they were rinsed twice with PBS for 5 minutes. The nuclei were permeabilized with 0.5% Triton X-100 for 5 minutes after which the tissue was blocked with normal goat serum for 30 minutes. The sections were incubated a 2'-O-methyl RNA targeted to alpha1 actin that is 5'-labeled with Texas Red (Integrated DNA Technologies). The sections were counter-stained with DAPI to label the nuclei. The sections were mounted and viewed with a standard fluorescence microscope. Image acquisition was by Metavue software and deconvolution was achieved by Autoquant software.

[0373] All muscle tissue sections from mice treated with ISIS 445236 and ISIS 445238 displayed reduced fluorescent intensity of alpha1 actin signal at the ribonuclear foci, indicating antisense inhibition of human alpha1 actin mRNA and reduction of the RNA in the nuclear foci.

Assessment of Myotonia by Electromyography

[0374] Myotonia refers to repetitive action potential that is due to delayed relaxation of muscle fibers. This phenomenon is observed in patients of myotonic dystrophy as well as in the HSA^{LR} mice. When the EMG needle is inserted into a myotonic muscle, the electrical activity is prolonged for up to several seconds past when the insertional activity should normally cease. The frequency of myotonic discharges ranges from 50 to 100 impulses per second.

[0375] Myotonia may be measured via electromyography and is graded in the following manner: grade 0 refers to no myotonia elicited by any needle insertion (0%); grade 1 refers to myotonia elicited by less than 50% needle insertions; grade 2 refers to myotonia elicited by more than 50% needle insertions; and grade 3 refers to myotonia elicited by 100% needle insertions.

[0376] Before electromyography, mice were anesthetized by using i.p. 100 mg/kg ketamine, 10 mg/kg xylazine, and 3 mg/kg acepromazine or 250 mg/kg 2,2,2-tribromoethanol. Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, *Science*, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 24 as the average myotonia grade observed in four mice of each group and demonstrates significant reduction of myotonia in mice treated with ISIS 445236 and ISIS 445238.

TABLE 24

	ISIS 190403	ISIS 445236	ISIS 445238
PBS			
Left quadriceps	3.00	3.00	0.00
Right quadriceps	3.00	3.00	0.00
Left gastrocnemius	3.00	3.00	0.00
Right gastrocnemius	3.00	3.00	0.00
Left Tibialis anterior	2.75	2.50	0.00
Right Tibialis anterior	2.75	2.50	0.00
Lumbar paraspinals	3.00	3.00	0.00

Correction of Alternative Splicing

[0377] The splicing factor MBNL1, which controls Serca1 splicing, m-Titin splicing, CIC-1 chloride channel gene (Clcn1) splicing, and Zasp splicing, is sequestered in expanded CUG foci. MBNL1 sequestration triggers dysregulated splicing in each of these genes. To evaluate the effect of antisense inhibition of human alpha 1 actin on splicing, total RNA was purified from the tibialis anterior, gastrocnemius, and quadriceps muscle and RT-PCR was performed, as described in Example 13. The forward and reverse primers for Serca-1, m-Titin, Clcn1, and ZASP have been described in Bennett and Swayze, *Annu. Rev. Pharmacol.* 2010; 50: 259-93.

[0378] In PBS treated HSA^{LR} mice, Serca1 splicing is dysregulated as demonstrated by exon 22 exclusion. Treatment with each of ISIS 445236 and ISIS 445238 resulted in exon 22 inclusion and normalization of alternative splicing of the Serca1 gene in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0379] In PBS treated HSA^{LR} mice, m-Titin splicing is dysregulated as demonstrated by exon 5 inclusion. Treatment with each of ISIS 445236 and ISIS 445238 resulted in skipping of exon 5 and normalization of alternative splicing of the m-Titin gene in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0380] In PBS treated HSA^{LR} mice, Clcn1 splicing is dysregulated as demonstrated by exon 7a inclusion. Treatment with each of ISIS 445236 and ISIS 445238 resulted in skipping of exon 7a and normalization of alternative splicing of the Clcn1 gene in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0381] In PBS treated HSA^{LR} mice, Zasp splicing is dysregulated as demonstrated by exon 11 inclusion. Treatment with each of ISIS 445236 and ISIS 445238 resulted in skipping of exon 11 and normalization of alternative splicing of the Zasp gene in the tibialis anterior, gastrocnemius, and quadriceps muscles.

[0382] Therefore, antisense inhibition of alpha1 actin corrected Serca1, m-Titin, Clcn1, and Zasp splicing dysregulation, which indicates that treatment with antisense oligonucleotide reduced accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci correct MBNL1 sequestration thereby allowing normal splicing to occur.

Example 15

In Vivo Antisense Inhibition of Human Alpha1 Actin in Transgenic Mice

[0383] Antisense inhibition of human alpha1 actin RNA transcript by ISIS 445236 and ISIS 445238 on myotonia in HSA^{LR} mice was further evaluated.

Treatment

[0384] HSA^{LR} mice were divided into three treatment groups. The first two groups received subcutaneous injections of ISIS 445236 or ISIS 445238 at a dose of 25 mg/kg twice per week for 2 weeks. The third group received subcutaneous injections of PBS twice per week for 2 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Inhibition of Alpha1 Actin RNA

[0385] Twenty four hours after the final dose, the animals were sacrificed and tissue from the quadriceps muscles, gastrocnemius muscles, and tibialis anterior muscles was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 25, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the PBS control.

[0386] Both ISIS 445236 and ISIS 445238 demonstrated significant inhibition of alpha1 actin mRNA levels under the conditions specified above.

TABLE 25

Percent inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice		
Muscle Type	ISIS 445236	ISIS 445238
Quadriceps	61	64
Gastrocnemius	68	37
Tibialis anterior	68	41

Assessment of Myotonia by Electromyography

[0387] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 26 as the average myotonia grade observed in four mice of each group and demonstrates significant reduction of myotonia in mice treated with ISIS 445236 and ISIS 445238.

TABLE 26

Average reduction of myotonia in various muscles of antisense oligonucleotide-treated HSA ^{LR} mice			
	PBS	ISIS 445236	ISIS 445238
Left quadriceps	3.00	0.00	1.75
Right quadriceps	3.00	0.00	1.75
Left gastrocnemius	3.00	0.25	1.5
Right gastrocnemius	3.00	0.25	1.00
Left Tibialis anterior	2.75	0.00	0.00
Right Tibialis anterior	2.75	0.00	0.00
Lumbar paraspinals	3.00	0.50	2.00

Correction of Alternative Splicing

[0388] To evaluate the effect of ISIS 190401 on alternative splicing of Serca1, total RNA purified from the tibialis anterior gastrocnemius, and quadriceps muscle was analyzed in a procedure similar to that described in Example 13.

[0389] In PBS treated HSA^{LR} mice, Serca1 splicing is dysregulated as demonstrated by exon 22 exclusion, as a result of MBLN1 dysregulation. Treatment with each of ISIS 445236 and ISIS 445238 resulted in near-complete inclusion and normalization of alternative splicing of exon 22 of the Serca1 gene in the tibialis anterior and quadriceps muscles.

[0390] Therefore, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, which indicates that treatment with antisense oligonucleotide reduced accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci correct MBLN1 sequestration thereby allowing normal splicing to occur.

Example 16

Dose-Dependent Antisense Inhibition of Human Alpha1 Actin in Transgenic Mice

[0391] Dose-dependent inhibition of human alpha1 actin RNA transcript by ISIS 445236 and ISIS 445238 on myotonia in HSA^{LR} mice was evaluated.

Treatment

[0392] HSA^{LR} mice were subcutaneously injected with ISIS 445236 or ISIS 445238 at doses of 2.5 mg/kg, 8.5 mg/kg or 25.0 mg/kg twice per week for 4 weeks. The control group received subcutaneous injections of PBS twice per week for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Inhibition of Alpha1 Actin RNA

[0393] Twenty four hours after the final dose, the animals were sacrificed and tissue from the quadriceps muscles (Quad), gastrocnemius muscles (Gastroc), and tibialis anterior muscles (TA) was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 27, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the PBS control.

[0394] Both the antisense oligonucleotides demonstrated dose-dependent inhibition of alpha1 actin mRNA levels in quadriceps muscles, gastrocnemius muscles, and tibialis anterior muscles under the conditions specified above.

TABLE 27

Dose-dependent inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice				
	mg/kg/wk	Quad	Gastroc	TA
ISIS 445236	5	24	36	46
	17	53	57	59
ISIS 445238	50	86	86	90
	5	21	37	3
	17	30	39	60
	50	59	81	70

Assessment of Myotonia by Electromyography

[0395] Electromyography on left and right quadriceps (Quad), left and right gastrocnemius muscles (Gastroc), left and right tibialis anterior (TA) muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 28 as the average myotonia grade observed in four mice of each group and demonstrates significant dose-dependent reduction of myotonia in mice treated with ISIS 445236 and ISIS 445238.

TABLE 28

Average reduction of myotonia in various muscles of antisense oligonucleotide-treated HSA ^{LR} mice								
mg/kg/wk	Left Quad	Right Quad	Left Gastroc	Right Gastroc	Left TA	Right TA	Lumbar paraspinals	
PBS	—	3.00	3.00	3.00	2.75	2.75	3.00	
ISIS	5	3.00	3.00	3.00	2.25	2.25	3.00	
445236	17	0.75	0.75	0.75	1.00	0.00	0.00	1.75
	50	0.00	0.00	0.00	0.00	0.00	0.00	
ISIS	5	2.75	2.75	2.50	2.50	2.00	1.75	2.75
445238	17	3.00	3.00	2.00	2.25	0.00	0.00	2.75
	50	0.75	0.75	0.25	0.25	0.00	0.00	1.00

Correction of Alternative Splicing

[0396] To evaluate the effect of ISIS 190401 on alternative splicing of Serca1, total RNA purified from the tibialis anterior gastrocnemius, and quadriceps muscle was analyzed in a procedure similar to that described in Example 13.

[0397] In PBS treated HSA^{LR} mice, Serca1 splicing is dysregulated as demonstrated by exon 22 exclusion, as a result of MBLN1 dysregulation. Treatment with either ISIS 445236 or ISIS 445238 at doses of 8.5 mg/kg or 25.0 mg/kg twice a week (or 17.0 mg/kg/week and 50.0 mg/kg/week) resulted in complete inclusion and normalization of alternative splicing of exon 22 of the Serca1 gene in all three muscle types.

[0398] Therefore, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, which indicates that treatment with antisense oligonucleotide reduced accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci correct MBLN1 sequestration thereby allowing normal splicing to occur.

Example 17

In Vivo Antisense Inhibition by an Oligonucleotide Targeting the HSA Coding Region of Human Alpha1 Actin in Transgenic Mice

[0399] Antisense inhibition of human alpha1 actin RNA transcript by ISIS 190401 (5'-GCGGTAGCGATC-CCAGGGT-3' (SEQ ID NO: 788), target start site 1028 of SEQ ID NO: 1) on myotonia in HSA^{LR} mice was evaluated.

Treatment

[0400] HSA^{LR} mice received subcutaneous injections of ISIS 190401 at a dose of 25 mg/kg twice per week for 4 weeks. A control group received subcutaneous injections of PBS twice per week for 2 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Inhibition of Alpha1 Actin RNA

[0401] Twenty four hours after the final dose, the animals were sacrificed and tissue from the quadriceps muscles, gastrocnemius muscles, and tibialis anterior muscles was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 29, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the PBS control.

[0402] Treatment with ISIS 190401 resulted in significant inhibition of alpha1 actin mRNA levels in quadriceps muscle, gastrocnemius muscle, and tibialis anterior muscle under the conditions specified above.

TABLE 29

Antisense inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice		
Muscle Type		% inhibition
Quadriceps		85
Gastrocnemius		86
Tibialis anterior		89

Assessment of Myotonia by Electromyography

[0403] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 30 as the average myotonia grade observed in four mice of each group and demonstrates significant reduction of myotonia in mice treated with ISIS 190401.

TABLE 30

Average reduction of myotonia in various muscles of antisense oligonucleotide-treated HSA ^{LR} mice		
	PBS	ISIS 190401
Left quadriceps	3.00	0.00
Right quadriceps	3.00	0.00
Left gastrocnemius	3.00	0.00
Right gastrocnemius	3.00	0.00
Left Tibialis anterior	2.50	0.00
Right Tibialis anterior	2.50	0.00
Lumbar paraspinals	3.00	0.50

Correction of Alternative Splicing

[0404] To evaluate the effect of ISIS 190401 on alternative splicing of Serca1, total RNA purified from the tibialis anterior gastrocnemius, and quadriceps muscle was analyzed in a procedure similar to that described in Example 13.

[0405] In PBS treated HSA^{LR} mice, Serca1 splicing is dysregulated as demonstrated by exon 22 exclusion, as a result of MBLN1 dysregulation. Treatment with ISIS 190401 resulted in complete inclusion and normalization of alternative splicing of exon 22 of the Serca1 gene in all three muscle types.

[0406] Therefore, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, which indicates that treatment with antisense oligonucleotide reduced accumulation of CUGexp in the nuclear foci. Reduced accumulation of

CUGexp in the nuclear foci corrects MBLN1 sequestration thereby allowing normal splicing to occur.

Example 18

Duration of Action of Antisense Inhibition by an Oligonucleotide Targeting Human Alpha1 Actin in Transgenic Mice

[0407] The duration of action of antisense inhibition of human alpha1 actin RNA transcript by ISIS 445236 in HSA^{LR} mice was evaluated.

Treatment

[0408] HSA^{LR} mice received subcutaneous injections of ISIS 445236 at a dose of 25 mg/kg twice per week for 4 weeks. A control group received subcutaneous injections of PBS twice per week for 2 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared. The mice were analyzed 6 weeks after administration of the last dose.

Inhibition of Alpha1 Actin RNA

[0409] Six weeks after the final dose, the animals were sacrificed and tissue from the quadriceps muscles, gastrocnemius muscles, and tibialis anterior muscles was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 31, treatment with ISIS 445236 reduced human alpha1 actin RNA transcript expression, and this effect was sustained at least for 6 weeks. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the PBS control.

[0410] Treatment with ISIS 445236 resulted in significant inhibition of alpha1 actin mRNA levels in quadriceps muscle, gastrocnemius muscle, and tibialis anterior muscle under the conditions specified above.

TABLE 31

Antisense inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice	
Muscle Type	% inhibition
Quadriceps	88
Gastrocnemius	76
Tibialis anterior	67

Assessment of Myotonia by Electromyography

[0411] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 32 as the average myotonia grade observed in four mice of each group and demonstrates significant reduction of myotonia in mice treated with ISIS 445236. Therefore, the effect of antisense inhibition of alpha actin by ISIS 445236 was sustained at least for 6 weeks.

TABLE 32

Average reduction of myotonia in various muscles of antisense oligonucleotide-treated HSA ^{LR} mice		
	PBS	ISIS 445236
Left quadriceps	3.00	0.00
Right quadriceps	3.00	0.00
Left gastrocnemius	3.00	0.00
Right gastrocnemius	3.00	0.00
Left Tibialis anterior	2.50	0.00
Right Tibialis anterior	2.50	0.00
Lumbar paraspinals	3.00	0.00

Example 19

In Vivo Effect of Antisense Inhibition of mRNA with CUG Repeats by Intramuscular Administration in Transgenic Mice

[0412] The effect of antisense inhibition of mRNA transcripts containing multiple CUG repeats on myotonia in HSA^{LR} mice was evaluated. Three antisense oligonucleotides targeting the CUG repeats and with varying lengths were assayed for their effectiveness in inhibiting myotonia in the mice. ISIS 444745 (AGCAGCAGCAGCAGCAGCAGCAGCA (SEQ ID NO: 789) is a uniform 2'-O-methoxyethyl oligonucleotide, 25 nucleotides in length and with a phosphorothioate backbone. ISIS 444746 (AGCAGCAGCAGCAGCAGCAG (SEQ ID NO: 790) is a uniform 2'-O-methoxyethyl oligonucleotide, 20 nucleotides in length and with a phosphorothioate backbone. ISIS 444749 (GCAGCAGCAGCAGCA (SEQ ID NO: 791) is a uniform 2'-O-methoxyethyl oligonucleotide, 15 nucleotides in length and with a phosphorothioate backbone. ISIS 445236 was included in the assay as a positive control.

Treatment

[0413] HSA^{LR} mice were divided into three treatment groups. The groups received direct intramuscular injections of ISIS 444745, ISIS 444746 or ISIS 444749 at a dose of 0.4 nM into the tibialis anterior muscle. The contralateral tibialis anterior muscle in each mouse received a single dose intramuscular injection of PBS. The PBS-injected muscle acted as the control.

Inhibition of Alpha1 Actin RNA

[0414] Twenty four hours after the final dose, the animals were sacrificed and tissue from the tibialis anterior (left and right) was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 33, only treatment with ISIS 444745 reduced human alpha1 actin RNA transcript expression. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the PBS control.

TABLE 33

Percent inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice	
ISIS No.	% inhibition
444745	51
444746	0
444749	12

Example 20

In Vivo Dose Dependent Inhibition of mRNA with CUG Repeats by Intramuscular Administration in Transgenic Mice

[0415] ISIS 444745 and ISIS 444746 were further evaluated for their ability to reduce human alpha 1 actin mRNA in vivo.

Treatment

[0416] HSA^{LR} mice were maintained on a 12-hour light/dark cycle and fed ad libitum normal Purina mouse chow. Animals were acclimated for at least 7 days in the research facility before initiation of the experiment. Antisense oligonucleotides (ASOs) were prepared in PBS and sterilized by filtering through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

[0417] The mice were divided into 6 treatment groups. Three of the groups received direct intramuscular injections of ISIS 444745 at doses of 0.2 nM, 0.5 nM, or 1.0 nM into the tibialis anterior muscle on one side. Another three groups direct intramuscular injections of ISIS 444746 at doses of 0.2 nM, 0.5 nM, or 1.0 nM into the tibialis anterior muscle on one side. The contralateral tibialis anterior muscle in each mouse received a single dose intramuscular injection of PBS. The PBS-injected muscle acted as the control for the corresponding muscle treated with ISIS oligonucleotide.

Assessment of Myotonia by Electromyography

[0418] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 34 as the average myotonia grade observed in four mice of each group and demonstrates significant reduction of myotonia in mice treated with either ISIS 444745 or ISIS 444746. The effect of antisense inhibition of alpha actin by ISIS 444745 and 444746 was sustained at least for 6 weeks.

TABLE 34

Dose-dependent reduction of myotonia in muscles of antisense oligonucleotide-treated HSA ^{LR} mice			
	0.2 nM	0.5 nM	1.0 nM
PBS	3.00	3.00	2.33
ISIS 444745	1.67	1.00	0.33
PBS	2.50	2.00	3.00
ISIS444746	2.00	0.00	1.00

Example 21

In Vivo Effect of Antisense Inhibition of mRNA with CUG Repeats by Subcutaneous Administration in Transgenic Mice

[0419] The effect of antisense inhibition of mRNA transcripts containing multiple CUG repeats on myotonia in HSA^{LR} mice was evaluated. ISIS 445236 was included in the assay as a positive control.

Treatment

[0420] HSA^{LR} mice were divided into five treatment groups. The first three groups received subcutaneous injections of ISIS 444745, ISIS 444746 or ISIS 444749 at a dose of 25 mg/kg twice per week for 4 weeks. The fourth group received subcutaneous injections of PBS twice per week for 4 weeks. The fifth group received subcutaneous injections of ISIS 445236 at a dose of 25 mg/kg twice per week for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Assessment of Myotonia by Electromyography

[0421] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 35 as the average myotonia grade observed in four mice of each group.

[0422] Treatment with ISIS 445236 led to significant reduction in myotonia. Treatment with ISIS 444745 and ISIS 444746 also resulted in reduced myotonia in some of the tissues tested.

TABLE 35

Average reduction of myotonia in various muscles of antisense oligonucleotide-treated HSA ^{LR} mice					
	PBS	ISIS 444745	ISIS 444746	ISIS 444749	ISIS 445236
Left quadriceps	3.00	3.00	3.00	3.00	0.00
Right quadriceps	3.00	3.00	3.00	3.00	0.00
Left gastrocnemius	3.00	2.75	3.00	3.00	0.00
Right gastrocnemius	3.00	2.75	2.75	3.00	0.00
Left Tibialis anterior	3.00	2.25	2.75	2.75	0.00
Right Tibialis anterior	3.00	2.25	2.50	2.75	0.00
Lumbar paraspinals	3.00	3.00	3.00	3.00	0.00

Example 22

Dose-Dependent Inhibition of Long CUG Repeat mRNA (HSA^{LR} Mice) and a Short CUG Repeat (HSA^{SR} Mice) by Subcutaneous Administration in Transgenic Mice

[0423] Dose-dependent inhibition of mRNA transcripts containing a long CUG repeat (HSA^{LR} mice) and a short CUG repeat (HSA^{SR} mice), was evaluated. HSA-short repeat (HSA^{SR}) mice express the identical transgene as the HSA^{LR} mice, except that 5 instead of 250 CUG repeats are inserted in the 3' UTR. HSA^{SR} mice do not have myotonia, splicing

changes, or any other observable myotonia phenotype. ISIS 445236 was used in this assay.

Treatment

[0424] HSA^{LR} mice were divided into four treatment groups. The first three groups received subcutaneous injections of ISIS 445236 at doses of 2.5 mg/kg, 8.5 mg/kg or 25.0 mg/kg twice per week for 4 weeks. The fourth group received subcutaneous injections of PBS twice per week for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared. HSA^{SR} mice were also divided into four groups and similarly treated.

Inhibition of Alpha1 Actin RNA

[0425] Twenty four hours after the final dose, the animals were sacrificed and tissue from the quadriceps muscles (left and right), gastrocnemius muscles (left and right), and tibialis anterior muscles (left and right) was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. The results are presented in Tables 36 and 37 and are expressed as percent inhibition of alpha1 actin transcript, relative to the control. Greater inhibition of the nuclear-retained long repeat in the muscle of HSA^{LR} mice was achieved compared with the non-nuclear-retained short repeat in the muscle of HSA^{SR} mice.

TABLE 36

Percent inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice			
Dose (mg/kg)	Quadriceps	Gastrocnemius	Tibialis anterior
2.5	24	36	46
8.5	53	66	59
25	86	86	90

TABLE 37

Percent inhibition of human alpha1 actin RNA transcript in HSA ^{SR} mice			
Dose (mg/kg)	Quadriceps	Gastrocnemius	Tibialis anterior
2.5	15	14	0
8.5	30	11	0
25	59	48	54

Example 23

In Vivo Antisense Inhibition of Human DMPK in Transgenic Mice

[0426] LC15 mice, Line A, are transgenic mice containing the entire human DMPK 3'UTR (developed by Wheeler et al, University of Rochester). The mice are the second generation of mice backcrossed to an FVB background. The transgene is expressed in the mice as a CUG repeat RNA, which is retained in the nucleus, forming nuclear inclusions or foci, similar to that seen in human tissue samples of patients with myotonic dystrophy (DM1). There are 350-400 CUG repeats in the DMPK transgene. These mice display early signs of DM1 and do not display any myotonia in their muscle tissues.

[0427] ISIS 445569, ISIS 444404, ISIS 444436 and ISIS 473810, which demonstrated statistically significant dose-dependent inhibition in vitro (see Example 5), were evaluated for their ability to reduce human DMPK RNA transcript in vivo.

Treatment

[0428] LC15, Line A mice were maintained on a 12-hour light/dark cycle and fed ad libitum normal Purina mouse chow. Animals were acclimated for at least 7 days in the research facility before initiation of the experiment. Antisense oligonucleotides (ASOs) were prepared in PBS and sterilized by filtering through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

[0429] The mice were divided into five treatment groups. The first three groups received subcutaneous injections of ISIS 445569, ISIS 444404 or ISIS 444436 at a dose of 25 mg/kg twice per week for 4 weeks. The fourth group received subcutaneous injections of ISIS 473810 at a dose of 12.5 mg/kg twice per week for 4 weeks. The fifth group received subcutaneous injections of PBS twice weekly for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Inhibition of DMPK RNA

[0430] Twenty four hours after the final dose, the animals were sacrificed and tissue from the quadriceps muscles was isolated. RNA was isolated for real-time PCR analysis of DMPK and normalized to 18s RNA. As presented in Table 38, treatment with antisense oligonucleotides reduced human DMPK RNA transcript expression. The results are expressed as percent inhibition of DMPK transcript, relative to the PBS control.

TABLE 38

Antisense inhibition of human DMPK RNA transcript in LC15 mice		
ISIS No	mg/kg/wk	% inhibition
444404	50	20
444404	50	55
444436	50	41
473810	25	56

Assessment of Myotonia by Electromyography

[0431] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. Since LC15 mice do not have myotonia, neither the control group nor the treatment groups displayed any myotonia in any muscle tested.

Example 24

In Vivo Antisense Inhibition of Human DMPK in Transgenic Mice

[0432] LC15 mice, Line D, are transgenic mice containing the entire human DMPK 3'UTR (developed by Wheeler et al,

University of Rochester). The mice are the third generation of mice backcrossed to an FVB background. The transgene is expressed in the mice as a CUG repeat RNA, which is retained in the nucleus, forming nuclear inclusions or foci, similar to that seen in human tissue samples of patients with myotonic dystrophy (DM1). There are 350-400 CUG repeats in the DMPK transgene. These mice display early signs of DM1 and do not display any myotonia in their muscle tissues. [0433] ISIS 445569, ISIS 444404, ISIS 444436 and ISIS 473810 were further evaluated for their ability to reduce human DMPK RNA transcript in vivo.

Treatment

[0434] LC15, Line D mice were maintained on a 12-hour light/dark cycle and fed ad libitum normal Purina mouse chow. Animals were acclimated for at least 7 days in the research facility before initiation of the experiment. Antisense oligonucleotides (ASOs) were prepared in PBS and sterilized by filtering through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

[0435] The mice were divided into six treatment groups. The first three groups received subcutaneous injections of ISIS 445569, ISIS 444404 or ISIS 444436 at a dose of 25.00 mg/kg twice per week for 4 weeks. The fourth group received subcutaneous injections of ISIS 473810 at a dose of 12.50 mg/kg twice per week for 4 weeks. The fifth group received subcutaneous injections of ISIS 473810 at a dose of 6.25 mg/kg twice per week for 4 weeks. The sixth group received subcutaneous injections of PBS twice weekly for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Inhibition of DMPK RNA

[0436] Twenty four hours after the final dose, the animals were sacrificed and tissue from the quadriceps muscles was isolated. RNA was isolated for real-time PCR analysis of DMPK and normalized to 18s RNA. As presented in Table 39, treatment with antisense oligonucleotides reduced human DMPK RNA transcript expression. The results are expressed as percent inhibition of DMPK transcript, relative to the PBS control.

[0437] The results indicate that treatment with the antisense oligonucleotides resulted in inhibition of DMPK mRNA in the mice.

TABLE 39

Antisense inhibition of human DMPK RNA transcript in LC15 mice		
ISIS No	mg/kg/wk	% inhibition
444404	50.00	24
444404	50.00	30
444436	50.00	17
473810	25.00	7
473810	12.50	18

Assessment of Myotonia by Electromyography

[0438] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, Science, 302:

1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. Since LC15 mice do not have myotonia, neither the control group nor the treatment groups displayed any myotonia in any muscle tested.

Example 25

In Vivo Antisense Inhibition of Human DMPK in SXL Transgenic Mouse Model

[0439] Using hDMPK-targeting ASOs 444401 and 299471 target knockdown in soleus muscle was measured in SXL mice. The SXL mouse is transgenic for the entire DMPK gene and promoter and contains a 1000 CUG repeat sequence in the 3'UTR of DMPK gene. Mice were dosed 50 mg/kg twice weekly for 4 weeks (n=3 mice per group, except n=2 for saline-injected controls). Results of Taqman assays demonstrated that treatment with either ISIS 444401 or ISIS 299471 significantly reduced mut-hDMPK mRNA levels but had negligible effect on endogenous mouse Dmpk mRNA levels.

[0440] Therefore, ISIS 444401 and ISIS 299471 selectively target human DMPK mRNA transcript.

Example 26

Duration of Action of Antisense Inhibition by an Oligonucleotide Targeting Human Alpha1 Actin in Transgenic Mice

[0441] The duration of action of antisense inhibition of human alpha1 actin RNA transcript by ISIS 190401 in HSA^{LR} mice was evaluated.

Treatment

[0442] HSA^{LR} mice received subcutaneous injections of ISIS 190401 at a dose of 25 mg/kg twice per week for 4 weeks. A control group received subcutaneous injections of PBS twice per week for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared. The mice were analyzed 15 weeks after administration of the last dose.

Inhibition of Alpha1 Actin RNA

[0443] Fifteen weeks after the final dose, the animals were sacrificed and tissue from the quadriceps muscles, gastrocnemius muscles, and tibialis anterior muscles was isolated. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As presented in Table 40, treatment with ISIS 190401 reduced human alpha1 actin RNA transcript expression, and this effect was sustained at least for 15 weeks. The results are expressed as percent inhibition of alpha1 actin transcript, relative to the PBS control.

[0444] Treatment with ISIS 190401 resulted in significant inhibition of alpha1 actin mRNA levels under the conditions specified above.

TABLE 40

Antisense inhibition of human alpha1 actin RNA transcript in HSA ^{LR} mice	
Muscle Type	% inhibition
Quadriceps	74
Gastrocnemius	81
Tibialis anterior	75

Assessment of Myotonia by Electromyography

[0445] Electromyography on left and right quadriceps, left and right gastrocnemius muscles, left and right tibialis anterior muscles and lumbar paraspinals muscles was performed as previously described (Kanadia et al, 2003, *Science*, 302: 1978-1980) by using 30 gauge concentric needle electrodes and a minimum of 10 needle insertions for each muscle. The data is presented in Table 41 as the average myotonia grade observed in four mice of each group and demonstrates significant reduction of myotonia in mice treated with ISIS 190401. Therefore, the effect of antisense inhibition of alpha actin by ISIS 190401 was sustained at least for 15 weeks.

TABLE 41

Average reduction of myotonia in various muscles of antisense oligonucleotide-treated HSA ^{LR} mice		
	PBS	ISIS 190401
Left quadriceps	3.0	0.0
Right quadriceps	3.0	0.0
Left gastrocnemius	2.5	0.0
Right gastrocnemius	2.5	0.0
Left Tibialis anterior	2.5	0.0
Right Tibialis anterior	2.5	0.0
Lumbar paraspinals	2.5	0.0

Correction of Alternative Splicing

[0446] To evaluate the effect of ISIS 190401 on alternative splicing of Serca1, total RNA purified from the tibialis anterior gastrocnemius, and quadriceps muscle was analyzed in a procedure similar to that described in Example 13.

[0447] In PBS treated HSA^{LR} mice, Serca1 splicing is dysregulated as demonstrated by exon 22 exclusion. Treatment with ISIS 190401 resulted in complete inclusion and normalization of alternative splicing of exon 22 of the Serca1 gene in all three muscle types, which was sustained even after 15 weeks.

[0448] Therefore, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, which indicates that treatment with antisense oligonucleotide reduced accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci corrects MBLN1 sequestration thereby allowing normal splicing to occur.

Example 27

Microarray Analysis of Transcriptomic Effect of Antisense Inhibition of Human Actin

[0449] Expression of actin mRNA with expanded CUG repeats causes extensive remodeling of the muscle transcript-

tome. To evaluate the overall transcriptomic effects of ISIS 190401 and ISIS 445236, microarray analyses was utilized in HSA^{LR} mice.

Treatment

[0450] HSA^{LR} mice received subcutaneous injections of ISIS 190401 or ISIS 445236 at a dose of 25 mg/kg twice per week for 4 weeks. A control group received subcutaneous injections of PBS twice per week for 4 weeks. The PBS-injected group served as the control group to which the oligonucleotide-treated group was compared.

Transcriptome Analysis by Microarray

[0451] RNA was isolated from the quadriceps muscle of wild-type or HSA^{LR} mice. RNA integrity was verified using an Agilent Bioanalyzer (RNA integrity number >7.5). RNA was processed to complementary RNA (cRNA) and hybridized on microbeads using MouseRef-8 v2.0 Expression BeadChip Kits (Illumina, San Diego), according to the manufacturer's recommendations. Image data were quantified using BeadStudio software (Illumina). Signal intensities were quantile normalized. Row-specific offsets were used to avoid any values of less than 2 prior to normalization. Data from all probe sets with 6 or more nucleotides of CUG, UGC, or GCU repeats was suppressed to eliminate the possibility that expanded repeats in the hybridization mixture (CAG repeats in cRNA originating from CUG repeats in the mRNA) could cross-hybridize with repeat sequences in the probes. To eliminate genes whose expression was not readily quantified on the arrays, probes showing a P value for detection probability of <0.1 were suppressed in all samples. Comparisons between groups were summarized and rank-ordered by fold-changes of mean expression level and t tests. The software package R (Butler et al. *Diabetes*, 2002; 51: 1028-34) was used to perform principal components analysis (Levin et al. In *Antisense Drug Technology: Principles, Strategies, and Applications*, S.T. Crooke, Ed. (CRC Press, Boca Raton, 2008), pp 183-215; Geary et al. *Drug Metab. Dispos.* 2003; 31: 1419-28) on wild-type, ISIS oligonucleotide-treated, and PBS-treated microarray samples. The principle components allowed the capture of the majority of the expression variation in each sample within 3 dimensions. The first three principal components of each sample were plotted.

[0452] The principle component analysis of untreated wild-type and HSA^{LR} mice demonstrated segregation of HSA^{LR} away from wild-type mice, in widely separated clusters. In contrast, antisense oligonucleotide-treated HSA^{LR} mice clustered more closely to wild-type mice, suggesting an overall trend for transcriptome normalization. Comparisons of HSA^{LR} transgenic mice with wild-type mice identified 93 transcripts whose expression levels were altered more than two-fold (P<0.0001), as presented in Table 42, below. The extent of dysregulation for these transcripts was reduced or normalized for antisense oligonucleotides (88% dysregulated transcripts responded to ISIS 445236, P<0.05 for ISIS 445236 vs. PBS control, whereas 90% responded to ISIS 190401).

[0453] In order to consider transcripts that have off-target knockdown, all transcripts whose expression was reduced in antisense oligonucleotide-treated HSA^{LR} mice were identified (>two-fold reduction by either oligonucleotide, P<0.0001, n=41 transcripts). All transcripts that were down-regulated by these criteria demonstrated upregulation in HSA^{LR}

mice. The only exception, collagen 6 alpha2, is unlikely to result from off-target cleavage because it was down-regulated by the two antisense oligonucleotides with non-overlapping sequences.

[0454] These results indicate that treatment with antisense oligonucleotides for 4 weeks resulted in a general improvement of the muscle transcriptome without any evidence for off-target effects.

TABLE 42

Transcript	Comparisons of HSA ^{LR} transgenic mice with wild-type mice identified 93 transcripts									
	Fold-change HSALR- saline vs. WT	t test HSALR - Saline vs. WT	Fold- change HSALR- 190104 vs. HSALR- saline	t test 190401 vs. HSALR - saline	Fold- change HSALR- 190401 vs. WT	t test HSALR- 190401 vs. WT	Fold- change HSALR- 445236 vs. HSALR- saline	t test 445236 vs. HSALR- saline	Fold- change HSALR- 445236 vs. WT	t test HSALR- 445236 vs. WT
OSBPL10	15.11	0.0000	0.46	0.0023	6.95	0.0008	0.39	0.0007	5.92	0.0002
FBXL13	12.12	0.0000	0.49	0.0159	5.91	0.0385	0.65	0.0255	7.93	0.0026
NGFR	11.57	0.0000	0.23	0.0001	2.66	0.0314	0.16	0.0000	1.84	0.0133
SLC1A1	9.39	0.0000	0.39	0.0001	3.66	0.0001	0.30	0.0001	2.85	0.0116
CXADR	9.13	0.0000	0.14	0.0000	1.30	0.6119	0.21	0.0001	1.94	0.2244
NFATC2	8.48	0.0000	0.32	0.0002	2.67	0.0043	0.22	0.0001	1.84	0.0394
ATP1B4	7.02	0.0000	0.24	0.0000	1.68	0.0021	0.24	0.0000	1.70	0.0091
UCHL1	6.80	0.0000	0.71	0.0168	4.86	0.0005	0.72	0.1187	4.91	0.0090
TEAD4	6.76	0.0000	0.50	0.0030	3.39	0.0085	0.30	0.0004	2.06	0.1213
TAS1R1	6.72	0.0000	0.28	0.0003	1.91	0.1857	0.43	0.0002	2.88	0.0047
MUSTN1	6.52	0.0000	0.31	0.0000	2.01	0.0006	0.33	0.0000	2.15	0.0115
IRF5	6.01	0.0000	0.21	0.0000	1.28	0.0556	0.33	0.0001	1.96	0.0035
CRIP3	5.82	0.0000	0.33	0.0000	1.92	0.0151	0.29	0.0001	1.67	0.1470
TAL2	5.75	0.0000	0.20	0.0001	1.13	0.7717	0.36	0.0002	2.08	0.0274
ORF63	5.39	0.0000	0.27	0.0001	1.45	0.0206	0.47	0.0018	2.51	0.0066
COPG	5.05	0.0000	0.30	0.0000	1.53	0.0218	0.25	0.0001	1.25	0.3617
CAMK1D	4.92	0.0000	0.23	0.0002	1.12	0.8157	0.27	0.0000	1.32	0.2449
HSPA2	4.76	0.0000	0.43	0.0000	2.02	0.0079	0.42	0.0000	2.02	0.0197
CAMK2D	4.70	0.0000	0.36	0.0001	1.70	0.0493	0.45	0.0004	2.12	0.0095
CNTNAP2	4.49	0.0000	0.58	0.0001	2.59	0.0000	0.67	0.0007	3.02	0.0000
TTC7	4.33	0.0000	0.38	0.0000	1.63	0.0085	0.68	0.0468	2.96	0.0126
CD276	4.08	0.0001	0.36	0.0001	1.47	0.1613	0.59	0.0029	2.39	0.0072
USH1C	4.07	0.0000	0.50	0.0011	2.04	0.0077	0.38	0.0029	1.55	0.2881
LRP11	4.03	0.0000	0.55	0.0017	2.24	0.0011	0.55	0.0006	2.23	0.0000
PHLDA3	3.96	0.0000	0.40	0.0001	1.60	0.0019	0.36	0.0001	1.42	0.0609
HSPB7	3.80	0.0000	0.30	0.0000	1.14	0.5358	0.30	0.0000	1.15	0.4474
TRIT1	3.74	0.0000	0.43	0.0000	1.62	0.0003	0.31	0.0000	1.16	0.1043
PCNX	3.66	0.0000	0.37	0.0002	1.34	0.1628	0.42	0.0001	1.53	0.0105
3632451O06RIK	3.51	0.0000	0.81	0.1094	2.83	0.0025	0.71	0.0015	2.51	0.0002
AMHR2	3.46	0.0000	0.45	0.0001	1.56	0.0037	0.52	0.0003	1.79	0.0016
SNX13	3.27	0.0000	0.47	0.0000	1.55	0.0007	0.44	0.0000	1.42	0.0003
ATP9A	3.26	0.0000	0.60	0.0001	1.96	0.0024	0.42	0.0002	1.38	0.2009
D030028O16RIK	3.22	0.0000	0.53	0.0011	1.70	0.0104	0.48	0.0001	1.56	0.0007
RPS6KA3	3.09	0.0000	0.38	0.0000	1.17	0.1845	0.44	0.0001	1.37	0.0321
GCA	3.00	0.0000	0.70	0.0031	2.09	0.0005	0.74	0.0103	2.22	0.0006
PACRG	2.89	0.0001	0.51	0.0002	1.46	0.0063	0.46	0.0001	1.34	0.0229
SPSB2	2.88	0.0001	0.33	0.0000	0.95	0.6599	0.37	0.0000	1.07	0.6216
POU4F1	2.83	0.0000	0.42	0.0000	1.19	0.2046	0.60	0.0007	1.68	0.0074
STRN4	2.72	0.0000	0.38	0.0000	1.03	0.8900	0.46	0.0000	1.25	0.2128
NCAM1	2.67	0.0001	0.70	0.0259	1.87	0.0135	0.54	0.0006	1.43	0.0343
A930018M24Rik	2.65	0.0001	0.58	0.0058	1.53	0.0727	0.43	0.0002	1.13	0.3919
TUBA4A	2.60	0.0000	0.42	0.0000	1.09	0.1806	0.50	0.0000	1.31	0.0041
IAP	2.57	0.0000	0.57	0.0002	1.46	0.0108	0.59	0.0016	1.52	0.0333
ANKRD40	2.56	0.0000	0.63	0.0155	1.60	0.0683	0.57	0.0002	1.46	0.0047
UVRAG	2.48	0.0000	0.59	0.0000	1.48	0.0005	0.52	0.0000	1.28	0.0165
HIST1H4H	2.46	0.0001	0.55	0.0001	1.34	0.0474	0.65	0.0014	1.60	0.0125
EPS15	2.44	0.0000	0.61	0.0001	1.50	0.0057	0.77	0.0043	1.87	0.0007
PANX1	2.41	0.0001	0.46	0.0004	1.11	0.4311	0.36	0.0000	0.87	0.0561
CALML4	2.41	0.0001	0.45	0.0008	1.10	0.6994	0.67	0.0154	1.62	0.0538
ASPH	2.40	0.0000	0.40	0.0000	0.95	0.6969	0.44	0.0000	1.05	0.7267
CREB3L2	2.37	0.0001	0.71	0.0287	1.67	0.0416	0.65	0.0051	1.54	0.0410
TRAF3	2.32	0.0001	0.50	0.0001	1.16	0.2851	0.57	0.0001	1.32	0.0481
CMYA1	2.30	0.0000	0.44	0.0007	1.02	0.9450	0.44	0.0000	1.01	0.9265
ADAMTSL5	2.30	0.0001	0.48	0.0000	1.11	0.3365	0.53	0.0004	1.22	0.1827
HS2ST1	2.27	0.0001	0.64	0.0002	1.44	0.0223	0.74	0.0041	1.68	0.0062
HIST1H4J	2.21	0.0000	0.59	0.0000	1.31	0.0283	0.72	0.0002	1.60	0.0023
SPSB1	2.20	0.0000	0.53	0.0005	1.16	0.2409	0.48	0.0000	1.05	0.3088
LANCL1	2.20	0.0000	0.63	0.0002	1.39	0.0002	0.66	0.0006	1.46	0.0005
KCNC4	2.16	0.0000	0.91	0.3892	1.96	0.0036	0.98	0.8712	2.12	0.0029
PRRC1	2.16	0.0000	0.57	0.0001	1.23	0.0324	0.59	0.0000	1.26	0.0070
MID1IP1	2.13	0.0001	1.27	0.0161	2.70	0.0001	1.09	0.4336	2.32	0.0014
DICER1	2.13	0.0000	0.65	0.0006	1.39	0.0051	0.69	0.0018	1.47	0.0035

TABLE 42-continued

Transcript	Comparisons of HSA ^{LK} transgenic mice with wild-type mice identified 93 transcripts									
	Fold-change HSALR- saline vs. WT	t test HSALR - Saline vs. WT	Fold-change HSALR- Saline vs. HSALR- saline	t test 190104 vs. HSALR - saline	Fold-change HSALR- 190401 vs. HSALR - saline	t test HSALR - 190401 vs. WT	Fold-change HSALR- 445236 vs. HSALR- saline	t test HSALR- 445236 vs. WT	Fold-change HSALR- 445236 vs. WT	t test HSALR- 445236 vs. WT
IKBKB	2.10	0.0001	0.74	0.0240	1.56	0.0262	0.78	0.0039	1.64	0.0015
D5WSU178E	2.10	0.0000	0.86	0.1447	1.80	0.0049	0.88	0.0352	1.84	0.0002
ZFP106	2.08	0.0000	0.53	0.0000	1.11	0.1324	0.58	0.0002	1.20	0.0706
B930041F14RIK	2.06	0.0000	0.71	0.0002	1.47	0.0000	0.72	0.0030	1.49	0.0025
FHL1	2.04	0.0000	0.58	0.0000	1.17	0.1332	0.40	0.0000	0.81	0.0815
UHRF1BP1L	2.04	0.0001	0.78	0.0315	1.59	0.0071	0.68	0.0024	1.38	0.0151
PHCA	2.02	0.0000	0.64	0.0001	1.29	0.0354	0.74	0.0070	1.50	0.0145
B230312A22RIK	2.02	0.0000	0.79	0.0022	1.59	0.0004	0.77	0.0019	1.56	0.0007
PPP2R5C	2.01	0.0000	0.59	0.0001	1.16	0.0161	0.66	0.0017	1.32	0.0177
UCK2	2.01	0.0001	0.70	0.0004	1.41	0.0129	0.64	0.0001	1.28	0.0510
LEPROTL1	0.50	0.0000	1.45	0.0013	0.72	0.0004	1.47	0.0011	0.73	0.0005
COPS7A	0.49	0.0000	1.35	0.0645	0.66	0.0039	1.49	0.0026	0.73	0.0016
PRM17	0.48	0.0001	1.51	0.2023	0.73	0.1585	1.34	0.0445	0.65	0.0002
LDB3	0.47	0.0000	1.55	0.0550	0.73	0.0607	1.57	0.0010	0.74	0.0055
LOC100046120	0.47	0.0000	1.31	0.0077	0.61	0.0000	1.27	0.0381	0.60	0.0002
LOC677317	0.45	0.0001	1.49	0.0004	0.68	0.0012	1.93	0.0011	0.88	0.2082
LDB2	0.45	0.0000	1.73	0.0424	0.78	0.1234	1.23	0.0817	0.56	0.0000
SUM03	0.44	0.0000	1.70	0.0123	0.74	0.0223	1.37	0.0960	0.60	0.0023
LRRC24	0.43	0.0001	1.89	0.0009	0.82	0.0212	1.42	0.0898	0.61	0.0041
HNRPH1	0.42	0.0000	1.64	0.0077	0.69	0.0094	1.70	0.0057	0.71	0.0144
ARMETL1	0.38	0.0000	2.58	0.0000	0.98	0.7666	2.70	0.0000	1.02	0.7109
LOC100041504	0.37	0.0000	2.02	0.0001	0.75	0.0061	1.84	0.0040	0.68	0.0094
MMP9	0.32	0.0000	2.40	0.0006	0.77	0.0340	1.37	0.1834	0.44	0.0009
CBFB	0.28	0.0000	2.66	0.0304	0.75	0.1852	1.94	0.0056	0.55	0.0004
MDH2	0.24	0.0000	1.20	0.0473	0.29	0.0000	1.12	0.1037	0.27	0.0000
APCDD1	0.20	0.0000	1.98	0.2157	0.39	0.0059	4.55	0.0001	0.90	0.2873
LOC654842	0.19	0.0000	1.28	0.1712	0.24	0.0000	1.07	0.8807	0.20	0.0001
F2RL3	0.15	0.0000	5.78	0.0001	0.86	0.1901	4.92	0.0004	0.73	0.0310
EIF3H	0.13	0.0000	1.99	0.2185	0.26	0.0001	1.86	0.1997	0.24	0.0000
AVIL	0.12	0.0000	4.22	0.0156	0.52	0.0081	1.88	0.2270	0.23	0.0001
ACTC1	0.08	0.0000	1.42	0.0346	0.11	0.0000	6.07	0.0098	0.48	0.0087

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 837

<210> SEQ ID NO 1
<211> LENGTH: 2877
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

```

aggggggctg gaccaagggg tggggagaag gggaggaggc ctcggccgc cgcaagagaga 60
agtggccaga gaggcccagg ggacagccag ggacaggcag acatgcagcc agggctccag 120
ggcctggaca ggggctgtca ggccctgtca caggaggacc ccgagcccccc ggccggggga 180
ggggccatgg tctgtccgtt ccaacatgtc agccgagggt cggctggagg ggctccagca 240
gctgggtttt gacccgggtt tcttggggct ggagccccctg ctcgacccctc tcttggggct 300
ccaccaggag ctggggccct ccgaactggc ccaggacaag tacgtggccg acttcttgc 360
gtggggcgag cccatcggtt tgaggctaa ggaggcttca ctgcagaggc acgacttcga 420
gattctgaag gtatcgac gctggggcgat cagcgaggta gctggtagtca agatgaagca 480
gacggggccag gtgtatgcca tgaagatcat gaacaagtgg gacatgtca agagggggcg 540
ggtgtcggtt tcccggttgg agagggacgt gttggtaat ggggaccggc ggtggatcac 600

```

-continued

gcagctgcac	ttcgcctcc	aggatgagaa	ctacctgtac	ctggcatgg	agtattacgt	660
ggggggggac	ctgctgacac	tgtcgagcaa	gttggggag	cggattccgg	ccgagatggc	720
gcgttctac	ctggcgaga	ttgtcatggc	catagactcg	gtgcacccgc	ttggctacgt	780
gcacaggac	atcaaaccgc	acaacatcc	gtggaccgc	tgtggccaca	tccgcotggc	840
cgacttcggc	tcttgcctca	agotgcgggc	agatggaacg	gtgcggtcgc	tggtggctgt	900
gggcacccca	gactacctgt	cccccggat	cctgcaggct	gtgggggggt	ggcctggac	960
aggcagctac	gggccccgagt	gtgactggtg	ggcgctgggt	gtatccgcct	atgaaatgtt	1020
ctatggcag	acgccttct	acgcggattc	cacgccggag	acctatggca	agatcgctca	1080
ctacaaggag	caectcttc	tgccgctgg	ggacgaagg	gtccctgagg	aggctcgaga	1140
cttcattcag	cgggtgctgt	gtccccggaa	gacacggctg	ggccgggggt	gagcaggcga	1200
cttccggaca	catcccttct	tctttggcct	cgactggat	ggtctccgg	acagcggtcc	1260
ccctttaca	ccggatttcg	aagggtccac	cgacacatgc	aacttgcact	tggtggagga	1320
cgggctca	gccatggaga	cactgtcgga	cattcgaa	ggtgccgcgc	taggggtcca	1380
cctgcctttt	gtgggctact	cctactctc	catggccctc	agggacatgt	aggtcccagg	1440
ccccacaccc	atggaactgg	aggccgagca	gctgcttgag	ccacacgtgc	aagcgcggcag	1500
cctggagcc	tcgggtgtcc	cacaggatga	aacagtcgaa	gtggcagttc	cagcggctgt	1560
ccctgcggca	gaggctgagg	ccgaggtgac	gctgcgggag	ctccaggaag	ccctggagga	1620
ggaggtgctc	acccggcaga	gctcgagccg	ggagatggag	gccatccgc	cggacaacca	1680
gaacttcgcc	agtcaactac	gctcgaggaa	ggctcgaaac	cgggacccat	aggcacacgt	1740
ccggcagtt	caggagcgg	tggagttgt	gcagggcagag	ggagccacag	ctgtcacgg	1800
tgtccccagt	ccccgggca	cggatccacc	ttcccata	gatggccccc	cgcccggtggc	1860
tgtggccag	tgcggcgtgg	tggggccagg	ccccatgcac	cgccgcacacc	tgctgtccc	1920
tgccagggtc	cctaggcctg	gcctategg	ggcgctttcc	ctgtctctgt	tcgcgggtgt	1980
tctgtcttgt	gccccggccc	tgggctgtcat	tgggttggtg	gcccacccgc	gccaactcac	2040
cgcagtctgg	cggcccccag	gagccgcccc	cgatccctga	accctagaac	tgtttcgac	2100
tccggggccc	cgttggaga	ctgagtgccc	ggggcacggc	acagaagccg	cgcccacccgc	2160
ctgcagttc	acaaccgtc	cgagcgtgg	tctccgcaca	gtccagatcc	tgtgatccgg	2220
gcccccccc	tagcgccgg	ggagggaggg	gccccgtccg	cgccggggcga	acggggctcg	2280
aagggtcctt	gtagccggga	atgctgtgc	tgtgtgtgt	gtctgtgtgc	ctgtgtgtgc	2340
tgctgctgt	gctgctgtgc	ctggggggat	cacagaccat	ttctttttt	cgccaggct	2400
gaggccctga	cgtggatggg	caaactgcag	gcctggaaag	gcagcaagcc	ggggcggtccg	2460
tgtttccatcc	tccacgcacc	cccacctatc	gttggttcgc	aaagtgcata	gttttttgt	2520
gcatgacgcc	ctgctctgg	gagcgtctgg	cgcgatctct	gcctgcttac	tcggaaatt	2580
tgcgtttgcc	aaacccgctt	tttcggggat	cccgccccc	cctcctca	tgcgtgtc	2640
tcggagcccc	agccggctcc	gcccgcctcg	cggggttgaa	tatttatgt	cctcgctctc	2700
cgactcgctg	acaggctaca	ggaccccaat	ccacgtttt	gatgcactga	2760	
gaccccgaca	ttcctcggt	tttattgtct	gtccccaccc	aggacccca	cccccgaccc	2820
tcgcaataa	aaggccctcc	atctgccccaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2877

-continued

```

<210> SEQ ID NO 2
<211> LENGTH: 14411
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

ctcccagccc agccgcctccc accccctttc atagcagggaa aagccggagc ccagggagg 60
aacggacactg cgagtacac aactggtgac ccacaccaggc ggctggagca ggaccctt 120
ggggagaaga gcatcctgcc cgcagccagg gcccctcatc aaagtccctcg gtgttttta 180
aattatcaga actgcccagg accacgtttc ccaggccctg cccagctggg actcctcggt 240
ccttgcctcc tagtttctca ggcttggccc tctcaaggcc caggcacccc aggccggtt 300
gaggccccga ctccactct ggagaaccgt ccaccctgga aagaagagct cagattcctc 360
ttggctctcg gagccgcagg gatgtgtct tcccgcgcac ccctccaccc cccgaaatgt 420
ttctgtttct aatcccagcc tgggcaggaa tgtggctccc cggccagggg ccaaggagct 480
atttggggt ctcgtttgcc cagggagggc ttggctccac cactttctc ccccaagcct 540
tggcagcag gtcacccctg ttcaggctct gagggtgccc cctcctggc ctgtctcac 600
caccccttcc ccacccctcg gaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaagct ggtataaagc 660
agagagcctg agggctaaat ttaactgtcc gagtcggaat ccattctcgta gtcacccaaag 720
aagctgcctt ggccctccgt cccttccca ggcctcaacc cctttctccc acccagcccc 780
aacccttccg ctcacccccc tagcccccag ttctggagct tgcgggagc aagggggtgg 840
ttgctactgg gtcactcagc ctcaattggc cctgtttcag caatggcagc gttttcttg 900
aaattcatca cacctgtggc ttccctgttg ctctacctt ttattgggt gacagtgtga 960
cagctgagat tctccatca ttcccccac tctagactg aagggttctg aaggccctg 1020
gaaggaggga gcttgggggg ctggcttggc aggggttaag gctggggagc gggagggggg 1080
ctggaccaag ggggtggggag aaggggagga ggcctcgccc ggccgcagag agaagtggcc 1140
agagaggccc aggggacacgc cagggacagg cagacatgca gccaggcgtc cagggcctgg 1200
acaggggctg ccaggccctg tgacaggagg accccgagcc cccggccccc ggagggggca 1260
tgggtgtgcc tgcacccat gtcagccag gtcggctcgaa ggccggctcca gcaactgg 1320
ttggacccgg gcttccctggg gctggagccc ctgctcgacc ttctccctggg cgtccaccag 1380
gagctggcgg cctccgaact ggccaggac aagtacgtgg ccgacttctt gcaactgg 1440
gagtgcctac cctccgggt cctgcagatg ggggtgggggt ggggcaggag acaggtctgg 1500
gcacagaggc ctggctgttg gggggggcagg atggcaggat gggcatgggg agatctccc 1560
atccctgggc tcagactgtg gacctggcc ctggggcaac atttctctgt cctatgccac 1620
caactctggag gggcagagta aggtcagcag aggctagggt ggctgtgact cagagocatg 1680
gcttaggagt cacagcaggc taggctgcca acagccccc atggcctctc tgcacccgc 1740
ctcagggtca gggtcagggt catgctggg gctccctctc ctggcaggat ccccccaaaa 1800
gtgggctcta tggccctctc ccctgggttc ctgtggctcg gggcaaggca ggagggccag 1860
catggggcag ctggcagggg cgccaggac aggcagggtg tcggcgcag cctctccagc 1920
tgcccccaaca ggtgcccagg cactgggagg ggggtgactc acgcggggcc tggggagaa 1980
ccagcttgc agacaggcgc caccagtgc cctccctctg cgatccagga gggacaactt 2040
tgggttcttc tgggtgtgtc tcttctttt gtaggtctcg cacccacccc caccccaagc 2100

```

-continued

cccaaagtct	cggttcctat	gagccgtgtg	ggtcagccac	cattccggcc	accccggtc	2160
cctgcgtctt	ttatgttctcc	tggcccagggg	cctccaaacct	tccagctgtc	ccacaaaacc	2220
ccttcttgc	aggggcttcc	agggcctggg	gcccagggtc	gaaggaggat	gttcccgctt	2280
ctgcacagctg	ccttgcgtc	ccacccctcc	ccaaagccca	ggactcgggc	tcactggtca	2340
ctggtttctt	tcattccag	caccctgccc	ctctggccct	catatgtctg	gcccctoagt	2400
actgggtttt	ggtttttggc	ctgtgtgtaa	caaactgtgt	gtgacacttg	tttcctgttt	2460
cctccgcctt	ccctgcctcc	tcttgcgtcc	atctctttct	gaccaggccc	tggttccctt	2520
ccctcttctt	cccatttca	agatgggaag	gtggaggccc	agaaggggca	ggccattcag	2580
cctctggaaa	aaccttctcc	caacctccca	cagccctaa	tgactctct	ggccctccctt	2640
tagtagagga	tgaagttggg	ttggcagggt	aaactgagac	cgggtgggg	aggggtctgg	2700
cgcgtccggg	aggagca	cttttgcgtc	ccgagctgca	tctcgccggcc	cctccctgc	2760
caggcctggg	gcggggggagg	ggggccagggt	tctgcgtgcc	ttaaaagggc	tcaatgtctt	2820
ggctctctcc	tcctccccc	gtcctcagcc	ctggctgggt	cgtccctgt	ggcccaactct	2880
cccgaaaccc	cccgaaaccc	ctctcttcc	tccagaaccc	actgtctct	ctccttccct	2940
ccctcccat	accatccct	ctctccatcc	tgcctccact	tcttccaccc	ccgggagtc	3000
aggectccct	gtccccacag	tccctgagcc	acaaggctcc	accccaagtc	gtccccacc	3060
caggctgccc	agtttaacat	tcctagtc	aggacattga	cttctgagag	gcctgattgt	3120
catctgtaaa	taagggtag	gactaaagca	tcctcctgg	aggactgaga	gatgggtctgg	3180
accggagcac	ttgagtcgtgg	gatatgtac	catgttac	ttgtctccct	gtcctgttcc	3240
ttccccccagc	cccaaateca	gggtttccca	aagtgtgggt	caagaaccac	ctgcatctga	3300
atctagaggt	actggataca	accccaegtc	tggccgtta	cccaggacat	tctacatgag	3360
aacgtggggg	tggggccctg	gtgcacctg	aactgtcacc	tggagtcagg	gtggaaagggt	3420
gaagaactgg	gtcttatttc	cttctccccc	tgttctttag	ggtctgtcct	tctgcagact	3480
cgcgttacccc	accctaa	ccctgcacac	ccttggagcc	ctctggggca	atgcctgtc	3540
ccgcaaagg	cttctcaggc	atctcaccc	tatggaggg	cattttggc	ccccagaacc	3600
ttacacggtg	tttatgtggg	gaagccctg	ggaagcagac	agtccatggg	tgaagctgag	3660
aggcagagag	aaggggagac	agacagagg	tggggcttcc	ccccctgtct	ccagtgccct	3720
ttctgggtgac	cctcggttct	tttcccccc	cacccccc	gcccggccca	tcgtgggtgag	3780
gcttaaggag	gtccgactgc	agagggacga	cttcgagatt	ctgaagggt	tcggacgcgg	3840
ggcggttc	gaggtaagcc	gaaccggg	ggagcctgac	ttgactcgtg	gtgggggggg	3900
cataggggtt	ggggcgggggc	cttagaaatt	gatgaatgac	cgagccttag	aacctaggggc	3960
tgggctggag	gcggggcttg	ggaccaatgg	gcgtgggtg	gcaggtgggg	cgggggccacg	4020
gctgggtgca	gaagcgggtg	gagttgggtc	tgggcgagcc	cttttgttt	cccgccgtct	4080
ccactctgtc	tcactatctc	gacccatgg	agcggtagtg	aagatgaagc	agacggggca	4140
ggtgtatgcc	atgaagatca	tgaacaatgt	ggacatgtc	aaaggggcg	aggtgagggg	4200
ctggcggac	gtggggggct	ttgaggatcc	gcgcggcc	tccggctgca	gtcctccgg	4260
gtggccctgca	ggtgtcgtgc	ttccgtgagg	agagggacgt	gttggtaat	ggggaccggc	4320
ggtggtatcac	gcagctgcac	ttcgccctcc	aggatgagaa	ctacctggtg	agctccggc	4380

-continued

cgggggtact	aggaagaggg	acaagagccc	gtgctgtcac	tggacgagga	ggtggggaga	4440
ggaagctcta	ggattgggg	tgctgcccgg	aaacgtctgt	ggaaaagtct	gtgtgcggta	4500
agaggggtgt	tcaggtggat	gaggggcctt	ccctatctga	gacggggatg	gtgtccctca	4560
ctgcccgtt	ctgggggtat	ctgggggact	cttataaaga	tgtctctgtt	gcggggggtc	4620
tcttacctgg	aatgggatag	gtcttcagga	attctaacgg	ggccactgcc	taggaaagga	4680
gtgtctggg	cctattctct	gggtgttggg	tggcctctgg	gttctcttcc	ccagaacatc	4740
tcagggggag	tgaatctgcc	cagtgcacatc	ccagggaaagt	ttttttgttt	gtgttttttt	4800
ttgaggggag	ggggcggggg	ccgcaggtgg	tctctgattt	ggcccgccag	atctctatgg	4860
ttatctctgg	gctggggctg	caggtctctg	cccaaggatg	gggtgtctct	gggagggggtt	4920
gtcccagcca	tccgtatgg	atcagggcc	cagggacta	ccaaccaccc	atgacgaacc	4980
ccttctcagt	acctggatcat	ggagtattac	gtgggggggg	acctgctgac	actgctgagc	5040
aagtttgggg	agccggattcc	ggccgagatg	gcgcgcctct	acctggcgga	attgtcatg	5100
gccatagact	cgggtgcacccg	gcttggctac	gtgcacaggt	gggtgcagca	tggccgaggg	5160
gatagcaagc	ttgttccctg	gccccgttct	tggaaaggta	gagcccagag	aggccagggc	5220
ctggagaggg	accttcttgg	ttggggccca	ccgggggggtg	cctggggatg	ggggtcagaa	5280
ctgtagaagc	cctacagggg	cggAACCCGA	ggaagtgggg	tcccagggtgg	caetgcccgg	5340
agggggcggag	cctgggtggg	ccacagaagg	gagggttatt	tatccaccc	ttctcttttc	5400
ctccgtgcag	ggacatcaaa	cccgacaaca	tctgtctgga	ccgctgtggc	cacatccgccc	5460
tggccgactt	cggcttgc	ctcaagctgc	gggcagatgg	aacggtgagc	cagtgcctg	5520
gccacagagc	aactggggct	gctgtatggg	gatggaaaggc	acagagtgtg	ggagcggggac	5580
tggatttgg	ggggaaaaga	ggtgggtgt	cccaggctt	agtgtgcattc	tgtgtggcgg	5640
agtatttagac	caggcagagg	gaggggttaa	gcattttgggg	agtgggttgg	aggaggggcc	5700
agagctgggt	ggcccgagg	ggtggggccca	agcctcgctc	tgctcctttt	gttccaggtg	5760
cggtcgctgg	tggctgtggg	cacccagac	tacctgtccc	ccgagatct	gcaggctgt	5820
gggggtgggc	ctggggacagg	cagctacggg	cccgagatgtg	actggggggc	gtgggggtgt	5880
ttcgcctatg	aaatgttcta	tgggcagacg	cccttctacg	cggattccac	ggcggagacc	5940
tatggcaaga	tctggccacta	caaggtgaggc	acggcccgag	ggagacctgg	cctctcccccgg	6000
taggcgcctcc	caggctatcg	cctcctctcc	ctctgagcag	gagcacctct	ctctgcgcgt	6060
ggtggacgaa	gggggtccctg	aggaggctcg	agacttatt	cagcggttgc	tgtgtcccccc	6120
ggagacacgg	ctggggccggg	gtggagcagg	cgacttccgg	acacatccct	tcttctttgg	6180
cctcgactgg	gatggctcc	gggacacggt	gcggggccctt	acaccggatt	tcgaaggtgc	6240
cacccgacaca	tgcacttcg	acttgggtgg	ggacgggctc	actgccatgg	tgageggggg	6300
cggggtaggt	acctgtggcc	cctgctegg	tgccggaaacc	tcccccattct	ccctccataaa	6360
agttggagta	aggacagtgc	ctaccttctg	gggtctctgaa	tcactcatcc	cccagagcac	6420
ctgtctctgt	cccatctact	actgaggacc	cagcagtgac	ctagacttac	agtccctgt	6480
ggaaacacag	agcagtcttc	agacagtaag	gccccagagt	gatcagggt	gagacaatgg	6540
agtgcagggg	gtgggggact	cctgactcg	caaggaaggt	cctggggggc	tttctggagt	6600
ggggagctat	ctgagctgag	acttgggggg	atgagaagca	ggagaggact	cctcccccct	6660
taggcgcgtt	ctttcaccg	tgtaacaacg	tgtcatggca	tgcttgcgt	gtctctgggt	6720

-continued

ccctttgtc	gaacaatact	ggggatccag	cacggaccag	atgagctctg	gtccctgcc	6780
tcatccagtt	gcagtctaga	gaatttagaga	attatggaga	gtgtggcagg	tgccctgaag	6840
ggaagcaaca	ggataacaaga	aaaaatgatg	gggcccaggca	cggtggctca	cgcctgtAAC	6900
cccagcaatt	tggcagggcgg	aagtgggtgg	attgcttgag	cccaggagtt	cgagaccagc	6960
ctgggcaatg	tggtgagagcc	cccgctctata	caaaaatgtt	ttaaaaattt	gttggggctg	7020
gtggcgcatg	cctgtatact	cagctactag	ggtggccgac	gtgggcttga	gcccaggagg	7080
tcaaggctgc	agttagctgt	gattgtgc	ctgcactcca	gcctgggcaa	cggagagaga	7140
ctctgtctca	aaaataagat	aaactgaaat	taaaaaatag	gtctgggtgg	ccggggctgg	7200
tggctcacgc	ctgtaatctc	agcactttgg	gaggcccagg	cgggtggatc	acgaggtcag	7260
gagatcgaga	ccatcttggc	taacacgggt	aaacccccc	tctcctaaaa	atacaaaaaaa	7320
ttagccaggc	gtggtgggg	gcccctgttag	tcccagctac	tcaggaggct	gaggcaggag	7380
aatggcgtga	accggggagg	cagagtttgc	agttagccga	gatcgtgc	ctgcactcca	7440
gcctggcga	cagagcgaga	ctctgtctca	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaatagg	7500
ctggaccgcg	gcccggcgt	gtggctcatg	cctgtaatcc	cagcaacttgc	ggagtccaa	7560
gccgggtgggt	catgagatca	ggagtttga	gactaggctg	gcacacacgg	tgaaaccccg	7620
tctctactaa	aaatacaaga	aaattagctg	gtgtgggtct	cgggtgcctg	taattccagt	7680
tactgggaa	gctgaggcag	gagaattgct	tgaacctggg	aggcagagtt	tgcagtgc	7740
caagatcatg	ccactacact	ccagtcgtgg	tgacagagtg	agactctgtc	tcaaaaaaaa	7800
aaaaaaaaaa	aagggttggg	caaggtgg	cacgcctgta	atcccagaac	tttgggaggc	7860
tgaggcaggg	agatcactgg	aagttaggg	ttcaagacca	gcctggccaa	catggtaaaa	7920
ccctgtgtct	actaaaaata	caaatttag	ccaggcttgg	tggcgatgc	ctgtaatgcc	7980
agctactcag	gaggctgagg	caggagaatc	gtttgattga	acctgggagg	cagagttgc	8040
agtggctgg	gttggc	ctgcactcta	ggctgggaga	cagcaagact	ccatctaaaa	8100
aaaaaaaaaca	gaactggcgt	gggcacagt	gtttatattt	gtatcccag	cactttgg	8160
ggctgagggtt	ggaggactgc	ttgagcccag	agtttgggac	tacaacagct	gaggtaggc	8220
gatcaacttga	ggtcagaaga	tggagaccag	cctggccagc	gtggcgaaac	cccgctctcta	8280
caaaaaatat	aaaaaattag	ccaggcgtgg	tagaggcgc	ctgtaatctc	agctactcag	8340
gacgctgagg	caggagaatc	gcctgaac	gggaggcgg	ggttgc	agctgagatt	8400
gcaccactgc	actccagect	gggttaacaga	gcgagactcc	gtatcaaaga	aaaagaaaaa	8460
agaaaaaaatg	ctggaggggc	cacttagat	aagccctgag	tttgggtgg	tttgggggaa	8520
acatgtaa	caagatcaa	aagcagt	gggccccccc	tgacgactgc	tgctcacatc	8580
tgtgtgtctt	gcccggaga	cactgtcgga	cattcgaa	ggtgccgc	taggggtcca	8640
cctgcctttt	gtgggctact	cctactcctg	catggccctc	aggtaagcac	tgccctggac	8700
ggcctccagg	ggccacgagg	ctgcttgagc	tccctgggtc	ctgctccctg	gcagccaa	8760
gagttgcagg	atcagtcttgc	gaaccttact	gttttggggc	caaagactcc	taagaggcc	8820
gagttggagg	accttaattt	ttcagatcta	tgtacttcaa	aatgttagat	tgaattttaa	8880
aacctcagag	tcacagactg	ggtttccag	aatcttgtaa	ccattaactt	ttacgtctgt	8940
agtacacaga	gccacaggac	ttcagaactt	ggaaaatatg	aagtttagac	ttttacaatc	9000

-continued

agttgtaaaa	aatgc当地	tcttgaatc	agccatataa	caataaggcc	atttaaaagt	9060
attaatttag	gcggggcccg	gtggctcacg	cctgtatcc	tagcacttg	ggaggccaaag	9120
gcaggtggat	catgaggtca	ggagatcgag	accatcctgg	ctaacacggt	gaaaccccg	9180
ctctactaaa	aatacaaaaaaaa	aattagccgg	gcatggtggc	gggcgcgtgc	ggtcccagct	9240
acttgggagg	cgaggcgagga	aatggc当地	aacccgggag	gccc当地	cagtgagccg	9300
agatcatgcc	actgc当地	agcctggccg	acagagcaag	actccgtctc	aaaaaaaaaaa	9360
aaaaaaaaagt	atttatttag	gccgggtgtg	gtggctcacg	cctgtatcc	cagtgtttg	9420
ggaggatgag	gtgggtggat	cacctgaggt	caggagttcg	agaccagcct	gaccaacgtg	9480
gagaaacctc	atctctacta	aaaaacaaaa	ttagccagc	gtgggtggat	atacctgtaa	9540
tcccaagctac	tcaggaggct	gaggcaggag	aatcagaacc	caggaggggg	agggtgtgg	9600
gagctgagat	cgtgccattg	cattccagcc	tggcaacaa	gagt当地	tc当地	9660
aaaaaaaaaaa	aaaaagactact	aatttacagg	ctgggcatgg	tggctcacgc	ttggaaatccc	9720
agcactttgg	gaggctgaag	tggacggatt	gttccagccc	aggagttcaa	gaccagcctg	9780
agcaacataa	ttagaccctg	tctctacaaa	aaattgaaaa	aatcgtgcca	ggcatggtgg	9840
tctgtgcctg	cagtc当地	tactcaggag	tctgaagtag	gagaatcaact	tgagc当地	9900
gtttgaggct	tcaatgagcc	atgatagatt	ccagc当地	caacaaagtg	agacctggc	9960
tcaacaaaaag	tattaattac	acaatataatg	cattgttat	cacaagtaaa	ttagaaaaata	10020
cagataagga	aaaggaagtt	gatatctcg	gagctcacca	gatggca	gtccctggct	10080
cacacgtgt	ctgacacatg	ttaaaatagt	ggagaacagg	tgttttttgg	gtttgtttt	10140
tcccccttcc	tcatgctact	ttgtctaaga	gaacagttgg	ttttctagtc	agcttttatt	10200
actggacaac	attacacata	ctataccat	tc当地	actccagctt	gattctgaa	10260
cgtgc当地	cctgaacgg	gggtcaggat	tgaaccatc	ctctattaga	acccaggc	10320
atgtccagga	tagcttagtc	ctgagccgt	ttcccacagg	agggactgct	gggttgagg	10380
ggacagccac	t当地	agggaggagc	tgtccccttcc	ccacagctg	gtgggtgtg	10440
ctgacctcaa	gttgc当地	tggggtccca	t当地	taggaccaca	tctgtggagg	10500
tggccagagc	caagc当地	ccccatcagg	tggccctccc	t当地	ccctgagaag	10560
aggggtctgc	agcggtcaca	tgtcaaggg	ggagatgagc	tgaccctaga	acatgggggt	10620
ctggacccca	agtccctgca	gaaggtttag	aaagagcagc	tcccaaggggc	ccaaggccag	10680
gagaggggca	gggttttcc	taagcaggag	aggggttatt	ggcctac	ggactctgtt	10740
ctttcgc	tgtgtctcc	cttccatcaa	tcaggagg	ttggaa	gag	10800
ccacaggc	gaagttctgg	tttccacca	gagaatcagc	attctgtctc	c当地	10860
ccctcctct	ctccccaggg	acagtgaggt	cccaggcccc	acacccatgg	aactggaggc	10920
cgagcagctg	cttgagccac	acgtgcaagc	gccc当地	gagccctcg	tgtccccaca	10980
ggtgaaaca	gttgggtgtt	ggagggagg	gggtccgt	ggacaattg	ggagagaaaa	11040
gttgggtgtt	tccgggtgg	cgtgc当地	agggccctc	agggacttcc	tgaacagaag	11100
cagacagaaa	ccacggagag	acgagg	tac	ggacggtctc	tgttagtaca	11160
gttgggcatt	aatgttgg	gttgggtgtt	ctggggatct	gagaatcga	tctttagt	11220
gagcgtgtgt	gaaggagaaa	caagccatgg	aaggaaaggt	gccaatgg	caggcagag	11280
cctccagg	aaaggccctt	ggcagg	tttgc当地	tgttcc	tgttgc当地	11340

-continued

gctgaatcat tcctgagaag gctggagagg ccagcaggaa acaaaaccca gcaaggcctt 11400
 ttgtcgtgag ggcatttaggg agctggaggg attttgcgc gcagaggagc ataggttgt 11460
 ttagtgtttg agcaccagcc ctctggccc tgtgttagatt tagaggacca gactcaggga 11520
 tggggctgag ggaggttaggg aaggggagggg gcttggatca ttgcaggagc tatggggatt 11580
 ccagaaatgt tgaggggacg gaggagtagg ggataaaacaa ggattccatg cctgaaacca 11640
 gtgcggaaatgt cctgagtcctt ccaggagccca caggcagcct taagcctggt ccccatacac 11700
 aggctgaagt ggcagttcca gggctgtcc ctgcggcaga ggctgaggcc gaggtgacgc 11760
 tgcgggagct ccaggaagcc ctggaggagg aggtgctcac ccggcagagc ctgagccggg 11820
 agatggaggc catccgcacg gacaaccaga acttcgcacg gtcgggatcg gggccggggc 11880
 cggggccgggg atgcgggccc gttggcaaccc ttggcatccc ctctcgatcc gcccggacgg 11940
 acttcacccgtc cttacccccc cacagtcaac tacgcgaggc agaggctcg aaccgggacc 12000
 tagaggcaca cgtccggcag ttgcaggagc ggatggagtt gctgcaggca gagggagcca 12060
 caggtgagtc cctcatgtgt ccccttcccc ggaggacccg gaggaggtgg gccgtctgct 12120
 ccgggggggg tgtatagaca cctggaggag ggaagggacc cacgctgggg cacgcgcgc 12180
 cacggccctc ctgcggccct ccacgcgcacc tatgcctctt tcttcctcctt ccagctgtca 12240
 cgggggtccc cagtccccgg gccacggatc caccttccca tgtaagaccc ctctttcc 12300
 cctgcctcag acctgctgcc cattctgcag atccccccc tggctctgg tctcccgctc 12360
 cagatatagg gtcacccta cgtctttgcg acttttagagg gcagaagccc ttattcagc 12420
 cccagatctc cttccgttca ggctcaccac gattccccc gggatctccc tagataaccc 12480
 ccccaacctc gattcccccctc gctgtctctc gccccaccgc tgagggtctgg gctgggtcc 12540
 gatcgggtca cctgtccctt ctctctccag ctagatggcc ccccgccgt ggctgtggc 12600
 cagtgccccgc tggtggggcc aggccccatg caccgcggcc acctgctgtcc ctctgcagg 12660
 gtacgtccgg ctgccccacgc cccccctccgc cgtcgcgcgc cgcgcctccac ccgccccctt 12720
 ccacccgcctt agtgcgcac ttgcggggct gggccacgg caggaggccg gatcttcggg 12780
 cagccaatca acacaggccg ctaggaagca gccaatgacg agtgcggacg ggattcagg 12840
 cgtgcgcagtg gactaacaac agctgttaggc tggtggggcc gggggggggc gcaggaaaga 12900
 gtgcggggccc acctatgggc gtaggccggg cgagtcctccag gagccaatca gaggcccatg 12960
 cgggggtttt acctcgcctc cttcccgac gtccttaggc ctggcctatc ggaggccctt 13020
 tccctgcctc tgttcgccgt tggtctgtct cgtgcggccg ccctgggtctt cattgggttt 13080
 gtggccccacg cggcccaact caccgcagtc tggcgccggcc caggagccgc ccgcgcctcc 13140
 tgaacccttag aactgtcttc gactccgggg ccccggttga agactgagtg cccggggcac 13200
 ggcacacaaag cggcccccac cgcctgcac ttcacaaccc ctcgcagcgt gggctccgc 13260
 ccagctccag tcctgtgatc cggccccgc cccctagcggc cggggaggga gggggccgggt 13320
 cgcggccgg cgaacggggc tcgaagggtc cttgtagccg ggaatgctgc tgctgtgt 13380
 gctgctgtcg ctgtgtgtcg tggtgtgtcg gctgctgtcg ctgctggggg gatcacacac 13440
 catttcttc ttccggccag gctgaggccc tgacgtggat gggcaaactg caggccctgg 13500
 aaggcagcaa gccggggccgt cctgttcca tcctccacgc accccccactt atcggtgggt 13560
 cgcaaaagtgc aaagcttct tgcgtcatgac gcccgtctt ggggagccgtc tggcgccatc 13620

-continued

tctgcctgct tactcggaa atttgcgttt	gccaaaccgg	cttttcggg	gatccgcgc	13680		
ccccctcctc acttgcgtg	ctctcgagc	cccagccggc	tccgcccgt	tcggcggtt	13740	
ggatatttat tgacctcgtc	ctccgactcg	ctgacaggtct	acaggacccc	caacaacccc	13800	
aatccacgtt ttggatgcac	tgagaccccg	acattcctcg	gtattttatg	tctgtccccca	13860	
cctaggaccc ccaccccccga	ccctcgcgaa	taaaaggccc	tccatctgcc	caaagctctg	13920	
gactccacag tgcgtcggt	ttgcgttgg	ggccggaggg	tccgcagcg	gccaatccgg	13980	
aggcgtgtgg	aggcggccga	aggtctggg	ggagctagcg	ggatgcgaag	cggccgaatc	14040
agggttgggg	gaggaaaagc	cacggggcg	ggcttggcg	tccggccaa	aggagggcga	14100
gcgggcccacc	cggaggcacc	gccccccccc	agctgtggcc	cagctgtgcc	accgaggcgtc	14160
gagaagaggg	ggctgggctg	gcagcgcgcg	cggccatcct	ccttccactg	cgcctgcgca	14220
cggcacgcgc	atccgctct	gggacgcag	ctcgagaaaa	gttgctgcaa	actttctagc	14280
ccgttccccg	ccccctcctcc	cggccagacc	cggccccct	gccccggccgg	gaattccgag	14340
gggcggagcg	caggccgaga	tggggatgt	gggggcctgc	agaggaccc	ggagacggag	14400
gcgtgcagaa	g				14411	

<210> SEQ ID NO 3

<211> LENGTH: 15000

<212> TYPE: DNA

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 3

cagtgtcccc	actgccaag	gtggctcca	tcacgtacgg	ctttggctca	gctggccagg	60
acacacagtt	ctgcctgtgg	gacctcacag	aagatgtgt	ctccctcat	ccgtctctgg	120
cccgtaacccg	cacccttccg	ggcacacactg	gtgccacccc	accagttct	gttagttctc	180
gggcggaga	gacaggtgca	ggcccccgtc	cccgctactt	gtctcggtcc	aacagtctcc	240
cacacccagc	tggtggtggc	aaggctgggt	ggccttagtgc	atcgatggag	cctggcatac	300
cattcagcat	tggccgcttt	gccacactga	ccctgcagga	gccccgggac	cggggagctg	360
agaaggaaca	caaacgctac	catagcctgg	gaaacatcag	ccgcgggtggc	agtgggggca	420
atagcagcaa	tgacaagctc	agtggctctg	ccccccgaag	ccgattggac	ccagctaagg	480
tgctggcac	ggcactgtgc	cctcggatcc	atgagggtgc	actgtcgag	cctctcgatgt	540
gcaagaagat	tgctcaggaa	cgcctgaccg	tgctactgtt	cctggaggat	tgtatcatca	600
ctgcctgcca	agagggccctc	atcgccac	ggggccggcc	aggcaaggcg	gtgagtccgc	660
acctgccccaa	gcgcgtgggg	gcaccaggatc	tgtccctacc	ggatgcacgt	tatccgtcag	720
cagaaaggtc	aggatata	gacagaatgg	ggggaaaccac	agctaacgtc	tttagagcct	780
ctgctggccc	atatggctca	tccttagtac	ttcacactca	aggcagaacc	tgtgtttata	840
ggaaatctga	agtgtatgt	gtgaaacttt	attcaggatct	aggatgtga	ttgagctgg	900
ggcccaacttc	tggcctgect	cttagacact	gtttctgagc	cagctgctga	aggcctggat	960
ggaaattagc	cagggtccag	gcctgcactt	cctcttgctg	ctgtgtggc	ctggtcattg	1020
ggtctcacag	atgggctgtg	cagtggctgt	gtctttagtt	ggtgaggtgc	aggcctgtca	1080
cctggtcagg	cttgagcatg	tggtctcagt	gtcttaggacc	ctactctgcc	ctcagtcctt	1140
cagtcccttg	ctttggaaagg	ctagagtcca	gaagccttag	aacgtcaggc	agttgcagag	1200
ccactgcccag	gctagtaggg	ctgcgggag	tgactgagtt	ctcacagaca	ccccctctgtc	1260

-continued

tccctagttc acagacgagg agaccgaggc ccagggcaggg caagcaagtt ggcccaggtc	1320
acccagcaag tcagttgttag aggttaggaca acccctgaag ctgcaagtgg accccagttt	1380
cttttcttc cactgtcgtc cctgtatgc ccaggacacc tggggccaca ttactgtgga	1440
agtgtactc tgggtcagtg gagacggccg agctgtttgt tcctagtag gacagcagct	1500
ttaggcctgg ggggcagatc ccagctgggg cagcagctcc aaggccttg ggtggotcct	1560
tctccgggtt ctggcagaag cccaggtgtc gtctaattcca cctttcttcctt ctgtttctcc	1620
ccagggcattc tcctcccaac caggcagotc ccccaagtggc actgtgggtgt gaaatgtgga	1680
tgtcccatgt tcccgccctc ctggccataa ccctccccgc tgacctcaag aatcaactgt	1740
ttaacaagac taatcatgtat ggaaggactg ctccaagccc cacgctgcac acatactggg	1800
gttcccctag gttggcccag ccattggggat gtatgttcctt gtgtggcctt ggccctgtcc	1860
tccacccact gccaagtgaca atgaccctgtt ctctgaaaca tcagtgttaa ccataccct	1920
gtcccagcat gtgactgttc actcctggaa gagacttagc ccacagtacc cctgggtgag	1980
agggcaggggc aggggcccattc cccactctg cccaaactcc acccccttgct atggtctgt	2040
attttggaaag tggtaaaattt tggaaaggccc tttttttttt tggacccctt	2100
atttatacta aagtccctgtt ttgcacagtg tttctgttcc ctggggcagg gtaggggtggg	2160
ggttgcagta ctggcccttc aagctgtgtc ctgacccaaag gaagcccaat cttagctgtt	2220
tccccatccc tagccccgag cagagagccc tctgaaagat gagtctcgac ccccaaagt	2280
aagaggctga gatggcccttc ctactaggc tttggagatg tttgaaactt gttttaaaca	2340
ccaggactat ccaagcatgc tttttttttt gagaggaggaa tgctggattt gactgcact	2400
cctgccttcct ctgaacatgc ctttgcagtc tgctggccctt ggcccatat tgaatggccca	2460
tctagtgcac gctggagggtc atgatttccctt ccccaagagaa ctggccaccc tagaaagaag	2520
ctaaacttgc tttttttttt ctgtccaggc agctccggcc tcaaccctta aatgtttct	2580
gtctctaaatc ctggccaggc caggaatgtt gttttttttt cttttttttt ccagggtggg	2640
ttggggttttt cttttgcata aggagggccctt ggatccacca ctggccctttt ccagggtggg	2700
gccagcaggt caccctggc cttttttttt gagcaaaactc tttttttttt ttcccttac	2760
ctccctgcacaaa aaaaatggggg ggcgggtaat acagcaggca caggggtttaa atttaactgt	2820
cccaaaatgtcg aatccattt ctgtttttttt aagaagctgc ccctggcctt tgcccccccc	2880
actacccttccat caccctgtt tgccctggc tcaaccctttt ccccaacccctt ctccctgt	2940
tgagtctata gactggctt cttttttttt gacacccccc acctgttaact ccctgtgt	3000
tctttatggg tgggttaggtt caatgggggg gggcaaccctt ggatgtttttt tctgtccctt	3060
gacattgggc tctgtttttt tttttttttt cttttttttt cttttttttt ggatgggtttt gttttttttt	3120
aggagggggtt aaaaactggg aggccccccccc gggggctggc caaggggtgg agaaaagagg	3180
aggaggccctt aagcatagaa ctggccaggc agacccaaagg gatagtcagg gacggggcaga	3240
catgcagcttta ggggttctggg gctttttttt gggcaggccag gcccctgtac gggaaagaccc	3300
cgagctccgg cccggggagg ggcctttttt tttttttttt aacatgtcag ccgaatgtcg	3360
gctggggcagc ctccctttttt tttttttttt tttttttttt tttttttttt tttttttttt	3420
cgaccccttc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	3480
tgtggccgac ttctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	3540

-continued

cagaggtggg	tctacagggc	aagaatgggc	tatggagggg	caggaggccc	tggaaagggc	3600
ttttgtaaag	ggagccaaagc	agagctcatg	acctgacccc	aagctccct	ggtgaggcac	3660
cagggtcagt	gaggccaccc	atgactcagc	cagtgcagcc	tgggtgggc	atagcctcct	3720
gctatctcag	cacccacact	aggacctggc	agctttctct	tttaggaccc	ttggctcctc	3780
aaactggctt	catagccctc	cccagttcc	cagagtgtgg	ggagggacag	cgtggggcag	3840
ctgccagggt	gtggccata	ggcagggtgt	tggcgtctgc	ctcccccac	gtccctgacag	3900
gtgtccagga	gctatgaggg	cactgtgact	cacagaggcc	ctgggggaga	accagcccg	3960
cagacaggcg	ccacccgagca	ccctttctgt	tccccaatt	aagaggaagg	aacaacttca	4020
gcttctgagt	gtggccatcc	ctagcactct	gatccccc	agcccttgc	ggccagattg	4080
gtcatccctc	ctggccttc	atctgcttt	gtggttctag	ctcaagacct	ctaattcctc	4140
tgctgactta	aatgcccctc	cccagaggcc	ttctcaggcc	tagtggacaa	gtttggagcc	4200
ttatctgctc	ctgccccaca	ttgagccaaa	gctccagctt	accccaagctt	ccttacaagt	4260
aacgacactgt	tttggcgtc	tgtgcctatt	attaagggtc	caggtcttga	ttcttggctg	4320
tctgccccatg	tgtgtgaccc	tagtgcattc	tccctccctc	ccccgttca	cagatggaaa	4380
ggttgaggcc	atcggtttaga	ctgctaagcc	tgtgaaagac	tttttctcct	ctccagtc	4440
tagtgcctcc	ctcaacccctt	ctttgaagg	atggggtttgc	ggctggcagg	gtaaactgag	4500
aactggggtg	ggggcagggg	gtctgaccct	ctgggaagga	gcagtccttt	tgtggctg	4560
gcagcatcct	gtggggccct	ccctgcccag	gcctggggccg	gggagggggc	ctgggttccc	4620
gctgccttaa	aagggctaa	cgccctggct	ctctccctc	ccccaccccc	cagccttggc	4680
cctagctgta	tcttccccgg	ctgccccactt	tcccaaacc	ctttcttc	tgtgacccca	4740
tctccccct	tccccacacg	tccctccctc	atccttactc	cccgccctt	gaacttcct	4800
aagggagatc	tgacccctt	ctgccccacc	cgacacccca	gtcgccagcc	tcagacactg	4860
ctgctctccc	ctctggctga	accaccctag	cacaggaccc	tataccctgg	agctttggtt	4920
ataagaagac	tctccctcac	cctttggaaa	ccaagaaagc	cttccaaca	gtgtccagga	4980
tgctggaggg	cagtgcaccct	cccccaactt	ttcttcgtgc	tggctgtgc	gacacagctc	5040
cagttcgagg	ttgtggcccg	agacattaag	tgagagcc	gggtgacctg	acttagcacc	5100
ctgatcatca	catgggagtg	aaaggccctga	tgcggccagct	tctccctactg	cctcccttcc	5160
tgcctgc	ccctgtggaa	acaggcagtt	ctgggtccca	caaacatcac	agaggtttg	5220
aaagcagaat	cctaaagecg	attnaagggg	cagaaggaag	gaggctataa	agtcactacc	5280
cttaccgcata	gtgttctgtat	gacccttgg	tcttctccc	ccaccccccgc	ccagtgaggc	5340
ccattgcagc	aaggcttaag	gaggctccgc	tgcagaggga	tgatccatgc	attttgaagg	5400
tgatcggcgg	tggggcggtc	agcgagggtg	gtcttcagtg	gcctggaaat	ggaactttac	5460
ttgatgtggg	tggggcataa	cagctggggc	agagcctaa	aaattgtatgc	atgagcttgc	5520
attnaaggct	ggaggggtgg	gggcggagct	tgtggtcagt	gggcgggtgt	cacgtgagg	5580
cggggctaa	gttgggtgg	gataagggtg	gagtccctgc	tgggtgagcc	ttgctggttt	5640
tccctgccac	ctcttcgtgt	catctcggtt	ccgtatttag	gtacgggtgg	tgaagatgaa	5700
acagacgggc	caagtgtatg	ccatgaagat	tatgaataag	tgggacatgc	tgaagagagg	5760
cgaggtgagg	gccagggtt	agggcagcgc	cctcatctc	ccaactcacc	tcctgttagct	5820
tcttccttac	ctcacaggtg	tctgtcttcc	gggaagaaag	ggatgttata	gtgaaagggg	5880

-continued

accggcgctg	gatcacacag	ctgcactttg	ccttccagga	tgagaactac	ctggtaagct	5940
ccgggttcag	gtgacttagga	aagagtgaca	gttacatcgc	cccaagtcaa	gaaggctgga	6000
gaagggagaa	gctgctgttag	atcgggggggg	tgggggtggg	ggggacacac	acaggggatg	6060
ggggacgggg	gttaggattgt	gtctcaagta	taggagagac	cttccttgag	acaggagtga	6120
tatctggttt	ggcctttgga	tggggcgctc	tctcaactgtg	cgggggtctt	ctgtgottgg	6180
gaacggggtg	tctttggag	tcttgggggg	taccaaacc	ctgtgacaca	cccgctccca	6240
gtacctggtc	atggaatact	acgtgggggg	ggacctgcta	acgctgctga	gcaagtttgg	6300
ggagcggatc	cccgccgaga	tggctcgctt	ctacctggcc	gagattgtca	tggccataga	6360
ctccgtgcac	cggctggct	acgtgcacag	gtgggctgtgg	cggggccctt	ggagggtag	6420
cagaatttgt	gtgggaagga	agggtacctg	aaggtcagat	cccattgggg	acagaatcg	6480
ggtctagaat	tgtagaatcc	tgggtgggg	ggaagtgat	cgagctgacg	ggccctaaga	6540
gggaagggtt	tcaagaaagc	acactttccc	tcttctctt	atgcacagg	acatcaaacc	6600
agataacatt	ctgctggacc	gatgtggca	cattcgcctg	gcagacttcg	gtccctgcct	6660
caaactgcag	cctgatggaa	tggtaagaag	agcctggcga	aacttcctc	attggtaag	6720
gacggattt	gggggcgggg	ctgggtttag	gagcaggagg	ggagcttgg	ctgggatgtc	6780
ctgegcacca	tatttggaca	gtcaaggaa	aggtttaag	cattcaggtc	tgattggcac	6840
aggtgaggtc	gctggtggt	gtgggcaccc	cgactacct	gtctcctgt	attctgcagg	6900
ccgttggtg	agggcctggg	gcaggcagct	acggggcaga	gtgtgactgg	tgggcactgg	6960
gcgtgttcgc	ctatgagat	ttctatggc	agacccccc	ctacgcggac	tccacagccg	7020
agacatatgc	caaggatgt	cactacagg	tgagcacaag	caccatgcg	gggggtgac	7080
ttagtggctt	gtgtcccag	actgtcttt	ttaaaagata	tttattata	tgtgtgttt	7140
ttctgtgtat	gtatatctgt	gcactgagta	ggtgtgegaa	ggtcagagg	catggatcc	7200
cctggaaactg	gagtcacaga	ctattgtgt	ctgcatgt	gagtgtgg	aaacagaacc	7260
ttgatcactc	tgcaagagca	gccagtgcac	tgaaacgcaca	gagccagtc	tgcagccag	7320
ggctaactgt	tgttttttt	tctaaatagg	aacacttg	gctgcccgt	gcagacacag	7380
ttgtccccga	ggaagctcag	gacccattc	gtggctgt	gtgtctgt	gagataaggc	7440
taggtcgagg	tggggcaggt	gatttccaga	aacatcctt	cttcttggc	cttgatggg	7500
agggtctccg	agacagtgt	cccccttta	caccagactt	cgaggggtgc	acggacacat	7560
gcaatttcga	tgtggtgag	gaccggctca	ctgcatgtt	gagcgggggc	ggggtaacgt	7620
cctgcagttc	ctgatccgtt	gaggggactt	ccctagccct	ttccataaaa	ttgggggtat	7680
tggccaggtg	tggtggtgca	tacctttat	cgtagaactt	cataggcaga	ggcaggtggc	7740
tctctggtaa	atcaaggcca	tcttggtcta	catagtgact	tctaggccag	tcaggagtga	7800
gatcctccct	tgaaaaataa	aaaaggggg	gttgaccttc	ctgggtccca	aattattatc	7860
ctagagact	gctatgtatc	cactcaggt	tgaggacaca	caggtgacca	gtcccaaaga	7920
cagtgagtga	ggcctcactc	ttggcagttac	taaaattgtat	tgtagggggc	tgggtcttt	7980
acccagcctg	gaaagtgcgt	gagggcttcc	tggaggagga	gactagctga	gcccagaagg	8040
atgcaggaga	tcctttctcg	ggtgagtgt	ctcagcattt	taacaagctc	taggcctgc	8100
agagagaagt	ctgggtgtggg	cagagcccc	atagaaaagca	acaagataga	agagaaaatg	8160

-continued

gtggagttg	ttagtgggg	cagttatgcc	gtgaacatag	aggggcgaag	ggccatctcg	8220
gataactgct	agccacaaga	gcctgtctg	tcttcctagg	agacgctgtc	agacatgcag	8280
gaagacatgc	ccctggggt	gcgcctgccc	ttcgtggct	actcctactg	ctgcatggcc	8340
ttcaggtgag	cacgactgccc	ccctgtggg	gcctgtgtc	aggcccacca	cagccactca	8400
attgaaggct	cagtctcaa	accaagtatt	cctaggagct	gtctaagtt	ggcttctgc	8460
tgctgcgatg	aaccctgact	aaaagcaagc	tggggagaa	aaggcttatac	gggcttacgt	8520
ttccacatgg	gagcccatca	ctgaaggaag	ccaggacagg	aactcacagc	ggggcaggaa	8580
cgtggagctg	atgcagaggc	aatggagggg	agctgcttac	tgacttgatc	cttatgtctt	8640
cctcagcctg	tttccctgt	gagcccagg	ccaccaggcc	agtggggct	ccactcacaa	8700
tgggctgagc	tctcatctat	gatcaactgt	tatgaaaatg	cccgataggc	ttgcctgcag	8760
cttcagttt	tgaggcactt	tccttccttc	cttccttcct	tccttccttc	cttccttcct	8820
ttcttcctt	ctttctttct	ttcttccttct	ctttctttct	ttcttccttct	ctttctttct	8880
tagtctttt	gagacagggt	cttctatgt	agctctggct	gtcttggaa	tcattctgt	8940
gaccaggctg	gtcttattta	tttattttat	gtatgtgagt	ccactatcac	tgcctcaga	9000
cacaccagaa	gagggcatca	gatcccattt	catatggctg	tgagccacca	tgtgggtgct	9060
ggaaattgaa	ctcaggacct	ctggaagagc	agccagtgt	cctgcctgt	agaggcattt	9120
tcttcatgaa	ggctgtctcc	tctctgtat	cttgcatact	ctagcttgc	gtgtcaagt	9180
gacataagac	taggaaagca	gctacacatg	cactttgtt	atttttgtt	tgcctttga	9240
gactgggtct	ctccatctca	tagctctggc	catcctgcct	ggtgacattc	cagtccagtt	9300
gtataacctt	agaatctgag	actcagcctt	gcagaatcct	gctattaacg	ggtctaggac	9360
actccataga	atccaggatc	ttagaaaaac	aaacctgaag	tgtgacagtt	tattttaga	9420
acacaattgg	agcacataac	aataatacaa	ctttcagtt	ttaaaaagtt	ttctgtctt	9480
ttttttgagg	caggagctcc	ttaatatagt	ctaagccgccc	ctgcgagtg	tgtgattgt	9540
gggcatgtac	caccatgcct	agtcaataaa	gcctttaaaa	agcatccgtt	atgctggctg	9600
tggtgcacaca	aacgtataat	cccagcactt	agaaggtaga	ggcaagatta	tcaaaaaattc	9660
aaggccatcc	tgggctatac	agtaatctaa	ggctagcctg	gtctacaaga	gactctgtct	9720
aaagaaaacaa	aagataaata	gcacccacta	ttgcttaggca	atataacccct	ataacccac	9780
cattgaggag	gctgaggctg	gagcatca	gcaaaattga	ggccaggatg	gtcaacaaat	9840
aagtccca	gctggcatag	aggaactctg	tctcaacaat	aaagagaact	tatctagcat	9900
ttatgagggt	aaataaaaat	ttaccattgc	cacaaaaat	gtaaaatgaag	agactgttt	9960
taggatgtaa	ctggaaagca	ggaaacactt	agaggatgt	cactcacaca	ggtatccacc	10020
atcaggcatg	cctcaggect	gcacaggaa	ggacaacttg	tttcatgatt	tgcaagcage	10080
atccccatgt	ccttagagcg	ggttggcc	agcccaccc	ctgtggat	atcgctcage	10140
caggcagcaa	ggcagccaa	gtgctgaggc	cctggcagtc	tgctcttc	tctgtctga	10200
acctccctta	gcttagct	aggagctgg	cctggtgc	acaggctagg	gagtccctag	10260
ccttccttc	ttctcagaga	caatcagg	ccggaccca	cccctatgga	actagaggcc	10320
ctgcagttgc	ctgtgtcaga	cttgcagg	cttgacttg	agccccccagt	gtccccaccg	10380
gatcaagtgg	tgagtagact	gagagg	caaagcttcc	tgggtgggt	tacctgcagt	10440
gccaactgcc	aggctgttaa	ttcagtagga	cactgtcccc	aactggccca	actgcacatc	10500

-continued

ctgttagtcag gaggcacagg cagaaaaatc ccaaattcaa ggcttgctcc cgttatgtaa 10560
 tgagatcctg tcttggagta aaaaacaaga aagagaacta gggatagctc agaggtagat 10620
 gctctctgg catgggggtg gggtcagaaa gcaacaccaa cgggggcctg ggagggaggg 10680
 actgccaacc acctggagga gtctgggta gacttggta acaaagtctc gaggccatca 10740
 ggtggatgc tggtttctta aaagccacag ataggtgggt agcattggaa agaggagtgg 10800
 ggggttgcag aaagtgacaa gacacaaact ggggaggcct aagggttaag ccagggttgt 10860
 ctgaagcact gtggagctgg gaggaacacg ctaaacttct gacttcagcc cttcagttcc 10920
 cctgttgcact acactgtccc cagggaccca gggatgggaa gaggtggacg ggggagggaa 10980
 gtacgggact gatccagetc caggtcccaa ctctgatccc caccgacagg ctgaagaggc 11040
 tgacctagtg gctgtccctg cccctgtggc tgagggcagag accacggtaa cgctgcagca 11100
 gctccaggaa gcccttggaa aagagggtct caccggcag agcctgagcc gcgagctgga 11160
 ggccatccgg acggccaaacc agaacttctc caggtcaggg tcacagtgt ggggtgaggg 11220
 gagaggagag cagcaaccct cgcagttcc tcaccgatag gtcggctcac tccctatct 11280
 ttcccagcca actacaggag gccgaggatcc gaaaccgaga cctggaggcg catgttccgc 11340
 agctacagga acggatggag atgctgcagg ccccaggagc cgcaggcgag tccctcacct 11400
 gcttccaggg aaggggggcac tgggtggaga tggggggcat gttgggtgtg tgaacctcg 11460
 gggcagggga ggagtccagg ctggggcacc gcagccgcgc cactgcctt ctccatccatc 11520
 ctccacactc catacacccct tcttttctc ttccagecat cacgggggtc cccagtcacc 11580
 gggccacggc tccacccctcc catgttaagac ccctctctcc cctcccgat ccccatctta 11640
 gatatgctac ccacagccct tctccctcc acgttttaggg tccatttcc ttgggggttc 11700
 cagaagaaag ctgccttca ctcatccatt cagcatgcac tatctaccag ctctccctcg 11760
 tttcaggctt ctgccttccat cctcccaag ggaactccct atactccctg tctggctcg 11820
 actagattcc cgcactgcct ctgccttgc tgcgtggctc cgatcgggtc acctgtccct 11880
 tctctctcca gctagatggc ccccccggccg tggctgtggg ccagtggccg ctgggtgggc 11940
 caggccccat gcaccggccgt cacctgtgc tccctgcccag ggtatgtccc acgtccgccc 12000
 accacggggcc tctgccttagc tctgcccact gagtgtcacc actgtttgt gtgcctctgt 12060
 ggagctcgcc ccacccgcagg ggggggggtt attcggggccg ccaatcaaca caggctgctg 12120
 ctaagtagcc aatgacgagt tccaaacagga gtcctttttt gcgagcagac caacttttgc 12180
 tgcgggctgt ggggaccaga gatgcgtca gaggcccatc tatgggtata ggctgggcgg 12240
 ctcccaggag ccagtggggcc cctgttagccct agtgcataatc caaccccttc tccctgagat 12300
 ccctaggccct ggcctatccg aggccgcgttg cctgctccctg ttccggcgtc ctctggctgc 12360
 tgccggccaca ctgggttggtt ggcctataacc ggccgtctca ccccaactcg 12420
 gtgtttcccg ggagccacct tcccccctg aaccctaaaga ctccaaagccca tctttcattt 12480
 aggccctcta ggaagggtcga ggcaccaggag agcgacccaa agcgtctctg tgcccatcgc 12540
 gcccccccccc cccccccacc gtcctgcctc acacttctgt gaggcctgggt ccccaaccag 12600
 ctccgcgtct gtatccagg cctgcccacctt ggccggccggg gagggaggaa cagggtcggt 12660
 gcccagccacc cctgggttctt gcagagctgg tagccaccgc tgctgcagca gctgggcatt 12720
 cgccgacccctt gctttactca gccccgacgt ggtatgggcaa actgctcagc tcattccgatt 12780

-continued

tcacttttc	actctccag	ccatcagtta	caagccataa	gcatgagccc	cctattcca	12840
gggacatccc	atccccatag	tgatggatca	gcaagaccc	tgccagcaca	cacggagtct	12900
ttggcttcgg	acagcctcac	tcctgggggt	tgctgcaact	ccttccccgt	gtacacgtct	12960
gcactcta	aacggagcca	cagctgact	ccccctcccc	ccaaaggcagt	gtgggtat	13020
attgatctt	ttatctgact	cactgacaga	ctccgggacc	cacgttttag	atgcatttag	13080
actcgacatt	cctcggtatt	tattgtctgt	ccccacctac	gacctccact	cccgaccctt	13140
gcgaataaaa	tacttctgg	ctgcccctaaa	tcccgcgcaa	tatctctgtt	gtggaaagga	13200
aaccggcccg	caggccaatg	gagagtccaa	tagagacaac	caatggctt	agtgggagct	13260
agaggggagg	caaagcgcac	gaatcaggtt	gaagggtggg	gcttagggcat	ccagccagta	13320
ggagagaagc	aacaagccac	cagagacacc	accggccccc	accctcccc	ccagctgtga	13380
cccagctgt	ccactcaagt	ttggaaaaaa	gtaggggg	gggcccagcag	cgggcacacc	13440
atcttccac	tgcgccctgcg	caagccacgc	gcatccgtt	tttggaccga	cactccagaa	13500
aagttgctgc	aaactttcta	gchgattcc	ccgccccctcc	tcccagtag	atccaccgcc	13560
tacccgcccc	gccgggaatt	ccgagggcgc	gagcacggcg	cgagatggg	aagggagggg	13620
gccttcaag	ggacccggga	gatgggagc	gcttcgcgc	cttaaccctc	cgacggccc	13680
attaccttct	ccgttgctct	gataggaaa	ctgaggcc	gagtca	gagg	13740
ggaaaggcca	aaagcgcgc	cagagacgga	ggaaaaacaa	agaatctga	cagccggga	13800
ggggggcgg	cacacaggga	caaggacaga	cccgagtgc	gagctgg	tagtcttgg	13860
gagggggcga	gaagactgca	aggggaccgg	gggggggggc	ggcgaggagg	actgggccc	13920
ggagggggct	ggggaaagccc	gccccggcgc	gcaaggagg	gaggaactt	ccaaagtgc	13980
caaacatggc	tacctcgcct	gccccggcga	gcgcggggcc	cgccgctcg	ggggaggcgg	14040
cgccggcgcac	cgaggagcag	gaggaggaa	cgccgcagct	tctgcagact	ctgcaggcag	14100
cccgagggg	ggggggggcg	gccccgggg	gagatgcggc	ggcgccggcg	gactctgggt	14160
ccccgagtgg	ccccgggtct	ccccgggaga	ccgtgaccga	ggtgcccact	ggccctcgct	14220
tctcgcccc	acagggtggca	tgctgtgcg	aggcgctgt	gcaggcgggc	cacgcggcc	14280
gcttgagccg	cttccctgggc	gctgtgc	ccggccagcg	cctacgtggc	agcgatccgg	14340
tgctgcgcgc	gcggggccct	gtggccctcc	agcgggggt	atacgcggag	ctctaccaac	14400
ttctcgagag	ccggcccttc	ccggccgccc	accacgcctt	cctgcaggac	ctctacgtgc	14460
gcgcgcgcata	ccacggggcc	gagggggccc	gtggccgtgc	gctggggcgt	gtggacaaat	14520
accggctgcg	caagaagttc	cctctgc	agaccatctg	ggatggcgag	gagacgcgtct	14580
attgcttcaa	ggagcgctcg	cgagcggcgc	tcaaggcctg	ctaccgcggc	aaccgcgtatc	14640
ccacgcctga	cgagaagegc	cgcctggc	cgctcaccgg	cctctcgctt	acacaggta	14700
gcaactggtt	caagaacccgg	cgacagegc	accgcactgg	gaccggcggt	ggagegcctt	14760
gcaaaagggt	aggggggaac	cgaccctct	tcctcggtgg	ccgctggagt	ctgcgcagta	14820
gacccttcac	atccctcttc	ggtggcgctcg	cgaggtgc	aggctgagcg	tggagagacc	14880
aggeacaccc	tgggttctct	gggcataact	gcctcagggg	cagaggtgt	tccagctact	14940
tctaagctgg	gaacgcagtg	ccaggaatgg	gggggggggc	ggggggggga	cgggcagtga	15000

-continued

<212> TYPE: DNA
 <213> ORGANISM: *Mus musculus*
 <400> SEQUENCE: 4

atgtcagccg	aagtgcggct	gaggcagetc	cagcagctgg	tgctggaccc	aggettccctg	60
ggactggagc	ccctgctcga	ccttctctg	ggcggtccacc	aggagctggg	tgcctctcac	120
ctagcccagg	acaagtatgt	ggccgacttc	ttgcagtggg	tggagccat	tgcagoaagg	180
cttaaggagg	tccgactgca	gagggatgt	tttgagattt	tgaaggtat	cgggctgtgg	240
gcgttcageg	aggtagcggt	ggtgaagatg	aaacagacgg	gcgaagtgt	tgccatgaag	300
attatgaata	agtgggacat	gctgaagaga	ggcgaggtgt	cgtgcttccg	ggaagaaaagg	360
gatgtattag	tgaaagggga	ceggcgtgg	atcacacagc	tgcactttgc	cttccaggat	420
gagaactacc	tgtacctggt	catggaatac	tacgtggcg	gggacactgt	aacgctgctg	480
agcaagttt	gggagcggat	cccccggag	atggctcgct	tctacctggc	cgagattgtc	540
atggccatag	actccgtgca	ceggctggc	tacgtgcaca	gggacatcaa	accagataac	600
attctgctgg	accgatgtgg	gcacattcgc	ctggcagact	tccgctccctg	cctcaaactg	660
cagectgatg	gaatggtag	gtcgctgg	gctgtggca	ccccggacta	cctgtctcct	720
gagattctgc	aggccgttgg	tggagggcct	ggggcaggca	gctacgggccc	agagtgtgac	780
ttgtggcaca	tggcgtgtt	cgcctatgag	atgttctatg	ggcagaccccc	cttctacgcg	840
gactccacag	ccgagacata	tgccaagatt	gtgcactaca	ggaaacactt	gtcgctgccg	900
ctggcagaca	cagttgtccc	cgaggaagct	caggacctca	ttcgtggct	gctgtgtcct	960
gctgagataa	ggcttaggtcg	aggtggggca	ggtgatttcc	agaaacatcc	tttcttcttt	1020
ggccttgatt	gggagggct	ccgagacagt	gtacccccc	ttacaccaga	cttcgagggt	1080
gccacggaca	catgcaattt	cgatgtgg	gaggacggc	tcactgccc	ggtgagcggg	1140
ggcggggaga	cgtgtcaga	catgcaggaa	gacatgcccc	ttggggtg	cctgccttc	1200
gtgggctact	cctactgtg	catggccttc	agagacaatc	aggccccg	ccccccccct	1260
atggaaactag	aggccctgca	gttgcctgt	tcaacttgc	aagggctgt	tttgagcccc	1320
ccagtgtccc	cacccgatca	agtggctgaa	gaggccgacc	tagtggctgt	ccctgcccct	1380
gtggctgagg	cagagaccac	ggtaacgctg	cagcagctcc	aggaagccct	ggaagaagag	1440
gttctcaccc	ggcagagcc	gagccgag	ctggaggcc	tccggaccgc	caaccagaac	1500
ttctccagcc	aactacagga	ggccgagg	cgaaaccgg	acctggaggc	gcatgttcgg	1560
cagctacagg	aacggatgga	gatgctcag	gccccaggag	ccgcagccat	cacgggggtc	1620
cccagtcccc	gggccacgg	tccaccttc	catctagatg	gccccccggc	cgtggctgt	1680
ggccagtgcc	cgtgggtgg	gccaggcccc	atgcaccggc	gtcacctgt	gtccctgtcc	1740
aggatcccta	ggcctggct	atccgagg	cgttgcctgc	tccctgttgc	cgctgtctg	1800
gctgctgccc	ccacactggg	ctgcactggg	ttgggtggcct	ataccggcg	tctcacccca	1860
gtctgggtt	tcccgggagc	cacccctgc	ccctga			1896

<210> SEQ ID NO 5
 <211> LENGTH: 771
 <212> TYPE: DNA
 <213> ORGANISM: *Mus musculus*
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: 89, 238, 506

-continued

<223> OTHER INFORMATION: n = A, T, C or G

<400> SEQUENCE: 5

cctgccccctg	tggctgaggc	agagaccacg	gtaacgctgc	agcagctcca	ggaagccctg	60
gaagaagagg	ttctcacccg	gcagagctng	agccgcgcgc	tggaggccat	ccggaccgccc	120
aaccagaact	tctccagcca	actacaggag	gcccgggtcc	gaaaccgaga	cctggaggcg	180
catgttcggc	agctacagga	acggatggag	atgctgcagg	ccccaggagc	cgccgganc	240
cctcacctgc	ttccagccaa	gggggcactg	ggtggagatg	gggggcatgt	tgggtgtgt	300
aaccctcggg	gcagggggagg	agtccaggct	ggggcaccgc	gcccgcac	tgccttctc	360
ctccatcctc	cacactccat	acacactctct	cttctccttc	cagccatcac	gggggtcccc	420
gtccccgggc	cacggatcca	cctccatc	tagatggccc	ccggcgggtg	gctgtgggccc	480
agtggccgct	ggtggggcca	ggacantgtc	accggcgtca	cctgctgtc	cctggcagga	540
ttccttaggcc	tggctatccg	aggcgcgttg	ctgctccgt	tcggcgctgc	tctggctgt	600
gcccacact	gggctgcact	gggttgggtt	gctataccgg	cggtcttac	ccagtcgtgt	660
gtttcccggt	agcacccctc	gcccctgaaa	cctaagactt	caagccatct	ttcatttagg	720
ccttcttagga	aggtcgagcg	acaggggagc	gacccaaagc	gtctctgtgc	c	771

<210> SEQ ID NO 6

<211> LENGTH: 434

<212> TYPE: DNA

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 6

gagagaccca	aggggttagtc	agggacgggc	agacatgcag	ctagggttct	ggggctggaa	60
caggggcagc	caggccctgt	gacgggaaga	ccccgagtc	cgccccgggg	aggggcacatg	120
gtgttgctg	cacaacatgt	cagccgaagt	ggggctgagg	cagtcacage	agctgggtct	180
ggacccagcc	ttcctggac	tggagccct	gtcgaccc	ctcctggcg	tccaccagga	240
gctgggtgcc	tctcacctag	cccaggacaa	gtatgtggcc	gacttcttgc	agtgggtggaa	300
gcccattgca	gcaaggctta	aggaggtccg	actgcagagg	gatgatttg	agattttgaa	360
ggtgatcggt	cgtggggcgt	tca	gaggtgggt	agcggtgggt	aagatgaaac	420
tttggcttcg	gaca					434

<210> SEQ ID NO 7

<211> LENGTH: 2688

<212> TYPE: DNA

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 7

ccacgcgtcc	gcccacgegt	ccggggcaga	catgcagcta	gggttctggg	gcctggacag	60
ggcagccag	gcctgtac	ggaaagaccc	cgagctccgg	ccggggagg	ggccatggtg	120
ttgctgtccc	aacatgtcag	ccgaagtgcg	gtgaggcag	ctccagcagc	tgggtgtggaa	180
cccaggcttc	ctgggactgg	agcccctgt	cgaccttctc	ctggggtgtcc	accaggagct	240
gggtgcctct	cacctagccc	aggacaagta	tgtggccgac	ttcttgcagt	gggtggagcc	300
cattgcagca	aggcttaagg	aggccact	gcagaggat	gattttgc	ttttgaaggt	360
gatcgggcgt	ggggcgttca	gaggtggtagc	ggtgggtgaag	atgaaacaga	cgggccaagt	420
gtatgccatg	aagattatga	ataagtggga	catgctgaag	agaggcagg	tgtcggtctt	480

-continued

ccgggaagaa	agggatgtat	tagtcaaagg	ggaccggcgc	tggatcacac	agctgcactt	540
tgccttccag	gatgagaact	acctgtacct	ggtcatggaa	tactacgtgg	gcggggacct	600
gctaacyctg	ctgagcaagt	ttggggagcg	gatccccgcc	gagatggctc	gtttctacct	660
ggccgagatt	gtcatggcca	tagactccgt	gcacccggctg	ggctacgtgc	acagggacat	720
caaaccagat	aacattctgc	tggaccgatg	tgggcacatt	cgcttggcag	acttcggctc	780
ctgcctcaaa	ctgcagccctg	atggaatggt	gaggtcgctg	gtggctgtgg	gcaccccgga	840
ctacctgtct	cctgagatcc	tgcagggcgt	tggtgagggg	cctggggcag	gcagetacgg	900
gccagagtgt	gactgggtgg	caactggcggt	gttcacccat	gagatgttct	atgggcaagac	960
ccccctctac	gcggacteca	cagccgagac	atatgccaag	attgtcact	acagggaaaca	1020
cttgcgctg	ccgctggcag	acacagtgt	ccccgagaa	gctcaggacc	tcattcgtgg	1080
gctgctgtgt	cctgctgaga	taaggctagg	tgcagggtgg	gcagggtatt	tccagaaaaca	1140
tccttccttc	tttggccttg	attggggagg	tctccgagac	agtgtacccc	cctttacacc	1200
agacttcgag	ggtgccacgg	acacatgca	tttcgatgtg	gtggaggacc	ggctcactgc	1260
catggtgagc	gggggggggg	agacgctgtc	agacatgcag	gaagacatgc	cccttgggt	1320
gcgcctgccc	ttegtggct	actcctactg	ctgcacggcc	ttcagagaca	atcaggtccc	1380
ggaccccccacc	cctatggAAC	tagagggccct	gcagttgcct	gtgtcagact	tgcaagggct	1440
tgacttgcag	cccccagtgt	ccccaccegg	tcaagtggct	gaagaggctg	acctagtggc	1500
tgtccctgcc	cctgtggctg	aggcagagac	cacggtaacg	ctgcagcagc	tccaggaagc	1560
cctggaaagaa	gagggtctca	cccgccagag	cctgagccgc	gagctggagg	ccatccggac	1620
cggccaaaccag	aacttctcca	gccaactaca	ggaggcccgag	gtccgaaacc	gagacctgga	1680
ggcgcatgtt	cggcagctac	aggaacggat	ggagatgcct	caggccccag	gagccgcaga	1740
tccctagggcc	tggcctatcc	gaggcgegtt	gcctgtctt	gttcgecgct	gtctctggctg	1800
ctgcccac	actgggctgc	actgggttgg	tggcctatac	cggcggtctc	accccagtct	1860
gtgtttttcc	gggagccacc	tgcggccct	gaaccctaag	actccaagcc	atctttcatt	1920
taggcctct	aggaaggctcg	agcgaccagg	gagcgaccac	aagcgtctct	gtgcccacatcg	1980
cccccccccc	ccccccccacc	gtcccgctcc	acacttctgt	gagcctgggt	ccccacccag	2040
ctcccgctct	gtgatccagg	cctgcccacct	ggcgccgggg	gagggaggaa	cagggtctgt	2100
gcccagcacc	cctggctct	gcagagctgg	tagccaccgc	tgctgcagca	gctgggcatt	2160
cggccacctt	gctttactca	gccccgacgt	ggatgggcaa	actgctcagc	tcatecgatt	2220
tcacttttc	actctccca	ccatcagtt	caagccataa	gcatgagccc	cctatttcca	2280
gggacatccc	atccccatag	tgtggatca	gcaagaccc	tgccagacaca	cacggagtct	2340
ttggcttcgg	acagcctcac	tcctgggggt	tgctgcact	ccttccccgt	gtacacgtct	2400
gcactcta	aacggagcca	cagctgact	ccccccccc	ccaaagcagt	gtgggtat	2460
attgatcttg	ttatctgact	cactgacaga	ctccgggacc	cacgttttag	atgcatttag	2520
actcgacatt	cctcggtatt	tattgtctgt	ccccacctac	gacctccact	cccgacccctt	2580
gcgaataaaa	tacttctgg	ctgcccctaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2640
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2688

-continued

<211> LENGTH: 2862
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 8

gggatagtca gggacgggca gacatgcagc tagggttctg gggcctggac aggggcagcc 60
aggcccctgtg acgggaagac cccgagctcc ggcggggga ggggccatgg tggtgcctgc 120
ccaacatgtc agccgaagtg cggctgaggc agtccagca gctgggtctg gaccaggct 180
tcctggact ggagccctg ctcgaccctc tcctggcggt ccaccaggag ctgggtgcct 240
ctcacctagc ccaggacaag tatgtggccg acttcttgca gtgggtggag cccattgcag 300
caaggcttaa ggaggtccga ctgcagaggg atgattttga gattttgaag gtgatcgcc 360
gtggggcggt cagcggaggta gcggtggta agatgaaaca gacgggccaa gtgtatgcca 420
tgaagattac gaataagtgg gacatgtca agagaggcga ggtgtcggtc ttccggaaag 480
aaagggtatgtt attagtgaaa ggggacccgc gctggatcac acagctgcac tttgccttcc 540
aggatgagaa ctacctgtac ctggtcatgg aatactacgt gggcggggac ctgctaacgc 600
tgctgagcaa gtttggggag cggtatcccg ccgagatggc tgcgttctac ctggccgaga 660
ttgtcatggc catagactcc gtgcacccgc tgggtcacgt gcacaggagc atcaaaccag 720
ataacattct gctggaccga tggggcaca ttgcctggc agacttggc tccgtgcctca 780
aactgcagcc tggatggaaatg gtgaggtcg tgggtggctgt gggcaccccg gactacgt 840
ctctgtgatgt tctgcaggcc gtttggggag ggcgtggggc aggcagctac gggccagagt 900
gtgactgggt ggcactggc gtttgcacccatgatgtt ctatggcag acccccttct 960
acggggactc cacacccggag acatatgca agattgtca ctacaggaa cacttgcgc 1020
tgccgctggc agacacagtt gtcccccggg aagctcaggaa cctcattcgt gggctgtgt 1080
gtctctgtca gataaggcata ggtcgagggt gggcagggtga tttccagaaa catccttct 1140
tctttggact tgattggggag ggttcccgag acagtgtacc ccccttaca ccagacttcg 1200
agggtggccac ggacacatgc aatttcgtatgg tgggtggagg ccggctcaact gccatggaga 1260
cgctgtcaga catgcaggaa gacatgcccc ttgggggtcg cctgccttc gtgggtact 1320
cctactgtc catggccttc agagacaatac aggtcccgaa ccccacccct atggaaactag 1380
aggcccctca gttgcctgtc tcagacttgc aagggttgcg ctgcagccccc ccagtgtccc 1440
caccggatca agtggctgaa gaggctgacc tagtggctgt ctgttgcctt gttgggtgagg 1500
cagagaccac ggttaacgcgtc cagcagctcc aggaaggccct ggaagaagag gttctcaccc 1560
ggcagagccct gggccgcgag ctggaggccca tccggaccgc caaccagaac ttctccagcc 1620
aactacaggaa ggcccgaggc cgaaaccggag acctggaggc gcatgttcgg cagctacagg 1680
aacggatggaa gatgtcgacg gcccaggag ccgcagccat cacgggggtc cccagttcccc 1740
ggggccacggaa tccacccccc catgttttc gccaaatctt ccccaaggaa actccctaga 1800
ctccctgttctt ggcctcgact agattcccgact ctgccttc ggcctgtgtc tgggtccgaa 1860
tcgggttccac tgcgttccatctt ctctcccgatc agatggggccccc ccggccgtgg ctgtggccca 1920
gtgcccgtgt gttggggccag gcccctatgcg ccggccgtca ctgcgtgtcc ctgcaggat 1980
ccctaggccat ggcctatcccg aggcggcggtt cctgcgttctg ttgcgtcgatc ctctgggtc 2040
tgccgcccaca ctgggtgtca ctgggttgggtt ggcctataacc ggcggtotca ccccaagtctg 2100
gtgtttcccg gggccacccat tgcgttccatctt aaccctaaatgcg ctccaaaggccca ttcttcattt 2160

-continued

aggcctccta ggaaggcgtga gcgaccagggg agcgacccaa agcgtctctg tgcccatcgc 2220
 cccccccccc cccccccacgg ctccgcctcca cacttctgtg agcctgggtc cccacccaggc 2280
 tccgctcttg tgatccaggc ctgccacctg ggggggggggg agggaggaaac agggctcggt 2340
 cccagcaccc ctgggttcctg cagagctggt agccacccgt gctgcagcag ctgggcattc 2400
 gccgaccttg cttaactcag ccccgacgtg gatggggaaa ctgctcagct catccgattt 2460
 cacttttca ctctccca ctcagttac aagccataag catgagcccc ctatttccag 2520
 ggacatccca ttcccatagt gatggatcag caagacctct gccagcacac acggagtctt 2580
 tggcttcgga cagccctcaact cctgggggtt gctgcaactc cttccccgtg tacacgtctg 2640
 cactctaaca acggagccac agtgcactc cccctcccc caaagcagtg tgggtattta 2700
 ttgatcttgt tatctgactc actgacagac tccgggaccc acgtttttaga tgcattgaga 2760
 ctgcacattc ctccgttattt attgtctgtc cccacctacg acctccactc ccgacccttg 2820
 cgaataaaat acttctggtc tgccctaaaaaaa aaaaaaaaaaa aa 2862

<210> SEQ ID NO 9
 <211> LENGTH: 18
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer
 <400> SEQUENCE: 9
 agcctgagcc gggagatg 18

<210> SEQ ID NO 10
 <211> LENGTH: 21
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer
 <400> SEQUENCE: 10
 gcgtagttga ctggcgaagt t 21

<210> SEQ ID NO 11
 <211> LENGTH: 21
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Probe
 <400> SEQUENCE: 11
 aggccatccg cacggacaac c 21

<210> SEQ ID NO 12
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic oligonucleotide
 <400> SEQUENCE: 12
 ctggctgcat gtctgcctgt 20

<210> SEQ ID NO 13
 <211> LENGTH: 20
 <212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 13

ccaggagaag gtcgagcagg 20

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 14

tctatggcca tgacaatctc 20

<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 15

atgtccctgt gcacgtagcc 20

<210> SEQ ID NO 16
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 16

atgtgtccgg aagtgcgcgt 20

<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 17

ctcaggctct gccgggtgag 20

<210> SEQ ID NO 18
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 18

ggcactggcc cacagccacg 20

<210> SEQ ID NO 19
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 19

-continued

cctggccgaa agaaagaaaat	20
 <pre><210> SEQ ID NO 20 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
 <pre><400> SEQUENCE: 20</pre>	
aaagaaaatgg tctgtatcc	20
 <pre><210> SEQ ID NO 21 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
 <pre><400> SEQUENCE: 21</pre>	
aagaaaagaaa tggtctgtga	20
 <pre><210> SEQ ID NO 22 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
 <pre><400> SEQUENCE: 22</pre>	
ggccgaaaga aagaaatggt	20
 <pre><210> SEQ ID NO 23 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
 <pre><400> SEQUENCE: 23</pre>	
cctcagcctg gccgaaagaa	20
 <pre><210> SEQ ID NO 24 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
 <pre><400> SEQUENCE: 24</pre>	
gggcctcagc ctggccgaaa	20
 <pre><210> SEQ ID NO 25 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
 <pre><400> SEQUENCE: 25</pre>	
tcagggcctc agcctggccg	20
 <pre><210> SEQ ID NO 26</pre>	

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 26
ctgcagtttgc cccatccacg 20

<210> SEQ ID NO 27
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 27
ggcctgcagt ttgccccatcc 20

<210> SEQ ID NO 28
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 28
ccaggcctgc agtttgcggca 20

<210> SEQ ID NO 29
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 29
gccttcccaag gcctgcagtt 20

<210> SEQ ID NO 30
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 30
gctgccttcc caggcctgcac 20

<210> SEQ ID NO 31
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 31
cttgctgcct tcccaggcct 20

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 32

gccccggcttg ctgccttccc

20

<210> SEQ ID NO 33

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 33

acggcccggc ttgctgcctt

20

<210> SEQ ID NO 34

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 34

cggacggccc ggcttgctgc

20

<210> SEQ ID NO 35

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 35

acacggacgg cccggcttgc

20

<210> SEQ ID NO 36

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 36

gatggaacac ggacggcccc

20

<210> SEQ ID NO 37

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 37

gaggatggaa cacggacggc

20

<210> SEQ ID NO 38

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 38

gtggaggatg gaacacggac

20

-continued

<210> SEQ ID NO 39
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 39

gcgaaccaac gatagggtggg 20

<210> SEQ ID NO 40
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 40

tttgcgaacc aacgatagg 20

<210> SEQ ID NO 41
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 41

ttgcactttg cgaaccaacg 20

<210> SEQ ID NO 42
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 42

gctttgcact ttgcgaacca 20

<210> SEQ ID NO 43
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 43

aaagctttgc actttgcgaa 20

<210> SEQ ID NO 44
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 44

aagaaaagctt tgcaacttgc 20

<210> SEQ ID NO 45
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

-continued

```
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 45  
  
cacaagaaaag ctttgactt 20  
  
<210> SEQ ID NO 46  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 46  
  
gtcatgcaca agaaaagctt 20  
  
<210> SEQ ID NO 47  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 47  
  
acgctcccca gaggcaggcg 20  
  
<210> SEQ ID NO 48  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 48  
  
gcagagatcg cggcagacgc 20  
  
<210> SEQ ID NO 49  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 49  
  
caggcagaga tcgcgcaga 20  
  
<210> SEQ ID NO 50  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 50  
  
aagcaggcag agatcgcgcc 20  
  
<210> SEQ ID NO 51  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 51
```

-continued

ccgagtaagc aggcagagat 20

```
<210> SEQ ID NO 52
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 52
```

ttcccgagta agcaggcaga 20

```
<210> SEQ ID NO 53
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 53
```

gcaaatttcc cgagtaagca 20

```
<210> SEQ ID NO 54
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 54
```

aaagcaaatttcc tcccgagtaa 20

```
<210> SEQ ID NO 55
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 55
```

ttggcaaaaag caaatttccc 20

```
<210> SEQ ID NO 56
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 56
```

ggtttggcaa aagcaaattt 20

```
<210> SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 57
```

gcgggtttgg caaaagcaaa 20

```
<210> SEQ ID NO 58
<211> LENGTH: 20
```

-continued

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 58
aaagcgggtt tggcaaaagc 20

<210> SEQ ID NO 59
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 59
cccgaaaaag cgggtttggc 20

<210> SEQ ID NO 60
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 60
atccccgaaa aagcgggtt 20

<210> SEQ ID NO 61
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 61
cgggatcccc gaaaaagcgg 20

<210> SEQ ID NO 62
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 62
gcgcgggatc cccgaaaaag 20

<210> SEQ ID NO 63
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 63
gagagcagcg caagtgagga 20

<210> SEQ ID NO 64
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 64
tccgagagca gcgcaagtga 20

<210> SEQ ID NO 65
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 65
ggctccgaga gcagcgcaag 20

<210> SEQ ID NO 66
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 66
aagcggggcg 20

<210> SEQ ID NO 67
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 67
ccgaagcggg cggagccggc 20

<210> SEQ ID NO 68
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 68
aaaccgcccga agcggggcgga 20

<210> SEQ ID NO 69
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 69
tccaaaccgc cgaagcgggc 20

<210> SEQ ID NO 70
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 70
atatccaaac cgccgaaagcg 20

-continued

```
<210> SEQ ID NO 71
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 71
taaatatcca aaccggccaa 20

<210> SEQ ID NO 72
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 72
caataaataat ccaaaccggcc 20

<210> SEQ ID NO 73
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 73
cgagggtcaat aaatatccaa 20

<210> SEQ ID NO 74
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 74
ggacgagggtc aataaatatc 20

<210> SEQ ID NO 75
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 75
ggaggacgag gtcaataat 20

<210> SEQ ID NO 76
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 76
gtcggaggac gaggtcaata 20

<210> SEQ ID NO 77
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 77

cgagtcggag gacgagggtca

20

<210> SEQ ID NO 78

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 78

tgtcagcggatcggaggacg

20

<210> SEQ ID NO 79

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 79

gcctgtcagc gaggatcgagg

20

<210> SEQ ID NO 80

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 80

gtacgttgtc acgtcgatcg

20

<210> SEQ ID NO 81

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 81

cctgttagcgt gtcagcgatc

20

<210> SEQ ID NO 82

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 82

ggtcgttgtcgtcgtcgatc

20

<210> SEQ ID NO 83

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 83

aaataccgag gaatgtcggt

20

-continued

<210> SEQ ID NO 84
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 84

aataaatacc gaggaatgtc

20

<210> SEQ ID NO 85
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 85

gacaataaaat accgaggaat

20

<210> SEQ ID NO 86
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 86

cggggcccccg gagtcgaaga

20

<210> SEQ ID NO 87
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 87

ccaacggggc cccggagtgc

20

<210> SEQ ID NO 88
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 88

ttccaacggg gccccggagt

20

<210> SEQ ID NO 89
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 89

gtttccaac gggggccccgg

20

<210> SEQ ID NO 90
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 90

cagtcttcca acggggcccc 20

<210> SEQ ID NO 91
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 91

ctcagtcttc caacggggcc 20

<210> SEQ ID NO 92
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 92

gcactcagtc ttccaacggg 20

<210> SEQ ID NO 93
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 93

ccccgggcac tcagtcttcc 20

<210> SEQ ID NO 94
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 94

tgccccgggc actcagtc 20

<210> SEQ ID NO 95
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 95

cgtgccccgg gcactcagtc 20

<210> SEQ ID NO 96
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 96

-continued

gtgcgtgcc ccgggcactc 20

<210> SEQ ID NO 97
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 97

tctgtgccgt gccccggca 20

<210> SEQ ID NO 98
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 98

gcttctgtgc cgtgccccgg 20

<210> SEQ ID NO 99
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 99

gcggcttctg tgccgtgccc 20

<210> SEQ ID NO 100
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 100

gcgcggctc tgtgccgtgc 20

<210> SEQ ID NO 101
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 101

gggcgcggct tctgtgccgt 20

<210> SEQ ID NO 102
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 102

ggcggtgggc gcggttctg 20

<210> SEQ ID NO 103

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 103
ggcaggcggt gggcgcggt 20

<210> SEQ ID NO 104
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 104
ctggcaggcg gtgggcgcgg 20

<210> SEQ ID NO 105
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 105
aactggcagg cggtgccgc 20

<210> SEQ ID NO 106
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 106
gtgaactggc aggccgtgg 20

<210> SEQ ID NO 107
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 107
ggttgtgaac tggcaggggg 20

<210> SEQ ID NO 108
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 108
gcggttgtga actggcaggc 20

<210> SEQ ID NO 109
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 109
cggagcggtt gtgaactggc 20

<210> SEQ ID NO 110
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 110
cgctcgaggc gggtgtgaac 20

<210> SEQ ID NO 111
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 111
cccacgctcg gagcgggtgt 20

<210> SEQ ID NO 112
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 112
agacccacgc tcggagcggt 20

<210> SEQ ID NO 113
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 113
cggagaccca cgctcgaggc 20

<210> SEQ ID NO 114
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 114
ggggggagac ccacgctcg 20

<210> SEQ ID NO 115
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 115
gctggggcga gacccacgct 20

-continued

```
<210> SEQ ID NO 116
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 116
ggagctgggc ggagacccac 20

<210> SEQ ID NO 117
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 117
ctggagctgg gcggagaccc 20

<210> SEQ ID NO 118
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 118
ggactggagc tggggcgaga 20

<210> SEQ ID NO 119
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 119
caggactgga gctgggcgga 20

<210> SEQ ID NO 120
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 120
atcacaggac tggagctggg 20

<210> SEQ ID NO 121
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 121
ggggggggcc ggatcacagg 20

<210> SEQ ID NO 122
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

```
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 122  
  
ggggggcgggc cccggatcaca 20  
  
<210> SEQ ID NO 123  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 123  
  
aggcagcacc atggccccctc 20  
  
<210> SEQ ID NO 124  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 124  
  
ggtccaaacac cagctgctgg 20  
  
<210> SEQ ID NO 125  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 125  
  
cgatcacctt cagaatctcg 20  
  
<210> SEQ ID NO 126  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 126  
  
cttgttcatg atcttcatgg 20  
  
<210> SEQ ID NO 127  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 127  
  
ccccattcac caaacacgtcc 20  
  
<210> SEQ ID NO 128  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 128
```

-continued

gcgtgatcca ccgcgggtcc 20

<210> SEQ ID NO 129
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 129

gtaatactcc atgaccagg 20

<210> SEQ ID NO 130
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 130

gcagtgtcag caggtccccc 20

<210> SEQ ID NO 131
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 131

caccgagtct atggccatga 20

<210> SEQ ID NO 132
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 132

acgttagccaa gccgggtgcac 20

<210> SEQ ID NO 133
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 133

atgtggccac agcgggtccag 20

<210> SEQ ID NO 134
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 134

cttcgtccac cagcggcaga 20

<210> SEQ ID NO 135
<211> LENGTH: 20

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 135

gaccgccttcg tccaccagcg 20

<210> SEQ ID NO 136
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 136

cctgctccac cccggccccag 20

<210> SEQ ID NO 137
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 137

cggaaagtgcgc ctgctccacc 20

<210> SEQ ID NO 138
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 138

cggagaccat cccagtcgag 20

<210> SEQ ID NO 139
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 139

tgagggccat gcaggagtag 20

<210> SEQ ID NO 140
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 140

ctccagttcc atgggtgtgg 20

<210> SEQ ID NO 141
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 141
gcgcttgcac gtgtggctca 20

<210> SEQ ID NO 142
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 142
gccacttcag ctgtttcatc 20

<210> SEQ ID NO 143
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 143
gcctcagcct ctgccgcagg 20

<210> SEQ ID NO 144
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 144
gcagcgtaac ctgggcctca 20

<210> SEQ ID NO 145
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 145
ggctcaggct ctgccccgtg 20

<210> SEQ ID NO 146
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 146
ttcccgagcct ctgcctcgcg 20

<210> SEQ ID NO 147
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 147
ggtccccgggtt ccgagccctct 20

-continued

```
<210> SEQ ID NO 148
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 148
atccggtcct gcaactgcgg 20

<210> SEQ ID NO 149
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 149
gcaactccat ccggtccctgc 20

<210> SEQ ID NO 150
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 150
agggtggatcc gtggccgggg 20

<210> SEQ ID NO 151
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 151
cgcggcttct gtgccgtgcc 20

<210> SEQ ID NO 152
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 152
ttgctgcctt cccaggcctg 20

<210> SEQ ID NO 153
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 153
tgctcccgac aagctccaga 20

<210> SEQ ID NO 154
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 154

agaacacctgcc cattgctgaa

20

<210> SEQ ID NO 155

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 155

cactgagggc cagacatata

20

<210> SEQ ID NO 156

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 156

ctcttagattc agatgcaggt

20

<210> SEQ ID NO 157

<211> LENGTH: 15

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 157

cgggcccgtcc gtgttt

15

<210> SEQ ID NO 158

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 158

ctttgcactt tgcgaaccaa

20

<210> SEQ ID NO 159

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Probe

<400> SEQUENCE: 159

catcctccac gcaccccccac c

21

<210> SEQ ID NO 160

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 160

gcctggcagc ccctgtccag

20

-continued

<210> SEQ ID NO 161
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 161

ggcctggcag cccctgtcca

20

<210> SEQ ID NO 162
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 162

gggcctggca gccccgtgtcc

20

<210> SEQ ID NO 163
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 163

atggcccttc cccggggccgg

20

<210> SEQ ID NO 164
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 164

catggccctt cccggggccgg

20

<210> SEQ ID NO 165
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 165

ccatggcccc tccccggggcc

20

<210> SEQ ID NO 166
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 166

accatggccc ctccccggggc

20

<210> SEQ ID NO 167
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 167

caccatggcc cctcccccggg 20

<210> SEQ ID NO 168
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 168

gcaccatggc ccctcccccgg 20

<210> SEQ ID NO 169
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 169

agcaccatgg cccctcccccgg 20

<210> SEQ ID NO 170
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 170

cagcaccatg gccccctcccc 20

<210> SEQ ID NO 171
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 171

gcagcaccat ggccccctcccc 20

<210> SEQ ID NO 172
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 172

ggcagcacca tggccccctcc 20

<210> SEQ ID NO 173
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 173

-continued

caggcagcac catggccct 20

<210> SEQ ID NO 174
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 174

acaggcagca ccatggcccc 20

<210> SEQ ID NO 175
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 175

ggacaggcag caccatggcc 20

<210> SEQ ID NO 176
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 176

tggacaggca gcaccatggc 20

<210> SEQ ID NO 177
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 177

ttggacaggc agcaccatgg 20

<210> SEQ ID NO 178
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 178

gttggacagg cagcaccatgg 20

<210> SEQ ID NO 179
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 179

tgttggacag gcagcaccat 20

<210> SEQ ID NO 180

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 180
atgttggaca ggcagcacca                                20

<210> SEQ ID NO 181
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 181
catgttggac aggcagcac                                20

<210> SEQ ID NO 182
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 182
acatgttgg a caggcagcac                                20

<210> SEQ ID NO 183
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 183
gacatgttgg acaggcagca                                20

<210> SEQ ID NO 184
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 184
tgacatgtt g acaggcagc                                20

<210> SEQ ID NO 185
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 185
ctgacatgtt ggacaggcag                                20

<210> SEQ ID NO 186
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 186
gctgacatgt tggacaggca 20

<210> SEQ ID NO 187
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 187
ggctgacatg ttggacaggc 20

<210> SEQ ID NO 188
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 188
cggtgacat gttggacagg 20

<210> SEQ ID NO 189
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 189
tcggctgaca tgttggacag 20

<210> SEQ ID NO 190
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 190
ctcggctgac atgttggaca 20

<210> SEQ ID NO 191
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 191
cctcggtca catgttggac 20

<210> SEQ ID NO 192
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 192
acctcggtcg acatgttgg 20

-continued

```
<210> SEQ ID NO 193
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 193
cacctcggt gacatgttgg 20

<210> SEQ ID NO 194
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 194
gcacctcggt tgacatgttgg 20

<210> SEQ ID NO 195
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 195
cgcacctcggt tgacatgttgg 20

<210> SEQ ID NO 196
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 196
ccgcacacctc gctgacatgttgg 20

<210> SEQ ID NO 197
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 197
gccccacacctc ggctgacatgttgg 20

<210> SEQ ID NO 198
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 198
agccgcacacctc cggctgacatgttgg 20

<210> SEQ ID NO 199
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 199
cagccgcacc tcggctgaca 20

<210> SEQ ID NO 200
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 200
tcagccgcac ctggctgac 20

<210> SEQ ID NO 201
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 201
ctcagccgca cctcggtga 20

<210> SEQ ID NO 202
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 202
cctcagccgc acctcggtg 20

<210> SEQ ID NO 203
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 203
gcctcagccg cacctcggt 20

<210> SEQ ID NO 204
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 204
ccaacaccag ctgctggagc 20

<210> SEQ ID NO 205
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 205

-continued

tccaaacacca gctgctggag 20

```
<210> SEQ ID NO 206
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 206
```

gtccaaacacc agctgctgga 20

```
<210> SEQ ID NO 207
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 207
```

gggtccaaaca ccagctgctg 20

```
<210> SEQ ID NO 208
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 208
```

ggctccagcc ccaggaagcc 20

```
<210> SEQ ID NO 209
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 209
```

gggctccagc cccaggaagg 20

```
<210> SEQ ID NO 210
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 210
```

caggagaagg tcgagcaggg 20

```
<210> SEQ ID NO 211
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

```
<400> SEQUENCE: 211
```

cccaggagaa ggtcgagcag 20

```
<210> SEQ ID NO 212
<211> LENGTH: 20
```

-continued

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 212
gcccaggaga aggtcgagca                                20

<210> SEQ ID NO 213
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 213
cgcccaggag aaggtcgagc                                20

<210> SEQ ID NO 214
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 214
acgcccagga gaagggtcgag                                20

<210> SEQ ID NO 215
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 215
tcctggcca gttcggaggc                                20

<210> SEQ ID NO 216
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 216
gtcctggcc agttcgagg                                20

<210> SEQ ID NO 217
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 217
tgtcctgggc cagttcgagg                                20

<210> SEQ ID NO 218
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 218
ttgtcctggg ccagttcgga 20

<210> SEQ ID NO 219
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 219
cttgcctgg gccagttcg 20

<210> SEQ ID NO 220
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 220
actgtcctg ggccagttcg 20

<210> SEQ ID NO 221
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 221
tacttgtcct gggccagttc 20

<210> SEQ ID NO 222
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 222
gtacttgtcc tggggccagtt 20

<210> SEQ ID NO 223
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 223
cgtacttgtc ctggggccagtt 20

<210> SEQ ID NO 224
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 224
actgcaagaa gtcggccacg 20

-continued

```
<210> SEQ ID NO 225
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 225
ccactgcaag aagtccggca                                20

<210> SEQ ID NO 226
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 226
ccccactgcaa gaagtccggc                                20

<210> SEQ ID NO 227
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 227
ccccactgca agaagtccggc                                20

<210> SEQ ID NO 228
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 228
cgccccactgc aagaagtccgg                                20

<210> SEQ ID NO 229
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 229
cgccccactg caagaagtccg                                20

<210> SEQ ID NO 230
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 230
tccggcccaact gcaagaagtcc                                20

<210> SEQ ID NO 231
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 231

ctccgccccac tgcaagaagt

20

<210> SEQ ID NO 232

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 232

gctccgcccc ctgcaagaag

20

<210> SEQ ID NO 233

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 233

ggctccgccc actgcaagaa

20

<210> SEQ ID NO 234

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 234

gggctccgccc cactgcaaga

20

<210> SEQ ID NO 235

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 235

tgggctccgc ccactgcaag

20

<210> SEQ ID NO 236

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 236

atgggctccg cccactgcaa

20

<210> SEQ ID NO 237

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 237

gatgggctcc gcccactgca

20

-continued

<210> SEQ ID NO 238
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 238

cgatgggctc cgccccactgc

20

<210> SEQ ID NO 239
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 239

acgatgggct ccggccactg

20

<210> SEQ ID NO 240
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 240

cacgatgggc tccggccact

20

<210> SEQ ID NO 241
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 241

ccacgatggg ctccggccac

20

<210> SEQ ID NO 242
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 242

accacgatgg gctccggcca

20

<210> SEQ ID NO 243
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 243

caccacgatg ggctccggcc

20

<210> SEQ ID NO 244
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 244

tcaccacgat gggctccgccc 20

<210> SEQ ID NO 245
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 245

ctcaccacga tgggctccgc 20

<210> SEQ ID NO 246
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 246

cctcaccacg atgggctccg 20

<210> SEQ ID NO 247
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 247

gcctcaccac gatgggctcc 20

<210> SEQ ID NO 248
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 248

agcctcacca cgatgggctc 20

<210> SEQ ID NO 249
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 249

aagcctcacc acgatgggct 20

<210> SEQ ID NO 250
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 250

-continued

taaggctcac cacgatgggc 20

<210> SEQ ID NO 251
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 251

ttaaggctca ccacgatgg 20

<210> SEQ ID NO 252
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 252

cttaaggctc accacgatgg 20

<210> SEQ ID NO 253
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 253

ccttaaggct caccacgatg 20

<210> SEQ ID NO 254
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 254

tccttaagcc tcaccacgat 20

<210> SEQ ID NO 255
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 255

ctccttaagc ctcaccacga 20

<210> SEQ ID NO 256
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 256

cctccttaag cctcaccacg 20

<210> SEQ ID NO 257

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 257
acccctttaa gcctcaccac 20

<210> SEQ ID NO 258
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 258
gacccctta agcctcacca 20

<210> SEQ ID NO 259
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 259
ggacccctt aagectcacc 20

<210> SEQ ID NO 260
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 260
cggacccct taaggctcac 20

<210> SEQ ID NO 261
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 261
tcggacccct ttaaggctca 20

<210> SEQ ID NO 262
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 262
gtcgacccct cttaaaggctc 20

<210> SEQ ID NO 263
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 263

cagtcggacc tccttaagcc

20

<210> SEQ ID NO 264

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 264

gcagtcggac ctccttaagc

20

<210> SEQ ID NO 265

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 265

tgcagtcgga cctccttaag

20

<210> SEQ ID NO 266

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 266

ccttcagaat ctcgaagtgc

20

<210> SEQ ID NO 267

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 267

accttcagaa tctcgaagtc

20

<210> SEQ ID NO 268

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 268

tcaccttcag aatctcgaag

20

<210> SEQ ID NO 269

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 269

atcaccttca gaatctcgaa

20

-continued

```
<210> SEQ ID NO 270
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 270
gatcacccatc agaatctcgaa 20

<210> SEQ ID NO 271
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 271
ccgatcacct tcagaatctc 20

<210> SEQ ID NO 272
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 272
tccgatcacc ttcagaatctc 20

<210> SEQ ID NO 273
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 273
gtccgatcac cttcagaatctc 20

<210> SEQ ID NO 274
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 274
cggtccgatca ctttcagaatctc 20

<210> SEQ ID NO 275
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 275
cccggtctgtct tcatcttcac 20

<210> SEQ ID NO 276
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

```
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 276  
  
gccccgtctgc ttcatcttca 20  
  
<210> SEQ ID NO 277  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 277  
  
ggccccgtctg ctcatcttc 20  
  
<210> SEQ ID NO 278  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 278  
  
tggcccggtc gcttcatctt 20  
  
<210> SEQ ID NO 279  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 279  
  
ctggcccgtc tgcttcatct 20  
  
<210> SEQ ID NO 280  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 280  
  
cctggcccg tctgcttcat 20  
  
<210> SEQ ID NO 281  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 281  
  
acctggcccg tctgcttcat 20  
  
<210> SEQ ID NO 282  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 282
```

-continued

cacctggccc gtctgcttca 20

<210> SEQ ID NO 283
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 283

acacacctggcc cgtctgcttc 20

<210> SEQ ID NO 284
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 284

tacacacctggc ccgtctgctt 20

<210> SEQ ID NO 285
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 285

ttgttcatga tcttcatggc 20

<210> SEQ ID NO 286
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 286

acttggatcat gatcttcatg 20

<210> SEQ ID NO 287
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 287

cacttggatca tgatcttcat 20

<210> SEQ ID NO 288
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 288

ccacttggatc atgatcttc 20

<210> SEQ ID NO 289
<211> LENGTH: 20

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 289

ccccacttgtt catgatcttc 20

<210> SEQ ID NO 290
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 290

tccccactgt tcatgatctt 20

<210> SEQ ID NO 291
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 291

gtccccacttg ttcatgatct 20

<210> SEQ ID NO 292
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 292

tgtccccactt gttcatgatc 20

<210> SEQ ID NO 293
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 293

atgtccccactt tgttcatgat 20

<210> SEQ ID NO 294
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 294

catgtccccac ttgttcatga 20

<210> SEQ ID NO 295
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 295
gcatgtccca cttgttcatg 20
<210> SEQ ID NO 296
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 296
agcatgtccc acttggat 20
<210> SEQ ID NO 297
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 297
cagcatgtcc cacttggca 20
<210> SEQ ID NO 298
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 298
tcagcatgtc ccacttggtc 20
<210> SEQ ID NO 299
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 299
ttcagcatgt cccacttgg 20
<210> SEQ ID NO 300
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 300
cttcagcatg tcccacttgc 20
<210> SEQ ID NO 301
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 301
tcttcagcat gtcccacttg 20

-continued

```
<210> SEQ ID NO 302
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 302
ccttttcagc atgtcccact 20

<210> SEQ ID NO 303
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 303
cccttttcag catgtcccac 20

<210> SEQ ID NO 304
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 304
cccccttca gcatgtccc 20

<210> SEQ ID NO 305
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 305
cccccttca agcatgtccc 20

<210> SEQ ID NO 306
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 306
cgcccccttca cagcatgtcc 20

<210> SEQ ID NO 307
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 307
tcgcccccttca tcagcatgtcc 20

<210> SEQ ID NO 308
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 308

ctcgccccctc ttcagcatgt

20

<210> SEQ ID NO 309

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 309

cctcgccccctt cttcagcatg

20

<210> SEQ ID NO 310

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 310

acctcgcccc tcttcagcat

20

<210> SEQ ID NO 311

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 311

cacctcgcccc ctcttcagca

20

<210> SEQ ID NO 312

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 312

acacctcgcc cctcttcagc

20

<210> SEQ ID NO 313

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 313

gacacacctcgcc ccctcttcag

20

<210> SEQ ID NO 314

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 314

gccaggcgga tgtggccaca

20

-continued

```
<210> SEQ ID NO 315
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 315
accgcaccgt tccatctgcc                                20

<210> SEQ ID NO 316
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 316
gacggcaccg ttccatctgc                                20

<210> SEQ ID NO 317
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 317
acagcctgca ggatctcgaa                                20

<210> SEQ ID NO 318
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 318
cacagcctgc aggatctcgaa                                20

<210> SEQ ID NO 319
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 319
ccacagcctg caggatctcgaa                                20

<210> SEQ ID NO 320
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 320
cccacagcct gcaggatctc                                20

<210> SEQ ID NO 321
<211> LENGTH: 20
<212> TYPE: DNA
```

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 321

gccccacagcc tgcaggatct 20

<210> SEQ ID NO 322
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 322

cggcccacagc ctgcaggatc 20

<210> SEQ ID NO 323
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 323

ccggcccacag cctgcaggat 20

<210> SEQ ID NO 324
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 324

accggccacaca gcctgcagga 20

<210> SEQ ID NO 325
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 325

cacccggccac acgcctgcagg 20

<210> SEQ ID NO 326
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 326

ccaccggccca cagcctgcag 20

<210> SEQ ID NO 327
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 327

-continued

cccacccgccc acaggctgca 20

<210> SEQ ID NO 328
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 328

gccccaccgc cacaggctgc 20

<210> SEQ ID NO 329
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 329

ggcccaccgc ccacaggctg 20

<210> SEQ ID NO 330
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 330

agggccaccg cccacagct 20

<210> SEQ ID NO 331
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 331

caggccccacc gcccacagcc 20

<210> SEQ ID NO 332
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 332

ccaggccccac cgccccacagc 20

<210> SEQ ID NO 333
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 333

cccaggccca ccgccccacag 20

<210> SEQ ID NO 334

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 334
tcccaggccc accggccaca                                20

<210> SEQ ID NO 335
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 335
gtcccaggcc caccggccac                                20

<210> SEQ ID NO 336
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 336
tgtcccaggc ccacggccca                                20

<210> SEQ ID NO 337
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 337
ctgtcccagg cccacggccc                                20

<210> SEQ ID NO 338
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 338
cctgtcccag gcccacggcc                                20

<210> SEQ ID NO 339
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 339
gcctgtccca ggccacccgc                                20

<210> SEQ ID NO 340
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 340
tgccctgtccc agggcccaccc 20

<210> SEQ ID NO 341
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 341
ctgcctgtcc caggcccccc 20

<210> SEQ ID NO 342
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 342
gctgcctgtc ccaggccccac 20

<210> SEQ ID NO 343
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 343
agctgcctgt cccaggcccc 20

<210> SEQ ID NO 344
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 344
tagctgcctg tcccaggccc 20

<210> SEQ ID NO 345
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 345
gtagctgcct gtcccaggcc 20

<210> SEQ ID NO 346
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 346
cgtagctgcc tgtcccaggcc 20

-continued

```
<210> SEQ ID NO 347
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 347
ccgttagctgc ctgtccagg 20

<210> SEQ ID NO 348
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 348
cccgtagctg cctgtccag 20

<210> SEQ ID NO 349
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 349
gccccgtagct gcctgtccca 20

<210> SEQ ID NO 350
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 350
ggcccgtagc tgcctgtccc 20

<210> SEQ ID NO 351
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 351
tagaacattt cataggcgaa 20

<210> SEQ ID NO 352
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 352
tctccggccgt ggaatccgcg 20

<210> SEQ ID NO 353
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 353

gtctccgccc tggaatccgc 20

<210> SEQ ID NO 354
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 354

ggtctccgccc gtggaaatccg 20

<210> SEQ ID NO 355
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 355

agggtctccgc cgtggaaatcc 20

<210> SEQ ID NO 356
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 356

taggtctccg ccgtggaaatcc 20

<210> SEQ ID NO 357
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 357

ttgttagtggg ccatcttgc 20

<210> SEQ ID NO 358
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 358

ctttagtggg acgtatcttgc 20

<210> SEQ ID NO 359
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 359

-continued

cctttagtg gacgatctt 20

<210> SEQ ID NO 360
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 360

tcctttagt ggacgatctt 20

<210> SEQ ID NO 361
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 361

ctcctttag tggacgatct 20

<210> SEQ ID NO 362
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 362

gctcctttagt gtggacgatc 20

<210> SEQ ID NO 363
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 363

tgctcctttagt agtggacgat 20

<210> SEQ ID NO 364
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 364

gtgctcctt tagtggacg 20

<210> SEQ ID NO 365
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 365

ggtgctcctt gtagtggacg 20

<210> SEQ ID NO 366
<211> LENGTH: 20

-continued

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 366
aggtgctcct tgcgtggac                                20

<210> SEQ ID NO 367
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 367
gaggtgctcc ttgttagtgg                                20

<210> SEQ ID NO 368
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 368
agaggtgctc cttgttagg                                20

<210> SEQ ID NO 369
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 369
gagaggtgct cttgttagt                                20

<210> SEQ ID NO 370
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 370
agagaggtgc tcctttagt                                20

<210> SEQ ID NO 371
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 371
gagagaggtg ctcctttagt                                20

<210> SEQ ID NO 372
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 372
agagagaggt gctccttgt 20
<210> SEQ ID NO 373
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 373
cagagagagg tgctccttgt 20
<210> SEQ ID NO 374
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 374
ggcagagaga ggtgctcctt 20
<210> SEQ ID NO 375
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 375
cggcagagag aggtgctcct 20
<210> SEQ ID NO 376
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 376
gcggcagaga gaggtgctcc 20
<210> SEQ ID NO 377
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 377
agcggcagag agaggtgctc 20
<210> SEQ ID NO 378
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 378
cagcggcaga gagaggtgct 20

-continued

```
<210> SEQ ID NO 379
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 379
ccagcggcag agagaggtgc                                20

<210> SEQ ID NO 380
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 380
ggcccagccg tgtctccgg                                20

<210> SEQ ID NO 381
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 381
cggcccagcc gtgtctccgg                                20

<210> SEQ ID NO 382
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 382
cggggccca cgtgtctccg                                20

<210> SEQ ID NO 383
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 383
cccgccccagc ccgtgtctcc                                20

<210> SEQ ID NO 384
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 384
ccccggccca gccgtgtctc                                20

<210> SEQ ID NO 385
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 385

accccgcccc agccgtgtct

20

<210> SEQ ID NO 386

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 386

caccccgccc cagccgtgtc

20

<210> SEQ ID NO 387

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 387

ccaccccgcc ccagccgtgt

20

<210> SEQ ID NO 388

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 388

tccaccccg cccagccgtg

20

<210> SEQ ID NO 389

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 389

ctccaccccg gcccagccgt

20

<210> SEQ ID NO 390

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 390

gctccaccccg ggeccagccg

20

<210> SEQ ID NO 391

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 391

tgctccaccc cggccccagcc

20

-continued

<210> SEQ ID NO 392
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 392

ctgttccacc ccggccccagc

20

<210> SEQ ID NO 393
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 393

aagggatgtg tccggaagtc

20

<210> SEQ ID NO 394
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 394

gaagggatgt gtccggaagt

20

<210> SEQ ID NO 395
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 395

agaagggatg tgtccggaag

20

<210> SEQ ID NO 396
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 396

aagaagggat gtgtccggaa

20

<210> SEQ ID NO 397
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 397

gaagaaggga tgtgtccggaa

20

<210> SEQ ID NO 398
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 398

agaagaaggg atgtgtccgg 20

<210> SEQ ID NO 399
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 399

aagaagaagg gatgtgtccg 20

<210> SEQ ID NO 400
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 400

aaagaagaag ggatgtgtcc 20

<210> SEQ ID NO 401
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 401

caaagaagaa gggatgtgtc 20

<210> SEQ ID NO 402
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 402

ccaaagaaga agggatgtgt 20

<210> SEQ ID NO 403
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 403

ggccaaagaa gaagggatgt 20

<210> SEQ ID NO 404
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 404

-continued

aggccaaaga agaagggatg	20
<210> SEQ ID NO 405	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 405	
gaggccaaag aagaaggat	20
<210> SEQ ID NO 406	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 406	
cgaggccaaa gaagaaggga	20
<210> SEQ ID NO 407	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 407	
tcgaggccaa agaagaagg	20
<210> SEQ ID NO 408	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 408	
gtcgaggcca aagaagaagg	20
<210> SEQ ID NO 409	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 409	
agtgcaggcc aaagaagaag	20
<210> SEQ ID NO 410	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 410	
cagtcgaggc caaagaagaa	20
<210> SEQ ID NO 411	

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 411
ccagtcgagg ccaaagaaga 20

<210> SEQ ID NO 412
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 412
cccagtcgag gccaaagaag 20

<210> SEQ ID NO 413
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 413
tcccagtcg ggc当地 20

<210> SEQ ID NO 414
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 414
atcccagtcg aggccaaaga 20

<210> SEQ ID NO 415
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 415
catcccagtc gaggccaaag 20

<210> SEQ ID NO 416
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 416
ccatcccagt cgaggccaaa 20

<210> SEQ ID NO 417
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 417
accatccca tcgaggccaa 20

<210> SEQ ID NO 418
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 418
gaccatccca gtcgaggcca 20

<210> SEQ ID NO 419
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 419
agaccatccc agtcgaggcc 20

<210> SEQ ID NO 420
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 420
gagaccatcc cagtcgaggc 20

<210> SEQ ID NO 421
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 421
ggagaccatc ccagtcgagg 20

<210> SEQ ID NO 422
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 422
ttcgaaatcc ggtgtaaagg 20

<210> SEQ ID NO 423
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 423
cttcgaaatc cggtgtaaag 20

-continued

```
<210> SEQ ID NO 424
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 424
ccttcgaaat ccgggttaaa                                20

<210> SEQ ID NO 425
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 425
accttcgaaa tccgggttaa                                20

<210> SEQ ID NO 426
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 426
caccttcgaa atccgggtgt                                20

<210> SEQ ID NO 427
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 427
gcaccttcga aatccgggtgt                                20

<210> SEQ ID NO 428
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 428
ggcaccttcg aaatccgggt                                20

<210> SEQ ID NO 429
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 429
tggcaccttc gaaatccgggt                                20

<210> SEQ ID NO 430
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 430

gtggcacctt cgaatccgg 20

<210> SEQ ID NO 431
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 431

ggtggcacct tcgaaatccg 20

<210> SEQ ID NO 432
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 432

cggtggcacc ttcgaaatcc 20

<210> SEQ ID NO 433
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 433

tcggtggcac ctgcgaaatc 20

<210> SEQ ID NO 434
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 434

gtcgggtggca cttcgaaat 20

<210> SEQ ID NO 435
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 435

tgtcgggtggc accttcgaaa 20

<210> SEQ ID NO 436
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 436

-continued

gtgtcggtgg caccttcgaa 20

<210> SEQ ID NO 437
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 437

tgtgtcggtg gcacacctcg 20

<210> SEQ ID NO 438
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 438

atgtgtcggt ggcacacctcg 20

<210> SEQ ID NO 439
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 439

catgtgtcggt tggcacacctcg 20

<210> SEQ ID NO 440
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 440

gcatgtgtcggt tggcacacctcg 20

<210> SEQ ID NO 441
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 441

tgcatgtgtc ggtggcacacctcg 20

<210> SEQ ID NO 442
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 442

ttgcatgtgtc cgggtggcacacctcg 20

<210> SEQ ID NO 443
<211> LENGTH: 20

-continued

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 443
gttgcgtgtg tcgggtggcac 20

<210> SEQ ID NO 444
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 444
agttgcgtgt gtcgggtggca 20

<210> SEQ ID NO 445
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 445
aagttgcgtg tgcgggtggc 20

<210> SEQ ID NO 446
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 446
gaagttgcgt gttcggtgg 20

<210> SEQ ID NO 447
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 447
cgaagttgcgt tgcgggtgg 20

<210> SEQ ID NO 448
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 448
gtcgaagttg catgtgtcg 20

<210> SEQ ID NO 449
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 449
agtcgaagtt gcatgtgtcg 20

<210> SEQ ID NO 450
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 450
aagtgcgaagt tgcatgtgtc 20

<210> SEQ ID NO 451
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 451
caagtcgaag ttgcattgtgt 20

<210> SEQ ID NO 452
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 452
ccaagtcgaa gttgcattgtg 20

<210> SEQ ID NO 453
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 453
accaagtcga agttgcattgt 20

<210> SEQ ID NO 454
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 454
caccaagtcg aagttgcattgt 20

<210> SEQ ID NO 455
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 455
ccaccaagtc gaagttgcattgt 20

-continued

```
<210> SEQ ID NO 456
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 456
tccaccaagt cgaagttgca                                20

<210> SEQ ID NO 457
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 457
ctccaccaag tcgaagttgc                                20

<210> SEQ ID NO 458
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 458
cctccaccaa gtcgaagttg                                20

<210> SEQ ID NO 459
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 459
tcctccacca agtcgaagtt                                20

<210> SEQ ID NO 460
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 460
gtcctccacc aagtgcgaagt                                20

<210> SEQ ID NO 461
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 461
cgtcctccac caagtcgaag                                20

<210> SEQ ID NO 462
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 462

ccgtcctcca ccaagtcgaa

20

<210> SEQ ID NO 463

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 463

cccggtcctcc accaaagtgcg

20

<210> SEQ ID NO 464

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 464

gccccgtcctc caccaagtgc

20

<210> SEQ ID NO 465

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 465

agcccggtcct ccaccaagtgc

20

<210> SEQ ID NO 466

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 466

gagcccggtcc tccaccaagtgc

20

<210> SEQ ID NO 467

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 467

tgagcccggtc ctccaccaag

20

<210> SEQ ID NO 468

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 468

ggttccggagc ctctgcctcg

20

-continued

<210> SEQ ID NO 469
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 469

cggttccgag cctctgcctc

20

<210> SEQ ID NO 470
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 470

ccgggttccg gcctctgctc

20

<210> SEQ ID NO 471
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 471

cccggttccg agectctgcc

20

<210> SEQ ID NO 472
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 472

tcccggttcc gagcctctgc

20

<210> SEQ ID NO 473
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 473

gtcccggttc cgagcctctg

20

<210> SEQ ID NO 474
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 474

aggccccgggt tccgagcctc

20

<210> SEQ ID NO 475
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 475

taggtcccg ttccgagcct 20

<210> SEQ ID NO 476
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 476

ctaggtcccg gttccgagcc 20

<210> SEQ ID NO 477
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 477

tctaggtccc ggttccgagc 20

<210> SEQ ID NO 478
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 478

ctctaggtcc cgggtccgag 20

<210> SEQ ID NO 479
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 479

cctctaggtc ccgggtccga 20

<210> SEQ ID NO 480
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 480

gcctctaggc cccgggtccg 20

<210> SEQ ID NO 481
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 481

-continued

catccgctcc tgcaactgcc 20

<210> SEQ ID NO 482
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 482

ccatccgctc ctgcaactgc 20

<210> SEQ ID NO 483
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 483

tccatccgct cctgcaactg 20

<210> SEQ ID NO 484
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 484

ctccatccgc tcctgcaact 20

<210> SEQ ID NO 485
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 485

actccatccg ctcctgcaac 20

<210> SEQ ID NO 486
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 486

aactccatcc gctcctgcaa 20

<210> SEQ ID NO 487
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 487

caactccatc cgctcctgca 20

<210> SEQ ID NO 488

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 488
agcaactcca tccgctctcg                                20

<210> SEQ ID NO 489
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 489
cagcaactcc atccgctctc                                20

<210> SEQ ID NO 490
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 490
gcagcaactc catccgctcc                                20

<210> SEQ ID NO 491
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 491
cagctgtggc tccctctgcc                                20

<210> SEQ ID NO 492
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 492
acagctgtgg ctcctctgc                                20

<210> SEQ ID NO 493
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 493
gacagctgtg gctccctctg                                20

<210> SEQ ID NO 494
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 494
tgacagctgt ggctccctct 20

<210> SEQ ID NO 495
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 495
gtgacagctg tggctccct 20

<210> SEQ ID NO 496
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 496
cgtgacagct gtggctccct 20

<210> SEQ ID NO 497
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 497
ccgtgacagc tgtggctccc 20

<210> SEQ ID NO 498
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 498
cccggtgacag ctgtggctcc 20

<210> SEQ ID NO 499
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 499
ccccgtgaca gctgtggctc 20

<210> SEQ ID NO 500
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 500
ccccccgtgac agctgtggct 20

-continued

```
<210> SEQ ID NO 501
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 501
accccccgtga cagctgtggc 20

<210> SEQ ID NO 502
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 502
gacccccgtg acagctgtgg 20

<210> SEQ ID NO 503
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 503
ggaccccccgt gacagctgtg 20

<210> SEQ ID NO 504
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 504
gggaccccccgt tgacagctgt 20

<210> SEQ ID NO 505
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 505
gaaagggtggat ccgtggcccg 20

<210> SEQ ID NO 506
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 506
ggaagggtgga tccgtggccc 20

<210> SEQ ID NO 507
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

```
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 507  
  
gggaagggtgg atccgtggcc 20  
  
<210> SEQ ID NO 508  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 508  
  
tgggaagggtg gatccgtggc 20  
  
<210> SEQ ID NO 509  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 509  
  
atgggaagggt ggatccgtgg 20  
  
<210> SEQ ID NO 510  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 510  
  
gatgggaagg tggatccgtg 20  
  
<210> SEQ ID NO 511  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 511  
  
tagatggaa ggtggatccg 20  
  
<210> SEQ ID NO 512  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 512  
  
ctagatggaa aggtggatcc 20  
  
<210> SEQ ID NO 513  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 513
```

-continued

tctagatggg aagggtggat 20

<210> SEQ ID NO 514
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 514

atctagatgg gaagggtggat 20

<210> SEQ ID NO 515
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 515

ccatctagat gggaaagggtgg 20

<210> SEQ ID NO 516
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 516

ggccatctaga tggaaagggtg 20

<210> SEQ ID NO 517
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 517

ggccatctag atggaaagggt 20

<210> SEQ ID NO 518
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 518

caccagcgaa cactggccca 20

<210> SEQ ID NO 519
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 519

ccaccagcgaa gcactggccca 20

<210> SEQ ID NO 520
<211> LENGTH: 20

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 520

cccacccagcg ggcactggcc 20

<210> SEQ ID NO 521
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 521

ccccaccaggc gggcactggc 20

<210> SEQ ID NO 522
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 522

ggccccacca gcggggactg 20

<210> SEQ ID NO 523
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 523

tggccccacc acggggcact 20

<210> SEQ ID NO 524
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 524

ctggcccccac cagcgggcac 20

<210> SEQ ID NO 525
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 525

cctggcccca ccagcgggca 20

<210> SEQ ID NO 526
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 526
gcctggcccc accagcgggc 20

<210> SEQ ID NO 527
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 527
gggcctggcc ccaccagcgg 20

<210> SEQ ID NO 528
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 528
aggtggcggc ggtgcattgg 20

<210> SEQ ID NO 529
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 529
caggtggcgg cgggtgcattg 20

<210> SEQ ID NO 530
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 530
gcaggtggcg gcggtgcattg 20

<210> SEQ ID NO 531
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 531
agcaggtggc ggccgtgcatt 20

<210> SEQ ID NO 532
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 532
cagcaggtgg cggccgtgcatt 20

-continued

```
<210> SEQ ID NO 533
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 533
gcagcaggtg gccccgggtgc                                20

<210> SEQ ID NO 534
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 534
agcagcaggt ggccggcggtg                                20

<210> SEQ ID NO 535
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 535
gagcagcagg tggccggcggt                                20

<210> SEQ ID NO 536
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 536
ggagcagcag gtggccggcg                                20

<210> SEQ ID NO 537
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 537
gggagcagca ggtggccggcg                                20

<210> SEQ ID NO 538
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 538
agggagcagc aggtggccggc                                20

<210> SEQ ID NO 539
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 539

cagggagcag caggtggcg

20

<210> SEQ ID NO 540

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 540

gcagggagca gcaggtggcg

20

<210> SEQ ID NO 541

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 541

ggcagggagc agcaggtggc

20

<210> SEQ ID NO 542

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 542

tggcagggag cagcaggtgg

20

<210> SEQ ID NO 543

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 543

ctggcagggga gcagcaggtg

20

<210> SEQ ID NO 544

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 544

ccctggcagg gagcagcagg

20

<210> SEQ ID NO 545

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 545

accctggcag ggagcagcag

20

-continued

<210> SEQ ID NO 546
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 546

gaccctggca gggagcagca

20

<210> SEQ ID NO 547
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 547

ggaccctggc agggagcagc

20

<210> SEQ ID NO 548
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 548

ggcctaggga ccctggcagg

20

<210> SEQ ID NO 549
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 549

aggcctaggg accctggcag

20

<210> SEQ ID NO 550
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 550

ccaggcctag ggaccctggc

20

<210> SEQ ID NO 551
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 551

gccaggccta gggaccctgg

20

<210> SEQ ID NO 552
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 552

ggccaggcct agggaccctg 20

<210> SEQ ID NO 553
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 553

aggccaggcc tagggaccct 20

<210> SEQ ID NO 554
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 554

taggccagc ctagggaccc 20

<210> SEQ ID NO 555
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 555

ataggccagg cctagggacc 20

<210> SEQ ID NO 556
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 556

gataggccag gcctaggac 20

<210> SEQ ID NO 557
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 557

cgataggcca ggcctaggga 20

<210> SEQ ID NO 558
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 558

-continued

ccgataggcc aggcctaggg 20

<210> SEQ ID NO 559
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 559

tccgataggc caggcctagg 20

<210> SEQ ID NO 560
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 560

ctccgatagg ccaggcctag 20

<210> SEQ ID NO 561
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 561

cctccgatag gccaggccta 20

<210> SEQ ID NO 562
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 562

gcctccgata ggccaggcct 20

<210> SEQ ID NO 563
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 563

gcgctccga taggccaggc 20

<210> SEQ ID NO 564
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 564

aacaggagca gggaaagcgc 20

<210> SEQ ID NO 565

-continued

<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 565

gaacaggagc agggaaagcg 20

<210> SEQ ID NO 566
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 566

cgaacaggag caggaaagc 20

<210> SEQ ID NO 567
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 567

gcgaacagga gcagggaaag 20

<210> SEQ ID NO 568
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 568

ggcgaacagg agcaggaa 20

<210> SEQ ID NO 569
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 569

cggcgaacag gagcaggaa 20

<210> SEQ ID NO 570
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 570

acggcgaaca ggagcaggaa 20

<210> SEQ ID NO 571
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 571
aacggcgaac aggagcaggg 20

<210> SEQ ID NO 572
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 572
caacggcgaa caggagcagg 20

<210> SEQ ID NO 573
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 573
ggggggcggc acgagacaga 20

<210> SEQ ID NO 574
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 574
aggggcgccgg cacgagacag 20

<210> SEQ ID NO 575
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 575
cagggcgccgc gcacgagaca 20

<210> SEQ ID NO 576
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 576
ccagggcgcc ggcacgagac 20

<210> SEQ ID NO 577
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 577
cccagggcgcc cggcacgaga 20

-continued

```
<210> SEQ ID NO 578
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 578
gcccaggcgc gccgcacgag 20

<210> SEQ ID NO 579
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 579
agcccaggcgc ggcggcacga 20

<210> SEQ ID NO 580
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 580
cagcccaggcgc gggggcacg 20

<210> SEQ ID NO 581
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 581
gcagcccaggcgc gggggcac 20

<210> SEQ ID NO 582
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 582
ctgcgggtgag ttggccggcg 20

<210> SEQ ID NO 583
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 583
actgcgggtga gttggccggc 20

<210> SEQ ID NO 584
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

```
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 584  
  
gactgcggtg agttggccgg 20  
  
<210> SEQ ID NO 585  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 585  
  
agactgcggt gagttggccg 20  
  
<210> SEQ ID NO 586  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 586  
  
cagactgcgg tgagttggcc 20  
  
<210> SEQ ID NO 587  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 587  
  
ccagactgcg gtgagttggc 20  
  
<210> SEQ ID NO 588  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 588  
  
gccagactgc ggtgagttgg 20  
  
<210> SEQ ID NO 589  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 589  
  
cgccagactg cggtgagttg 20  
  
<210> SEQ ID NO 590  
<211> LENGTH: 20  
<212> TYPE: DNA  
<213> ORGANISM: Artificial Sequence  
<220> FEATURE:  
<223> OTHER INFORMATION: Synthetic oligonucleotide  
  
<400> SEQUENCE: 590
```

-continued

aagacagttc tagggttcag 20

<210> SEQ ID NO 591
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 591

gaagacagtt cttagggtca 20

<210> SEQ ID NO 592
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 592

cgaagacagt tctagggtc 20

<210> SEQ ID NO 593
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 593

tcgaagacag ttctagggtt 20

<210> SEQ ID NO 594
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 594

gtcgaagaca gttctagggt 20

<210> SEQ ID NO 595
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 595

agtcgaagac agttctagg 20

<210> SEQ ID NO 596
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 596

gagtcgaaga cagttctagg 20

<210> SEQ ID NO 597
<211> LENGTH: 20

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 597

ggagtcgaag acagttctag 20

<210> SEQ ID NO 598
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 598

cggagtcgaa gacagttcta 20

<210> SEQ ID NO 599
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 599

ccggagtcga agacagttct 20

<210> SEQ ID NO 600
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 600

cccgaggatcg aagacagttc 20

<210> SEQ ID NO 601
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 601

ccccggagtc gaagacagtt 20

<210> SEQ ID NO 602
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 602

ccccggaggat cgaagacagt 20

<210> SEQ ID NO 603
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 603
ggccccggag tcgaagacag 20

<210> SEQ ID NO 604
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 604
gggccccgga gtcgaagaca 20

<210> SEQ ID NO 605
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 605
aggcggtggg cgcggcttct 20

<210> SEQ ID NO 606
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 606
caggcggtgg gcgcggcttc 20

<210> SEQ ID NO 607
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 607
gcaggcggtg ggcgcggtt 20

<210> SEQ ID NO 608
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 608
tggcaggcgg tggcgccgc 20

<210> SEQ ID NO 609
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 609
actggcaggc ggtggcgccg 20

-continued

```
<210> SEQ ID NO 610
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 610
gaactggcag gcggtggcag 20

<210> SEQ ID NO 611
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 611
tgaactggca ggcggtggc 20

<210> SEQ ID NO 612
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 612
tgtgaactgg caggcggtgg 20

<210> SEQ ID NO 613
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 613
tggagctggg cggagaccca 20

<210> SEQ ID NO 614
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 614
actggagctg ggcggagacc 20

<210> SEQ ID NO 615
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 615
gactggagct gggcgagac 20

<210> SEQ ID NO 616
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 616

aggactggag ctggggggag

20

<210> SEQ ID NO 617

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 617

acaggactgg agctgggggg

20

<210> SEQ ID NO 618

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 618

cacaggactg gagctggggcg

20

<210> SEQ ID NO 619

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 619

tcacaggact ggagctgggc

20

<210> SEQ ID NO 620

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 620

gcctcagcct ggcggaaaag

20

<210> SEQ ID NO 621

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 621

ggcctcagcc tggccgaaaag

20

<210> SEQ ID NO 622

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 622

tggtgagcc aagccctccc

20

-continued

<210> SEQ ID NO 623
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 623

gggcaccctc agagcctgaa

20

<210> SEQ ID NO 624
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 624

accccactgc aagaagtcgg

20

<210> SEQ ID NO 625
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 625

gccccaggat gggaggatct

20

<210> SEQ ID NO 626
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 626

cataggacag agaaatgttg

20

<210> SEQ ID NO 627
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 627

tgctgacctt actctgcccc

20

<210> SEQ ID NO 628
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 628

taagccatgg ctctgagtca

20

<210> SEQ ID NO 629
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 629

agagaggcca tgggagggtg 20

<210> SEQ ID NO 630
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 630

ctggccctcc tggcttgc 20

<210> SEQ ID NO 631
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 631

agctgccccca tgctggccct 20

<210> SEQ ID NO 632
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 632

gccccctggca gctgccccat 20

<210> SEQ ID NO 633
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 633

ctgtcggctg cgccccctggc 20

<210> SEQ ID NO 634
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 634

cggcgaacac ctgcctgtcg 20

<210> SEQ ID NO 635
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 635

-continued

cctcccaagtg cctggggcacc 20

<210> SEQ ID NO 636
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 636

gcgcctgtct gcaaagctgg 20

<210> SEQ ID NO 637
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 637

cccaaagttg tccctcctgg 20

<210> SEQ ID NO 638
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 638

acacccagaa gaacccaaag 20

<210> SEQ ID NO 639
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 639

ctgacccaca cggctcatag 20

<210> SEQ ID NO 640
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 640

tggccccagg ccctggaaag 20

<210> SEQ ID NO 641
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 641

gacaaggcag ctggcagaag 20

<210> SEQ ID NO 642

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 642
aagaaaccag tgaccagtga                                20

<210> SEQ ID NO 643
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 643
ctgtgaaatg ggaggaggag                                20

<210> SEQ ID NO 644
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 644
gaagggtttt ccagaggctg                                20

<210> SEQ ID NO 645
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 645
ggccaggaga gtcattaggg                                20

<210> SEQ ID NO 646
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 646
ccacaaaagg agtgctcctc                                20

<210> SEQ ID NO 647
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 647
ccttttaagg cagcagggAAC                                20

<210> SEQ ID NO 648
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 648
ctaggactgt ctgcttccca 20

<210> SEQ ID NO 649
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 649
gtcattcatc aatttctaag 20

<210> SEQ ID NO 650
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 650
ggaggagctg cagccggaga 20

<210> SEQ ID NO 651
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 651
gcacccggag gagctgcagc 20

<210> SEQ ID NO 652
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 652
gcacgacacc tgcagggcac 20

<210> SEQ ID NO 653
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 653
agtcaccag gtagttctca 20

<210> SEQ ID NO 654
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 654
gcttcctctc cccacctctt 20

-continued

```
<210> SEQ ID NO 655
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 655
gcagcacccc caatcctaga 20

<210> SEQ ID NO 656
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 656
gcccctcatc cacctgacac 20

<210> SEQ ID NO 657
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 657
ttccaggtaa gagacccccc 20

<210> SEQ ID NO 658
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 658
agaataggta ccagacactc 20

<210> SEQ ID NO 659
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 659
ctccccctga gatgttctgg 20

<210> SEQ ID NO 660
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 660
ccccagccca gagataacca 20

<210> SEQ ID NO 661
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 661

cctgatccat cacggatggc 20

<210> SEQ ID NO 662
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 662

tactccatga ccaggtactg 20

<210> SEQ ID NO 663
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 663

gctctgacct tccaagaacc 20

<210> SEQ ID NO 664
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 664

ctcccttctg tggtcccacc 20

<210> SEQ ID NO 665
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 665

gtcgggtttg atgtccctgc 20

<210> SEQ ID NO 666
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 666

agggcactgg ctcaccgttc 20

<210> SEQ ID NO 667
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 667

-continued

gggcctcct tcacaaccact 20

<210> SEQ ID NO 668
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 668

gccccccctt ctggggccac 20

<210> SEQ ID NO 669
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 669

aggagcagag cgaggcttgg 20

<210> SEQ ID NO 670
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 670

cacctttag tggacgatct 20

<210> SEQ ID NO 671
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 671

ctaccccgcc cccgctcacc 20

<210> SEQ ID NO 672
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 672

ctaggtcaact gctgggtct 20

<210> SEQ ID NO 673
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 673

ctcagatagc tccccactcc 20

<210> SEQ ID NO 674
<211> LENGTH: 20

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 674

aattctctaa ttctctagac 20

<210> SEQ ID NO 675
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 675

tacctgaggg ccatgcagga 20

<210> SEQ ID NO 676
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 676

gttccaagac tgatcctgca 20

<210> SEQ ID NO 677
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 677

aggagggcgg tggcgccggcg 20

<210> SEQ ID NO 678
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 678

tgacagctgg aaggagaaga 20

<210> SEQ ID NO 679
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 679

catggaaagg tggatccgtg 20

<210> SEQ ID NO 680
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 680
ggaggttatac tagggagatc 20

<210> SEQ ID NO 681
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 681
gaaggggacag gtgacccgat 20

<210> SEQ ID NO 682
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 682
cgtagcccttg cagggagcag 20

<210> SEQ ID NO 683
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 683
ggactcgccc cgcctacgac 20

<210> SEQ ID NO 684
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 684
ctcctgggac tcgccccgac 20

<210> SEQ ID NO 685
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 685
gctcctggga ctcgccccgc 20

<210> SEQ ID NO 686
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 686
attggctcct gggactcgac 20

-continued

```
<210> SEQ ID NO 687
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 687
gattggctcc tgggactcg 20

<210> SEQ ID NO 688
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 688
gcctctgatt ggctcctggg 20

<210> SEQ ID NO 689
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 689
gcatgggcct ctgattggct 20

<210> SEQ ID NO 690
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 690
cacccggcat gggcctctga 20

<210> SEQ ID NO 691
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 691
gccaggccata gggacctgcg 20

<210> SEQ ID NO 692
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 692
ttcctcccc aaccctgatt 20

<210> SEQ ID NO 693
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 693

aagtttgcag caacttttct

20

<210> SEQ ID NO 694

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 694

gccccctcgga attcccggt

20

<210> SEQ ID NO 695

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 695

catctcgccc tgcgctccgc

20

<210> SEQ ID NO 696

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 696

gcaggccccc acattcccca

20

<210> SEQ ID NO 697

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 697

cttctgcacg cctccgtctc

20

<210> SEQ ID NO 698

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 698

tggccccacag ccacggccgg

20

<210> SEQ ID NO 699

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 699

ggcctggccc caccagcgcc

20

-continued

<210> SEQ ID NO 700
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 700

cctggcaggg agcagcaggt 20

<210> SEQ ID NO 701
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 701

cagccgcact tcggctgaca 20

<210> SEQ ID NO 702
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 702

gcctgggtcc agcaccagct 20

<210> SEQ ID NO 703
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 703

gtcccaggaa gcctgggtcc 20

<210> SEQ ID NO 704
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 704

cgttagcagg tccccgcccc 20

<210> SEQ ID NO 705
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 705

gtctatggcc atgacaatct 20

<210> SEQ ID NO 706
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 706

gtagccccagc cgggtgcacgg 20

<210> SEQ ID NO 707
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 707

gggtgccccac agccaccaggc 20

<210> SEQ ID NO 708
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 708

tggcccgtag ctgcctgccc 20

<210> SEQ ID NO 709
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 709

gaaatcacc tgccccacct 20

<210> SEQ ID NO 710
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 710

ggatgtttct gaaatcacc 20

<210> SEQ ID NO 711
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 711

gtggcaccct cgaagtctgg 20

<210> SEQ ID NO 712
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 712

-continued

ccccgctcac catggcagtg 20

<210> SEQ ID NO 713
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 713

ggtccgggac ctgattgtct 20

<210> SEQ ID NO 714
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 714

gctgcatgtc tgcccgcccc 20

<210> SEQ ID NO 715
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 715

ggccccagaa cccttagctgc 20

<210> SEQ ID NO 716
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 716

tcacagggcc tggctgcccc 20

<210> SEQ ID NO 717
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 717

ggctgacatg ttggggcaggc 20

<210> SEQ ID NO 718
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 718

tgtccaggcc ccagaaccct 20

<210> SEQ ID NO 719

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 719
ggccaggcct agggatctgc                                20

<210> SEQ ID NO 720
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 720
cgcctcggat aggccaggcc                                20

<210> SEQ ID NO 721
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 721
ggcttggagt cttagggttc                                20

<210> SEQ ID NO 722
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 722
tccccggccg ccaggtggca                                20

<210> SEQ ID NO 723
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 723
ggtgctgggc acgagccctg                                20

<210> SEQ ID NO 724
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 724
gcccagctgc tgcagcagcg                                20

<210> SEQ ID NO 725
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
```

-continued

<400> SEQUENCE: 725

ccgtgtgtgc tggcagaggt

20

<210> SEQ ID NO 726

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 726

ataaataccg aggaatgtcg

20

<210> SEQ ID NO 727

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 727

gggacacgaca ataaataccg

20

<210> SEQ ID NO 728

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 728

gtgcagccca gtgtggcgcc

20

<210> SEQ ID NO 729

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 729

cctggagaag ttctggttgg

20

<210> SEQ ID NO 730

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 730

ggtgaccgcga tcggagccca

20

<210> SEQ ID NO 731

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 731

agctggagag agaagggaca

20

-continued

```
<210> SEQ ID NO 732
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 732
gtgaggact cgcctgcggc 20

<210> SEQ ID NO 733
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 733
gcggctgcgg tgccccagcc 20

<210> SEQ ID NO 734
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 734
gggccatcta gctggagaga 20

<210> SEQ ID NO 735
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 735
ccccactgca agaagtccgc 20

<210> SEQ ID NO 736
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 736
ttgagccctt ttaaggcagc 20

<210> SEQ ID NO 737
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 737
tgaccaggta ctgggagcgg 20

<210> SEQ ID NO 738
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

-continued

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 738

cctggagctg gatcagtccc 20

<210> SEQ ID NO 739
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 739

acatgggaag gtggatccgt 20

<210> SEQ ID NO 740
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 740

gtgggacata ccctggcagg 20

<210> SEQ ID NO 741
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 741

gccaggccta gggatctgca 20

<210> SEQ ID NO 742
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 742

ggaagcacga cacctcgct 20

<210> SEQ ID NO 743
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 743

cctcaccatt ccatcaggct 20

<210> SEQ ID NO 744
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 744

-continued

cggcagcgac aagtgttccc 20

<210> SEQ ID NO 745
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 745

gtctctgaag gccatgcgac 20

<210> SEQ ID NO 746
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 746

cagccacttg atccgggtggg 20

<210> SEQ ID NO 747
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 747

aggtcggcct cttagccac 20

<210> SEQ ID NO 748
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 748

gttggctgga gaagttctgg 20

<210> SEQ ID NO 749
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 749

ccccgtgatg gctgcggcct 20

<210> SEQ ID NO 750
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 750

aggccaggcc tagggatcct 20

<210> SEQ ID NO 751
<211> LENGTH: 20

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 751

ggcgcggtgc cccagcctgg 20

<210> SEQ ID NO 752
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 752

gtcctggccc caccagcggg 20

<210> SEQ ID NO 753
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 753

ccaggcctag gaatcctggc 20

<210> SEQ ID NO 754
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 754

gcgcctcgga tagccaggcc 20

<210> SEQ ID NO 755
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 755

cccagtgtgg cgcagcagcc 20

<210> SEQ ID NO 756
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 756

gtgtttcatc ttcaccaccc 20

<210> SEQ ID NO 757
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 757
aggtcagcct cttcagccac 20

<210> SEQ ID NO 758
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 758
ggccatatgg gaagggtggat 20

<210> SEQ ID NO 759
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 759
ggaggatttg gcgagaagca 20

<210> SEQ ID NO 760
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 760
cgaaagtctgc cccacacctga 20

<210> SEQ ID NO 761
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 761
gtggcacccct cgaaagtctgc 20

<210> SEQ ID NO 762
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 762
gggtccattg taaggaagct 20

<210> SEQ ID NO 763
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 763
ggtgccccaca gccaccaggg 20

-continued

```
<210> SEQ ID NO 764
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 764
tccatggcag tgagccggtc 20

<210> SEQ ID NO 765
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 765
gggaccactt gatccgggtgg 20

<210> SEQ ID NO 766
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 766
ggatcagagt tgggaccact 20

<210> SEQ ID NO 767
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 767
ccccgtgatg gctgcgggttc 20

<210> SEQ ID NO 768
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 768
gtgtgtcctc ataccccgcc 20

<210> SEQ ID NO 769
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 769
gcaccctcgaa agtctcgacc 20

<210> SEQ ID NO 770
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 770

gctctgaagg ccatgcagca

20

<210> SEQ ID NO 771

<211> LENGTH: 25

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 771

gacatatgcc aagattgtgc actac

25

<210> SEQ ID NO 772

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 772

cacgaattag gtcctgagct t

21

<210> SEQ ID NO 773

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Probe

<400> SEQUENCE: 773

aacacttgtc gctgccgtg gc

22

<210> SEQ ID NO 774

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 774

agcgaggcct cacttggcgc

20

<210> SEQ ID NO 775

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 775

gggaagcgag gcttcacttg

20

<210> SEQ ID NO 776

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 776

gcggtcagcg atccccagggt

20

-continued

<210> SEQ ID NO 777
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 777

gggtgccagc gcgggtatct

20

<210> SEQ ID NO 778
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 778

tgttacaaag aaagtgactg

20

<210> SEQ ID NO 779
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 779

cgatggcagc aacgaaagt

20

<210> SEQ ID NO 780
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 780

gtcagttac gatggcagca

20

<210> SEQ ID NO 781
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 781

caggcatttg tttcgaaaaa

20

<210> SEQ ID NO 782
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 782

ccatttctt ccacaggct

20

<210> SEQ ID NO 783
<211> LENGTH: 20
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 783

atgtttcttc aagtttcca 20

<210> SEQ ID NO 784
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 784

cagaatgact ttaatgcttc 20

<210> SEQ ID NO 785
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 785

ccacccgcaaa tgcttctaga c 21

<210> SEQ ID NO 786
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 786

cccccccaatt gagaagattc 20

<210> SEQ ID NO 787
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Probe

<400> SEQUENCE: 787

ctccacacctcc agcacgcgac ttct 24

<210> SEQ ID NO 788
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 788

gcggtcagecg atcccagggt 20

<210> SEQ ID NO 789
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 789

-continued

agcagcagca gcagcagcag cagca	25
<210> SEQ ID NO 790	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 790	
agcagcagca gcagcagcag	20
<210> SEQ ID NO 791	
<211> LENGTH: 15	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 791	
gcagcagcag cagca	15
<210> SEQ ID NO 792	
<400> SEQUENCE: 792	
000	
<210> SEQ ID NO 793	
<211> LENGTH: 2611	
<212> TYPE: DNA	
<213> ORGANISM: Mus musculus	
<400> SEQUENCE: 793	
cgggaagacc ccgagatccg gccccgggag gggccatggt gttgcctgcc caacatgtca	60
gccgaagtgc gggtgaggca gtcggcagcg ctgggtgcgg acccaggctt cctgggactg	120
gagccccctgc tcgaccttct cctggggcgc caccaggagc tgggtgcctc tcacctagcc	180
caggacaagt atgtggccga cttcttgcag tgggtggagc ccattgcagc aaggcttaag	240
gaggtccgac tgcagagggg tgatttgag attttgaagg tgatcggcgc tggggcggtc	300
agcgaggtag cggtggtaaa gatgaaacag acggggcaag tgtatgcacat gaagattatg	360
aataagtggg acatgctgaa gagaggcgag gtgtcggtct tccggaaaga aagggtatgt	420
ttagtgaaag gggaccggcg ctggatcaca cagctgcact ttgccttcca ggatgagaac	480
tacctgtacc tggtcatggaa atactacgtg ggcggggacc tgctaaacgt gctgagcaag	540
tttggggagc ggatccccgc cgagatggct cgcttctacc tggccggatgt tgcgtatggcc	600
atagactccg tgcacccggct gggctacgtg cacagggaca tcaaaccaga taacattctg	660
ctggaccgat gtgggcacat tgcctggca gacttcggct cctgcctcaa actgcggcc	720
gatggaatgg tgaggtcgct ggtggctgtg ggcaccccg actacctgtc tcctgagatt	780
ctgcaggccg ttgggtggagg gcctggggca ggcagctacg ggcggatgt tgactggtg	840
gcactggcg tggcaccta tgagatgttc tatggcaga ccccttcta cgccggactcc	900
acagccgaga catatgccaa gattgtgcac tacagggaaac acttgcgt gccgctggca	960
gacacagttg tccccgagga agctcaggac ctcatcggt ggctgcgtg tcctgcgtg	1020
ataaggctag gtcgagggtgg ggcagacttc gagggtgcca cggacacatg caatttcgt	1080

-continued

gtggtgagg accggctcac tgccatggc agcgaaaaaa aaaaaaaaaa a
caggaaagaca tgccccctgg ggtgcgcctg cccttcgtgg gctacttccta ctgctgcata
gccttcagag acaatcaggt cccggacccc accccatgg aactagaggc cctgcagtt
cctgtgtcaag acttgcaagg gcttgacttg cagccccccag tgtccccccacc ggetcaagtg
gctgaagagg ctgacccatgt ggctgtccct gcccctgtgg ctgaggcaga gaccacggta
acgctgcagc agctccagga agccctggaa gaagaggatc tcacccggca gagccgtgac
cgcgagctgg aggccatccg gaccgccaac cagaacttct ccagccaaact acaggaggcc
gagggtccgaa accgagaccc ggaggcgcat gttcggcagc tacaggaaacg gatggagatg
ctgcaggccc caggagccgc agccatcactc ggggtccccca gtccccggc cacggatcca
ccttccatc tagatggcccc cccggccgtg gctgtggccc agtgcggcgtt ggtggggcca
ggcccccattgc accgcccgtca cctgtgtctc cctgccaaggaa tccctaggcc tggctatccc
gaggcgccgtt gcctgtctt gttcggcgtt gctctggctg ctgcccac acctgggctgc
actgggttgg tggctatacc cggcggtctc accccagttt ggtgtttccc gggagccacc
ttcgccccctt gaaccttaag actccaagcc atctttcatt taggccttctt aggaaggatcg
agcgaccagg gagecgacccaa aagcgctctt gtgccccatcg ccccccccccc cccccccacc
gtcccgctcc acacttctgt gagectgggt ccccaaccagg ctcccgctctt gtgatccagg
cctgcccacctt ggccggccggg gagggaggaa cagggtctgtt gcccggccacc cctgggttctt
gcagagctgg tagccaccgc tgctgcagca gctggggattt cggccgacccctt gctttactca
gccccggacgtt ggtatggccaa actgtcagc tcatccgattt tcacttttc actctccca
ccatcgttta caagccataaa gcatgagccccc cctatttcca gggacatccc attcccatag
tgcgttggatca gcaagacccctc tgccagcaca caccggatctt ttggcttcgg acagccctcac
tcctgggggtt tgctgcactt cctttccctgtt gtacacgtt gcaactctaacc aacggagccaa
cagctgcactt ccccccctccc ccaaaggactt gtgggttattt attgtatctt gttatctgact
cactgacaga ctccgggacc caccgttttag atgcattttagt gactcgacattt cctcggttattt
tattgtctgtt ccccacctac gacccactt cccgacccctt gcaataaaaaa tacttctgggt
ctgccccctaa aaaaaaaaaaaaaa aaaaaaaaaaaaaa a

```
<210> SEQ ID NO 794
<211> LENGTH: 988
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 531, 942
<223> OTHER INFORMATION: n = A,T,C or G
```

<400> SEQUENCE: 794

```
gctggaccgg tccggaattc tccggatcgc cagcctttgt gggccatatt cgtcatccct 60
cctggcttct catctgcttt tgtggtccta gctcaagacc tctaattcct ctgctgactt 120
aaatggccctt cccccagaggt cttctcaggc cttagtgacca agcttggacg cttatctgt 180
cctgccccaaac attgagccaa agctccagct tacccagct tccttacaat ggaccggcatt 240
gcagcaaggc ttaaggaggt ccgactgcag agggatgatt ttgagattt gaagggtgatc 300
ggcggtgggg cgttcagcga ggttagcggtg gtgaagatga aacagacggg ccaagtgtat 360
```

-continued

gccatgaaga ttatgaataa	gtgggacatg ctgaagagag	gcgagggtgtc	gtgtttccgg	420	
gaagaaaaggg atgttattgt	gaaaggggac	cgccgcgtgga	tcacacagct	gcactttgcc	480
ttccaggatg agaactacct	gtacctggtc	atggaataact	acgtggcg	ngacctgcta	540
acgtgctga gcaagtttg	gggagcggat	ccccgcggag	atggctcgct	tctacctggc	600
cgagattgtc atggccatag	actccgtgca	ccggctggc	tacgtgcaca	gggacatcaa	660
accagataac attctgctgg	accgtatgtt	gcacattcgc	ctggcagact	tcggctcctg	720
gcctcaactg cagcctgatg	gaatggtgg	gtccccctgg	ggctgtggc	accccccggac	780
tacctgtctc ctgaaattct	gcagggcctt	ggtgggaggc	cctggggaaag	gcaactacgg	840
gccaaaaggtaaagggggg	ggcctggggg	gggttcccct	atgaaaaggtaa	ctatggggag	900
gaccccttt aagcggaaatc	ccaggccgaa	aaatatgccc	angattggc	cctaacaagg	960
aaaactttc ccctgcccct	gggacaaat				988

<210> SEQ ID NO 795

<211> LENGTH: 649

<212> TYPE: DNA

<213> ORGANISM: *Mus musculus*

<400> SEQUENCE: 795

ggcgtgttcg cctatgagat	gttctatggg	cagacccct	tctacgcgga	ctccacagcc	60	
gagacatatg ccaagattgt	gcactacagg	gaacacttgt	cgctgcgcgt	ggcagacaca	120	
gttgcctccg aggaagctca	ggacctcatt	cgtggctgc	tgtgtctgc	tgagataagg	180	
ctaggtcgag	gtggggcagg	tgatttccag	aaacatccctt	tcttcttgg	ccttattgg	240
gagggtctcc	gagacagtgt	accccccctt	acaccagact	tcgaggggtc	cacggacaca	300
tgcaatttcg	atgtggtgg	ggacccggc	actgcccatt	agacgctgtc	agacatgcag	360
gaagacatgc	cccttgggt	gcccctgc	ttcgtgggt	actctactg	ctgcattggc	420
ttcagagaca	atcaggtccc	ggacccacc	cctatggaa	tagaggccct	gcagttgcct	480
gtgtcagact	tgcaagggtc	tgacttgcag	ccccagtg	ccccaccgg	tcaagtggc	540
cacaactctga	tccccaccga	caggctgaag	aggctgacct	agtggctgtc	cctgcaccctg	600
tggctgaggc	agagccacgg	taacgctgca	gcagctccag	gaagccctg		649

<210> SEQ ID NO 796

<211> LENGTH: 527

<212> TYPE: DNA

<213> ORGANISM: *Mus musculus*

<400> SEQUENCE: 796

atttcgatgt	ggtgaggac	cggttcactg	ccatggtgag	cgggggcg	gagaegctgt	60
cagacatgca	ggaagacatg	cccttgggg	tgcgcctg	cttcgtggc	tactctact	120
gctgcattggc	cttcagagac	aatcaggtc	cgacccac	ccctatggaa	ctagaggccc	180
tgcagttggc	tgtgtcagac	ttgcaagg	ttgacttgca	gccccca	tcccccaccgg	240
atcaagtggc	tgaagaggct	gacctagtgg	ctgtccctgc	ccctgtggct	gaggcagaga	300
ccacggtaac	gctgcagcag	ctccaggaag	ccctggaa	agaggttctc	acccggcaga	360
gcctgagccg	cgagctggag	gcccattgg	ccgccaacca	gaacttcc	aggaggccga	420
ggtccgaaac	cgagacctgg	aggcgatgt	tcggcagct	caggaacgg	tggagatgt	480
gcaggccccca	ggaaccgcag	ccatcacggg	ggtccccagt	ccccccgg		527

-continued

<210> SEQ ID NO 797
 <211> LENGTH: 567
 <212> TYPE: DNA
 <213> ORGANISM: *Mus musculus*

<400> SEQUENCE: 797

atggtgaggt	cgctggtggc	tgtggcacc	ccggactacc	tgtctctgta	gattctgcag	60
ggcggttggt	gagggcctgg	ggcaggcagc	tacgggcacag	agtgtactg	gtgggactg	120
ggcggttggt	cctatgagat	gttctatggg	cagacccctt	tctacgcgga	ctccacagcc	180
gagacatatg	ccaagattgt	gcactacagg	gaacacttgt	cgctgecgct	ggcagacaca	240
gttgtccccg	aggaagctca	ggacctcatt	cgtgggctgc	tgtgtctgc	ttagataagg	300
ctaggtcgag	gtggggcagg	tgatttccag	aaacatccctt	tcttcttgg	ccttggattgg	360
gagggtctcc	gagacagtgt	accccccatt	acaccagact	tcgagggtgc	cacggacaca	420
tgcaatttgc	atgtggtgg	ggaccggctc	actgcccattgg	tgagcgggggg	cggggatgaa	480
ggacacacag	gtgaccagtc	cccaagacag	tgagtggagc	ttcactcttg	gcagtactaa	540
aattgaatgt	agggggctgg	gctcttg				567

<210> SEQ ID NO 798
 <211> LENGTH: 2474
 <212> TYPE: DNA
 <213> ORGANISM: *Mus musculus*

<400> SEQUENCE: 798

ccgggaagaa	agggatgtat	tagtggaaagg	ggaccggcgc	tggatcacac	agctgcactt	60
tgccttccag	gatgagaact	acctgtaccc	ggtcatggaa	tactacgtgg	gcggggaccc	120
gctaacgctg	ctgagcaagt	ttggggagcg	gatccccgcc	gagatggctc	gcttctaccc	180
ggccgagatt	gtcatggcca	tagactccgt	gcacccggctg	ggctacgtgc	acagggacat	240
caaaccagat	aacattctgc	tggaccatgg	tggccacatt	cgcctggcag	acttcggctc	300
ctgcctcaaa	ctgcagccgt	atggatggt	gaggtcgtg	gtggctgtgg	gcacccggaa	360
ctacctgtct	cctgagattc	tgcaggccgt	tggtgagggg	cctggggcag	gcagctacgg	420
gccagagtgt	gactgggtgg	cactggccgt	gttcgcctat	gagatgtct	atggggagac	480
cccttctac	cgccgactcca	cagccgagac	atatgccaag	attgtgcact	acagggaaaca	540
cttgcgcgt	ccgctggcag	acacagtgt	ccccggagaa	gctcaggacc	tcattcgtgg	600
gctgctgtgt	cctgctgaga	taaggctagg	tgcagacttc	gagggtgcca	cgacacatg	660
caatttcgat	gtgggtggagg	accggctcac	tgcctatggt	agcggggggc	gggagacgct	720
gtcagacatg	caggaagaca	tgcctatggt	ggtgccgcctg	cccttcgtgg	gctactccta	780
ctgctgcgt	gccttcagag	acaatcggt	ccggacccc	accctatgg	aactagaggc	840
cctgcagttg	cctggtgtcag	acttgcaagg	gcttgcactg	cagcccccc	tgtccccacc	900
ggatcaagtgt	gctgaagagg	ccgacctagt	ggctgtccct	gccctgtgg	ctgaggcaga	960
gaccacggta	acgctgcgc	agctccagg	agccctggaa	gaagagggttc	tcacccggca	1020
gagcctgagc	cgcgagctgg	aggccatccg	gaccggcaac	cagaacttct	ccagccaaact	1080
acaggaggcc	gagggtccgaa	accgagaccc	ggaggccat	gttccggcagc	tacaggaacg	1140
gatggagatg	ctgcaggcccc	caggagccgc	aggcgagttc	ctcacctgt	tccagccaaag	1200

-continued

ggggcaactgg	gtggagatgg	ggggcatgtt	gggtgtgtga	accctcgaaa	caggggagga	1260
gtccaggctg	gggcaccgca	gcccgcacc	tgccttctc	ctccatcctc	cacactccat	1320
acacctctct	cttctccctc	cagccatcac	gggggtcccc	agtccccggg	ccacggatcc	1380
acttccccat	gcttcctcgcc	aaatccccc	caagggaaact	ccctagactc	ccgttctggc	1440
ctcgactaga	tcccccgcact	gcttcctcgcc	ctgctgtgg	gctccgatcg	ggtcacctgt	1500
cccttctctc	tccagctaga	tggcccccgg	gcccgtggctg	tggcccgatg	cccgctggtg	1560
ggcccgaggcc	ccatgcaccc	ccgtcacctg	ctgctccctg	ccaggatccc	taggcctggc	1620
ctatccgagg	cgcgttgcct	gctcctgttc	gcccgtgtc	tggctgtgc	cggccacactg	1680
ggctgcactg	ggttgggtggc	ctataccggc	ggtctcaccc	cagtctggtg	tttcccggg	1740
gccacccctcg	ccccctgaac	cctaagactc	caagccatct	ttcattttagg	cctccttagga	1800
agatcgagcg	accaggggagc	gaccggaaagc	gtctctgtgc	ccatcgcccc	cccccccccc	1860
ccaccggctc	cgctccacac	ttctgtgagc	ctgggtcccc	accagctcc	gctcctgtga	1920
tccaggcctg	ccacctggcg	gcccggggagg	gaggaacagg	gctcgtgccc	agcaccctgt	1980
gttcctgcag	agctggtagc	caccgctgtc	gcagcagctg	ggcattcgcc	gaccttgctt	2040
tactcagccc	tgacgtggat	gggctaactg	ctcagctcat	ccgatttac	tttttactc	2100
tcccagccat	cagttacaag	ccataagcat	gagccccc	tttccaggga	catccattc	2160
ccatagtgtat	ggatcagcaa	gacctctgccc	agcacacaag	gagtctttgg	cttcggacag	2220
cctcaactct	gggggttgcgt	gcaactcctt	ccccgtgtac	acgtctgcac	tctaacaacg	2280
gagccacagc	tgcactcccc	cctccccc	agcagtgtgg	gtatattatg	atcttggat	2340
ctgactca	gacagactcc	gggacccacg	ttttagatgc	attgagactc	gacattcctc	2400
gttattttat	gtctgtcccc	acctacgacc	tccactcccg	acccttgca	ataaaatact	2460
tctggtctgc	ccta					2474

<210> SEQ ID NO 799

<211> LENGTH: 2135

<212> TYPE: DNA

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 799

ccgggaagaa	agggatgtat	tagtggaaagg	ggaccggcgc	tggatcacac	agctgcactt	60
tgccttccag	gatgagaact	acctgtacct	ggtcatggaa	tactacgtgg	ggggggacct	120
gctaacgctg	ctgagcaagt	ttggggagcg	gatcccccgg	gagatggctc	gcttctacct	180
ggccgagatt	gtcatggcaca	tagactccgt	gcacccggctg	ggctacgtgc	acaggacat	240
caaaccagat	aacattctgc	tggaccatgt	tggccacatt	cgccctggcag	acttggctc	300
ctgcctcaaa	ctgcagccctg	atggaatggt	gaggtcgctg	gtggctgtgg	gcaccccgga	360
ctacctgtct	cctgagattc	tgcagggcg	tggtgaggg	cctggggcag	gcagctacgg	420
gccagagtgt	gactgggtgg	cactggcg	gttcgcctat	gagatgttct	atgggcagac	480
cccttctac	gcggactcca	cagccgagac	atatgcaag	attgtgact	acagggaaaca	540
cttgcgtctg	ccgctggcag	acacagttgt	ccccgaggaa	gctcaggacc	tcattctgg	600
gctgcgtgt	cctgcgtgaga	taaggctagg	tgcaggtgg	gcaggtgatt	tccagaaaca	660
tccttcttc	tttggccctt	attggggagg	tctccgagac	agtgtaccc	cctttacacc	720
agacttcgag	ggtgcacgg	acacatgcaa	tttcgtatgt	gtggaggacc	ggctcactgc	780

-continued

catggagacg ctgtcagaca tgcaggaaga catgccccctt ggggtgcgcc tgcccttcgt 840
gggctactcc tactgtgca tggccttcag agctgaagag gccgacccatg tggctgtccc 900
tgccccctgtg gctgaggcag agaccacccgtt aacgctgcag cagctccagg aagccctggaa 960
agaagaggtt ctcacccggc agagcctgag ccgcgcagctg gaggccatcc ggaccgccaa 1020
ccagaaacttc tccagccaac tacaggaggc cgaggtccga aaccgagacc tggaggcgc 1080
tgttcggcag ctacaggaac ggtatggat gctgcaggcc ccaggaggcccg cagccatcac 1140
gggggtcccccc agtccccggg ccacggatcc accttcccat atggcccccc ggccgtggct 1200
gtggggccagt gcccgcgtgtt gggggccaggc cccatgcacc gccgtcacct gctgtccct 1260
gccaggatcc ctaggcctgg cctatccgag ggcgcgttgc tgctccctgtt cgccgcgtgt 1320
ctggctgtgtg cggccacact gggctgcact gggttgggtgg cctataccgg cggtctcacc 1380
ccagctgtgtt gttttccggg agccacccctt gccccctgaa ccctaagact ccaagccatc 1440
tttcatttag gcctcttagg aagatcgagc gaccaggagcg accccaaag cgctctgtg 1500
cccatcgccccccccccccc acccgcttccaca cttctgtgag cctgggtcccccc 1560
caccaggctc cgctctgtg atccaggctt gccacctggc ggccggggag ggaggaaacag 1620
ggctcgcc cagcacccctt gtttctgca gagctggtag ccaccgcgtc tgccagcgt 1680
gggcattcgc cgacattgtt ttactcagcc ctgacgtgga tgggctaact gctcagctca 1740
tccgatttca ctttttcaact ctcccagcca tcagttacaa gccataagca tgagccccctt 1800
atttccaggc acatcccaattt cccatagtgatggatcagca agacctctgc cagcacacac 1860
ggagtttttgcgttgc gcttcggacatccgc gcttcactcc tgggggttgc tgcaactccctt tccccgtgt 1920
cacgtctgca ctctaaacaac ggagccacag ctgcactccc ccctccccca aagcagtgtg 1980
ggtattttat gatcttgttta tctgtactcac tgacagactc cgccggccacatccgc gtttttagatg 2040
cattgagact cgacattcctt ccgttattat tgcgttgc caccctacgc ctccactccc 2100
qacccttqcc aataaaaatac ttctqgttgc cccta 2135

<210> SEQ ID NO 800
<211> LENGTH: 2873
<212> TYPE: DNA
<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 800
aggggggctg gaccaagggg tggggagaag gggaggaggc ctcggccggc cgcagagaga 60
agtggccaga gaggcccagg ggcacagccag ggacaggcag acatgcagcc agggctccag 120
ggcctggaca ggggctgcca ggcctgtga caggaggacc ccgagcccc ggcggggga 180
ggggccatgg tgctgcctgt ccaacatgtc agccgaggtg cggctgaggc ggctccagca 240
gtctgggttg gaccgggtt tcctggggct ggagccctgt ctcgaccccttc tcctggcgt 300
ccaccaggag ctgggcccct ccgaactggc ccaggacaag tacgtggccg acttcttgc 360
gtgggcccggag cccatctgtgg tgaggcttaa ggaggttccga ctgcagaggg acgacttgc 420
gattctgaag gtgatcgac gcggggcggt cagcgaggtt gcggtagtga agatgaagca 480
gacggggccag gtgtatgcca tgaagatcat gaacaagtgg gacatgtga agagggccga 540
ggtgtctgtc ttccgtgagg agagggacgt gtttgtaat ggggacccggc ggtggatcac 600
gcagctgcac ttccgccttc aggtatgttca ctacctgtac ctggcatgg agtattacgt 660

-continued

gggcggggac	ctgctgacac	tgctgagcaa	gtttggggag	cgattccgg	ccgagatggc	720
gcgttctac	ctggcgaga	ttgtcatggc	catagactcg	gtgcaccggc	ttggctacgt	780
gcacagggac	atcaaaccg	acaacatcc	gttggaccgc	tgtggccaca	tccgcctggc	840
cgacttcggc	tcttcctca	agctgcgggc	agatggaa	gtgcggtcgc	ttggctgtgt	900
gggcacccca	gactacctgt	cccccgagat	cctgcaggct	gtggggcggt	ggcctgggac	960
aggcagctac	gggccccgagt	gtgactgggt	ggcgctgggt	gtattgcct	atgaaatgtt	1020
ctatggcag	acgccttct	acgcggattc	cacggcgag	acctatggca	agatcgatcca	1080
ctacaaggag	cacccctctc	tgccgctgg	ggacgaaggg	gtccctgagg	aggctcgaga	1140
cttcattcag	cgggtgcgtgt	gtcccccgg	gacacggctg	ggccgggggt	gagcaggcga	1200
cttcggaca	catcccttct	tcttggcc	cgactggat	ggctccggg	acagcgtgcc	1260
cccctttaca	ccggatttcg	aagggtccac	cgacacatgc	aacttcgact	ttgtggagga	1320
cgggctact	gccccggaga	cactgtcgga	cattcgggaa	ggtgcgcgc	taggggtcca	1380
cctgcctttt	gtgggctact	cctactcctg	catggccctc	agggacatgt	aggcccagg	1440
ccccacaccc	atggaaactgg	aggccgagca	gctgcttgag	ccacacgtgc	aagcgcacccag	1500
cctggagccc	tcgggtgtccc	cacaggatga	aacagctgaa	gtggcagttc	cagcggctgt	1560
ccctgcggca	gaggctgagg	ccgaggtgac	gctgcgggag	ctccaggaag	ccctggagga	1620
ggaggtgctc	acccggcaga	gcctgagccg	ggagatggag	gccatccgca	cgacaaccca	1680
gaacttcgcc	agtcaactac	gcgaggcaga	ggctcgaa	cgggacatcg	aggcacacgt	1740
cggcagttg	caggagcgg	tggagttgt	gcagggcagag	ggagccacag	ctgtcacggg	1800
ggtccccagt	ccccgggca	cggatccacc	ttcccatatg	gccccccggc	cgtggctgt	1860
ggccagtgcc	cgtgggtgg	gcaggcccc	atgcaccg	gccacatgt	gtccctgccc	1920
agggtcccta	ggccctggct	atcgaggcg	ttttccctgc	tcctgttgc	cgttgttctg	1980
tctcgtgcgg	ccgcctgggg	ctgcattgg	ttgggtggcc	acgcgggcca	actcaacgca	2040
gtctggcgc	gcccaggagc	cgtccggcgt	ccctgaaccc	tagaactgtc	ttcgactccg	2100
ggccccctgt	ggaagactga	gtccccgggg	cacggcacag	aagccgcgc	cacccgcgtc	2160
cagttcacaa	ccgcctccgag	cgtgggtctc	cgcccgatgc	cagtccgtgc	atccgggccc	2220
gcccccttagc	ggccgggggg	ggagggggcc	gtcccgccgc	cgccgaaacgg	ggctcgaagg	2280
gtccttgcgt	ccggaaatgc	tgctgctgt	gtctgctgt	ctgctgtgc	tgctgtgt	2340
gtctgctgt	ctgctgctgg	ggggatcaca	gaccatttct	ttctttccgc	caggtggagg	2400
ccctgacgtg	gatggcaaa	ctgcaggact	ggaaaggcag	caagccgggc	cgtccgtt	2460
ccatccctca	cgcacccca	cctatcg	gttcgaaag	tgcaaagctt	tcttgcgtat	2520
gacgcctgc	tctggggagc	gtctggcg	atctctgc	gtttaactcg	gaaatttgc	2580
tttgccaaac	ccgccttttc	ggggatcccg	cgcccccc	ctcacttgc	ctgctctcg	2640
agccccagec	ggtccgc	gttcggcgg	tttggatatt	tattgac	gtccctccgac	2700
tcgctgacag	gctacaggac	ccccaaac	cccaatccac	gtttggatg	cactgagacc	2760
ccgacattcc	tcggattta	ttgtctgtcc	ccacctagga	ccccacccc	cgaccctcg	2820
gaataaaagg	ccctccatct	gccccaaaa	aaaaaaaaa	aaaaaaaaa	aaa	2873

-continued

<212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 801

```

ccacccgcgc ggcacagcgcc aagtgaagcc tggctccccc tccggggcga ccagggcccg      60
agccgagagt agcagttgt a gctacccgc cagaaactag acacaatgtg cgacgaagac      120
gagaccaccc ccctcggtg c gacaatggc tccggcctgg taaaagccgg ctccgcggg      180
gatgacgccc cttagggccgt gttcccgcc atcggtggcc gcccccgaca ccagggcgtc      240
atggtcggta tgggtcagaa agatcc tac gttggcgacg aggctcagag caagagaggt      300
atccgtaccc tgaagtaccc tatcgagcac ggcacatcatca ccaactggg tgacatggag      360
aagatctggc accacaccc ttacaacgag ctccgcgtgg ctcccgagga gcacccacc      420
ctgtcaccc agggccccc caatccaa ggcaccccgac agaagatgac ccagatcatg      480
tttgagacct tcaacgtgcc cgccatgtac gtggccatcc agggcggtgt gtccctctac      540
gcctccggca ggaccacccgg catcggtgt gactccggcg acggcggtcac ccacaacgtg      600
cccatttatg agggctacgc gctgcccac ggcacatcatgc gcctggaccc ggccggccgc      660
gatctcaccc actacccgtat gaagatcc tac gttggcgacg gctactccctt cgtgaccaca      720
gctgagcgcg agatcggtcg c gacatcaag gagaagctgt gctacgtggc cctggacttc      780
gagaacgaga tggcgacccgc cgcctcccttcc tccctccctgg aaaagagacta cgagctgcca      840
gacgggcagg tcatcaccat cggcaacgag cgcttcccgct gcccggagac gctttccag      900
ccctccctca tcggtatgg gtcggcgccg attcagaga ccacccataa cagcatcatg      960
aagtgtaca tcgacatcg gaaggacccgt tatgccaaca acgtcatgtc gggggccacc      1020
acgtatgtacc ctgggatcg c tgaccgtatc cagaaagaga tcaccgcgtt ggcacccacc      1080
accatgaaga tcaagatcat cgcggccgc gacgcacaaat actcggtgtg gatcgccgc      1140
tccatccctgg cctcgctgtc cacccatcccg cagatgtt gcaaccacca gggatcgac      1200
gaggccggcc cttccatcg ccacccgaaa tgcttctaga cacactccac ctccacccac      1260
cgacttctca ggacgacccaa tccctcaat gggggggccg ctgagctcca gccacccgc      1320
agtcaacttc tttgtaccaa cttccgttc tgccatcgta aactgacaca gtgttataa      1380
cgtgtacata cattaactta ttacccattt ttgttatttt tcgaaacaaa gcccgttggg      1440
agaaaaatggg aaaaatggg aagcattttt gtcattctgt taagctgcgt aaaaaaaaaa      1500
aaaaaaaaa      1509
  
```

<210> SEQ ID NO 802
 <211> LENGTH: 19
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 802

gcagcagcag cagcagcag 19

<210> SEQ ID NO 803
 <211> LENGTH: 19
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<400> SEQUENCE: 803

gcagcagcag cagcagcag

19

<210> SEQ ID NO 804

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 804

agcagcagca gcagcagcag

20

<210> SEQ ID NO 805

<211> LENGTH: 18

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 805

gcagcagcag cagcagca

18

<210> SEQ ID NO 806

<211> LENGTH: 19

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 806

agcagcagca gcagcagca

19

<210> SEQ ID NO 807

<211> LENGTH: 16

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 807

agcagcagca gcagca

16

<210> SEQ ID NO 808

<211> LENGTH: 16

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 808

ctcccgacaa gctcca

16

<210> SEQ ID NO 809

<211> LENGTH: 14

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 809

tcccgacaa gctcca

14

-continued

```
<210> SEQ ID NO 810
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 810
gcttgcacgt gtggct                                16

<210> SEQ ID NO 811
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 811
cttgcacgtg tggc                                14

<210> SEQ ID NO 812
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 812
ggttgtgaac tggcag                                16

<210> SEQ ID NO 813
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 813
gttgtgaact ggca                                14

<210> SEQ ID NO 814
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 814
gagcggttgt gaaactg                                16

<210> SEQ ID NO 815
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 815
agcggttgtg aact                                14

<210> SEQ ID NO 816
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
```

-continued

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 816

gctgccttcc caggcc

16

<210> SEQ ID NO 817

<211> LENGTH: 14

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 817

ctgccttccc aggcc

14

<210> SEQ ID NO 818

<211> LENGTH: 16

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 818

gcactttgcg aaccaa

16

<210> SEQ ID NO 819

<211> LENGTH: 14

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 819

cactttgcg acca

14

<210> SEQ ID NO 820

<211> LENGTH: 16

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 820

gaaagctttg cacttt

16

<210> SEQ ID NO 821

<211> LENGTH: 14

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 821

aaagctttgc acttt

14

<210> SEQ ID NO 822

<211> LENGTH: 16

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 822

cgaggacgacgaa

16

-continued

<210> SEQ ID NO 823
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 823

ggaggacgag gtca

14

<210> SEQ ID NO 824
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 824

agcctgtcag cgagtc

16

<210> SEQ ID NO 825
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 825

gcctgtcagc gagt

14

<210> SEQ ID NO 826
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 826

tcctgttagcc tgtcag

16

<210> SEQ ID NO 827
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 827

cctgttagcct gtca

14

<210> SEQ ID NO 828
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 828

gaagcgcaggc ttcaact

16

<210> SEQ ID NO 829
<211> LENGTH: 14
<212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 829

aagcgaggct tcac 14

<210> SEQ ID NO 830
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 830

acctgccccgt ctggca 16

<210> SEQ ID NO 831
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 831

cctgccccgtc tggc 14

<210> SEQ ID NO 832
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 832

ggtcagcgat cccagg 16

<210> SEQ ID NO 833
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 833

gtcagcgatc ccag 14

<210> SEQ ID NO 834
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 834

attttcttcc acaggg 16

<210> SEQ ID NO 835
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 835

-continued

ttttcttcca cagg

14

<210> SEQ ID NO 836
 <211> LENGTH: 16
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 836

gaatgacttt aatgct

16

<210> SEQ ID NO 837
 <211> LENGTH: 14
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 837

aatgacttta atgc

14

1.124. (canceled)

125. A compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides having a nucleobase sequence comprising a portion of at least 12 contiguous nucleobases complementary to an equal length portion of nucleobases 2159-2182 of SEQ ID NO: 1, wherein the nucleobase sequence of the modified oligonucleotide is complementary to SEQ ID NO: 1.

126. The compound of claim **125**, wherein the modified oligonucleotide is a single-stranded oligonucleotide.

127. The compound of claim **125**, wherein the nucleobase sequence of the modified oligonucleotide is 80% complementary to SEQ ID NO: 1.

128. The compound of claim **125**, wherein the nucleobase sequence of the modified oligonucleotide is 90% complementary to SEQ ID NO: 1.

129. The compound of claim **125**, wherein the nucleobase sequence of the modified oligonucleotide is 95% complementary to SEQ ID NO: 1.

130. The compound of claim **125**, wherein the nucleobase sequence of the modified oligonucleotide is 100% complementary to SEQ ID NO: 1.

131. The compound of claim **125**, wherein at least one nucleoside comprises a modified sugar.

132. The compound of claim **131**, wherein at least one modified sugar is a bicyclic sugar.

133. The compound of claim **131**, wherein at least one modified sugar comprises a 2'-O-methoxyethyl.

134. The compound of claim **125**, wherein at least one nucleoside comprises a modified nucleobase.

135. The compound of claim **134**, wherein the modified nucleobase is a 5-methylcytosine.

136. The compound of claim **125**, wherein at least one internucleoside linkage is a modified internucleoside linkage.

137. The compound of claim **136**, wherein each internucleoside linkage is a phosphorothioate internucleoside linkage.

138. The compound of claim **125**, wherein the modified oligonucleotide comprises:

a gap segment consisting of linked deoxynucleosides; a 5' wing segment consisting of linked nucleosides; a 3' wing segment consisting of linked nucleosides; wherein the gap segment is positioned between the 5' wing segment and the 3' wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.

139. The compound of claim **125**, wherein the modified oligonucleotide consists of 20 linked nucleosides and comprises:

a gap segment consisting of ten linked deoxynucleosides; a 5' wing segment consisting of five linked nucleosides; a 3' wing segment consisting of five linked nucleosides; wherein the gap segment is positioned between the 5' wing segment and the 3' wing segment, wherein each nucleoside of each wing segment comprises a 2'-O-methoxyethyl sugar; and wherein each internucleoside linkage is a phosphorothioate linkage.

140. The compound of claim **139**, wherein the modified oligonucleotide has a nucleobase sequence that consists of the nucleobase sequence of SEQ ID NO. 109.

141. A pharmaceutical composition comprising the compound of claim **140** and a pharmaceutically acceptable carrier or diluent.

142. A method of reducing DMPK expression in an animal comprising administering to the animal a compound comprising a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to DMPK, wherein expression of DMPK is reduced in the animal.

143. A method of preferentially reducing CUGexp DMPK RNA, reducing myotonia or reducing spliceopathy in an animal comprising administering to the animal a compound comprising a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to DMPK, wherein the modified oligonucleotide reduces DMPK expression in the animal, thereby preferentially reducing CUGexp DMPK RNA, reducing myotonia or reducing spliceopathy in the animal.

* * * * *