

US 20100175280A1

(19) United States

(12) Patent Application Publication Rinehart, JR. et al.

(10) **Pub. No.: US 2010/0175280 A1**(43) **Pub. Date:** Jul. 15, 2010

(54) FOOTWEAR ASSEMBLIES WITH REMOVABLE ENHANCED TRACTION DEVICES AND ASSOCIATED METHODS OF USE AND MANUFACTURE

(76) Inventors: Robert G. Rinehart, JR., Portland,

OR (US); Casey R. Rakoczy, Portland, OR (US); John W. Ludemann, Canby, OR (US); Christopher J. Wojnar, Portland, OR (US)

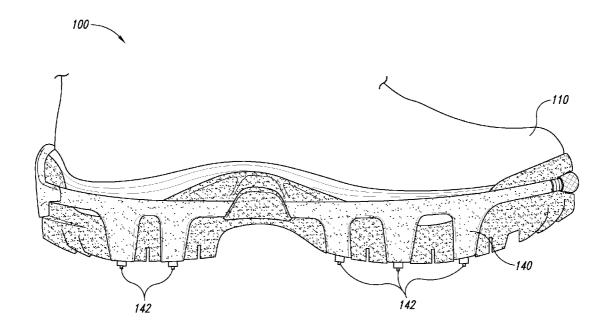
OR (US)

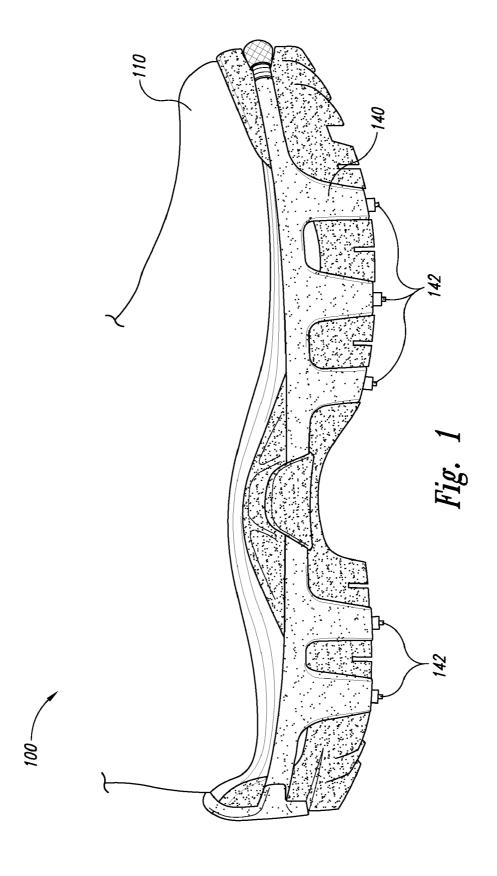
Correspondence Address: PERKINS COIE LLP PATENT-SEA P.O. BOX 1247 SEATTLE, WA 98111-1247 (US)

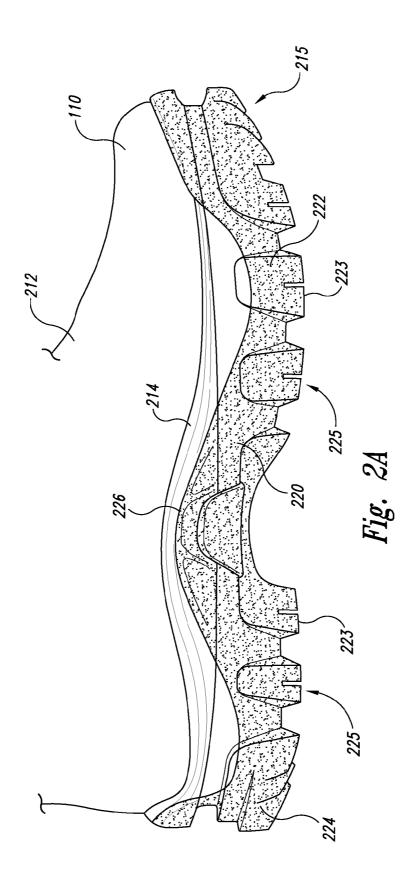
(21) Appl. No.: **12/686,919**

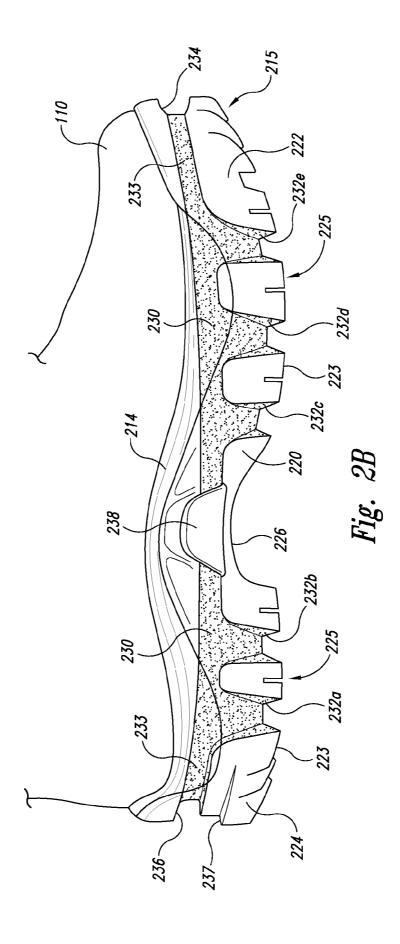
(22) Filed: Jan. 13, 2010

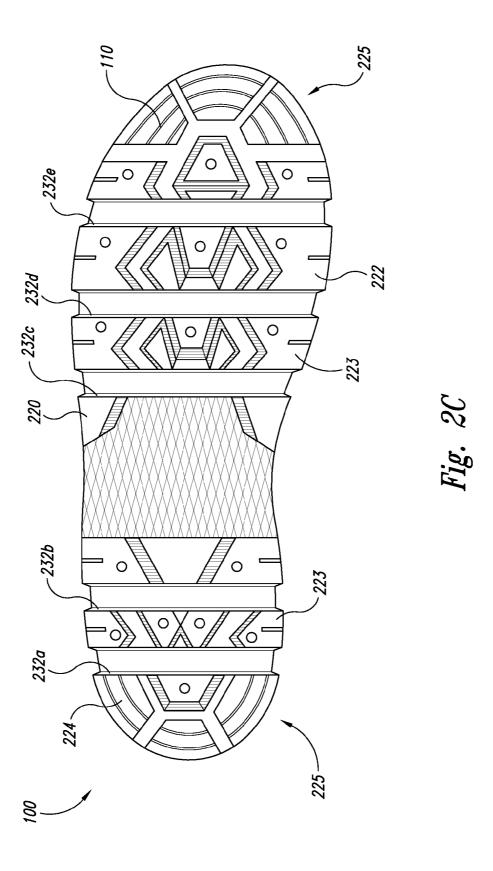
Related U.S. Application Data

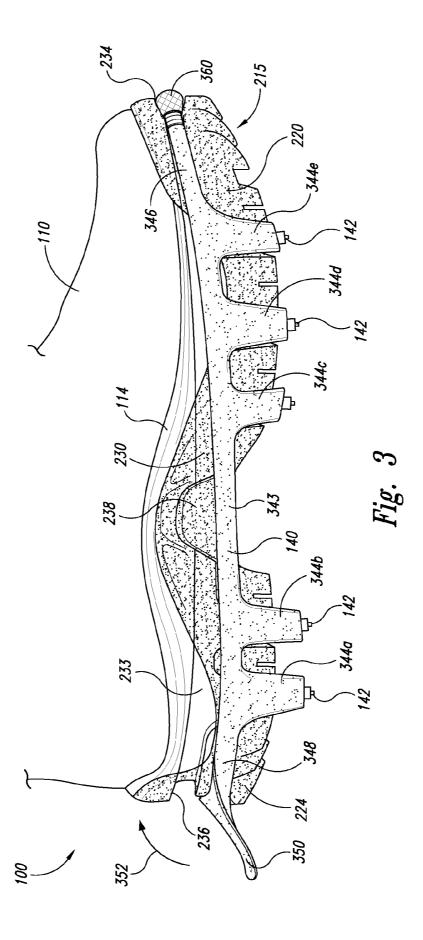

(60) Provisional application No. 61/144,414, filed on Jan. 13, 2009, provisional application No. 61/267,791, filed on Dec. 8, 2009.

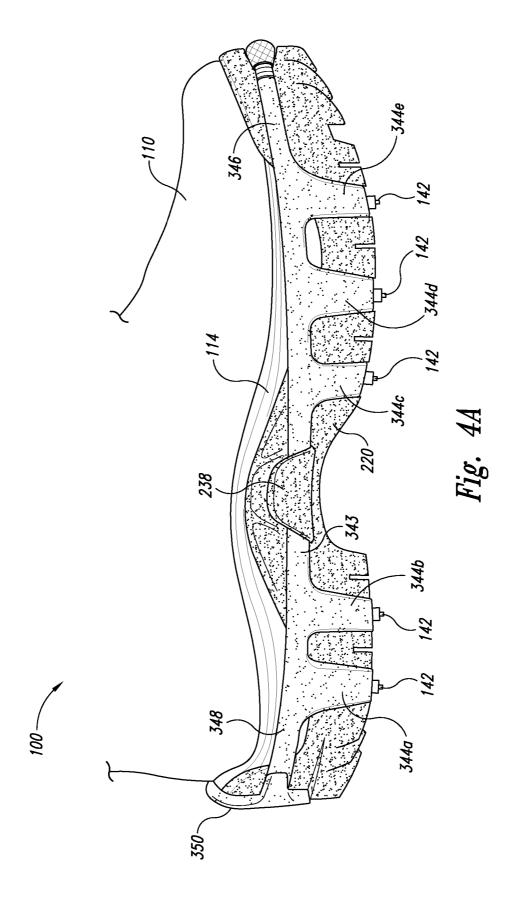

Publication Classification

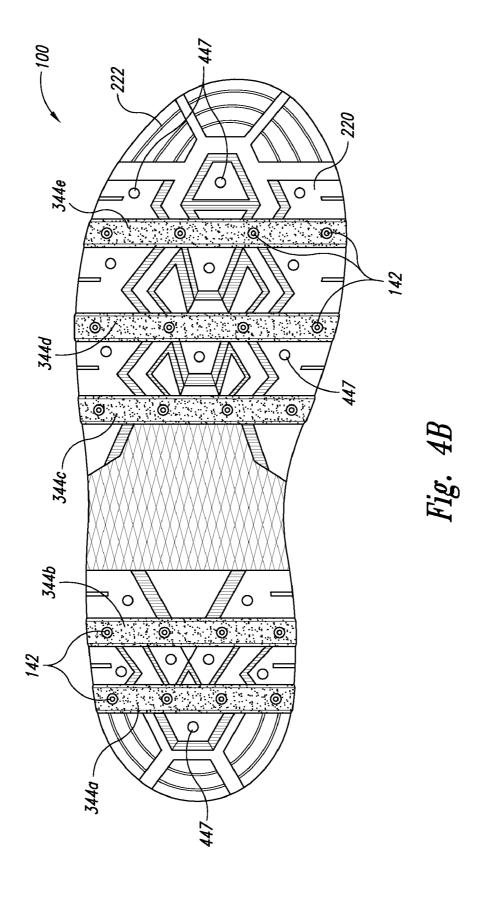

(51) **Int. Cl.** *A43C 15/00* (2006.01)

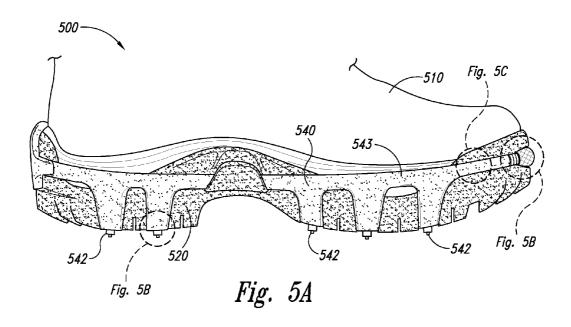

(57) ABSTRACT

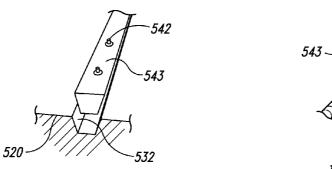

Footwear assemblies including removable enhanced traction devices are disclosed herein. In one embodiment, a footwear assembly includes a footwear product with an outsole that removably receives a traction enhancing device. The outsole includes a tread pattern having a plurality of channels corresponding to portions of the traction device. The traction device includes multiple webs or straps that carry studs or other types of protrusions for improved traction. When a user attaches the traction device to the footwear product, the channels in the outsole removably receive the corresponding webs, thereby positioning the protrusions to extend away from the outsole. The outsole can also include one or more channels extending around one or more peripheral portions of the footwear product (e.g., around the side, back and/or front) to receive corresponding portions of the traction device and retain the traction device on the footwear product.



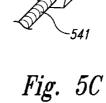








564a


565

541a

Fig. 5B

543-

560

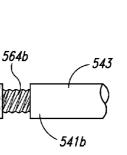
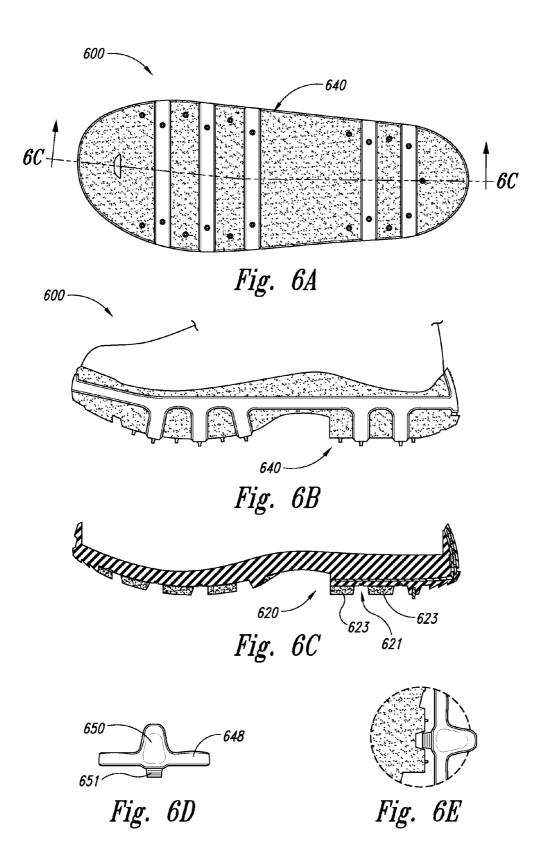



Fig. 5D

563

562

FOOTWEAR ASSEMBLIES WITH REMOVABLE ENHANCED TRACTION DEVICES AND ASSOCIATED METHODS OF USE AND MANUFACTURE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Provisional Application No. 61/144,414,entitled "FOOTWEAR ASSEMBLIES WITH REMOVABLE ENHANCED TRACTION DEVICES AND ASSOCIATED METHODS OF USE AND MANUFACTURE," filed Jan. 13, 2009, and U.S. Provisional Application No. 61/267,791, entitled "FOOTWEAR ASSEMBLIES WITH REMOVABLE ENHANCED TRACTION DEVICES AND ASSOCIATED METHODS OF USE AND MANUFACTURE," filed Dec. 8, 2009, each of which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure is directed generally to footwear assemblies with removable traction enhancing devices.

BACKGROUND

[0003] Articles of footwear have been designed and worn by humans since early in recorded history. Articles of footwear were initially designed to protect the bottom of the feet of wearers while walking or running over rough surfaces. Although the primary purpose of footwear remains basically unchanged, the various types of activity and surfaces on which wearers run, walk, or stand on have led to an ever increasing diversity in the style and construction of footwear. For examples, humans engage in a wide variety of physical activities including walking, running, hiking, trekking, hunting, backpacking, and indoor and outdoor activities. Articles of footwear have been designed for each of these specific activities. More specifically, for example, running shoes are typically designed to provide a wearer with suitable comfort and support for running long distances.

SUMMARY

[0004] Embodiments of the disclosure are directed to footwear assemblies including removable enhanced traction devices, and associated methods of use and manufacture. A footwear assembly configured in accordance with one embodiment of the disclosure includes a footwear product, such as a boot, with an outsole that removably receives a traction enhancing device. The outsole includes a tread pattern having a plurality of channels corresponding to portions of the traction device. For example, the traction device can include multiple webs or straps that carry studs or other types of protrusions for improved traction. When a user attaches the traction device to the boot, the channels in the outsole removably receive the corresponding webs, thereby positioning the protrusions to extend away from the outsole. The outsole can also include one or more channels extending around one or more peripheral portions of the boot (e.g., around the side, back and/or front) to receive corresponding portions of the traction device and retain the traction device on the boot. In certain embodiments, the traction device is self-tensioning. In other embodiments, the tension of the traction device is adjustable to accommodate various sizes of boots or to tighten the traction device after placing it on the boot.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a side view of a footwear assembly configured in accordance with an embodiment of the disclosure.
[0006] FIGS. 2A and 2B are side views and FIG. 2C is a bottom view of the footwear assembly of FIG. 1 with the traction device removed from the footwear product.

[0007] FIG. 3 is a side view of the footwear assembly of FIG. 1 with the traction device partially attached to the footwear product.

[0008] FIG. 4A is a side view and FIG. 4B is a bottom view of the footwear assembly of FIG. 1 with the traction device removably attached or secured to the footwear product.

[0009] FIG. 5A is a side view of a footwear assembly configured in accordance with another embodiment of the disclosure.

[0010] FIG. 5B is an enlarged isometric view of detail 5B of FIG. 5A, FIG. 5C is an enlarged isometric view of detail 5C of FIG. 5A, and FIG. 5D is a front view of detail 5D of FIG. 5A.

[0011] FIG. 6 illustrates several representative views of a footwear assembly configured in accordance with another embodiment of the disclosure.

DETAILED DESCRIPTION

[0012] Footwear assemblies with removable enhanced traction devices and associated methods for using and making such assemblies are described in detail herein in accordance with embodiments of the present disclosure. Certain details are set forth in the following description, in the Figures, and in the Appendix to provide a thorough and enabling description of various embodiments of the disclosure. Other details describing well-known structures and components often associated with footwear assemblies and methods of forming such assemblies, however, are not set forth below to avoid unnecessarily obscuring the description of various embodiments of the disclosure.

[0013] Many of the details, dimensions, angles, relative sizes of components, and/or other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles, sizes, and/or features without departing from the spirit and scope of the present disclosure. In addition, further embodiments of the disclosure may be practiced without several of the details described below, while still other embodiments of the disclosure may be practiced with additional details and/or features.

[0014] FIG. 1 is a side view of a footwear assembly 100 ("assembly 100") configured in accordance with an embodiment of the disclosure. In the illustrated embodiment, the assembly 100 includes a footwear product or boot 110 that removably retains a traction enhancing assembly or device 140 ("traction device 140"). As will be appreciated by one of ordinary skill in the relevant art, the footwear product 110 can include any article of footwear (e.g., a shoe, sandal, boot, etc.) and is not limited to the boot 110 shown in the Figures. The traction device 140 includes a plurality of protrusions 142 (e.g., cleats, spikes, studs, etc.) that enhance or improve a user's traction on slippery surfaces. In one embodiment, the protrusions include studs of the type described in U.S. Pro-

visional Patent Application No. 61/267,787, filed Dec. 8, 2009, which is incorporated herein in its entirety by reference thereto.

[0015] The traction device 140 of the illustrated embodiment enhances the traction of the boot 110 on icy surfaces or other slippery surfaces. As explained in detail below, the boot 110 includes several features that facilitate the alignment and retention of the traction device 140 on the boot 110. As such, a user can attach the traction device 140 to the boot 110 for use in slippery conditions, and remove the traction device 140 from the boot 100 when enhanced traction is no longer needed or desired.

[0016] FIG. 2A is a side view of the boot 110 configured in accordance with an embodiment of the disclosure. In FIG. 2A, the traction device 140 of FIG. 1 is removed or separated from the boot 110. As shown in the illustrated embodiment, the boot 110 has an upper 212 (only partially shown in FIG. 2A) attached to a sole assembly 215. The sole assembly 215 of the illustrated embodiment includes an outsole 220 attached to a midsole 214, which is attached to the upper 212. In certain embodiments, the outsole 220 can be a separate component adhered or otherwise secured to the midsole 214. For example, the outsole 220 can be formed from molded rubber, and the midsole 214 can be made of an EVA or other closed-cell foam material. In yet other embodiments, the outsole 220 can be integrally formed with the midsole 214. In other embodiments, the components of the sole assembly 215 can be made from other materials suitable for footwear devices and/or soles.

[0017] According to one aspect of the illustrated embodiment, the outsole 220 includes a forefoot portion 222 spaced apart from a heel portion 224 by an arch portion 226. Each of the forefoot and heel portions 222, 224 has a lower surface 223 with a tread pattern 225 that facilitates walking on rough or uneven terrain. For example, the tread pattern can be configured for walking on irregular or slippery ground. In the illustrated embodiment, the outsole 220 is configured for a work boot wherein the heel portion 224 includes a 90-degree heel (i.e., a heel that projects away from the arch portion 226 at roughly a perpendicular orientation). In this configuration, the arch portion 226 of the outsole 220 is substantially free of lugs or other substantial traction projections, such as the type provided on the forefoot portion 222 and the heel portion 224. In other embodiments, however, the lower surface 223 and the tread pattern 225 can be configured for other non-work boot foot wear for walking or running on other surfaces, including for example, smooth surfaces. As also explained in detail below, the sole assembly 215, including the tread pattern 225, is configured to accommodate the traction device 140 (FIG.

[0018] According to another aspect of the illustrated embodiment, the sole assembly 215 is configured to removably receive the traction device 140 (FIG. 1). FIG. 2B, for example, is a side view of the boot 110, illustrating certain features of the sole assembly 215 that retain the traction device 140 on the boot 110. The illustrated sole assembly 215 includes a retention portion 230 recessed or otherwise depressed into corresponding portions of the outsole 220 and the midsole 214. For purposes of illustration in FIG. 2B, the retention portion 230 is shown as a shaded or gray portion of the sole assembly 215. The retention portion 230 includes a plurality of interconnected recessed grooves or channels that receive corresponding portions of the traction device 140. More specifically, the retention portion 230 includes multiple

lower channels 232 (identified individually as a first through fifth channels 232a-232e) extending through the lower surface 223 of the outsole 220.

[0019] FIG. 2C, is a bottom view of the boot 110 of FIG. 2B. Referring to FIGS. 2B and 2C together, the first and second lower channels 232a, 232b extend laterally across the heel portion 224, and the third, fourth, and fifth lower channels 232c-232e extend laterally across the forefoot portion 222. In the illustrated embodiment, the lower channels 232 are at least approximately parallel to one another. In other embodiments, however, the lower channels 232 can be formed at non-parallel angles relative to one another, and/or extending longitudinally along portions of the outsole 220. Moreover, the lower channels 232 can form other types of patterns in the lower surface 223 of the outsole 220, including, for example, a grid-like pattern, a webbed pattern, a symmetrical pattern, an irregular pattern, etc. According to another feature of the illustrated embodiment, each of the lower channels 232 has a generally trapezoidal cross-sectional shape extending into the outsole 220 (e.g., the lower channels 232 can be wider at the lower surface 223 of the outsole 220). In other embodiments, however, the lower channels 232 can have other cross-sectional shapes including, for example, rectilinear, curved, irregular, etc. Moreover, although five lower channels 232 are illustrated in FIGS. 2B and 2C, in other embodiments the outsole 220 can include a greater or lesser number of lower channels 232.

[0020] As also noted above and shown in FIG. 2C, in addition to the lower channels 232, the tread pattern 225 of the outsole 220 can include several gripping features, surfaces, and/or other patterns configured for various types of walking conditions.

[0021] As also shown in FIG. 2B, the retention portion 230 of the sole assembly 215 includes a side channel 233 extending between a front channel 234 and a rear channel 236. The side channel 233 extends longitudinally along the sole assembly 215 through portions of each of the outsole 220 and the midsole 214. Although not shown in FIG. 2B, at the side of the boot 110 opposite the side illustrated in FIG. 2B the retention portion 230 also has a side channel extending longitudinally along the boot 110. The front channel 234 extends through the forefoot portion 222 of the outsole 220, and the rear channel 236 extends through the heel portion 224 of the outsole 220. Although the retention portion 230 described above with reference to FIGS. 2A-2C is described as having multiple separate channels or portions, one of ordinary skill in the art will appreciate that the lower channels 232, the side channel 233, the front channel 234, and the rear channel 236 can be interconnected and can be integrally formed in the sole assembly 215. For example these channels can be molded or otherwise formed in the sole assembly 215 when the sole assembly is formed. Moreover, certain embodiments of the retention portion 230 can include other channels or omit one or more of the channels described above.

[0022] According to another aspect of the embodiment illustrated in FIG. 2B, the retention portion 230 does not include any channels or grooves in the lower surface 223 of the outsole 220 between the forefoot portion 222 and the heel portion 224. More specifically, the arch portion 226 free of any grooves or other retention members in the lower surface 223 of the outsole 220. In the illustrated embodiment, however, the sole assembly 215 includes a retention member 238 projecting laterally from the sidewall of the sole assembly 215 at a location generally aligned with the arch portion 226.

The retention member 238 can be a hook-like protrusion that at least partially covers the side channel 233 at the arch portion 226. In certain embodiments, the retention member 238 can be made from the same material as the outsole 220 and integrally formed with the outsole 220. In other embodiments, however, the retention member 238 can be made from other materials. Moreover, in certain embodiments, the retention member 238 can be attached to a stiffening shank (not shown) included in the sole assembly 215 at the arch portion 226

[0023] As also shown in FIG. 2B, the heel portion 224 includes a ledge or step portion 237 proximate to the rear channel 236. As described below in detail, the step portion 237 can be used to removably position the traction device 140 (FIG. 1) over the outsole 220 of the boot 110. FIG. 3, for example, is a side view of the assembly 100 with the traction device 140 partially positioned in the retention portion 230. The traction device 140 has a web-like configuration received in the channels of the retention portion 230. More specifically, the traction device 140 includes a side web 343 extending peripherally around the sole assembly 215 in the side channel 233 of the retention portion 230. The traction device 140 also includes multiple lower webs 344 (identified individually as first through fifth lower webs 344a-344b) extending through the corresponding lower channels 232 (not shown in FIG. 3). The traction device 140 also includes a front web 346 extending around the front of the sole assembly 215 in the front channel 234, and a rear web 348 extending around the heel portion 224 of the sole assembly 215 that will be received in the rear channel 236.

[0024] According to one aspect of the illustrated embodiment, FIG. 3 illustrates a step in the process of aligning or attaching the traction device to the boot 110. For example, as shown in FIG. 3, the traction device 140 is not fully inserted into or aligned with the corresponding channels in the retention portion 230. Moreover, the side web 343 is positioned below the retention member 238 and the side channel 233. In the illustrated embodiment, to fully attach the traction device 140 to the boot 110, a user can insert the front web 346 into the front channel 234 and pull the rear web 348 over the heel portion 224 of the outsole 220. To aid the user, the traction device 140 includes a leverage member 350 at the rear web 348. The leverage member 350 can be a rigid member molded with the traction device 140 at the rear web 348. As shown in FIG. 3, the leverage member 350 can engage the step portion 237 of the heel portion 224 of the outsole 220 to allow a user to stretch or pull the traction device 140 into place. For example, after aligning the front web 346 and the lower webs 344 into the retention portion 230, a user can rotate the leverage member 350 in the direction indicated by arrow 352. Rotating the leverage member 350 in this direction engages the step portion 237 and elastically stretches the traction device 140 to allow the traction device 140 to be securely positioned in the retention portion 230 on the boot 110.

[0025] In operation, the user can wear the assemblies 100 (e.g., boots) without the traction devices installed, such as when enhanced traction is not needed. When enhanced traction is needed, such as when walking or standing on ice, snow or other frozen ground, the user can quickly and easily install the traction devices 140 on each boot as discussed above without needing to remove the boots from the user's feet. In one embodiment, the traction devices 140 and the sole assemblies can be configured so a traction device will fit on either a left assembly (e.g., a boot for the user's left foot) or a right

sole assembly (e.g., a boot for the user's right foot). In another embodiment, the traction devices 140 can have left and right configurations to specifically fit the sole assembly of a left or right boot or other assembly 100. When enhanced traction is no longer needed, the user can pull or otherwise remove the traction devices from the boots without needing to take the boots off. The traction devices 140 can then be put in the user's pocket or in another suitable storage location until the next time enhanced traction is needed. In one embodiment, the traction devices 140 are configured to be generally foldable, which allows for compact storage when the traction devices 140 are not in use.

[0026] FIG. 4A is a side view and FIG. 4B is a bottom view

of the assembly 100 with the traction device 140 in place and

positioned in the retention portion 230 of the boot 110. Referring to FIGS. 4A and 4B together, the lower webs 344 are aligned and received in the lower channels 232 of the outsole 220. Moreover, the side web 343 is engaged in the side channel 233 and at least partially retained in place by the retention member 238 at the side of the outsole 220. In this manner, the corresponding webs of the traction device 140 are correctly seated and recessed in the corresponding channels of the retention portion 230 in the sole assembly 215. For example, the retention member 238 positions and retains the side web 343 in the side channel 233 at the side of the outsole 220, the rear web 348 can be positioned in the rear channel 236, and the front web 346 can be positioned in the front channel 234. [0027] In the illustrated embodiment, the lower webs 344 extend laterally across the outsole 220 in only the heel portion 224 and the forefoot portion 222. The removable traction device does not have lower webs that extend across lower surface of the arch portion 226, either laterally, longitudinally, or at an angle therebetween. Accordingly, the arch portion is free of the lower webs. Such a configuration is provided in an embodiment for a work boot (e.g., a work boot having a 90-degree heel), and the lower webs 344 of the traction device do not interfere with the arch portion, such as when the user is stepping on a shovel, climbing a ladder, or any other action that typically include pressing firmly against the arch portion. While the illustrated embodiment has lower webs only extending laterally in the lower channels of the heel and forefoot portions, other embodiments can include lower webs in these portions that partially extend longitudinally or diagonally in those areas without extending across the lower surface of the arch portion. In still further embodiments, the lower webs can extend across the lower surface of

[0028] According to one feature of the illustrated embodiment, the bottom surface of each of the lower webs 344 is at least approximately coplanar with the lower surface 223 of the outsole 220. In certain embodiments, the lower webs 344 can be at least partially recessed in the lower channels 232 (FIG. 2C) in outsole 220. In other embodiments, however, the lower webs 334 can at least partially protrude from the lower surface 223 of the outsole 220. Regardless of the position of the lower webs 334 relative to the lower channels 232, the protrusions 142 project away from the lower surface 223 of the outsole 220 to provide the enhanced gripping capability of the assembly 100. In the illustrated embodiment, the protrusions 142 are generally perpendicular to the lower surface 223 of the outsole 220. In other embodiments, however, some or all of the protrusions 142 can extend away from the lower surface 223 at an angle towards the forefoot portion 222, the heel portion 224, laterally from these portions, or at any other

the arch portion.

suitable angle. Moreover, the protrusions 142 can be interconnected or ganged together in the traction device 140 to prevent individual protrusions 142 from loosening or falling out of the traction device 140. Another benefit of the traction device 140 is that as the individual protrusions 142 wear down or are broken, a new traction device 140 can be used with the boot 110. Moreover, in certain embodiments, the protrusions 142 can include wear indicators to allow a user to easily see when the protrusions 142 are wearing out. The protrusions 142 can all be made of the same material (i.e., metal, plastic, composite, etc.). In other embodiments, protrusions 142 or sets of protrusions can be made of a material different that other protrusions on the traction device 140.

[0029] According to yet another feature of the embodiment illustrated in FIG. 4B, the outsole 220 includes a plurality of openings 447 configured to removably receive individual protrusions 142 separate from the traction device 140. In this manner, a user can adjust (e.g., increase) the traction of the outsole 220 by selectively placing protrusions 142 directly in the sole 220 in the openings 447, in addition to the protrusions 142 carried by the lower webs 334. For example, if a user desires more traction specifically at the forefoot portion 222, the user can place additional protrusions 142 in the openings 447 at the forefoot portion 222 of the outsole 220.

[0030] FIG. 5A is a side view of a footwear assembly 500 configured in accordance with another embodiment of the disclosure. In the illustrated embodiment, the assembly 500 includes several features generally similar in structure and function to the corresponding features of the embodiments discussed above with reference to FIGS. 1-4B. For example, the assembly 500 includes a boot 510 removably engaged with an enhanced traction device 540. The traction device 540 includes multiple webs 543 extending at least partially around the boot 510. The webs 543 include protrusions 542 that extend away from an outsole 520 of the boot 510. Several features of the illustrated embodiment are described below with reference to FIGS. 5B-5D. FIG. 5B, for example, is an enlarged isometric view of detail 5B of FIG. 5A. In the embodiment illustrated in FIG. 5B, the web 543 has a generally trapezoidal shape and is seated in a channel 532 in the outsole 520. The channel 532 securely retains the web 543 and prevents the web 543 from slipping out of the channel 532 during use (along with several other features of the embodiments described above). Moreover, although only a portion of the web 543 and the channel 532 are shown in FIG. 5A, the shapes or configuration of the web 543 and channel 532 can be used at any portion of the assembly 100 described above with reference to FIGS. 1-4B.

[0031] FIG. 5C is an enlarged isometric view of detail 5C of FIG. 5A. In the embodiment illustrated in FIG. 5C, the web 500 includes a cable 541 extending through and embedded in the web 543. In certain embodiments for example, the web 543 can be molded around the cable 541. The cable 541 provides improved strength and durability for the web to accommodate varying conditions, such as rough or uneven terrain. In this manner, the cable 541 can at least partially prevent the web 543 from tearing, ripping, or otherwise coming loose from the boot.

[0032] FIG. 5D is a front view of detail 5D of FIG. 5A illustrating a tension adjustment assembly 560 ("tension assembly 560") configured in accordance with another embodiment of the disclosure. The tension assembly 560 includes a tension adjuster 562 operably coupled to the web 543. The tension adjuster 562 includes a body 563 positioned

between a first threaded end portion 564a and a second threaded end portion **564***b*. The body **563** can have a textured (e.g., knurled) surface to facilitate grip by a user. According to one aspect of the illustrated embodiment, the first threaded end portion **564***a* is threaded in an opposite direction than the second threaded end portion 564b. Moreover, the first threaded end portion 564a threadably engages a first end portion 541a of the web 543, and the second threaded end portion **564***b* of the threadably engages a second end portion 541a of the web 543. In certain embodiments, for example, the end portions 541 of the web 543 can include a barrel or other device that threadably receives the corresponding threaded end portions 564 of the tension adjuster 562. In other embodiments, the threaded end portions 564 can be securely attached to the corresponding end portions 541 of the web 543, and the body 563 of the tension adjuster 562 can move along the threaded end portions 564 to adjust the tension of the web 543 and/or the traction device 540.

[0033] In operation, a user can twist or rotate the body 563 to tighten or loosen the web 543 around the boot. More specifically, rotating the body 563 moves the threaded end portions 564 and the corresponding web end portions 541 towards or away from one another. In this manner, a user can tighten or securely fasten the web 543 and corresponding traction device 540 to the boot 510. The tension adjuster 562 also enables the user to adjust the fit of the web 543 with different sized boots. For example, the threaded end portions 564 can include one or more marks 565 to indicate how far a user can rotate the tension adjuster 562 to adjust the tension of the web 543 according to different sized boots. In one embodiment, the threaded end portions 564 can include multiple marks 565 to indicate different shoe sizes. For example, the marks can indicate small, medium, large, extra-large, etc. In other embodiments, the marks can correspond to specific numeric sizes, such as 8, 9, 10, 11, etc. In this manner, the adjustment assembly 560 allows the traction device 540 to be extendable so that the traction device 540 can fit boots of multiple sizes. For example, a size medium traction device could fit boots in the range of sizes 8-10, a size large traction device could fit boots in the range of sizes 11-14, etc.

[0034] FIG. 6 illustrates several representative views of a footwear assembly 600 including a traction enhancing assembly 640 configured in accordance with another embodiment of the disclosure. According to one feature of the illustrated embodiment, a rear web portion 648 includes a leverage member 650 having a molded support piece 651. The support piece 651 can provide rigidity to the leverage member 650. In certain embodiments, the support piece 651 is configured to engage a heel portion 618 of the outsole 620 to place the traction enhancing assembly 640 and/or remove the traction enhancing assembly 640 from the outsole 620. In addition, the portion of the support member 651 that protrudes from the leverage member 650 can have a shape or configuration that generally matches the shape of a channel 621 between corresponding tread portions 623. Accordingly, when the traction enhancing assembly 640 is removed from the footwear assembly 600, a user can implement the support member 651 to clear debris (e.g., dirt, mud, ice, etc.) from the channel 621. [0035] From the foregoing, it will be appreciated that spe-

cific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, although many of the Figures described above illustrate the traction device with intercon-

nected webs, in other footwear assemblies the traction device can include multiple webs separate and embedded in the outsole of the footwear product. Further, while various advantages associated with certain embodiments of the disclosure have been described above in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure.

I/We claim:

- 1. A footwear assembly, comprising:
- a footwear product including an outsole having a tread pattern with multiple channels extending through the outsole; and
- a traction enhancing device removably coupled to the outsole, wherein the traction enhancing device comprises: multiple webs configured to be removably received in the corresponding channels of the outsole; and
 - one or more studs carried by the webs, wherein the one or more studs are configured to extend away from the outsole when the webs are received in the corresponding channels.
- 2. The footwear assembly of claim 1 wherein the channels are first channels extending through a bottom portion of the outsole, and wherein the outsole further comprises second

- channels extending around one or more peripheral side portions of the outsole, the second channels being configured to removably receive corresponding webs extending peripherally around the outsole.
- 3. The footwear assembly of claim 1 wherein the outsole further comprises an arch portion positioned between a fore-foot portion and a heel portion, and wherein the tread pattern is only at the forefoot and heel portions such that the webs do not extend across the arch portion when the webs are removably received in the corresponding channels.
- 4. The footwear assembly of claim 1 wherein the traction enhancing device further comprises a leverage member configured to engage a portion of the outsole to facilitate putting on and removing the traction enhancing device from the outsole.
- 5. The footwear assembly of claim 4 wherein the leverage member comprises a rigid member having an end portion shaped to correspond to a cross-sectional shape of the channels.
- 6. The footwear assembly of claim 1 wherein the traction enhancing device further comprises a tension adjuster configured to adjust the fit of the traction enhancing device on the outsole

* * * * *