Title: USE OF PP2A PHOSPHATASE MODULATORS IN THE TREATMENT OF MENTAL DISORDERS

Abstract: The invention relates to the use of PP2A/Bγ and to the use of a PP2A phosphatase comprising the PP2A/Bγ subunit for screening for modulators thereof. The use of these modulators for treating mental disorders such as bipolar disorder, schizophrenia and depression, and drugs comprising these modulators are further disclosed. The invention also discloses biallelic markers located in the gene encoding PP2A/Bγ and their use for diagnosing mental disorders.
USE OF PP2A PHOSPHATASE MODULATORS IN THE TREATMENT OF MENTAL DISORDERS

FIELD OF THE INVENTION

The present invention is in the field of mental disorders such as bipolar disorder, schizophrenia, depression and other mood disorders. More specifically, the invention relates to the use of a PP2A/Bγ subunit or of a PP2A phosphatase comprising the PP2A/Bγ subunit for screening for modulators, and to the use of said modulators for treating said mental disorders. The invention further relates to the use of bialleric markers located in the gene encoding the PP2A/Bγ subunit for diagnosing said mental disorders.

BACKGROUND

1. The PP2A phosphatase

The Protein Phosphatase 2A (PP2A) is one of the major intracellular serine/threonine protein phosphatases, and accounts for a large portion of the total phosphatase activity of some cells. In addition of its serine/threonine protein phosphatase activity, PP2A also exhibits low but detectable phosphotyrosine phosphatase activity. Although the precise functions of PP2A in vivo have not yet been determined, evidences suggest that PP2A plays a role in metabolism, DNA replication, cell proliferation, cell cycle and viral transformation. Moreover, PP2A deregulation has been suggested contribute to carcinogenesis and to the development of taupathies such as Alzheimer’s disease (see, e.g., Janssens and Goris (2001) Biochem J. 353:417-439). Accordingly, PP2A plays a pivotal role in a wide variety of cellular processes.

PP2A is constituted by two or three subunits. PP2A phosphatases comprise of catalytic subunit (PP2A/C), a scaffolding subunit (PP2A/A) and eventually a regulatory subunit (PP2A/B). Two striking features of the B subunits are their diversity, stemming from the existence of entire subunit families, and the total lack of sequence similarity between the gene families, even though they recognize similar segments of the A subunit. As a consequence, at least 75 different dimeric and trimeric PP2A isoforms can be generated through combinational associations of different A, B and C subunits.

The existence of multiple families and isoforms of the PP2A/B subunits raises the possibility that different physiological functions are carried out by different isoforms. Indeed, biochemical characterization has demonstrated that subunit composition and specific complex formation play important roles in modulating the substrate specificity and catalytic activity of PP2A (see, e.g., Usui et al. (1988) J Biol Chem. 263:3752-3761). Regulatory
subunits are also thought to confer tissue specificity, subcellular localization and developmental regulation to PP2A.

PP2A/Bγ is one of the alternative B subunits. PP2A/Bγ is encoded by the PPP2R2C gene that was mapped to human chromosome 4p16 between markers D4S2925 and D4S3007 (Hu et al., Genomics., 2000, 67:83-6). Strack et al. showed that in rats, the PP2A/Bγ subunit can only be detected in brain. Furthermore, PP2A/Bγ is enriched in the cytoskeletal fraction of the cell and is developmentally regulated (Strack et al. (1998) J Comp Neurol. 1998 392:515-527). This article further shows that compartmentalization of brain PP2A is regulated by different B subunits, the PP2A/Bγ subunit anchoring PP2A to cytoskeletal structures. Based on the localization of the enzyme and on the postnatal increase of PPP2R2C expression, which coincides with synapse formation, Strack et al. hypothesized that PP2A phosphatases comprising the PP2A/Bγ subunit may be involved in synaptic plasticity and in neurological disorders.

Although PP2A being a major phosphatase, the precise physiological role of most of the different PP2A isoforms is still unknown. Additional data on the specific B subunits and on the processes in which they are specifically involved would very likely lead to the discovery of new therapeutic agents.

2. KCNQ potassium channels

Malfunction in ion channels, due to mutations in genes encoding channel proteins or the presence of autoantibodies, are increasingly being implicated in causing disease conditions, termed channelopathies. For instance, dysfunction of potassium channels has been associated with the pathophysiology of a number of neurological disorders both affecting the central and peripheral nervous system (e.g., episodic ataxia, epilepsy, neuromyotonia, Parkinson's disease, congenital deafness, long QT syndrome). Potassium channels, which demonstrate a high degree of diversity and ubiquity, are fundamental in the control of membrane depolarisation and cell excitability. A common feature of potassium channelopathies is a reduction or loss of membrane potential repolarisation. Marketed potassium channel openers include for example flupirtine, an analgesic drug used for treating pain.

KCNQ polypeptides belong to the potassium channel family. KCNQ polypeptides associate to form homomeric or heteromeric potassium channels, each polypeptide corresponding to a subunit of the channel. Currently, five different members of the KCNQ family are known: KCNQ1, KCNQ2, KCNQ3, KCNQ4 and KCNQ5. Heteromeric KCNQ potassium channels can be comprised either of different members of the KCNQ family, or of KCNQ polypeptides associated with other members of the potassium channel family. Some
of the KCNQ potassium channels, including KCNQ2 and KCNQ3, underlie the M-current, an important regulator of neuronal excitability. Both their amino-terminal and their carboxyl-terminal extremities are located on the intracellular side of the membrane. These extremities play an important role both in interactions with other proteins and in modulation of the channel's activity.

The activity of KCNQ channels has been shown to be modulated by the Protein kinase A (PKA) and by the c-Src tyrosine kinase (Src). Schroeder et al. showed that currents generated by heteromeric KCNQ2/KCNQ3 channels can be increased by intracellular cyclic AMP, and that this effect is mediated by the PKA kinase. PKA stimulated current intensity by 66% (Schroeder et al. (2000) Epilepsia (2000) 41:1068-1069). Gamper et al. showed that coexpression of Src with KCNQ2/KCNQ3 heteromeric channels resulted in a 4.5-fold reduction of current density and a 2-fold slowing of activation kinetics at 0 mV. However, Src had no effect on currents generated by KCNQ2 homomeric channels (Gamper et al. (2003) J Neurosci. 23:84-95). Accordingly, modulation of the phosphorylation state of KCNQ channels, which represents a balance between the activities of kinases and phosphatases, is believed to be important for control of neuronal excitability.

3. Mental disorders

Mental disorders encompass a wide range of CNS disorders. Mental disorders include, e.g., mood disorders, psychotic disorders, anxiety disorders, childhood disorders, eating disorders and personality disorders, all these terms being defined according to the DSM-IV classification (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition, American Psychiatric Association, Washington D.C., 1994). Mood Disorders encompass bipolar I disorder (mania with or without major depression), bipolar II disorder (hypomania with major depression), cyclothymic disorder (numerous brief episodes of hypomania and minor depression), dysthyemic disorder (prolonged minor depression without mania/hypomania) and major depressive disorder (major depression without mania). Psychotic disorders encompass schizophrenia, schizoaffective disorder, schizophreniform disorder, brief psychotic disorder, delusional disorder and shared psychotic disorder. Bipolar disorder, schizophrenia and depression are three particularly serious and widespread mental disorders.

3.1. Bipolar Disorder

Bipolar disorders are relatively common disorders, occurring in about 1.3% of the population, and have been reported to constitute about half of the mood disorders seen in psychiatric clinics with severe and potentially disabling effects. Bipolar disorders have been found to vary with gender depending of the type of disorder; for example, bipolar disorder I is
found equally among men and women, while bipolar disorder II is reportedly more common in women. The age of onset of bipolar disorders is typically in the teenage years and diagnosis is typically made in the patient's early twenties. Bipolar disorders also occur among the elderly, generally as a result of a neurological disorder or other medical conditions. In addition to the severe effects on patients' social development, suicide completion rates among bipolar patients are reported to be about 15%.

Bipolar disorders are characterized by phases of excitement and often depression; the excitement phases, referred to as mania or hypomania, and depressive phases can alternate or occur in various admixtures, and can occur to different degrees of severity and over varying duration. Since bipolar disorders can exist in different forms and display different symptoms, the classification of bipolar disorder has been the subject of extensive studies resulting in the definition of bipolar disorder subtypes and widening of the overall concept to include patients previously thought to be suffering from different disorders. Bipolar disorders often share certain clinical signs, symptoms, treatments and neurobiological features with psychotic illnesses in general and therefore present a challenge to the psychiatrist to make an accurate diagnosis. Furthermore, because the course of bipolar disorders and various mood and psychotic disorders can differ greatly, it is critical to characterize the illness as early as possible in order to offer means to manage the illness over a long term.

The mania associated with the disease impairs performance and causes psychosis, and often results in hospitalization. This disease places a heavy burden on the patient's family and relatives, both in terms of the direct and indirect costs involved and the social stigma associated with the illness, sometimes over generations. Such stigma often leads to isolation and neglect. Furthermore, the earlier the onset, the more severe are the effects of interrupted education and social development.

The DSM-IV classification of bipolar disorder distinguishes among four types of disorders based on the degree and duration of mania or hypomania as well as two types of disorders which are evident typically with medical conditions or their treatments, or to substance abuse. Mania is recognized by elevated, expansive or irritable mood as well as by distractability, impulsive behavior, increased activity, grandiosity, elation, racing thoughts, and pressured speech. Of the four types of bipolar disorder characterized by the particular degree and duration of mania, DSM-IV includes:

- bipolar disorder I, including patients displaying mania for at least one week;
- bipolar disorder II, including patients displaying hypomania for at least 4 days, characterized by milder symptoms of excitement than mania, who have not previously displayed mania, and have previously suffered from episodes of major depression;
- bipolar disorder not otherwise specified (NOS), including patients otherwise displaying features of bipolar disorder II but not meeting the 4 day duration for the excitement phase, or who display hypomania without an episode of major depression; and
- cyclothymia, including patients who show numerous manic and depressive symptoms that do not meet the criteria for hypomania or major depression, but which are displayed for over two years without a symptom-free interval of more than two months.

The remaining two types of bipolar disorder as classified in DSM-VI are disorders evident or caused by various medical disorder and their treatments, and disorders involving or related to substance abuse. Medical disorders which can cause bipolar disorders typically include endocrine disorders and cerebrovascular injuries, and medical treatments causing bipolar disorder are known to include glucocorticoids and the abuse of stimulants. The disorder associated with the use or abuse of a substance is referred to as "substance induced mood disorder with manic or mixed features".

Evidence from twin and adoption studies, and the lack of variation in incidence worldwide, indicate that bipolar disorder is primarily a genetic condition, although environmental risk factors are also involved at some level as necessary, sufficient, or interactive causes. Aggregation of bipolar disorder and schizophrenia in families suggests that these two distinct disorders share some common genetic susceptibility. Several linkage studies of bipolar disorder have been reported, and several susceptibility regions have been identified. The regions that are associated with bipolar disorder include 1q31-q32, 4p16, 7q31, 12q23-q24, 13q32, 18p11.2, 21q22 and 22q11-q13 (Detera-Wadleigh et al. (1999) Proc Natl Acad Sci USA A96(10):5604-9). Some of these regions, like 4p16, 12q24, 18p11, 21q21 and 22q11 have been repeatedly implicated by independent investigators. Furthermore, some regions that are linked to bipolar disorder such as, e.g., 13q32 and 18p11.2, are also implicated in genome scans of schizophrenia, confirming that these two distinct disorders share some common genetic susceptibility. However, the genes underlying bipolar disorder and/or schizophrenia have not yet been identified.

3.2. Schizophrenia

There are an estimated 45 million people with schizophrenia in the world, with more than 33 million of them in the developing countries. In developed countries schizophrenia occurs in approximately 1% of the adult population at some point during their lives. If there is one grandparent with schizophrenia, the risk of getting the illness increases to about 3%; one parent with Schizophrenia, to about 10%. When both parents have schizophrenia, the risk rises to approximately 40%. Most schizophrenia patients are never able to work.
Standardized mortality ratios (SMRs) for schizophrenic patients are estimated to be two to four times higher than the general population and their life expectancy overall is 20% shorter than for the general population. The most common cause of death among schizophrenic patients is suicide (in 10% of patients) which represents a 20 times higher risk than for the general population. Deaths from heart disease and from diseases of the respiratory and digestive system are also increased among schizophrenic patients.

Schizophrenia comprises a group of psychoses with either 'positive' or 'negative' symptoms. Positive symptoms consist of hallucinations, delusions and disorders of thought; negative symptoms include emotional flattening, lack of volition and a decrease in motor activity.

A number of biochemical abnormalities have been identified and, in consequence, several neurotransmitter based hypotheses have been advanced over recent years; the most popular one has been "the dopamine hypothesis," one variant of which states that there is over-activity of the mesolimbic dopamine pathways at the level of the D₂ receptor. However, researchers have been unable to consistently find an association between various receptors of the dopaminergic system and schizophrenia.

3.3. Depression

Depression is a serious medical illness that affects 340 million people worldwide. In contrast to the normal emotional experiences of sadness, loss, or passing mood states, clinical depression is persistent and can interfere significantly with an individual's ability to function. As a result, depression is the leading cause of disability throughout the world.

Symptoms of depression include depressed mood, diminished interest or pleasure in activities, change in appetite or weight, insomnia or hypersomnia, psycho-motor agitation or retardation, fatigue or loss of energy, feelings of worthlessness or excessive guilt, anxiety, inability to concentrate or act decisively, and recurrent thoughts of death or suicide. A diagnosis of unipolar major depression (or major depressive disorder) is made if a person has five or more of these symptoms and impairment in usual functioning nearly every day during the same two-week period. The onset of depression generally begins in late adolescence or early adult life; however, recent evidence suggests depression may be occurring earlier in life in people born in the past thirty years.

The World Health Organization predicts that by the year 2020 depression will be the greatest burden of ill-health to people in the developing world, and that by then depression will be the second largest cause of death and disability. Beyond the almost unbearable misery it causes, the big risk in major depression is suicide. Within five years of suffering a major depression, an estimated 25% of sufferers try to kill themselves. In addition, depression is a frequent and serious complication of heart attack, stroke, diabetes, and
cancer. According to one recent study that covered a 13-year period, individuals with a history of major depression were four times as likely to suffer a heart attack compared to people without such a history. Depression may also be a feature in up to 50% of patients with mental disorders such as Parkinson's disease and Alzheimer's disease.

3.4. Treatment

There are currently no cures for mental disorders such as bipolar disorder, schizophrenia, depression and other mood disorders, so the objective of treatment is to reduce the severity of the symptoms, if possible to the point of remission. Due to the similarities in symptoms, schizophrenia, depression and bipolar disorder are often treated with some of the same medicaments.

3.4.1. Treatment of bipolar disorder

Depressive episodes may be treated like depression. However, most antidepressants can cause swings from depression to hypomania or mania and sometimes cause rapid cycling between them. Therefore, these drugs are used for only short periods, and their effect on mood is closely monitored. At the first sign of a swing to hypomania or mania, the antidepressant is stopped. Most people with manic-depressive disorder are given drugs with a mood-stabilizing effect such as lithium, carbamazepine and divalproex.

Lithium has no effect on normal mood but reduces the tendency toward mood swings in about 70% of the people with manic-depressive illness. A doctor monitors the level of lithium in the blood with blood tests. Possible adverse effects of lithium include tremor, muscle twitching, nausea, vomiting, diarrhea, thirst, excessive urination, and weight gain. Lithium can make acne or psoriasis worse, can cause the blood levels of thyroid hormone to fall, and rarely can cause excessive urination. A very high level of lithium in the blood can cause a persistent headache, mental confusion, drowsiness, seizures, and abnormal heart rhythms. Adverse effects are more likely to occur in the elderly. Women who are trying to become pregnant must stop taking lithium, because lithium may cause heart defects in a developing fetus.

Newer drug treatments have evolved over the past several years. These include the carbamazepine and divalproex. However, carbamazepine can seriously reduce the number of red and white blood cells, and divalproex can cause liver damage (primarily in children). With careful monitoring by a doctor, these problems are rare, and carbamazepine and divalproex are useful alternatives to lithium, especially for people with the mixed or rapid cycling form of manic-depressive illness who haven't responded to other treatments.
3.4.2. Treatment of schizophrenia

For schizophrenia, antipsychotic medications are the most common and most valuable treatments. There are four main classes of antipsychotic drugs which are commonly prescribed for schizophrenia. The first, neuroleptics, exemplified by chlorpromazine (Thorazine), has revolutionized the treatment of schizophrenic patients by reducing positive (psychotic) symptoms and preventing their recurrence. Patients receiving chlorpromazine have been able to leave mental hospitals and live in community programs or their own homes. But these drugs are far from ideal. Some 20% to 30% of patients do not respond to them at all, and others eventually relapse. These drugs were named neuroleptics because they produce serious neurological side effects, including rigidity and tremors in the arms and legs, muscle spasms, abnormal body movements, and akathisia (restless pacing and fidgeting). These side effects are so troublesome that many patients simply refuse to take the drugs. Besides, neuroleptics do not improve the so-called negative symptoms of schizophrenia and the side effects may even exacerbate these symptoms. Thus, despite the clear beneficial effects of neuroleptics, even some patients who have a good short-term response will ultimately deteriorate in overall functioning.

The well known deficiencies in the standard neuroleptics have stimulated a search for new treatments and have led to a new class of drugs termed atypical neuroleptics. The first atypical neuroleptic, Clozapine, is effective for about one third of patients who do not respond to standard neuroleptics. It seems to reduce negative as well as positive symptoms, or at least exacerbates negative symptoms less than standard neuroleptics do. Moreover, it has beneficial effects on overall functioning and may reduce the chance of suicide in schizophrenic patients. It does not produce the troubling neurological symptoms of the standard neuroleptics, or raise blood levels of the hormone prolactin, excess of which may cause menstrual irregularities and infertility in women, impotence or breast enlargement in men. Many patients who cannot tolerate standard neuroleptics have been able to take clozapine. However, clozapine has serious limitations. It was originally withdrawn from the market because it can cause agranulocytosis, a potentially lethal inability to produce white blood cells. Agranulocytosis remains a threat that requires careful monitoring and periodic blood tests. Clozapine can also cause seizures and other disturbing side effects (e.g., drowsiness, lowered blood pressure, drooling, bed-wetting, and weight gain). Thus only patients who do not respond to other drugs usually take Clozapine.

Researchers have developed a third class of antipsychotic drugs that have the virtues of clozapine without its defects. One of these drugs is risperidone (Risperdal). Early studies suggest that it is as effective as standard neuroleptic drugs for positive symptoms and may be somewhat more effective for negative symptoms. It produces more neurological
side effects than clozapine but fewer than standard neuroleptics. However, it raises prolactin levels. Risperidone is now prescribed for a broad range of psychotic patients, and many clinicians seem to use it before clozapine for patients who do not respond to standard drugs, because they regard it as safer. Another new drug is Olanzapine (Zyprexa) which is at least as effective as standard drugs for positive symptoms and more effective for negative symptoms. It has few neurological side effects at ordinary clinical doses, and it does not significantly raise prolactin levels. Although it does not produce most of clozapine’s most troubling side effects, including agranulocytosis, some patients taking olanzapine may become sedated or dizzy, develop dry mouth, or gain weight. In rare cases, liver function tests become transiently abnormal.

3.4.3. Treatment of depression

Several types of antidepressants are available. These antidepressants belong to four main categories: tricyclic antidepressants, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors and psychostimulants. Tricyclic antidepressants include, e.g., Amitriptyline, Amoxapine, Bupropion, Clomipramine, Desipramine, Doxepin, Imipramine, Maprotiline, Nefazodone, Nortriptyline, Protriptyline, Trazodone, Trimipramine and Venlafaxine. Selective serotonin reuptake inhibitors include, e.g., Fluoxetine, Fluvoxamine, Paroxetine and Sertraline. Monoamine oxidase inhibitors include, e.g., Isocarboxazid, Pargyline, Phenelzine and Tranylcypromine. Psychostimulants include, e.g., Dextroamphetamine and Methylphenidate.

All these antidepressants must be taken regularly for at least several weeks before they begin to work. The chances that any given antidepressant will work for a particular person are about 65%. However, most of these drugs have side effects varying with each type of drug. For example, the tricyclic antidepressants often cause sedation and lead to weight gain. They can also be associated with side effects such as an increased heart rate, a decrease in blood pressure when the person stands or blurred vision.

Thus, for mental disorders such as bipolar disorder, schizophrenia, depression and other mood disorders, known molecules used for the treatment have side effects and act only against the symptoms of the disease. Consequently, there is a strong need for new molecules without associated side effects that are specifically directed against targets which are involved in the causal mechanisms of such mental disorders. Therefore, there is a need to identify proteins involved in bipolar disorder and schizophrenia. Providing new targets involved in bipolar disorder and schizophrenia will allow new screenings for drugs, resulting in new drugs that are efficient in treatment of these serious mental disorders.
Furthermore, there is also a need for diagnostic tools. There is increasing evidence that leaving schizophrenia untreated for long periods early in course of the illness may negatively affect the outcome. However, the use of drugs is often delayed for patients experiencing a first episode of the illness. The patients may not realize that they are ill, or they may be afraid to seek help; family members sometimes hope the problem will simply disappear or cannot persuade the patient to seek treatment; clinicians may hesitate to prescribe antipsychotic medications when the diagnosis is uncertain because of potential side effects. Indeed, at the first manifestation of the disease, schizophrenia or bipolar disorder is difficult to distinguish from, e.g., drug-related disorders and stress-related disorders. Accordingly, there is a need for new methods for detecting a susceptibility to mental disorders such as bipolar disorder, schizophrenia, and depression.

SUMMARY OF THE INVENTION

The present invention is based on the finding that PP2A/Bγ deregulation is associated with development of bipolar disorder.

Therefore, a first aspect of the present invention is directed to the use of a PP2A/Bγ subunit as a target for screening candidate modulators.

A second aspect of the present invention is directed to the use of a PP2A phosphatase comprising a PP2A/Bγ subunit as a target for screening candidate modulators.

In a third aspect, the invention relates to the use of modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit for preparing a medicament for the treatment of a mental disorder, and to the use of a gene therapy vector comprising a polynucleotide encoding a PP2A/Bγ subunit for preparing a medicament for the treatment of a mental disorder.

The use of a PP2A/Bγ subunit as a target for screening for natural binding partners is a fourth aspect of the present invention.

A fifth aspect of the invention pertains to a method of assessing the efficiency of a modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit for the treatment of a mental disorder, said method comprising administering said modulator to an animal model for said mental disorder; wherein a determination that said modulator ameliorates a representative characteristic of said mental disorder in said animal model indicates that said agonist is a drug for the treatment of said mental disorder.

In the frame of the present invention, biallelic markers located in the gene encoding PP2A/Bγ have been identified.
Therefore, a sixth aspect of the invention relates to the use of at least one PP2A/Bγ-related biallelic marker for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder.

In a seventh aspect, the invention encompasses the use of at least one PP2A/Bγ-related biallelic marker for determining whether there is a significant association between said marker and a mental disorder.

In an eighth aspect, the invention relates to a method of genotyping comprising the step of determining the identity of a nucleotide at a PP2A/Bγ-related biallelic marker or the complement thereof in a biological sample.

A ninth aspect of the present invention pertains to a method of diagnosing a mental disorder in an individual comprising the step of genotyping at least one PP2A/Bγ-related biallelic marker according to the method of any of claims 29 to 33.

In a tenth aspect, the invention pertains to the use of a polynucleotide comprising a contiguous span of at least 12 nucleotides of SEQ ID NO: 37 or a polynucleotide complementary thereto in a microsequencing assay for determining the identity of the nucleotide at a PP2A/Bγ-related biallelic marker, wherein the 3' end of said polynucleotide is located 1 nucleotide upstream of said PP2A/Bγ-related biallelic marker in said sequence.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1A and *1B* show an alignment between the full-length KCNQ2 polypeptide (KCNQ2-fl, SEQ ID NO: 7), KCNQ2-15bx (SEQ ID NO: 2), KCNQ2-15by (SEQ ID NO: 4) and KCNQ2-15bz (SEQ ID NO: 6). The box shows highlights the amino acids that are unique to KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz compared to KCNQ2-fl.

Figure 2 shows a sheme of the structure of the KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz cDNAs.

Figure 3 shows the results of a mating test between PP2A/Bγ and different KCNQ2 polypeptides, as described in detail in Example 3.

Figure 4 shows the results of a mating test between different KCNQ2 polypeptides, as described in detail in Example 3.

Figure 5 compares the intensity of the currents generated by homotetrameric potassium channels comprised of KCNQ2-15bx, KCNQ2-15by, KCNQ2-15bz or KCNQ2-fl subunits respectively.

Figure 6A shows the voltage clamp traces of the current generated by a homotetrameric potassium channels comprised of KCNQ2-15bx subunits.

Figure 6B shows the voltage clamp traces of the current generated by a homotetrameric potassium channels comprised of KCNQ2-15by subunits.
BRIEF DESCRIPTION OF THE SEQUENCES OF THE SEQUENCE LISTING

SEQ ID NO: 1 corresponds to a polynucleotide consisting of the CDS of KCNQ2-15bx
SEQ ID NO: 2 corresponds to the KCNQ2-15bx polypeptide.
SEQ ID NO: 3 corresponds to a polynucleotide consisting of the CDS of KCNQ2-15by
SEQ ID NO: 4 corresponds to the KCNQ2-15by polypeptide.
SEQ ID NO: 5 corresponds to a polynucleotide consisting of the CDS of KCNQ2-16bz
SEQ ID NO: 6 corresponds to the KCNQ2-16bz polypeptide.
SEQ ID NO: 7 corresponds to the KCNQ2-fl polypeptide.
SEQ ID Nos. 8 to 36 correspond to primers and probes used in Examples 1 to 4.
SEQ ID NO: 37 corresponds to the PPP2R2C gene which encodes the PP2A/Bγ subunit, on
which PP2A/Bγ-related biallelic markers are indicated.
SEQ ID NO: 38 corresponds to the PP2A/Bγ subunit.
SEQ ID Nos. 39 to 41 correspond to primers used for microsequencing some of the
PP2A/Bγ-related biallelic markers.
SEQ ID Nos. 42 to 47 correspond to regions of the KCNQ2 gene, on which KCNQ2 -related
biallelic markers are indicated.

BRIEF DESCRIPTION OF THE TABLES

Table 1 presents the structure of KCNQ2-fl, KCNQ2-15bx KCNQ2-15by and KCNQ2-15bz.
Tables 2A and 2B present the location of the primers used for amplification of genomic DNA
by PCR in the PPP2R2C and in the KCNQ2 gene respectively
Table 3A and 3B present biallelic markers located in PPP2R2C and in the KCNQ2 gene
respectively.
Tables 4A and 4B present the the primers used for microsequencing biallelic markers located
in PPP2R2C and in the KCNQ2 gene respectively.
Tables 5A and 5B present the p-values for biallelic markers located in PPP2R2C and in the
KCNQ2 gene respectively.
Tables 6A and 6B present the genotypic odds ratios for biallelic markers located in
PPP2R2C and in the KCNQ2 gene respectively.
Tables 7A and 7B present the risk haplotypes for two sets of biallelic markers located in
PPP2R2C
DETAILED DESCRIPTION OF THE INVENTION

The present invention stems from association studies between the gene encoding PP2A/B\textgamma\ (PPP2R2C) and bipolar disorder. As shown in example 15, PPP2R2C is strongly associated with bipolar disorder in two different populations. Novel validated biallelic markers located in PPP2R2C and associated with bipolar disorder are provided. In the frame of the present invention, it was further demonstrated that PP2A/B\textgamma interacts with novel splice variants of the KCNQ2 potassium channel, and that the KCNQ2 gene is also associated with bipolar disorder. Moreover, it was shown that (i) PP2A dephosphorylates the novel KCNQ2 splice variants; and (ii) GSK3\beta and PKA phosphorylate the novel KCNQ2 splice variants. In addition, phosphorylation of the novel KCNQ2 splice variants is inhibited in the presence of lithium, a known mood-stabilizing agent.

Accordingly, the present invention provides means to identify compounds useful in the treatment of mental disorders such as bipolar disorder, schizophrenia, depression and other mood disorders. The invention further relates to the use of PP2A/B\textgamma or to the use of a PP2A phosphatase comprising PP2A/B\textgamma as a target for screening for modulators thereof, and to the use of said modulators for treating mental disorders. The invention also relates to the use of biallelic markers located in PPP2R2C gene for diagnosing mental disorders.

1. Definitions

The term "treat" or "treating" as used herein is meant to ameliorate, alleviate symptoms, eliminate the causation of the symptoms either on a temporary or permanent basis, or to prevent or slow the appearance of symptoms of the named disorder or condition. The term "treatment" as used herein also encompasses the term "prevention of the disorder", which is, e.g., manifested by delaying the onset of the symptoms of the disorder to a medically significant extent. Treatment of the disorder is, e.g., manifested by a decrease in the symptoms associated with the disorder or an amelioration of the reoccurrence of the symptoms of the disorder.

The term "mental disorder" refers to diseases characterized as mood disorders, psychotic disorders, anxiety disorders, childhood disorders, eating disorders, personality disorders, adjustment disorder, autistic disorder, delirium, dementia, multi-infarct dementia and Tourette’s disorder in the DSM-IV classification (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition, American Psychiatric Association, Washington D.C., 1994).

The term "schizophrenia" refers to a condition characterized as schizophrenia in the DSM-IV classification (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition, American Psychiatric Association, Washington D.C., 1994).
The term "bipolar disorder" as used herein refers to a condition characterized as a Bipolar Disorder in the DSM-IV. Bipolar disorder may be bipolar I and bipolar disorder II as described in the DSM-IV. The term further includes cyclothymic disorder. Cyclothymic disorder refers to an alternation of depressive symptoms and hypomanic symptoms. The skilled artisan will recognize that there are alternative nomenclatures, posologies, and classification systems for pathologic psychological conditions and that these systems evolve with medical scientific progress.

The terms "comprising", "consisting of", or "consisting essentially of" have distinct meanings. However, each term may be substituted for another herein to change the scope of the invention.

As used interchangeably herein, the term "oligonucleotides", and "polynucleotides" include RNA, DNA, or RNA/DNA hybrid sequences of more than one nucleotide in either single chain or duplex form. The term "nucleotide" as used herein as an adjective to describe compounds comprising RNA, DNA, or RNA/DNA hybrid sequences of any length in single-stranded or duplex form. The term "nucleotide" is also used herein as a noun to refer to individual nucleotides or varieties of nucleotides, meaning a compound, or individual unit in a larger nucleic acid compound, comprising a purine or pyrimidine, a ribose or deoxyribose sugar moiety, and a phosphate group, or phosphodiester linkage in the case of nucleotides within an oligonucleotide or polynucleotide. Although the term "nucleotide" is also used herein to encompass "modified nucleotides" which comprise at least one modifications (a) an alternative linking group, (b) an analogous form of purine, (c) an analogous form of pyrimidine, or (d) an analogous sugar, for examples of analogous linking groups, purine, pyrimidines, and sugars see for example PCT publication No. WO 95/04054, the disclosure of which is incorporated herein by reference. However, the polynucleotides of the invention are preferably comprised of greater than 50% conventional deoxyribose nucleotides, and most preferably greater than 90% conventional deoxyribose nucleotides. The polynucleotide sequences of the invention may be prepared by any known method, including synthetic, recombinant, ex vivo generation, or a combination thereof, as well as utilizing any purification methods known in the art.

The term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or DNA or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotide could be part of a vector and/or such polynucleotide or polypeptide could be part of a composition, and still be isolated in that the vector or composition is not part of its natural environment.

The term "primer" denotes a specific oligonucleotide sequence which is
complementary to a target nucleotide sequence and used to hybridize to the target
nucleotide sequence. A primer serves as an initiation point for nucleotide polymerization
catalyzed by either DNA polymerase, RNA polymerase or reverse transcriptase.

The term "probe" denotes a defined nucleic acid segment (or nucleotide analog
segment, e.g., polynucleotide as defined herein) which can be used to identify a specific
polynucleotide sequence present in samples, said nucleic acid segment comprising a
nucleotide sequence complementary of the specific polynucleotide sequence to be identified.

The terms "complementary" or "complement thereof" are used herein to refer to the
sequences of polynucleotides which are capable of forming Watson & Crick base pairing with
another specified polynucleotide throughout the entirety of the complementary region. This
term is applied to pairs of polynucleotides based solely upon their sequences and not any
particular set of conditions under which the two polynucleotides would actually bind.

The term "polypeptide" refers to a polymer of amino acids without regard to the length
of the polymer; thus, peptides, oligopeptides, and proteins are included within the definition
of polypeptide. This term also does not specify or exclude pro-st-expression modifications of
polypeptides, for example, polypeptides which include the covalent attachment of glycosyl
groups, acetyl groups, phosphate groups, lipid groups and the like are expressly
encompassed by the term polypeptide. Also included within the definition are polypeptides
which contain one or more analogs of an amino acid (including, for example, non-naturally
occurring amino acids, amino acids which only occur naturally in an unrelated biological
system, modified amino acids from mammalian systems etc.), polypeptides with substituted
linkages, as well as other modifications known in the art, both naturally occurring and non-
naturally occurring.

As used herein, the term "exon" refers as well to the portion of a DNA that codes for
portion of spliced mRNA as to the amino acids encoded by said part of a DNA.

As used herein, "splice variants" refer to different mRNAs produced by alternative
splicing events and translated from the same gene. The term splice variant refers as well to
the mRNA as to the corresponding polypeptide.

As used herein, the term "non-human animal" refers to any non-human vertebrate,
birds and more usually mammals, preferably primates, farm animals such as swine, goats,
sheep, donkeys, and horses, rabbits or rodents, more preferably rats or mice. As used
herein, the term "animal" is used to refer to any vertebrate, preferable a mammal. Both the
terms "animal" and "mammal" expressly embrace human subjects unless preceded with the
term "non-human".

The terms "trait" and "phenotype" are used interchangeably herein and refer to any
clinically distinguishable, detectable or otherwise measurable property of an organism such
as symptoms of, or susceptibility to a disease for example. Typically the terms "trait" or
“phenotype” are used herein to refer to symptoms of, or susceptibility to bipolar disorder; or to refer to an individual’s response to an agent acting on bipolar disorder; or to refer to symptoms of, or susceptibility to side effects to an agent acting on bipolar disorder.

As used herein, the term “allele” refers to one of the variant forms of a biallelic marker, differing from other forms in its nucleotide sequence. Typically the first identified allele is designated as the original allele whereas other alleles are designated as alternative alleles. Diploid organisms may be homozygous or heterozygous for an allelic form.

The term “polymorphism” as used herein refers to the occurrence of two or more alternative genomic sequences or alleles between or among different genomes or individuals. “Polymorphic” refers to the condition in which two or more variants of a specific genomic sequence can be found in a population. A “polymorphic site” is the locus at which the variation occurs. A polymorphism may comprise a substitution, deletion or insertion of one or more nucleotides. A single nucleotide polymorphism is a single base pair change. Typically a single nucleotide polymorphism is the replacement of one nucleotide by another nucleotide at the polymorphic site. A “single nucleotide polymorphism” (SNP) refers to a sequence polymorphism differing in a single base pair.

2. Uses of PP2A/Bγ and PP2A phosphatases comprising a PP2A/Bγ subunit.

The present invention is directed to uses of the PP2A/Bγ subunit and of PP2A phosphatases comprising a PP2A/Bγ subunit for treating or diagnosing mental disorders.

A first aspect of the present invention is directed to the use of a PP2A/Bγ subunit as a target for screening candidate modulators. As used herein, the term “PP2A/Bγ subunit” is used interchangeably with “PP2A/Bγ” and refers to a polypeptide encoded by the PPP2R2C gene. Thus the term PP2A/Bγ encompasses all variants that are encoded by PPP2R2C corresponding to, e.g., alternative splice variants, or polypeptides translated from alternative start methionines. A preferred PP2A/Bγ variant is the polypeptide of SEQ ID NO: 38.

As used herein, a “PP2A/Bγ modulator” refers to a compound that increases or decreases the activity of a PP2A/Bγ polypeptide and/or to a compound that increases or decreases the transcription level of the PP2A/Bγ mRNA encoding said polypeptide. The term “modulator” encompasses both agonists and antagonists.

As used herein, a “PP2A/Bγ antagonist” refers to a compound that decreases the activity of a PP2A/Bγ polypeptide and/or to a compound that decreases the expression level of the PP2A/Bγ mRNA encoding said polypeptide. The terms “antagonist” and “inhibitor” are considered to be synonymous and can be used interchangeably throughout the disclosure.

As used herein, a “PP2A/Bγ agonist” refers to a compound that increases the activity of a PP2A/Bγ polypeptide and/or to a compound that increases the expression level of the
PP2A/Bγ mRNA encoding said polypeptide. The terms "agonist" and "activator" are considered to be synonymous and can be used interchangeably throughout the disclosure.

Methods that can be used for testing modulators for their ability to increase or decrease the activity of a PP2A/Bγ polypeptide or to increase or decrease the expression of a PP2A/Bγ mRNA are well known in the art and further detailed below.

PP2A/Bγ is one of the alternative regulatory B subunits of the PP2A phosphatase. As shown in examples 4 and 6, a PP2A/Bγ subunit is capable of binding to KCNQ2 polypeptides in vitro. As used herein, the term "KCNQ2 polypeptide" refers to any polypeptide encoded by the KCNQ2 gene. Thus the term "KCNQ2 polypeptide" encompasses all alternative splice variants encoded by the KCNQ2 gene, such as, e.g., a polypeptide of SEQ ID NO: 2, a polypeptide of SEQ ID NO: 4, a polypeptide of SEQ ID NO: 6, a polypeptide of SEQ ID NO: 7 and other previously described isoforms (see, e.g., SwissProt Accession No. Q43526). Polypeptides comprising exon 15b as depicted in Example 2, such as polypeptides of SEQ ID Nos. 2, 4 and 6, are further defined as "KCNQ2-15b polypeptides".

Thus the term "PP2A/Bγ activity," as used herein may refer to the capacity of PP2A/Bγ to bind to KCNQ2 polypeptides. Preferably, PP2A/Bγ refers to the capacity of PP2A/Bγ to bind KCNQ2-15b polypeptides. Alternatively, the term "PP2A/Bγ activity," may refer to the capacity of PP2A/Bγ to bind to other subunits of the PP2A phosphatase such as a catalytic or a scaffolding subunit. The capacity of PP2A/Bγ to bind KCNQ2 polypeptides or to bind other subunits of the PP2A phosphatase may be assessed by several assays well known by those of skill in the art including, e.g., the yeast mating test described in example 4 and the solid phase overlay assay described in example 6.

A second aspect of the present invention is directed to the use of a PP2A phosphatase comprising a PP2A/Bγ subunit as a target for screening candidate modulators. As used herein, the term "modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit" as used herein refers to a to a compound that increases or decreases any of the activities of a PP2A phosphatase comprising a PP2A/Bγ subunit. Modulators encompass both agonists, i.e., compounds that increase the activity of a PP2A phosphatase comprising a PP2A/Bγ subunit, and antagonists, i.e., compounds that decrease the activity of a PP2A phosphatase comprising a PP2A/Bγ subunit. A PP2A/Bγ modulator is believed to modulate the activity of a PP2A phosphatase comprising a PP2A/Bγ subunit. Accordingly, as used herein, the term "modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit" encompasses the term "PP2A/Bγ modulator".

The term "activity of a PP2A phosphatase comprising a PP2A/Bγ subunit" as used
herein refers to the enzymatic activity of such a PP2A isoform. The activity of PP2A refers both to the serine/threonine protein phosphatase activity and to the phosphotyrosine phosphatase activity. The activity of a PP2A phosphatase comprising a PP2A/Bγ subunit may be assessed by several assays well known by those of skill in the art including, e.g., the dephosphorylation assay described in Example 7.

In all aspects and embodiments of the present invention, the modulator preferably specifically modulates a PP2A phosphatase comprising the PP2A/Bγ subunit. In other words, the modulator (i) increases or decreases the activity of a PP2A phosphatase comprising the PP2A/Bγ subunit; and (ii) has no or significantly less effect on the activity of a PP2A phosphatase that does not comprise the PP2A/Bγ subunit.

The assays for measuring the activity of PP2A/Bγ or of a PP2A phosphatase comprising a PP2A/Bγ subunit when screening for a modulator may be performed either in vitro or in vivo, as further detailed below.

Candidate compounds according to the present invention include naturally occurring and synthetic compounds. Such compounds include, e.g., natural ligands, small molecules, antisense mRNAs, antibodies, aptamers and short interfering RNAs. As used herein, the term “natural ligand” refers to any signaling molecule that binds to a phosphatase comprising PP2A/Bγ in vivo and includes molecules such as, e.g., lipids, nucleotides, polynucleotides, amino acids, peptides, polypeptides, proteins, carbohydrates and inorganic molecules. As used herein, the term “small molecule” refers to an organic compound. As used herein, the term “antibody” refers to a protein produced by cells of the immune system or to a fragment thereof that binds to an antigen. As used herein, the term “antisense mRNA” refers to an RNA molecule complementary to the strand normally processed into mRNA and translated, or complementary to a region thereof. As used herein, the term “aptamer” refers to an artificial nucleic acid ligand (see, e.g., Ellington and Szostak (1990) Nature 346:818-822). As used herein, the term “short interfering RNA” refers to a double-stranded RNA inducing sequence-specific posttranscriptional gene silencing (see, e.g., Elbashir et al. (2001) Genes Dev. 15:188-200).

Such candidate compounds can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including, e.g., biological libraries, spatially addressable parallel solid phase or solution phase libraries, and synthetic library methods using affinity chromatography selection. The biological library approach is generally used with peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomers, or small molecule libraries of compounds.

One example of a method that may be used for screening candidate compounds for a modulator is a method comprising the steps of:
a) contacting PP2A/Bγ or a PP2A phosphatase comprising a PP2A/Bγ subunit with the candidate compound; and
b) testing the activity of PP2A/Bγ or of the PP2A phosphatase comprising a PP2A/Bγ subunit in the presence of said candidate compound,

wherein a difference in the activity of PP2A/Bγ or of the PP2A phosphatase comprising a PP2A/Bγ subunit in the presence of said compound in comparison to the activity in the absence of said compound indicates that the compound is a modulator of PP2A/Bγ or of the PP2A phosphatase comprising a PP2A/Bγ subunit.

Alternatively, the assay may be a cell-based assay comprising the steps of:

a) contacting a cell expressing PP2A/Bγ or a PP2A phosphatase comprising a PP2A/Bγ subunit with the candidate compound; and
b) testing the activity of PP2A/Bγ or of the PP2A phosphatase comprising a PP2A/Bγ subunit polypeptide in the presence of said candidate compound,

wherein a difference in the activity of PP2A/Bγ or of the PP2A phosphatase comprising a PP2A/Bγ subunit in the presence of said compound in comparison to the activity in the absence of said compound indicates that the compound is a modulator of said KCNQ2 polypeptide.

The modulator may modulate any activity of said PP2A/Bγ or of said PP2A phosphatase comprising a PP2A/Bγ subunit. The modulator may for example modulate PP2A/Bγ mRNA expression within a cell, or modulate the binding of PP2A/Bγ to KCNQ2 polypeptides or to other subunits of PP2A. Further activities that may be measured include the serine/threonine protein phosphatase activity and the phosphotyrosine phosphatase activity of a PP2A phosphatase comprising a PP2A/Bγ subunit.

In a preferred embodiment, the activity of a PP2A phosphatase comprising a PP2A/Bγ subunit is assessed by measuring its serine/threonine protein phosphatase activity. This activity may be measured as described in Example 7. Several other methods for measuring the serine/threonine protein phosphatase activity of PP2A are well known in the art. Such methods include, e.g., the phosphatase assays described by Price et al. (Biochemistry. (2000) 39:11312-11318) and by Kamibayashi et al. (J Biol Chem. (1994) 269:20139-20148). Any known PP2A substrate may be used in such assays. In one embodiment, said substrate is KCNQ2 polypeptides.

In another preferred embodiment, the activity of a PP2A phosphatase comprising a PP2A/Bγ subunit is assessed by measuring its phosphotyrosine phosphatase activity. This activity may for example be measured as described by Agostinis et al. (Eur J Biochem. (1996) 236:548-557).
In a further preferred embodiment, the activity of PP2A/Bγ is assessed by measuring the binding of PP2A/Bγ to KCNQ2 polypeptides. The binding of PP2A/Bγ to KCNQ2 polypeptides can for example be measured by the yeast mating test as described in example 3 or by the solid phase overlay assay as described in example 6.

In a further preferred embodiment, the activity of PP2A/Bγ is assessed by measuring the binding of PP2A/Bγ to other the catalytic subunit of PP2A or to the scaffolding subunit of PP2A. This assay may also be performed using, e.g., the yeast mating test or the solid phase overlay assay described in examples 3 and 6.

In a further preferred embodiment, the activity of PP2A/Bγ is assessed by measuring the levels of PP2A/Bγ mRNA within a cell. In this embodiment, the activity can for example be measured using Northern blots, RT-PCR, quantitative RT-PCR with primers and probes specific for PP2A/Bγ mRNAs. The term "PP2A/Bγ mRNA" as used herein encompasses all alternative variants and splice variants translated from the PPP2R2C gene which encodes PP2A/Bγ. The primers and probes may detect one specific PP2A/Bγ splice variant or detect all alternative splice variants translated from PPP2R2C. Alternatively, the expression of the PP2A/Bγ mRNA is measured at the polypeptide level, by using labeled antibodies that specifically bind to PP2A/Bγ in immunoassays such as ELISA assays, RIA assays, Western blots or immunohistochemical assays.

As shown in Example 15, deregulation of PP2A phosphatases comprising the PP2A/Bγ regulatory subunit contributes to the onset and to the development of bipolar disease. Accordingly, modulators of PP2A/Bγ or of a PP2A phosphatase comprising PP2A/Bγ which may be found, e.g., by any of the above screenings, are candidate drugs for the treatment of a mental disorder.

As used throughout the disclosures of the present specification, the term "mental disorder" is used as defined in the DSM-IV classification (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition, American Psychiatric Association, Washington D.C., 1994). In all aspects and embodiments of the present invention, the term "mental disorder" preferably refers to a mental disorder selected from the group consisting of bipolar disorder, schizophrenia and depression. In all aspects and embodiments, the term "mental disorder" most preferably refers to bipolar disorder.

A further aspect of the present invention is the use of modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit for preparing a medicament for the treatment of a mental disorder. Such a medicament comprises said modulator of a KCNQ2 polypeptide in combination with any physiologically acceptable carrier. Physiologically acceptable carriers can be prepared by any method known by those skilled in the art. Physiologically acceptable carriers include but are not limited to those described in Remington's Pharmaceutical
Sciences (Mack Publishing Company, Easton, USA 1985). Pharmaceutical compositions comprising a modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit and a physiologically acceptable carrier can be for, e.g., intravenous, topical, rectal, local, inhalant, subcutaneous, intradermal, intramuscular, oral, intrathecal and intracerebral use. The compositions can be in liquid (e.g., solutions, suspensions), solid (e.g., pills, tablets, suppositories) or semisolid (e.g., creams, gels) form. Dosages to be administered depend on individual needs, on the desired effect and the chosen route of administration.

If an increase of the activity of a PP2A phosphatase comprising a PP2A/Bγ subunit is sought in a patient, a particularly efficacious medicament is a gene therapy vector comprising a polynucleotide encoding PP2A/Bγ. Upon administration to a patient, such a vector will cause the active agent to be expressed in vivo, preferably specifically in the appropriate cells or tissues. Thus another aspect of the present invention is the use of a gene therapy vector comprising a polynucleotide encoding a PP2A/Bγ subunit for preparing a medicament for the treatment of a mental disorder.

Expression vectors that may be used for gene therapy are well known in the art, and they comprise further elements serving for expression of the gene of interest. They may comprise regulatory sequence, such as promoter and enhancer sequences, selection marker sequences, origins of multiplication, and the like. Advantageously, the expression of PP2A/Bγ will then be in situ, e.g., restricted to brain or to some regions of brain.

In a preferred embodiment, the expression vector is a lentiviral derived vector. Lentiviral vectors have been shown to be very efficient in the transfer of genes, in particular within the CNS. Other well established viral vectors, such as adenoviral derived vectors, may also be used according to the invention.

In a preferred embodiment of the invention, the expression vector may be administered by intramuscular injection.

The use of a vector for inducing and/or enhancing the endogenous production of PP2A/Bγ in a cell normally silent for expression of PP2A/Bγ, or which expresses amounts of PP2A/Bγ which are not sufficient, are also contemplated according to the invention. The vector may comprise regulatory sequences functional in the cells desired to express PP2A/Bγ. Such regulatory sequences may be promoters or enhancers, for example. The regulatory sequence may then be introduced into the appropriate locus of the genome by homologous recombination, thus PP2A/Bγ linking the regulatory sequence with the gene, the expression of which is required to be induced or enhanced. The technology is usually referred to as "endogenous gene activation" (EGA), and it is described e.g. in WO 91/09955.

Such medicaments comprising either a modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit or a gene therapy vector comprising a polynucleotide
encoding a PP2A/Bγ subunit may be administered in combination with any known drug for the treatment of a mental disorder. The modulator may for example be administered in combination with a mood-stabilizing drug used for treating bipolar disorder such as, e.g., lithium, carbamazepine or valproex. The modulator may also be administered in combination with an antidepressant such as, e.g., a tricyclic antidepressant, a selective serotonin reuptake inhibitor, a monoamine oxidase inhibitor or a psychostimulant. When treating schizophrenia and other psychotic disorders, the modulator may for example be administered in combination with an antipsychotic drugs such as, e.g., chlorpromazine, clozapine, risperidone or olanzapine.

Another aspect is the use of a PP2A/Bγ subunit as a target for screening for natural binding partners. Methods for screening for natural binding partners include, e.g., the yeast two-hybrid screening that is described in Example 1. Using a PP2A/Bγ as a target has a utility for the identification of proteins involved in bipolar disorder and for providing new intervention points in the treatment of bipolar disorder and other mental disorders.

A method of assessing the efficiency of a modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit for the treatment of a mental disorder, said method comprising administering said modulator to an animal model for said mental disorder; wherein a determination that said modulator ameliorates a representative characteristic of said mental disorder in said animal model indicates that said agonist is a drug for the treatment of said mental disorder is also contemplated according to the invention.

Animal models for mental disorders and assays for determining whether a compound ameliorates a representative characteristic of said mental disorder in said animal model are currently used and described in scientific and patent literature. For example, animal models that may be used in the above method include but are not limited to the conditioned avoidance behaviour model in rats, which is a standard behavioural test predictive of antipsychotic activity, the behavioral activity assessment of mice and rats in the Omnitech Digiscan animal activity monitors, the purpose of which is to evaluate compounds for antipsychotic-like CNS effects and a variety of other behavioral effects generally associated with CNS activity, the blockade of amphetamine-stimulated locomotion in rat, the protocol for the prepulse inhibition of acoustic startle model in rats, the inhibition of apomorphine-induced climbing behaviour and the inhibition of DOI-induced head twitches and scratches. A preferred animal model is the STOP-J- mice with synaptic defects and severe behavioral disorders described by Andrieux et al. (2002, Genes Dev., 16:2350-2364).
3. PP2A/Bγ-related biallelic markers

The present invention is directed to the use of at least one PP2A/Bγ-related biallelic marker for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder. As used herein, the term "PP2A/Bγ-related biallelic marker" refers to a biallelic marker located in an exon of PPP2R2C, in an intron of PPP2R2C, or in the regulatory regions of PPP2R2C, PPP2R2C being the gene encoding the PP2A/Bγ subunit. KCNQ2-related biallelic markers encompass the biallelic markers shown in table 3A in Example 12.

In one embodiment, a single biallelic marker is used for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder by determining the genotype of an individual. In another embodiment, a combination of several biallelic markers may be used for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder by determining the haplotype of an individual. For example, a two-markers haplotype, a three-markers haplotype or a four-markers haplotype may be determined.

As used herein, the term "biallelic marker" refers to a polymorphism having two alleles at a fairly high frequency in the population, preferably a single nucleotide polymorphism. Typically the frequency of the less common allele of the biallelic markers of the present invention has been validated to be greater than 1%, preferably the frequency is greater than 10%, more preferably the frequency is at least 20% (i.e. heterozygosity rate of at least 0.32), even more preferably the frequency is at least 30% (i.e. heterozygosity rate of at least 0.42). In the present specification, the term "biallelic marker" is used to refer both to the polymorphism and to the locus carrying the polymorphism.

As used herein, the term "genotype" refers to the identity of the alleles present in an individual or a sample. The term "genotype" preferably refers to the description of both copies of a single biallelic marker that are present in the genome of an individual. The individual is homozygous if the two alleles of the biallelic marker present in the genome are identical. The individual is heterozygous if the two alleles of the biallelic marker present in the genome are different.

The term "genotyping" a sample or an individual for a biallelic marker involves determining the specific alleles or the specific nucleotides carried by an individual at a biallelic marker.

As used herein, the term "haplotype" refers to a set of alleles of closely linked biallelic markers present on one chromosome and which tend to be inherited together.

Methods for determining the alleles, genotypes or haplotypes carried by an individual are well known by those of skill in the art and further detailed below.
In all aspect and embodiments, preferred "mental disorders" include bipolar disorder, schizophrenia and depression. Most preferred mental disorder is bipolar disorder.

In the context of the present invention, the individual is generally understood to be human.

In the frame of the present invention, four validated PP2A/Bγ-related biallelic markers are provided. These four markers, 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216, are described in table 3A in Example 12. Thus a preferred embodiment is the use of a PP2A/Bγ-related biallelic marker selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216 for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder. The alternative alleles of these four biallelic markers are indicated in table 3A. Positions of these biallelic markers on PPP2R2C (corresponding to SEQ ID NO: 37) are also indicated in table 3B. Other preferred embodiments are directed to the use of biallelic markers complementary to 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216, i.e., the corresponding alternative alleles that are located on the complementary strand of DNA.

As shown in table 5A in Example 15, association studies were performed for these four biallelic markers. All these four PP2A/Bγ-related biallelic markers were found to be bipolar disorder-associated markers. A preferred embodiment of the present invention is thus directed to the use of a PP2A/Bγ-related biallelic marker selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218, 24-247/216 and the complements thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder.

The individual may be of any ethnic origin. In one embodiment the individual is an individual of Caucasian origin.

The risk alleles for biallelic markers 99-24169/139, 24-257/320 and 99-24175/218 are indicated in Example 15. As used herein, "risk allele" means that the probability of having bipolar disorder is higher for an individual carrying the risk allele of a biallelic marker than for an individual carrying the other allele. The risk allele for 99-24169/139, 24-257/320 and 99-24175/218 is "A". Thus a preferred embodiment of the present invention is the use of any of biallelic markers 99-24169/139, 24-257/320, 99-24175/218 or the complement thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder, wherein the presence of the allele "A" at any of biallelic markers biallelic markers 99-24169/139, 24-257/320 or 99-24175/218 is indicative of said individual suffering from or being at risk of suffering from said mental disorder.

The risk genotype for biallelic marker 99-24169/139 is indicated in table 6A in Example 15. As used herein, "risk genotype" means that the probability of having bipolar disorder is higher for an individual carrying the risk genotype than for an individual carrying
another genotype. The risk genotype for biallelic marker 99-24169/139 is "AA". Thus a preferred embodiment of the present invention is the use of biallelic marker 99-24169/139 or the complement thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder, wherein the presence of a genotype "AA" at biallelic marker 99-24169/139 is indicative of said individual suffering from or being at risk of suffering from said mental disorder.

A haplotype frequency analysis was carried out for the four PP2A/Bγ-related biallelic markers 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216 (Example 15). More specifically, the risk haplotype for biallelic markers 99-24169/139 and 24-247/216 and for biallelic markers 24-257/320 and 99-24175/218 were determined. As used herein, "risk haplotype" means that the probability of having bipolar disorder is higher for an individual carrying the risk haplotype than for an individual carrying another haplotype. The risk haplotype for biallelic markers 99-24169/139 and 24-247/216 is "AG". Thus a preferred embodiment of the present invention is the use of biallelic markers 99-24169/139 and 24-247/216 or the complement thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder, wherein the presence a haplotype "AG" at biallelic markers 99-24169/139 and 24-247/216 is indicative of said individual suffering from or being at risk of suffering from said mental disorder. The risk haplotype for biallelic markers 24-257/320 and 99-24175/218 is "AA". Thus another preferred embodiment of the present invention is the use of biallelic markers 24-257/320 and 99-24175/218 or the complement thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder, wherein presence of a haplotype "AA" at biallelic markers 24-257/320 and 99-24175/218 is indicative of said individual suffering from or being at risk of suffering from said mental disorder.

In all aspects and embodiments of the present invention, the term "PP2A/Bγ-related biallelic markers" encompasses biallelic markers 99-24169/139, 24-257/320, 99-24175/218, 24-247/216 and the complements thereof. Preferred PP2A/Bγ-related biallelic markers are 99-24169/139, 24-257/320, 99-24175/218 and the complements thereof are. Biallelic marker 99-24169/139 and the complement thereof are most preferred PP2A/Bγ-related biallelic markers.

A further aspect of the present invention pertains to the use of at least one PP2A/Bγ-related biallelic marker for determining whether there is a significant association between said marker and a mental disorder. Such determination may for example be performed using methods described in examples 10 to 15 below, but using populations that are different from the UCL and the Labimo populations, e.g., populations having different ethnic origins. The determination may also be performed for a trait that is not bipolar disorder but, e.g.,
schizophrenia or another mood or psychotic disorder. In this aspect of the invention, the PP2A/Bγ-related biallelic marker may be selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218, 24-247/216 and the complements thereof. Alternatively, the PP2A/Bγ-related biallelic marker may be a marker that is not specifically disclosed in the present specification.

The present invention is further directed to a method of genotyping comprising the step of determining the identity of a nucleotide at a PP2A/Bγ-related biallelic marker or the complement thereof in a biological sample. Preferably, said biological sample is derived from a single subject. It is preferred that the identity of the nucleotides at said biallelic marker is determined for both copies of said biallelic marker present in said individual’s genome. In a preferred embodiment, the identity of the nucleotide at said biallelic marker is determined by a microsequencing assay. Preferably, a portion of a sequence comprising the biallelic marker is amplified prior to the determination of the identity of the nucleotide. The amplification may preferably be performed by PCR. Such a method of genotyping may for example be performed using any of the protocols described in examples 10 to 14 of the present specification. Further methods of genotyping are well known by those of skill in the art and any other known protocol may be used.

Methods well-known to those skilled in the art that may be used for genotyping in order to detect biallelic polymorphisms include methods such as, e.g., conventional dot blot analyzes, single strand conformational polymorphism analysis (SSCP) (Orita et al. (1989) Proc Natl Acad Sci USA 86:2766-2770), denaturing gradient gel electrophoresis (DGGE) (Borresen et al. (1988) Mutat Res. 202:77-83.), heteroduplex analysis (Lessa et al. (1993) Mol Ecol. 2:119-129), mismatch cleavage detection (Grompe et al. (1989) Proc Natl Acad Sci USA. 86:5888-5892). Another method for determining the identity of the nucleotide present at a particular polymorphic site employs a specialized exonuclease-resistant nucleotide derivative as described in US patent No. 4,656,127. Oligonucleotide microarrays or solid-phase capturable dideoxynucleotides and mass spectrometry may also be used (Wen et al. (2003) World J Gastroenterol. 9:1342-1346; Kim et al. (2003) Anal Biochem. 316:251-258). Preferred methods involve directly determining the identity of the nucleotide present at a biallelic marker site by sequencing assay, microsequencing assay, enzyme-based mismatch detection assay, or hybridization assay.

As used herein, the term "biological sample" refers to a sample comprising nucleic acids. Any source of nucleic acids, in purified or non-purified form, can be utilized as the starting nucleic acid, provided it contains or is suspected of containing the specific nucleic acid sequence desired. DNA or RNA may be extracted from cells, tissues, body fluids and the like.
Methods of genotyping find use in, e.g., in genotyping case-control populations in association studies as well as in genotyping individuals in the context of detection of alleles of biallelic markers which are known to be associated with a given trait. In the context of the present invention, a preferred trait is a mental disorder selected from the group of bipolar disorder, schizophrenia and depression, and most preferably bipolar disorder.

Methods of genotyping may be used not only for determining the genotype of an individual but also for determining the haplotype of an individual. When determining the haplotype of an individual, each single chromosome should be studied independently. Methods of determining the haplotype of an individual are well known in the art and include, e.g., asymmetric PCR amplification (Newton et al. (1989) Nucleic Acids Res. 17:2503-2516; Wu et al. (1989) Proc. Natl. Acad. Sci. USA. 86:2757-2760), isolation of single chromosome by limit dilution followed by PCR amplification (Ruano et al. (1990) Proc. Natl. Acad. Sci. USA. 87:6296-6300) and, for sufficiently close biallelic markers, double PCR amplification of specific alleles (Sarkar and Sommer, (1991) Biotechniques. 10:436-440).

Thus the present invention is further directed to the use of at least one PP2A/Bγ-related biallelic marker for determining the haplotype of an individual. For example, a method for determining a haplotype for a set of biallelic markers in an individual may comprise the steps of: a) genotyping said individual for at least one PP2A/Bγ-related biallelic marker, b) genotyping said individual for a second biallelic marker by determining the identity of the nucleotides at said second biallelic marker. Preferably, both markers are PP2A/Bγ-related biallelic markers. Methods of determining a haplotype for a combination of more than two biallelic markers comprising at least one PP2A/Bγ-related biallelic marker in an individual are also encompassed by the present invention. In such methods, step (b) is repeated for each of the additional markers of the combination. Such a combination may comprise, e.g., 3, 4 or 5 biallelic markers. These biallelic markers may all be PP2A/Bγ-related biallelic markers.

When estimating haplotype frequencies in a population, one may use methods without assigning haplotypes to each individual. Such methods use a statistical method of haplotype determination. Thus another aspect of the present invention encompasses methods of estimating the frequency of a haplotype for a set of biallelic markers in a population, comprising the steps of: a) genotyping each individual in said population for at least one PP2A/Bγ-related biallelic marker, b) genotyping each individual in said population for a second biallelic marker by determining the identity of the nucleotides at said second biallelic marker; and c) applying a haplotype determination method to the identities of the nucleotides determined in steps a) and b) to obtain an estimate of said frequency. Such a method may also be performed for a combination of more than 2 biallelic markers. Step (c) may be performed using any method known in the art to determine or to estimate the

A preferred aspect of the present invention is directed to a method of diagnosing a mental disorder in an individual comprising the step of genotyping at least one PP2A/B_γ-related biallelic marker using a method of genotyping comprising the step of determining the identity of a nucleotide at a PP2A/B_γ-related biallelic marker or the complement thereof in a biological sample derived from said individual. Such a diagnosing method may further comprise the step of correlating the result of the genotyping step with a risk of suffering from said mental disorder. Typically, the presence of the risk allele, risk genotype or risk haplotype of the genotyped PP2A/B_γ-related biallelic marker(s) is correlated with a risk of suffering from the mental disorder. The PP2A/B_γ-related biallelic marker may be selected from the group consisting of biallelic markers 99-24169/139, 24-257/320, 99-24175/218, 24-247/216 and the complements thereof. In one embodiment, the presence of a genotype "AA" at biallelic marker 99-24169/139 is indicative of a risk of suffering from said mental disorder. In another embodiment, the presence the haplotype "AG" at biallelic markers 24169/139 and 24-247/216 is indicative of a risk of suffering from said mental disorder. In still another embodiment, the presence of a haplotype "AA" at biallelic markers 24-257/320 and 99-24175/218 is indicative of a risk of suffering from said mental disorder.

In a further aspect, the present invention pertains to the use of a polynucleotide comprising a contiguous span of at least 12 nucleotides of SEQ ID NO: 37 or a polynucleotide complementary thereto in a microsequencing assay for determining the identity of the nucleotide at a PP2A/B_γ-related biallelic marker, wherein the 3’ end of said polynucleotide is located 1 nucleotide upstream of said PP2A/B_γ-related biallelic marker in said sequence. Such nucleotides may comprise a contiguous span of at least 12, 15, 18, 19 or 20 nucleotides of SEQ ID NO: 37 or a polynucleotide complementary thereto. They preferably comprise a contiguous span of about 19 nucleotides of SEQ ID NO: 37 or a polynucleotide complementary thereto. In one embodiment, said PP2A/B_γ-related biallelic marker is selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218, 24-247/216 and the complements thereof. In a preferred embodiment, the polynucleotide comprising a contiguous span of at least 12 nucleotides of SEQ ID NO: 37 or a polynucleotide complementary thereto is selected from the group consisting of the primers depicted in table 4A in Example 14.
EXAMPLES

EXAMPLE 1: Yeast two-hybrid screening

1. Construction of pGBK7-PPP2R2C

The full-length coding region of the PPP2R2C gene, which encodes the PP2A/Bγ subunit, was first amplified from a Human fetal brain cDNA library (Marathon-Ready cDNA, Clontech) with the two gene-specific primers of SEQ ID NO: 8 and of SEQ ID NO: 9. This first PCR product was then amplified with a new combination of primers of SEQ ID NO: 10 and of SEQ ID NO: 11. The amplified fragment encompassed nucleotides 52-1540 of the full-length cDNA, genbank accession number AF086924 extended, respectively, with EcoRI and BamHI cloning sites. The resulting 1503-bp fragment was digested with EcoRI and BamHI, purified and inserted into EcoRI and BamHI cloning sites of the pGBK7 vector (Clontech).

2. The Yeast Two-Hybrid Screening

A yeast two-hybrid screening was performed to find polypeptides interacting with the PP2A/Bγ subunit. The Saccharomyces cerevisiae strain AH109 (MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2 :: GAL1_UAS-GAL1_TATA-HIS3, GAL2_UAS-GAL2_TATA-ADE2, URA3 :: MEL1_UAS-MEL1_TATA-lacZ) was transformed with the pGBK7-PPP2R2C construction. A lithium acetate transformation procedure was done according to the manufacturer's instructions (Matchmaker Two-Hybrid system, Clontech). The MATa transformed cells expressing the bait were then mixed with a pretransformed Matchmaer Human brain cDNA library in the Y187 strain (MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, met', gal80Δ, URA3 :: GAL1_UAS-GAL1_TATA-lacZ). Three independent mating were performed with respectively 5.10^6, 5.10^6 and 2.10^5 clones of the Human brain cDNA library. The resulting diploid cells able to grow on SD/-Leu/-Trp medium containing plates were further selected onto the medium-stringency SD/-Leu/-Trp/-His selective medium for the identification of bait-prey interactions. Positive colonies were then picked up and plated onto the high-stringency SD/-Leu/-Trp/-His/-Ade selective medium. Only cDNA of colonies able to grow at the same time on SD/-Leu/-Trp and SD/-Leu/-Trp/-His/-Ade media was retained for sequencing and further studies.

3. Results of the Yeast Two-Hybrid Screening

494 clones were obtained, sequenced and analyzed. Among these clones, the 2E11 and 1D3 clones comprised partial cDNAs encoding a novel splice variant of the KCNQ2 potassium channel. 2E11 comprised a cDNA encoding amino acids 433 to 643 of SEQ ID NO: 2, and 1D3 comprised a cDNA encoding amino acids 454 to 643 of SEQ ID NO: 2. The full-length splice variants were cloned and sequenced as described in Example 2.
EXAMPLE 2: Cloning of the full-length KCNQ2 splice variants

1. Cloning and sequencing

Poly(A)+ mRNA from Human brain, thalamus (Clontech) were reversed transcribed (RT) using the murine Moloney leukemia virus reverse transcriptase (RT-PCR Advantage kit, Clontech) with a primer of SEQ ID NO: 12 hybridizing specifically with the novel splice variant cloned in 2E11. After a phenol-chloroform extraction and precipitation steps, the products obtained by the previous RT-PCR were directly PCR-amplified using the following gene-specific primers of SEQ ID NO: 13 and of SEQ ID NO: 14. The amplified fragment encompassed nucleotides 127-148 of the KCNQ2 full-length cDNA, genbank accession number AF033348. These primers were respectively extended with EcoRI and BglII cloning sites. The PCR products were digested with EcoRI and BglII restriction enzymes (New England Biolabs), purified and then ligated into the EcoRI and BglII cloning sites of the pCMV-Myc vector (Clontech). The two pCMV-Myc-3H9 and pCMV-Myc-3H2 clones were fully sequenced. The sequence of the insert in pCMV-Myc-3H2 comprises SEQ ID NO: 1, and the sequence of the insert in pCMV-Myc-3H9 comprises SEQ ID NO: 3.

Similarly, a cDNA was cloned from a poly(A)+ mRNA library from human fetal brain. One clone was obtained and fully sequenced. Its insert comprised SEQ ID NO: 5.

2. Description of the novel splice variants

SEQ ID NO: 1 encodes the polypeptide of SEQ ID NO: 2 (KCNQ2-15bx). SEQ ID NO: 3 encodes the polypeptide of SEQ ID NO: 4 (KCNQ2-15by). SEQ ID NO: 5 encodes the polypeptide of SEQ ID NO: 6 (KCNQ2-15bz). SEQ ID NO: 7 corresponds to the full-length KCNQ2 polypeptide (KCNQ2-fl).

As shown on the alignment between SEQ ID NO: 7, SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6 (Figure 1), the three splice variants display a novel carboxyl-terminal extremity compared to KCNQ2. The 55 carboxyl-terminal amino acids of SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6 are unique to these three splice variants. These 55 amino acids correspond to the amino acids at position 589 to 643 of SEQ ID NO: 2.

The genomic structure of the KCNQ2 gene is shown on figure 3 and in table 1. The KCNQ2 gene is comprised of 17 exons. None of the novel splice variants display the exons corresponding to exons 15, 16 and 17 of the KCNQ2 gene. They all display a novel exon, exon 15b, which encodes the amino acids at position 545 to 643 of SEQ ID NO: 2. The 44 first amino acids encoded by exons 15 and 15b are identical (amino acids at position 545 to 588 of SEQ ID NO: 2). The 55 last amino acids encoded by exon 15b are unique to exon 15b (amino acids at position 589 to 643 of SEQ ID NO: 2). Furthermore, the novel splice variants do not display exons 16 and 17 of KCNQ2-fl. The most carboxyl-terminal exon of these splice variants is exon 15b. SEQ ID NO: 2 further comprises exon 1 to exon 14 of KCNQ2.
Exon 12 of KCNQ2 is lacking in SEQ ID NO: 4. Exons 9 and 12 of KCNQ2 are lacking in SEQ ID NO: 6.

The insert of the 2E11 clone, which corresponds to a partial cDNA, comprises exons 13, 14 and 15b.

Table 1

<table>
<thead>
<tr>
<th>Exon No.</th>
<th>SEQ ID NO:1</th>
<th>Encodes AA of SEQ ID NO:2</th>
<th>SEQ ID NO:3</th>
<th>Encodes AA of SEQ ID NO:4</th>
<th>SEQ ID NO:5</th>
<th>Encodes AA of SEQ ID NO:6</th>
<th>Encodes AA of SEQ ID NO:7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-296</td>
<td>1-98</td>
<td>1-296</td>
<td>1-98</td>
<td>1-296</td>
<td>1-98</td>
<td>1-98</td>
</tr>
<tr>
<td>2</td>
<td>297-387</td>
<td>100-129</td>
<td>297-387</td>
<td>100-129</td>
<td>297-387</td>
<td>100-129</td>
<td>100-129</td>
</tr>
<tr>
<td>3</td>
<td>388-514</td>
<td>130-171</td>
<td>388-514</td>
<td>130-171</td>
<td>388-514</td>
<td>130-171</td>
<td>130-171</td>
</tr>
<tr>
<td>5</td>
<td>691-816</td>
<td>231-272</td>
<td>691-816</td>
<td>231-272</td>
<td>691-816</td>
<td>231-272</td>
<td>231-272</td>
</tr>
<tr>
<td>6</td>
<td>817-927</td>
<td>273-309</td>
<td>817-927</td>
<td>273-309</td>
<td>817-927</td>
<td>273-309</td>
<td>273-309</td>
</tr>
<tr>
<td>7</td>
<td>928-1023</td>
<td>310-341</td>
<td>928-1023</td>
<td>310-341</td>
<td>928-1023</td>
<td>310-341</td>
<td>310-341</td>
</tr>
<tr>
<td>8</td>
<td>1024-1118</td>
<td>342-372</td>
<td>1024-1118</td>
<td>342-372</td>
<td>1024-1118</td>
<td>342-372</td>
<td>342-372</td>
</tr>
<tr>
<td>9</td>
<td>1119-1148</td>
<td>374-382</td>
<td>1119-1148</td>
<td>374-382</td>
<td>/</td>
<td>/</td>
<td>374-382</td>
</tr>
<tr>
<td>10</td>
<td>1149-1217</td>
<td>384-405</td>
<td>1149-1217</td>
<td>384-405</td>
<td>1119-1187</td>
<td>374-395</td>
<td>384-405</td>
</tr>
<tr>
<td>12</td>
<td>1248-1301</td>
<td>417-433</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>417-433</td>
</tr>
<tr>
<td>14</td>
<td>1526-1631</td>
<td>510-543</td>
<td>1472-1577</td>
<td>492-525</td>
<td>1442-1547</td>
<td>482-515</td>
<td>510-543</td>
</tr>
<tr>
<td>15</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>545-587</td>
</tr>
<tr>
<td>15b</td>
<td>1632-1929</td>
<td>545-643</td>
<td>1578-1875</td>
<td>527-625</td>
<td>1548-1845</td>
<td>517-615</td>
<td>/</td>
</tr>
<tr>
<td>16</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>588-629</td>
</tr>
<tr>
<td>17</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>630-872</td>
</tr>
</tbody>
</table>

EXAMPLE 3: Yeast mating test

1. Construction of vectors

1.1. EX13-17, which comprises exons 13, 14, 15, 16 and 17.

The pGADT7-EX13-17 plasmid was constructed as follows: a 1414-bp fragment was first PCR-amplified from a Human total brain cDNA library (Marathon-Ready cDNA, Clontech) with two gene-specific primers of SEQ ID NO: 15 and of SEQ ID NO: 16. This first PCR product was then amplified with a second set of gene-specific primers of SEQ ID NO: 17 and 5'of SEQ ID NO: 18. These primers are extended, respectively, with EcoRI and BamHI cloning sites. After digestion with EcoRI and BamHI restriction enzymes, the 1338-bp
purified fragment was ligated to the same cloning sites of pGADT7 (Clontech).

1.2. EX13-15, which comprises exons 13, 14 and 15.

The pGADT7-EX13-15 plasmid was obtained as follows: a 484-bp fragment was PCR-amplified with primers of SEQ ID NO: 19 and of SEQ ID NO: 20, which are respectively extended with EcoRI and BamHI cloning sites, from the first PCR product of the pGADT7-EX13-17 construction. The resulting fragment was then digested with EcoRI and BamHI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

1.3. EX16-17, which comprises exons 16 and 17.

The pGADT7-EX16-17 plasmid was obtained as follows: a 883-bp fragment was PCR-amplified with primers of SEQ ID NO: 21 and of SEQ ID NO: 22, which are respectively extended with EcoRI and BamHI cloning sites, from the first PCR product of the pGADT7-EX13-17 construction. The resulting fragment was then digested with EcoRI and BamHI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

1.4. EXsp15b, which comprises the region unique to exon 15b.

The pGADT7-EXsp15b plasmid was constructed as follows: a 400-bp fragment was PCR-amplified with a primer of SEQ ID NO: 23 extended with EcoRI cloning site, and with a primer of SEQ ID NO: 24 from the pACT2-2E11 plasmid (see example 1). The resulting fragment was then digested with EcoRI and XhoI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

1.5. EXco15, which comprises the region common to exon 15 and exon 15b.

The pGADT7-EXco15 domain plasmid was constructed as follows: a 146-bp fragment was PCR-amplified with primers of SEQ ID NO: 25 and of SEQ ID NO: 26, which are respectively extended with EcoRI and BamHI cloning sites, from the pACT2-2E11 plasmid. The resulting fragment was then digested with EcoRI and BamHI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

1.6. EX13-14, which comprises exons 13 and 14.

The pGADT7-EX13-14 plasmid was constructed as follows: a 300-bp fragment was PCR-amplified with primers of SEQ ID NO: 27 and of SEQ ID NO: 28, which are respectively extended with EcoRI and BamHI cloning sites, from the pACT2-2E11 plasmid. The resulting fragment was then digested with EcoRI and BamHI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

2. Protocol of the yeast mating test

Yeast mating tests were performed to map the interaction domains between the different partners. The chosen *Saccharomyces cerevisiae* mating partner strains (AH109 and Y184) were transformed separately with the plasmids to be tested in combination with the plasmid of interest. The lithium acetate transformation procedure was done according to the manufacturer's instructions (Matchmaker Two-Hybrid system, Clontech). Transformants were
33

selected on the appropriate SD dropout medium (Clontech). One fresh colony of each type to use was picked from the working stock plates and both placed in one 1.5 ml microcentrifuge tube containing 0.5 ml of YPD medium (Clontech). Cells were then incubated for 24 hr at 30°C with shaking at 200 rpm. 100 μl of a 1:100 dilution of the mating culture were then spread on the appropriate SD medium: SD/-Leu/-Trp, and SD/-Leu/-Trp/-His/-Ade. After 7 to 15 days of growth on selective medium positive colonies were counted.

3. Results of the direct mating tests between KCNQ2 polypeptides and PP2A/Bγ

Mating tests between each of the above constructions and the pGBKTT7-PPP2R2C construction described in example 1 were performed. The results are shown on Figure 2. The sign "+" indicates that colonies grew, thus indicating that the tested polypeptide is capable of interacting with PP2A/Bγ. The sign "-" indicates that no colony grew, thus indicating that the tested polypeptide does not interact with PP2A/Bγ.

EX13-17, EX16-17, EX13-14 and EXsp15b do not interact with PP2A/Bγ. EX13-15b, EX13-15 and EXco15 interact with PP2A/Bγ. Since EX13-15b interacts with PP2A/Bγ, this shows that KCNQ2-15b polypeptides are capable of interacting with PP2A/Bγ. Since EX13-15b, EX13-15 and EXco15 but not EXsp15b interact with PP2A/Bγ, the common region between exon 15 and exon 15b plays a role in this interaction. Furthermore, since EX13-17 does not interact with PP2A/Bγ, the fact that exon 15 or that exon 15b is located at the most carboxyl extremity of the KCNQ2 polypeptide is of importance for efficient interaction with PP2A/Bγ.

4. Results of the direct mating tests between different KCNQ2 polypeptides

Mating tests between the different above constructions were performed, and the results are shown on Figure 4. 4 mating tests were performed for each pair of constructs and the results are shown on Figure 3. The sign "++" indicates that all 4 colonies grew. The sign "+" indicates that 3 colonies out of 4 grew. The sign "-/+" indicates that 1 colony out of 4 grew. The sign "-" indicates that no colony grew.

This experiment shows that KCNQ2-15b polypeptides can associate and form homodimers. KCNQ2-15b polypeptides can also associate and form heterodimers with KCNQ2 polypeptides comprising exon 15 at their carboxyl-terminal extremity. KCNQ2-15b polypeptides only associate poorly with KCNQ2-1f polypeptides.

EXAMPLE 4: Expression and Purification of Glutathione S-Transferase Fusion Proteins

1. Construction of plasmids

1.1. pGBKTT7-2E11

The pACT2-2E11 plasmid rescued from yeast two-hybrid screening was digested with
EcoRI and BgIII and the resulting 687-bp fragment inserted after purification into EcoRI and BamHI cloning sites of the pGBK7 vector (Clontech).

2.2. pGEX-2TK-2E11

A partial cDNA of the KCNQ2 splice variants was PCR-amplified from the pACT2-2E11 plasmid rescued from yeast two-hybrid screening using a gene-specific primer of SEQ ID NO: 29 and a primer in the pACT2 vector of SEQ ID NO: 30. These primers were respectively extended with BamHI and EcoRI cloning sites. The 892-bp PCR product was digested with BamHI and EcoRI, purified and inserted into BamHI and EcoRI sites of pGEX-2TK vector (Amersham Pharmacia Biotech). The pACT2 plasmid used for this construction was recovered from diploid cells as follows: a fresh colony of diploid cells was inoculated into 5 ml of SD/-Leu/-Trp (Clontech) and let to grow overnight at 30°C with shaking at 200-250 rpm. Cells corresponding to 2 ml of the overnight culture were spun down by centrifuging at 4300 rpm for 10 min. The pellet was resuspended in 100 μl of zymolyase (1U/μl) (Seikagaku Corporation) and incubated 1 hr at 30°C. Then 100 μl of a proteinase K mix (100 mM NaCl, 10 mM Tris-HCl pH [pH 8.0], 25 mM EDTA, 0.5 % SDS, 0.1 mg/ml proteinase K) were added for 2.5 hr at 40°C. DNA was extracted by two successive phenol:chloroform steps and precipitated with 0.3 M sodium acetate and 2.5 volumes of ethanol. DH10B ElectroMAX competent cells (Invitrogen) were transformed with DNA and selected on agar plates supplemented with 120 μg/ml Ampicillin. The protein encoded by pGEX-2TK-2E11 was named GST-2E11.

1.3. pGEX-2TK-PPP2R2C

A 1485-bp fragment of PPP2R2C encompassing nucleotides 55-1540 of the full-length cDNA of PP2A/Bγ (genbank accession number AF036924) was PCR-amplified from the pGBK7-PPP2R2C plasmid using gene-specific primers of SEQ ID NO: 31 and of SEQ ID NO: 32, which are respectively extended with BamHI and EcoRI cloning sites. The fragment was digested by BamHI and EcoRI, purified and ligated to the same cloning sites of pGEX-2TK vector (Amersham Pharmacia Biotech). The protein encoded by pGEX-2TK-2E11 is named GST-PPP2R2C.

1.4. pGEX-2TK-KCNQ2-Cter

A 1393-bp fragment of a KCNQ2-fl encompassing nucleotides 1544-2924 of the full-length cDNA (genbank accession number AF033348) was PCR-amplified from the pCMV-HA-KCNQ2-fl iso1 construction using gene-specific primers: of SEQ ID NO: 33 and of SEQ ID NO: 34, which are respectively extended with Xhol and EcoRI cloning sites. This PCR product was digested with Xhol and EcoRI, purified and substituted at the same sites for a 767-bp Xhol-EcoRI fragment of the pGEX-2TK-2E11 plasmid. The pCMV-HA-KCNQ2-fl iso1 plasmid used for the construction of pGEX-2TK-KCNQ2-Cter was obtained as follows: the
full-length coding region for KCNQ2-fl (encompassing nucleotides 126-2924 of the full-length cDNA, genbank accession number AF033348) was first amplified from a Human brain cDNA library (Marathon-Ready cDNA, Clontech) using gene specific primers of SEQ ID NO: 35 and of SEQ ID NO: 36, which are respectively extended with EcoRI and BglII cloning sites. The PCR product was digested with EcoRI and BglII, purified and ligated to the same cloning sites of the pCMV-HA vector (Clontech). The protein encoded by pGEX-2TK-2E11 is named GST-KCNQ2-Cter.

2. Expression and purification

Glutathione S-transferase fusion protein expression and purification by adapting the method described by Kaelin et al. (1991, Cell, 64:521-532). Overnight cultures of MAX Efficiency DH5αF‘IQ competents cells (Invitrogen) transformed with either the pGEX2TK plasmid or the pGEX2TK-2E11, pGEX2TK-KCNQ2-Cter, and pGEX2TK-PPP2R2C recombinants were diluted 1:10 in LB medium containing ampicillin (100 μg/ml) and incubated for 1 hr at 37°C. Isopropyl-β-D-thiogalactopyranoside (IPTG, Promega) was then added to a final concentration of 0.1 mM and bacteria let to grow for 3 additional hours at 37°C. For fusion proteins recovery using the glutathione-Sepharose 4B beads (Amersham Biosciences), bacterial cultures were pelleted by centrifugation at 5000 x g for 15 min at 4°C and resuspended in 1/10 vol NETN (20mM Tris-HCl [pH 8.0], 120mM NaCl, 1mM EDTA, 0.5% Nonidet P-40) supplemented with 1mM phenylmethylsulfonyl fluoride (PMSF, Sigma) and one tablet of protease inhibitor cocktail (Complete™ mini, Roche) for 7 ml of buffer. The bacteria were then lysed on ice by mild sonication and centrifuged at 10,000 x g for 10 min at 4°C. Aliquots (1 ml) of bacterial clear lysates were then rocked for 1 hr at 4°C with 50 μl of glutathione-Sepharose 4B beads, which had been previously washed four times in NETN containing 1% Albumin Bovine (BSA fraction V, Sigma) and resuspended (final concentration 1:1 [v/v]) in NETN. The glutathione-Sepharose 4B beads were then washed three times with NETN. For recovery of the bound recombinants proteins, beads were washed two more times with 100mM Tris-HCl [pH 8.0], 120 mM NaCl and elution was performed in the same buffer containing 20 mM glutathione (Sigma). Quantification of the eluted fusion proteins was performed by the standard Bradford's method (Biorad Protein Assay).

EXAMPLE 5: In vitro Labeling of the GST Fusion Proteins

Beads with bound GST fusion proteins corresponding to 1 ml of bacterial clear lysate were washed three times in NETN and one time with HMK buffer without DTT (20 mM Tris-HCl [pH 7.5], 120 mM NaCl, 12 mM MgCl₂). Beads were then resuspended in 30 μl of reaction mix (3 μl of 10X HMK Buffer with 20 mM DTT, 10 units of Protein Kinase A Catalytic Subunit [PKA from bovine heart, 250 units/vial, Sigma] in 40mM DTT, 2 μl of [³⁵P]-γATP 6000
Ci/mMole and 24μl of distilled water) and incubated at 4°C for 30 min. During incubation beads were resuspended time to time by flicking. Reaction was stopped by adding 1 ml of HMK stop buffer (10 mM Sodium Phosphate [pH 8.0], 10 mM Sodium Pyrophosphate, 10 mM EDTA, 1 mg/ml BSA) and beads washed five times with NETN buffer. Elution of radiolabeled fusion proteins was carried out with 1 ml of freshly prepared 20 mM glutathione in 100 mM Tris-HCl [pH 8.0], 120 mM NaCl as previously described.

EXAMPLE 6: Solid Phase Overlay assay

1. Protocol of the solid phase overlay assay

 Solid phase overlay assays were performed by adapting the method described by Kaelin and collaborators (Kaelin et al., 1992, Cell, 70:351-364). 100 ng, 10 ng and 0.1 ng of GST and GST-2E11 recombinant proteins were resolved by 9% SDS-PAGE and were transferred by electrophoret into nitrocellulose membrane (nitrocellulose transfer membrane Protran BA 83, Schleicher and Schuell). The membrane were then blocked in HBB buffer (25 mM Hepes-KOH [pH 7.7], 25 mM NaCl, 5 mM MgCl₂) with 5% (w/v) non-fat dry milk, 1 mM DTT, 0.05% Nonidet P-40 for 1 hr at room temperature. The binding reaction was carried out at room temperature in Hyb75 buffer (20 mM Hepes [pH 7.7], 75 mM KCl, 2.5 mM MgCl₂, 0.1 mM EDTA, 0.05% Nonidet P-40) with 1% (w/v) non-fat dry milk, 1 mM DTT, 1 mM PMSF and 3.5 *10⁶ dpm of a [³²P]-γATP GST-PPP2R2C radiolabeled recombinant protein used as a probe. After 4.5 hr of incubation, the membrane was washed with Hyb75 buffer, 1 mM DTT, 1% (w/v) non-fat dry milk three times for 15 min at room temperature. The blots were analyzed by autoradiography.

2. Results

 This experiment was performed to validate the interaction between KCNQ-15b polypeptides and PP2A/Bγ. In this experiment, the PP2A/Bγ subunit was radiolabeled but not the proteins present on the nitrocellulose membrane. Thus, a signal appears when visualized by autoradiography only if the loaded protein interacts with PP2A/Bγ. GST-2E11 corresponds to a fusion protein between a KCNQ2-15b polypeptide comprising exons 13, 14 and 15b and GST. GST corresponds to the negative control. In the three lines loaded with the GST-2E11 recombinant protein, bands located at a position corresponding to a protein of a size of about 45 kD appeared. This corresponds to the protein size expected for the GST-2E11 protein. Furthermore, the intensity of the bands was proportional to the quantity of loaded GST-2E11. Thus GST-2E11 interacts with PP2A/Bγ. In the three lines loaded with the GST protein, no band appeared, showing that PP2A/Bγ does not interact with the GST protein. Thus the interaction between PP2A/Bγ and the GST-2E11 fusion protein is due to the part of the protein encoding 2E11 and not to the part of the protein encoding GST. This experiment
indicates that KCNQ-15b polypeptides can interact with PP2A/Bγ \textit{in vitro}. Furthermore, this shows that KCNQ-15b polypeptides can interact with PP2A/Bγ without a third binding partner, a hypothesis that can not be excluded by a yeast-two hybrid assay.

\textbf{EXAMPLE 7: \textit{In vitro} Phosphorylation Assay With Recombinant GSK-3β Kinase and \textit{In vitro} dephosphorylation with HTB-14 Whole Cell Extracts.}

1. \textit{Phosphorylation assays}

Phosphorylation assays were performed to determine whether the phosphorylation state of KCNQ2-15b is modulated by GSK3β, a kinase that plays an important role in the central nervous system by regulating various cytoskeletal processes through its effects on MAP1B, tau and synapsin 1. GSK3β is known to be inhibited by two mood stabilizing agents used in treatment of bipolar disorder, lithium and valproate.

1.1. \textit{Protocol}

Expression and purification of the GST-2E11 fusion protein were performed as described above. Beads with bound fusion protein corresponding to 1 ml of bacterial clear lysate were washed three times in NETN and one time with HMK buffer without DTT (20 mM Tris-HCl [pH 7.5], 120 mM NaCl, 12 mM MgCl₂). Beads were resuspended in 240 μl of reaction mix (24 μl of 10X HMK Buffer with 20 mM DTT, 40 units of Protein Kinase A Catalytic Subunit [PKA from bovine heart, 250 units/vial, Sigma] in 40mM DTT, 5 μl of 24 mM ATP and 207 μl of distilled water) and incubated for 30 min at room temperature. Beads were then washed three times in NETN buffer and one time in GSK-3β reaction buffer (20 mM Tris-HCl [pH 7.5], 10 mM MgCl₂, 5 mM DTT) (New England Biolabs). Beads were then resuspended in 50 μl of reaction mix (5 μl of 10X GSK-3β reaction buffer, 1μl of [32P]γATP 10mCi/ml, 50 U of recombinant GSK-3β[New England Biolabs], and distilled water for a final volume of 50 μl) and incubated at room temperature for 30 min. After three washes in NETN buffer, phosphorylated proteins were boiled in 2X Sample Buffer (125 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 1.4 M β-Mercapto ethanol), resolved by 10% SDS-PAGE, and visualized by autoradiography.

1.2. \textit{Results}

In this phosphorylation assay, non-radiolabeled polypeptides to be tested are incubated in the presence of GSK-3β, PKA and radioactive ATP. The proteins are then resolved by a 10% SDS-PAGE migration and visualized by autoradiography. A signal is visualized by autoradiography only if the protein to be tested is phosphorylated by GSK-3β and PKA during incubation. In the line loaded with the GST-2E11 protein, which corresponds to the fusion protein between a KCNQ2-15b polypeptide comprising exons 13, 14 and 15b and the GST polypeptide, a band located at a position corresponding to a protein of a size of
about 45 kD did appear. This is the size expected for the GST-2E11 protein. Thus the GST-2E11 protein is phosphorylated by GSK-3β and PKA in vitro. Three experiments corresponding to negative controls were performed in parallel. One experiment was performed without adding the GSK-3β kinase during incubation, one was performed without adding the PKA kinase during incubation, and one was performed with a GST protein instead of a GST-2E11 protein. No bands appeared in the three lines corresponding to the negative controls. Accordingly, this experiment shows that KCNQ2-15b polypeptides are synergistically phosphorylated by the GSK-3β and PKA kinases in vitro.

This result was confirmed by a competition experiment in which CREB phosphopeptides, which are known to be phosphorylated by GSK-3β and PKA, were added during incubation. In this competition experiment, 5 µg of CREB phosphopeptides (New England Biolabs) was added to the reaction mix. A band did still appear at a position corresponding to the size of GST-2E11, but the intensity of the band was very significantly lower.

The influence of LiCl on the phosphorylation state of GST-2E11 was further studied by adding LiCl to the reaction mix at a final concentration of 0, 8.3, 25, 75 and 225 mM respectively. The intensity of the band appearing at a position of about 45 kD decreased in the presence of LiCl, and the intensity of the signal was negatively correlated with the concentration of LiCl added to the reaction mix. In the presence of about 50 mM LiCl, the phosphorylation state of GST-2E11 was reduced by 50%. This shows that LiCl, a well-known mood-stabilizing agent used in the treatment of bipolar disorder, inhibits phosphorylation of KCNQ2-15b polypeptides in vitro.

2. Dephosphorylation assays

Dephosphorylation assays were performed to determine whether the phosphorylation state of KCNQ2-15b polypeptides is modulated by PP2A.

2.1. Protocol

In vitro phosphorylated GST-2E11 fusion protein was incubated at room temperature for 30 min with 500 µg of whole cell extracts of Human glioblastoma, astrocytoma cell line (ATCC number: HTB-14) with or without 400 µM of the PP2A phosphatase inhibitor okadaic acid (Sigma). HTB-14 whole cell extracts were prepared as follows: cells were washed three times with ice-cold TBS buffer (10 mM Tris-HCl [pH 8.0], 120 mM NaCl) and lysed at 4°C for 30 min in EBC buffer (50 mM Tris-HCl [pH 8.0], 120 mM NaCl, 0.5 % Nonidet P-40). Then the lysate was centrifuged for 10 min at 13.000 x g at 4°C to pellet cell debris. Proteins present in the supernatant were quantified by the standard Bradford's method (Bio-Rad Protein Assay). The proteins were then resolved by 10% SDS-PAGE, and visualized by autoradiography.
2.2. Results
The phosphorylated radiolabeled GST-2E11 proteins obtained from the previous assay were incubated in the presence of HTB-14 cell extracts containing the PP2A phosphatase to determine whether PP2A is capable of dephosphorylating GST-2E11 proteins. In this experiment, a protein that is dephosphorylated by PP2A is not radioactive after incubation in the presence of HTB-14 cell extracts any more. Thus dephosphorylation of the GST-2E11 protein is monitored by disappearance of the signal visualized by autoradiography. One line of the 10% SDS-PAGE gel was loaded with phosphorylated GST-2E11 fusion proteins incubated in the absence of HTB-14 cell extracts, as reference for the intensity of the band appearing for phosphorylated GST-2E11 proteins. In the line loaded with GST-2E11 fusion proteins incubated in the presence of HTB-14 cell extracts, the band had an extremely weaker intensity. Thus GST-2E11 fusion proteins are dephosphorylated when incubated in the presence of HTB-14 cell extracts. When the GST-2E11 fusion protein was incubated in the presence of HTB-14 cell extracts and okadaic acid, a known PP2A phosphatase inhibitor, the intensity of the band was only slightly weaker than the intensity of the band corresponding to phosphorylated GST-2E11. Thus the PP2A phosphatase is responsible of the dephosphorylation observed for GST-2E11 fusion proteins incubated in the presence of HTB-14 cell extracts. Accordingly, this experiment shows that KCNQ-15b polypeptides are dephosphorylated by the PP2A phosphatase in vitro.

EXAMPLE 8: Cell Culture, Transfection, Immunoprecipitation and Western Blot Analysis

1. Cell cultures
HEK293-H cells (Gibco Invitrogen Corporation) were grown in DMEM medium (Gibco Invitrogen Corporation) supplemented with 0.1 mM Non-Essential Amino Acids and 10% Fetal Bovine Serum (Gibco Invitrogen Corporation), and transiently transfected with 20 μg of the pCMV-Myc-3H9 or pCMV-Myc-3H2 plasmids per 60 mm dish using the Invitrogen calcium phosphate transfection kit and protocols. 48 hr after transfection cells were washed three times with ice-cold phosphate buffer (PBS, Gibco Invitrogen Corporation), scraped and solubilized for 2 hr at 4°C in solubilization buffer containing 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 10 mM Tris-HCl [pH 8.0] and supplemented with protease inhibitors (1 mM phenylmethylsulfonyl fluoride, one tablet of Complete™ mini protease inhibitors cocktail [Roche]) and phosphatase inhibitors (1 mM Na₃VO₄ and 1 mM NaF). The lysate was then centrifugated for 10 min at 13,000 x g at 4°C to pellet cell debris. Proteins present in the supernatant were quantified by the standard Bradford's method (Bio-Rad Protein Assay).

2. Immunoprecipitation
500 μg (final volume: 500 μl) of the clear cell lysate were incubated for 2 hr at 4°C with 1 μl of rabbit preimmune serum and 50 μl of protein A Sepharose CL-4B beads (Amersham Pharmacia Biotech) saturated with 1% Albumin Bovine (BSA fraction V, Sigma). Depleted supernatants were then incubated overnight at 4°C with 1 μg of anti-Myc monoclonal antibody (Myc-Tag 9B11 monoclonal antibody, Cell Signaling). Protein A Sepharose CL-4B beads saturated with 1% Albumin Bovine were then added and the mixture incubated at 4°C for 2 additional hours. After five washes with ice-cold solubilization buffer immuno-complexes were boiled in 2X Sample Buffer (125 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 1.4 M β-Mercapto ethanol), resolved by 8% SDS-PAGE and subjected to 3. Western blot

Proteins were transferred onto nitrocellulose membrane (nitrocellulose transfer membrane Protran BA 83, Schleicher and Schuell) using Towbin buffer (Towbin et al., 1979, PNAS, 76:4350-4354) and an electrophoretic device. After transfer, membranes were blocked, in 5% non-fat dried milk in TBST (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.05% Tween 20) supplemented with sodium azide (0.1%) for 2 hr, and then incubated for 16 hr at room temperature with the anti-Myc monoclonal antibody (Myc-Tag 9B11 monoclonal antibody, Cell Signaling) diluted 1:1000 in the same buffer. After several washes with TBST, the blot was incubated with a horseradish peroxidase-conjugated secondary antibody (Anti-mouse IgG, Fab specific, peroxidase conjugate, Sigma) diluted 1:5000 and developed using ECL Western blotting detection reagents (Amersham Biosciences).

EXAMPLE 9: Electrophysiological Analysis

1. Protocols

 1.1. cDNA injection in *Xenopus laevis* oocytes

 The animal was anesthetized and pieces of the ovary were surgically removed and individual oocytes were dissected away in a saline solution (ND96) containing 96 mM NaCl, 2 mM KCl, 2 mM CaCl2, 2 mM MgCl2 and 5 mM HEPES at pH 7.4. Stage V and VI oocytes were treated at room temperature for 2h with collagenase type 1A (1mg/ml) in the presence of 0.2 mg/ml trypsin inhibitor in saline solution to discard follicular cells. The concentrations were determined by measuring the absorbance at 260 nm. DNA corresponding to KCNQ2, 3H2 and 3H9 K+ channels were subcloned in PEKO vector in order to generate the respective cRNAs. cRNA concentrations were measured by absorbance at 280nM. cRNA solutions were injected (about 50 nL/oocyte) using a pressure microinjector (Injectomatic, Genève). Oocytes were then kept for 2-6 days in ND96 solution supplemented with 50U/mL penicillin and 50 U/mL streptomycin.
1.2. Electrophysiological measurements

In a 0.3 ml perfusion chamber, a single oocyte was impaled with two standard glass microelectrode (0.5-2 Mohm resistance) filled with 3M KCl and maintained under voltage clamp using a Dagan TEV200 amplifier system, USA. Electrical stimulations, data acquisition and analyses were performed using pClamp software (Axon Instruments, USA). Current to voltage relationships were obtained applying incremental depolarizing voltage steps (10 mV increment) from a holding potential of -80 mV (equilibrium potential for K+ ions) Repolarizations to -60mV allowed K+ channel deactivation measurements from the "tail currents".

2. Results

The activity of KCNQ2-15bx and of KCNQ-15by homotetrameric potassium channels was tested and compared to the activity of KCNQ2-fl homotetrameric potassium channels. 0.2 ng or 0.4 ng of DNA were injected to the oocytes. The results are shown on Figures 5, on which the intensity of the M-current generated by the potassium channels is indicated. An intensity of about 1 μA is found for the current generated by a of KCNQ2-fl homotetrameric potassium channel when 0.4 ng of DNA is injected. This value is similar to the value reported by scientific literature. A KCNQ2-15bx homotetrameric potassium channel yields a current of about 800 nA when 0.4 ng of DNA is injected, and a KCNQ2-15by homotetrameric potassium channel yields a current of about 700 nA when 0.4 ng of DNA is injected. Thus the KCNQ2-15bx and KCNQ-15by splice variants can associate as functional homomeric potassium channels in vivo.

Figure 6A and Figure 6B show the voltage clamp traces corresponding to the currents generated at different voltages by KCNQ2-15bx (Figure 6A) and by KCNQ2-15by (Figure 6B) homotetrameric potassium channels. The slow activation that is observed on the traces is a characteristic feature of members of the KCNQ potassium channel family.

EXAMPLE 10: Collection Of DNA Samples From Affected And Non-Affected Individuals.

Donors were unrelated and healthy. The DNA from 100 individuals was extracted and tested for the detection of the biallelic markers. 30 ml of peripheral venous blood were taken from each donor in the presence of EDTA. Cells (pellet) were collected after centrifugation for 10 minutes at 2000 rpm. Red cells were lysed by a lysis solution (50 ml final volume: 10 mM Tris pH7.6; 5 mM MgCl₂; 10 mM NaCl). The solution was centrifuged (10 minutes, 2000 rpm) as many times as necessary to eliminate the residual red cells present in the supernatant, after resuspension of the pellet in the lysis solution.
The pellet of white cells was lysed overnight at 42°C with 3.7 ml of lysis solution composed of:
- 3 ml TE 10-2 (Tris-HCl 10 mM, EDTA 2 mM) / NaCl 0.4 M
- 200 µl SDS 10%
- 500 µl K-proteinase (2 mg K-proteinase in TE 10-2 / NaCl 0.4 M).
For the extraction of proteins, 1 ml saturated NaCl (6M) (1/3.5 v/v) was added. After vigorous agitation, the solution was centrifuged for 20 minutes at 10000 rpm.
For the precipitation of DNA, 2 to 3 volumes of 100% ethanol were added to the previous supernatant, and the solution was centrifuged for 30 minutes at 2000 rpm. The DNA solution was rinsed three times with 70% ethanol to eliminate salts, and centrifuged for 20 minutes at 2000 rpm. The pellet was dried at 37°C, and resuspended in 1 ml TE 10-1 or 1 ml water. The DNA concentration was evaluated by measuring the OD at 260 nm (1 unit OD = 50 µg/ml DNA). To determine the presence of proteins in the DNA solution, the OD 260 / OD 280 ratio was determined. Only DNA preparations having a OD 260 / OD 280 ratio between 1.8 and 2 were used in the subsequent examples described below.
The pool was constituted by mixing equivalent quantities of DNA from each individual.

EXAMPLE 11: Amplification Of Genomic DNA By PCR

The amplification of specific genomic sequences of the DNA samples of Example 10 was carried out on the pool of DNA obtained previously. In addition, 50 individual samples were similarly amplified.

PCR assays were performed using the following protocol:

- **Final volume** 25 µl
- **DNA** 2 ng/µl
- **MgCl₂** 2 mM
- **dNTP (each)** 200 µM
- **primer (each)** 2.9 ng/µl
- **Ampli Taq Gold DNA polymerase** 0.05 unit/µl
- **PCR buffer (10x = 0.1 M TrisHCl pH8.3 0.5M KCl)** 1x

Each pair of first primers was designed using the sequence information of genomic DNA sequences and the OSP software (Hillier & Green, 1991).

Primers Biallelic markers located in PPP2R2C

The genomic sequence of PPP2R2C that is shown as SEQ ID NO: 37 was constructed upon bioinformatic analysis based on (i) BAC clones constructed at Genset S.A.; (ii) BAC clones corresponding to EMBL Accession Nos. AC114815.5, AC004599.6, AC122939.3 and AC004689.5; and (iii) RefseqN Accession No. NT_006051. The polymorphisms were identified as described in examples 12 and 13, and validated as described in example 14.
Biallelic markers located in the KCNQ2 gene

The biallelic markers located in the KCNQ2 gene were found using data provided by Celera. Each of these markers were further validated as described in example 14.

Table 2A indicates the position on SEQ ID NO: 37 of pairs of primers that were used to amplify specific regions of PPP2R2C. Table 2B indicates the position of the primers on SEQ ID Nos 42 to 47, which were used to amplify specific regions of KCNQ2. The orientation of the primer is indicated in the third column. The sign (+1) indicates that the sequence of the primer is identical to the corresponding region of SEQ ID Nos. 37 and 42 to 47. The sign (-1) indicates that the sequence of the primer is complementary to the corresponding region of SEQ ID Nos. 37 and 42 to 47.

Table 2A: Primer location in PPP2R2C

<table>
<thead>
<tr>
<th>Name of the amplified region</th>
<th>Position on SEQ ID NO: 37</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-257</td>
<td>109495 to 109512</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td>109963 to 109982</td>
<td>(-1)</td>
</tr>
<tr>
<td>99-24169</td>
<td>83709 to 83729</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td>84146 to 84164</td>
<td>(-1)</td>
</tr>
<tr>
<td>99-24175</td>
<td>117228 to 117248</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td>117659 to 117677</td>
<td>(-1)</td>
</tr>
<tr>
<td>24-247</td>
<td>99290 to 99309</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td>99719 to 99738</td>
<td>(-1)</td>
</tr>
</tbody>
</table>

Table 2B: Primer location in the KCNQ2 gene

<table>
<thead>
<tr>
<th>Name of the amplified region</th>
<th>SEQ ID No.</th>
<th>Position</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-4</td>
<td>SEQ ID NO: 42</td>
<td>244 to 263</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>324 to 343</td>
<td>(-1)</td>
</tr>
<tr>
<td>30-2</td>
<td>SEQ ID NO: 43</td>
<td>240 to 258</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>319 to 338</td>
<td>(-1)</td>
</tr>
<tr>
<td>30-17</td>
<td>SEQ ID NO: 44</td>
<td>265 to 284</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>345 to 364</td>
<td>(-1)</td>
</tr>
<tr>
<td>30-7</td>
<td>SEQ ID NO: 45</td>
<td>272 to 291</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>315 to 333</td>
<td>(-1)</td>
</tr>
<tr>
<td>30-84</td>
<td>SEQ ID NO: 46</td>
<td>265 to 284</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>334 to 353</td>
<td>(-1)</td>
</tr>
<tr>
<td>30-15</td>
<td>SEQ ID NO: 47</td>
<td>248 to 267</td>
<td>(+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>312 to 331</td>
<td>(-1)</td>
</tr>
</tbody>
</table>

Preferably, the primers contained a common oligonucleotide tail upstream of the specific bases targeted for amplification which was useful for sequencing.

The synthesis of these primers was performed following the phosphoramidite method, on a GENSET UFPS 24.1 synthesizer.
DNA amplification was performed on a Genius II thermocycler. After heating at 95°C for 10 min, 40 cycles were performed. Each cycle comprised: 30 sec at 95°C, 54°C for 1 min, and 30 sec at 72°C. For final elongation, 10 min at 72°C ended the amplification. The quantities of the amplification products obtained were determined on 96-well microtiter plates, using a fluorometer and Picogreen as intercalant agent (Molecular Probes).

EXAMPLE 12: Identification of Biallelic Markers from Amplified Genomic DNA

The sequencing of the amplified DNA obtained in Example 11 was carried out on ABI 377 sequencers. The sequences of the amplification products were determined using automated dideoxy terminator sequencing reactions with a dye terminator cycle sequencing protocol. The products of the sequencing reactions were run on sequencing gels and the sequences were determined using gel image analysis (ABI Prism DNA Sequencing Analysis software (2.1.2 version)).

The sequence data were further evaluated to detect the presence of biallelic markers within the amplified fragments. The polymorphism search was based on the presence of superimposed peaks in the electrophoresis pattern resulting from different bases occurring at the same position as described previously.

The locations of the biallelic markers detected in the fragments of amplification are as shown below in Tables 3A and 3B.

Table 3A: Biallelic Markers in the PPP2R2C gene

<table>
<thead>
<tr>
<th>Amplified Region</th>
<th>BM Name</th>
<th>Strand</th>
<th>Polymorphism</th>
<th>BM Position on SEQ ID NO: 37</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>All 1</td>
<td>All 2</td>
</tr>
<tr>
<td>24-257</td>
<td>24-257/320</td>
<td>(-)</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>99-24169</td>
<td>99-24169/139</td>
<td>(-)</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>99-24175</td>
<td>99-24175/218</td>
<td>(-)</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>24-247</td>
<td>24-247/216</td>
<td>(+)</td>
<td>A</td>
<td>G</td>
</tr>
</tbody>
</table>

- 109663
- 84026
- 117430
- 99505
BM refers to "biallelic marker". All 1 and All 2 refer respectively to allele 1 and allele 2 of the biallelic marker. The (+) or (-) sign in the column "strand of BM" indicates the strand on which the indicated alternative alleles are found. SEQ ID Nos. 37 and 42 to 47 correspond to strands (+). As a matter of example, the biallelic marker 24-257/320 corresponds to a polymorphism "a or g" at position 109663 on strand (-). Thus the nucleotide at position 109663 of SEQ ID NO: 37 will be "y", which corresponds to "t or c" according to the standard PCT nomenclature. The biallelic marker 24-247/216 corresponds to a polymorphism "a or g" at position 99505 on strand (+). Thus the nucleotide at position 99505 of SEQ ID NO: 37 will be "r", which corresponds to "a or g" according to the standard PCT nomenclature.

EXAMPLE 13: Identification of Polymorphisms by Comparison of Genomic DNA from Overlapping BACs

Genomic DNA from multiple BAC clones derived from the same DNA donor sample and overlapping in regions of genomic DNA of SEQ ID NO: 37 was sequenced. Sequencing was carried out on ABI 377 sequencers. The sequences of the amplification products were determined using automated dideoxy terminator sequencing reactions with a dye terminator cycle sequencing protocol. The products of the sequencing reactions were run on sequencing gels and the sequences were determined using gel image analysis (ABI Prism DNA Sequencing Analysis software (2.1.2 version)).

EXAMPLE 14: Validation Of The Polymorphisms Through Microsequencing

The biallelic markers identified in Examples 12 and 13 were further confirmed and their respective frequencies were determined through microsequencing. Microsequencing was carried out for each individual DNA sample described in Example 11. Amplification from genomic DNA of individuals was performed by PCR as described above for the detection of the biallelic markers with the same set of PCR primers described in tables
1A and 1B.

The preferred primers used in microsequencing were about 19 nucleotides in length and hybridized just upstream of the considered polymorphic base. According to the invention, the primers used for microsequencing are detailed in tables 4A and 4B.

Table 4A: Primers in the PPP2R2C gene

<table>
<thead>
<tr>
<th>amplified region</th>
<th>Marker name</th>
<th>Orientation of the primer</th>
<th>Position of the primer on SEQ ID NO: 37</th>
<th>SEQ ID No. of the primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-257</td>
<td>24-257/320</td>
<td>(+1)</td>
<td>109644 to 109662</td>
<td>SEQ ID NO: 40</td>
</tr>
<tr>
<td>99-24169</td>
<td>99-24169/139</td>
<td>(+1)</td>
<td>84007 to 84025</td>
<td>SEQ ID NO: 39</td>
</tr>
<tr>
<td>99-24175</td>
<td>99-24175/218</td>
<td>(+1)</td>
<td>117441 to 117459</td>
<td>SEQ ID NO: 41</td>
</tr>
<tr>
<td>24-247</td>
<td>24-247/216</td>
<td>(+1)</td>
<td>99486 to 99504</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4B: Primers in the KCNQ2 gene

<table>
<thead>
<tr>
<th>amplified region</th>
<th>Marker name</th>
<th>Orientation of the primer</th>
<th>SEQ ID No.</th>
<th>Position of the primer on indicated SEQ ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-4</td>
<td>30-4/58</td>
<td>(-1)</td>
<td>SEQ ID NO: 42</td>
<td>302 to 319 (primer B18)</td>
</tr>
<tr>
<td>30-4</td>
<td>30-4/58</td>
<td>(+1)</td>
<td>SEQ ID NO: 42</td>
<td>282 to 300 (primer A19)</td>
</tr>
<tr>
<td>30-2</td>
<td>30-2/62</td>
<td>(-1)</td>
<td>SEQ ID NO: 43</td>
<td>302 to 320</td>
</tr>
<tr>
<td>30-17</td>
<td>30-17/37</td>
<td>(-1)</td>
<td>SEQ ID NO: 44</td>
<td>302 to 324</td>
</tr>
<tr>
<td>30-7</td>
<td>30-7/30</td>
<td>(+1)</td>
<td>SEQ ID NO: 45</td>
<td>280 to 300</td>
</tr>
<tr>
<td>30-84</td>
<td>30-84/37</td>
<td>(-1)</td>
<td>SEQ ID NO: 46</td>
<td>302 to 318</td>
</tr>
<tr>
<td>30-15</td>
<td>30-15/54</td>
<td>(-1)</td>
<td>SEQ ID NO: 47</td>
<td>302 to 323</td>
</tr>
</tbody>
</table>

As for the primers in tables 2A and 2B, the sign (+1) in the column "orientation" indicates that the sequence of the primer is identical to the corresponding region of SEQ ID Nos. 37 and 42 to 47, and the sign (-1) indicates that the sequence of the primer is complementary to the corresponding region of SEQ ID Nos. 37 and 42 to 47.

The microsequencing reaction performed as follows. After purification of the amplification products, the microsequencing reaction mixture was prepared by adding, in a 20μl final volume: 10 pmol microsequencing oligonucleotide, 1 U Thermosequenase (Amersham E79000G), 1.25 μl Thermosequenase buffer (260 mM Tris HCl pH 9.5, 65 mM MgCl₂), and the two appropriate fluorescent ddNTPs (Perkin Elmer, Dye Terminator Set 401095) complementary to the nucleotides at the polymorphic site of each biallelic marker tested, following the manufacturer’s recommendations. After 4 minutes at 94°C, 20 PCR cycles of 15 sec at 55°C, 5 sec at 72°C, and 10 sec at 94°C were carried out in a Tetrad PTC-225 thermocycler (MJ Research). The unincorporated dye terminators were then removed by ethanol precipitation. Samples were finally resuspended in formamide -EDTA loading buffer.
and heated for 2 min at 95°C before being loaded on a polyacrylamide sequencing gel. The data were collected by an ABI PRISM 377 DNA sequencer and processed using the GENESCAN software (Perkin Elmer).

Following gel analysis, data were automatically processed with software that allows the determination of the alleles of biallelic markers present in each amplified fragment. The software evaluates such factors as whether the intensities of the signals resulting from the above microsequencing procedures are weak, normal, or saturated, or whether the signals are ambiguous. In addition, the software identifies significant peaks (according to shape and height criteria). Among the significant peaks, peaks corresponding to the targeted site are identified based on their position. When two significant peaks are detected for the same position, each sample is categorized classification as homozygous or heterozygous type based on the height ratio.

EXAMPLE 15: Association Study Between Bipolar Disorder And The Biallelic Markers Of The Invention

5.1. Collection of DNA Samples From Affected And Non-Affected Individuals

The association studies were performed on two different populations. One collection of samples was provided by Hospital Pinero, Buenos-Aires, Argentina (the “Labimo” collection). The other collection of samples was provided by the University College of London (the “UCL” collection). Both collections are constituted by individuals that are affected or not by bipolar disease.

A) The Labimo collection

a) Affected population

206 DNA samples from patients suffering from bipolar disorder (cases) were collected for genotyping analysis.

All patients fulfilled DSM-IV and ICD-10 criteria for bipolar type I (ICD-10: F30.x, F31.x) or bipolar type II (ICD-10: F31.8). All patients were of Caucasian ethnic origin up to the 2^{nd} generation.

All potential patients suffering from a medical disorder or from a drug abuse were excluded. According to DSM-IV criteria, 115 cases were classified as bipolar type I, 69 were bipolar type II, 22 were unclassified, and information concerning the type of bipolar disease was lacking in 20 cases (8.5%)

The main phenotypic data of the cases were as follows:
- Mean age at first symptoms: 25.6 years (SD, 11; range, 8-58)
- Mean age at inclusion: 43.3 years (SD, 13.8; range, 17-76)
- Gender: 142 females and 84 males (ratio, 1.7)
- Ethnic origin: 213 were European Caucasian, 7 were non-European Caucasians, and information was lacking in 6 cases (2.5%)
- Family history of bipolar disease was found in 18.5%, whereas schizophrenia was found in 0.9%.

b) Unaffected population

201 DNA samples from individuals not suffering from bipolar disorder (controls) were collected for genotyping analysis.

All controls were individuals lacking personal or familial history of psychiatric disease.

The main phenotypic data of the controls were as follows:
- Mean age: 43.8 years (SD, 12; range, 21-72)
- Gender: 118 females and 83 males (ratio, 1.4)

180 controls were European Caucasian, and 21 had mixed ethnic origin

c) Cases and Control Populations Selected for the Association Study

The case control populations were matched for ethnicity and sex which resulted in 159 cases and 159 control individuals. Among the cases, 96 cases suffered from type I bipolar disease, 56 cases suffered from type II bipolar disease, and 7 cases suffered from an undetermined type of bipolar disease. 33.8% of the cases were males. The mean age of the cases was of 43 and the median age was of 44. 41.4% of the controls were males. The mean age of the controls was of 44 and the median age was of 46.

The presence of population structure can result in spurious association, which is an association between phenotypes and markers that is not linked to any causative loci but due to a different ethnic origin. The Fst test is a general statistical tool for analyzing variances and that can be used to verify that a collection is homogeneous, i.e., that found associations are not linked to the structure of the population. The Fst value is calculated using random markers that are (i) unlinked and (ii) not associated with the trait to be studied. An Fst value close to 0 indicates that the collection is homogeneous and that any significant associations that are found are due to the trait under investigation (see, e.g., Bruce S. Weir, Genetic Data Analysis II, Edition Sinauer, San Francisco and Hartl and Clark, Populations genetics, Edition Sinauer, San Francisco). 68 random markers that were (i) unlinked and (ii) not associated with bipolar disorder were used to calculate the Fst value. An Fst value of 1.68e-01 was found for the found in the Labimo collection, indicating that this collection is homogeneous.
B) The UCL collection

a) Affected population

315 samples from patients suffering from bipolar disorder (cases) were collected for genotyping analysis. All patients fulfilled DSM-IV criteria for bipolar type I (ICD-10: F30.x, F31.x) or bipolar type II (ICD-10: F31.8). All patients were unrelated individuals of Caucasian origins from the British Isles (including English, Welsh, Scottish and Irish) up to the 2nd generation.

b) Unaffected population

300 samples from unaffected control individuals (not suffering from bipolar disorder) were collected for genotyping analysis. All control individuals showed (i) absence of personal history of psychiatric disease; and (ii) absence of familial history of psychiatric disease in first-degree relatives. All controls individuals of Caucasian origins from the British Isles (including English, Welsh, Scottish and Irish) up to the 2nd generation.

c) Cases and Control Populations Selected for the Association Study

The population retained for the study was composed of 315 cases and 295 controls. Among the cases, 256 cases suffered from type I bipolar disease, 26 cases suffered from type II bipolar disease, and 33 cases suffered from an undetermined type of bipolar disease. About 36% of the cases were males. The mean age of the cases was of 46 and the median age was of 46. 48% of the controls were males. The mean age of the controls was of 37 and the median age was of 32.

59 random markers that were (i) unlinked; and (ii) not associated with bipolar disorder were used to calculate the Fst value. A Fst value of 3.41e-01 was found for the UCL collection, indicating that this collection is homogeneous.

5.2. Association studies

A) Genotyping of affected and control individuals

The general strategy to perform the association studies was to individually scan the DNA samples from all individuals in each of the populations described above in order to establish the allele frequencies of biallelic markers, and among them the biallelic markers of the invention, in the diploid genome of the tested individuals belonging to each of these populations.

Frequencies of every biallelic marker in each population (cases and controls) were determined by performing microsequencing reactions on amplified fragments obtained by genomic PCR performed on the DNA samples from each individual. Genomic PCR and
microsequencing were performed as detailed above in Examples 11 to 13 using the described PCR primers and microsequencing primers.

B) Single biallelic marker frequency analysis

The difference between the allelic frequencies in the unaffected population and in the population affected by bipolar disorder was calculated for all five markers located in the KCNQ2 gene, and for all four markers located in the PPP2R2C gene. The allelic frequency of markers between cases and controls were investigated using the Pearson Chi squared test for allelic frequency and genotypic frequency distributions. A significant difference between observed and expected alleles/genotypes of a specific marker between case and control populations implies an association between the gene harboring this particular biallelic marker and bipolar disease. Both allelic and genotypic p-values were calculated for all markers. The p-values in tables 5A and 5B indicate the probability of no association between a biallelic marker and bipolar disorder considering the frequency. A p-value under 5e-02 indicates a significant association between the biallelic marker and bipolar disorder.

Odds ratio determination is a way of comparing the probability of having the disease when carrying a given allele versus when not carrying the allele. An odds ratio higher than 1 indicates that the probability of having bipolar disease is higher when carrying one of the alternative alleles, haplotypes or genotypes than when carrying the other ones. The odds ratio allows the identification of the “risk” allele, haplotype or genotype for an associated biallelic marker. The genotypic odds ratio was calculated for one biallelic marker located in PPP2R2C and for two markers located in the KCNQ2 gene (tables 6A and 6B).

<table>
<thead>
<tr>
<th>Marker Name</th>
<th>Location in PPP2R2C</th>
<th>Collection</th>
<th>Chosen allele</th>
<th>All. Freq Diff.</th>
<th>All. Odds Ratio</th>
<th>Allelic p-value</th>
<th>Genotypic p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-24169/139</td>
<td>Intron 1d</td>
<td>UCL A</td>
<td>0.095</td>
<td>1.733</td>
<td>2.19e-04</td>
<td>3.61e-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo A</td>
<td>0.002</td>
<td>1.012</td>
<td>9.46e-01</td>
<td>5.96e-01</td>
<td></td>
</tr>
<tr>
<td>24-247/216</td>
<td>Intron 4</td>
<td>UCL G</td>
<td>0.047</td>
<td>1.275</td>
<td>7.75e-02</td>
<td>2.29e-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo G</td>
<td>0.024</td>
<td>1.125</td>
<td>4.86e-01</td>
<td>7.65e-01</td>
<td></td>
</tr>
<tr>
<td>24-257/320</td>
<td>Intron 5</td>
<td>UCL A</td>
<td>0.018</td>
<td>1.079</td>
<td>5.52e-01</td>
<td>8.22e-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo A</td>
<td>0.102</td>
<td>1.557</td>
<td>4.04e-03</td>
<td>1.19e-02</td>
<td></td>
</tr>
<tr>
<td>99-24175/218</td>
<td>Intron 5</td>
<td>UCL G</td>
<td>0.035</td>
<td>1.162</td>
<td>2.62e-01</td>
<td>3.99e-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo A</td>
<td>0.096</td>
<td>1.546</td>
<td>6.69e-03</td>
<td>2.34e-02</td>
<td></td>
</tr>
</tbody>
</table>
Table 5B: p-values for biallelic markers in the KCNQ2 gene

<table>
<thead>
<tr>
<th>Marker Name</th>
<th>Location in the KCNQ2 gene</th>
<th>Collection</th>
<th>Chosen allele</th>
<th>All. Freq Diff.</th>
<th>All. Odds Ratio</th>
<th>Allelic p-value</th>
<th>Genotypic p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-4/58</td>
<td>5' of the gene</td>
<td>UCL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.03e-01</td>
<td>5.85e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo</td>
<td>G</td>
<td>0.03</td>
<td>1.23</td>
<td>7.76e-02</td>
<td>5.20e-03</td>
</tr>
<tr>
<td>30-2/62</td>
<td>intron 1</td>
<td>UCL</td>
<td>A</td>
<td>0.05</td>
<td>1.23</td>
<td>4.42e-01</td>
<td>1.15e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo</td>
<td>A</td>
<td>0.03</td>
<td>1.13</td>
<td>7.77e-01</td>
<td>9.12e-01</td>
</tr>
<tr>
<td>30-17/37</td>
<td>intron 4</td>
<td>UCL</td>
<td>A</td>
<td>0.01</td>
<td>1.03</td>
<td>4.70e-01</td>
<td>7.10e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo</td>
<td>G</td>
<td>0.03</td>
<td>1.13</td>
<td>7.03e-01</td>
<td>5.32e-01</td>
</tr>
<tr>
<td>30-7/30</td>
<td>intron 12</td>
<td>UCL</td>
<td>C</td>
<td>0.05</td>
<td>1.21</td>
<td>1.05e-01</td>
<td>3.02e-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo</td>
<td>C</td>
<td>0.02</td>
<td>1.06</td>
<td>7.03e-01</td>
<td>5.32e-01</td>
</tr>
<tr>
<td>30-84/37</td>
<td>3' of gene</td>
<td>UCL</td>
<td>A</td>
<td>0.02</td>
<td>1.20</td>
<td>3.06e-01</td>
<td>3.69e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30-15/54</td>
<td>3' of gene</td>
<td>UCL</td>
<td>A</td>
<td>0.01</td>
<td>1.06</td>
<td>6.92e-01</td>
<td>7.68e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labimo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6A: genotypic odds ratios for a biallelic marker located in PPP2R2C

<table>
<thead>
<tr>
<th>Biallelic marker</th>
<th>collection</th>
<th>genotype</th>
<th>odds ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-24169/139</td>
<td>UCL</td>
<td>AA vs GG</td>
<td>1.9</td>
<td>8.50e-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA vs AG</td>
<td>2.06</td>
<td>7.20e-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA vs (AG + GG)</td>
<td>2.04</td>
<td>4.60e-05</td>
</tr>
</tbody>
</table>

Table 6B: genotypic odds ratios for biallelic markers located in the KCNQ2 gene

<table>
<thead>
<tr>
<th>Biallelic marker</th>
<th>collection</th>
<th>genotype</th>
<th>odds ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-2/62</td>
<td>UCL</td>
<td>(AG+GG) vs AA</td>
<td>1.05</td>
<td>4.60E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AG vs AA</td>
<td>1.28</td>
<td>1.70E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA vs GG</td>
<td>1.51</td>
<td>8.00E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AG vs (GG+AA)</td>
<td>1.62</td>
<td>3.00e-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AG+AA) vs GG</td>
<td>1.82</td>
<td>1.50e-03</td>
</tr>
<tr>
<td>30-7/30</td>
<td>UCL</td>
<td>(CC+CT) vs TT</td>
<td>1.04</td>
<td>4.40E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TT vs CT</td>
<td>1.14</td>
<td>2.90E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CC+TT) vs CT</td>
<td>1.37</td>
<td>3.80e-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC vs TT</td>
<td>1.58</td>
<td>3.80e-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC vs (TT+CT)</td>
<td>1.71</td>
<td>7.00e-03</td>
</tr>
</tbody>
</table>

Biallelic markers in PPP2R2C

Thus the four studied biallelic markers located in the PPP2R2C gene are found to be significantly associated with bipolar disease. More specifically, 99-24169/139 is found to be highly associated with bipolar disorder in the UCL collection (significant allelic and genotypic p-values). 24-257/320 and 99-24175/218 are highly associated with bipolar disorder in the Labimo collection (significant allelic p-values). In addition, 99-24175/218 is also associated
with bipolar disorder in the UCL collection (significant genotypic p-value). 24-247/216 is associated with bipolar disorder in the UCL collection (significant genotypic p-value).
The risk allele for the 99-24169/139 biallelic marker is "A". The risk alleles for the 24-257/320 biallelic marker and for the 99-24175/218 biallelic marker are also "A".
The risk genotype for the 99-24169/139 biallelic marker is "AA". Thus an individual carrying the genotype "AA" at biallelic marker 99-24169/13 is at risk of developing bipolar disorder.

Biallelic markers in the KCNQ2 gene
Two biallelic markers located in the KCNQ2 gene, 30-2/62 and 30-7/30, are significantly associated with bipolar disease. More specifically, 30-2/62 is found to be highly associated with bipolar disorder in the UCL collection (significant allelic and genotypic p-values). 30-7/30 is associated with bipolar disorder in the UCL collection (significant genotypic p-value).
The risk genotype for 30-2/62 is "AG". The risk genotype for 30-7/30 is "CC". Thus individuals carrying the genotype "AG" at biallelic marker 30-2/62 and individuals carrying the genotype "CC" at biallelic marker 30-7/30 are at risk of developing bipolar disorder.

The association results of the single biallelic marker frequency analysis show that both the PPP2R2C gene and the KCNQ2 gene are associated with bipolar disorder. Accordingly, deregulation and/or dysfunction of KCNQ2 polypeptides and PP2A phosphatases comprising the PP2A/Bγ regulatory subunit contribute to the onset and to the development of bipolar disease.

C) Haplotype frequency analysis
One way of increasing the statistical power of individual markers is to perform haplotype association analysis. The analysis of haplotype frequencies cannot readily be derived from observed genotypic data. The EM (Expectation-Maximization) algorithm (Excoffier L & Slatkin M, 1995) allows the estimation of haplotypes for the population under investigation. Haplotype frequency estimations were performed by applying the OMNIBUS likelihood ratio test (PCT publication WO 01/091026)
The haplotype analysis was performed for two sets of markers located in PPP2R2C. The haplotype analysis for biallelic markers 24-257/320 and 99-24175/218 was performed in the Labimbo collection. The haplotype analysis for biallelic markers 99-24169/139 and 24-247/216 was performed in the UCL collection. The results are shown in tables 7 (p-values) and 7B (odds ratios).
Table 7A

<table>
<thead>
<tr>
<th>markers</th>
<th>Samples</th>
<th>Haplo-type</th>
<th>Chi-S</th>
<th>Ave Chi-S</th>
<th>SD Chi-S</th>
<th>Max Chi-S</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-257/320 and 99-24175/218</td>
<td>Labimo</td>
<td>AA</td>
<td>7.78</td>
<td>0.96</td>
<td>1.34</td>
<td>14.02</td>
<td>3.9e-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AG</td>
<td>0.02</td>
<td>1.02</td>
<td>1.40</td>
<td>11.19</td>
<td>8.79e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GA</td>
<td>0.14</td>
<td>0.96</td>
<td>1.35</td>
<td>11.62</td>
<td>6.77e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GG</td>
<td>7.35</td>
<td>0.98</td>
<td>1.35</td>
<td>14.31</td>
<td>5.5e-03</td>
</tr>
<tr>
<td>99-24169/139 and 24-247/216</td>
<td>UCL</td>
<td>AA</td>
<td>1,49641</td>
<td>1,0350</td>
<td>1,46687</td>
<td>14,67815</td>
<td>2.28e-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AG</td>
<td>5,19606</td>
<td>1,0854</td>
<td>1,52336</td>
<td>14,42852</td>
<td>2.73e-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GA</td>
<td>13,91081</td>
<td>1,29859</td>
<td>1,81182</td>
<td>16,01507</td>
<td>5e-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GG</td>
<td>0,42926</td>
<td>1,57482</td>
<td>2,19562</td>
<td>23,4845</td>
<td>6.03e-01</td>
</tr>
</tbody>
</table>

The risk haplotype for 24-257/320 and 99-24175/218 is “AA”. The risk haplotype for 99-24169/139 and 24-247/216 is “AG”. Thus an individual carrying the haplotype “AA” at biallelic markers 24-257/320 and 99-24175/218 is at risk of developing bipolar disorder, and an individual carrying the haplotype “AG” at biallelic markers 99-24169/139 and 24-247/216 is also at risk of developing bipolar disorder.

Table 7B

<table>
<thead>
<tr>
<th>markers</th>
<th>haplotype</th>
<th>overall</th>
<th>cases</th>
<th>controls</th>
<th>odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-257/320 and 99-24175/218</td>
<td>AA</td>
<td>60.9%</td>
<td>65.9%</td>
<td>55.5%</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>2.8%</td>
<td>2.7%</td>
<td>2.9%</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>5.9%</td>
<td>5.5%</td>
<td>6.2%</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>30.4%</td>
<td>25.8%</td>
<td>35.4%</td>
<td>0.64</td>
</tr>
<tr>
<td>99-24169/139 and 24-247/216</td>
<td>AA</td>
<td>60.0%</td>
<td>62.0%</td>
<td>58.2%</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>17.4%</td>
<td>20.0%</td>
<td>14.5%</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>13.6%</td>
<td>9.5%</td>
<td>17.6%</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>8.9%</td>
<td>8.5%</td>
<td>9.7%</td>
<td>0.86</td>
</tr>
</tbody>
</table>
REFERENCES

32. Towbin et al. (1979) Proc Nat Acad Sci USA, 76:4350-4354
CLAIMS:

1. Use of a PP2A/Bγ subunit as a target for screening candidate modulators.

2. Use of a PP2A phosphatase comprising a PP2A/Bγ subunit as a target for screening candidate modulators.

3. The use of claims 1 or 2, wherein said modulator specifically modulates a PP2A phosphatase comprising the PP2A/Bγ subunit.

4. The use of any of claims 1 to 3, wherein said candidate modulator is selected from the group consisting of a natural ligand, a small molecule, an antibody, an antisense RNA, an aptamer and a short interfering RNA.

5. The use of any of claims 1 to 4, wherein said modulator is a candidate drug for the treatment of a mental disorder.

6. Use of modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit for preparing a medicament for the treatment of a mental disorder.

7. The use of claim 6, wherein said modulator specifically modulates a PP2A phosphatase comprising the PP2A/Bγ subunit.

8. Use of a gene therapy vector comprising a polynucleotide encoding a PP2A/Bγ subunit for preparing a medicament for the treatment of a mental disorder.

9. The use of any of claims 1 to 8, wherein said modulator is used in combination with a known drug for said treatment of said mental disorder.

10. The use of any of claims 5 to 9, wherein said mental disorder is selected from the group consisting of bipolar disorder, schizophrenia and depression.

11. The use of claim 10, wherein said mental disorder is bipolar disorder.

12. Use of a PP2A/Bγ subunit as a target for screening for natural binding partners.

13. A method of assessing the efficiency of a modulator of a PP2A phosphatase comprising a PP2A/Bγ subunit for the treatment of a mental disorder, said method comprising administering said modulator to an animal model for said mental disorder; wherein a determination that said modulator ameliorates a representative characteristic of said mental disorder in said animal model indicates that said agonist is a drug for the treatment of said mental disorder.
14. The method of claim 13, wherein said animal model is the STOP\(\gamma\)-mice with synaptic defects and severe behavioral disorders.

15. The method of claims 13 or 14, wherein said modulator specifically modulates a PP2A phosphatase comprising the PP2A/B\(\gamma\) subunit.

16. The method of any of claims 13 to 15, wherein said mental disorder is selected from the group consisting of bipolar disorder, schizophrenia and depression.

17. The method of claim 16, wherein said mental disorder is bipolar disorder.

18. Use of at least one PP2A/B\(\gamma\)-related biallelic marker for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder.

19. The use of claim 18, wherein said PP2A/B\(\gamma\)-related biallelic marker is selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216 as depicted in table 3A and the complements thereof.

20. The use of claim 19, wherein presence of a genotype “AA” at biallelic marker 99-24169/139 is indicative of said individual suffering from or being at risk of suffering from said mental disorder.

21. The use of claim 19, wherein the presence a haplotype “AG” at biallelic markers 24169/139 and 24-247/216 is indicative of said individual suffering from or being at risk of suffering from said mental disorder.

22. The use of claim 19, wherein presence of a haplotype “AA” at biallelic markers 24-257/320 and 99-24175/218 is indicative of said individual suffering from or being at risk of suffering from said mental disorder.

23. Use of at least one PP2A/B\(\gamma\)-related biallelic marker for determining whether there is a significant association between said marker and a mental disorder.

24. The use of claim 23, wherein said PP2A/B\(\gamma\)-related biallelic marker is selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216 as depicted in table 3A and the complements thereof.

25. The use of any of claims 18 to 24, wherein said mental disorder is selected from the group consisting of bipolar disorder, schizophrenia and depression.

26. The use of claim 25, wherein said mental disorder is bipolar disorder.

27. A method of genotyping comprising the step of determining the identity of a nucleotide at a PP2A/B\(\gamma\)-related biallelic marker or the complement thereof in a biological sample.
28. The method of claim 27, wherein said biological sample is derived from a single subject.

29. The method of claim 28, wherein the identity of the nucleotides at said biallelic marker is determined for both copies of said biallelic marker present in said individual's genome.

30. The method of any of claims 27 to 29, wherein said determining is performed by a microsequencing assay.

31. The method of any of claims 27 to 30, further comprising amplifying a portion of said sequence comprising the biallelic marker prior to said determining step.

32. The method of claim 31, wherein said amplifying is performed by PCR.

33. A method of diagnosing a mental disorder in an individual comprising the step of genotyping at least one PP2A/Bγ-related biallelic marker according to the method of any of claims 28 to 32.

34. The method of claim 33 further comprising the step of correlating the result of the genotyping step with a risk of suffering from said mental disorder.

35. The method of claims 33 or 34, wherein said PP2A/Bγ-related biallelic marker is selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216 as depicted in table 3A and the complements thereof.

36. The method of claim 35, wherein presence of a genotype "AA" at biallelic marker 99-24169/139 is indicative of a risk of suffering from said mental disorder.

37. The method of claim 35, wherein the presence a haplotype "AG" at biallelic markers 24169/139 and 24-247/218 is indicative of a risk of suffering from said mental disorder.

38. The method of claim 35, wherein presence of a haplotype "AA" at biallelic markers 24-257/320 and 99-24175/218 is indicative of a risk of suffering from said mental disorder.

39. The method of any of claims 33 to 38, wherein said mental disorder is selected from the group consisting of bipolar disorder, schizophrenia and depression.

40. The method of claim 39, wherein said mental disorder is bipolar disorder.

41. Use of a polynucleotide comprising a contiguous span of at least 12 nucleotides of SEQ ID NO: 37 or a polynucleotide complementary thereto in a microsequencing assay for determining the identity of the nucleotide at a PP2A/Bγ-related biallelic
marker, wherein the 3' end of said polynucleotide is located 1 nucleotide upstream of said PP2A/Bγ-related biallelic marker in said sequence.

42. The use of claim 41, wherein said at least one PP2A/Bγ-related biallelic marker is selected from the group consisting of 99-24169/139, 24-257/320, 99-24175/218 and 24-247/216 as depicted in table 3A and the complements thereof.
| SEQ ID NO:7 | 781 LRSDTSISIPSVDHEELESPSFGFSISQSFKNLNDASCYAAVAPCAKVRPYIAEGESD |
| SEQ ID NO:2 | |
| SEQ ID NO:4 | |
| SEQ ID NO:6 | |
| SEQ ID NO:7 | 841 TSDLCIPCAGPPRSGATGEGFFGFDVAGFRK |
| SEQ ID NO:2 | |
| SEQ ID NO:4 | |
| SEQ ID NO:6 | |

Fig. 1B
Figure 2

Genomic

ATG

Adult Brain

KCNQ2-15bx

KCNQ2-15by

Fetal Brain

KCNQ2-15bz

643 aa

625 aa

615 aa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15b
<table>
<thead>
<tr>
<th></th>
<th>Ex 13-15</th>
<th>Ex-13-15b</th>
<th>Ex 13-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex 13-15</td>
<td>-/+</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Ex-13-15b</td>
<td>-/+</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Ex 13-17</td>
<td>++</td>
<td>++</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 4
SEQUENCE LISTING

<110> GENSET S.A.

<120> USE OF PP2A PHOSPHATASE MODULATORS IN THE TREATMENT OF MENTAL DISORDERS

<130> 794A WO

<150> US 60/391,359
<151> 2002-06-25

<160> 47

<170> PatentIn version 3.1

<210> 1
<211> 1932
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1932)
<223>

<400> 1
atg gtt cag aag tgc cgc aac ggc ggc gta tac ccc ggc cgc agc ggc 48
Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly
1 5 10 15

gag aag aag ctt aag ggc ttc gtt gg g gc tgc ctc gac ccc ggc ggc ccc 96
Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro
20 25 30

gac tcc acc cgc gac ggg gcc ctc gtc gtg aag ccc ggc tcc gag gcc ccc 144
Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro
35 40 45

aag cgc gcc agc atc ctc agc aaa cct cgc gcc ggc ggc gcc ggc gcc 192
Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala
50 55 60

ggg aag gcc gcc aag cgc aac gcc ttc tac cgc aag ctt cag aat ttc 240
Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gly Asn Phe
65 70 75 80

cct tac aac gtt cag cgg cgc aac ggc ggc tgg ggc ttc atc tac cac 288
Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His
85 90 95

1/150
GCC TAC GTG TTC CTC CTT GTT TTC TGC CTC TGT GTG TTT
Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe
100 105 110

TCC ACC ATC AAG GAG TAT GAG AAG AGC TCG GAG GGG GCC CTC TAC ATC
384
Sere Thr Ile Lys Glu Tyr Glu Ser Ser Glu Gly Ala Leu Tyr Ile
115 120 125

CTG GAA ATC GTG ACT ATC GTG GTG TTT GGC GTG GAG TAC TTC GTG CCG
432
Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg
130 135 140

ATC TGG GCC GCA GGC TGC TGC TGC CAG TGC GCC TGG AGG GGG CCG
480
Ile Trp Ala Ala Gly Cys Cys Cys Cys Arg Cys Arg Gly Trp Arg Gly Arg
145 150 155 160

CTC AAG TTT GCC CCG AAA CCG TTC TGT GTG ATT GAC ATC ATG GTG CTC
528
Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu
165 170 175

ATC GCC TTC ATT GCG GTG CTG GCC GCC GCC CTC CAG GCC AAC GTC TTT
576
Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Glu Gly Asn Val Phe
180 185 190

GCC ACA TCT GCG CTC CCG AGC CTG GCC GCC CTC CAG ATC CTG CCG ATG
624
Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met
195 200 205

ATC CGC ATG GCC CGG GCA GCC ACC TGG AAG CTG GCC TCT GTG
672
Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val
210 215 220

GTC TAT GCC CAC AGC AAG GAG CTG GTC ACT GCC TGC TAC ATC GCC TCC
720
Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe
225 230 235 240

CTT TGT CTC ATC CTG GCC TCG TTC CTG GTG TAC TGT GCA GAG AAG GGG
768
Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Ala Glu Lys Gly
245 250 255

GAG AAC GAC CAC TTT GAC ACC TAC GCC GAT GCA CTC TGG TGG GCC CTG
816
Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu
260 265 270

ATC ACG CTG ACC ACC ATT GCC TAC GGG GCC AAG AAC ATC CAC CCC TGG
864
Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Gln Thr Trp
275 280 285

AAC GCC AGG CTC CTT GCG GCA ACC TTC ACC ATC GGT GCC TTC
912
2/150
Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe
290 295 300

ttc ggc ctg cct gcg ggc atc ttg ggg tct ggg ttt gcc cag gtt
960
Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val
305 310 315 320

cag gag cag cac agg cag aag cac ttg gag aag aag cgg aac ccg gca
1008
Gln Glu Glu His Arg Glu Lys His Phe Glu Lys Arg Arg Asn Pro Ala
325 330 335

gca ggc ctg atc cag tct gcc tgg aga ttc tac gce aec aec tct tgc
1056
Ala Gly Leu Ile Glu Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser
340 345 350

egc aca gac ctg cac tcc aec tgg cag tac tac gag cga aec gtc ace
1104
Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr
355 360 365

gtc ccc aag tga tgc cca act cca acc tac ggg gcc tgg aca ctt
1152
Val Pro Met Tyr Ser Ser Gln Thr Gln Thr Tyr Gly Ala Ser Arg Leu
370 375 380

atc ccc ccc ctc aac cag cag cag gcc ggt cct agg aag aac aag aag
1200
Ile Pro Pro Leu Asn Glu Leu Glu Leu Leu Arg Asn Leu Lys Ser Lys
385 390 395 400

tct gga ctc gct ttc agg aag gac ccc ccc cgg cag ceg tct cca aag
1248
Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro Pro Pro Glu Pro Ser Pro Ser
405 410 415

aaa ggc aag cgg tgc aga ggg ccc ctg tgt gga tgc tgc ccc gga cgc
1296
Lys Gly Ser Pro Cys Arg Gly Pro Leu Cys Gly Cys Cys Pro Gly Arg
420 425 430

tct aag cag aag gtc aag ttc aag gat cgt gtc ttc tcc aag ccc cga
1344
Ser Ser Glu Lys Val Ser Leu Lys Arg Val Asp Val Phe Ser Ser Pro Arg
435 440 445

ggc gtt gct gcc aag ggg aag ggg tcc ccc cag gcc cag act gtt agg
1392
Gly Val Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala Gln Thr Val Arg
450 455 460

egg tca ccc aag gcc gac cag aag aag gcc cag aag aag ggg gct
1440
Arg Ser Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser Pro Ser Lys Val
465 470 475 480

ccc aag aec tgg aec ttc ggg gac ceg cec ceg ceg ceg gca ceg gct ttc
1488
Pro Lys Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala Arg Glu Ala Phe
485 490 495
cgc atc aag ggt gcc gcg tca egg cag aac tca gaa gaa gca age ctc 1536
Arg Ile Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu Glu Ala Ser Leu
500 505 510
ccc gga gag gac att gtg gat gac aag age tgc ccc tgc gag ttt gtg 1584
Pro Gly Glu Asp Ile Val Asp Asp Lys Ser Cys Pro Cys Glu Phe Val
515 520 525
acc gag gac ctc acc ccc ggc ctc aaa gtc age atc aga gce gtc tgt 1632
Thr Glu Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys
530 535 540
gtc atg cgg ttc ctt gtt tcc aag cgg aag ttc aag gag age ctt cgg 1680
Val Met Arg Phe Leu Val Ser Lys Arg Phe Lys Glu Ser Leu Arg
545 550 555 560
ccc tac gac gtt atg gac gtc atc gac cag tac tca gcc ggc cac ctc 1728
Pro Tyr Asp Val Met Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu
565 570 575
gac atg ctt ccc cga att aag age ctt cag tcc agg cca gag acc cgc 1776
Asp Met Leu Ser Arg Ile Lys Ser Leu Glu Ser Arg Gln Glu Pro Arg
580 585 590
ctg cct gtc cag cag ggg aca aga aac ggg tgg gct tct ggg aca aag 1824
Leu Pro Val Gln Glu Gly Thr Arg Thr Gly Trp Ala Ser Gly Thr Lys
595 600 605
ccc act gtt gcc cat ggt ggg aag gta gca ggg ggt tgg gct ggg ggc cct 1872
Pro Thr Val Ala His Gly Gly Ser Ala Gly Gly Val Trp Ala Gly Pro
610 615 620
cct ccc cac cca cgt cgg cct ctt cta gct tct gtt gtt tct cca aag 1920
Pro Pro His Pro Arg Arg Pro Leu Ser Ala Ser Val Val Ser Ser Gln
625 630 635 640
agt ctt ttt taa 1932
Ser Leu Phe

<210> 2
<211> 643
<212> PRT
<213> Homo sapiens

<400> 2

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly
Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala

Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe

Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His

Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe

Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile

Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg

Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg

Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu

Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe

Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met
Lys Gly Ser Pro Cys Arg Gly Pro Leu Cys Gly Cys Cys Pro Gly Arg
420 425 430

Ser Ser Gln Lys Val Ser Leu Lys Asp Arg Val Phe Ser Ser Pro Arg
435 440 445

Gly Val Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala Gln Thr Val Arg
450 455 460

Arg Ser Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser Pro Ser Lys Val
465 470 475 480

Pro Lys Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala Arg Gln Ala Phe
485 490 495

Arg Ile Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu Glu Ala Ser Leu
500 505 510

Pro Gly Glu Asp Ile Val Asp Asp Lys Ser Cys Pro Cys Glu Phe Val
515 520 525

Thr Glu Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys
530 535 540

Val Met Arg Phe Leu Val Ser Lys Arg Lys Phe Lys Glu Ser Leu Arg
545 550 555 560

Pro Tyr Asp Val Met Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu
565 570 575

Asp Met Leu Ser Arg Ile Lys Ser Leu Gln Ser Arg Gln Glu Pro Arg
580 585 590

Leu Pro Val Gln Gln Gly Thr Arg Thr Gly Trp Ala Ser Gly Thr Lys
595 600 605
Pro Thr Val Ala His Gly Gly Gly Ser Ala Gly Gly Val Trp Ala Gly Pro
610
615
620

Pro Pro His Pro Arg Arg Pro Leu Ser Ala Ser Val Val Ser Ser Gln
625
630
635
640

Ser Leu Phe

210	3
211	1878
212	DNA
213	Homo sapiens

220	
221	CDS
222	(1) (1878)
223	

| 400 | 3 |
| atg gtt cag aag tcg cgc aac ggc ggc gta tac ccc ggc ccc aag ggg | 48 |
Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly
1
5
10
15

gag aag aag ctg aag gtt ggc ttc gtt ggg ctg gac ccc ggc ggc ccc | 96 |
Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro
20
25
30

gac tcc acc cgg gac ggg ggc gtc ctg atc gcc ggc tcc gag gcc ccc | 144 |
Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro
35
40
45

| aag cgc ggc aag atc ctc aag aaa cct cgc ggc ggc ggc ggc ggc ggc | 192 |
Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala
50
55
60

| ggg aag ccc ccc aag cgc aac ggc ttc tac cgc aag ctg cag aat ttc | 240 |
Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe
65
70
75
80

cgc tac gtt ttc ctc gtt gtt ttc tgc ctc gtt ctg tct gtt ttt | 336 |
Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe
100 . 105 110
tcc acc atc aag gag tat gag aag agc tgc gag ggg gcc ctc tac atc 384
Ser Thr Ile Lys Glu Tyr Glu Ser Ser Glu Gly Ala Leu Tyr Ile
115 120 125
c tg gaa atc gtg act atc gtg gtg ttg ggc gtg gag tac ttg gcg 432
Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg
130 135 140
atc tgg gcc gca ggc tgc tgc tgc cgg tac cgt ggc tgg agg ggg cgg 480
Ile Trp Ala Ala Gly Cys Cys Cys Cys Cys Tyr Arg Gly Trp Arg Gly Arg
145 150 155 160
c tc aag ttg gcc cgg aaa cgg ttc tgt gtg att gag atc atg gtg ctc 528
Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu
165 170 175
atc gcc tcc att cgc gtg ctg gcc gcc ggc tcc cag ggc aac gtc ttg 576
Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe
180 185 190
gcc aca tct gcc ctc cgg agc ctg cgc ttc cag att ctg cgg atg 624
Ala Thr Ser Ala Leu Arg Ser Ser Leu Arg Phe Leu Gln Ile Leu Arg Met
195 200 205
atc cgc atg gac cgg cgg gga gcc acc tgg aag ctg cgg gcc tct gtg 672
Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val
210 215 220
gtc tat gcc cac aag gag ctg gtc act gcc tgg tac atc gcc ttc 720
Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe
225 230 235 240
c tt tgt ctc atc ctg gcc tgc ttc ctg gtg tac tgg gca gag aag ggg 768
Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly
245 250 255
gag aac gac cac ttg gac acc tac ggc gat gca ctc tgg tgg ggc ctg 816
Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu
260 265 270
atc aac gtg acc acc att ggc tac ggg gac aag tac ccc cag acc tgg 864
Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Tyr Ala Gly Thr Pro Gln Thr Trp
275 280 285
aac ggc aag ctc ctt ggc gca ace ttc atc atc ggt gtc tcc ttc 912
Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe
290 295 300

9/150
ttc ggc ctc gct gca ggc gtc tgg agg tct ggg ttg gcc ctg aag gtt
Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val
305 310 315 320

cag gag cac cac agg cac aag cac ttg gag aag agg cgg aac ccg gca
gln glu gln his arg gln lys his phe glu lys arg arg asn pro ala
325 330 335

gca ggc ctc atc cag tct ggc tgg aga ttc tac gcc acc aac ctc tgc
ala gly leu ile gln ser ala trp arg phe tyr ala thr asn leu ser
340 345 350

cgc aca gac ctc cac tcc aag tgg cag cag tac tac gag cga aac gtc acc
arg thr asp leu his ser thr trp gln tyr tyr glu arg thr val thr
355 360 365

gtg ccc atg tac agt tgc caa act caa acc tac ggg gcc tcc aga ctt
val pro met tyr ser ser gln thr gln thr tyr gly ala ser arg leu
370 375 380

ata ccc cgg ctc aac cag ctc gat cag ctg agg ctg aag e tc aat
ile pro pro leu asn gln leu glu leu leu arg asn leu lys ser lys
385 390 395 400

tct gga ctc gct ttc agg aag gac ccc cgc cgc gat cct cca acc
ser gly leu ala phe arg lys asp pro pro pro pro pro pro ser ser
405 410 415

cag aag gtc agt tgt aac gat cgt gtc ttc tcc aag ccc cga ggc gtt
gln lys val ser leu lys asp arg val phe ser ser pro arg gly val
420 425 430

gct gcc aag ggg aag ggg tcc cgc cag gcc cag act gtt aag cgg tca
ala ala lys gly lys gly ser pro gln ala gln thr val arg arg ser
435 440 445

ccc aca gcc cac cag aca gtc cag gac aca gcc aag gtt ccc aag
pro ser ala asp glu ser leu glu asp ser ser pro ser lys val pro lys
450 455 460

agc tgg agc tcc aag gac gcc aca ggc cgc cag gct ttc cgc atc
ser trp ser phe gly asp arg ser arg ala arg gln ala phe arg ile
465 470 475 480

aag gct gcc cgc tca cgg cag aac tca gaa gca aca gtc ccc gga
lys gly ala ala ser arg gln asn ser glu glu ala ser leu pro gly
485 490 495

gag cag att gtt gat gac aag aac tgc ccc tgc gag ttg gtt acc gag
glu asp ile val asp asp lys ser cys pro cys glu phe val thr glu
500 505 510

10/150
gac ctc acc ceg gcc ctc aaa gtc agc atc aga gcc gtt gtc atg 1584
Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys Val Met
515 520 525
cgg ttc ctt gtc tcc aag cgg aag ttc aag gag agc ctt cgg ccc tac 1632
Arg Phe Leu Val Ser Lys Arg Lys Phe Lys Glu Ser Leu Arg Pro Tyr
530 535 540
gac gtt atg gac gtc atc gag cag tac tca gcc gcc cac ctc gac atg 1680
Asp Val Met Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu Asp Met
545 550 555 560
cag tcc cga att aag aac ctt cag tcc agg caa gag ccc cgc cgg cct 1728
Leu Ser Arg Ile Lys Ser Leu Glu Ser Arg Gln Glu Pro Arg Leu Pro
565 570 575
gtc cag cag ggg aca aga aac ggg tgg gct tct ggg aca aag ccc act 1776
Val Gln Gln Gly Thr Arg Thr Gly Thr Gly Trp Ala Ser Gly Thr Lys Pro Thr
580 585 590
gtt gcc cag ggg gtt gtt gtt gtc ggg gtt gtt ggg cct cct ccc 1824
Val Ala His Gly Ser Ala Gly Gly Val Trp Ala Gly Pro Pro Pro
595 600 605
cac cca cgt cgg cct cgg tca gct tct gtt tca caa aag tgg 1872
His Pro Arg Arg Pro Leu Ser Ala Ser Val Val Ser Ser Gln Ser Leu
610 615 620
ttt taa 1878
Phe
625

<210> 4
<211> 625
<212> PRT
<213> Homo sapiens

<400> 4

Met Val Gin Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly
1 5 10 15

Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro
20 25 30
Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro
35 40 45

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala
50 55 60

Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe
65 70 75 80

Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His
85 90 95

Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe
100 105 110

Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile
115 120 125

Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg
130 135 140

Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg
145 150 155 160

Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu
165 170 175

Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe
180 185 190

Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met
195 200 205

Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val
210 215 220

Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe
225 230 235 240

12/150
Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly
245 250 255

Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu
260 265 270

Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Gln Thr Trp
275 280 285

Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe
290 295 300

Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val
305 310 315 320

Gln Glu Gln His Arg Gln Lys His Phe Glu Lys Arg Arg Asn Pro Ala
325 330 335

 Ala Gly Leu Ile Gln Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser
340 345 350

Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr
355 360 365

Val Pro Met Tyr Ser Ser Gln Thr Gln Thr Tyr Gly Ala Ser Arg Leu
370 375 380

Ile Pro Pro Leu Asn Gln Leu Glu Leu Leu Arg Asn Leu Lys Ser Lys
385 390 395 400

Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro Pro Glu Pro Ser Pro Ser
405 410 415

Gln Lys Val Ser Leu Lys Asp Arg Val Phe Ser Ser Pro Arg Gly Val
420 425 430
Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala Gln Thr Val Arg Arg Ser
435 440 445

Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser Pro Ser Lys Val Pro Lys
450 455 460

Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala Arg Gln Ala Phe Arg Ile
465 470 475 480

Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu Glu Ala Ser Leu Pro Gly
485 490 495

Glu Asp Ile Val Asp Asp Lys Ser Cys Pro Cys Glu Phe Val Thr Glu
500 505 510

Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys Val Met
515 520 525

Arg Phe Leu Val Ser Lys Arg Lys Phe Lys Glu Ser Leu Arg Pro Tyr
530 535 540

Asp Val Met Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu Asp Met
545 550 555 560

Leu Ser Arg Ile Lys Ser Leu Gln Ser Arg Gln Glu Pro Arg Leu Pro
565 570 575

Val Gin Gin Gly Thr Arg Thr Gly Trp Ala Ser Gly Thr Lys Pro Thr
580 585 590

Val Ala His Gly Gly Ser Ala Gly Val Trp Ala Gly Pro Pro Pro
595 600 605

His Pro Arg Arg Pro Leu Ser Ala Ser Val Val Ser Ser Gln Ser Leu
610 615 620

Phe
625
<210> 5
<211> 1848
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1) (1848)
<223>

<400> 5
atg gtg cag aag tgc cgc aac ggc ggc gta tac ccc ggc ccg aac ggg 48
Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly
1 5 10 15

gag aag aag ctc aag gtg ggc ttc gtg ggg ctc gac ccc ggc ggc ccc 96
Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro
20 25 30

gac tcc acc cgg gac ggg ggc ggg ctc ctc gac ccc ggc tcc gag gcc ccc 144
Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro
35 40 45

aag cgc ggc aag aag ctc aag aac ctc cgc cgc ggc ggc cgc ggc ggc ggc cgc 192
Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala Ala
50 55 60

ggg aag ccc ccc aag cgc aac ggc ttc tac cgc aag ctc cag aat ttc 240
Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Glu Asn Phe
65 70 75 80

c tc tac aac gtg ctc gaa ggg cgc ggc cgc tgg ggc ttc atc tac cac 288
Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His
85 90 95

gcc tgc tgc ttc tgc gtt ttc tgc tgc tgc gtg gtg tct gtt ttt 336
Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe
100 105 110

tcc act ctc aag gg tgg ttc ctc tgc ctc ctc ctc cgc ctc tac ctc 384
Ser Thr Ile Lys Glu Tyr Glu Ser Ser Glu Gly Ala Leu Tyr Ile
115 120 125

c tg gaa atc gtg act atc gtg gtt ggc gtg gaa tac ttc gtg cgg 432
Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg
130 135 140

atc tgc gcc gca cg tgc tgc gcc ggc ggc ctc cgt ggc tgg aag ggg cgc 480
Ile Trp Ala Ala Gly Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg
145 150 155 160

c tc aag tt gcc cgg aat ccc tgc tgt tgt att gac atc atg gtt ctc 528
Leu Lys Phe Ala Arg Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu
165 170 175

atc gcc tcc att ggc tgt ctg gcc gcc ggc tcc cag ggc aac gtc ttt 576
Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Glu Gly Asn Val Phe
180 185 190

gcc aca tct ggc ctg cgg aac ctc ctc cag att ctg cgg atg 624
Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Glu Ile Leu Arg Met
195 200 205

atc cgc atg gac cgg cgg gga ggc acc tgg aag ctg ctg ggc tct gtt 672
Ile Arg Met Asp Arg Arg Gly Thr Trp Lys Leu Gly Ser Val
210 215 220

gtc tat gcc cac aac gag ctg gtc act gcc tgg tac atc ggc ttc 720
Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe
225 230 235 240

c tt tgt ctc atc ctg gcc tcc ttc ctg tgt tac ttc gca gag aag ggg 768
Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly
245 250 255

gag aac gac cac ttt gac acc tac ggc gat gca ctc tgg tgg ggc ctg 816
Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu
260 265 270

atc acg ctg acc acc att gcc tac ggg gac aag tac ccc cag acc tgg 864
Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Glu Thr Trp
275 280 285

aac ggc agg ctc ctt ggc gca acc ttc acc ctc atc ggt gtc tcc ttc 912
Asn Gly Arg Leu Ala Thr Phe Thr Leu Ile Gly Val Ser Phe
290 295 300

ttc gcc ctg cct gca ggc atc tgt ggg tct ggg ttc gcc ctg aag gtt 960
Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val
305 310 315 320

cag gag cag cac agg cag aac ccc ttt gag aag agg cgg aac cgg gca 1008
Gln Glu Glu His Arg Glu Lys His Phe Glu Lys Arg Arg Asn Pro Ala
325 330 335

gca ggc ctg atc cag tcc gcc tgg aga ttc tac gcc acc aac ctc cgc 1056
Ala Gly Leu Ile Glu Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser
340 345 350
cgc aca gac ctc cac tcc aeg tgg cag tac tac gag cga aeg gtc ace
Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr
355 360 365

gtg ccc arg tac aga ctc att ctc ccc ccg ctc aac cag ctc gag ctc ctg
Val Pro Met Tyr Arg Leu Ile Pro Pro Leu Asn Gln Leu Glu Leu Leu
370 375 380

agg aac ctc aag akt aat tct gga ctc gct ttc agg aag gac ccc ccg
Arg Asn Leu Lys Ser Lys Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro
385 390 395 400

cgg gag ccc tct cca agc cag aag gtc agt tig aag gat cgt gtc ttc
Pro Glu Pro Ser Pro Ser Gln Lys Ser Leu Lys Asp Arg Val Phe
405 410 415

tcc agc ccc cga ggc gtc gct gec aag ggg aag ggg tcc ccg cag gcc
Ser Ser Pro Arg Gly Val Alal Ala Lys Gly Lys Ser Pro Gln Ala
420 425 430

cag act gtc agg cgg tca ccc agc ggc gag cag ctc gag cag gac
Gln Thr Val Arg Arg Ser Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser
435 440 445

ccc agc aag gtc ccc aag age tgg age tcc ggg gac cgc agc cgg gca
Pro Ser Lys Val Pro Lys Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala
450 455 460

cgc cag gct ttc cgc atc aag ggt gcc gec tca cgg cag aac tca gaa
Arg Gin Ala Phe Arg Ile Lys Gly Ala Ala Ser Arg Gin Ser Gin Leu
465 470 475 480

gaa gca age ctc ccc gga gaa gac att gat gat gac aag age tgc ccc
Glu Ala Ser Leu Pro Gly Glu Asp Ile Val Asp Asp Lys Ser Cys Pro
485 490 495

tgc gag ttg gtg acc gag gac ctc acc ccc gge ctc atc aag gtt acc atc
Cys Glu Phe Val Thr Glu Asp Leu Thr Pro Gly Leu Lys Val Ser Ile
500 505 510

aga gcc gtt tgt gcc atg csg ttc cgg ctc aag ccg aag ttc aag
Arg Ala Val Cys Val Met Arg Phe Leu Val Ser Lys Arg Lys Phe Lys
515 520 525

Glu Ser Leu Arg Pro Tyr Asp Val Met Asp Val Ile Glu Gln Tyr Ser
530 535 540

cgc ggc cac ctt gac atg ctc cga att aag agc ctt cag tcc agg
1680
Ala Gly His Leu Asp Met Leu Ser Arg Ile Lys Ser Leu Gln Ser Arg 545 550 555 560

caa gag ccc ggc ctg ctc gtc cag cag aca aca aca aca ggg tgg gct 1728 Gln Glu Pro Arg Leu Pro Val Gin Gln Gly Thr Arg Thr Gly Trp Ala 565 570 575
tct ggg aca aag ccc act gtc gcc ctc ggt ggg agt gca ggg ggt gtg 1776 Ser Gly Thr Lys Pro Thr Val Ala His Gly Gly Ser Ala Gly Gly Val 580 585 590
tgg ggg ggg cct cct ccc cac cca cgt cgg cct ctc tca gct tct gtt 1824 Trp Ala Gly Pro Pro His Pro Arg Arg Pro Leu Ser Ala Ser Val 595 600 605
gtg tct tca caa aag tct ttt taa 1848 Val Ser Ser Gln Ser Leu Phe 610 615

<210> 6
<211> 615
<212> PRT
<213> Homo sapiens

<400> 6

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly 1 5 10 15

Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro 20 25 30

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro 35 40 45

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala 50 55 60

Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe 65 70 75 80

Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His 85 90 95

18/150
Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe
 100 105 110

Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile
 115 120 125

Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg
 130 135 140

Ile Trp Ala Ala Gly Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg
 145 150 155 160

Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu
 165 170 175

Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gin Gly Asn Val Phe
 180 185 190

Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met
 195 200 205

Ile Arg Met Asp Arg Arg Gly Thr Trp Lys Leu Leu Gly Ser Val
 210 215 220

Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe
 225 230 235 240

Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly
 245 250 255

Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu
 260 265 270

Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Gln Thr Trp
 275 280 285

Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe.
Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val
305 310 315 320

Gln Glu Gln His Arg Gln Lys His Phe Glu Lys Arg Arg Asn Pro Ala
325 330 335

Ala Gly Leu Ile Gln Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser
340 345 350

Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr
355 360 365

Val Pro Met Tyr Arg Leu Ile Pro Leu Asn Gln Leu Glu Leu Leu
370 375 380

Arg Asn Leu Lys Ser Lys Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro
385 390 395 400

Pro Glu Pro Ser Pro Ser Gln Lys Val Ser Leu Lys Asp Arg Val Phe
405 410 415

Ser Ser Pro Arg Gly Val Ala Ala Gly Lys Gly Ser Pro Gln Ala
420 425 430

Gln Thr Val Arg Arg Ser Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser
435 440 445

Pro Ser Lys Val Pro Lys Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala
450 455 460

Arg Gln Ala Phe Arg Ile Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu
465 470 475 480

Glu Ala Ser Leu Pro Gly Glu Asp Ile Val Asp Asp Lys Ser Cys Pro
485 490 495
Cys Glu Phe Val Thr Glu Asp Leu Thr Pro Gly Leu Lys Val Ser Ile
500 505 510

Arg Ala Val Cys Val Met Arg Phe Leu Val Ser Lys Arg Lys Phe Lys
515 520 525

Glu Ser Leu Arg Pro Tyr Asp Val Met Asp Val Ile Glu Gln Tyr Ser
530 535 540

Ala Gly His Leu Asp Met Leu Ser Arg Ile Lys Ser Leu Gln Ser Arg
545 550 555 560

Gln Glu Pro Arg Leu Pro Val Gln Gln Gly Thr Arg Thr Gly Trp Ala
565 570 575

Ser Gly Thr Lys Pro Thr Val Ala His Gly Gly Ser Ala Gly Gly Val
580 585 590

Trp Ala Gly Pro Pro His Pro Arg Arg Pro Leu Ser Ala Ser Val
595 600 605

Val Ser Ser Gln Ser Leu Phe
610 615

<210> 7
<211> 872
<212> PRT
<213> Homo sapiens

<400> 7

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly
1 5 10 15

Glu Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro
20 25 30

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro
35 40 45
Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala
50 55 60
Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe
65 70 75 80
Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His
85 90 95
Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe
100 105 110
Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile
115 120 125
Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg
130 135 140
Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg
145 150 155 160
Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu
165 170 175
Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe
180 185 190
Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met
195 200 205
Ile Arg Met Asp Arg Arg Gly Thr Trp Lys Leu Leu Gly Ser Val
210 215 220
Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe
225 230 235 240
<table>
<thead>
<tr>
<th>Leu</th>
<th>Cys</th>
<th>Leu</th>
<th>Ile</th>
<th>Leu</th>
<th>Ala</th>
<th>Ser</th>
<th>Phe</th>
<th>Leu</th>
<th>Val</th>
<th>Tyr</th>
<th>Leu</th>
<th>Ala</th>
<th>Glu</th>
<th>Lys</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td></td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glu</th>
<th>Asn</th>
<th>Asp</th>
<th>His</th>
<th>Phe</th>
<th>Asp</th>
<th>Thr</th>
<th>Tyr</th>
<th>Ala</th>
<th>Asp</th>
<th>Ala</th>
<th>Leu</th>
<th>Trp</th>
<th>Trp</th>
<th>Gly</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td></td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ile</th>
<th>Thr</th>
<th>Leu</th>
<th>Thr</th>
<th>Thr</th>
<th>Ile</th>
<th>Gly</th>
<th>Tyr</th>
<th>Gly</th>
<th>Asp</th>
<th>Lys</th>
<th>Tyr</th>
<th>Pro</th>
<th>Gln</th>
<th>Thr</th>
<th>Trp</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asn</th>
<th>Gly</th>
<th>Arg</th>
<th>Leu</th>
<th>Leu</th>
<th>Ala</th>
<th>Ala</th>
<th>Thr</th>
<th>Phe</th>
<th>Thr</th>
<th>Leu</th>
<th>Ile</th>
<th>Gly</th>
<th>Val</th>
<th>Ser</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phe</th>
<th>Ala</th>
<th>Leu</th>
<th>Pro</th>
<th>Ala</th>
<th>Gly</th>
<th>Ile</th>
<th>Leu</th>
<th>Gly</th>
<th>Ser</th>
<th>Gly</th>
<th>Phe</th>
<th>Ala</th>
<th>Leu</th>
<th>Lys</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gln</th>
<th>Glu</th>
<th>Gln</th>
<th>His</th>
<th>Arg</th>
<th>Gln</th>
<th>Lys</th>
<th>His</th>
<th>Phe</th>
<th>Glu</th>
<th>Lys</th>
<th>Arg</th>
<th>Arg</th>
<th>Asn</th>
<th>Pro</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td></td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ala</th>
<th>Gly</th>
<th>Leu</th>
<th>Ile</th>
<th>Gln</th>
<th>Ser</th>
<th>Ala</th>
<th>Trp</th>
<th>Arg</th>
<th>Phe</th>
<th>Tyr</th>
<th>Ala</th>
<th>Thr</th>
<th>Asn</th>
<th>Leu</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arg</th>
<th>Thr</th>
<th>Asp</th>
<th>Leu</th>
<th>His</th>
<th>Ser</th>
<th>Thr</th>
<th>Trp</th>
<th>Gln</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Glu</th>
<th>Arg</th>
<th>Thr</th>
<th>Val</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>355</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>Pro</th>
<th>Met</th>
<th>Tyr</th>
<th>Ser</th>
<th>Ser</th>
<th>Gln</th>
<th>Thr</th>
<th>Gln</th>
<th>Thr</th>
<th>Tyr</th>
<th>Gly</th>
<th>Ala</th>
<th>Ser</th>
<th>Arg</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td></td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ile</th>
<th>Pro</th>
<th>Pro</th>
<th>Leu</th>
<th>Asn</th>
<th>Gln</th>
<th>Leu</th>
<th>Glu</th>
<th>Leu</th>
<th>Leu</th>
<th>Arg</th>
<th>Asn</th>
<th>Leu</th>
<th>Lys</th>
<th>Ser</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>385</td>
<td></td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Gly</th>
<th>Leu</th>
<th>Ala</th>
<th>Phe</th>
<th>Arg</th>
<th>Lys</th>
<th>Asp</th>
<th>Pro</th>
<th>Pro</th>
<th>Pro</th>
<th>Glu</th>
<th>Pro</th>
<th>Ser</th>
<th>Pro</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>405</td>
<td></td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>415</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lys</th>
<th>Gly</th>
<th>Ser</th>
<th>Pro</th>
<th>Cys</th>
<th>Arg</th>
<th>Gly</th>
<th>Pro</th>
<th>Leu</th>
<th>Cys</th>
<th>Gly</th>
<th>Cys</th>
<th>Cys</th>
<th>Pro</th>
<th>Gly</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td></td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>430</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Ser</th>
<th>Gln</th>
<th>Lys</th>
<th>Val</th>
<th>Ser</th>
<th>Leu</th>
<th>Lys</th>
<th>Asp</th>
<th>Arg</th>
<th>Val</th>
<th>Phe</th>
<th>Ser</th>
<th>Ser</th>
<th>Pro</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>435</td>
<td></td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>445</td>
</tr>
</tbody>
</table>
Gly Val Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala Gln Thr Val Arg
450 455 460

Arg Ser Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser Pro Ser Lys Val
465 470 475 480

Pro Lys Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala Arg Gln Ala Phe
485 490 495

Arg Ile Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu Glu Ala Ser Leu
500 505 510

Pro Gly Glu Asp Ile Val Asp Asp Lys Ser Cys Pro Cys Glu Phe Val
515 520 525

Thr Glu Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys
530 535 540

Val Met Arg Phe Leu Val Ser Lys Arg Lys Phe Lys Glu Ser Leu Arg
545 550 555 560

Pro Tyr Asp Val Met Asp Val Ile Gln Gln Tyr Ser Ala Gly His Leu
565 570 575

Asp Met Leu Ser Arg Ile Lys Ser Leu Gln Ser Arg Val Asp Gln Ile
580 585 590

Val Gly Arg Gly Pro Ala Ile Thr Asp Lys Asp Arg Thr Lys Gly Pro
595 600 605

Ala Glu Ala Glu Leu Pro Glu Asp Pro Ser Met Met Gly Arg Leu Gly
610 615 620

Lys Val Glu Lys Gln Val Leu Ser Met Glu Lys Lys Leu Asp Phe Leu
625 630 635 640
Val Asn Ile Tyr Met Gln Arg Met Gly Ile Pro Pro Thr Glu Thr Glu
645 650 655

Ala Tyr Phe Gly Ala Lys Glu Pro Glu Pro Ala Pro Pro Tyr His Ser
660 665 670

Pro Glu Asp Ser Arg Glu His Val Asp Arg His Gly Cys Ile Val Lys
675 680 685

Ile Val Arg Ser Ser Ser Thr Gly Gln Lys Asn Phe Ser Ala Pro
690 695 700

Pro Ala Ala Pro Pro Val Gln Cys Pro Pro Ser Thr Ser Trp Gln Pro
705 710 715 720

Gln Ser His Pro Arg Gln Gly His Gly Thr Ser Pro Val Gly Asp His
725 730 735

Gly Ser Leu Val Arg Ile Pro Pro Pro Ala His Glu Arg Ser Leu
740 745 750

Ser Ala Tyr Gly Gly Gly Asn Arg Ala Ser Met Glu Phe Leu Arg Gln
755 760 765

Glu Asp Thr Pro Gly Cys Arg Pro Pro Glu Gly Asn Leu Arg Asp Ser
770 775 780

Asp Thr Ser Ile Ser Ile Ser Pro Val Asp His Glu Glu Leu Glu Arg
785 790 795 800

Ser Phe Ser Gly Phe Ser Ile Ser Gln Ser Lys Glu Asn Leu Asp Ala
805 810 815

Leu Asn Ser Cys Tyr Ala Ala Val Ala Pro Cys Ala Lys Val Arg Pro
820 825 830

Tyr Ile Ala Glu Gly Glu Ser Asp Thr Asp Ser Asp Leu Cys Thr Pro
835 840 845
Cys Gly Pro Pro Pro Arg Ser Ala Thr Gly Gly Glu Gly Pro Phe Gly Asp
 850 855 860

Val Gly Trp Ala Gly Pro Arg Lys
 865 870

<210> 8
<211> 27
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 8
acctctgcgg attgcatcgg ttttgttg
 27

<210> 9
<211> 25
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 9
ggatgacctg catgaggctg ggtgg
 25

<210> 10
<211> 35
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 10
agcgaattct caatgggcca ggacacggac acgc
 35

<210> 11
<211> 34
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide

<400> 11
tcggatct cctgtgctca cacactgcca cctc 34

<210> 12
<211> 35
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 12
aatattaaaa cagactttgt gaagacacaa cagaa 35

<210> 13
<211> 33
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 13
atcagaatcc acatgggctca gaagtcgegc aac 33

<210> 14
<211> 42
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 14
tgacagatct taaaacagac ttgtgaaga cacaacagaa gc 42

<210> 15
<211> 17
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 15
gtgtggatgc tgcccgcg 17

<210> 16
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 16
tccgctca aaacctcg 18

<210> 17
<211> 35
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 17
actagaatc agccagaagg tcagttgaa agatc 35

<210> 18
<211> 27
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 18
atcaggatcc gcgcgcctc acttct 27

<210> 19
<211> 35
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
actagaatt agccagaagg tcagttgaa agatc

actagatcc ctactggaact gcaggcttt aatcag

aactagaatt cgggaccag atcggggcc g

atcagatcccc ggecgccctc acttccct

aatacagaatt ccaagagccc cgctgcgcc
<210> 24
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 24
gcaagatgca cagttgaagt ga 22

<210> 25
<211> 29
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 25
tactgaatt ttcctgggtg ccaagcgga 29

<210> 26
<211> 37
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 26
acatggatcc ttaacctggac tgcaggctct taattcg 37

<210> 27
<211> 37
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 27
acatgaatc cagaaggtcag tttgaaga tagt gtc 37
oligonucleotide

tgatggatcctcaccgcagtaacacaacgc

oligonucleotide

cacggatccagacccagaaagtcagttg

oligonucleotide

cacgaatctggacggaccaaacagctat

oligonucleotide
	agcggagatactggcagagacccgacagc
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 32
tccgattct cctgtgtca cacactgcaa cctc 34

<210> 33
<211> 25
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 33
gagectcgag gacagcccca gcaag 25

<210> 34
<211> 35
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 34
aagaattcgg taaaggtcga ctgccaggag ccgcgg 35

<210> 35
<211> 31
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 35
cggcattcgc atggcgagaa agtcgcgaac c 31

<210> 36
<211> 32
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide

<400> 36
ccagatcttg taaaaggtca ctcgccaggag cc 32

<210> 37
<211> 151830
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (10)..<(10)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (60402)..<(60402)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (61110)..<(61110)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (98207)..<(98207)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (98208)..<(98208)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (98209)..<(98209)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (98210)..(98210)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (98211)..(98211)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (99743)..(99743)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (108055)..(108055)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (109094)..(109094)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (109125)..(109125)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (118900)..(118900)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (119024)..(119052)
<223> n = a or c or g or t

<220>
<221> misc_feature
<222> (119053)..(119112)
\[
\text{misc_feature}\n\]

\[
(119115)\ldots(119121)
\]

\[
\text{n = a or c or g or t}
\]
<220>
<misc_feature>
(143587)..<143587>
<n = a or c or g or t

<220>
<misc_feature>
(143629)..<143629>
<n = a or c or g or t

<220>
<misc_feature>
(149079)..<149079>
<n = a or c or g or t

<220>
<misc_feature>
(5363)..<5363>
<n = a or c or g or t

<220>
<misc_feature>
(8080)..<8080>
<n = a or c or g or t

<220>
<misc_feature>
(10296)..<10296>
<n = a or c or g or t

<220>
<misc_feature>
(14528)..<14528>
<n = a or c or g or t

<220>
<misc_feature>
(15336)..<15336>
<n = a or c or g or t

<220>
misc_feature
(15457) .. (15457)
n = a or c or g or t

misc_feature
(16288) .. (16288)
n = a or c or g or t

misc_feature
(16306) .. (16307)
n = a or c or g or t

misc_feature
(16316) .. (16316)
n = a or c or g or t

misc_feature
(16397) .. (16397)
n = a or c or g or t

misc_feature
(56012) .. (56012)
n = a or c or g or t

misc_feature
(57662) .. (57662)
n = a or c or g or t

5' UTR
(1) .. (54)
exon 1

exon
(55) .. (124)
<220> exon
<221> exon
<222> (91147)..(91244)
<223> exon 2

<220> exon
<221> exon
<222> (93669)..(93834)
<223> exon 3

<220> exon
<221> exon
<222> (96310)..(96422)
<223> exon 4

<220> exon
<221> exon
<222> (99546)..(99723)
<223> exon 5

<220> exon
<221> exon
<222> (125441)..(125605)
<223> exon 6

<220> exon
<221> exon
<222> (141176)..(141345)
<223> exon 7

<220> exon
<221> exon
<222> (145556)..(145647)
<223> exon 8

<220> exon
<221> exon
<222> (151316)..(151608)
<223> exon 9
<220>
<221> 3'UTR
<222> (151609)..(151829)
<223> exon 9

<220>
<221> allele
<222> (84026)..(84026)
<223> complement of biallelic marker 99-24169/139

<220>
<221> allele
<222> (109663)..(109663)
<223> complement of biallelic marker 24-257/320

<220>
<221> allele
<222> (117460)..(117460)
<223> complement of biallelic marker 99-24175/218

<220>
<221> allele
<222> (99505)..(99505)
<223> biallelic marker 24-247/216

<400> 37
atgcatcgn tgggtgacgg cgggagtgc ccaagacacc gggcagggcc ttc aag

Met

1

ggc gag gac acg gac cgg aaa att aac cac agc ttc ctg cgg gac glyc glu asp thr asp thr arg lys ile asn his ser phe leu arg asp

5 10 15

cac agc tat gtg act gaa g gtaacgtag tgggtgctga gacccctccg his ser tyr val thr glu

20

gccggcggc gcgcggggaat gccgtgcac cgaatgccct cccgaggttt ggacccgccg

214

atgggtgcg tggcccccgc cccccccca ccccccca tcccccccct ccccaccacc

274

tcccatacca cccccccgg gccgagagg gaaggggcc gcaggggtacc gcgcctcgt

334
gccacagggc ggcaacagggc agcgccctee tccgcgcegc cctcgggag gcagcttcce
tctccaaag caggtggtcat cctagtgggc cctgaccat aattttaa aagcccaag 454
cgtggctcaat tctgtgtaag aaatctcggg gaaatatta ggttaaactc ctggattttgc 514
catttcegat cgccccaaag ccggcagaat tttctagggcg cctctctecce tgggagaagna 574
gagggaccgg gggggaaaaaa acataatcc attgccccag tctctgggga ggcgcgccgcttg 634
ccccggcccc ctcctctccct ccaagggcgag ggtcctttgag tgggggggg aaggggggtgg 694
gttgtgggt ggcctttita tttctcgttaa ttatatatta gacaagaga gctggtcctaa 754
cgtcgggat tttccaaanaa agtcccagat gccatcctaa ccaggccccgcc tttaaatctcc 814
cctaagggtg ccctacaagc ccaacccgca cccccacccct accccocagag cttggtggccc 874
agcgccccct tcctacagccg ctgtagaacttc ggggggggccccct ctgtgctgcgc tcgcttaggg 934
aacagtgggg agagcttcccg tgcagcgcca ggccgccccgg agtggccccgg atggagatgg 994
gggccgggaa ggtctggtggt cgggggggcccc tggcgctggag cctttgggcgg gttgccccac 1054
tgctcagcgcg taaccceaggg gctgccccggc ggggccccaga agtgctgcgc gattggccgg 1114
gttgccccc cagttggggcg gggcctttggag agggggtccccg gggctttgggt 1174
gcctgggtcga ggaggagccg gttggggcagc gggctttcgag cgggctttgtc 1234
cgcctccctcg aagcctttggct tgcagggggaa tgaggccccag cgaggccccg ggcggccccg 1294
ggcggggggagcgccagccgg agcggaggcg ggccggggttc ggccgggcccc tggccgggag 1354
ggcgaggggttggggcttgccaggggttg gagggggcctgg gggggccccgcc cccgctcggc 1414
gggggagac gcgtgagtcga ccagcgtcctgc gggccggggtt gttggcggag gggcccaggg 1474
cgtccggggg cctcgggggccc gttggcgtcgc tgagccggcc ggccccgcttg gaggccccgg 1534
gagcgtgacag ccgctctttgg tcgcgtgctct ccggcgaggtgc gagcggggtg cagcgggttgt 1594
cgagcccttc gtttcctggcc agacgcctggca gggcagcaggg gttgggggaa gggcgggttg 1654
tgcggggcgg ggctcgggtcgc ctcctcgctcgg gcgcagagcg gatctgggc agtggtggccc 1714
gctgctccgg gcggctcttg ggctctcttg gcgcagcgca gcggcagcttg tgcctggttt gcgctcttcc 1774
agcgtggggagcgccagggcgg ccggcccttg ggctctgttg tgggccccag cgttggggag 1834
gecatggtag acatatttcaaa acataaatc cctctgcacc ctgcgcct gceccct tccctttcctt 1894
cataattca ccaacgcctca gcggagccgca gggacagcctt cggagagtca 1954
gacagtctgt atacaatctc tctacgacagc aecagatatt tacaagcaac etgcgtcatgt 2014
cggggcactg tttttatctt cggagaagttt cggagctttct ggacagccggat 2074
tgtctactg gatgcacagtt ctgctctgtct acctagcctgc ctgacttccct 2134
tctgataaat gggagagtag tctcgcttaca gggctggag gtttcttgga gggacaggte 2194
caaacagcgtg gtagagcc ttcagagctta tgacatgtca aecgttcaagcc aacaggtcgt 2254
gacacctgc tgttgtctgtt gcagctcata gacagcctac tctcgcctta tccccccactt 2314
gagatgaaca aacacagccc ggcgcttgctg cctggtcag aecaggtgcac agtctgtgca 2374
ggccctaggg cttctggtgct gggagatcag agacggagat cggacaacg gacaattata 2434
atcattata taggtgatgc tccgctctct cttatgaaaa aacaacttcc acactctgtg 2494
atcgatacatc tattttcatgc tcagacgaca gggaggtgca cagatatttga tgtcagaaatg 2554
tcagacgtta atcaagttta aatgctgcct ctagactcttg actgctgtgc agctgttgac 2614
aagttactc acctccctga gcctcaectt ccccttttga aaggagaaat aataacggac 2674
ctctacag ggtgtctgag atgtcagagtt attttctcaaa tataaagaat gccgaagcagcaca 2734
gtctgtgaggt gttggaggcc attggaacca cggcatcgttg atatattata tgccttgtaa 2794
cggagagcgc gttgtggtgca aagaggtggat ctaaattca gtttgtggga ccagaggtg 2854
cacacacactg ttgctcactct gttgctgaag ttgctactcc ccacacaccc caagctgtgctc 2914
tgtctacgtt cctctctgttt gacagggcag ttttctttct tcagctctggctt catggtcaat 2974
ggctgctcc gtagataaccc acctcttgcc tttctcaca ctagctttcct ctcactctttt 3034
gggcccccttg ccatagtcctc tttgtgggctg tcggagctct gcctggtgta ctagtgctct 3094
tgtaaaatct ccacacatcctt ggaggagatt tagcttttct tagtcatcctca catctttgtgg 3154
tgatctgctg gcagcagtgtt ggttttttctttttttttttttgtgctggcagcgc 3214
tggctgctt actctttgcttg gcctcaact gcattcagg gttgtgtagat gattagggtt 3274
actgctcgagc cactcagggc cagagacatc tttgctgtgaa ggagttctag gttggaggag 3334
agcagtgtag ctgataagggc actgggcct ggaccetgga ccctgggaagg tgctaggaag

334
tctccatca ttgagacatt tacagagace tgtgatagt tccaggaaggaccttcctg

3454
gctctgttct ttctcftt tggggcagggg ecagttacta gctttagagt gatgtgaata

3514
agcacticca gactagactg aactacacaa accatccat ccctcttigt ctagcaca

3574
 tgtggaagcc acactctgcc cgccgacca gtgatacaca agacacagga gtcacagcaa

3634
 ggggaggttag ttagcagta ccaggtagat ctggcaagtgc gctggtctt tctgggggac

3694
 aacagtcac ccagcctgcc tgtgttgagcc atcactagca tcacacactg tgggacactc

3754
 gcacagggca cagctcctcc ctagtttgagcc atcgtcagcaca tccacagctt tccagcagag

3814
 atcttitttg catctgcata aaggaattcg ccgctgtttc ctaacctcaca tccagcttag

3874
 tcctgtgiga ttcacagag tttctcttat tccacacagag tttctcttag tttatatgag

3934
 aggaagttgaa gggtgctttg gaatggctaa ggtcactcag ggtgccttgg ctgctgtgaa

3994
 cgccgacggc aggcaggttt tctgctgtgagg aattgtctgc aggttggtaa ctgggttgcc

4054
 ccctggatatc atcttcttc tggccagaga accaactcta agaggggtag atcgtcttgcc

4114
 gagactcagc atctagtga actgcaacc ctagctgtgga cgttgccgct cgtcagcaca

4174
 acagttatgc tctcttcttc caagggacag acataatgtt ccctagtaaga gatctcagcc

4234
 ccctagcgtgga ttgtgatcag tgcagaggtga tctccttccc ctagctgtgga ctggctcag

4294
 aatggtgtctg gcagctgttag ctgccagttg atgggaagtt aggggagcc acaggatgttt

4354
 ggctcccttc tgggtgatgg aacaggggaa ccctgtgtgg gctggcagcc atctgacacc

4414
 atgggggca caagttctt tagccccagc tggagggcag ggcagagagtt gatgtgaagttc

4474
 cggacagtag aggctctagt tccagggccgc ccctgtaacct ccagttctat gatgtgtttc

4534
 tttcttttt cttggtgccac ttcagttct cctgtccttg cagccccatac ccccccaact

4594
cgtacagcc ctagctgtaa ccaagagaaac caggaggtgc atctgtaacc cagataaag

4654
 actegagata cattaaaccc agagggatttt tgtggtcttg cctgggtgag gaaccccttct

4714
 tcatctcact caagtcaggg ttgccaaattt ctaggggctt cctccagtc ccattggagga

4774
 ggtttttgg gttcagatag ggtcctctag atcggcctgc gggagatctc ggtctgttgct

4834
ggggtctgac cctgggtctg taatatagg cagtcacac ggtctctctg agctcctagtt 4894
ttttctttta atatcgtatt gttggctgtt tttctttta gggggcaagag ttagagactttatacc 4954
ccttagaac gctccttcct aaccctcacc ccaacactag gggaaacctg 5014
ggcttaaggg gggacatatta cttgggcac agagggagag tagggagagt cagccttttga 5074
ttttctttta taacagatgt gcactgctag atctcgtggt ccttttcgct cttttggagaa 5134
acggccactta cctacgttct cctttggttt ccaagcgagtt ggcccctcca ttttctgtct 5194
ggggtctccct ccatcaatec acatacttttt cttggcttca gtttcctgttc aagctctttgt 5254
ggcttgtgtt gcacagggcc cctttcagag cagggcattgg gactttctttt aatgcttttg 5314
ggttaaaggg cagacgctgtt caatcttccc caaaaaatgt gtagcctttc tcccaacgcc 5374
cgctgtttag ctattttttt atacccagag acaatcagacc tggcgtccagtt 5434
cacagacagc ggtttttttc atttttcttct taagatgtaa aatacttttt caataaaaaa 5494
tttttaca cttttttctgta cttttttcttact cttttttcag tttttaggtt tttcttttaaa 5554
gcttgtggag cttgtgtagc gtagcagag taagttttcag cttggagact gggagacgcgg 5614
cgttatagag gcttagtttcc cattgagagtt gttgtgagga gtagagagag tagagagagc 5674
tcctgtgagtt ccaaccaata gacagacca taatctcagca cttggttttt ctttttctttt 5734
ccttttttata gcaaccaatct ctatttattgca taatacttttt atacacaccatt 5794
ttttctgtttata cttcttttctgtg cttttttctgg agttgggat aatgctctggttt ctattttttta 5854
gggcttgtgct cattgagttt ccacagcttt ttgcagtttt gcagcctcacc tcaagaccc 5914
gctgtgtgcttgatgttttctgctggtt cttatttgataat ttttaaaaaat ttcacccctgtg 5974
acctgtccttttac tagataggtttg cagaggtttttt gctggggagcc ggaccagagag 6034
tgcaggtcagc atagcgcttg cagaggtttttg ggcggagagt ggcggggagc ccctgggagcc 6094
tgcaggtcagc atagcgcttg cagaggtttttg ggcggagagt ggcggggagc ccctgggagcc 6154
tgcaggtcagc atagcgcttg cagaggtttttg ggcggagagt ggcggggagc ccctgggagcc 6214
tgcaggtcagc atagcgcttg cagaggtttttg ggcggagagt ggcggggagc ccctgggagcc 6274
tgcaggtcagc atagcgcttg cagaggtttttg ggcggagagt ggcggggagc ccctgggagcc 6334
gaaaaagagg gcacttataag tctctttccc tctagtctct tcttggtta tattgaaec 6394
aagggttagag ggtgggggaa gaatgtcagc atatccagaa atgaaataag aacagtttaag 6454
ttatffctct tgcgtcttgttta aagaacaaaaa tccatatgcg aaataataact tgtgcatttt 6514
ggttagtcta cattcagctg agttgctctt atgtttgcat ttaaatgg gagggtcacac 6574
tagaattgtc aggataaaaa tgcaegctga gaggtttaagc ttttttttt ttaaatttga 6634
atgacatta aataageaaat aacaccatga caaataatgg aagggctgaa aaggttctttg 6694
atcttagcac ctttaatgat gctttttcct tgcgctttgaa ataagggct ctgcattttc 6754
atttttctct ggcggccacag aattatatgg tggcgcctgc tcggctgaa aagttggtag 6814
ggtgaaacctc tggcgcctgc ctcttcacctc ctgcgctttc ggtagggttg gaaatgttga 6874
gagctggcca tcctttggg acggcctcttc tattttggg ggttacaaata ttaaatgtec 6934
gtcgtctct ctcaacctatt gggcctgatgg gctctgctc tcaggttgc ctacaaggccg 6994
agagcccaac agttatctta ttttacagc tagaagtttag acctaatctct ccccgcagga 7054
ccacaggggtg gggagggtga gtaggttgcct aatgctcttt tttttctcagc agttttacca 7114
tttaataage agattttttttattcctgtct tggggtcagcct ttttctgtg taatccaaag 7174
tccagcacaag gaagaggggt gactggtttac ctgggcctcg ccccccagcgc aacacagtaca 7234
cgtatggaca acacacatttt cattggtgtgc atataatcctc tttgatacat tttgcttatct 7294
tcagttgttct aataaatcct tctttttggtt cggatatttt aagttccttcct ctctctctcc 7354
tcctcctct ctttcctcctt tctttttctct ctctctctct ctctctccata cacacctttt 7414
tattttcata actaacacctg caggaatgaa caccattttg tgggtgtaag accccttact 7474
ccccagtgtg ccctttaaccct tgggaatgtactcttcacaagacgtggctca cccccattcat 7534
ttcatataaa gatcactagc attttaattg tgttgacac acatgcccag attattetec 7594
agaaattttt tctttttcata cacaggtgttga ctaacattag ttagttactat tgggtgaa 7654
tttgcaaaaata ctaagagatgaa aaaaaattttt tggtaatcacttgctgctga ccaatggagt 7714
tgaaacctttct ctccttttgt tcaggggggtga tgggtgactgc cctttatgtgt ggtagggtagt 7774
cctagtagtc tagacataca aagttgagaac gcaggttttgc gcttgccgtg aatggtgcac 7834
tctctctc cagtgctttg ggtgcacagt gcggacactg ctactctctc gaagagagtc 7894
tgaagctct gaggagattct gtaaatcctt cagcaacctg gggagctctg ttagtacac 7954
agggccttgc aaagacaggg acatctcacc taagccttgg agcagaatgca tcacaagttgga 8014
ctttagagtt aataataact aaaacaaaca caatagcctt tatattatc ccaaatatat 8074
tggctntgtta ctatataact atatacttggga ctagagctctg cgtgcacctc atggctgtatg 8134
ccccaagacct gatggttgtt atattatttc ccatttttac agggagaaaa actgaggctg 8194
agggctgtgt tcaagtcac atgggttgat agggacagag cttgagttttg aatgcagcct 8254
gcacaacac cgctcctgtac tgctcattta atgggtgagg acacacaggg cagggttagg 8314
tggccctgttc agggtgtgat atgcacaccag ctgggattg gaaagactact 8374
acccaccctgg gttctctgtcc tattcggttt gcgatgaaag gcatacagaga ggggtcagca 8434
gagggagaga cccctctccac gcacaggtta gatggcagtt gcagagggca caagtcagca 8494
cggggtcag gcgggtgctgg gcgcaggtgta ggagggggtat gatgtgcctgg 8554
gacaatctat tctagaagct ttggcagcag agggaagtgt tcgtcagaaat ggcataacac 8614
ttttcctctg acagttgcgc gctcctctgc ttgagaccag gaggcagttg gtagttgcc 8674
agccgccgcc gcgcagggac acacctgggg gcggatttgc tcgccaggac agggctgccc 8734
cctctctgcc agggggtgagc atggtcctcc aagacccaggg gcggatgtgc ccaatgcagc 8794
aggaacaaag gcggccagaag ggcataagctt gcggcttgag gcgggcccag caggagaggg 8854
atccctcaact gcagggcagag gcggctcctcc agggcgtgcct gcgcctctgc agccccccacc 8914
ccacccctcc tcggccacag gcagttgctct gcggagagct ggactggggc tggggtccac 8974
aggggctgtgc ttcgggtctg gcacagctgc gcggtccttg gcagcttttt caacccctggtg 9034
gcaacacaccc catctatgaa gcagagagag agcgagctcc caacccagcag gcgtttccagg 9094
cgggagaaag aggtaatggct caccctctgt aggtaatct cattaacagag gacgcttttc 9154
atgatcaatga ttgcttttga aatggttatt tacaatttca aaaaaagtgt gatgcaacatc 9214
ttccaaatttgc gcggccagaagt gtttaagaag gcgagtgcacc ttcccccttcc 9274
ctcctctgcc agagaaggggag agaggtcgcgg ccacctaccc ttgtggaag 9334
ggactgcctg ccaactgta cagagggaga aaccttttgg cattgtgag aaaaagtctc 9394
attgaactgc ttcacaatca taagatcctt gctgtaacct ttcacatatc tctccctgc 9454
tttggtgta agaatggtta ggcaaatcag aagactccttg cgcttcccgg ttccacatgc 9514
agggatatc gagttgtggag ggtgattttc gtgccagct gcgttattcc caaccctaca 9574
aacatatctt gatttttctg tacattaatt ctcgtcctt tttacgaagct ccctcattg 9634
cggagataatctcttaattttggatc tggccaggag tccaagctcc tcacccctcag 9694
tgatgtttc ctgctctcctg ctctctctga cctctacta cgcctcactc ctccttccag 9754
ctaccaacctt gttgaagagac tttgttattta tttattttta ttttttttat cagaggtttt 9814
cactctctcg cccagcctcg aggtccttgg eggtaatctgg gctcactgaa aacccgccct 9874
cccaggggtcag aggtatttctc ctgctctcctg atctctgacag gcgtggactca catacaggtg 9934
cccacccacca cggccgacta attttgttat ttcatctgaaaa cagaggtttt cccacattgc 9994
gtcaggctgg ttcgacacte ctgacccagc ataatctgcc ttcattaattttttagagat 10054
tcagcttgctcctccactcttgcttggtcatt ccaattggccc ttgggtctg 10114
gagagctcag aggtgtgtgc tggagccactgg gcattgccc tggggctgcc cctctctctg 10174
ccgagcccc ttcgtcgaga ggtgtgctct cggccactcc tcgttgagtc attcgggca 10234
aggtgtccag cccagcccttg cgctgggtac ccacactccag ctgagggctgag gcttggtgc 10294
ancatcctct ctgggtagtc ggtggttctt gattagatcg tgcctgcaac ggcctcggc 10354
gggtgttggc ggtggtgcctttctcttacc cccaggtatgg ggagaagggcg ggaactgggg 10414
tgacacccgc ctgcctccacgc aggtctctct ttcgttgac ggacaccacc ctagcctgctc 10474
actacataca gcggagccag caccttctga gggaaggggg atgtctcttg gggaagtgctg 10534
gatgcctcag acagatgtct actctgtgta atacaggtta cagagaatc cccacattcc 10594
agggggtgttg gtcataagag tttactcctt tggtaagcgttgatc tggcctcaggtt 10654
gggcagggg gcgccacttc agaggtgatcg gggtgcctcg accccttctca ttcgtcagct 10714
cccgctctct ctcctctctg ggggagaggg ggtgatggag aggtgcactc ctcctttaaa 10774
ctcctgagcc cagacatatgc actttctgact ttcctccact tccattgccc agagctagtct 10834
acattgcaccc acceptgca agggtgcta ggaaatgtg aaccctgggtg ggcagccccg 108
tggctacct ctgcttgggaa gacactcgac cttgctgctg gtctttgcag ttcctgcaca 10954
tgccacca aaaccaactc ttcattacct agtccaaaaa accctactaa gaatcttgtg 11014
cggagacac cccatacact cccctctctc ctgctctcag ttcgcaacat 11074
gacaggttct gtctgtgtag ccaggggttg tgggtgatc gctgggagtt cggggaccc 11134	ttctttggag aggctgatgc tgagctgagc ttgcagaggcg aatagctggg ctggcaggtg 11194
gagctttgtag gagaatgttc cccgctctcg gctgcagcag ggttaagggg tttgtgcttg 11254
ggtatgacca tccctgtatg aaggggttct gttggccact gagaattgga ggtatgtgct 11314
gggctgcgt gaaatgctag aggacagcag gcgggtgaggg aatggtggag cagactgtt 11374
tgtaagggcg ttcacagcgc gagataagga gttggatttt tattctattt gccattgtag 11434
accagatgga gatgggcat ttcctttttg ttttaatttt ttgattttc ttctggtgac 11494
aatctacaac aacaatattgt agtcatatca aaaggtcag aaaaattttta aagagagggg 11554
gagcagagag aatctcatcc actgaaactt ttttgggtta ttggtttttt gctgtgggtta 11614
tatatatacct attatatatt atactttctt acatgggatttt attactttac aagatggttt 11674
taatatcct cttggtgctt aatatggttg taatattgc cttattctt gataatgtt 11734
gggcctgcc tagattgagaa aataacacag cccattttct tagttggtcg ggaactctat 11794
aacacgtggc ccaatacggg gcaattgaga caacagacac ttcaccgctc acagtatcag 11854
agtgggggag tccagatcag aggtttgggc agggtgattt cctctgagac cccctctctt 11914	tggtattag atgacactct ttctatctgt gtttctcttg tgtgttgttg 11974
tctctttag gggcactggc gcatattggag ttaggtgcac ttgatatgac tgcatttttc 12034
ccttactac cccttttatt caaacacagt cccatttttg ggttcctagg 12094
gtttagagt gcaacacagc aactttggag ggggcacact ttcagcccaag acgacccgct 12154
atctagtggta atatcagtcga cattctttt cattgtatatt taaagagtfc atatcgtggc 12214
ggtatcagaa gtatggtgatttt gtttaggagttgttgagcagtc ttcaggtgcc 12274
cctttgcttt gcataatgtgg tttacttttg agggttgactt tgtgtgctttttg 12334

47/150
agctcctctg ccctctgtgc aagtgaggac gcacgcagaa ggcaacttctt gttgactteag 1389
aagttggacc tcagttgaca ccaaatctgc tggccttgtga tcgggcactt ccagacctca 13954
gaatttgtag gatataaatgc ttgtgttta taagccaccc ggtctatgat attttttat 14014
agcagcctgta acagaactaag ccactcccg tgaagccgct gcattgatct ttaacacaaac 14074
agatcactgta aagaagagat tggcagcaca aagatgacgt cagcagagat gigaagagag 14134
ttaatgtgctg aagttgaaatt taataatggag gtaaatggag tcatgaaaga aatccatgat 14194
cttgagagac tgaagctacc cttcaagagag ctctatatc cagccacagag agttgagctga 14254
aggtgaacac actctgtaaa accaggaagag agttgtgcc ccaagactag gagaatcttcc 14314
agaggaagcg agacctggga aaacgttaaa ggaactcttg agaatatcc caacgtttgga 14374
agagcaaaag gataaatctct tggagctgctg tctgggagaaaa gataaatctg caagagcatag 14434
aaaggggtgct tttttggtat gtaagatgtat acaataaaca tagcagacagct tggc aaaact 14494
cctcctcatat gcctttaaca aagaaataaa gcantttgacata tcataatgtt tcaatactt 14554
taaatcacag tgaataaaat aattatttagt tgtactattt taaaaataac tccgccgttg 14614
gcaggttgtg ctacacacctg ttaatacagcc acttggggag gctgaggtgg gaggagctct 14674
tgacccagag agttggagaa gacccctggtt aatagattga gaccctgtct ctcaaaaaaa 14734
taaaaaaaaa tagccaagag atgtttgcat gtaacctcag tcacagctac tcaggggctt 14794
agaggtggag gatcacttgag accagggag tggagctgctg agttgagctat gatggacacca 14854
cctcagcctta gccctgggtga cagagccagaa ccctgctca aaagaaaaa aaatcccttt 14914
gtgcaccctc ctggaaatat ggagactgct cataaaagagct ttttaaatgt ctggacaaaa 14974
aatatttaag gccaagacag aatgtaaatt tcctcaggta ttattaggt ggttttaaat 15034
gtttttagct ttcatacctct attttttttttttttttt gagaagaggt ctgcctcgctt 15094
cggccaggc gggtagctg ggtgtcatgc gacgcgtcgaa ccagttctgt ttttaggttc 15154
aaccaattct cttcctcagc cctctgtgct agctgggatt agcagctgtt gccaccggcat 15214
tggagataatt tttttatat ttagtagacag ggaatccaaa ecatttgggt caagctgatac 15274
tgaaacctt gaccctcaggt gatcggccgg cccttagctc ccagagacgtt ggaattatag 15334
gngcaagcga ccgcacctgg ctcagctca ttttatgga tcacaccac cacgtcagca 1539.
aggaactgtc gcactcattt caaatgtctc gcaagtgtcag cgcagtggc ctcagctgg 15454
cngccaca gtgaagttt tcacccctg ccgcttcg ctagcgtc ccccttat 15514
aagccggtcg ctcagaata ttaaactcttg ggaattctgc actgtggagac gggaagcag 15574
gacggtgtgt cacaggtgagg ggcaccacag cgcctccctc acgtgcgttc agtgaagcgc 15634
c cgacgcagc caacaggctg tcgggagca atccatcatg gaaattcag accgaaggag 15694
c cgcggggcgt aatgtgttgg ttcctaccgc gaccttcatt gtgaagcagt ttaaaaacag 15754
ccctgaatat ttatatggc ccagagagtg taagctttt ttatagcgt gtgaatatat 15814
aatcctgct gatattgtg ccctatgctc cagacagtgg cacgtaaggg ggggtgatgt 15874
taagggctc ttgttgagaa gatcattat gatatctttc atttatttcc attcacaaga 15934
cgttgaacag tgttagacagt aagatataagg ggcggggggc cttacaatoc ttcattttc 15994
tactccacag aacactgcctg cattccttc taactacccc gtggcatttg 16054
tacctatggt ttgttcctttt aatattataa atgcaagtgc aacattttc cagatcattg 16114
tgcacctgtg aatcacaat ttatatggct gcataatttc tccagatgta gtttatattc 16174
ttccattcaaat aatattttcat gattcatgtag atccgattag ttttgtgtgt atcaacaggg 16234
tttgtgtgtt ggtaggggatt accagagaag aaggaatagg gcgcagctcc cccrcccag 16294
gattttcgg ccagaagggaga ctaacagat gggtgtacat cggggggggg ggcacgagat 16354
caggggggg cgggtgcagcc tggaggaggg tgggcacag cggcgtgagc caacagagggg 16414
tcgggtgcag ctcacacag cagagcaggg ggcgggagt gacattcgac gcacaggaggg 16474
acattttaggg cacagcagg cgtggtgttgt tccagtgcggcg tggagctgct actacagtgc 16534
ttgctgctgc gcggagatt ggtgtgtctc tgcagcgcac gggatggagag aggaxagta 16594
gacgcagcgtt gcgggtgtct ctcagccgc gcggagagag agggagttcag gggggctcgag 16654
gacacccag cagagggag aagagccccca gtcaggtgcc cgggtggggtc atgggagaggg 16714
aagggggagt gaaggggtgt gcgggagac ggttggcag gcgggtgggg gctgccaagaggg 16774
tgtgtggagg aaggtgttgt ctccggtaat ggggtgtgtt caatgcagaa ccacagaggt 16834
gtgactagaa gecggggtt gcagatgggt gcaggtggag gatggagaga gttgctecca 16
cttgtgaaca acgacgcccc caacttttag gcagagcagct ttcattgag gctccatttc 16954
cctatfcca gatattttct tggctgctcc aggtagggat gcaatttcctt gatgtaaggc 17014
tataggtct ttaagggtct tgcataaanga tttgataatg atggtgtcta ttagagtaaa 17074
aatcnaatttg ggcaaaacat tttgtttrgg gtgafttttgg gaagagtaag tccacgaagg 17134
cacgacgact ctggagctcat ctgtagattaa cagcagaccc atcagtctct atgtctcttg 17194
cctacacacn aggaattgtct ctagcctccag cactaggtga attgtctgct gttcattatac 17254
tttgtatagg tggctgaacag gagataggggct ttggctgtgt ccaagggaga gccgtgtgggt 17314
gcacacacta tttccgcagg cataactatt tggctctctat gggcaaaataa tagcagatag 17374
aggtgataggg aggaagagtca ccaatttctg actcgctcttg ttgtaatgaca ttgtggtgat 17434
cacattaggc tttatgtctc actctggggag gttgtaggaa gtagctecg ttggcacaat 17494
aggaagctgga gccctcagaga ggttagtcc caggacgaag gccacacagt gatgcacaca 17554
ggtaccatca ccaaccaaca aatgaccttg gagetcaagt aitgatgtag aaccatttta 17614
tttgtcttcc cgtagctcgtg gatcagggaa tttggcaga gttggctcgg gcacacatctc 17674
tgtctataat gcacaccceat gcgtcttcca agctgtttggt tggactgtac tggagggact 17734
agaggtgtct cactcacaac ttttcgcgg gttgagggaga gttgaaaaac ggggtctccc 17794
tttccacgcgt gcagctgtcag ggcagttgga ctcttttgat ggcagctgct tttccgaaat 17854
caagtatccc cagatacacc caagtagaacct gttggecct ttcgacaccc tggacatct 17914
caggtcctct gtgtctcatct tcaattttgtt caagcaagtc acagggcggc ccaggttga 17974
gggcgttgg actcaaccttt tgcacttggg aagggccagag tracatggta gaaaagcaga 18034
tggatatgga gacggtgtctc tggcccctccc tggaaaaacac ggtgtgcccac agacgcctgc 18094
ggcaagcgga agaccccccac tgggtcdtcgt cgaccccttg ggacacctgc cccgtcttcga 18154
gcacaacctctctgctcccc tgaacagttca cagagaaac cgggtcctct ttcctagcca 18214
ttttctgttt aaaaaatgca aaaaatccc atacttttgc catttttaca acagggaga 18274
gggggtaggt gaaagcttccc tttaggggta gattatatgt gagccagacc ggtggcccctg 18334
agcacacagg tgtgaggttc cagceccecaag aecggatcce acaaaagacct aagacagtga 1!
gcaagagte gagagagggg aecggatcgg aactggagtgc aecggatcgc aecggag 19954
aggaaatcc agctgtgtcc tggagggtgag acagcactgc cagctgtc acagcactgc 20014
getcgtggg ggtctgtggat tcaacctgaa gggacagatg gccctcaggg tagcaggagg 20074
tgcctgtgcgt gcttgctgtc acacacttcg caaagcagaag gcacgctgct cctctctgtt 20134
cctgctggc tgtgctgtgc gcacgctgct cctctctgtt 20194
caggagca ggcacagtgc ggcacaggg aagttgtggc ttaagaggt gcacgctgct 20254
gtcgagca caataaacgt agcctgtcag tctggctcagc tctggctcagc cagctgtggt 20314
ggcctgttc aacacacacttc gctgtggctc aacacacacttc cctgtgctgct 20374
gcctcttg gcggctgtgg ctctgtgtgc gcgtgctgtgc gcgtgctgtgc gcgtgctgtgc 20434
ccttttctc tctctgtggg gtctcacttc atggggtgct attattggg 20494
cccctacag cccctacag cccctacag cccctacag cccctacag cccctacag 20554
agagggatgt agcctctctc gtcctcttc cccctacag cccctacag cccctacag 20614
tgatgtgtcttg cacccacttg cacccacttg cacccacttg cacccacttg cacccacttg 20674
cacgtggagc cccctcgctt caaactacag gcggcgtggct ttaaacccag cgttcctgctc 20734
cgcacagcag ctcgaacacag cgcacagcag cgcacagcag cgcacagcag cgcacagcag 20794
tctgctgcac tcaaaacag cccacatcct cccacatcct cccacatcct cccacatcct 20854
tgagattgt cacaatcaga acctccagcttt ggtgtgtgct gtagaatgt ttaggaagaaga 20914
gcggagcg cggcggctgt gcggagcg cggcggctgt gcggagcg cggcggctgt 20974
gctggagtgggc gtcgaggctg kcagaggctg ccaacggagc aatggctgct cagctgtgctc 21034
cacagtacagt cagcaacacttc ggtggcagtc gggatggctg gttggcgatg cagctgtgctc 21094
gctgtgtgc tggacaggctc cgacagcaga cagacaggctc agtggctgct cagctgtgctc 21154
gtgtggggcg ggggctgtgc cggccagagc aacccgagc aatggctgct cagctgtgctc 21214
gggctggagc cgcaggagcg tgcctgataa atatggaatt cagacacttc ggtggcagtc 21274
gcggagcg cggcggctgt gcggagcg cggcggctgt gcggagcg cggcggctgt 21334
ctcgagctct ttccagactgt tggagcttgag ttgcggcctga tggagcttgag ggaagggcag 213
agcgcttccc cacgtgagca agagctaatg caatgtggca gttgcggcag ccagcgagag 21454
gtcctgcc acgttctccag accccacccc ctacccaggt atggaatgtg tgtcctcagt 21514
tggcagagaa ggaaactgaa atgggggttt cacctctcag gaatggggtag gcgcagattt 21574
taaccacagc ctgagacaac caatacatct cctcgcctcag gcctgcactg acctcctgce 21634
acccctcccc ctcagagcag ctcgctcaggt ggcttctcttg tctcgggctct tcctcgggcc 21694
tccttacgct gcctccctat caccgtcctt cattatcctc tgggactcct tgaagcttgg 21754
cccagcaacct cccaggtctg accacccactg cggctctctt ttcttctctt ttcacgtctt 21814
ggtgagcttg aagagttgagc tgaacgcttg ctgatgttctt ctgtgcaccc aataagagag 21874
tgggagaacct gccggctgtt acgggcttgtt acgggctgtt acgggctgtt acgggctgtt 21934
gggaggagc gaggagggag cattactgtt attttgtcagc ctgggggaga cggcagatac 21994
caggcagcag cccagcagct gtatctcagc caccacctgc agttgtgtgt gaaacccccca 22054
caccacccca tagtctagac aatggaagcc cagagggcag aggctctcctt cggagggctg 22114
caggcagggc aggagttgctg gaattggttat tgggccccag ctcctgctga ctccaaagcc 22174
aatgtatttt caccacatacc agttgtcgcc cagagctaatt ttgggggtgt gaactgcaac 22234
cggcagactg atccagaga gcgcaacactg tgaagagaga ttaggaggg aataatcagaa 22294
aatgggttc ggcaatcctccc gcggggagcttg gaggagggag tggcggcggag gcctgcctca 22354
gcctactggt gttgggtgtt ttcctgccttt tcctgggagag gtgtttgtga gcctctgcctg 22414
gggaggagtt agcttgtcggc agggactggtt ccctccttgg aattcataagg cttggcagcat 22474
tggacctggt cgggaagagag gagggagagtcttgccatc ggcagccggc cttggctcgg 22534
gagaggttatc ttttttccaga acccttgaga cggggacag gggagccggc aggggccctgt 22594
ggcctgttt cggagagctg gccgtgcttg ctggcagcatt cctttccctgt cggataatgat 22654
tgtgctgctg tccctgggtt tgcacaccac ggagagatgt ggggtgttgg atggcgacaca 22714
ggcagggag gtcgctccgg agagggcagagg gcgagccg ggggtggcagc tgcgctcaggt 22774
cagagatgttc cagcagcttt actccctcgc agccagatatt gaaggttaaat gacagcctatt 22834
tattatataa aatataagtc atcaatctca aggttaacaag aagagagag cacagagag 22894
tgcatactggtta gatgtcagtt ctctggagta gggcactttg agcagctggt gttctctga 22954
gctgcgttcag ggtgtcactc tgggtggaac aagacaaggttg tattctgcgtt 23014
taatcaacat caggttttgtt ctattttgcttt ttctttcctg ttctgcaggct 23074
tcattgcctcgtat gcacggtat tggaggttaa atcccaagcttg tgggtcttttg agagtcagag 23134
gattggtgcct tcctgcgtttc ttgggttcggt gatgcctgctgc taggtctagc 23194
tgtttttttgc ccttcctctc gacaggtttg ggaagcctgcc tctggcctgg ccacagatg 23254
agcgcgttgag cccagcactca ccccaaggct gcctgaccaag tgggtctttgc ccaagaaaaac 23314
agcctcctgg gcacagcagc cccgtacttt ggcgactgact gagaactaa ggcacaatacg cagggcacct 23374
agcccccactc gcctggtgaaa gcccagccggc aggcagtcag gcgcagcctgg aacagcctctg 23434
tgcgttttgc gcttcagcag cocctccttt ggggtgtgag ccattttgct gcggatttcct 23494
tgcacatttc gcgagcaggg acacgcagcgc acagggtaaaa ggggtctggct ggtctgcattg 23554
cacgaatttt gcctgggggg gctgcctctg gctcgaggtc ctctaagctccc tgggtgtacta 23614
gagaggttctc gaggggagg GCCTGGCCCTGC ggggacacgc ggttggggaggtt 23674
ggagaacacc cccgagcagag ggagagagag aggccccgatgc agatggcgggt gcctttctca 23734
ccccttcgctgcc gcgttaggctagcctgcttt ggaaagctgct cctctgctgcag ctgctggctc 23794
agagcgtctgc gcacagtcccttg ggtggccctg gcggacgttt ggggagagag aaggcctggag 23854
ggcgagctttgc gcacatccttc ggggacagagag ggaggtctgt ggctggagag aagggcctgg 23914
ctaccaattcg ccagaagggc cgtggaggac cccattctgc gggcctcttgc tgggtgttgc ttcgctggc 23974
attacagttg tagatgcttg caacgcaccc gcaccctgtg tagtcccctg aataagggg 24034
atcaacagtcttataacgc gcacgcgcttc gttgcgcttgc taccatcag ttaagcaggc 24094
agggttcag gcacgtgctgc aagagagagc acccaatcttg gcaagtcccgt gacagttttt 24154
tcttgcctcccc cagtcgagtt tcggctccctgc accgggagagtg accggagccgc tctgcctcct 24214
ttaggtctggc cctggaaggccc cccccagagagt aatttcatcg gngaaggctg tatttcatc 24274
taatcatattgc tgaaaaagaggg ccagagagat attccatcccg gnaaagaagt 24334
agaaacttcc tatacaattt aggggtatta ggccagatgca tacagattctc actgttggaa
aggagctggc gacccctgatt gttggttgtg ccggcaggggg tgcctgtgcc gctgtttaac
 tcagcctga gctgaggcaac ggagagaaac ggagacccca aagaagttcag agggcttgcc
aggtcaogct gtctctacga ggtagacact gactttgacc cccggtcttg tcctgtgccaa
gttggagccc tttttctcaaa aagggcggacg gaagagatgtt gtacagatgtg tgggtgccag
tttctctctt ttcaataaat cacccaggga aatgttctct tcaacccccc taagccaggg
 ggagggagga ggacanaggtt tagttcacca ttttgcttg catgtgtaatt gggtggaggt
ttttgaggggg agctaggaga ccttggcgttg gggcttggaa atatccacat ttccacaaca
tttgggttgt gttgagaccc ctgccttccct cctctcattc taccgagagt tcttttcg
ccagggaagaa caacacccgct agatgggagtt atttcaagg agatttcatg gaaacggggag
gttggaggt tcctccacag actggtataaa ttgggttggtt ctgaggtgge acgcagttcgc
cacggagggg tcggaggggac ctctctgcc caagcagcctc ctctcaagtg ggaggcaggg
accggagagt ggcctggccc cttctcatgc tcctacccagc tcaagacccg cccctggccg
ttcctctctt ttttcttttg ggtgggtttc gctgggtgcca gggccttacct 25234
cctggccagga cctcgctggca ggacccctgt gggttgagcc gggtctggctc tggcaagacc
ttgccccggca cggtggtgtgt aatccagccca gcaccccttc gcctgttggc caggtctcaac
ttttacccct cactctccac tcaagcatgt ttttcttttt ttttttttac aacccagacac
tttttttttt aaaaaaattcc tgggttgagtc cccgttaccc tctctgagcct ccttttttgt
ctttgctgcg atgtggatac cagccggctgc caggtctgtct tgttgaggat tctatcaagc
cagccggagag ggccccctgg aggggaggtt tgttccgcggg ttgcagtttc cccgtagttt
ccgagcaag cgggagccct tgggtgtgttg cctcttcgag tccagttgcc cctctgtgtg
ccgtggcttt ccgggttgaa atctttcctg atttttttgc caaccttggaga agagtgatat
ctttctgggt tggtgagtttagg ggtcaacggga ggcaagttcc lsttccagag 25834
gatcggttctg ttgccccctg ggctgtcttg cccctctctg cagtgcaggt ggaagatgaa 2589
cctacagaga gttaaatgc gctcgatgtg ggggtgaag ctacgactgg aaaaagctcg 25954
atgctctgcc aagtcaaatgt gtgctgtcgg tgtgtgtggtg ggggagggaa 26014
gtctcgcccct ttggaaaaag gggggaggtt tgcagaaacc tgtcaggggct gcctcggatt 26074
catacgctctc agaaggctgt tgtaggccgt tcagttgtag catgctgtc tgtgacacat 26134
ttaaatcct gcgcgtaccat aaggataagtc gcacgctgtta ctgctttttc cacagatgag 26194
gaaactgagg cacagagggga ttggttaag tgaactggagt cactcagccca gcgatgtgaat 26254
cacagcccac acccatgtgc accaggaaac ctggtcttc aaggtcttgg gaaggtgtgc 26314
cggcgggtgc ccataaagggt gaaaccttttg gtgtgctccc aggcctatgg gcctagtgag 26374
ataggagctc tcctgtggttg ttcttgacga cacttggtcc agagggctga gaccccaagc 26434
cctcccttag aacatcatgttg tgtgtgaga catttagague cagccctccc tgccttggaa 26494
gcacccttgg ggttgctttgc aattagtgaag ttataacttt gaaactctcat ttaatttt 26554
atttaattag agacaggggtc tcctcttggtc acccagacta gacttccggtg tgcctcatc 26614
agctcactgc agctccaaac tcctagacct aagtgatccee cctgcegggg cctcggcagc 26674
tgtggtcatt acagggcattt gcgcaagccac ctgctggaaa ctcccttttt tgcgaaagaa 26734
acagctttaa ctcttcatac tcctctgtctgtctgatgaa ctgctccttt tgcgagaggt 26794
agagcagttca ctgctcacttgc cttttagaat ttgttattac GGgtttaaccagatgaaatc 26854
cattgacat cttatatccttg aacaaatccttg catcaatctct cttaaatctt ctccagttgg 26914
attaattaa ttgcatgttggtc ttatataacatgg tgtgttgaaga tgattctggac agctcaattgc 26974
ttgcttagat agttgataca ccgcttgtag atatttccttg cttgctggaga gactgcggagg 27034
aattcggcactaaaagga aaaaaggttg tcgggaggttc tttttttttttttttttt ctgttggtag 27094
agacagggttc actactgtgc acctaggctg ggtgctagtct agttgatcctggagctcg 27154
aaccttggcc ccctctcggttc aaggggtctt cctgctctag cccctccccctt ccctctgtgact 27214
acagggcggggt accaataata cgggttaattttttttttttttttttt gattgagggtg 27274
ttcacgtgat gccagagact ctgcttggca accagctgctgaa cctgcccttc gcctcggacc 27334
ctctcaaatgt gcgtggattta tagcggtgag ccactgtgcc caggtcggag aggatgttgtgt
ctctcaaatgt gcgtggattta tagcggtgag ccactgtgcc caggtcggag aggatgttgtgt
27394
27454
27514
tgagatgaga gccatctgcc tccggcagca tctgcttgaa cgcgtgaacg acttggcct
27574
tgagatgaga gccatctgcc tccggcagca tctgcttgaa cgcgtgaacg acttggcct
27574
ctcctcata gatctctctct ccatcgctggc ctcctcatttc gcgtctggcag gcggcctcgg
27634
27754
ttcgaatc cgaagcttt gcagctgtgag tcagatctgtggtg aaggagcttc acatctattg
27934
27974
tgacggttc gcgttcaaatgc agcttcagtt gcgtttgcttg gacgtttgcttg aaggagcttc
27994
tccttgtcgt gacgtttgcttg gacgtttgcttg aaggagcttc acatctattg
28054
aggaggaga aggaagggaa tcggcgggtg tgaacatcgt ccagcoccocag gcacttaat 30

ttgacccccga tgcctgggggc ccatcataca gtaatacagag tgaagggagct gcgttcaggt g 30454

gtcagtgctt gtcagagac ccacagttgaa gaggggggcc atcgttttgc atgtgtgtgg 30514
cggcccccc caaccttcct ctatcagac gccctctctac agtttacatcct g 30574

taaggtcct ttgccccctca ctcgagcagct cagagagggga gcaagaggtc cggatctggg 30634
catggagag ggtagagccc tgcctgtgte ctgcaggtga caagctacaga gcagaaggtg 30694

atgtgggaac catccgcccc ggaaggtgctg tgcaggaaga ggtcagagcc tgaacagagg 30754
cgagttggag agagaaggtct cgtgtgtggg gactgtgtggc agctcaggg aggcaagacctg 30814
tagctccag gtcggggaacc aggaggtcgg caggtgtcag aggccccatct ggtcttcagttg 30874
gcccggtctga ggagcgtggcc tcctcccttg cagcttngaag npccaggaag ggttaaagc 30934
catgagtgta gggaccagag tgggttgtac aagggctcct tgggttgcgg tgggagggg 30994
cttgaagga gagggttgga gggaggggctg tgaacatgtg tgaagttccc ttatatacctt 31054

agttgtttca tgcagaggg cccagaggtt ctttttctca gagectgcac tgaagttccc 31114
tggtgggccc tcctccaggg ctcctgggaac ccccttttcc tggcactctg cagagctgga 31174
ggtaactgga aactcatgac tcctgccagca gtcagccctc acccagtcac tgaaggtgce 31234

agttggtataa ataccocacgcc tcctcctctg cgtacgagca caatttgaga tgggacacctc 31294
actgcctcagc gagcctccat ggcagtcgac tcatactgcag ctcctggaga tttttcgttg 31354
tatcataaccc caattgggct cctctatgctg ctcggccccac tcctcactc ccttccgac 31414
tttccagca acacttcota actactctca gaaaaaaagtt ggctctcagg cccttgttctg 31474

gagaacccag ctcgagagag ggccagaaag ggctgtgagc actaggagaa aacattggtagg 31534

atacagagtc aggggggtgct ctcagctctg gccagggggc tctgagacgt gccagtcagg 31594
gagggaggtg ctggagccac agcacaattgc ggccagagag taagcaccag agacagacc 31654

aaggtgctca ggggctcata ctcctgggtc cccaaatggt tggtgccaga gaccgacctg 31714
ccccctggtta cagagccgac atgtttacatc tctctgtgtc cccactgtgct aaagctcttg 31774

gtcagttgca tgttgcctag ggagcctggc ctcctcattag aggttgtcag gageccccca 31834
gttcccccaat ctttaaaatg aaacagttag atacagaaac tacaataaagga cttgcccaggt 34894
cattttctg agatcctgctg tgggtaagg gattgtctgag gcagagagatg cagtttaactt 34954
cggagcaatt acagttgatt tcctgtttct gcagagtccc cttatcacaag ctggtgtgaa 35014
gaatggagc agatccttg cctcttgcct ggggtggtttt taaacacttg agcctaaag 35074
aatcaggaa aagtctggca gctgtagaag tacaataagtg ataagcaaga acacgtgcac 35134
catcagctgtg aaggtggcagg agtatcagtc caacatcgca tcaggggttg gcggggactgt 35194
tggaggtcgg gcagaactag cctttggtgga ttcgctcatg gacacgttctt acaattttgtg 35254
gagagaagac agaatactcag gctcatcagtg tgaatctttt aataattgaa tggctacttg 35314
gcaattgagta acacatcattt gggcagaaac caatcttgag accagttagct tcaaaagaca 35374
cgtttgagcc tggagctcag ctattattgct tataataaggg tggcttaactg ctgggccaca 35434
tgcttaactg aaccacctcc ttgatttggtg aataagtttt aatattcgatg cgcgtaacac 35494
cattatttt agtattggcc tgggtctact ttcaactac acacagcagggt tggagtagtt 35554
gtagctttgctg gctcagacagt tgggctcctg atttatctcct ttgacccatg tggaaaaagg 35614
ctgctgaccc tgggttcatg tcataagcact atatggagca gcaggaacca gcttgataattt 35674
ggagctgagat gaccagggttt tgcagccctgg ctcaggggcac tctagtaaca gatgagagag 35734
tggttcttct ttccctttt ggaataagtgcctgcatggacaccaaac aatgggaaca aatgggaagtg 35794
caaaaagcat ctttgctggga accatagctt ctgggcacctc atatgtggggg aatgcagata 35854
aagggtccag atgggtggcc gatgtctccaa aaggggaaata aaagtccctcat gcgcgtaaag 35914
ctcagccaca gcaacaaagc cagaaaaaactc taccctctct tgggtgggct catgtgtaggg 35974
gacgtataagttt cccttccttag gcagcataaa aacaagtgcc tggggcttttgctgctgg 36034
tcatggtgcc tatagcagaa taccatagat tggggtgtcgt ctgagcagca tattttttatc 36094
ctcagcagtt cttggctgctg gagaagcttag tcaacagctgtaatggagttt ggcgctcgtc 36154
gagaccaaggcttt cggctttgc gtttttctttt atagatgggtt cctttttcct gcgcttgctg 36214
gggatgggag acgtcctggtag ctgctttttta taagggactgt atacccatct atagcact 36274
cacccctctaa gcacctcata gttttgcag tccaacttctgct ctaggccta cacatgggg 36334
ggtgcaagtt gcagtgagcc gagatcaagc cactgcactc ttcgctcaagtt gacagtgtga 3781

gactctgtcct caaaaaaaaaa aaaaaaaaaa agaaaaagaaa aagagaaaa acagaggtgaga 37954

aatgacatta atccacatta gtctagctat tttgttaat ggcaagagat ggaaatcatc 38014

gtaagggcca tcacaggggca ctttgtcatc aaattattcc agagctgtgat agtggatagc 38074

aatgaaagaaga atgtgaagagc tcaggtgtcgg ctgtgtgtata atgtgtgtta agatctttta 38134

ggggaatgag cagaagggca aataattttgta taatctcatag ggttaaattt cataatctatt gattaaacac 38194

tggtaattctaa gactgctttg tttgtgtaact cttttttgtgat ggagatgtgca cttttttttta 38254

ctcatactgg attcagctag caggaggagc ttaattggagt tggagaagggc ctaaggagaga 38314

cttattatacct cttggtacc tttgtgctgc cttgctattt atacactatt ctaacccaa 38374

gggctgcaacg cttggtttagt gaccataagc tctagagtcg tctgttcagg ttcgaacctt 38434

gactggtgctg cctactgtcgt tgggtacgg tgcacaaggt cttcaccctct gttggtttaca 38494

gttgtagctg atagagttaa cattggtgacc tattctcatag gttggtttagg atagacactg 38554

tccaccaagc ggaagagaagc aagcagacaaag cttgcaccaaa aaataacaatc caaattagct 38614

attatatgtgat cttgagctatt atgtgacacc aagggctgggct ttggagaacc gtgtgccttt 38674

tggcccaagc ggggggatttg acttgcccc aacagacagc accagcagcact ttaaggagc 38734

aggagagagag cttcattcgt gtccttcagggc cacaattgccc aaggggaaggt atggctgttg 38794

gttctacag gttgtggtgaa aacatccggggc caccctttcag ggagcactgtct ctaagatcgt 38854

ccaaactgttt gtttccttac ttaaacaagc atggggggct ggagagaaaaa tggaaactcag 38914

tgcaccaagc ggggggatttg atgaagagcaa accatttgca aagtcatttg ccataatcag 38974

gttgacacccat gacgcttcc acctgtccctc cttgtccctc tctaggtttaa taccaggggaa gcccattcag 39034

gttgctcctgc tttgttgagc ccacaaaaaccagcagc cccacgcagcc acctccggggg cccactgctgg 39094

caaccccttg cacagacaca aacccacaata caacactggtc ctcocoaaaaa acttaactta 39154

atgccctctc tttgtggtgagc ccacaaaaaccagcagc cccacgcagc cccactgctggtc 39214

agagagagagc aatgagcactgttctcttta aatcagttgagccccaga aacacactgta 39274

agagagagagc aatgagcactgttctcttta aatcagttgagccccaga aacacactgta 39334
agtctcagcc tgacgagcct tctcaagaga ggtgtcggga aacotggggt ctgcccctgga 4085
tttgctctgg ggtgtcgggg gcctccatgg tgttgtcagg gcctccatgat tagtttttgga 40954
getgttgtcg taacttctca gttgggagag ccaacagaca tcttttctgt agttgtgaaat 41014
tgcgcagggc aggggtattt ataccataag agctgagcagg ggtgtgccttc cgaacacctt 41074
cctcctcagg gtgcagggaa acacggaacct gcacaacccct gttgtttcct caacccctccc 41134
tctcagggg gctcgtccccc tggctagtt atactgtaccc tggggtttgc aggccagaacc 41194
atctcgttca lccagaatct cccactgtac ccacacccca aaugtggcct gcggagagag 41254
gcagagtgccatagtcctcagcag gctatggggag gcacgtgaaac acaacttccc acaacacagg 41314
tcagggtcct gcacaggttt ttttittttgt ttttitttttttttctgcggctc acagttgtggc 41374
tctgagcctcg asgtggtgatc gcagtttggct gatcctggct cactgcaace tctgaccttct 41434
ccacaggtcatt ttttttttgc ggtggttgcgg gcttcctcct cccaacaccg tgtgtggcttc acaagttgatc 41494
cacccactgta gtaatcggcttt gtttttggt gttgtgcttg ccagcagggt gttcctcctgg ccaggagag 41554
ttgctcggga gctcctgacct cagttgacce gcccgggggt gctgcgtgatt 41614
tacgaagtggt gcggctgctgcag tggactgagc tggcggggcgagc gaggttggag 41674
agggtagcctg aggtggcgt gggctgctg cttgcaagcg tgtggaagagc aggtttggat 41734
accaggaggg catggcactct ctctgagggg tctgagggct ttcataccag gacgttcttg 41794
accaactctc cccaggccgctg ttggagaaggg ggtgctcagta ggagaagctc ttcctctcctc 41854
tgagctcctct cagttcctgg ggtgcctttgc gtttgtttgc cgtatacgg cgaagctcaggt ggacacagag 41914
agacatgagcc tctgagctgt gatgtcctgt gcagcatgt gttgacctgg cacaaccttct 41974
tgccctctgg gcgtcctgact ttcctctggg aaatactagtt gttctacactgt aggtgtccgt 42034
ggggtcaggg caggagcagtgg caggagcaggg tagtgcagcacc atcccatccaa ggcacactgtg 42094
tgagacgct ctaggtctag cttgagctgc ggtgctgctg gaaaaaggg gttgtctctcct tggagaagaga 42154
aattcagac catggcactct ctctgttggg gatgtgctgt gttgacactgt ggcacactta 42214
ltaggagggt actagtctg gccagctgtg ttcctacta ctagaagactt ggcagacttca 42274
gttgagctg agcctctgtg tgggtgtcct tgggtgtgtg gcacaggttt ggtgcctcctc 42334
ccatggttg gtctaaagac tcccaagtga gacagtgcct tacttgagct ctgggtgc 45394
aatcgagga gcgaagacttg ccagggcagtt cgtcgcagc tgtgtgctggt cggcggatgt gcgcctgtgc 45454
cagcagcacta cctggcctcg tgcagcagc gcctgttgtg tgcctcgact gggcagagtct gcagcagctc 45514
aatgctgctcc caccggcccct caccgcgtctg gcgtctggtgc caccctcactc 45574
tccacccat cgtactcctg gcgtccctgtg cactgagcact tgcctgctttc cagaactagt 45634
cagcagcttg ggaataaagt ggccataattg tacttctctgtg aggttgagct cttggtctgaa 45694
atatagccg cacaattgcct atcggcggtg ataatctcc actgattacta catttcccttg 45754
cacagccagt cggctgcac ccaggtctgg gcgtcttctc tctggcctcg tctgttcctc 45814
tccagggctc gcacacagga ggcagagtcc cttctccatcc cttgtccac cctgggac 45874
gcacacagta gcctgcagga agtgctcttg gcacacagca aggcagcaat ggaagaatcc 45934
ccacacagtc gattttcagc acttctgact ataagggagc tgtactcagc ggcogttcc 45994
gcctgccct cctctctctgc ccacgctctg agcttgctgt gaatggagcg ggattggagcc 46054
agcgtgccgc tgcgtctcag ccaactgagc ctttctcta caccceaggg ccggccagag 46114
gactgagtgt gcctccaggg cagagccgctgc tggagaagga ggcagtttgac ggcgcggcttg 46174
cagtgctccct agaalactgca ggcagcccccctcgactcttg gattagactg gggatcagag 46234
cgctgaggg gcagccgctg tacccaggaa cagcgcagc cctgcggctgc cggcggggcg 46294
tactgtgttt cctgagggctc gactgtgctt cttccagcc caacacatgca cttccagcg 46354
cgtgtgcaag cacacacata cacacacttc acacacacac cacagatgcc acacacttac 46414
acataacaca cacacacacac acacacacac acacacacac ccaagctccc attctgggcc 46474
tctgctgggt tgggcaagaa ttttctgaag cagactctcc tgttctgta gacacccggga 46534
ggattcagaa ggccctggcc ttgcctgtgg tgatggagat ggcagggacc tgcatttttg 46594
lgagtttctgc ccaggtatga agggaaaaatt gcacactgccc aggcagctcg tgcaaaaaggg 46654
cagttgctgt ctagttggtg cttgagcaggtg tctcccttgggat cttggtcttcc 46714
ctgggggaa cacacagcct ctagctggtg ctttcggggt gcattgctgc cttggtctttt 46774
gggggcacg ccacactggc acagactcct gcagctgctgc gatcttcaca tgactcagta 46834
ggaggggttg gcagtgctct gaaaccttcg tttgtactc gcagtgaggg gatttgactc 46894
agagagaactcg tgcaggtgcc caggacaacat agecgaggag gtgcacagcc aagcttctctc 46954
agcaattgagg ccttaaataga tcgtcaactct gcacggtgctc gtaggtgctc tcgtggtgcc tcttggttgc 47014
geacagccttt ggaggaggg cccagcagctg gacagggaat tataggtggag gggagacagg 47074
agcgtgtcctg gcgtggttgc ggacacacaca gggagggccc cctgactcgtc atgtttcagc 47134
attgccacctt cctgctccttc tcctggacac ccctatggaa tgggataggg agtagtgact 47194
cgttcagac tcggcttcgt gcccaggccag agttcagagct ttgtcagctc ttgccccaca cacaetcggc 47254
attcttcatg atggccctaa aagtagagac tcggtggtcg ccctttttca gacagagaaa 47314
gtgaacccctt aagtagggtgc cctgcgtctct gcggccacggc agcgtgggagc tcgggctgctc 47374
gggttgagaa cccagaaactc ctggtggtgtc ggttatggcc tttggtctctc cctacccctc 47434
agaatagac tcggcagagt gaggttgctg gttcttaggc ctaatggagt ctaatggagtc 47494
gggaggggtt attgcccctcc acccctgcat ctcccaacag gtcctcaaccc tgaacccctg 47554
cacacacgcc cccttgggcct ccctcaccttc tggctaaacc cagcagctgtc 47614
tccagagccg caccacagccc gccctttggag gagggctttg ccggctcctc tggactcagc 47674
atgcacactgt ccggcagagg ttcgctcttc cgccctcctc gtctaatccac agggtctccc 47734
agcgtcctca cctccttggg gcaaggtctg gttcagtcag cttggtgctc cccctccagtgc 47794
cccgacatgg ctcagcagtg tccgggcttg tgaatggagag accacaactt cttctctcc 47854
tgcagagggg cccaggtgca ttcgctgta ctaaacacc ccttaaatag ttaaagacac 47914
tctgttttc acctgagaga acegctagtac cagacagagtt gcaggggtt cttcagagc 47974
tcgcacagtgc ggtagctaatc tataatcttg atggaggggtc tgaaggggaca gttcccttgta ggggttcttc 48034
aagactaatgg cttctagagt gcctttaggctc tcgtgacagt gttcagctc cctcctccca 48094
gagctggagc tccaggggct gaggctctctc tttccctgggc agccctcctcct tccaaatcgg 48154
gctttctctg tgagggaagag cctccctgctc ttaagccaca ctcttagcag cttctgtgtc 48214
ggctctgactc ccagccgggg acectggcgag aatgacctgg caggagggc tctctgggcc 48274
caggacagcagattgaggcttc gtaatggcag ctaccttcgg cttcagaggg gaaaacacta 48334
acactaacc taacccaatac cctaaccctta acacattccte aaaaacatttg attctaacc 48394
aaaacacaca agggcaacctt ttctcatagcc ccatatacac gatctggcct gacctgcctt 48454
tctgcctct gctcatacaac ctaccteact gatccttcag ttcctcaaac acaccaagct 48514
ggttcctac ccctagcttct ctcctcaagc cctgcttcctc cccctgagtc ctcctcagct 48574
tataaaaaa agatcccccct aatctctcat ttcacccctt tgcctcttc ccctcaagta 48634
cagtattcga gttattgatt atttttgtgg tctgtttaccc ttttggtgcct tcgctccccc 48694
agttgtatgt aagcatctttta agggcagggt gcatgtgtgt ttttcatttc ccaaaalacte 48754
cctagctggt gcgggtgttg gtagctcaag ccctataatcc cagcaacttgg ggaggctgag 48814
gtggttagcat cacttgagct cgggtgtgct agacacgctt gggcaatttg gtagaaaaccc 48874
gttctctaca aaaaacacaa aataagctag gctgatgttt gttcacctgt agttccacagct 48934
actgagggg ctcagggcgg agaactgctt gatccgagga gggcagagtt gcaagtgcggc 48994
gagattgcac cactgcaactc cagctgagggt gacagataagc gactgtcttt aacaaacaa 49054
acaaaaaact aacaaagtaa aacctcccccc atatatcctag tgggtgacagc agacccatgc 49114
acacagttgg tctgracattaa tatttggtaga aggaagtaaa cagtgctcgg atagttgtat 49174
tgcagccctt cccctgagg gccaccccat cggggagcga gcgtgacacga tggtgatgtc 49234
gtgcctccgg gatgctgatga caaccccttc tcaacggggt gcacccctta tccgcttctt 49294
gcatgttaga tatattggcct gctgctggga ctttgccaggt gctctgctaa ggtattttgt 49354
tgctacta aaactcaaat caggaagaca tgcaatatac tggagtccaat ctagttttact 49414
gttatgggt gaattgtgtgc tgccctcaaa ctcacagtgt gaaaactctaa cccccagcac 49474
cctcaaatcgt gcgtggttt ttagacaggg ttctcagaca ggtaccaag gtttaaactgg 49534
atcattaagg tcggccctga tccaatagc ctaggtcctt atavaagaag tagatttagga 49594
cagagacaca caacagagga caactgtgtg aagacacagg gagaagacag ccatctgcga 49654
gcaggagag agggctcagc agaaccaact cttgctgacac cttcactttt gacactccagc 49714
tccagaactcg taggataggt gttatttattt ttgtagtttc cccacagtgg cgcacttttg 49774
tgtggctgca ctcgtaatgc ttagacggct caaatttaat ttctcaagct ctccctagca 49834
gcaagtatt ttcccccatat aaaaaatga ggacgcctgag gccagagag agtgaactgt 4989
ttgcggagc cacaggcgtt ccggcgcccc gttggaactg atagttgaac ccgtggtcac 4995
ntagttgcc caagatattgg ctcgagccac gcggctgcc gttgttcac gcgaagggcg 50014
gtaagccca gaggcaactgt ttcctctttt aatgttccgt tcatttgcctt ttagagatc 50074
aatatttatt ggacgcctca caacctcccc aactttggtt ctcactcccc cccttttggg 50134
tagctctcttt gagaactggtt gaggattgtt gagaagacca ggtaattgca tctagactc 50194
tagtaaaaa aaaaaaaaat gtcgaaacat gttgcacgctg gttgcagctgt ctctagagc 50254
tattttggtt tttgcaacag ggagtagctc tttgtgaaac atttgggtt tttttttctt 50314
agttgcaatc acttacatttc gcttcgaccc atggcaagca tttggttatc gcggaggcga 50374
ataggtacac aacccatatta tttgaagatg gcagacctgg ctctgctca aagccctttt 50434
tacatctgt tttcatctgt tacaacagg gtaactgagt aaggggtgagc cagagactgt 50494
gacttttttt caagttcctag aagatgtcag tcccccaaggg aggtgcgctct cccaagttgca 50554
gttgcagagctt cccttccctcg gcgcctctat gcacagtgcg ccctctctgt cattctcagc 50614
ccccctgcgttt ctgagttgac ccgctgcttt caacggtccg ccgttcaggg 50674
atatccagca gctcttgcttt cttcattttc aagggcgccca tttggctgctg cggcagagttg 50734
ccggtgcaaa aggcggatgc acactgtata tagagcgcca ctctcgggta ttttttttttt 50794
atttatcata cacttaggtg tccaattgggg ggtctggagaat ttgcaacactg aggacacacg 50854
cctcaactct ttgaggcccc cagatcaggc aagatgggaa aaccacagtttt ttttaatttg 50914
cagcctggaa atccaccaata tagagagcaaa aggttttcttt ttggcaggcc agggcagctg 50974
cgaccgcctc cggcttcag gggccagcag cggccgcacag gattgacatc acagccccctg 51034
ccctttttta gcaattggttct gttggtccag gttggaacat tctagttggc cccactcgct 51094
agtgcctcaac cagaaaagg cggctggtagatat ggtgcaccta ggtgcataac ctttcttggg 51154
ctggggggaa acagagagagc agggcagcccc cctccacgctgc tgcctagagcc ccaataagga 51214
agaggggggca acacaaaaac cccttcctgc caagagcccc cttctaggc cctctagggag 51274
acaccagctg ccaagctcttt ggtcctgctgc cttctagagc ctgctcctgtt gttggcgtag 51334
ggggagttcetrainatctea aatctagaca gaaatctgctt ggcctgtgtgctc 54394
ccttttcctg ggcctgctt cctctgctgt ttcctgctgt gctctctggg tgtctgctaat 54454
gagctgtgaa cggagggcctt cctctgagtg accatggcccc ccagccagcag gaagttcccc 54514
tctggctgcc tccccctgc ggtggagaag gccctgctgc ccctcactgga ggcaccccttg 54574
actcactgtg gcaagaggtgt gggctagggact gggggtttcccc cggggggggcccc gaaagccccc 54634
gcgagacagacc agatcttact aagagccctgg gcagcaagccag ggggccctgtc gcatgggtgctt 54694
gggtgtgctct cagttgtttag ggaggagggctt gggctgccac ccagggggggca aactggaggt 54814
cagagagag gaggccagact ccuccagaaag ggtgatctct tgcatggagact ccattggagaa gcgcccmag 54874
ggccaaggggt cggctggcag gggcagggga aaggggggtaatt ggtcatgtgc ctattgcaag 54934
taaccctccgtg gttgggtcctt gtaaaactcc cgttggatgg gccctgctgtat gctctacaact 54994
attttcclaag aacacgctatt accacgctga ccctcccttt ttctcttact ccctcttct 55054
cgtgccccct cggagaaaaa gggggccaat gcacctttgct ccccccaag cggctgggacc 55114
cgttgagcat aagcccaagaag gggggccaag gagaacacag gaaacccctt gcccacgccc 55174
agctggctgtc agtccaggacc tggccttggc cctcaggcctt ccccaagtcg 55234
ggggggggagggagggagggagggag gaggagagagt ggaggagaga gacagagagttg cagagagaggcc 55294
tggcctgcttt ccuccagggag cggagccaga cggagccgag gcgggctggg actctttccct aatctcctt 55354
cccaacttcag cagcttcagtc aaggttcccc cggagccgag aagggagaga ggggaggaggc 55414
tccctctgg gggacacacaca gagagccgag cgggtgtgaa caggatgttcctt cccccctctt 55474
ccagccccctg cagatgctcc cagccctctc ccagggttcc cgaaggagaa gcattggcag 55534
tcaagacccaa ctgctgctgc tgttccctgg ccgggaggggtcttctgctgc 55594
ttcgctggct ccagcggactt ggggtggctgg cgcagagaggt gggggaggg ggcagagaggac 55654
aagagccagact tggcctgtgc ttggctggctt cgggctgcagc ctggcctgctt tcctgctgc 55714
ggtgctgcttt cttggagaaa gctgctgctgg aggtgtggtgg cggaggaagct ggagacacct 55774
gggagcagtt cggcagctgt ggcagcaggtc agggagtggaga ggggtgggaga ggggcatacctg 55834
caggtgtgcc ttagggactg cctctgagta ttctcaacgg atagttggaa gaggtttgga 55894
gtcagacctg ggttgcatcct gtgtccctta ctctgtgtag cagttgtaact ttagtgacce 55954
ttttgaaccc ctagttctctctctgtaaa atggagaaaa cccacacatcs tgggggengt 56014
tggtgtgacce taagggaaccc acceccagacg tgggcaacag ggtagccgat ttcataccc 56074
ttggattgga aggtgttatt ccttggtagg cttggtgaggca ggggtgtagg aggggtaggt 56134
ttggggggaa aatattgaaa cttgtctctta gacatgtttgt gtttaaatgg ctcacgaaa 56194
actccatattg aagagccacg ggtgtcacga gggactgta ggaactgggg ataaaaaattt 56254
ggtccgaggg tgcctggctac gatagctgtg gataaagggag tgggggtgct ctgttggggt 56314
cagctgagca gattggagcc agitgagaga aaccttggag aggaaggttt agaagagaaga 56374
tgccttacc atcagacgct cttaatatgc tgtgtaaagt ggtacgagc gcccccattg 56434
aggaagagatg tgaagctcag tggagaggact acctgagagt ctctgtgaggt gccattcag 56494
cacccaagacg ggttagacagt gatgaccttc agttccctcc ctgggtgaggc acagctctct 56554
aagccgccct acgtctgccgc gttctgtcag gattcaaggt tgaatgtcag aagtctgctg 56614
gaatgtgtc gatgagggca cgggtgacttg gccaagctct tcgttggtggc tggcttggtta 56674
tctgggaaga gcattggtggt aggccccccc tctagttgac cgctccccc tccacgcctg 56734
ggtccttctc ggccctgcct ttagggggtt ctgagaaaa agctgtttgg gggggctgggg 56794
caacct gggtgggccc aaggggctcg tcgaagttgc ccagacacacg tggagcccca 56854
gggctgggaaa gctttttttttttt gttgatttaa aaaaacagaga cctagtaggac aageataaat 56914
ttgcctttga aataagagcc gtgaagtctc ccaaatgaa aatggattgaa atggccccctc 56974
gttgaccttg ggggtgccct ttaggtgatttt ttcagggggc ttcagacgcc cggccccct 57034
gtaacagttg cagctctggcc cttggccact ttgactcctt tgcggggcctcc cccatatcca 57094
cctccagag agaagccccc gccgaagcctt ccagcatcgcg gaacagggccc atgcaactctg 57154
agccagcccc tccgtggggc gaecgggcccc ttggttcact gtctggccat tccatggccc 57214
tgggctccca cgatcccgca cctgcttcct acacacatcc ttcagattgt tggagagaga 57274
tgggctctcg tggacacctgg tgtctctgag tcaactggg ggtgaccctg agtcacacaga 57334
gaaagggggg cagggctgttc aggaanacta agcacacttg gtaggcacatc acagggcggct 57
agggatggaa ggtttttcat cccggtctttc acagtgagccc ccctagagc tc agaggggat 57454
ggcaattgcg ctagggttcg acagcggagga aggattcgag gcgggtgtgct tcccaattggg 57514
ccttoacc accctgttcct ccttoacatat cgccagggc ctctggtgata cattaggage 57574
cccaacagag ttcccctccc tcttccttg ctcgtctgag cctctgtttc cccatccata 57634
taccaggaga aaccccctgcg ccaccctctta ggtcttttgc acatgggtaa atagagatcga 57694
gatactggct gtctgtgcta acgtgaaagt gtctgctgta gttaccagtt gtgttggtgg 57754
cctgtagcct tcctggagge ttaaaagagac tgcctgtttgc ctgatgcctcc tcccgccace 57814
cctctgttt ctctgtgact tcctctgcce cagcagatgaa cccctggagcc acctgcaggat 57874
gggaaagcctc ttgtgtgtgt tccacacagga tgccecccggt gcacatgtac agagatgtaa 57934
cggcctgttc cagggctggtt ggaacagtggc cttttagtac atgttaggag taatgcagg 57994
tgtgcggagca taattccact gcctgtcctgg cctctgtgata acctaccaggtc taagcagcggg 58054
tctagctcga ggcagggagga gggaaaaggg atactagggc gttttttggt tttttcaattg 58114
tttatattacc ttgtaacaca cacacacaca cacacacaca cacacacaca cacacacaca 58174
ggcacagctt atgattttgt ccattgcata attctctaga ttgggagccg actacacgagg 58234
tttgacctta tgactgagcga catggcagta gcacactgca gaggccagag ggacagcgct 58294
cattctagt gattttactt aagacagctga tgggaagag agacaacgggt gacagggcggc 58354
tgcggcgcatt catgagaggtt gggagggcct cccatgttgga gctggccgcca cctgaggtggg 58414
aggcgcggca caggtacctgc ctaggctggg cctttggcca gtctccacctt ctcaagactt 58474
cagtgacccc acgctgccac ccaccagattg tggggtcttc caagaaatgaa aataggggttc 58534
atcctggcg ccacgagggat atgggagctt tctcccctact atgaatggaa caggtgagttg 58594
tgctgtgctg caagttgaggg ggcagcagtg ctttctcaca gcagggctgg gtttggtctt 58654
gataacgcga ccagaccaata ccaccacacac ccgaggttgc tcctggtag gcacacacac agcagcgcg 58714
cgcagagttt aattaccgcg ctaggtgattc gtaggtgcttc tcctcagta tcctccatgaa 58774
gtagtaat ggcagcagtt ctcaccaacct ggaggtctgca ccgagctagc ctgggcctttc 58834
taaccaagga atatgagcagg ggcacattga tattgggttg ttagaaaaat cagggtgcag 603
gcgggggcncc gccggcctcg ctataaatcc cagcaacttg ggaggccgag gtggggcggt 60454
caggaggica ggagattgag accatactgg ctaacacagt gaaaccccggt cttaactaaa 60514
aatacaaaaa attacccagg tattgggccc ggcggcctgt aacctccgta tccccagtc ctcaggagcc 60574
tgagcagagga gaattggtgg acggccagg gcggagcttg cacaggtgtg agattgagcc 60634
actgcactcc aactgccccgc atagagcaag acctctctct aaaaaaaaaa aaaaaaagaaa 60694
tgaaaaagctc ggtgaggtga cagacacaa ttagagacct cagagcacac ccacaaaggt 60754
atgggcagta tagggagaaa tggagattag acggacagg ggcttcctag gggcagatga 60814
tggaggaggac cactcccctc tctggtctcc tctggtctcc cagctctggtc tgggacggtc 60874
acgcctacag ctcagcatt ctcacagcag ctcgtgagct gcgcagcagg tcctctctgt 60934
ggggtgaaag ggtgcaatgg tgaggaggag gattgacagg gctttgagttc tggccccaccc 60994
actctctgctg tttgtgactg tgggcaagtt actactacctct ctcgcctcct cattttttca 61054
tcattaaat ggaggattagc gcgcagcctc cggcagactc gaacctatc caacncctgtt 61114
gggggctgtga ggtgggtaga tccactggagc tggaggttgctc aagacccgac tgggcaacat 61174
gggttaaatc catcactataa aaaaatataac ccataagccaa ggtgggattc ctcgcctctg 61234
tgctgcagtca cgggaggagtca ggacatctga tggcagatgc tgggagggaatt gggggattaa 61294
gctggcagtca gcagagatgc acacagccac ctccactctg ggtgacagag tgggactctt 61354
tctaatata ataatatatc ataatataat atatatatat atatatatat atatatatat 61414
gtccttcactc tattggcttg gggagccttg tgggagcatc ctagttccat ctagttccat gaaggaaa 61474
ggcgcctgac acgttttctga gaaagcaggg ctcgccccgg ctcactgggg tgggtatgtgg 61534
caggagtgg gctttcctt ctcctctctct gagttacgagc aggtgtatgc agttgcctca 61594
cgtggacagca cccgcctcag ccacactgtca cggcacagag ctgaggccac cagacacattt 61654
tggctggact cttcctgagg acacctcagc actctgggctc ggcctctctg ccacctccac 61714
ttggatttgat attttacatt ccaacctaat ccaaagctgaat ctcagagaccc ctccagtctg 61774
ggggtctgcat ggggctcttg ctggcactt tgggagcttg ctcgtacttg aatgcaccaagt 61834
aatctctgta atcctaaaaa aaaaaaaa aaagccecag gatctcggag aggccctcctg 63394
agacagtagc acccctgacc agctgcagcc cccctgccac tcccagaggct ccacttcctc 63454
tacccacgct ctcgctatcc tcgcccttg gagttttca ggtgcccccg cagatacaact 63514
gtggcacaag tggcaggggaa ctggattaa attcagattcc ccaggcoccg cccccagttg 63574
caggcagcga ggccaaagaga atcacaatac taactcagcc cactgttaatt gcctgcactc 63634
tgaggctgta aatacctcgc ccgctccttgga ttacctgtgc tccaggttgcg cctcagttta 63694
caccatccta cctcccccatt gaacacctac tcgccagcgt ggcaggcagtt cccacccact 63754
cggggagaga aagatgattg gctcgttct ctcggagcgc tgggttattg cggcctcctag 63814
gaggggttgg cgacccctttg atccacaactc tggaggccag cacggggaga tggcgcataca 63874
gtgaagacac gtaaggcggg gtagaggggag gcaagcggag aggaggagga gaaaccagtt 63934
cctctgccag taaacgctca ctcacctttt gggccctttg gggggctttgg gcacattttc 63994
gggggccttg gcctcgattt ccaacccttta atcttatttt atatatgsc 64054
gagccacatat aactaatattt ttaaatttcc aaaatatttct acgctcctct aatgtagtg 64114
tgaagcctgac atatcagcc gaagacctgac gttgtttttt ataacctctgt ataagccctggt 64174
tatgcactga aaaaagaaaca ggtggagttta attgtatattt ttgtatatc ccaaatagttta 64234
taaactgtatt ctaatcccc tgaattattgc cagttcagact acgccacatttt 64294
taaaaatct ggtgtgtgtt ttaaggccact cagttcagact acgcctcact 64354
caggctttca ttaaggccact acggtctgtgt gccctgtcag tgagaacctg acgaactataa 64414
gatggcctta gttttaggatt atgtatatttt gattttacttt taaaccactttt 64474
tgaataattt aagaaccttc cagttcacttt gcctaaaggt atttgacttc taagttttgg 64534
gttttgcc gcggctcagt gcctttaccc tgaactccca gcttttggga ggcccaggtttga 64594
tgcgactac gtaagcttgag ggtttaaggag cagccctcgc cacaatgggtta aaaacccegtc 64654
tctacctaa atacaaaaa aataatgtcc ccggttcggtt cggggcctgacct cttgtgcca 64714
gctactttgg gcggctgaagc tggagaacctt cttgaaccaca gcagggagg agttgctg 64774
tgcagctcgt gcaccggccgc ctcgcccttg gcagagagag tggagactcat cgggaacaca 64834
aacaacaaca aaaaaccagt tagggtttag caataaatgc tccataaaatc tgcctggagtt 64894
ttgaggatt agtctcattc tctgctactg tgcctgttt ctgctggtgc attgctgact 64954
tcccccaacct gctctcactct tgtaggcaacactg gctcaccatct catcctgtat 65014
taaggagcttt gttctcttgta gttgcctgca taacatatatta tcaacgtttt gttgttttaa 65074
acagcagaaa ctatcactct tcctctctcta cagtcceagaa tgcceaaatt caggttgtcc 65134
tagggcctcgt tcccctctctgt aacgctcgtg ggtaaggacttc tccctactc tgcgctccca 65194
gccctctctg gtttattgcc cacattactc taaggctgtgc ttcgggtttaa acatcacctc 65254
tctctctcctc cccatctctct tctctctactg tgtctctctta taagagccactg tgcacactgca 65314
tttaggggctt acctcaagaaaa ttcacgagca tcctctcaactg caacatactt taattatgc 65374
tccaaagace ctttttceca ataaggtcactc tccacaaactg tcagaggatt agaggttgtga 65434
catacctttt gttttttatt tttttttat taattatttt attttttttg cagacagagt 65494
ttttctctct ttcctctgttt gggagtgcagtt gtttgctctct cggctcactc ggcctccgc 65554
tccctctctctc caggattcctctc tctgctcctc cgcctccgag tgcgttgagat tacaaggtgcc 65614
tgccccacta cccagctatttt ttttttttgg cttttttttt gtagacagaca ggggtttcatg 65674
ccaacagatt ttagataaaaa tgtgccccag gctggtcteg ctcagctggg ccctagcagat 65734
catcctcgcag tgcctgccaa aagtctctcgg ccctacaggcc ccctccccgac 65794
gagttgctac atatctttttgt ggccgacca cttcaacceat tgcagttgg gagtctggttt 65854
ttgacaggga gaacagagca aagaacacaact tcaacacttt tttttctaa gctttgaat 65914
tctaaaaatg atagactagggtt aagaaagacc aactctccaca tggaggtgcgt tgcctccacac 65974
tggcggtgatt ttagctacccct tgtcgtggatt ttagctcctc tggaggggaa gctcaatttga 66034
agaacagaca ctacagacac attcaggaag gccaaccccaag aacacaagc aaggcaagaa 66094
tgctcataat gttcctaaaaa tataattgttt agtctctgtga aagttctggc aattattgtaa 66154
ggtctcaacac gacacttcaat ttatcctca gttttatgtgttgtaaattgtttt atctctgttg 66214
gtagattttt atagctgtatg cctataaccttggttatttatt ttggggtcata 66274
gaagggggaaaaagagacccccgctctgccccagaaaaacccacaa aagatcagcc gcaaatgccc 66334
gttcctagc ctgcggcag ataggttage agtatctgca aagtagctgcc tcttggcga 67894
tggaaagaac aagtcaacag gcggcctctg tggccctgce ccttgctgtg taaagggacc 67954
ttcgacatca gggacatcga ggcaacctca gcccggcttt ggggaacttg tgtaagggag 68014
gggggcacct caagggacct ccctcggtccc aagggaggcc cccaagacct gttgcagttcg 68074
cagcacaacc acgcctcatg ttaaggttgg cagctccacat gactccctcc cctggggcatg 68134
caactctctt ggggaaacaa aatgcgttage acctcagcagt ggaagggta cagtcagggga 68194
cctcacaagc aggctcatgc acagacaagg tccaacagct agctggttgc agctggggaga 68254
gagaggcag tccctgact ccacccaccct tgccttttc tccactgaca gttgagggtc 68314
aaatggcaca gttatcctct gtagggcagg aaggagtttg tgtactttttttttttttttt 68374
ctggtgacgc gaagtctcat ctgctaacaac ggcctggagtc cagggggcga atctctgca 68434
actgcaacct cgctccacca gggtaaeaggt cttctctgcc acctgctgcc tgaagttgcg 68494
ggtaacctc caccacaacc caacagcaccg taacttttttg aatttaggta gaggaggggct 68554
ctcagactgt tggcagggct ggtcttgaac ttcgctacce aaatgattccce cctgctctgt 68614
cctccagcttg tgammaatta atcctccaca aactaatct acgtcagttg gaaaggttccc 68674
aagcttttta aagacagctct ctggcaggct gtctccaggg gagggcaggag aaggettttg 68734
gagcctcgg tggggttggc gacaactcgc aacccgctgc gcaagagcctc aceccgctgt 68794
aacaacagct gggtggaag tgcggattct aggcttttttttcttttttctt aatcaaataa 68854
aacaacagct gggggagggac ccagagggga agaggccagg gagaatgtc tttgccaa 68914
cagttttata aaggggctccg ctgtggctccc agcattttg tttcttgaggc tccgacctct 68974
zagagaatac aatcccgata ctggacccag taagaatgtc gttgggctct ggccttttttt 69034
aatattttgc atatcagcaga cagccgacgc aggggagctga atcccacccc cagcggttgg 69094
gggccacct ctggctgcat tgtcatatt gagaatcctcg tacgtgttag tgggttttaat 69154
tagccccaga tggccttttc gggctggagt ggaaatgtct ggcctctctgg cgcctggctc 69214
tactagtagtt ccgggtttagg tgtggtgtag cgggagaaga tgcagagcct aagactccct 69274
cgtctcgatt ggcttttcttt ggagagccct catagttttcc cagagggccgg gcaggtggg 69334
ctctctctcg ccgttggatt cctgctctec ttcctctctgc caccactcct caagggcagc 69394
gtctctccgc tgggctgagt cagcgcctcc tcacgctaat gctcctccact gacagtctgt t 69454
cctctcttc tgcctctcga ggttatgcag tgcctctcc ttcaggaagcat ctcctctgtal 69514
ccccgctgt gcggcctcaga atccctatgt ctcctctcat cgacgcctcg ggcgtcctat 69574
gtgggtcgctg ttacatcota tgaactgccc atggagactgg gagccccttag gggcagagac 69634
cesctctctg tccacactc ecctgcgctc ggcggctec ccattggacatgt tctacggaac 69694
tgaggcggctt gagggctggga ggaaggaagg aaggaagaag gaaaggaagg aaggaagaag 69754
aaaaaggaga agagagaaga gaagaggggt gggcagtag ctacgtggcc aggattgaggc 69814
tgagaacagt gggagacact aaecggagcg tggcgggcc aagacaccc cttgagcgtc 69874
attaacttt cccctcagcc tagaagaagct ctggtctgat tgggaaaat ggggcccccg 69934
gtataagag gcgcagccaa aatggaaggt ggcagggcct ggaaagtcga tgggtggtgg 69994
tgcgcacgct ttcgctgtgc cttgtgggcc acactacgtgc ctcgctgacc cctgtagcgg 70054
cacctgccg ttcgaacactt gaaagatcaga atggctccag tggattcag gcagtaaaca 70114
gcagacgcgc agtctctctc caaacaagt tttcatctata atctacggaag cccagaagg 70174
tagttgatcc ttacacactt ataaacctca atgacgcagat gaggatgcca aagcaacagag 70234
aggtgagcta actggoceca aagteacacag tgcgttgagt cagagagccag gatttgccg 70294
tggtgtcttg gctgctgat tgcgtgatatt gactccacte tgggtggtga ggtataagag 70354
catcagtaac agtgcgcggtc atggcgcggt agcttctgatg gcagataccccc cctctctc 70414
accagattct gccctttttag gcacagagac ataaatagcct ctgttctcctg atgtgtaactg 70474
tgactctctct gccgtagctgt tgcgtctgag ccgcagctct gcacacactc 70534
attgtgttgt tcctgagagac actgctggcgag atggatcagc tcagagcggcc gcacacactc 70594
atgagatcag cacagagagg gcagagctca aagggctatc tcaagcgcgggc atgctcagga 70654
gggtctgtgt ctttgtgcagt gccgctcgg gccgtgccttt ttcagcctttg gccgtgcct 70714
tgccttgt ctgcctggag ctagatagct gatctttggt cattttggaat cttctgctca 70774
tgcagactgt tagatctcag gattttggga gcggctccga tgctgcataac aacattttgt 70834
gcaagcattgt acagtcatat tgaaataaaa tttgagaagtc aacggagcag tccaagagc 7089
gtcctgaca aacacgggaa acagtcatat taggtattgg ccaagccttc tattttcggg 70954
tgctttgggc gaaactgtcc cttaccatt aaccataatcc cagagatgga gggaagactc 71014
tcacccctgg ttaggttttc tcaagggggc aggcaagctg ataaacggga tattacaat 71074
ttccaaagat attaatgatt aaaaaatgga atacaatattt agacttatttt ctatgttcat 71134
attttatatg ccaagaagtc tttcataaat gtoctcatata atatatattt tgtgccttagg 71194
taaatgtcag tttccatagt cctgcacagc cacactgtct gggaacgtct 71254
catacttggga cacactgtctt atatgaaattt ctttgcctct acaccctttc agtcttctc 71314
actecagct cactttcgct ctcggcattcc ttggactgca tgacgagaag cggacactta 71374
cagagaggttt tggagacca cccagaacggc tccagtcact ttctggagatg 71434
ttgcatctca gggccgccct ttcgacaccc tttgacgctct aggcaacat 71494
tgtgataagt gcatagcctt acacagctggg agagctttgg attgggccagg agctcacaac 71554
actaaaggaat tgtcttacca ctaataagac gccttagttcc tagtgcaat agataactctta 71614
gttcttacag ctaaagagtc cttcttagata ctaaacaacc aaataccca aatgtaacttt 71674
agggcaatgg tgtgcccaact ttggctttct aggcacccct ttactacctct taaaattat 71734
ttgagctcc aagaggttt tgtgatgttg gctatatcct ttcattattg gcacaacgt 71794
aaattaaaac tccagacagtta aaaaagatatt atatgaaattt attgaaaaat aaaaaatgta 71854
aacccctac actgtaacgt aatataaat tttttgga aataactgctttggtttta 71914
aaaaagtggga agagtggcctg gtgtatcaat cttttaatc tctatgtaaa tagatgtggt 71974
ttgatattc atcaacgctc tctcctacag tcgtgtgttct tcaatttatttt attggaggtt 72034
tgtcgaaca ctaatccctca aacagata tgtagtgaaa agggagaacc ccaaaacctcc 72094
tggaaaagttc cttgggctcc cttggagttat cttgacacca acgtcctgagc atgtgagtt 72154
aggtgatggg tgaacatacag ataggaacat ctttcaacc cccaaacgt 72214
tccaaagat cccatggagc gatcaagacga aagagagaaa acaatctgca accaggagc 72274
gacagacag gaacacacag cattagccttc tgtgacctag cccacctaca aagacccccca 72334
tcttggcct aactgcccc ccggtgtgca atcagccaca gacctttacctt gtcagctgg 72394
acttgaacct tctgattgta gctgtctgct gctgcactcact gatgccagg ctcgtaatt 72454
acccattagc tcacattgac ccctatggc cccctctacac ggttcctact ctgctttctc 72514
cagcactusg gaaagattct ttttattgag gatgggcagc cttggtgccc ctgctttcct 72574
tctagctgct actctaggct gcacgctgct gcataggctt cctgtctggc cctggaagct 72634
gtgcacact gggagactgta ggtgaattt aatttacacta gcatgcaatt aatgattaattc 72694
acctgtgccc tcgacagctc cattctctag gcacaaggcta gcggctgtaa gaccacattt 72754
gacaaaattat cttgctgtaga cttgctgatt gatcaagtag cttaagttct gaaaaatgca 72814
cacaaatcact tttctctttt cttactgca ctttcaaggct ttttaaagctttctcatata 72934
cacacatcctaa ctatgtgctg actctctctt ctgctggtttt gcacaacagc gaccaaaactcctttcg cattgctagcaccttta graaactgatc tattcarattttcataagttg cattcacttc tatggactag 73054
gtcgtctgct ctctgctttt gcacactcttc ttttctctct gctactacgatctgactgctgagctgcaatctgtttcttctt cttctctctcctact gatggcactgatagttattttg ttttcttattttgtaaagttttgacctgcattaagacagtttattccttccttcttactgttttttgctacttttttttttttctgactaatcactctcttcttgactagttt
attatgagc gtaggaggt ctcttactaat cccgcagcaca agagtattac tagatacagt 73894
tactacgaat attttctctc atccgccgtcc ttgccaatttt tgttctaatac cagttcttt 73954
cacatagca aagggtagg tttgataaag ttcaggttg ccaattttg ttttttttca 74014
tgttctttgt tgtgtgagaa atgaaagttg caagagttt ctcttataaat gtctcttnga 74074
aggtctaggg ttatggctt taggtttagg tagatgatgc attcaagt taggtgtgca 74134
gatggtgttaa gagggtatat ctagttgcct cccagctaatat tattggaaag acgtgctttt 74194
cctggtgtaa tcacatcgag tgcctttgatg acaatcttag ttacaccaag actggtgtggt 74254
cattgtcttg aggctttgatt ttagttgtatt gttccacatg tttgtccttt tagcaggacc 74314
aactgcagc tatacctgta tttttatact agctgcggta aatccctccaa ctggcttctt 74374
tatatcttt attatttgcag aagtcatttta ggctattctg ggtgtttgtc taacaggaac 74434
atatfttctg attttaaacg cttaggcctc tgtgaagcag gtgtgaatat taagccctatt 74494
atatgcttaa gagaactgag gttcggagag gatgagtaacc ttcccaagggt aactggaggg 74554
ggaagtgaccc tggcccccgg attggtctgggc agctgcacct cccgcagcctt cctaggeagg 74614
cgggactgcct cgtctgttgg gttccacatc aacccctatag ccaagaacctt 74674
gtgaggttct atggacatca tcgcaagaggg cctgtcgtatat ggccttttttt caactctctt 74734
ttttttcctt gcaagcagggcc aactgctgaag ggccctctttt accaagggtt 74794
tgcacccggt gggagagccc cccgcegagc agggagacgt cccgcttttaatttttttcca 74854
ggcacaacata cctcttttat ccagggagcc cccgaggtgg aaggctttcccc ctgggcttggg 74914
gagtattttgg tgtggttggag aagaagcagca gcgcggccgg ggggctgtgg tgtctatgga 74974
ggccgcttcc ttcgctgttgc tggattgacct ggggttagcat gggttagggcc ttggttgcag 75034
aggggtgctttt cggcggcagcgc aagctgtcggc ggtaagggt.gc caggggtcttc ttaacaggggt 75094
ggcctgtggc tgtataggag gtagcaagct tgtagggattt aactgctggat tgaagaggtc 75154
cggcaggggt gcaactgggt gcgcagcgcc gggcagactg agcagacgct gcgtggtgactc 75214
aggtggcaggg agttaaatgtag ctaatatat ggaattttttt gaggcagttgc tttactgtgtg 75274
aggtggcaggg gatcagagcct gcggttgagt aggggctgact caggggtcgag gatcagatag 75334
ttacatttt tgaagaatgttt tgaaggcgatt gttaaactgt gggttagaagt gaaatcagcc 75394
cctgccagt gacagatgcac agacagcttg caaagcacaag ccctgtgcca 75454
cccccctcga ccccccacc ggagaccttag ttgtaacttg cactggcacaacc ctcttgtgctc 75514
tgctctctgg gacgctcgct tctttacttg gaagggaggg gaataatgccc cacaccttaa 75574
ggactcatac acacccctaa atagatgacat gggtgagaa tgcgtttgaa tagttttagag 75634
tgtgatacgc gagaatgaagg ggtgtctcacc accctagcaca ttgcatttgt ctctctctag 75694
gcagacgctg gaaatgtgag ccagcagcaggg aggtgagtttc tcaagaaataactcaggaga 75754
aggagccgga taaccccatgg gcacacagctg ggttagggag ggttcacagc ctgcctattct 75814
cgctcagcacc tcgtagaatgt gcctctgttt gctctacatt tataatggttg cactgtactc 75874
agctgagaggg agtttagttgc gttttgggct acagccacaca aggtacaggg catgccctga 75934
cgctacgctcc gtcacctctca ttgcctaggt gcgtgctgtgc ecaacagtgg agagaccagg 75994
ggtggccttg atctgcacct catggcctaca agagacacagg cctgagagtc caccaggcac 76054
aggagaagcg cctgcctctg ggtgtgactc aagttaacacc ctggggagtgt gtgtctcccc 76114
catgtggaag cttggacagac gcacgcacac tgccagggct gcggcgaggg ttcgcacaca 76174
cgctgtgtaa tgtgctcttg ttagttcccc ggtgaccacag gtcacagtgg ggttggcgccc 76234
gtttaaccag gcacagcaca cttcacaacgc cactcttatttt gttgtgcctg gtgttccag 76294
cagaacacatt gttgcctgcag gcggcccata caggccataag cctgaggcag agggagccag 76354
gggggacagt ggactcacaac cagcttaggg gagaagctgct cagcttaggg gctacaggac 76414
tgctccttg gcaagacaag accagctccg agtcacctgca cagctcatcc aggaggctct 76474
gcccatctca caggggaggag aagcacagtct cgggagcgct gacgtgcacag agtcaccgggg 76534
cagcgcaca gcagacagctg accactctgt atgactgccc ggtttcgcgc ccggcctacac 76594
cacacacagct ctcacaccaaa cagacagctgg acctgtcagtt cagcccccgc tggagggggt 76654
cccgctctgtg cccacacacct acceccacacc ttcacaggg gggactgtca ccctctagca 76714
gactgctctc cagacacgca gacacagggg cttccacaaa gggagggagg aagagaggct 76774
gaaacccagc ttcacctggga cacagcgaggg tctttgctgc aatacccaacc ctcattttggc 76834
agactggtct gggagggct ggacatgcccc gggggtccg ttctgaaatt ccccctgcct 7689
ggcataaagct ctggcaattta ttagaactctc agtttaactct ttctcagataa ataaatggcc 76954
tcttttggg gaatgagagaa ttgcccagcgt ggcacagggg aagggggcagt gttggaggtg 77014
gagacggaga ggtgtagcaca ggagagataag gcccttacctt aagggggcagt gggagccac 77074
aggaagttctt aggaggggcc atgggatgag gttctcatttt tagaaaaagt ctctgctgtg 77134
tctgggtgat ggggtaaaga tgaagagagag aatccagag aggaggggcc ttagggctgcg 77194
cgggtgagag gttgacatggt cccggcagcc ggccacaggcg gggagacagcag aagaggggcc 77254
tggctggctc gcacaacttg gacccagcaac cccgctcagc gattatgagc cagagacaaac 77314
gcagcttaga ggcctagaccc cggccctgag cagatagccc tgggaaggg gccgtagggac 77374
acgctgatgt gtagggactc tagaggggttt cttgctaaca ggcacgtttg gccccatcctg 77434
ccgctgcctgc gcgtggtggtc taaaagggctg gcctgaaccc cagcagagag gacagggacct 77494
gtgggacccc agggtgtggg agcagagaag cccagccagg gcacgccggg ccgcctgcagcgc 77554
cagtgagag gtcagcatca gttgacggcc tctctggccccc cctcgctggg atggggacagc 77614
cacatacag tttgctagcgc cctgggctcgc ggtgactctt tatgccccatt tgcataaggg 77674
gaaactgag acttagagtc tctctgactc acataaagag gacaggagag acgtaaacaag 77734
ggccccccag ctgcaatattta ccacatctca aacccttttc ctctctctgt cctgattsaa 77794
tctttgtctc aatgctccaca tagttccttg attttgtgg ggtacataagt acgaataatt 77854
atagcaacaaa tttctagcag ttttctggtg cccagacact cttgctttgt gttcagtgg 77914
ataccctaac atcaacgttg aatagaacac ccatatgagc gattagggaaa ctaggggtca 77974
gagacttttt ataactactc gagaattcag cagccccact gagggtgcttt accagctgcc 78034
cctttaccag tggttctcag accatggccac acacacaggaa aacgctgtcag aatgcatgaatt 78094
cctggccca ccaatctttgg tcctgtctcgt cgggccagag cctggcgccag ctctgtcctt 78154
agagagacag cccaggggac tgggggtggg gctttccgga gctgtggttgt cacagaggaac 78214
ggcagggacg atttggtcttg cctcgggtct cctctacag taccctgtcag cagggccaccg 78274
tgctggactt cagctggtgtg ttttgcccag aaggtcctag gcctgtcag gggggttttg 78334
tcgtgcgca gcccggcttg ggtcattcct ggctctgaga acagtcgagc tggctagag 7835
tcaacccgag cgcttgaccc ggtactctgt gacccagacac aaatcccaaca tccacccgct 78454
acacccccc agggcccatct gctctgtgcg cagccaggtct ggccagacact ccatcgcccg 78514
ggccccacct ggcttgccca gggaaaaact ggccgccaca gcccttgccc ttcccgatoccc 78574
ctgtcctttg tgcacctgcc aatggagaggg caggctgctt ccacggtggg tcttgtcctt 78634
gcagtagcag agcctgggtcg agacacgggt tggagggcgg ggccatgagc gcattctgag 78694
gctctgtact ccctctcac tctctctgcg ggcttggtggt ctgtgttga gaaaaagagga 78754
ccagccattaa aagacactgt gattataaat gaatttatatt ttcaacgtcgg aaaaaggatg 78814
atgtactgtat ctgctgtcaca acattgatga acctttgaaaa cattctgcga aatgggaagaa 78874
gccaggcaga cccaaagggc cagctgctgc tgtatgtact ttatattgca aatatcccaag 78934
agtagcggaa atccatagaa acaacgaatg tcatgcatat ttcggggggcg ttggagaggg 78994
agggagataagg gaatggtcgcc cggaggtatg ggggtttcttt ttggggtttg tgggaatgtt 79054
cgtgcttct ttggtggcg ggtggagagt tctggcattta gactgtggttg atggttctag 79114
aattctgctga atctgtttaaa atcccttact aaagttggttg aattttcatgt 79174
tatgtatatt gtaacactaa tttgagattg ctatattata aaccaaaaaa tctatcatat 79234
gcaacgccct tctcctatag cttgaggacga ggctctgagag aagagccata taagggcgtat 79294
aggggctgg atggagagtct tctttcatt cggctggctgc ccaagttggcg tgcctctct 79354
cggcacatt ctttacaaaa cccagagagc ccacagtgttgg aggcatggg ccggccagca 79414
aggtccccag cccacccctg aagttgctgg tctatgctag aagagcagaaaa ggtgagggtgt 79474
gtcatggaac caagtacagc cggcgtgcttc ccaagttcag cggattttaaa tgtcagggcc 79534
ttcgccggcc tgcctgggtgca agggcctggc cccagccccac ctccttgagc tctgagctca 79594
tgctgctgcg cattttctct accagccagc tggctcggct ggctgctgctgg aacagatccaa 79654
actacccctta ccagggggcc ttgctgtcttg tgcctcaact gatattgttg aggtcctgctc 79714
tcctacatcg ttcaggtccttt gctttcgaaaaa gggcagttctt cccctggccctg 79774
ccagctaaaa ccagccccct cccacccctcc cattgcctatt accatactat agttttctatc 79834
tagccctta tatctccctc caagacgcat tattgacat gaaatattgc tattggttg 79894
tetctccat tagagagttgg getttctctg ggaggtgtgc actgtgtaat ttcagtgtaa 79954
tgcaagagtct ggaggagagag ggtgatggct cagcatagc tatttaaaa aatattctat 80014
tggagagaa tatacatgag cctgattgaa agcattgcag ccttttaaa cagaattaca 80074
atgctattaa gttatgctcc gtttctgctg acgtgcacc accatccatt ctgggacct 80134
ttcatactc cagagcagag ggtctgtaac gtgtaaanac gaactggttca ttcattataa 80194
ttttttga tagactaatct cagcactaa agctgtgctg tggatatctct gtgtgagggc cacaagctag 80254
gataacagc gctgctgctgctgtagtcg ggtttctgctg ttcagtagtaa ggtttcttgt 80314
tgggagcgtta gctgctggctgtgatgatgctg atcctgaagc ggccttctcct 80374
tgaggccctc taagcataagc tttgggaggag ggtttctgctg ttcagtagtaa ggtttcttgt 80434
gcatgaaag cggcatgacc tggcaactcc cgggctgatgctg ggtttcttct 80494
gctggcttc ctggaggggt cactgtgctg gcacatgttc tgtgggtgtgccc tggatctgcct 80554
cagccgtaa accagcgtatg cgggctggctg tgggattcttg cagctttcttca 80614
tttcccttg ggttctgctg tggctgggcttg ggtgaggtctc atctgttctc tgggctctct 80674
aacataactg gcttattttata caggtttctt caggtattat gattagtttgttta caccatctat 80734
gcattagcctac gctgctgctg caccagagcctt caggtttttct caccagagcct 80794
ggctgtggc cggaggagcct gtagcctgcct cagagcattgc aatgtggtcgc taagggcggag 80854
ctccctggttt gccgctgcctc tgggctgctg catgaggttctgttctctctct 80914
cacagggacag gagagacacag agggagagag tagctggcctc cggcagcagct 80974
ccacattgg gttgagagagag gatgttttcag aagggggtggcagagtgctcgcac cggcagcagct 81034
cgtgggttgcctc gtagcgtttgtcctt cgttgggttgctg acacagccatt ctgctgctgctg cggcagcagct 81094
ggggctgtggc gtttcgctgcct tgggctgctg cccaccccttct ccccagcctt cccaccccttct 81154
ccacatactca cccagcagcctc cccagcagcctc cccagcagcctc cccagcagcctc cccagcagcctc 81214
cctggggcttc aagtgctgctg cccagcagcctc cccagcagcctc cccagcagcctc cccagcagcctc 81274
agggagggtg gctgctgctg cccaccccttct cggctggctg agggagagagag tagctggcctc cggcagcagct 81334
gccggctggga aggtggggtg gtgtgagaaa gtgggggtc ttcagcgaga gtggaattca 813
gtaataaggt gateatcaact gccggcgggt gctgggacct afgatgagcc aggactaggt 81454
gagtgcagag ggctgttgag cagacctgat ctgtgacccc ggtggccctg cgctctctag 81514
acccctcaca taaaatcaca taagagatat tcggttctct ggccceggaaat gaggttcgag 81574
tcttctgtag cgccccttggga gagcgcacaag gcccctgctc actcaacctg tcgataaggc 81634
cagtcgcccgc aacagttcga ctgcgcccag acttgggccct tcccttccca tgggcccggcc 81694
gccccgtgctg cctccctgctg gaggtggtac aggggagggg cctggtgctg aaagcccttca 81754
ggcaagcttt gcggctctgg aagggagcct ggggtataggg ccgctttcctc ctgcccggctg 81814
cctggtccac atcgatgttg tcttgttggt gattacagct gtcacagct gtcgagatgc 81874
cctcactgtgg cagttggagc gttttctgta gagggtctct ctcgcgagtc cttaccctagg 81934
gagaccccgctg tgtgtcctctg gttggcagta gcaatcctggt gttttgcg caaacccecg 81994
cagagtcttg gcacccccaag ctctctcttg ctggttctct ccagccctctct tgggcaagcc 82054
gcactcagga ccattaaggag tccctgcttct ctgcctgctg tccctttggga gtaacttggag 82114
gttacaagctg cttccctgctg gataacagac cccaaactcc agacccnttt gttttgatgc 82174
tcaagctgtgg ctcctccacct tgcaggaaat attttgggcc ttttgaggggg tttcttctttct 82234
gagtggtggc ggcccctgctgc cagccacctgt cttttctctct caaaccactc tccagctcttc 82294
atctctgtgcc ccattacagc ttagagggaa accagggctgg gggggcgaag tcacaggac 82354
agggccaga cggctggtaat ccattctctc ctggttccct ctgacttggag cggctttggtg 82414
cagtgctgtct tccttgctct ctgattttct catctgtgca atgggggtgga taacagcaca 82474
caaaacctct tggagtgttg taaagagatag caaatattgta aggataattt gtaaaatgc 82534
gcctggctgc cagagaagttc acagaagctgc tctgtgata accacagc accggtgcc 82594
cagctggagc tggagctcgtg gggggggg gcctccatct ccctatttccca tggatggcctt 82654
gctgctgtttc atatcggctc gcaagcagcct aaccaggtgc taatggtgtc agagccctct 82714
tctctctct cagatttccgt ttggggtacc gcggcggg ttctgctctcg ccacacccta 82774
ttcgctagc cctgataacct cttgcaattc taaatccat gcaccaacct cactcagaggg 82834
ctcgagcttg gcttgcccta gcgcctctct ctgcctcttg ccccttatgc ggtctgaag gttaaatgtg 82894
tgtcagcgc actatgattg atggcaaggg ggacagatgc tccgactgcgc cccttgaggagca 82954
agtctggtag gacagcacttc atctctgtgc tgccagcctgc ggccagagtt tccagggacag 83014
gtcctagccc cacagatgcgt tgaattacccg cattacaccc cggagacaca tggccagccg 83074
ggggtcgcaaa tcctccattgt atccattggag ccagtcagaggc tccagagggcg ccagagatgt 83134
ggggtgaggc acacagctcg tcagaatacg ggtgcgtgctg gtaattaccaac gcctggtgag 83194
aaatctgctcag ggggactctgg taaaggtaggg ggtgctgtggc cttccagctgc ggccagtcgga 83254
gagaaggcc aggcaagttgc accgacggctgg ggttgccgcta gttctcgggg gctggagctc 83314
gcaactcttc atctcagctcg ttgctgtcgg ttcctagggac gctggtcaac aggctctaca 83374
actgctctgc atctcagctcg ttgctgtcgg ttcctagggac gctggtcaac aggctctaca 83374
caatcagctgg cttggtcaggc ctggctccc tctgagcgtc ccaggggagca cttctgttcag 83494
ggcctccca ccagccctta tggcgtctgc gcactcctgg gcatttccgg gccctccagc 83554
gccctggg ggcgcccttg gcgcctccga tggctggagtt aggccagctgg cggagtgcagc 83614
cctgctctgc ttgctgcagtc ttcagctcggct gcctggtcctgc ttgctgcagtc 83674
cctgctgttg ttcctgtggg ttgcctgtgct ttcctgtggg ttgcctgtgct ttcctgtggg 83734
ctctgcgtca ccaagccacca aacagcatcag cccctgggtc ctcctggtcaatcctcctgg ctcctggtcga 83914
gggacgctgtt actgggaggct ctggctggtgct ggcgcctgcga acttgccagc atctgctctgtgctc 83974
ggtagggttg ggtcgtgggcc ccgaccctggc ggtggctggg ggcgcctgcga acttgctctgtgctc 84034
cctgttgtgc ggtggtggtgct gcgcgctgctg caggtgcgttgc ggcgcctgcga acttgctctgtgctc 84094
cgggggggg gacatggagcc ggggctgcgtg tgcagctggc ccgcgctgctg caggtgcgttgc gggcctgcgtg 84154
gggaaaagtgg accgagctgg ctgctgctg cgggctgcgtg tgcagctggc ccgcgctgctg caggtgcgttgc gggcctgcgtg 84214
cctgcgctgg gcagggtaggt ggagaggccggt gcgcgggtccg cgggctgcgtg tgcagctggc ccgcgctgctg caggtgcgttgc gggcctgcgtg 84274
cagggggtg ggcgcctgcga gggggtgttg gacgctgtgct gcgcgctgctg caggtgcgttgc gggcctgcgtg 84334
aattgtgtga tggatgttt ctgagataaa aagtgcgtgtc ctggggaag cttcagctga 84394
aatttcatttt tatttggcc ttcactttt tttttttttcttcaccttg tegcggagc 84454
tggagtcgaa tgggtaga tcgggcttcgt gcacacttca cccctcttca gttcgaagca 84514
attcctctgc ctcagcctcc cagatacgcgg ggtatagcgg cgccgagcace atgcgcocgga 84574
taatatatgtt atatatgtag aagatactta aagttctacc cggagcgtgct gacatcggatg 84634
tgattctgge ctagttgatc ceccectcattt ggtcgaagata aagatacctgta attcagaatt 84754
gagccacggt gcggcggcctgt ccccctttgtt cttgagatgtt tacttcggatc 84694
ttggccactgt gccggcggccttg ceccttacat tttgtaagata attcagaatt 84754
ttttactt
GGGATCCGTC TGGTTGCTC TCTCAATCC AGAATTACCT CCCACATTT CTCAGTCTG 85894
GCGGTGCTA CACAGCTGTT TCGCTGCTC ATCAAGCCCA TGAGCTCTG GCTTCGCTG 85954
TGAGTTCTGG CACCCTATGC ACAACGGCCG GGAATTCGCC TCGGCTGTGC AAAGCCATGA 86014
GACCAGAAA GCNAACGCGG GCTGTCTCTC CAAATGCTGC AGCGCCTGCA CCATCTGCTG 86074
CCGCGCTCAG CTTCGATGCG CTCAAGCTGT CATTCTGTT TCGTTTTGC AAGGTATATAT 86134
AGTCTATAG TTATGTCG AGAGTTCTGC CAGAGAGC TACTAGGTCA TCTAGGCTA TACCGGAAG 86194
CACTTACGAC AGGCGCTGCC AGACAGTATT CACTTTAAGAA ATGGAGTTA ATGGGTCTCAA 86254
CCATAGGTGC GTGGTCTTTC CTCTGCTCAA GGCTAGGAC AACGTGGACA CAGACAGCAG 86314
CATCGAGGA GTCTAGTAC TCTAGAAGA GCACACATG GTCAATAGA TGCACTTGA 86374
GCGGGGCGGC GTGGGTCTAC ACCTGTAATCC CAGCACTTTT GGGAGGCAGA GTGGGCGCA 86434
CTGGGAGG CGCAGATTTT ACACACTGCCA CCAAATGCTT GAAACCCCAT CTCTTACTAA 86494
AATAACAATAA TTAGTGGGTT TGCTGCGCCG GTGCGTTCAAG TTCCAACTAC TGCGGAGGCT 86554
GAGGGCAACG AACTATGACG ACCAGAGGTC TACAGTTGCG ACGGCGCCAA GTGCTGCAAG 86614
CTCGACTCTCC TCTGGGTTGA CAAAGTGAGA CTCGTCTCA NAAANAATGAA TAATAACAT 86674
AAAGCGGTGC AGTGTGACG GAGACACATT AAACTGGGGA GGGGGAAGG GGACTATCCA 86734
GGAGGGCTC CCGAGGAGG TGTTATIGGA GTGGAATG TCGATACTC CAAGATGAGA 86794
AGATGGAATT TCTCAGAAGA GTGGGCTTCC CAAACACACAA ATTTTATGGC CCTACTGATG 86854
AGAATTTCTG GCACTCAAGA GAGGCAACTTT TCTCAAGGCA AATCTCTGAA GACATTTACC 86914
tataaaaaag agtagacatt acaaatccca ctagctcttc atgggcagga ggaagcaagt 86974
CTTAAGGCAAG AGGGGATGGC AGGTCTGTTG GTGGTCTTG ATATGTTCTG AGGGGCGCC 87034
TGGGGGACT GGTAGGGGG ACCATCCACA GTGAGGTTGG GCGCCGAGAT CACGCGCACA 87094
ATTCGAGGTT GTGGTTCTGG CATTTTGGT GCACCCAGGA CCAAGGAGTA CGGGGAGCCT 87154
TAGTTTCTG CCAGTACATT TGGGTGATTC ATATCTGCTG GAGCGCTCTT CCTCTCTCC 87214
TCTTCTGGC ACCCTCTCAC TCTTTTGTCT CACTTGAACC CTAATCGTG GGAAGCTCC 87274
ACATAAGCA CACTACAGG AAAGAAACCA AGGGCAGAG AGGTACTGTC GCTACCCAA 87334
gaccacacag ctgaagcact ggagcccaaga ctccaaaccag cacttcctgc tgcnaagagc 875
tcattgcgta gtccttcctg gaggagccct ceatctccct tcgtagcagaa tggaaatcag 8745
agtatgtct cccgcaggggg cttgcctgtag gttaaaggag gtagcagata tggaaatgac 8751
atataaaatg taataaggcc acacagacatta gctatgttgg cctggaacccc accccagcatt 8757
cttgtggacctgattacttgg gtagcaataa tgtatatggg catttttaatt taatagcatt 8763
gttatgttcc ctcataaaaa ataataataca ctggtgttat gcacccacctc atcnaattat 8769
atacattaag tgtatgcagc gttttatatata tigattgtac ctcataacag ctattaaaaaa 8775
atgatgttaac ttcattataag aaaaataattgga aagttgaaag aggaggaat 8781
attatatgtt tcacgactaac ctaaagctac ctcgtgttccc aitttagag aatcctttcc 8787
agcttttttc ccacactgccg agtfitccttg cttatfctac afgcctataa tcaactgatgt 8793
agatcaccatt aaggatttta tccaccaatt ttatatcctgt tctctcaccce tcaggggttt 8799
atattagca aaagcaanagg ccagcgccccc atcgggggacc ctageagagc tcggctgtggt 8805
gttctttgt tcctgagcag taagtttggg tgttccctggg cccggcagg ctgcecccaag 8811
lagggacaat gcagagacag cttggactcg acctgtttct gacttcagtgc ceggtgagggg 8817
cttcgtgtt cccagacagc tcgtttttct atctgtgt ttttcgttaa gtgacagtgtg 8823
ctcatttttgtgatgatgga tggatacgct cacgccgctca tcccaattct aaccaccctc 8829
tctcaatct ttgtgtgcc tcaaaagctgg cattgactca tcggctcagag gcggcgagcc 8835
ggcccagagc tgtcctaaaa ggcgccaacag ggaaaaagaa aagggatttc tgtgatagag 8841
atctctgggc tcggctactgc atacagcgac cattgcagag cgctgaaatt ggcctgggtt 8847
cctgccctca tgaagtttac tgtgtggcca ggaagagagc ctcagagtag taaaagcctt 8853
ctcagaaaga aaaaacacag aattaggtgg gcggccggag ggtggccgttt cctgtgatag 8859
gtggctgagg tgtcagacagc agtttcagca agttgatcctc agctgtgtcct acggtgaggg 8865
agctttgggg cagatgtagg aaaaatgagaa ggcggctagc tcggctcagc gcagagccac 8871
ctcagagcagc gagaagcagct ctggagccag cagttggcca ggaaccttgg ggaaaaagctga 8877
ggcgccggttt ggaggggg gataaagcag tgggagacca gtagtagagc ctgggagggg 8883

98/150
ggaggagctc ccttttgctg agttaaaaac acgagacccc gttcatcaca cagtaaatgt 8889
tttcatcct ttgcatctgc gattctttgg tccgggcttg gcctgggcttg cccctctctg 88954
tgggctagc gggccctgtc gggagcttgg cttggccggg gtttgggcttc gttttcttgc 89014
acccactctt ctctctctccc ctccgggggc agttggccag cctggcacgg tgctggctct 89074
gttacggca gaggcggtta ttgcaacccc cagtaaataa gccctttggc atctctgttt 89134
gggcttgtc gaattctggt tctggagggc aaagcacaac acagggacaa gcccagatc 89194
aagttgggg gcagagacaca ggtcactgg cccacatagg gaggagttga ggttigcttc 89254
caggtgccgc ccacctgggg ctggcaggtt ggggctgcc cttaagacac cctgtgcttt 89314
tctctgagta cacaatggga ggcgtgtggg gtttttgagc aggagggtcg caggatcagt 89374
cctgggatct accagccctct ctgcctccag tctgttggg ctacgtcata gcaccggaga 89434
aaggacgtcg gcgtactcgc aatgagagtgg gggagagtgg ctggcatccc gatagtgtct 89494
gaaggtcag gaggcaggat tggagtgtgg gtttgtgtgt ttgttgttgt ttgtgtgtgt 89554
gttttgtgct gagagagaga gagagagaga gagagagaga gagagagaga 89614
gagagacaga aactcacaag ccgggcgtcgt agctaagtaa cattcagact gctacactcct 89674
gagactgctgg aagctcagca ggtagaggtg gagagagat cagatcactg tttgtgtgac 89734
cattgaaggg ttttgattag agggacacac gcgtgcactg gcctcagggt tggctcataa 89794
cggtggcgcg cagagggaga acagagagtc ggacagggga cccctatggag tgggtctctc 89854
gttgctacag ggagcaagcg tcagatctgt ggcgtggttg aaagtagatc cattttgetga 89914
aaggtggtat cacagatttt gagagacata gaatcagcc gaggagagca aagaagacag 89974
gaggctgccg tcagccacgc ggccctcggc gggtctctcg tagctttttgc tccttgagcc 90034
tatggggtat gtaatctgaga acactcagct ttcgagagaa tactggaat ttggagtttt 90094
atacagcaac tttcacttt tcaatattaa gaattcactc aataaagg attaatatct 90154
tttggtgctg cagtaaaaact tttgtttggc gcagggccta ggcgcaggt gtttgagcctg 90214
tctcagctgt gggcagtttc cttcagctga gggcagtttc ctctcagttc cttttctgct 90274
gccggcgctg gcacccagca atggcaggc cactcactc tttgactctg agaacctttag 90334
aatgtgtgg tttggaagggg 90394
tagggactgt cttttttc caaactcgtt ccacatcgcg aaggccagcc ctggtctgg 90454
agacagcagg gatagggggt cactccataa ggagaggttc ctagtgcacc tgaagaaca 90514
tggttggag gagaaggcaggg gaggtgcagg gcagggcagg ctgagttcct ctctgagg 90574
cagagattag agaggagatcc cagagggcctg cctggaggctt gggccacaga gcaggagtct 90634
gaggaggaggg ggttaaccactcctgtctgctc actgtgtgctt aagcccccttag tggcccctta 90694
gcagaggggt gcctgtgctct tatcatatgga gatattgga aagccctcccc tgaacctggt 90754
tgctgacagc cggggcctct ggtggcagaggg gtaggtgtgag gagacttacag aacagggagt 90814
gagccactcc cagagttgctct tgcagatatac ccctgtgtcc catagagttg ccagttcacta 90874
taatgtctgc cagagctgtt gcctgccecca gcctgcggcc aagttctggag aatcttgcetc 90934
tgcaagccactg gcagagggagagagagggcc aaggggagcc gagttggtgcc ccctgcggca 90994
tgccttcgcc cctcagctgt gcctggtgcct gcctgcggcc cccggggcctct 91054
cagagctgcc ccaatggctgt tgccactgtg tcggccccgg gaggacggggt ttcctgacac 91114
cacccctccc cgccttcgct ttccccctcc caagctt cac atc atc tct acc gtt 91166
Ala Asp Ile Ile Ser Thr Val 25 30
gag ttc aac caa acg gga gac ctc cgg ggc acs ggt gac aag gcc gge 91214
Glu Phe Asn His Thr Gly Glu Leu Leu Ala Thr Gly Asp Lys Gly Gly 35 40 45
cgg gtc gtc atc ttc cag cgg gaa cca gag gtgceagcc ctgggtctgg 91264
Arg Val Val Ile Phe Glu Arg Glu Pro Glu 50 55
tgggaggtgctt gggggtgctt ggcacagctc gcctggggagg cgccatgtt gggaggggat 91324
aagggataagggggagt cggagaggggt ggtacttg ccagaggttt gcggagaggt cagaggtttt 91384
aagggataagggggagt cggagaggggt ggtacttg ccagaggttt gcggagaggt cagaggtttt 91384
agaagagac ttttagcag caggggtgtt ggggtgtctg gcctggctgca catcctccgg 91444
gggttggtactt cggaggtgctt ggtacttg ccagaggttt gcggagaggt cagaggtttt 91504
cggagaggtcttg ggaggggttg ggggtgtctg gcggagaggt cagaggtttt 91564
cagaggtgtcagc gaggtgctgt gcggagaggt cagaggtttt 91624
ggtcaggagt tgccacaggg agctgtgct ccactgtgca ctctgtgta aaccttcctc 91684
tgcttggttg cacctgcttg tgtccggccag accttgccccg gggggcag ccctgtgccac 91744
cagctgtcag cagctgtcgg ctggctaggt ggctttggc tcagctgtcgg gcctttggc 91804
tccctgtg tgtccaccccacctgccccgg gctttggc ctggctaggt cagctgtcgg 91864
cagctgtcgg ctggctaggt tggccccagg cagctgtcgg ggtccccag ggagagctgaa 91924
gacacggcag ccctttgctc gagacagtgg ctgctgctgg cagctgtcgg 91984
cagctgtcgg cacctgtcgg tcagaggtg ccctttgctc gagacagtgg cagctgtcgg 92044
gagacgtgaa cagctgtcgg cagacagtgg ctgctgctgg cagacgtgaa cagctgtcgg 92104
cagctgtcgg cagacagtgg cagacgtgaa ctgctgctgg cagacgtgaa cagctgtcgg 92164
ggatggtgct gccttggtggt gccttggtggt gccttggtggt gccttggtggt gccttggtggt 92226
gagctgtcgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92284
gagctgtcgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92344
cagctgtcgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92404
tctgtcttg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92464
gggccccag cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92524
tctgtcttg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92584
gggccccag cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92644
cagctgtcgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92704
cagctgtcgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92764
aaaatattg gagacactcag actacatca aagcaagcag gggcttgcac aagcaagcag 92824
tctgtcttg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92884
gggccccag cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 92944
acacagtgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 93004
acacagtgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 93064
acacagtgg cagacgtgaa ctgctgctgg cagacgtgaa ctgctgctgg cagacgtgaa 93124
tttttgtcagt gattttgaca cgtttgaatcc aggagcaagt cacggcccaa 9318
gacagcaggg tggccagagc ctcaaagctt ggcttgaggc agggctcggc aagggagtgc 93244
tgcggggaga gtgacctcac ggc tgtggtggag aagccactc cctcctgact tctgttctgt 93304
ggtgttgtgaa atggggagag ttggtgtgct caagcagaggg aggcotgagg gttgaatgcg 93364
gattttgggg gagagacctta gttttgggttc cagctgttag cagggctttg ggaacctgtcc 93424
cattagcag ttagccgctt cgggttgtgag tgtttccag ggccgcaacgg gacccoagct 93484
tgcggctgc acacgtgcag tctgagggcgg ttgaaactgc agagagttctc atttgacctt 93544
cgaattggc cctggcagc gctcggcact tggccacag ggcggccctg tgtgttccttt 93604
ggatcgtcct gcgcgctgcc tgcacatcag ggtgtcagg cccctgtccct cgggttcctt 93664
gcag atg aat gcc ccc cac agc cag gcc gag aa lac gac gtc tac agc 93713
 Ser Lys Asn Ala Pro His Ser Gln Gly Glu Tyr Asp Val Tyr Ser
 60 65 70
act ttc cag agc cac gag ccg gag ttt gag tat ctc aag agc ctg gac 93761
 Thr Phe Gln Ser His Glu Pro Glu Phe Asp Tyr Leu Lys Ser Leu Glu
 75 80 85
ata gag gag aag atc aac aag atc cgg etc cca cag cag aac gcc 93809
 Ile Glu Glu Lys Ile Asn Lys Ile Lys Trp Leu Pro Gln Gln Asn Ala
 90 95 100
gcc cac tca tct ctg tcc acc aac gcc ggtgagggcct gccggcctg 93854
 Ala His Ser Leu Leu Ser Thr Asn
 105 110
ggtggcaggg gcacagggcgc tagatgttc ttcataatgc tgttgttat ttcatatata 93914
tgttgagcat ttcttcatgt ctctggaacg ccctgaaaat aatatccttt ttagagcgc 93974
tataaatcct atgagttggt atgcccagcc cctcctagag ctcctgtgtgt ctggacacag 94034
ggtgtgcccc cttttggagc agcatgttaaa tccatagtgt gagtgtgca gacccttctca 94094
gaagctccct atggcagcaac aacaggtggt cccctgctgt gaataagagcc atcgagccta 94154
tctgtgagg cttctgtctt ggttgtaggg aagttggttgt acaagagatg acggtgcaga 94214
cagagcagtt attgacaca aagtgaaccc ctcctccca gcgggaatcc agaccccttag 94274
actgaggtgtg tccaggcggcc ctgcggggcg aagttgagaga gctctgggttt aggacccgg 94334
cagcactccc tacactcgc tccectcaaa gcctccacc tgggtttgaa tcttggtttc 95894
actctttcct aatggcaggg ccgggtgtac cttcagatg ctcactgac ccaggcttcte 95954
aggtctcttc caaggtccct cctatcaaca tgggtcattt ttttttgact ccttgtagag 96014
tcaggtctct ccagagaaaa agoatcagta gggtatgaga gttgaaagaga gaaaagggagga 96074
ttatatataa ggaaggtggct cagetcgact cggaggtcgg ccgtcctgaa atctgcaaggg 96134
aggcggaggg cttgagcgtcc cggagcacagc gttcagttct gttcctaaacgc gttctgtgga 96194
cagaacccccc gccctypec ggggtgtgct catgatcctc ccttctaagat ggatctctct 96254
cctccatccg gctgtcttaat tatgtgacte ggttattttt gttctgttttaaag at Asp 96311

aaa act atf cca aaa tta tgtaag att acc gaa cga gat aag ccc gaa 96359
Lys Thr Ile Lys Leu Trp Lys Ile Thr Glu Arg Asp Lys Arg Pro Glu 115 120 125

gga tac aac ctt aag gat gaa gag ggg aca aat aag gac tcc acg 96407
Gly Tyr Asn Leu Lys Asp Glu Glu Gly Lys Leu Lys Asp Leu Ser Thr 130 135 140

gtg aec lca ctc cag gtgagctccg gtgaggggga agcaggccaac agcetcttta 96462
Val Thr Ser Leu Leu Gln 145

ttacacctga ggatttttagg gttgaaagag ccttgagat tttgagccaga gttcaggtgca 96522
gacccctgtt gggtctggctg ctagggcg ccggaggtccgc cttccctgccc cccgtctgca 96582
gttccctac cagcagcata cagatagccca cgtttctctg agccttttgct gagcagtgca 96642
ggggtgttt atggtgttatt aatgtattct acctatagct gagaagtttggatggagcag 96702
ataatccttt gtttataagaaggg ggggaaact gagggccaga gagagacacgc aactcagcata 96762
aaactgctca gctgtgtgtag cttggagag gtaggacaga aatggcttcctag agacgttggtt 96822
ggtcctcttg tctttactctg agggaagag gaagcttggg cctgttgagc cctcgacagt 96882
ctcataaggg ccggagcata cagttcctga aacagagcaca caagcgtccca gctcatcctgt 96942
agcggccata aatattaaaagcttactcgacgctgtcccatttatt tttaggggagatcagagcagc 97002
aaataaccatt gcctaatga cttgcaaatt gcacaaataa atttgtgagga aagttggcagcg 97062
cgttaagctt cgtttgttag ttcgtagag tctgtggtgc ccctgcccccc ccccccctc 9712:
aagaaagtt atcaggtttt catcctaggg gaaagataca ggcgtcatac cttgacac 97182
cctggttgctt gggtagcagcc aagttcccttc ataataaatcc tttttatgtc cttccacgct 97242
tggcgatttt tttgttgtaa gacaacaaaa ccctccaagc acaatgtgtc actggagaaa 97302
tgggctgccc ggttctgtctt ctcactgtt gacagagaag cttgtcctc tgtcacccac 97362
gcacaagccg ctcctgcacg cattctaccc acoccttggtca gttcaactg gggcttctctg 97422
tcatgttgg actgtcgtca cgcgtggccc cgggctctgc cttgcgctcc tagaggtgag 97482
cagcattcct ctcagttacat gttcccaaggt tgcagccgct ccccaagggc acagcatacg 97542
agtcgctagc acactgggctg ttcagtcggt gcacagggcag cccgtctcgc cccagtacct 97602
cccagtacct cttgctttac gttgtagactc ccatacaatcc cattacgcc 97662
tactcctggt cactcctgta aagcttattc ggcggggtta gatgacactt gttcctttctc 97722
cctgactccc cttgccttttt ggtatgcgcc acttatttgtcttt cttgtgctct 97782
tccctctcct cttgagtcctt cggagggcct ctcagtcaca 97842
ccccaatcct tcagggactt tttctctcttt ggtgcctgcttc taataaaa cctgtctct 97902
tctctctggt tttgtgtcag gttggacaaat gccatgagcta ttcctgctcc 97962
ggcccctgag gaagaaaag gcccattgtt ggcgggagga aggaggggt cgggttagcag 98022
gcagaagactt ttcctgcgct gccgtgtctct gccttcctgc acacgagcctg gcctctctct 98082
cctctctgag agtcagtcag gcctgggctc cccagccagtt cggccgctgcc cccgctgctg 98142
ggtattgagc atacgctaaat taatagtcag aggaatgtt gcagggagca tcgggtagag 98202
agagagacact cacatcctcc gacacacac gacagagcc gagaagcata ctcagtgctg 98262
cacaacagca gacgccagcc cacacactac acgcgtgcagctgtgctgctgc ctcactaca 98322
cacacacca cacacacca ccagggctga cacactgcga tactgagtag ctcgacagcag 98382
cacacacag ctcagttgctc cttggtgtgg gaaatattgc tggaggtgtc agacagcgtc 98442
cacacacag ctcagttgctc cttggtgtgg gaaatattgc tggaggtgtc agacagcgtc 98502
cctctcagtt gtcagacgct cgcgtcagc cggcgagctg ttcacccaca 98562
atctcagctg ttccctgaga gtcagggac acagccccatt cattcattct ctcacacatt 98622
cactcattca cttggagagtc ttcctgcag gctttggact gacgcctaga gagatggaga 98682
gataaaacag aaggtgaagcc ttgctcccggt agctctgccg ttagtccacgt ggaaagcttg 98742
tgggaccagt tgacagcttc aggttggtgc agggctgctgc aagggacctt caggctcttg 98802
aaaagctcagt gctctgagcc atggcaagga ccctcgcgac caactggctgc agatgaaagt 98862
tcgtatcggt cagccatacct ccacgccgtgc aacaaaaca aaccaagacgt cccagcgcga 98922
gcagggaaat gcttttcctca ctatgggaaag gtctgagtgtt gatgtgctgg ttgggacaca 98982
gctccttcg aagactcttc cttccccatc cccagctgcct cagtcctaa ggtgctggctc 99042
ccttcctgc cagggggcag gctttgctgc gctgtactgc gcacagggc caggtatcac 99102
tttgctcaca cccatatggt catagcactgg ttcctccgggca tggctgggcca caaatgcgtgc 99162
ttgagatgt aagcccaatgt tagcaagcctg tttcccaagtg cacacaagtc attgcagggag 99222
gaggtgagaga ggcctggccag acaatttgct ggtcttgcca cagtatatgt tggctcatt 99282
atgagctg gaagatttggc ggtatatgg ccattcagcc taccaagcc aaccaacaga 99342
gtagsagcagc catgccttc tgcagctgct gcacagggc gggcactggc caggtatcac 99402
tgctatatc acagccacgg gatgacctgg gacccgcacac cccctgttgc cagctcggcgg 99462
ttggagatcc atgctcaggg caagttatgt tgtgatgcgga ccrcctggcc ttcacccct 99522
cectgcctc cttcctcttg cag tgg cca gtt ctc aag ccc atg gat ctc atg 99575
Val Pro Val Leu Lys Pro Met Asp Leu Met

Val Glu Val Ser Pro Arg Arg Ile Phe Ala Asn Gly His Thr Tyr His
160 165 170 175

atg gag gtc agc cct cgg agg atc ttt gcc aat ggc cac acc tac cac 99623
Ile Asn Ser Ile Ser Val Asn Ser Asp Cys Glu Thr Tyr Met Ser Ala
180 185 190

gat gag ctc ggc atc aac ctc ctc gac ctc gag ctc acc tac atg tgg gcc 99671
Asp Asp Leu Arg Ile Asn Leu Trp His Leu Ala Ile Thr Asp Arg Ser
195 200 205

ttc a gcagttccg ggcagttcc tccacagggc agagtagctc gttccttcct ccacaggttgc 99773
Phe
ccgttgggtg gtgggtttgg tttgatggtgc agacagctgg ttgaggtagt gctgccattgt 99833
ttaacctctt cacgtgagcct cctctgtctgct tctgtagctcc tgcagagcccc agataaaaaa 99893
taatgtacg tctgtttctg aaaaacctcag aacgtgtgtt gctgagcattc gcaaccatcg 99953
cctctccag cattggcctg atccctcatct cctgggctc cacaaagggc caggagggag 100013
acagcgtca caagcttactct gctctgagac agggactgct gggctttgctc agcgctcact 100073
gaagggcactct cggggccctcc ccaagctgga cccaagccac gctggttttag ctagggagga 100133
cagacagtgg ggcoccgccc agggctttgg gctgacaacca agctgtcaga gcccagcgtg 100193
ggttguggtc ctggaggccc cctggctgggt gtttcctgtg ttgagggcaag gtaggagaa 100253
gegagtcaat taaagatctc cggcgcactgc ttggagagga gctggtgtag ctacaageac 100313
cagctggcaag gcaagggcag gtggcgctct cgggggctgt ggtggagggc caggacaggt 100373
gctggtatgt caactttctc tataaccaact aagataataaa taattataaat aacacacagt 100433
gagacccctgt gtgcacggcct gtctgtacta ctaacaacagcatctttt cactcttttc 100493
accccttacta ccaacctatg aggttagttac tatccttact cacatttac actaatggaaa 100553
cctgtcaca cagacacacttgaagttggc ccaaagacttg ggcagagcctt cctaaagtcaac 100613
tggcgtggca aacccggccttc caggececca gattcccccgc tctaaacctc ctaaccacac 100673
tgcctttgt gaagagatgc aaccaggtgt gtctttggaa ggagctgggaag acctctctgaa 100733
gacccctcct gcaacagcgtg ggcctgctgca ctggagcggga ctgggcaccc cagcagctgt 100793
cagagagtgg ctgtgttctc cggacgacgta gacgagggga tagctgtggg gacgcagggga 100853
ggccagcggc attccagggga gggtgaagga gagaataaaca tggggtttgt ggtctgagat 100913
caggagcagc cagacagccct cggccagggg agacccttgag aaaaaacaggg gaaggagaaca 100973
gagcaacagcg tgtggtacct cctgagccag ccagagggct cggggcagcat ggtgagccctt 101033
cggagagcga aagctctgtgtg ggtttgtgact gcacccgtca agctttttga cctgtgggtga 101093
gtacacccact ctcctctctc gagacctcggt ctgtttcaatct atgcctctca ataagactgt 101153
aggggtccgt cagtgaagcct ctagtagtta tgtgtcggac cacactacag cacttggttag 101213
gtacaggg acagctcagc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 10127:
agcctgag gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101333
cctgagtc gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101393
gcctgcaggt gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101453
agctgctag gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101513
gcctgcaggt gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101573
cctgagtc gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101633
ataagcgtc gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101693
gcctgcaggt gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101753
tgctgcgcgc gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101813
gcctgcaggt gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101873
gcctgcaggt gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101933
gcctgcaggt gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 101993
gcctgcaggt gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102053
tgctgcgcgc gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102113
tgctgcgcgc gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102173
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102233
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102293
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102353
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102413
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102473
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102533
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102593
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102653
gacgcgtg gcctgactgc ctcgctcct tcctggtcc ccagacctgc gacgtgcctgc gcctgcaggt 102713
atgcacacgtg tgcttcctt tacatttccc atttaaaaaa aattgttttc ttaagtcac 102773
gtctcttat gttgcggag ttaattttct tttgaaaggg aattgaattt caccatgata 102833
agttaaagta tcaacataaca taaataggag gtacccctaa ccaataacggc tggccacaca 102893
aataaggtgg aataaaataac agagcagaccc ctgctcgtgg gaacctttcg ttgtaagtaa 102953
cctggctgc tgcactcattgc ggccgcagac acacccccccct atggtgctgc tgggtgcctca 103013
aaacgtgctg tggctgacgag ggacgcacat cgttaatttg atttagtctc agttaatcatg 103073
acttcacaaag aaatagcaccag atggtgccccg tggctactgta acaagagccg tgcagctctc 103133
cctcaggttg cccttaagcc ctgaaagccg tctctcctga aaagatggag ttaaacatgtt 103193
gctctatgt taaaggggagagttgacaaacg aagacacccc ccctctcctc atcagaagggg 103253
tgaaatctcg ttcctccccgc tgcattataa ttacattact gggacctgtgc cccaccccc 103313
acctgctctcg ttcctcggagc ccggaaacta tgaagcattt gatgtactgtt aaacaggggccc 103373
gttctctag ccacgcttttcg aaggtggtat gctgctgggg tggctgcggg gttgagttgaa 103433
tccagcaga caagctgccccg ccctttgggg cagcaagggc gacggaggggg 103493
ggccagggc cagacgctcgg ccaagcgctgg gacggtgtgg agagcagttgc ccgaaggggg 103553
ccagaaacgctg cagatggccg atcacttttg aagatgggagttg gccacaaagc 103613
atgcacacag ctgggctgtaa aagaagaaa cgggggtgtt gctctcctcaacctgcacagttg 103673
cctccctgcaggc cgttacgcttg agcccttctcg cccacccctc ccgcaaccca cagagtggcg 103733
cctcctgccctcgtg ccagcagagc cacacaccatc acacagcagggttattttaacgtctactgtg 103793
gttctcccccttgggtttgaggtctggaact agataaagcatactgcctca ggaagttggaca 103853
cgtgataacag cattgtgaaatacccccggca tggagcagccggctgccctcgtgggtgcacaggg 103913
gaggtggtgg cccacggcagc gcagcctgtgt cacttctcctc cccacccgcc ccctcgcgtg 103973
cctggctgct ggttggctgctg gagggtagc cagggcagctcgtt cgggtggtgg 104033
tcggtcgtgctt taagcagagctagtggagg gctgaagaaata atgggtgtttaaaccagaaatg 104093
tctagccaggt cagagcgagc ctagcagagc gcaggttgct ccgctgcttgag 104153
acggtggag gccacccctc gggtttttttaa gctgcaagcgtcagc ttcagctttcg 104213
aacttcccat tctgtgaaaaa tgattttaa ttcatcaaa cataaagcagc cctggcctta 104273
gtgaataggg agttgttgct tatacatgaa acaagattct gacgtgggct tggagggagc 104333
cgtataggcc aacttaggca tttgccaggaa gtggagttgga gtctcagg ggacatggtg 104393
gccatggaaca cctccccctat tggagttctt catagggaag cctcagttgca cctgtgctc 104453
ccctatgcct tggcgcctt gctctcccat gggtgcctgc tcgcagtgaa agacacagat 104513
eagggctca caccacagag agaaagctta ctggccagag aaagttgag aagctgggagc 104573
tgagttgct gcgatgagga ctagatgac gctgagttag agagagcagc ittcattctt 104633
agatggagaa gagccagaa agacagctga gacccccatgc ggagcctgga attcctccta 104693
tacattcagc caccacagctca ctgggctgga ttcgctctgt cagaggtgga 104753
cagttctgt gacttctgac aagaaanaas eacggtcagg aggcctgtgt ccggggacag 104813
ccagggagag cctgggcttg gactttggtt ttgctactt ttcagcccctg ctctctgag 104873
tcctcaacttc gcctcagttgac accttactgt ctcctcgcc cacttaagcctt ttcccacatat 104933
gtgcgtcttc ctacgtcaca ctctacccac gcagaaatgg accttttgata 104993
accatactaa gagaagggaa aatgtcttct aagaagggag aaagggagc cctgctttag 105053
actatggagc aatgagaaag gttgactcca ggagactctc ctgactgaggga ggagacctcg 105113
tgactagag gtctctgtgac ctgctctgtc ttagtcacca aggttcaagg aagagaggacc 105173
cctccagccct ctcctccctct ttcacccctc agaatgggaaga gagggtgcca gcctctctca 105233
tcctccccac aacttctgcc gatacctgcc ctgctctgcc cagacgcttc tgcgaagcctg 105293
tgaaattggc tcattcggac ctctcttgac acatactcag cccctcttaa aacctcatacg 105353
aggctcttctc tggctcttgg aggagacgctg acgscctcaca cagtgccttg tgccttttctg 105413
gacagcccc tggccacgctc tggagcctca ctcctcgact cttcagcttg ctgctctctct 105473
gcctagggag aggactttggt ggagcaagtc caccctgcccc caacttctct cccctcgtca 105533
ttcgtctct ttgagctcttg gactctgttt ggcctactg cagcaactb cagcccttaa 105593
tctggacag ctctctgacct tggagcctca caccctctct aggcctgtcga gaggcctctct 105653
aagctgggag ctccttggct gcgcctggtc acatcgagtg tttttctact ttgagacgct 105713
cttcatttt atgtggagac cccctgagatt aggaaccag ggtgaggccct ctctgcatcct 10577:
ctgcctccac atagactcttg ggagattac cctgcacttga aacgggttgag gtggagttgg 105833
cctggagatg accacattcag ttgtcgtccttta ggatacagac acctcctttt ttgatctgacc 105893
gctgaggaat tacagacoccc cagacccacta agtgccagag aaggaaccag ggtgagggg 105953
cctgccgggct cgctgccgtgag accctttctct cagctgtctt ggcctacgcct tcctggaatt 106013
atataataaag aaaaatttgttt tttttatttt ggaattagga catttgcagc accctttaacc 106073
taaagacccct gcagcctaat ttggaaccag cagaggaagag gttatttttg tctctattaaac 106133
aacagactctta aagatgggttc tctaaaatc cctgcactctc tgatggtttaa 106193
aacacctgtt tccagctgctg accctttcag tctgttttaag caacgctccteg cgttcctttaa 106253
tacacacatt ttgagactgt taacacagca ctgggtgatt ttcttgagtt ctgtgctatc 106313
attaaggtctaa caatagtgactc agggagcttc agccggtctca cctctgcttt atttttagca 106373
cccagagaat tttaaagagcc gttcgttttaa ttttttcetct ctcctaggtct ttctacggtt 106433
g sendergcgcct gtcaccaattg cctagcactt tataatcttc catacaatgca 106493
gcagctgccag gcaggtggac cctgagggggt gtcacccagct tcaacgcagag aggctcagaa 106553
cctatccag cccatgccttg ccttgcaaggct cagctttgcet ctgtggcagac gacacagaga 106613
ggagacacac acagttcctct gccatgcacga ccttgctgctg ggccagggcct ccttgacccc 106673
agaccttccg ctctgctttct gcactgaccct gtagctgacta ctcgctttcttg ctcaccccc 106733
tttaatccat gggagctgtctttt cctcttacag aggagctgtta aaggtgtgaat ggcctgatag 106793
tttgggcttg gttgccgttgat agacaaggac ccctcaccac ccacagacac actgctggttg 106853
acccctacag ccacctcttc tcctgcttct ggtgctaat ttaacagagac aggactgtggc 106913
atgtgacttgt gaaactagtct cctggcagag cagactgat cacaccacact gttggactggg 106973
agctgtgacc cctgggtattc taacctactctg ctgccaagcc cctgttgtcat 107033
ttatgttgatg atccagcagct tttgcgtggat acgttatctt gtttgagca tgggactgag 107093
tttgtaggagac cagacccactc cctgctccag ggctgcagag ctagtggtga cttggtttct 107153
ccctgccccga agaggtgtgtag atccaacactcagc acacctttgg gaagaaggga ctttatttgt 107213
ttcagtctt gcagagga gaactgcttct catcaatgg acctaaaggtc tttctgagggt 107273
aatggggatc ctgatgtat caagggtaaac ctaaggggcc tttctgagggt 107333
cctgcaag ccttgatgac cctctgtcct ccatgcttca aatagcaac ccagccaccc tct 107393
gcgtgttgtgc cccagcctgtg tttttaaggg acctgtctca gcctgtcagt atggctgact 107453
gactggtctc cctctttggtac ccagcagcag ggcctgagacctagct 107513
acacatacagc ctctggcgcc tgggctagct cactaggtt cctctgtcct cagctctctca 107573
cctgtaaac gagagaaagc cccctgctgac accatacgcg tgggtagga ctgggtgtcta 107633
ggtgagctcg ttaggccagt gcgttgccat ccaacctgct gcagcatcct 107693
tgtcacttc gggtgttct gcccaggttg ccctcagcct cagctctctcc 107753
aaaaaaagat ccagcactt cacatcagc tggctcaaga acccttcagc aacctctcc 107813
aacgaggt aacccgccct cttccttcgg cctccaaaggg cctgtcaggg cttggccttgg 107873
cctctccgct ggcacatgcc cctcctctcc cttgcctcctc tgggtctcgc gtttccggcg 107933
cctgctcttt ccacatattt ccaacgctatct cctgcagecc agccatttttt accttggt 107993
tccctggcc gctgaaaggt ttcctcctc atccactctc cttggagctt cttaagaaggct 108053
cnttcctggc ccagctgtctc cagcatgc gtcactcct acgctcctcc 108113
cctagaggct gttccgctca cctctgcctc tgcctacccc cgcctctcct cctcctggact 108173
ggcaagctct ctaagagcgg gacctttggt ctgtgtcagc gataatggcc tgtccagag cctctggtgg 108233
tcgatctacat cccatgtaat acagtctgct gggtctctgg ctaaggtggc 108293
gcccaacgct gcctctgctaac cctgcttcg acctgtcagc attgacactg aggccttgtc 108353
ttggtcagtc ccaggttttgcc tccgtgcctc ntctggagcct 108413
ccttcgctct gcctcgtgctac cccctgttcttc gcgctctcct 108473
tggcggctt cccctgtctc gcctgtctg tggaggttgt ctggccagct gctagcatcctg 108533
cacacacgtc ccaacagctc ctggtgccagcctctgctcct ctcttcctctcctgctcctctctcct 108593
cagtccacttc tttgctgcag ttttcttgg gcctaggttt gctgtgtttg cagctctctcct 108653
112/150
aatctgagct cactgcaatc tcgctctcc aaggtcaagc eattcttctg cctcagcctc 108773
cagcagctg cggcctcagtg gccccgccca ccagcccccg ctaaatatatgttattttta 108833
gtacaagctgg guacccacgg tgtgggtggac gatggctctg atctcctgac ctcgtatgct 108893
agtctgcttt gcttcacctgg accagcgggct taccagcgggatt gagccacgcc caatgggctgg 108953
tacagtattt tacactggattta tttttaaatc cttttataaca 109013
agaggtgcctt gtagcagcttg acctagcacaac aacgctgttg gggccttcac aaggcagggc 109073
agtttgtgctg catcagcctca ncatcaacgaa gggccttccttg cgtgccatgg gcctgtcatt 109133
gctgctgacc gggctgtggag ccaattcctgc cagggctacca cttcactcctt gcacaccatct 109193
gacggctgttgac gctgctgttcac cagcgcctgac cagctgtttctt gacgacgctg cggagtttaa cttcgtgaaat 109253
ctcactcctt acacagatgtg gtagcctgta ttatatacctt ctatttacag atgagaaac 109313
aagcagcgact gaaatttctg taatctcacttta ggggaaaggg ggtgccccggg aagcaggggaa 109373
aggggggtgc cagggcctggg attacagattt aagcttctgct cgtgcagagac ctcacttta 109433
actgactgctg tacacgccttg ctcagctctg atggttaactcc cccagggtgc agcctgtcctg 109493
gctgctggttgca cccatgatgc cagatcgccc gttggtctctt caggctctgt caccactgccc 109553
aggggctggcctg ttcactgctgc ccaactcagc aagagtcctag aatgacccct ggggctgaggc 109613
tcgctggttc aggggccctctc tcagcaggtc cttctccttg cggcctgctgy gcctttggtt 109673
agagacctttg tattctgcttg tttgcttttat gttgcttggg aagacagcg ccacttgctg 109733
gataggtggc aggtgggtttt gtctgtcgg acctcactg cagctgtgact gcgcctctg 109793
cgtggctcc gctctgctcctt ggtgctgttt ggtgcaccttg gggctggcctt ctcctccttg 109853
aggctgactc ctccgatacg tttataatactatgctgta aatctactcttt aagcagccagg atgcctcctgt 109913
gcctggcc ccagactcccttc gctccacctg ctcctcctgtag cgtctctctg 110033
tcctgctgagt gacccacctgc cccctcctctg gttgcatcctg cctcctctctg 110093
gctcctggcc cccctgcctcc ctcctctctc ggtgcacctt ctctgctgctgt gatgctctctctg 110153
cagctcctcgactgcag cgtgctcctt cccctctctg gcgcctcctg cccctctctg 110213
acacacacac cccaaacatt tteccaccca ctatgcttgc egggataatt ccatactcace 11027
atgggctcg gagggccctt ccctgactct gcacactcet aagggcctgtg tataaatctc 110333
tgaacetgaac acctggtcct ctctctgagcc atctgagatct cattgagccaa atctggtcct 110393
tccggacagcc tggagcccc aagctgcaag gcgggtctgc gtctgtctct ttcgagctct 110453
gttgggggtac agttgcctgg ggacacatcc cagctgtctc caaccttgaga tteccctctc 110513
cagttccttg aacaacagcc agtgccattca ccacagaccc tcagctgctct ccacagagct 110573
gacaagcaact gtacctttttg catcctgttct atctgtatge tttttcccac gaggagaga 110633
aagacactgg gaggltcaaat ttaacttaaat tcaatttaac tggctggttgg ttgctggcct 110693
ttggacatat gctatcctttt gaaactctca ttcacgctct gcacagcaga agttatcaac 110753
ccactctaca gataagaaaa gcaagacaca gcacagctga cttttcagca gatacrcacag 110813
atgtaagcc aatggctggg acacctcagc ttcgggtttct gtgcattcag caacgagcact 110873
tttcttctctt ctctactgctt gggtagtcct ttctctaccac ccctgagttc acctagagtg 110933
ggctatagcca gagctgtgaa gatggaactca ccacacagag aacgtgcaagg gctcagttggc 110993
ttgctcagtg aaggggttgaaga ttaacagcaca cctctctcctc gttctcagca agctggggttc 111053
tgccttccga gaggtattgc aatactatca aggtgttcgc agttgggaag ggaagagggggc 111113
tttacgagcc tagagttgtct ctctctccact cccacctacag tttgaaaccc ccatactcaca 111173
gaaacctaga atagagacat attttcggag aagggcttaaa aagggtaatt aagtttaaat 111233
aagggctgca gggtagaccc taactcacaat gcacgtgtgtct tctttcagaag aggggtgatt 111293
agaacccaca gagagatgttt agatgtcagg aataagatgc tgaagacaca aggaaaaggc 111353
agtcaccttc aacgcgcgaga ggcggcttct aaacagacca gccgcgcta aacakgttgt 111413
attggacttc ggcacctccat agctatgaga aacacacact gtttaagcc caacctggtgct 111473
agcatatgtc tatggcagcc aagaaatcctc ctgtaggactc tgaacatgcc tggcgtgact 111533
gttggcgctct ctgtttgtga tggcagctct ttttggaga tttttggaaga acacgatttt 111593
tcaagagtaa ctccatgtgt gtggagccct ctcgcatcccg gccgcctcg ggcgcggcctg 111653
tgagctcagt ggtgtcgctct ttttgctgcct ttggcagggc tgcctccata cctactcctg 111713
ctttatatga gcaggtattta taatcccttt ggtatatata cagtaataggg attgctgggt 113273
caatggtatatctaggcttt cagcttggga ggaatacaccacacgcttttc cacaattgtt 113333
gaataggtt atatcctgaa caacaggtta aaacgggttcc ttatttctca cactctctcc 113393
agcaccgtgtt gtctctgtgac ttttaatgta tegccatgtgt agctggtttg agatggtagtc 113453
tcatttggttt tgtatctgtga attttctctga tagaccagtga tgatatcagtc tttctatgtg 113513
tctgttggct gcaataaatgtt ccctatgtttc tctctatctt tgcgcaacctt 113573
cttgtgtgtt tggtttgttt ttttttgttat aatggttttt aagtctcttg tagattcgtg 113633
atatagcccc ttctctgatgt tagtagatgtg caaaaattttt ctcctcttcc gtaggggtcc 113693
tgtgtgctctgatggtgct atttttttttt tgttgttgtgg cagaagcttct ttagtttaatt 113753
tagatctcat tgggtttttagtt gctttttgtc ttttgtgtttt tagtctgaa 113813
gtccttgtcc atgtctatgtg ccaatggtgtt aatgtcttgta aaaaaatttttt tggggtttct 113873
getttaggt ctatcatatgtc aagtttcatagtt ccatctgaa atatatattg ctaatatgg 113933
aagggagggg tccagtctaca gttgtcctc tgggtctttcc agccacattt 113993
attaaatagg gaaatcttcc ccaattcttt gtttggtcag agtttgtcga agatccagatg 114053
gttgtagata tgtgtgtgatt ttactctagc cttcctcttg ctctctatgct tctatctct 114113
gttgtgtac cagttcagt ggtagtttttt tctgtgaggtc ctctctctgg tctatggtt 114173
aggtacgcttg tggcctgctgctt tgtcttttagtt gttgtctgggt aatggtgggt 114233
cctttttttg tccatgtgaa tttttatgta gtttttttttt ggattgctgg gaaagctatt 114293
agttgctgtga tggggagagta aaggaatcttctataaaaaac ccgctggacta 114353
agggaggagg cagggattgtg ccacccatct tggcccattta aggattggct gccgacttca 114413
cctctgtgggt gaaagaaacc cagccttctc agctccctttg tggccggtgc gacagctccaac 114473
gggttagggatg cagccagctgg ggggagggag gggagaagggg tagggccacca tggccgactt 114533
gctctctgct cttcgtgata ggggggaggg cgtgccccct tggccgcttca gggcgtgcact 114593
tgctctctgt ctatgctgca aceggctttct gtctgctcctt ggggagggc tggctgctact 114653
aagacgact gacagctctc ctggagcttg ggggtgctgg ggggaggggc aatctctttc 114713
ttgctggggc ttcttggtca catagccatc ctttgtag ttagcaccct ttggttagtt 114773
tctgttacaa cacagaggtt agaattttgca aagatacctag ctgtggctag 114833
gctgtaata tttctcctct gtctttttgc aagaaactcct gtgcaacacc ttggaattt 114893
ggcacacggag gaaagagggg gtcatttcca aacatggggt gccgagacc aacacatgc 114953
cagggccccgg gccccctocca gggcatgacag gcccccctct gcggccccac ctcggtgccc 115013
gttcctcag cccatatcgtg caagctgtgac ttctcctcct gtgcagctgaa gcctagactg 115073
acacagactc cagagaggtgc cagagtgcac cagagatgca aagggggatt 115133
ttgagctgg accagggggt ccacctgcaca ggcctctcct gccaagcccc ctcggttcgc 115193
tgtcctctgc ccagcactgc acgtgactt cttctcctcct gcctcagctg cctcagaga 115253
cacagacgcc aagagacactg agaattgcccc gагагтgcaac agcagatgaa aagggggattt 115313
gaggttggag cacgggctocca cagagcagc cccctcctcg cccagcaccc cactgtctcct 115373
gtctcagcgc ggtgggtcga cgtgtgctatt tcctctctct gcctcagagc etctagagac 115433
gcagacgccg cagaggttcga cagagctgacc cagaggtcaca cagagatgga aaggggtgatt 115493
ttgagctgg accagggggt cctgcagggc aagagagaca cctggcaagct cctcagagca 115553
gctcagctac agagcgcccc ctcgtgagct ggtgcgtgtc tcagcgtcct acgtggaact 115613
ccttccacca tcctcactgt ggcggtgcat agtgcaatttg cccctctctgact gttggggaaa 115673
cgagagccca cagaggttca aagarctgcac gcagagacca cagagatgca aagggggatt 115733
tggagccacre cccagatggtt cgggaggcc aagattgcact cttgagccac cggagctgta 115793
tggagagactc tggagccaccc ctgagattgcc ggctgtgtct gccctctctc tcctttctcc 115853
tggagaaatcgttgctcct gcggaggctc gttctctaat gtagagggg caacacccctac 115913
tcagggagc cagagggctt tagatagact acaagatgcga aagctagctc accagccccag 115973
cggcggcacg gttttagct ggcagactagct cagggggcct ggggtgcttt gggtagattata 116033
aacgtagaa caactttgcc tagtcaggtgt aagagacaca gagagcagc gagcgagttt acgtagttgc 116093
aacctaaaaa gatctgcttc atggggcttg gacagggggtc aagggagcaaga aagagggcga 116153
gtggagacac aagttctcctg tagggagtt cactaggaccc gcagacagctg tgacgtgtcct 116213

117/150
cccagaccac agtgccttt ttttttttt ttttttttt caggcagagtc ttcactctgt 116273
cacctgcc ggaatacgag cgaacatacgc agctacttgac acctctgtc acccaattc 116333
aagttgtctc cctgctctag cttcctgtg agctgagcgg tccatacatg gccagcac 116393
cacgcaatt ttatgttga gtcagggttt cagcatcgct cccaaatgtg ctcgggtttc 116453
tctcaaacct ctcgctctaa ggcattcgcct tcgcgtcacc ctcgacagc 116513
aggtctggac caccatgcc ggcacagccac gcacgcctgc gttgtcaccg caccacacct 116573
acctccaaca gtcgtcaggg ggaaggtcct tttgatggtg ctttgcagtt gacgacact 116633
tctcaaaaa cccctcacaac ccccggcct cctggcccct gcttcttttt ttatattttt 116693
tttgtttctc ggcctttct tttttttttttttttttttttagaggtact 116753
gtgcacattg tcacaggttag ttcataagtt atacactgtg cggcctgggt ggcctgaccc 116813
actactctgt cttcgcactt actgattact tcccaattct atctctgcccc ggcattggaa 116873
caattgagat ccacggccag aagagggaga aataacactc ctgggagactg ttttgcaact 116933
gctcttttacie ctaaatttaa cagcgtccttc cccgctgatat gtttgcaacc cctctgcacc 116993
cgggtctcg atcagaggg accaacaatgg gctgattcat tcaacggctc agaactaact 117053
taatgaaac ctacggtgg cccagcactcg aagggcgcag cagcaactggt aagcactggt 117113
cctgccttc gtcgagcaca gataccaaca aacagggcaggt taattgtata aacaggtatt 117173
aatgcgttca aaagagaaa gcaagaaact tataatgtaa caaggtaaaa taatgttta 117233
ctgtgaggg cgcagcaggt ttcagaggag ttaaccttttt aagggccatt gggcgggaa 117293
tttgacggc atgggtgtca ggcctcctgca gtcgggaagtg gccacaacag acctggggtg 117353
attgcaccct tccctctgc gcacacactg cagcttttctc tccggcgcaa tggctctgg 117413
cgtgggggg ctcctgctca cggcctgtaa acacccatctg gcctgctct cgcgtcaagg 117533
gatctcgctg ctgcgctgctg aacaccaatg ggtcgctctg gccacatag ttgacctgct 117593
agagaaagtt ggcagccacag ctggctctct caccctgtta gttgtgtttg ggtgggtggt 117653
ggggcaaa tggccctgaa cagagttgtt cattgtgaag ggcctgctcc aggaaaagtt 117653
ttcaggtgcg ttcacccatct atattttgcc caccgatcag tcagtcagcg aacatgttccc 117713
agccaacacc tctggccagg tctgtgtgta ggggttggg ggcaacggag tgaatcagga A
agctggcct gcctggcagg gcagctgcagg gcggacagca tcgtcataca caacagcaacaa 117833
tgctccgag caaccaacac tacgtgggac agctggcagg gcagctgcagct gcggacagcag ttcgactg tgcagcagctg agctgtggcag gcaggcagac gcaggtggggcg cggaggtgttc gcggagtccc gcagctgctt gaggaaggtctc 118013
aggttgagact gaggagaggg ccggccgagc ccggccgagc ccggccgagc cctctcctggtg cctctcctggtg 118133
aggccacag tctggccagg tcatacagag gaacccagg accttcagtc gctcttgcag ggccacagcac ccggccgagc cctctcctggtg 118193
agggccagg ccggccgagc ccggccgagc ccggccgagc cctctcctggtg 118253
agggccagg ccggccgagc ccggccgagc ccggccgagc cctctcctggtg 118313
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118373
agggccagg ccggccgagc ccggccgagc ccggccgagc cctctcctggtg 118433
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118493
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118553
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118613
agggccagg ccggccgagc ccggccgagc ccggccgagc cctctcctggtg 118673
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118733
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118793
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118853
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118913
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 118973
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 119033
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 119093
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 119153
ttccttctgc gttgggctg ttccttctgc gttgggctg ttccttctgc gttgggctg 119213
atagtcatat gatacagagg tcggaggtct cggcgcgttt aagttgcagag ttgggtgctg 119277
	tttggtctgg gatacaagatg cttiaattctgtagctt cacagcagtag gaagtgatgc ttagagagct 119333

gcagagagttg ggtgttcggag ttgatatttttc agaacagagct tagttgtttgt cggagtattttgc 119393
	ttaagtgggtag ggtgtttagta tggatagctgct gttgctgtttag cggagtttagc 119453

gttggggggcg tgttcttttcc cggggttccgg ctcgtccttt gccaggggct gctttgtttt 119513

gttggggattc tagtcctctcc tcggtctggt ttggtgcttt ttgtgcgtgtat cttgcgcgta 119573

ataaggggggtttg tagtgaggttc gggtgcgtgt ctggtcctgc gctggtctgt 119633

gggggttgcag ggctgtctgtc cgggggtttc cttggtgtgat tggagtgcctg 119693

tgatgcgtcg aggtgtaccc gtagttgggt cactttgtgct tggggtgcct 119753

ggggggtcct gcgggttcct ccggtgtgct tgggtgctgc ggtggtcctgt 119813

gggggttgatg ggtggttcct gggtgtgctg gcgggggtggc tttggggcgtg 119873

ggggggcttg tcgggggttc ggggggtttc cgggggtggg cgggggtgttt 119933

ggggtggtgctg ggtgtctggt cggggtttcg ggtggttctg cttggggtcctt 119993

gttgggtgct gggtgtttcg ggtggtcttg ggtggtgctt ggtggggtgcct 120053

gggggtttcg ctgggtgctt cggggtctgct ggtggtccttg cggggtgtgt 120113

gttggggtgcttg gcgtgatgct gcgaagtgct tgggtttggc ggggtgtgcct gtggggggct 120173

tgggtgctggt ctggggggcg tgccggtgct tgggtgcttc cgcagagctgg cccatagcag 120233
	ttcgaacct ccagggagcc cctttgggct ggtgttggct ctggtgctgc cttgggcctaat 120293

tggccataacc ctctgggtcg atatatatttc acgcgtctgg gggccacagt 120353
	ttcgaacct tggctttgct ggggggtttc cttggtgctgc cttgggcctaat 120413

cctgtccttc cctgcagctgc gggggtttgc cgggttcctt gcgtgatgc ccctctctgg 120473

tttgggtgc ctggggggctt cgggttcctg cttgggtcctt ggtttgtttc 120533

tgggttgggctt ctcggtgcttc gttttgtttc ggtttgtttc 120593

ttgggttgcttg cttgggttcct cttgggttgct ggtttgtttc 120653

ggggtttaaccc cttgggttcct cttgggttcct ggggggtttc cttgggttcct ggggggtttc 120713
gtggagaaaa atagtcttgag ctcagttgag gcataaggga ttagagagcg atttiactctt 120772
ctctccttct cactctct ctactctct ttagattctct acetgtctct 120833
gacaaactt tctgcagggg aaaaagactct ttagatgctta gactgtgatt gagaagggaa 120893
cacaaaccaac gagacagttg gactgtgaatt agatgggaaa acagaagatg aataatcaca 120953
gcagctttgc cagggggaag ggagctctta aatgagcctta attatgttg ctctcaaggg 121013
aggccagtcc tgaatagac ctctttagaga actttttcaca gcaggttta ggcgctgctc 121073
atgagctgg gcggagccta cctgcggtta gctctagaaa ggaaggggct caggcctcctca 121133
ttgcagat ggggaagcga aggcttgccag gatggaattat gtttccagt aacagcccaag 121193
accagacgce cagccggggtg ccccgagtgca cagcagcagc cagcagccca gccgggggcc 121253
cctaggtct gacctgtgct gcctctcgaa taaattcag ccctgactgtg gtcgtaatgg 121313
gccaaagtct ccaagtcta cacaagggag gcagcagcgt gtcgagcaga aagctgttctt 121373
caggttagct gactttgggc ataattctcg gctctggag gctctctaca cagaactctt 121433
cagttgcagc aagtccattc caggccctgt gtgtctagtt gagtagggag gcacaaaccag 121493
gggccacccc actggtgtaat taattccttt tgtaagggcg tggcttcgcag gcgggggtgag 121553
gtctaggtgc cacctgagcc aaggtcttgg agagccggct gcacgagcaga ggtgaccatg 121613
gacccagccc ggtgccccaca cggigaaggg tgcctgtctcg cccagaggtt ctggccacgg 121673
cctgggccc tgggatcag aagacctgga gctctgtgct cccagccagag atctiaccgt 121733
ggggacccgg tgttggaggg ctcggcgcct tggccttgcac agttgttcttt ctccttcgc 121793
aggggtaggt ggttgccagg gccttctgct ccaatggttt gcctacacgc agccacggta 121853
tcggagaaga aagagagaga ggcggagaga ttcocccctt gactgctcctt cacagcttct 121913
gacccagggt tgggagactt ttcctccca aagcagggcc ctggatcctt tgccttttgg 121973
ggacctgtgc tcggcagcct atacatgggg tgcctgattg aagtctccgtgc cccctcagcc 122033
gggcctggtc cggtgtgcttg tgcagagctt gagccacggc ctacagacct aatggagacc 122093
tgcatacttt tatattaatt taattatta tttttgagat ggagttctgc 122153
tctgtcaccgc aagtcttggt gcagttgcgc gatctagcgt cactgcaacc tgtgcctcct 122213
cagicaagc gatctctgtc ctcaagctcct caaagtagctg ggtttcacgg catgtgcaac 12227
cagctctgc taatttttttt atattttttttt tagag cagaggttt gttgtatattt 122333
ggtcagggct gtctgaactc cctgagctca ggtgaactgc tcgcctgga cttccaaagt 122393
gctggacta caggtgtgag cttgctgc gc tggcctccta catactttga aaagttcga 122453
aacatcccca ggtgggaagc ggaaagacgt tggtttggac actgaactg tcaagggtct 122513
caagttgctt caggtggagca aacaaccgta agggctccc aagcctcaac acccactcca 122573
aacctccca cacagcgtca gatgtgtacgc tcaacagcttg gttttgtgct gatctcattg 122633
cggagggcag aagtgtcagc cagacaccgt gtcgtctctc aaaaacctcag ctgtggagtg 122693
aatcctctgct ctgtctattt aatggcaga aacaaccagc ctgcctccac tggggtctt 122753
gaaagggcag aaggagggcc ttccccctggg agagaacctg gaattttcgag agaaccct 122813
aggggtcagc attgactctt atcccaacagc gtctctcttg acaccacttg gcccagttgt 122873
ttttcctca ggaatacaca gggagatgtg tgcgtctgtg acgcacacac gcagttgtgc t 122933
agactcaag tctgggggcc ttcggttgcc accaagcctc ctgtggtcttt tgggtgtctc 122993
agggtgctga gagaactgtt agccctccttc tggctgtgct tttactgtga catttttaca 123053
gggcccgtgc actaattgtcc tgacatttc atcagttgcccc gcacttcttc tggagttc 123113
actatagta aatcagttaa gacactgaga gttgctccga ggggagacgc ttgctgtgaa 123173
agccattggc ggcattctgc ctgggagggc tgggtctgcca gttgaacgcct gggaaactca 123233
gcatggagc agggaggtct tttcttgct tggtcttcag tattcatttt cattttttaa 123293
tgcgtccttt ttttcatatc ggaanagctg atgttctcgg ganaacagcc aggcacgtat 123353
gccttaacttt atttttcct ctcttcctat ttttactgtg ttctcagttt ggggatgtt 123413
acgtgctcct gggaagcagc aatggagcac gacaccaag acccttttag gtgctttcgt 123473
acgctccagc taagccattt ttctcctcgg cattttataa acccttcggt ttgagaaagtt 123533
cagaaaaaac tgtcgtgttg ctttttttt gacagagctg tcctcgtca ccaggttggc 123593
atataatgggt ggcatctcgg ctaactgcac ctacccacctcc caggtttgcat gtttttct 123653
tgcctcagc tctgtgattag cttggactac aggcatagcc caactactaat ttttttttag 123713
cagcttcag ggaacagggg acaggcacct agaaggggta gccacagggc agtccacct 12
gcaagacaag gatacaggg cgaagcatctt caagggctgca gccacacaga ggcagctcag 125333
acgcaacagt gggagtgtttt gtccttgaga ccagcggcag gggcgagcga 125393
attgacgcc cccctcactg cccctccctt gaccgcacag ccccccag ac atc gtg 125448
Asn Ile Val 210

gac atc aag ccg ggc aac atg gag gac ctt aeg gag gtt atc aca gca 125496
Asp Ile Lys Pro Ala Asn Met Glu Asp Leu Thr Glu Val Ile Thr Ala 215 220 225
tct gag ttc cat ccc cac cac ctc tgc aac ctc ttc ttc ttc tgc aac ace ace 125544
Ser Glu Phe His Pro His His Cys Asn Leu Phe Val Tyr Ser Ser Ser 230 235 240
aag ggc tcc ctg ccc cgc aag atg cgg gca gct ggc ctg tgt gac 125592
Lys Gly Ser Leu Arg Leu Cys Asp Met Arg Ala Ala Ala Leu Cys Asp 245 250 255
aag cat tcc aag c gtaagtggcc gttgcctggg gttggggact gtgcattggg 125645
Lys His Ser Lys 260
cagcgggggc gttggcatgt cctgtcctgg tgcagctctg gcagaaggttg tgggtgtggg 125705
atgagcatgt cctggactgg ccaaggtggg tggcccaatt gctggctcctgc gctggttcgg 125765
tggggagccc tggctctggg aacctgtgcc cccagacgct cctgcactgg caggaacagc 125825
cagctttta aagtgctcaggg ctcagagcgg agggcgaggg caagcgagaag gtaagggg 125885
accaacactta aaglctacct cctgtagggaga gctctccggg cctcctactt tagatctggg 125945
tctctctctg tggccctgca gccecccaag ctctcctctt ccacactagt ccacaacccg 126005
cacaactgt ctggctgcac catctctcag gcctctctgg gcgcagctgctg tgaacatgtc 126065
cctcactct agaaccacc acagggctgc tggggggttc ccacagggg atcggtggag 126125
gtgctggggt gacagactgc cagggacact tggctgacac agcagcccc accataacag 126185
cctcactga acactcactc tggccctgac cctaccaag ggcctctact gtaacatcag 126245
cgaatcttc acaacgccgc aggagatgct gtcagagaag ggaacagaa getcagttta 126305
tggcccaag gtccaccaaa ttcatactgt gcagacgctgg gctggctcgc actggtgtgt 126365
ggccatggggc tgcaactgct cacagcccttc ccagagggcc ctgaagggagag ggtgaccggc 12
cacagcactcc tctctcctcag acacgcttcg aagacctgcca cgcacggcagg caggagttgg 126485
ggtgtcccccc aggccagagg cagggacttt gcttatatgg tctcccctac tgcgctttcc 126545
cacacactcct cacagtgtct ggaataaaaac acctgttggaa taacccccag aggacccctga 126605
cctgccaagc getgcccgcg cacagaggtgt cgtgagggccc gcacgtaggc cactgttccc 126665
taggggtgct tgggtttgtc ggcgcagtcg cacacggggt ccacacggt ccacacatc 126725
ggcctcgagcg ccacacacac ctcacagttc tgctctcctcct tttgccccag ttctgcgcce 126785
cacctccac ccccccctcc ctctggttctt gctccagctc cggttctgac gctgagggttt 126845
cacaggttagttaggggcc tctctctcg gttagtgggac cagacagagtg aacacacacc tgcgctatttt cgggcgtatgg 126965
tgacgacttcc ggacacagcc cccctgttgc cgggtagggc gatggcttcg cctcccttcg 127025
cctcctgaag agacaccagt gaaacggagca cccgaggggg gttggttgtt gcagctctctg 127085
gggagagagtc ctggaggttctc agtgctcggtc aattccacaca ggctccttgg actggtttag 127145
gctcagggaggg gacgcttctt cggggcgttcg tgggtagagcg aatgggggttgc 127205
cagcagcctag cagtgaggg tggagagagagc aagagagcagc ctctggtgggg ggacagggc 127265
gtccagaagtc gctcggccgt tctcagagag aatcaggtgac cccccgtgag gggtgttgtgg 127325
gagagctgctg acaggtcacc gcctctcgccg tgcgctgtgt gcgtcgccgtgc 127385
cctggtggg ccggactcttg tattgggttt gatcgtctgg tggagagctgg ggcgtgccct 127445
ggaacacaggg gttggtcccag ggacacacgac gacggttcgca gacccgggag cctgccgcccc 127505
gtatgggttc cccgagaaat ggccagcagta ggcacaggca tatactggcc gtttgggg 127565
cctcagagata ggttgcttctg aatcaggtgac cccccgtgag ggggtgttggttg 127625
tcctcggcctc gacacggtcgg cgggggtcgcc tctcagttgc gctggccgcac cagctctcgac 127685
ttctggttctg aataacagggcc atatgtatag ttcctggtcc cgctccacgac ggcagctcag 127745
tggcctaatg aagagttgca ggggctggta cctctgctgg gctcggggac gcacgggtttt 127805
cctgcctctctcctctctctcctacctgc gcggggtcctag gcggggttctg 127865
ctccgcagcc acacagggcct aagctctctt aagttgcttga cccctcttgc ttccttcteg 127925
gttaaaaggg ccctgtgatcc gcctttgtcc tgcacaacct caattgatca cagatgcacg 127985
tcattcgaag gggtggtcag tcgcattctt gatttcatct ttgggctttt attgaacattg 128045
caggtgacg tacaagactc agacaggtct gggatgggag gagagccttc tctggtggtg 128105
gtctccacgg ctaagcctgg cacagctgcc cccacccaagg cctccagcccca attactcag 128165
gcgcagatgg cctccagcgg tgcctgtgta cagccaggttc tcggctggaga tgaattgg 128225
gaatattggg gaagagaggg gtagttccct gctctgtgct cagtcgctgac cccgtggag 128285
tcgtggag aggaggattg gggctctatgg gcacccgttt ttggtatggg agggaattcc 128345
gaagaacatcc tcaatatcgc aatctttaat gccgagatttt tcgcaacatt cggaaattgg 128405
tggagcagct ttggttcttt ttttcgggaa cggttggttg atatatatcttg ctcctgaag 128465
tggtaagaa acctggttgcc aatcttattg ggcgcggcctt tggagggagag aagggaaattt 128525
ttgaaggaacc aatcttatgat gcggagagga tggagggagag cagagagaaattt 128585
gagtaagttg cccgtgcatgt cacgtattgt tttgaaggaat tttaaatgca cacagggagag 128645
tgattatgtg gaaagatttt gggactaaac aatataaggcc atgaccaacca gaaagagag 128705
aacagagaaa aaccttggaaa gaaatataact cagttgctccc tggatgttga gctataagaa 128765
acgttagggaa tattttcttt tattttttttggttattttt actttcatagta tggattttga 128825
ctttgatca gaaaacacat gttggtgctg gaaaggggag agttgagagcc agaacagagaag 128885
ggcagagag aagttttttt ggccctttacat gttggtgta agttttttttttaagccag 128945
gggggtgggta cacccttttt tcggctggaca gcgtgctgta ttcgggttccc aagggcgaa 129005
gcgcagggc taataacatt gcacatttgct tcggctggaga cagaagccaca atcattgctc 129065
ccacgaatc cccatctctcaattcattc tggacgacat ccagtaaccctgc tgcctctgcc 129125
aacagtcgaag aaattgtgtg ttgttgattg actcaacttc aatcttttct tcaaaaaaccag 129185
cgccgagggggagtg ccattccgctcattcctc aagaggcctgg cagagctaac ctcctcggg 129245
attgttgctg ccgcagagag gacaggtgac ggggtgggta ggggcgggagag gacagttgg 129305
cgccgaggg aactaggacttt tttgaagttgt cctggggtggc cggaggggca ggttcctttct 129365
gacaatcctc caagggcgctg tggcgtgtgc tcagtgactc acctgguagg tggcaacat 1294
gctgacctct cggcgtcttt gcgcacacca gtagaacttc gtagtagac gcagctcggc 129485
tgcctgtgat gctatcacgt tttatgtatg cttttttcac acacagcatg aatcttcttg 129545
gggtttatat ttctttttct tatactctct ttgccaatt ttaagattat tcaaccttcc 129605
taaaatgaac tcggcagcct ttctttctct ttctggaggc aatgtctgtta atatatctgc 129665
tctgtaaaa cttagagaaa accttgggct gtcgctccttt gaggagaga 129725
agaatatgtt tttttttttagaacaag tcgctccac caacctctgaca ctggctttcc 129785
tcaacctgcct ctccacctcc tcggccaaag ggatttcttc acctcagcct ctggacttgc 129845
tgggtattaa cctgtgtgacctc acctggcctg ttttatatttt ttttatatttt agttttattcg 129905
aggggattac gtcggtgagag gcagcttctgc gcttcttttgt gagaacttgct 129965
tgggtatttgc tttttatttgc attttattttttttag attttattttttttggttaga 130025
ttttatattt atgattttttt tcgacatggc aacactttattt tttttagattttt 130085
tgggtatgct ttaaatatc cggtaggttgg tttattaactttttt cattgtgttgcc 130145
agttttttgct gtgttactttg aacatggtctt tt
acagctctga gccacgccc cccaccttgaag tgggtcatt taaaagggct tgtggtgcte 132
aactccagg gtcactcta gtaagggctg tggcgcagagaagcacgct cagccccagc 132485
cgcagctgc ttcagggtca ggacagccag aaagctccc acacagttgcc acagcccatg 132545
tgaggccct ttggctgtgat acagagctct gacagagagag tgtaggtctag aagagttgt 132605
gcgggagc ggctctcagag gccagagcaac gacgtcggag ttctctctgta aaggagacag 132665
aaccacaaggg ctgtctgagtg aggggtgaggg cccagctggtgc atgtttgtaa caggattcct 132725
tggctggcct aagtgggaat aagctggaggg gtaagggtaga aagtggggct ggctgggagc 132785
tagctgttgc acgcaggttgag gagacgctgg tcgcagaggt gaaggttcggg tgctcgggag 132845
agaagttggc ggccttgcc cccatggcag gtcgggcttg cttgagttgc tgcgtgattg 132905
ptggagaggg agggagaggt cggaggtgac ttcagctgct gtcagagagc cagacgagcc 132965
tgggtgctag gtttggagag ggacccacag gaagggact atgaaataagg taagctgctt 133025
gaagctggacaag gtttcctag tggggcatac ggacgctcttc gatggttcggg acctcagaggg 133085
tcgagaggag ttcctctgta ttagaagaag cctggtgcttg ggcgggccgg gtcctcccac 133145
cacagttagtc tctgagaggg accgggtgcag tgcagggacgc gggttgggctg gaagagttgg 133205
aagggcggtc ttcggtgtgc aagagggggtct taaggagaga gctggcgggct cctgagggcc 133265
acacgtggcc ttgagtttt ttgtaggatgg ggttcatgta cacatgtctg ggccaggagt 133325
gcacaactgc atctctgcgat ctgggtgctg cactggctgc atttgagggat 133385
cctctgtgct cctccccactgt gttcagagcctgtaagggattag ggaagagggcc agacaggagc 133445
gcccccccc acacggttggtc atcaagcgcg aaccgagag ccaggtcgcc 133505
tcgggagctgtaaacaacca ttcgttcttctgctgcg tggaccctgca acccttctct 133565
ggacgcggct gcgggtgaggg ggcggtgggtg ccacgccagct ccacagtcgt gacgtggcct 133625
gtatccacag agaacaaggg aggagcgtt gcgggaggg gccaaggttgc atcaagtcccc 133685
agacacagctt ggcgcctccctg cctccaggg cactttgctag catggtggcc acctccaccc 133745
acacgtgctg ctgcctcggatctctgttc ttcctggg agctcaagctg ctcgcaacttg 133805
tcctgagttc cccctcagag gctgtgcttacc acatggctag cgcgatggtg 133865
aacecaagtcttgctgtcetggtctctgcagaggttcttcactataagccagtctttaatccagactcatcaaatcatttntttctgaaagggcagagttaatccagtctgtccttgggttccagattaattttttcttctttctgggtaaatccatgtgttccacacactaatattggtgcttggggtcactcactttactcatattttcttcttatttgtttttacacactttctctttattttatttttttatattttttttttatttttttttttattt
cagaggggag ctggcagagga gttgtatttc tgtgamagga ctggcagagt acacgtgctca 139
cctggagag gagaggagat gggtgcttgct catttcccat gaggagaaaa gggtctgagga 139985
cagaccctgg aggccagaca egagcccttg tggctgagag ggccacagc taggggacct 140045
tctggcagcgc tcacgtctgt cttgtcctct cttttctggg tagagacagc 140105
agccagcagc tagcgacgcgc tggccactcg ccgggtttcag ctgggagagc ctagcagcttt 140165
gctcagcttt taggtatttc cacaggtgtg ggtgataaggct tgcacactcc accaccccttg 140225
tctgttcctcg ggtctcttcg tgccagcaggt cctagggagt taggtcctggg 140285
cacacccaggt gttctagtcc ccacgctact tcagccccag ggtgatcttg accatgtgaga 140345
cagatacagc cagagatacg ctagagaccc tggctcactct tgggaagcttt ctgacgtcga 140405
gagcaagccag ctgtaggggc cagagtgggc gagacactgt ctgggagtgc cttgctgccc 140465
actgtcctcc actgtaataat tggctcaggt ggcagccaaac cggttgtctgg gacggacaga 140525
taagcactct tctgtgcagag cagagtttctc caagagaaaaa ggaagaggtg agtgagagtg 140585
atatgaga ctgataaac ccctgtgtcag tcagagttga tttttgtgaca aaacccattgg 140645
catataac aaaaaaccctt ataatgaggag ctgacgcgtg cctgcccaggt acaacccagaa 140705
cagagataac tactggcocoa aggtcagaggg gcagttgtgt gccagagacca caagcaggtgc 140765
caggtgttgt agagggactgt ctttcagcaca ctttgaagatg ctagagacca cttgtcaact 140825
gcattcagc atcaccacag taaggcagta gaggcagagc ccatcaagtat agcttttgggt 140885
tcagatcgg aCGCTCTCAG ctcgactcc cccagccatgg gtattgcca 140945
gcgtgtctcc cattttcttg gctatagattg gggataagaa ttggtatttt tgcacagcagc 141005
agatctttac cagagttgct cctgttggaag ttgaggtttg tagagagatga 141065
atacgtctaa ctagacagac cttggcccag cttgaaacag agtctacggt ctgctcacaacc 141125
cctggggggtagcgccgaatgctgggctct cttctcagc 141180
Leu Phe
265

gagcctgagcagacccagatcataccgtcctctccgtagaatgaatc 141228
Glu Glu Pro Glu Asp Pro Ser Asn Arg Ser Phe Phe Ser Glu Ile Ile
270 275 280
tcc tcc gtc gac gtc aag ttc aec cac aqc ggc cgc tac atg etc 141276
Ser Ser Val Ser Asp Val Lys Phe Ser His Ser Gly Arg Tyr Met Leu
285 290 295
acc cgg gac tac ctt aca gtc aag gtc tgg gac ctc aac atg gac gca 141324
Thr Arg Asp Tyr Leu Thr Val Lys Val Trp Asp Leu Asn Met Glu Ala
300 305 310
aga ccc ata gag acc tac cag gtggccacca cacagggaga ccccaatcc 141375
Arg Pro Ile Glu Thr Tyr Gln
315 320
cggcttttt ttctctatgc tgagatccec atggaggggg ccttctctag caggggttgc 141435
ttctatgc cgggtatgta ggtgaagaca gggagctgta agaattccag caactcatcc 141495
cacacgcag cttgcagag aggaggtggc ctcgctttgg cctcacaggc agctttggtat 141555
gtccctgagc aagggctgca gttcaggggc cagggggctc aattcgggg aggaaagaga 141615
ttgaggaaca gagatgacgcc tcaacggtgg ccaccagttga gcaatgtaga gctgccttcc 141675
cctcccaact cctcgggggc ctcctgagga gctgtacatc taaagagggt taagcgttgcc 141735
cctcccaggg tgccatgcag aaccagctac gcagaggtgga acggtcgaga actgccgaca tggcttttt 141795
ccagatcctc agcacagggc tataagcctg gacigtgtgg gaagcctcgag ccctctttgg 141855
acagtaatt tttattttcc gctatatcag tccatcagag tattttgag ggtagcaaac 141915
aaaacactag tgatgtttaaa atataatgtg gacgtgaag aatagtgtaga tgccattcaca 141975
gctggctca gttgagttgg ggcgtcaggg aaggtttgg gggaggggtt cattgtggct 142035
gggccctgaa ggttggtaaa gatctgggaca gtgcaacag ggtggagagaa acacccaccc 142095
gaaacccca gcggctttct cacgttgcct ctcctcacaac anggggtcgc acgttgctgaa 142155
catctgtcac ctctttttt tacgtcggcg tgacaggag ccctcatctt attgtggag 142215
aagggactgc ggcctctcgag agtgtggag atgggagag ttgctctgg cttgcggtg 142275
acagattcag agcccaagct cagagcctta gcttttttt ctcctgctgc gaagcccatac 142335
tgggaaacgg ccctggggcg cgcgcgctc gctggaactgg tggcagacgc tcaagggggg 142395
gctggcttgg atgtgacctg ggcctccagag gacctgcctg ctcctggcag acgcacaccac 142455
cacaagggcg cgctagaggg accgcttttt tgcctacccgct gggttttttt ttgagtttctt 142515
gcagaagcccc cagtctctcc ctcaggcccc ctctctcaca gacacacccc aggcaggaact 142
cagcctctct ctgtctcagc ggggatccga gacagccacag actaggagag gacacgata 142635
agccgggccg acgcctcagc gacacacacc ctgcctcctct ctgggacctc gtcaggggaa 142695
tgaacatttc caacccccct cggcctcttg tccgcacact ttactcattc ctggagctca 142755
gcagaagcccc atgaacacctt gacaactact ggaatggttt actagagcat ttcagggggg 142815
aggggacac aggcttctga aatctctctc aagggcagcc caagaggaggg gaatgacttg 142875
tctggagcgt gaggcgtaga gtcggcactc cggcagcctg cccagcgtc acatgtatcc 142935
taaataata gcaataacta cataaagcga gnacacacac caacatattt tggltgcggtg 142995
tatgtctct gaaattgtgt gtacgcaggag tgcgtgttgg tgggtgtggg tcctctctaa 143055
atacgagcct actctctcaca anaacagggg gtcggagag ggcagctcag gaaagttgcgg 143115
agggctcagc acgcgctcagc agccacactgt ttctactctg gatctcagtc caccatcatt 143175
tggcgttggg ttttcaccct ttcacagttg tacatctgg tggcagcttc gagctcaggac 143235
cctcagcagct ttcgctacag acgtcatcagc aagagcatg gatacaggtct gccctcaccct 143295
ggggtccttt gcgcggttcag caatgtgggt taaaacccc ccagaagtgt ttcgagagaa 143355
cctctctag ctcattgctg agaatgggct cctggcagcag acataatggtg ctcggagagt 143415
taatgtccttg ttggtgaggag aggcaaggtt ggggcttg ggagcagtgtt ggagcaggtt 143475
tggaaagac caacatgaggg ttaagtcact ctctcatttt gcctctcaggc 143535
ttgcgtctgca gctgtggaag gcgtattcct ctcctccttt ccttggaaga cnatggagt 143595
aataagcctt tctgtgagag gacgacagcag cagmngagct tagatgacac gtcttttcttc 143655
agagtgcttc ctcactctgc caactagggg cggagagac ttaagtcagc gacacgagaa 143715
cacactgtgc atgggaagc gtcacattcag aagctgtgtg ggagcagagt gaggagaga 143775
cacaaaaagc cagaggggag gtacggagcc gacacactaa aacctgtgtgcc attctcccc 143835
catagattta gtgcagcact atacagtggc agtatcccttt gcctctcaggc 143895
tgggacaggag agagaagagc gacaccccgg gtcacactgc aggggtcagg gacacagagag 143955
acagagtta ctcacgttgg ctcggaggtc aggccagggg cccaaaggga aggcaaggtt 144015
caccaggagg aacgaggggc tgaggaggga tgacaggggc cccagcgggg agtcaggttag
cctgtctaa caatcctgtg tgcaggtgag acgcagcctctcctcctagcttcc 144135
cctagcctac ctgttttccc tctgtgtgct tgggcaaccttctagttcaga tgcctagag 144195
aacacagcct acacaggtgg ggtgataagc tcgagataag gggagatttg aaggaatagg 144255
tcgacggtgc atgtcttaaa tctgcagagc agggggaagc gctggtgtgct gccgtaagag 144315
tgactatgcg agccacacag catcctgttg cggaggtccccc ctggtctcag ggggaggtgt 144375
ttatctgctcta cagcctgttt ctgctgttag gacaaggtcc cccacatgtag ggagggcagc 144435
tctctttact cagatatatc gtaaaatagt taacctcccc acacaaaatg ttcacagaa 144495
acaccaagta ctggtgata tggggccagc caagctgaca caagaaattg agcttcacac 144555
cacccctcac atttctctgt tgggtgagg tggtaatattt cacatctcgg gaggtaggaac 144615
caggtctcat gcaccaacagt tacctcctct tccgcacccaa gaggagcagac ccgtgccctt 144675
gttggtccttg cagctccagc caagccagag gcctggaacct tctgggggctgcct 144735
gggcttgag gacgagctgc agtcaggtgg atgcaggtcc tgggggtctga cccctctcct 144795
tggtggcgtac gggatctgtt tggggaggct ccttgtcacgcc tctagagggc tttgigaccc 144855
tgtaggccttc agtgcctgtct gcctgggatt agttgagaac cttcttggtt tccctttcct 144915
cctcttga tgcagggcag cctgtgttct cggagatctc taccctcaaa aggcgctgcc 144975
tgcacattaat gcacagaaac cttgtgaggtt cggccctttac acctttcctgtcaggg 145035
cctggctca gagagatgaa atcaactgctc caacacatacagcagctggag ggcagagcct 145095
ggatcgcgc cccagctggtt cctgggccttt gtgctgttgg cgtctgttt gtcacagtgag 145155
tctgtctcc ctggtgtcac ccctggtcct ggcacagct cagagttcag ccgtgctcct 145215
ggtgtgagc cccggtaaa ggtgacagggg cttgatttgg cctgtcagc gggtgaggtc 145275
gccgtctcc tggctggttg gggcggggat agcagggg cggctgttag gcctgtgcagc 145335
cctggtgtgct cagagactg tgggtctaca ggcctgccgg gaagagttgg agtcggtggtg 145395
cggcgggtgt cagagccatg agcagctgc ggggagtgcagc ggtctgtctg cggacgagtc 145455
caggagcatgc agacccctgc tgcctttgga caccctttct gtcagagggc cagataggttc 145515
gggaagcccc gcctcaac cccttccttc ttcctccacag gcctcat tac tgt 145570
g Val His Asp Tyr Leu 325

cgg acc aag ctc tgt tcc ctg tac gag aac gac tgc att tcc gac aag 145618
Arg Ser Lys Leu Cys Ser Leu Tyr Glu Asn Asp Cys Ile Phe Asp Lys 330 335 340

ttt gaa tgt gcc tgg aac ggg acc gac ag gtaaaca gctccagcc 145667
Phe Glu Cys Ala Trp Asn Gly Ser Asp Ser 345 350

gcaacgcac ccctcggtgg gagggtttc gctccaggg ggtctggtgc gggatctgg 145727
tgaccgcag ctagggcctca cctccctcag aaggtggag gtgtgctggt gaagcccccg 145787
ccttcagag catggcaca tctcagccgt cagatcagag ggcgaagaca tgaattctt 145847
catattgtga cactgaacct cacagccacag ttgccgctcg ccctatgtgcc agtagtgagg 145907
acatggtag ctaaatccag gttcccggct gtgtgctcccc cctccctcc gtgtggggg 145967
cgaggcttat agccagacag cccgctcaac ccctccatcc acaactgctgt gttctgagac 146027
agccctgcaag ccctgtgctc tggaccaccag gtctactcac cccctcccctctcactca 146087
cgtctccct ctctctgctc tggacacccca cctgggcccag cttgggctca gggccacct 146147
ggagtcctgc gacccctcag ggttttctca aatccacacac tccagcgcctc tctcaacccc 146207
acatgcctgg aaagtgacgc cccctgttga gaattgagtt cctgcttct cctagcctgg 146267
gtcggccca gggggtccag gctgggagcg gctgggacag gggtctcgat cctagccctc 146327
accctggtcc cttacctct cttccttctc tccgtggatc ttcctccatt cttgggtcgg 146387
gaaatccct cttccctcct ccctttcactc atctggattg tggctcaggtt ccctccaggc 146447
gtacacctt caaatggcaag acgcatctct ccactctgta gttctggatc cagaaagctg 146507
gaggtggcct ccctctcagct ccctcctccgc ctcagggatgc ctttcctgcc 146567
agccggccag aatacaagt gttctccag aagatcacaag gtgtgagat aaagactaca 146627
cgtggctta gtcagaca gattgtgac gcgtcagctgc tacttgctcc cctctccgcc 146687
agtcctctcc agtagggtgac gcacacgcgg tggagtgaga gccagcagcc cttgctccgg 146747
catcacctgc cttggggcct gcctccctgt ggtagggcact acaggtcctg 146807
gtctecceag acctctgagg gtggctggca ctgctgctgt catgtgagag ctgccgcact 1468
atgacctct ctgctgctgg gcatagccct gggacactca ggttgggtgt gtggatgag 146927
gggaggctg gcagtagcagc agacaggaccc aggaggagc cccctggaag cagggctgga 146987
tccaaatgctgg gggcccaagtc atttgttcca ggggaaggaga tttctgagag agttgccaac 147047
atcctggagcc tccccccagcc cgacagggtc ttctcagcga gcggaggtcct aggcaagggg 147107
tggtgcattgg gatcacaggg ggcactaaag ggtatgcattg aaaaaccagga tggagccccg 147167
acccgggctc ggtcgtggcaaccttgggtca gggagaaaaa gggacttctctt tagaagcct 147227
gccccccagt agatcccaaga caccceccagc agacagggct ctccctattgc tpcgtgagctg 147287
catttggt tcctcgtcttc agtggttccccaaagaggtttct atacaataagc cgcggagggg 147347
acctgcagct gtaaacaagct gtacccagct ttatatgtcgc tttgcggggp tagtcccccag 147407
tggctgccaa cccactgccc gtccttccttt cacgttgcca cccagggcca cccggcggcctt 147467
ggtgtagctc gtcctcagcg cggcagaagct cccagagctg gcacgtggtgt 147527
tagggcggct gccctctctg cctgtccccc accggccact ctcgccgtgc acctttacagc 147587
cagcagcaac cggtctctag cggccctcctt cggcctctca gcttcctgctccagagcctctg 147647
gctgctgctgc gggcgctggg aucctcctgc cttggttggcctgcctgaatag ggtgggtggc 147707
cctgggggg ctcctcatct ctaacctttgct gagggctggcttgc acaggggacc tgggtggtgt 147767
cagtgtgctgg tcggctttcct tagaagcctag gggtgtggtgc cactccccag ttcaccttga 147827
gcaagttctc gagaacaaca tggccccattgc tctagaggtctg ccacgataaaac agaccccgagg 147887
tctgctctcc gaggctgcttac gaggctaggc agagggagca gagattcccc ccagttccccca 147947
cacccctgca gacccaaagc catctgaatcttgccgccagct cccagttcct gcctttatat 148007
tcgctgctgac ccccttctgac atgtgctggc gcggcagcagc gcggcgcgtct gcgggtggtt 148067
ggtgcccgag cttccctgtcc cgtagggctt cttagccagg gcagaaaccg gtagggcaca 148127
ggtgtgagga gaggccagcag ctttcctctct gacttctctc agtctcctgtt ccacatctata 148187
ccccctccac cggtgctttg cggagggcctt tagagcagctc ggctgagaaat ggtgtctcagt 148247
gaaactgccc cttggtgcgg cttggctgagt gaggacatgt gtttagcttt cagcaagacte 148307
ccagtcgta tgcgcgagg ggctcgcgtg atccccctta tggcagagg 1483
tgccctcccc caggttacct accgcagga atcgcaaggg cccctcaca acaacaatcca 148427
acggccctc ctccatcagag ttctctctga tctgtctgcct ctggggggag agattttcgtc 148487
cagcgcagag tgcctcggct tgaggagtcaaa aacacacccact ttggctctcg agggtctctg 148547
ggcaagccct cccagggggc ccctgcgctgt gcctctaccc gcctggggcg 148607
cttcctctct ctctctcctc cccctcctcg ctctctcctg ctcttcttta cacactggcc 148667
tctctctcct ctcgctcag gcagtttacc cccactctcc aacatcttcc cctctctcacg 148727
ageccaaccc ctcagggac ttgagtaaac tcctctggaa gagatgtgat ggcctcctgt 148787
gggtcacttgg cccacttccc gcaacactca gcaagccactgc agatgtcaggttctg 148847
ggaggccca aagggcgggg agagccagct gattgccgct ctcaggggtt agggtcagca 148907
gttggtgctctc ctcgctcag gcctctcctgc gcttacaacct tctctctccgc 148967
cagctcctca agagtgctgg attacagccgc cccagccggc cggaggccagag cccctctttc 149027
tcccccaagc aaagagggac ggaagcactgg gcctgaaggc agccggcgcct gggcctccac 149087
atccagatgg gcctaggaga ggtgaagccgt ctcctctgcct ttttctctgg ttaagggac 149147
ctttctcttag ttaaggaacc ttcgctcagtg tggagatgg ctcgacagct cgggcgctt 149207
gggctctctgg gttagaggg gggctcctgct cccctccaga gcaaggctgca gggctcctcc 149267
aacccggaac aagggcgagg ctcaggaactg ttcgctcctgc aatagaccttt aatattgctg 149327
cctctctcc actaatcgaag cagccatttg tgaagatcacc gtcgctcatt 149387
ctggcactgc ctcccagtaag aacagagggc ggttgccctcc cactcgtgctc gcggggggag 149447
ggttgccct cccactctca ggcgttcgct ccggggcagg gccccttgct gggccctgtt 149507
cacccggcc cccctcctgtt ctggtcctct cttgagcagc ttcacctaat ataataggcg 149567
ggttgccggtt tggtcactgc gaggattttg aatcgagggat acctgttaaa taactgagaag 149627
caaagctct cagctcaggg cctttcgcgc ttcagctctgc tattgcacat ggtcctcgtt 149687
caccagggc ctcgcgtcaggt ttcgatcact gacttcgttaag aaaaaagatgagctcga 149747
ttcagggta gcagcagagt gggatcgcag cccagcggag ctggccagag cccacagccce 149807
cccacag c gtc atc atg acc ggg gcc txc aac aac ttc ttc cgc atg 151355
Val Ile Met Thr Gly Ala Tyr Asn Asn Phe Phe Arg Met
355 360

ttc gat cgg aac acc aag cgg gac gtg acc ctg gag gcc tgg aag gaa 151403
Phe Asp Arg Asn Thr Lys Arg Asp Val Thr Leu Glu Ala Ser Arg Glu
365 370 375 380

agc aag ccc cgg gct gtg ctc aag cca cgg cgc gtc gtg ggg 151451
Ser Ser Lys Pro Ala Val Leu Lys Pro Arg Arg Val Cys Val Gly
385 390 395

ggc aag cgc cgg cgt gat gac atc aat gtg gae aag act tgg gac ttc ac 151499
Gly Lys Arg Arg Arg Asp Ile Ser Val Asp Ser Leu Asp Phe Thr
400 405 410

aag aag atc ctg cac aac ggc tgg cac cgc gct gag aac atc att gce 151547
Lys Lys Ile Leu His Thr Ala Trp His Pro Ala Glu Asn Ile Ile Ala
415 420 425

atc gcc gcc acc aac aac ctg tac atc ttc cag gac aag gta aac tct 151595
Ile Ala Ala Thr Asn Asn Leu Tyr Ile Phe Glu Asp Lys Val Asn Ser
430 435 440

gac atg cac tag g tatgtgcagt tcccgccccg tgccacccag cctcatgcac 151648
Asp Met His
445

gtcagcccc agatgacct tca aacgc gca atgcaaggag gggaagaag tccagcaagct 151708
ratgagca cgtgcagagg tggcagtgtc tggcacaggg aagattgggc cccctccctg 151768
cccagcttt cctagccag aattgtgatt ggcagtaatt gtgcgtttaa aaataaaaaa 151828
ag 151830

<210> 38
<211> 447
<212> PRT
<213> Homo sapiens

<400> 38

Met Gly Glu Asp Thr Asp Thr Arg Lys Ile Asn His Ser Phe Leu Arg
1 5 10 15

Asp His Ser Tyr Val Thr Glu Ala Asp Ile Ile Ser Thr Val Glu Phe
20 25 30
Asn His Thr Gly Glu Leu Leu Ala Thr Gly Asp Lys Gly Gly Arg Val
 35 40 45

Val Ile Phe Gln Arg Glu Pro Glu Ser Lys Asn Ala Pro His Ser Gln
 50 55 60

Gly Asp Tyr Asp Val Tyr Ser Thr Phe Gln Ser His Glu Pro Glu Phe
 65 70 75 80

Asp Tyr Leu Lys Ser Leu Glu Ile Glu Glu Lys Ile Asn Lys Ile Lys
 85 90 95

Trp Leu Pro Gln Gln Asn Ala Ala His Ser Leu Leu Ser Thr Asn Asp
 100 105 110

Lys Thr Ile Lys Leu Trp Lys Ile Thr Glu Arg Asp Lys Arg Pro Glu
 115 120 125

Gly Tyr Asn Leu Lys Asp Glu Glu Gly Lys Leu Lys Asp Leu Ser Thr
 130 135 140

Val Thr Ser Leu Glu Val Pro Val Leu Lys Pro Met Asp Leu Met Val
 145 150 155 160

Glu Val Ser Pro Arg Arg Ile Phe Ala Asn Gly His Thr Tyr His Ile
 165 170 175

Asn Ser Ile Ser Val Asn Ser Asp Cys Glu Thr Tyr Met Ser Ala Asp
 180 185 190

Asp Leu Arg Ile Asn Leu Trp His Leu Ala Ile Thr Asp Arg Ser Phe
 195 200 205

Asn Ile Val Asp Ile Lys Pro Ala Asn Met Glu Asp Leu Thr Glu Val
 210 215 220
Ile Thr Ala Ser Glu Phe His Pro His His Cys Asn Leu Phe Val Tyr
225 230 235 240

Ser Ser Ser Lys Gly Ser Leu Arg Leu Cys Asp Met Pro Ala Ala Ala
245 250 255

Leu Cys Asp Lys His Ser Lys Leu Phe Glu Glu Pro Glu Asp Pro Ser
260 265 270

Asn Arg Ser Phe Phe Ser Glu Ile Ile Ser Ser Val Ser Asp Val Lys
275 280 285

Phe Ser His Ser Asp Arg Tyr Met Leu Thr Arg Asp Tyr Leu Thr Val
290 295 300

Lys Val Trp Asp Leu Asn Met Glu Ala Arg Pro Ile Glu Thr Tyr Gln
305 310 315 320

Val His Asp Tyr Leu Arg Ser Lys Leu Cys Ser Leu Tyr Glu Asn Asp
325 330 335

Cys Ile Phe Asp Lys Phe Glu Cys Ala Trp Asn Gly Ser Asp Ser Val
340 345 350

Ile Met Thr Gly Ala Tyr Asn Asn Phe Phe Arg Met Phe Asp Arg Asn
355 360 365

Thr Lys Arg Asp Val Thr Leu Glu Ala Ser Arg Glu Ser Ser Lys Pro
370 375 380

Arg Ala Val Leu Lys Pro Arg Arg Val Cys Val Gly Gly Lys Arg Arg
385 390 395 400

Arg Asp Asp Ile Ser Val Asp Ser Leu Asp Phe Thr Lys Lys Ile Leu
405 410 415

His Thr Ala Trp His Pro Ala Glu Asn Ile Ile Ala Ile Ala Ala Thr
420 425 430
Asn Asn Leu Tyr Ile Phe Gln Asp Lys Val Asn Ser Asp Met His
435 440 445

<210> 39
<211> 19
<212> DNA
<213> Artificial

<220>
<223> primer 99-24169/139

<400> 39
tggg tgtg ctccttgt

<210> 40
<211> 19
<212> DNA
<213> Artificial

<220>
<223> primer 24-257/320

<400> 40
gtctctctga tggtctgcc

<210> 41
<211> 19
<212> DNA
<213> Artificial

<220>
<223> primer 99-24175/218

<400> 41
caga ttttc gata cgatca

<210> 42
<211> 601
<212> DNA
<213> Artificial

<220>
<223> amplicon 30-4
<220> allele
<221> (301).(301)
<223> polymorphism 30-4/58

<220>
<221> allele
<222> (301).(301)
<223> biallelic marker 30-4/58

<400> 42
tgaagccgcg gttgtgcgcc gcagacgct cgctagagcc ctgctgggtgc atctccacgt 60
actcaactc agtggtgatg ttcaagtgcg caaaggtcac caccatgcc gcagcgcagca 120
tgcggtctca caccgcgcgc acggagcacag tgcctaatgc gcagagaggg aggagagcttg 180
agggagagt gggcccgag gggatctgg ggcaggatat tggggacag aagctggaaga 240
cacaagagcg cttgagctgg atcrrrrggga cagggctcgg gttgggagggc acaagggcgg 300
rgtccagggg aaagagaccc agagacacag gcagacacag agatctcaag gaaagttgaggg 360
gctcattag ccaagctccggg aaataagagg ctagcagcga gacgctcgga gaccccaggg 420
aaaaagcaca gcgacagaga agcgagagga ggctagagag gggagtctct gaaacttgaggg 480
tcctactcag gcggcgagag agoaattttcg cctaaagagg gaactatggg accxctcatt 540
tgggttagg ctcctccctg tgaagtctgg gggccgact gactgtctct gcctggagcc 600

<210> 43
<211> 601
<212> DNA
<213> Artificial

<220>
<223> amplicon 30-2

<220>
<221> allele
<222> (301).(301)
<223> biallelic marker 30-2/62
<400> 43
gctaacagga gaaagcactc gcacactagc tccccgggcgc tgggaacagg ccgtgcccct 90
ggecccaca ctceactcct accttcaca ggaaagcggc cccagaatcc agccactcag 120
ttgtegggg caggggcccc gcggcgatgg aaacaaagttg gacactggac gcgaatccaa 180
cgtggcagcc aatacaacag caggaacagc acagacatgc ccaggtgagg ctgaggggtg 240
cctcccgtc cttgccaggg gcggtccccc caagccaccc cagcccggtg ccctccacag 300
rcctcagag ggccacatcgc cagaaactc aatgggacaa ctcagagcg gcctacgaca 360
aagaaaaacc accaaagtc accaaggca cgtatttaa gaagtgccct ccctctctgg 420
aatggtcac ccaaaagtct tctatttggga acctgtggcc tggccccggc cagccagagg 480
cgcaggctgg gtggctgaggg cgtccagaca gcctctgtgc ccctcagagc tcgcagact 540
cccatcaggg gcacaaaggg cagagagtc ttcagccccca tgttctcttg gacgaattaa 600

<210> 44
<211> 601
<212> DNA
<213> Artificial

<220>
<223> amplicon 30-17

<220>
<221> allele
<222> (301),(301)
<223> biallelic marker 30-17/37

<400> 44
caccaacagc cacactcctc caggagacat gcagctccgc cagtcaccgc accttgggct 60
cgtctccag ggtatatagg gctggratga cccgcttcct gaggccagca gagctccac 120
gcagggctgc gggcagggcg tcgcagagcc gaaccaggg ggcgcgtgg ccctcaccatc 180
ttagctcgg gacccacattc cctgtgagct cctggcctgg gcacagtgg gctgcagtgc 240
cagccacagc tcctccacag gcgcagagtc gtctatttgg ggcgcagacca gcgcttggaga 300
rttgtggac tggcagace cttccccaac cccttgacgc ccctgcggccac agatgtaaa 360
agggctccca ctgcaagtctg cactcaaccc ccacagcgtc cagggaggg gagggggccc 420
ccggggtca cccctgcctc ttcgctgcagc aaagccacca ccctgcgagg gctcaagagg 480
gagagaatgg gggagggggc catttgagca aatgagccca ccctgagaca aggtggaggg 540
acagccacgt ctggcaggtgt ggggtctcgg tcactggggg gctgggagcc cctggaactc 600
a 601

<210> 45
<211> 601
<212> DNA
<213> Artificial

<220>
<223> amplicon 30-7

<220>
<221> allele
<222> (301),(301)
<223> biallelic marker 30-7/30

<400> 45
gcccgagatcc cccgagctcc gaggcctcgg tgccttggg agtcctaggag cccgtggtac 60
aggtgcctgc agggcctccgg tcctgagttc acaccccctgtactgcctag cccagcaagac 120
cgccccagtgg ggggctcgggg ggctgcctggg tgcctgctgct gcgtcttcccatacctgct 180
ggccttctggt ccctcatccca acacacaagc cacagggagct ggggaggaga ccagggaggg 240
ccagggagc acatgggccag aggctcagcg ggactcttgtt aatgtctcctctctcaca 300
ygccagaccc atttcaaggg caagaatagg cccctcctga cccgctctcg gcagggccgca 360
gggccagtggg ggtgccctag aagactcaat tcctctcttc ggcgggttcac ccagggcagg 420
tccagtcacct agagagagaag gcgcacactc cctgcctcgc ggcagctggg aasgcaeecc 480
gttggagccag cagcctgctgc gcgcacacctgc aatgctatggg gctgcctggg ctggctcctg 540
ggcagagccg gggctcaggg gcctgagtcgg gcatacagta atgggcatcagaggg 600
g 601
<210> 46
<211> 601
<212> DNA
<213> Artificial

<220>
<223> amplicon 30-84

<220>
<221> allele
<222> (301)..(301)
<223> biallelic marker 30-84/37

<400> 46
tgtgctaaaa catagtggtt taaaaataat gataaccatt tategtctca gtttctgca 60
catgagctc ggaaggcagc cagccgatct ccaactecca cgtgcagggc ctctgccata 120
agccctagag gcacccatct actcaagcagc ggggctag taccaggctgt gacagaggcc 180
tgagctggaa ctggtgacca ggacacacac atggcctagt ggcctctggg ctcttcaca 240
gcattgcttc tggattcagc gacggtgcat cctgagaaac aacctgacag aacgagccct 300
rttggtctcg ggctgctgctt ggacgcagc agtgcacttc cttgctcttc taacctgggc 360
cccccgggccc aaggggagga aatggagarcc ccaaccecca gttgagggga ggcaaggtcc 420
cactgtgagg tgtacacagt ggataaccc acttggtcttc cgctggagac gttagtggcc 480
dacccgggt gttctacagt gaacattttg cttgctctca cttctgctact cttggtctc 540
gtctgctgct tttcactaca ccagggcccc ccacagtata tgcagaccag gtttctgccc 600

<210> 47
<211> 601
<212> DNA
<213> Artificial

<220>
<223> amplicon 30-15

<220>
<221> allele
<222> (301)..(301)
<223> biallelic marker 30-15/54
<400> 47
gatgtgaat aagccagga aagatcgg ctaaagtgg gcacattcta aagtctacgt
60
gagccagtc tgacctggg aacctcagt aagacatgg cgctgaggt ctccttttgc
120
capggccctc caggggtcga caggaaggt cg-tag gaat tacaagaata ttcctctgtc
180
gcactaggg gaggggggaa tggagccac cgcacagcag caccoctcc tcaacctctc
240
gtgaagcaca agactcactt gcagagggaa gagegagaa ac cgctcacc cagaagctgc
300
mggttagagc agaggaagcg agaatggaga agccctgccc ctggaggaaca ggtgaaaaa
360
cgctttggctc agctcctgag ctggaggaaga aegggcgggc tcggagagc cacacccoga
420
gacccgagga cacagttgct gcttagatg gagccagaa cattctcacc cccttcgcgc
480
aagactaaca agggctccat gaaaataaa ctggagaagc tgaagaagaa gcactctccc
540
tgggtgaga accaagaaaa gacacaaagc caaggaagcg ccattgagaa aacactgaggc
600
a
601