发明名称

用于在农场中输送动物产品的方法和输送设备

摘要

本发明涉及一种用于在农场中输送动物产品（200）的输送设备（100）以及一种用于这种输送设备的驱动设备。本发明还涉及一种用于借助输送设备来在农场中输送动物产品的方法。输送设备（100）包括输送带（300），用于至少一个输送方向（FR）。驱动输送带的带驱动器和测量装置（130，131，132，133，134）。所述测量装置构成并且设置成，使得测定输送带的装载量，其中输送带（300）的装载量是带驱动器的功率值和/或带驱动器的支撑件的支撑反力。
1. 一种用于在农场中输送动物产品（200）的输送设备（100），其包括：
 - 输送带（300），
 - 用于沿至少一个输送方向（FR）驱动所述输送带的带驱动器，
 - 测量装置（130, 131, 132, 133, 134），所述测量装置构成并且设置成，测定所述输送带的装载量。
 其中所述输送带（300）的装载量是所述带驱动器的功率值和 / 或所述带驱动器的支承件的支承反力。

2. 根据上一项权利要求所述的输送设备（100），其包括控制设备，所述控制设备成为，将所述输送带（300）的所测定的装载量与额定值比较并且优选地，当相对于所述额定值超过或者低于预设的间距时，生成报警信号。

3. 根据上两项权利要求中的任一项所述的输送设备（100），其特征在于，所述测量装置（130, 131, 132, 133, 134）构成为，重复地测量所述输送带（300）的装载量，例如以有规律的间隔来测定和 / 或以事件控制的方式来测定和 / 或以用户启动的方式来测定。

4. 根据上述权利要求中的任一项所述的输送设备（100），其特征在于，所述控制设备构成为，将所述输送带（300）的所测定的装载量与最大装载值相比较，并且输出通过比较确定的差值。

5. 根据上述权利要求所述的输送设备（100），其特征在于，所述控制设备构成为，
 - 从所述差值和每时间单位的装载值确定最大的添加装载时间段；和 / 或
 - 从所述差值和添加装载时间段确定每时间单位的最大装载值。

6. 根据上述权利要求中的任一项所述的输送设备（100），其特征在于，所述控制设备构成为，在时间过程中存储所测定的量，并且优选地、优选推导出每时间单位的、优选在特定的时间段中的所述输送带（300）的平均装载量。

7. 根据上述权利要求中的任一项所述的输送设备（100），其特征在于，所述输送带（300）的装载量选自下述中的至少一种：
 - 所述带驱动器的转矩和 / 或电流消耗；
 - 所述输送设备的元件的伸展变形；
 - 作用于所述输送设备的元件上的力，尤其是压力和 / 或拉力；
 - 位于所述输送带的各部段上的所述动物产品（200）的重量；
 - 所述输送带的各部段的位置距初始位置的尤其在径直方向上的偏差；
 - 输送带推进值，尤其是输送带速度。

8. 根据上述权利要求中的任一项所述的输送设备（100），其特征在于，所述测量装置构成为
 - 力传感器（131），尤其是压力传感器和 / 或拉力传感器，例如测压元件（133）和 / 或应变测量片（132）；
 - 转矩传感器，例如应变测量片（132）；
 - 电流测量设备（130）；
 - 间距传感器（134）和 / 或
 - 输送带推进值感测器、尤其是转速监控器和 / 或测量轮。

9. 一种驱动设备，其用于在农场中输送动物产品（200）的输送设备（100），尤其用于根
据上述权利要求中的任一项所述的输送设备，所述驱动设备包括：

- 用于沿输送方向（FR）驱动输送带（300）的带驱动器，
- 测量装置 (130, 131, 132, 133, 134)，所述测量装置构成并且设置成，测定所述输送带的装载量，

其中所述输送带（300）的装载量是所述带驱动器的功率值和 / 或所述带驱动器的支承件的支承反力。

10. 一种用于借助输送设备（100）、尤其是上述权利要求 1 至 8 中的任一项所述的输送设备来在农场中输送动物产品（200）的方法，所述方法包括下述步骤：
- 借助于带驱动器沿至少一个输送方向（FR）驱动输送带（300），
- 借助于测量装置 (130, 131, 132, 133, 134) 测定所述输送带的装载量，
其中所述输送带（300）的装载量是所述带驱动器的功率值和 / 或所述带驱动器的支承件的支承反力。

11. 根据上一项权利要求所述的方法，其特征在于，将所述输送带（300）的所测定的装载量与额定值相比较，并且优选地当相对于所述额定值超过或者低于预设的间距时，生成报警信号。

12. 根据上述权利要求中的任一项所述的方法，其特征在于，重复地测定所述输送带（300）的装载量，例如以有规律的间隔来测定和 / 或以事件控制的方式来测定和 / 或以用户启动的方式来测定。

13. 根据上述权利要求 10 至 12 中的任一项所述的方法，其特征在于设有下述步骤：
- 将所述输送带（300）的所测定的装载量与最大装载量相比较；
- 输出通过比较确定的差值。

14. 根据上述权利要求所述的方法，其特征在于设有下述步骤：
- 从所述差值和每时间单位的装载量确定最大加载时间段，和 / 或
- 从所述差值和加载装段时间段确定每时间单位的最大装载量。

15. 根据上述权利要求 10 至 14 中的任一项所述的方法，其特征在于设有下述步骤：
- 在时间过程中存储所述输送带（300）的所测定的装载量；
- 优先地推导出每时间单位的，优选在特定的时间段中的所述输送带的平均装载量。
用于在农场中输送动物产品的方法和输送设备

技术领域
[0001] 本发明涉及一种用于在农场中输送动物产品的输送设备以及一种用于这种输送设备的驱动设备。
[0002] 本发明还涉及一种用于借助输送设备来在农场中输送动物产品的方法。

背景技术
[0003] 在农场中，尤其是棚圈设施中产生动物产品。在现代的、高技术的棚圈设施中优化动物的环境条件，以便实现合理分类的并且同时有效的生产。动物产品在此尤其理解为来自家禽饲养的产品，例如是蛋或者肉，例如是整只动物如肉用鸡。但是在这种也将所述产品的在养育、产蛋或产肉时如给鸡填饲时产生的副产品、例如动物粪便理解为动物产品。
[0004] 现代化的棚圈设施的一个组成部分是用于输送动物产品的输送设备，所述输送设备具有大多为环形输送带的输送带和至少一个输送方向驱动输送带的带驱动器。这种控制设备尤其用于：从不同的动物饲养系统（例如，鸡舍、笼子等）中快速且可靠地输出或继续运输动物产品。这种动物饲养和运输装置通常构成为是分隔的，其中层能够竖直地彼此叠加地，也是以侧向对位的方式彼此叠加地设置在棚圈设施中。
[0005] 在用于输送粪便的输送设备中能够附加地提出对粪便进行通风，以便将其干燥或者在单独的干燥设备中进行干燥，在所述干燥设备中同样能够使用开始所提出的输送设备。
[0006] 现有的输送设备能够与带驱动器的结构类型所决定的实施方案相关地将最大的拉力施加到输送带上。位于输送带上的动物产品的量或数量和输送带相对于进行支撑的基础结构，如输送带支架和／或输送带侧向支承装置的摩擦系数反作用于所述拉力。随着用动物产品装载输送带的增加，能够造成输送带的过载，其带来的结果是，由于驱动器施加到输送带上的驱动功率，尤其是拉力不再足以沿至少一个输送方向驱动输送带。在该情况下，不再可以借助于输送带继续运输和／或输出动物产品。同时，输送带的这种过载也不可逆转或者仅难于逆转，因为动物产品，例如蛋、粪便或肉用鸡正是为了运输出而到达输送带上并且不能够和／或应当从那里返回到其原始位置。
[0007] 在使用输送设备来输出粪便时，例如由于过长的出清粪肥间隔引起这种过载。通常，根据位于输送带之上的饲养装置的动物数量进而根据每天和每米的粪便积存量以整天的间隔对输送带进行厩肥出清。这例如能够是每日必需的。但是大多数情况下实行的是每两天、三天或 n 天的厩肥出清。在此例如对输送设备的整个长度出清厩肥或者分别以特定的部分长度，例如输送设备的三分之一的长度来出清厩肥。农业的劳动经济性的兴趣点在于尽可能长的出清厩肥间隔。然而在长的出清厩肥间隔中累积的粪便量能够大至，使得出现输送带的不期望的过载而随之导致输送设备静止。
[0008] 由于农业观点，对于尽可能长的出清厩肥间隔的另一原因是：在安装好粪便通风装置的情况下能够尽可能在更长的时间段期间对位于输送带上的粪便进行通风进而干燥。更高的干燥物质含量降低尿素转换成氨气，这有助于改进棚圈环境和降低氨气传播到环境。
中。干燥效果降低位于输送带上的粪便量，由此可实现更长的出清秆肥间隔。但是例如由于干扰而能够需要以较短的间隔进行出清秆肥，例如在动物的水供应中有所泄漏之后进行。在这种情况，水能够到达输送带上并且与此相适应地进一步提高粪便量。输送带的过载尤其以输送带停止的方式显示出来，因为带驱动器不再能够沿至少一个输送方向驱动输送带。在这种情况下，粪便或另外的动物产品然后需要手动地从输送带中卸载。

【0009】在另一应用领域中，使用输送设备以便借助于输送带运输出整只动物，例如肉用鸡。在此，将肉用鸡的饲养设备的底部打开，使得动物到达输送带并且被运输出。输送带的过载在该应用领域中尤其能够由于下述情况而出现：与能够在相同的时间单位中运输出的动物材料相比，被委托打开饲养装置的底部的工作人员每时间单位将更多的动物材料提交到输送带上。在此，输送带的过载也能引起下述结果：带驱动器的驱动功率不再足够驱动输送带和/或在带驱动器的输送带和输送带之间出现打滑，并且必须手动地卸载输送带。

发明内容

【0010】为此，本发明的目的是，提供用于在农场中输送动物产品的方法和设备，输送方法和设备避免或者消除一个或多个上述缺点。特别地，本发明的目的是，提供用于在农场中输送动物产品的方法和设备，输送方法和设备防止或降低输送设备的输送带的过载。

【0011】根据本发明，该目的通过用于在农场中输送动物产品的输送设备来实现，所述输送设备包括输送带；用于沿至少一个输送方向驱动输送带的带驱动器；测量装置，所述测量装置构成并且设置成，使得测定输送带的装载量，其中输送带的装载量是带驱动器的功率值和/或带驱动器的支承件的支承反力。带驱动器的功率值尤其能够是带驱动器的转矩和/或电流消耗。

【0012】输送设备的输送带的过载在此理解为下述装置；其中输送带上的动物产品的量和/或数量大至，使得带驱动器的驱动功率不再足以沿至少一个输送方向驱动输送带。在此，将输送带的装载量理解为下述动物产品，所述动物产品被交付到输送带上（例如被工作人员交付到输送带上或者例如由于重量作用而落到输送带上）并且为了运输出和/或继续运输而位于输送带上。

【0013】输送带优选构成为具有上行程段和下行程段的环形的输送带，并且例如在输出侧上具有带有驱动棍的带驱动器并且在相反的一侧上具有转向棍，其中在所述上行程段上输送动物产品。输送带能够借助于挤压棍压紧到驱动棍上，使得形成高压力，进而在输送带和驱动棍之间形成相应的摩擦，并且通过驱动棍转动而沿至少一个输送方向驱动输送带。优选地，带驱动器构成为在两侧支承的、被驱动的驱动棍。支承件优选设置在驱动外壳体中和/或侧向支架或驱动器支架上。此外，能够在驱动棍上设有用于清洁输送带的刮削器。优选地，能够沿多个一个输送方向驱动输送带，例如两个彼此相反的输送方向驱动输送带。驱动器、尤其是驱动棍为这一优选地构成为用于能够沿相应不同的方向转动。也能够设有多个带驱动器，尤其是用于粪便的输送带能够多层地以每次至少一个带驱动器的方式构成。

【0014】为了改变带驱动器的支承件的位置，能够设有调节机构，例如呈调节板形式的调节机构，以用于容纳带驱动器的支承件。如在相同申请人的实用新型申请DE20 2012 010 170.1中描述，所述调节机构例如能够通过校正设备移动，使得出现带驱动器的支承件的位
置改变，由此能够实现舒适带的期望的运转校正。【0015】本发明还基于上述知识：为了防止输送带的过度首先需要了解输送带的装载量。因此提出，输送设备设有测量装置，借助所述测量装置能够测定输送带的装载量。在此将下述变理解释为输送带的装载量；从所述变理中能够（直解地或间接地）得出输送带的优选当前的装载的结论。测量装置优选测定输送带的装载量的在测定时间点中的当前数值。

【0016】对输送带的装载，尤其是输送带的当前的装载量的了解实现了首先在实际出现刚好通过输送带的停止而显示出的过载情况之前进行干预并且尽可能地防止这种过载。以该方式能够通过启动输出或继续运输而达到过载之前防止输送设备的停止——进而防止输送带的手动卸载。

【0017】输送带的装载量是带驱动器的功率值，尤其是带驱动器的转矩和/或电流消耗和/或带驱动器的支承件的支承反力。

【0018】输送带的装载的其他可选的量的优选实例是输送设备的元件的伸展的变形，作用于输送设备的元件上的力，尤其是压强和/或拉力；位于输送带的部段上的动物产品的重量；输送带的部段的位置与初始位置的尤其在竖直方向上的偏差；和/或输送带的推力，尤其是输送带的速度。

【0019】用于测定这种量的测量装置的优选实例是：力传感器，尤其是压力传感器和/或拉力传感器；例如测压元件和/或应变测量片；转矩传感器；例如应变测量片；电流测量设备；间距传感器；和/或输送带推力感测器，尤其是转速监控器和/或测量轮。

【0020】优选地，在输送设备的原本的运行之外能够执行输送带的测量流程，以便例如执行输送带的装载量的校准和/或输送带的相当前存在的装载。这种测量流程优选时间上相互间隔并且仅短暂地持续，优选持续少于10秒，尤其少于5秒，以便不影响输送带或输送设备的原本的运行。

【0021】尤其优选的是具有控制设备的输送设备的设计方案，所述控制设备构成为，将输送带的所测定的装载量与额定值比较，并且优选地，当相对于额定值超过或者低于预设的间距时，生成报警信号。

【0022】控制设备与测量装置优选以信号的方式连接，尤其以便接收输送带的装载的由测量装置测定的量。此外，控制设备例如能够包括存储单元，在所述存储单元中优选能够存储输送带的装载量的额定值。这种额定值例如能够由用户输入或预设和/或发送给控制设备，例如由带驱动器或另外的设备发送。尤其优选的是从之前在所述（或另外的）输送设备中测定额定值并且优选在时间过程中存储，并且必要时进一步处理，导出并且应用输送带的装置的量的数值。

【0023】控制设备尤其用于，将输送带的装载量的由测量装置所测定的当前值与该量的优选预设的额定值相比较。额定值优选选择成，使得其相等于输送带的用动物产品进行的下述这种装载，在该装载时输送带的带驱动器还不够沿着一个输送方向驱动，即在该装载时输送带还没有出现过载。当输送带的装载量的由测量装置所测定的当前的数值现在接近所述额定值，并且在此相对于额定值超过或低于优选预设的间距时，由控制设备生成警报并且优选也输出警报。尤其优选的是，当低于输送带的所测定的装载量和额定值之间的预设的间距，即当前的数值低于接近额定值时，生成这种警报。当前的数值加上额定值的这种接近显示出即将发生的过载情况，通过生成并且优选输出警报，例如声学的和/或光学的
和/或另外的报警信号能够为农民实现干预，以便防止即将到来的过载情况，其中所述报警信号例如能够发送给移动终端设备或计算机。

[0024] 尤其优选的是，存在用于输出报警信号的信号装置。报警信号例如能够以红绿灯显示的方式输出，以便显示即将发生的过载的不同阶段。这尤其在如下情况下是有利的：能够为被委托对输送带进行装载的工作人员显示尤其呈红绿灯形式的这种报警，使得能能够相应地调整装载速度或装载量。例如在在集料过程中，这例如能够以下述方式进行：被委托打开饲养装置的底部的工作人员根据优选以红绿灯形式输出的警报而每时间单位将更多或更少的肉用鸡交付到袋上，以便这样在没有过载的情况下实现动物产品在输送带上的尽可能均匀的物流(Massenstrom)。

[0025] 在另一设计方案中优选的是，测量装置构成为，重复地测定输送带的装载量，例如以有规律的间隔来测定和/或以事件控制的方式来测定和/或以用户启动的方式来测定。

[0026] 该设计方案提出：测量装置不仅一次性地测定输送带的装载，而且多次地进行测定。尤其优选的是，测定以有规律的优选自动进行的间隔来进行。例如，通过测定装置以秒、分、小时和/或天的间隔进行输送带的装载量的自动的、有规律的测定。优选地，间隔能够由用户预设。附加地或替代地，能够以事件控制的方式进行输送带的装载量的数值的测定，即例如总是在输送带开启之后、在出清腐败之前和/或之后和/或在出现其他的时间段进行。另一附加的或替代的可能性是，用户能够启动输送带的装载量的优选当前的数值的通过测量装置的测定。

[0027] 通过这种重复地测定输送带的装载量，优选能够在控制设备中推导出装载量在时间上的变化。

[0028] 此外，控制设备优选构成为，将输送带的所测定的装载的量与最大装载值相比较，并且输出通过比较所测定的差值。

[0029] 最大装载值例如能够相符合于优选预设的额定值。当输送带的装载量的当前数值小于最大装载值时，差值还将符合于最大还可行的添加装载。当输送带的装载量的当前的数值大于最大装载值时，差值说明输送带过载的量。

[0030] 当控制设备构成为从差值和每时间单位的装载值中确定最大的添加装载时间段；和/或从差值和添加装载时间段中确定每时间单位的最大装载值时，尤其得到另外的优点。

[0031] 尤其当差值相符合于最大可行的添加装载，输送带的所测定的装载量小于最大装载值时，能够利用该输送差值来测定在出现过载之前还能够以特定装载率对输送带装载多久，和/或对于预设的时间段还应当以多大的装载速率对输送带进行装载，以便同样避免过载。在此也有利的是，能够输出并且显示相应的事件，以便操作员和/或工作人员实现相应协调的操作措施。

[0032] 在此还尤其优选的是，控制设备构成为，在时间过程中存储所测定的量，并且优选地、优选以特定的时间段推导出每时间单位的输送带的平均装载量。

[0033] 该设计方案具有下述优点：例如在不同的时间段中在不同的框架条件下，能够存储关于输送带的装载量的变化的数据并且从中推导出平均的装载速率，即每时间单位的输送带的装载。当附加地能够存储所述框架条件时，所述数据也能够考虑用于在类似的框架条件下预测未来的装载速率。
[0034] 当动物产品的已知的、所测定的和 / 或预测的要期待的增加装载超过之前测定的
或预设的最大增加装载时，优选生成报警信号。所述报警信号能够如上面描述的那样是光
学信号或声学信号或额外的信号或编号信号。

[0035] 尤其优选的是输送设备的下述设计方案，在所述输送设备中输送带的装载量选出自
下述中的至少一种：带驱动器的功率，尤其是带驱动器的转矩和 / 或电流消耗；输送设备
的元件的伸展变形；作用于输送设备的元件上的力，尤其是压力和 / 或拉力；带驱动器的支
承件的支承反力；位于输送带的部段上的动物产品的重量；输送带的部段的，尤其在竖直
方向上的位置与初始位置的偏差；输送带推进力，尤其是输送带速度。

[0036] 此外优选的是测量装置构成为：压力传感器，尤其是压力传感器和 / 或拉力传感器，
例如测压元件和 / 或应变测量片；转矩传感器，例如应变测量片；电流测量设备；位移传感
器；和 / 或输送带推进值传感器，尤其是转速监控器和 / 或测量轮。

[0037] 特别地，测量装置和输送带的装载量的组合是优选的，所述组合如下地具有相应
的配合：测量装置能够测定输送带的装载的相应的量。上述构成输送带的装载量和测量装
置，必要时还有其布置方式的尤其优选的组合。

[0038] 输送设备的一个优选的设计方案提出，输送带的装载量是带驱动器的电流消耗；
并且测量装置是电流测量设备，所述电流测量设备优选构成并且设置用于测定带驱动器的
馈电线的电流。

[0039] 在此尤其优选的是，电流消耗的测量装置与推进感测器组合，例如与在例如输送
带上的转向辊或单独的测量轮处的输送带推进监控器组合。这种输送带推进感测器能够作
为控制仪器用于识别是否出现打滑。开始的打滑显示出：所测定的电流消耗不再是作用于
输送带上的驱动功率的或拉力的直接度量，而是已经出现可能首先少量的过载。在极端情
况下，尽管在完全打滑时电流消耗高，也不再进行输送带移动。尤其优选的是，不仅测定是
否出现打滑，而且也测定打滑程度，这能够作用为用于过载强度的指示器。

[0040] 输送设备的另一优选的设计方案提出：输送带的装载量是带驱动器的转矩，并且
测量装置包括至少一个应变测量片，所述应变测量片优选设置在带驱动器的驱动辊的轴颈
上。

[0041] 输送设备的另一优选的设计方案提出：输送带的装载量是带驱动器的支承件的支
承反力，并且测量装置包括至少一个力传感器，所述力传感器优选设置在带驱动器的驱动
辊的支承件上。

[0042] 输送设备的另一优选的设计方案提出：输送带的装载量是输送带的两个输送带承
载件之间的部段位置与初始位置在竖直方向上的偏差，并且测量装置包括至少一个间距传
感器，所述间距传感器优选在竖直方向上在两个输送带承载件之间设置在输送带下方。

[0043] 输送设备的另一优选的设计方案提出：输送带的装载量是位于输送带的部段上的
动物产品的重量，并且测量装置包括至少一个测压元件，所述测压元件设置在输送带承载
件，尤其是输送带托架和 / 或输送带侧向支承装置上。

[0044] 输送设备的另一优选的设计方案包括校正设备，所述校正设备构成和设置为根据
校正信号改变带驱动器的定向；其中输送带的装载量是作用于校正设备上的拉力，并且测
量装置包括用于测定作用于校正设备上的拉力的至少一个应变测量片和优选至少一个输
送带推进感测器。
[0045] 根据另一方面，开始所提出的目的通过一种驱动设备来实现，所述驱动设备用于在农场中输送动物产品的输送设备，尤其用于之前描述的输送设备，所述驱动设备包括：用于沿输送方向驱动输送带的带驱动器；测量装置，所述测量装置构成并且设置成，测定输送带的装载量，其中输送带的装载量是带驱动器的功率值和/或带驱动器的支撑件的支撑反力。

[0046] 驱动设备的优选选择的设计方案在下面详述。

[0047] 驱动设备的一个优选的设计方案包括控制设备，所述控制设备构成为，将输送带的所测定的装载量与额定值比较并且优选地，当相对于额定值超过或者低于预设的间距时，生成报警信号。

[0048] 驱动设备的另一优选的设计方案提出：测量装置构成为，重复地测定所述输送带的装载量，例如以有规律的间隔来测定和/或以事件控制的方式来测定和/或以用户启动的方式来进行测定。

[0049] 驱动设备的另一优选的设计方案提出：控制设备构成为，将输送带的所测定的装载量与最大装载量相比较，并且输出通过比较确定的差值。

[0050] 驱动设备的另一优选的设计方案提出：控制设备构成为，从差值和每单位时间的装载值确定最大的添加装载时间段，和/或从差值和添加装载时间段确定每单位时间的最大装载值。

[0051] 驱动设备的另一优选的设计方案提出：控制设备构成为，在时间过程中存储所测定的量，并且优选地，优选以特定的时间段推导出每单位时间的输送带平均装载量。

[0052] 驱动设备的另一优选的设计方案提出：输送带的装载量是带驱动器的电流消耗；并且测量装置是电流测量设备，所述电流测量设备优选构成和设置为测定带驱动器的馈电线的电流。

[0053] 驱动设备的另一优选的设计方案提出：输送带的装载量是带驱动器的转矩；并且测量装置包括至少一个应变测量片，所述应变测量片优选设置在带驱动器的驱动机构的轴颈上。

[0054] 驱动设备的另一优选的设计方案提出：输送带的装载量是带驱动器的支撑件的支撑反力；并且测量装置包括至少一个力传感器，所述力传感器优选设置在带驱动器的驱动机构的支撑件上。

[0055] 驱动设备的另一优选的设计方案包括校正设备，所述校正设备构成和设置为根据校正信号改变带驱动器的定向；其中输送带的装载量是作用于校正设备上的拉力；并且测量装置包括用于测定作用于校正设备上的拉力的至少一个应变测量片和优选至少一个输送带推进感应器。

[0056] 对于驱动设备的优点，实施变型形式和实施方案细节和其改进形式参考关于输送设备的相应特征的前面的描述。

[0057] 根据本发明的另一方面，开始所提出的目的通过一种用于辅助输送设备，尤其是之前描述的输送设备在农场中输送动物产品的设备，所述设备包括下述步骤：辅助驱动器用至少一个输送方向驱动输送带，辅助于测量装置测定输送带的装载量，其中输送带的装载量是带驱动器的功率值和/或带驱动器的支撑件的支撑反力。

[0058] 根据本发明的方法优选根据下文来改进。
[0059] 当测定选自下述中的至少一个作为输送带的装载量时，得到该方法的其他有利的设计方案；带驱动器的功率值，尤其是带驱动器的转矩和 / 或电流消耗；输送设备的元件的伸展变形；作用于输送设备的元件上的力，尤其是压力和 / 或拉力；带驱动器的支承件的支撑反力；位于输送带的部段上的动物产品的重量；输送带的部段的位置与初始位置尤其在竖直方向上的偏差；输送带推进值，尤其是输送带速度。

[0060] 尤其通过上述方式得到该方法的另外的有利的设计方案；将测量装置用于测定输送带的装载量，所述测量装置构成为：力传感器，尤其是压力传感器和 / 或拉力传感器，例如测压元件和 / 或应变测量片；转矩传感器，例如应变测量片；电流测量设备；间距传感器；和 / 或输送带推进值传感器，尤其是转速监控器和 / 或测量轮。

[0061] 对于方法的优点、实施变形形式和实施方案细节和其改进形式参考关于相应的设备特征的前面的描述。

附图说明
[0062] 示例地根据附图描述本发明的优选的实施形式。其示出：
[0063] 图 1 示出根据本发明的输送设备的示例的第一实施形式的局部视图；
[0064] 图 2 示出根据本发明的输送设备的示例的第二实施形式的局部视图；
[0065] 图 3 示出根据本发明的输送设备的示例的第三实施形式的局部视图；
[0066] 图 4 示出根据本发明的输送设备的另一示例实施形式的承载支架的三维视图；
[0067] 图 5 示出图 4 中示出的实施形式的变形形式的局部横截面图；和
[0068] 图 6 示出根据本发明的输送设备的另一示例的实施形式的局部横截面图。

具体实施方式
[0069] 图 1 至 6 示出根据本发明的输送设备的不同示例的实施形式。相同的或基本上相同的元件或具有相同的或基本上相同的功能的元件在不同的附图中设有相同的附图标记，部分地设有后置的“‘”。
[0070] 在图 1 中示出根据本发明的输送设备 100 的示例的第一实施形式的局部侧视图。能够观察到驱动器支架 11，所述驱动器支架在竖直方向上具有三个在竖直方向上彼此叠加设置的支承件 14a、b、c 以用于支承三个同样坚直地彼此叠加地设置的带驱动器，所述带驱动器用于驱动三个同样坚直地彼此叠加地设置的输送带。在支承件 15a、b、c 上支承有压紧辊，所述压紧辊将相应的层的输送带挤压到相应的驱动辊上，以便将驱动功率传递到输送带。在图 1 中示出三层构成的输送设备 100 的最上方这三个输送带。
[0071] 输送带 300 构成为具有上行程段 300a 和下行程段 300b 的环形输送带。上行程段 300a 装载有动物产品，在此为粪便 200，其中输送带 300 通过带驱动器驱动，使得粪便 200 能够沿输送方向 FR 传输。输送带 300 由安置在载体件 15a 上的压紧辊挤压到驱动辊上，以便经由此形成摩擦沿运送方向 FR 被驱动。
[0072] 支承件 14a 与链轮 16a 连接。所述链轮能够由链由马达驱动，进而转矩 M 传递到带驱动器上，所述带驱动器因此沿输送方向 FR 驱动输送带 300。
[0073] 在根据图 1 的设计方案中，将马达电流监控用作为用动物产品，在此为粪便 200 装载输送带 300 的量，即借助于电流测量设备 300 在馈电线 120 中测定驱动马达 10 的所记
录的电流。从该所记录的电流出发，能够确定移动输送带 300 所需的转矩 M_0。随着输送带 300 的装载的上升，需要用于驱动输送带 300 的转矩 M_1 进而所记录的马达电流上升。当已知驱动马达 110 的特性曲线时，能够从当前需要从马达电流记录的转矩中测定与最大转矩的差，并且从该差必要时以一定安全余量确定最大可能的增加装载，输送带 300 附加地能够用该增加装载加载，并且同时能够确保通过带驱动器可靠地驱动输送带。当超过最大转矩时，造成具有相应缺点的输送带 300 的停止。

[0074] 优选地，在能够从当前记录的马达电流确定的当前所需的转矩低于预设的相对于最大转矩的间距，使得在发生输送带 300 过载之前能够输出位于输送带 300 上的动物产
品 200 时，发出警报。

[0075] 尤其优选的是，将电流测量设备 130 中的电流消耗的测量与例如在输送带 300 上的转向辊或单独的测量轮处的输送带推进感测器、例如转速监控器相结合，以便确保能够识别出打滑。开始的打滑显示出，所测定的电流消耗不再用于输送带上的驱动功率的或拉力的直接度量，而是已经出现或可能首先少量的过载。

[0076] 另一测定输送带的拉力的方案例如在于，例如在带驱动器的驱动辊的支承装置和
进行支撑的侧向支架或驱动器侧支架 11 之间设置一个或多个应变测量片，以便因此直接地测定在那作用的拉力。

[0077] 根据本发明的输送设备 100 的设计方法的另一可行性在图 2 中示出。图 2 示出类
似于在申请人的实用新型申请 DE20 2012 010 170.6 中示出的输送设备 100 的设计方案。
在那描述的输送设备 100 具有自动化的输送带控制装置，所述输送带控制装置控制所述带
的无干扰的直线滑行。在此，压紧辊还有驱动辊经由调节板 30 以可水平移动的方式沿输送
方向 FR 或相反于输送方向安置在支承件 15a’ 和 14a’ 之上。调节板 30 优选与调节马达或
校正设备连接，以便调节板 30 能够借助支承件 14a’、15a’ 水平地移动。

[0078] 根据图 2 的实施方案，能够将带驱动器的支承件 14a’ 的支承反力用作为输送带的
装载量，其中相关联的测量装置 131 优选构成为力传感器，所述力传感器在图 2 中设置在带
驱动器的驱动辊的支承件 14a’ 上，更确切地说，间接地经由调节板 30 来设置。因为在输送
设备的两侧上存在分别具有用于驱动辊和压紧辊的相应的支承件 14a’、15a’ 和调节板 30 的
侧向支架或驱动器支架 11，所以在相应的力传感器 131 中分别测定对应于输送带 300 的
拉力 F_z 的一半的力。因此，在带驱动器的驱动辊的支承件 14a’ 上出现输送带 300 的所 得
出的除以因数 2 的拉力，并且能够经由力传感器 131 记录。在控制设备（未示出）中能够评
估由力传感器 131 所测定的数值，以便实现关于用动物产品加载输送带 300 的结论。

[0079] 替选地，也能够经由应变测量片在调节板 30 的调节马达处测取要测定的拉力。在
此，与输送带推进感测器的连接也是优选的。以该方式能够可靠地测定当前作用的拉力并
且在控制设备中进一步处理当前作用的拉力，以便测定输送带的装载量进而实现上述优
点。

[0080] 在图 3 中示出用于构成根据本发明的输送设备 100 的另一方案。在图 3 的局部视
图中，能够识别设置在支承件 13a 上的驱动辊 12a 以及设置在支承件 15a 上的驱动辊 13a。
在图 3 中示出的变型形式中，将转矩用作为输送带的装载量，其中测量装置构成为应变测
量片 132，所述应变测量片设置在带驱动器的驱动辊 12a 的轴颈上。

[0081] 在该变型形式中，上述评估方案也能够联系到同样已经描述的优点。
[0082] 在图4和5中示出下述变形形式，其中将位于输送带的部段上的动物产品的重量用作为输送带的装载量。在此，测量装置构成为测压元件133。在图4中，两个输送带侧向支承装置420经由固定支承件510或经由松动支承件520固定在竖直的架子上。在输送带侧向支承装置420上再固定有输送带托梁430，输送带（在图4中没有示出）在所述输送带托梁上运转。位于输送带的上行段上的待运输的动物产品Fg的重力作用于所述输送带托梁430。经由将输送带托梁430固定在输送带测量支承装置420上将所述重力Fg传递到松动支承件520上，在所述松动支承件上设置有测压元件133，所述测压元件能够记录相应的重力。

[0083] 在图5中示出的变形形式中，将一个、优选两个测压元件133设置在托梁430中的至少一个下，所述测压元件在那里能够直接地记录重力Fg。

[0084] 在此，根据作为输送带装载量的重量的记录，优选在未示出的控制设备中以上面描述的方式以同样描述的优点进行进一步的评估和进一步的处理。

[0085] 在图6中示出另一变形形式，其中将输送带300的在两个输送带承载件、在此为输送带托梁430之间的部段、尤其是上行段300a的位置距初始位置在竖直方向上的偏差用作为输送带的装载量。测量装置在图6中示出的变形形式中构成为间距传感器134，所述间距传感器在竖直方向上设置在输送带在两个输送带承载件的输送带托梁430之间的上行段300a之下。输送带的下行段300a的初始位置在图6中能够在输送带托梁430的左侧和右侧识别。然而，间距传感器134在两个输送带托梁430之间仅测量距离输送带的下行段300a在两个输送带托梁430之间的中点的间距X。因此，与输送带的上行段300a的能够在输送带托梁430的左侧和右侧识别的初始位置相比，在托梁430之间存在输送带的部段的位置距所述初始位置在竖直方向上的偏差。这种偏差也能够称作为偏移。随着输送动物产品200装载输送带的增加，所述偏移增大，即直到输送带的上行段300a的由间距传感器134所测量的间距X下降。

[0086] 对于该实施方案而言，在测定输送带的装载量、在此为位置偏差之后也能够进行所描述的评估步骤和进一步的加工步骤，例如输出警报和 / 或计算另外可行的最大增加装载、增加装载速率和 / 或增加装载时间。通过该评估和进一步的加工步骤能够为农场的农民或操作员和在那工作的工作人员实现上述措施，及早克服输送带的过载并且能够避免该过载。以该方式能够减少或避免具有装载的，但是不再能够运输的输送带的不利的情况。
图 5