Office de la Propriete Canadian CA 2506233 A1 2005/11/07

Intellectuelle Intellectual Property
du Canada Office (21) 2 506 233
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2005/05/03 (51) CLInt.”/Int.Cl." GOBF 9/44, GO6F 9/45, HO4L 12/16
(41) Mise a la disp. pub./Open to Public Insp.: 2005/11/07 (71) Demandeur/Applicant:
(30) Priorité/Priority: 2004/05/07 (10/841,260) US FWO NEWCORP, INC., US

(72) Inventeurs/Inventors:
PHILLIPS, MARK, US;
COOK, JONATHAN, US;
BATEMAN, MATTHEW LEONARD, US;
GHASKADVI, VIJAY SADANAND, US;
GHASKADVI, RUCHITA VIJAY, US;
DESWANDIKAR, ANIRUDDHA ASHOK, US:
DASANAGADDE, SUNIL SUDHAKAR, US

(74) Agent: MCFADDEN, FINCHAM

(54) Titre - SYSTEME ET METHODE POUR INTEGRER DES SOURCES DE DONNEES DISPARATES ET DES
SOURCES D'APPLICATION AU MOYEN D'UNE PLATE-FORME D'ORCHESTRATION DE SERVICES WEB ET DU
LANGAGE BPEL

(54) Title: SYSTEM AND METHOD FOR INTEGRATING DISPARATE DATA SOURCES AND APPLICATION SOURCES
USING A WEB SERVICES ORCHESTRATION PLATFORM WITH BUSINESS PROCESS EXECUTION LANGUAGE
(BPEL)

>
Database
Data In C 110 .y Data Qut
Web sites @ O — APIK—,
I | sy | 120— | . A
nternal systems i . Real-time 150
External systems @ . Pre-built >
Legacy systems B activities Frocess e E
Server Multiple data
formats and
Relational = ' Excel Add-In [X destinations
Databases 7100
(57) Abrégée/Abstract:

An apparatus, system, method, and computer readable medium Is disclosed for integrating disparate data and application sources
using a web services orchestration platform, with business process execution language (BPEL).

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02506233 2005-05-03

SYSTEM AND METHOD FOR INTEGRATING DISPARATE DATA AND
APPLICATION SOURCES USING A WEB SERVICES ORCHESTRATION
PLATFORM WITH BUSINESS PROCESS EXECUTION LANGUAGE (BPEL).

ABSTRACT

An apparatus, system, method, and computer readable medium 1s disclosed for
integrating disparate data and application sources using a web services orchestration

platform, with business process execution language (BPEL).

CA 02506233 2005-05-03

SYSTEM AND METHOD FOR INTEGRATING DISPARATE DATA AND

APPLICATION SOURCES USING A WEB SERVICES ORCHESTRATION
PLATFORM WITH BUSINESS PROCESS EXECUTION LANGUAGE (BPEL)

FIELD OF THE INVENTION

[0001] The present invention relates to the accessing of structured and unstructured
data, such as data from disparate source. In particular, the present invention is directed

towards accessing data from disparate sources using a web services orchestration platform.

BACKGROUND OF THE INVENTION

[0002] There 1s an 1ncreasing interést.in software applications to improve the ability
of user to find, extract, and manipulate data from various electronic documents. Such
software applications are also sometimes known as 1ntegration applications.

[0003] There are three main classes of integration applications. A first class of
mntegration application is an enterprise application integration (EAI) solution that i1s designed '
to handle complex data integration problems at a high data throughput. Such EAI solutions
are provided from a variety of vendors but have the drawback that they typically require a
significant amount of expertise and training to use. A second class of integration application
1s application specific, such as integration applications prepared for a specific company that
are designed to fix a specific integration problem. A drawback of this class of integration
application 1s that they cannot be easily modified or maintained. Finally a third class of
integration application is designed to permit integration solutions to be developed quickly and

easily modified. This third class of integration application may, for example, require less

CA 02506233 2005-05-03

integration or have lower data throughput than an EAI solution designed for more complex
integration problems.

[0004] Recently, web services have become of interest for automating business
processes. Web services are defined, for example, in the world wide web consortium (W3C)

“Web services architecture working group Note 11 of 11 February 2004,” the contents of
which are hereby incorporated by reference. Web services is a technology that includes
software interfaces to describe an operation to execute or exchange data with another web
service. Web services provide loosely coupled integration of services. This provides the
basis for very open and extensible service oriented architecture (SOA), allowing new
components and services to be quickly deployed. A web service includes, for example, a
listener to receive a message, a proxy to take the message and translate it into an action to be
carried out, and the application code to implement the action. The Microsoft Corporation of
Redmond, Washington, has a .NET™ development platform that supports web services on
the Windows® platform.

[0005] The web services definition language (WSDL) is a grammar for defining a
web service proposed by W3(C. WSDL 1s descrnibed 1in the W3C Note “Web Services
Defimtion Language (WSDL) 1.1,” the contents of which are hereby incorporated by
reference. WSDL 1s an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented
information. A WSDL document uses the following elements in the definition of network
services: Types, a container for data type definitions; message, an abstract definition of the
data being communicated; operation, an abstract description of an action supported by the
service; port type, an abstract set of operations supported by one or more endpoints; binding,
a concrete protocol and data format specification for a particular port type; port, a single
endpoint defined as a combination of a binding and a network address; and a service, a
collection of related endpoints. WSDL also includes several binding extensions, including
the simple object access protocol (SOAP) hypertext transport protocol (HTTP) extension,
which is described in the W3C note “simple object access protocol (SOAP) 1.1 the contents
of which are hereby incorporated by reference. SOAP permits, for example, HTTP messages
to be used to create a web service that 1s an application that responds to requests to a SOAP
message via a HTTP server or a Java servlet.

[0006] Recently, IBM and Microsoft have proposed a business process execution

language for web services (BPEL4WS) that permits a variety of business processes to be

CA 02506233 2005-05-03

automated using web service interfaces. “Business Process Execution Language For Web
Services Version 1.0” 1s published on-line at the Web sites of IBM and Microsoft (e.g., at
http:www-106.1bm.com/developerworks/library/ws-bpel as of the filing date of the present
application) and 1s hereby incorporated by reference 1n its entirety. BPEL4WS provides a
language for the formal specification of business processes and business partners. BPEL
includes business protocols that use process descriptions for business protocols. A BPEL
document defines a process as a set of activities. These activities include invocation of
components or other web services, but can also contain program control constructs including
while, switch, etc. BPEL4WS declaratively define processes in XML. BPEL4WS defines a
partner as the services that a process will interact with. A business process communicates
with its partners by invoking operations on them by passing messages. BPEL4WS defines a
message as a container if the message type is supported by the web service. Correlation sets
define message/container properties that represent correlated data between two partners.
BPEL4WS provides a rich process description notation with many features reminiscent of an
executable language. In addition, the language 1s built around web services to achieve
universal interoperability between applications using web standards. BBPEIL4WS is layered
on top of several XML specifications, including WSDL 1.1. For example, a BPEL4WS
process represents all partners and interactions 1n terms of abstract WSDL interfaces.

[0007] However, there are several drawbacks to using web services in integration
applications. One drawback 1s that BPEL processes can become burdensome to program,
understand, and debug for even medium complexity processes. Another drawback is that
while web services and BPEL automate certain types of web processes, some desired data '
sources may be from non-web sources. Still another drawback to using web services in
integration applications is creating processes that are intended to be efficiently stored and run
on an enterprise server on a regular basis.

[0008] Therefore, what is desired is an integration application apparatus, system, and
method that provides both a platform and server where applications that can be easily and

quickly developed and deployed using web services.

SUMMARY OF THE INVENTION
[0009] A web services orchestration platform 1s disclosed that permits a user to create

a graphical representation of a business process execution language (BPEL) business process

CA 02506233 2005-05-03

that accesses at least one data source. An application server is adapted to receive the BPEL
document and execute a BPEL process on desired data services.

[{0010] One embodiment of a method includes providing a graphical user interface for
a user to create a graphical represe‘ntation of a BPEL business process having at least one
activity block representing a BPEL activity to be performed on at least one data source. A
BPEL document 1s generated for a business process generated by the user with the graphical

user interface. The BPEL document 1s executed in a run time environment of an application

SErVer.
BRIEF DESCRIPTION OF THE FIGURES

[0011] The invention 1s more fully appreciated in connection with the following

detailed description taken in conjunction with the accompanying drawings, in which:

[0012] Figure 1 1s a diagram 1llustrating dataflow in a business process in accordance
with one embodiment of the present invention;

[0013] Figure 2A 1s an exemplary screen shot of a flow canvas representation of a
business process 1n accordance with one embodiment of the present invention;

[0014] Figure 2B 1llustrates in more detail a library of operations for the flow canvas
of Figure 2A;

[0015] Figure 3 1s a scoped view of the flow canvas of Figure 2A;

[0016] Figure 4 illustrates an integration application system in accordance with one
embodiment of the present invention;

[0017] Figure 5 1llustrates a foundation studio in accordance with one embodiment of
the present invention; .

[0018] Figure 6 1s a flow diagram of a web service import tool in accordance with one
embodiment of the present invention;

[0019] Figure 7 is a diagram of rule service import application in accordance with one
embodiment of the present invention;

[0020] Figure 8 1s a flow diagram of a method of proxy generation in accordance with
one embodiment of the present invention;

[0021] Figure 9 illustrates a Java activity configurator in accordance with one

embodiment of the present invention;

CA 02506233 2005-05-03

[0022] Figure 10 illustrates a web recorder configurator in accordance with one
embodiment of the present invention;

[0023] Figure 11 1llustrates a system architecture for a teach time environment in
accordance with one embodiment of the present invention;

[0024] Figure 12 1llustrates submodules of a teach time architecture in accordance
with one embodiment of the present invention;

[0025] Figure 13A 1llustrates a real time data server for accessing streaming data in
accordance with one embodiment of the present invention;

[0026] Figure 13B illustrates a real time data server for accessing streaming data in
accordance with one embodiment of the present invention;

[0027] Figure 14 1illustrates a foundation server in accordance with one embodiment
of the present invention,;

[0028] Figure 15 1illustrates a run time environment in accordance with one
embodiment of the present invention;

[0029] Figure 16 illustrates a service invocation bus 1n accordance with one

embodiment of the present invention;

[0030] Figure 17 1llustrates a web services gateway 1n accordance with one
embodiment of the present invention;

[0031] Figure 18 illustrates a virtual processor 1in accordance with one embodiment of
the present invention; ‘

[0032] Figure 19 1llustrates a BPEL parser and DOM 1n accordance with one
embodiment of the present invention; | '

[0033] Figure 20 illustrates a BPEL compiler and EOM in accordance with one
embodiment of the present invention.

[0034] Like reference numerals refer to corresponding parts throughout the several

views of the drawings.

DETAILED DESCRIPTION OF THE INVENTION
[(0035] Some aspects of the problem solved by the present invention may be
understood with regards to Figures 1-3. Figure 1 1s a high-level data flow diagram in
accordance with one embodiment of the present invention. It 1s desired to create a business
process 120 that may access and integrate data from a vanety of sources 110, such as web

sites, a variety of systems such as intranets and extranets, databases, or data feeds, which

CA 02506233 2005-05-03

each may be in a variety of different formats. This may include identifying a data source and
a subset of information of interest within the data source, such as a portion of information on
a web page, intranet page, portablq data file (PDF), Excel® document, Microsoft Word®
document, other file format, or information of interest within a streaming data source. Data
may also be transformed and operated upon to perform the business process 120. It will thus
be understood that while a simple process may access only a single source of data, more
generally an arbitrary number of data sources may be accessed for a particular business
Process.

[0036] The business process 120 has an associated application programming interface
(AP]) 125 for accessing data. Whenever the process 1s executed, an on demand server 130
performs a business process on the input data sources 110 and publishes the data 150 to
desired destinations in desired formats. In some embodiments, the data is published to an
Excel spreadsheet or other data visualization tool. Alternately, published data may also be
used in other business processes. An Excel® add-in 190 may be included to permit data to be
published to Excel® documents.

[0037] The business process flow of the integration application i1s preferably handled
by using an open standard compatible with web services, such as BPEL (business process
execution language) and/or a rules engine. For example, there are a set BPEL operators, fork,
join, switch, etc that can be used to modify the process flow between activities. In one
embodiment custom activities (€.g., web services) are written in either Java or NET™.

[0038] In one embodiment, a visuallization platform having a flow canvas is provided
so that an integration application can be constructed through a “drag and drop” approach. ‘
Figure 2A illustrates a screen shot of a studio environment 1n which activities are visually
represented on a graphical user interface as activity blocks 205 that are “dragged and
dropped” onto a flow canvas 210. The flow canvas 210 facilitates a user designing a business
process and also provides the additional benefit that computer code is not exposed.

[0039] Figure 2B illustrates in more detail an exemplary menu of library operations
for use with flow canvas 210. Data access interfaces 220 permit a user to select a source of
data, such as selecting a portion of data from a HTTP resource, archive, web page, database,
Excel® document, file transier protocol (FTP), PDF, uniform resource locator (URL), or web
page. Note that the data source can be from a vanety of different sources and in different data
formats. In some embodiments, the data may be extracted from an electronic document by

scraping selected pieces of information from a target page using a target pattern, as described

CA 02506233 2005-05-03

in U.S. Pat. App. Ser. No. 09/465,028, entitled “Method of Providing Database Function For
Multiple Internet Services,” and U.S. Pat. App. Ser. No. 09/715,424, entitled “System For
Providing Database Functions For Multiple Internet Sources” the contents of each of which
are hereby incorporated by reference. In one embodiment, data may be acquired from one or
more streaming data sources. Data output interfaces 230 permit a user to select data
destinations and formats, such as converting data to HTML format, compressing files, writing
to comma separated values (CSV) files, wniting to a database, or writing to Excel®. Flow
control interfaces 240 permit a user to select flow controls, which in one embodiment are
BEPL controls, such as BPEL4WS flow controls. On the flow canvas the activities will
appear as a set of invocations linked together by the control constructs provided by BPEL,
such as switch, while, etc, which are built-in flow controls. In addition, BPEL supports the
concept of parallel vs. sequential flow.

[0040] In the exemplary process flow of Figuré 2A, the activity blocks 205 i1nclude a
first block in which information 1s acquired from a database, which may require, for example,
user information, a URL, a query, a password, mapping, or other information to acquire
desired data. The activity blocks 205 are coupled by BPEL operator symbols 260 and arrows
250 indicating the process flow. Additional lines indicate the data flow. Exemplary activity
blocks 205 1llustrated in the exemplary screen shot ot Figure 2A include a recelve block 205-
A to receive a process, a database access block 205-B to access data sources, a transform
block 205-C to transform a data format, a conversion block 205-D to convert data into a data
stream, a write block 205-E to wrnite data to a file, a read string 205-F to read a file to a string, _
and a return block 205-G to end the process. '

[0041] Refernng to Figure 3, in one embodiment the same process may be viewed in
2 scoped view of the process. The scoped view permits, for example, a different visual
representation of the same business process.

10042] Figure 4 illustrates a system 400 for aggregating information in accordance
with one embodiment of the present invention. In one embodiment, system 400 includes
interfaces and features to be compliant with web services standards; a desktop platform 401,
such as the Windows® platform compatible with .NET™ web services; and a high
performance application server, such as a Java based server.

[0043] System 400 includes features to permit a user to create a flow canvas 210
representation of a BPEL process that may be executed on an application server. Each

process consists of a BPEL document descnbing the flow and a WSDL document describing

CA 02506233 2005-05-03

how to communicate with the process. Additionally, as described below in more detail, in
some embodiments system 400 includes features to permit data from streaming data sources
to be integrated, data to be scrapqd on demand from electronic documents, and includes
features to permit data from a variety of sources and formats to be integrated.

[0044] A foundation studio 410 acts as a web services orchestration platform for a
user to design and manage the execution of a business process that integrates data from at
least one data source. Foundation studio 410 may be implemented as a software application
residing on a computer readable medium that runs on a desktop platform 401 of a client
computer (not shown). In one embodiment foundation studio 410 1s compatible with the
operating system of the Microsoft® corporation of Redmond Washington arid runs on a
Microsoft Windows® desktop, permitting system 400 to take advantage of other features of
Microsoft’s® suite of software products, such as Microsoft’s Excel® 405, Internet
Explorer®, and .NET™® web services. However, it will be understood throughout the
following discussion that foundation studio 410 may also be adapted to be compatible with
other operating systems as well.

[0045] In one embodiment foundation studio 410 includes a studio framework 412
having a user interface for a user to generate processes that include at least one activity on a
flow canvas 210, where an activity may include, for example, reading and writing data from a
database, real-time data access, web scraping etc. Studio framework 412 is a main user
interface that allows end-users to quickly and easily build applications using the activity set.
The activity set 1s a set of web services functions. A number of activities with the associated
data and process flow form a process. The studio framework 412 consists of a flow canvas H
(not shown in Figure 4) for process layout and an activity palette (not shown in Figure 4) for
exposing activities that can be orchestrated. '

[0046] Studio integration services 414 1s a set of dynamic link libraries (DLL)
assemblies that allow communication between the studio framework and other components of
the system. They provide handling for XML based protocols that will be used to pass
information at both development and deployment time. Java extension API 416 is a set of
classes that allow custom configurators to be integrated into the foundation studio 410 using
Java swing technology. .NET™ extension API 418 1s a set of C# classes that allow custom
configurators to be integrated into studio using a .NET™ supported language, such as C# and
VB. Custom configurators 422 and auto configurators 424 are included to customize the

foundation studio 410 for custom activities. Windows web folders 426 exposes a WebDAYV

CA 02506233 2005-05-03

complant '1nterface that can be connected using the “My Network Places” web folder
functionality within Windows 2000® and Windows XP®. WebDAV, web distributed
authoring and versioning, 1s an XML protocol that is used to provide content management to
heterogeneous clients via HTTP: Web folders within the Windows® desktop can
communicate with WebDAYV servers allowing the repository 442 to be presented seamlessly
to Windows® applications.

[0047] Once a process 1s ready for execution it can be deployed from the foundation
studio 410 to the foundation server 440 for execution. Foundation server 440 is an on-
demand application server compatible with web services. In one embodiment, foundation
server 440 has an enterprise environment based on the Java programming language, such as a
Java 2 platform enterprise edition (J2EE) environment within an application server. The
J2EE environment bundies a vanety of Java interfaces such as enterprise Java beans, Java
servlets, remote method invocations, a Java messaging system, a Java naming and directory
interface (JNDI), and Java management extensions.

[0048] Foundation Server 440 includes a process repository 442 for the activities of
each process submitted to the foundation server, and the activity interfaces are described
through XML. Repository 442 may be based on a relational database management system
(RDBMS), such as an Oracle SQL Server 2000™ and DB2. It provides storage for the
virtual file system, schedules, and process and activity service registry 450.

[0049] The interface between the foundation studio 410 and foundation server 440 for
transmitting a description of a business prbcess from foundation studio 410 to repository 442
i1s through a WebDAYV compatible interface 444. In one embodiment the implementation of
each activity of the process is through Java code residing in the application server. The
application server gives the processes scalable, fault tolerant and reliant characteristics. The
foundation server 440 also preferably includes a scheduling feature, using a web interface to
allow processes to be run on a date/time basis. However, note that one aspect of describing a
business process using BPEL 1s that the activities of a process can reside anywhere, in any
language, as long as they can communicate via web services protocols. Consequently, it will
be understood that i1n alternate embodiments the implementation of each activity of the
process may be implemented in languages other than Java and reside in locations other than
foundation server 440.

[0050] The runtime environment (RTE) 448 provides all the necessary features and

services to enable the application to execute after deployment. As described below in more

CA 02506233 2005-05-03

detail, in one embodiment RTE 448 includes an execution engine (not shown in Figure 4). In
one embodiment the runtime environment is based on Java and J2EE technologies and is
platform and application server i{ldependent. RTE 448 1s designed to execute business
process flows that have been descnibed within the studio 1n the form of an XML document,
where in some embodiments the structure of this XML document 1s based on the BPEL4AWS
specification. Service registry 450 provides a service registration and lookup mechanism,
similar to UDDI, to allow for processes and activities to be location independent.

[0051] Repository manager 452 provides integration between the activity and process
libraries using the Windows® desktop environment. This allows for a simple user experience
for deploying processes to the runtime. In one embodiment, the repository manager 452 is
based on a customized version of the Apache slide project of the Apache Software
Foundation. The Apache shde project 1s a WebDAV enabled collaborative content
management system that allows files to be store in a virtual file system. The files within this
file system can be stored 1in multiple data sources including flat-file and real time database
management system (RDBMS).

[0052] Management and monitoring services 454 are a set of interfaces provided to
allow extermal applications and monitoring tools to monitor and manage the run-time
environment. These services allow management via web, simple network management
protocol (SNMP) and Java management extension (JMX) clients. Foundation administration
console 456 i1s a web application that provides access to the management and monitoring
APIs, enabling a remote administrator to modify system parameters, logging levels, service
registry entries and schedules. Scheduler 446 provides a mechanism for scheduling '
execution of processes that have been stored within the repository 442.

[0053] Service provider bus 458 1s based on a web services invocation framework
(WSIF) and provides a mechanism for dynamically invoking web services asynchronously
from the process execution. WSIF 1s a Java API for invoking web services, no matter how or
where the services are provided and can invoke any service described in WSDL. WSIF is
available from the Apache Software Foundation. Note that in one embodiment service
provider bus 458 can access services available using .NET™ services, Java services, and
third party services. This permits, for example, accessing a vanety of data services. NET™
foundation services 460 are a set of web services that are wnitten using NET™ technologies
and exposed using an internet information server (1IS), where IIS 1s a windows server for

ASP, HTTP, XML, and .NET™. Exemplary services include web services written In

10.

CA 02506233 2005-05-03

NET™ for interacting with rich text format (RTF), Excel, and portable document format
(PDF) documents. Java foundation services 462 are a set of Java classes that are bound to the
run-time using reflection via WS{F. Examples inglude data bases, eXtensible stylesheet
language transformation (XSLT), comma separated value (CSV) files, file transfer protocol
(FTP) files, real time data access, and navigation and extraction. 3™ party services 464
consists of any web service that can be imported into the environment for execution within a
process. Thus, server 440 may access not only .NET™ services but also Java services for
accessing databases, files, real time data, and custom navigation and extraction, as will be
described below in more detail. Additionally, server 440 may also access 3" party services.
As result, the data sources may be more extensive than those that could be obtained using
NET™ services alone, permitting greater flexibility in designing a business process.

[0054] Teach time server 492 supports teach time environment 420. Teach time
environment 420 is a custom configurator that enables web navigations and extractions to be
created within the foundation studio 410. In one embodiment it utilizes Internet Explorer®
for providing navigation and extraction recording, and a Java run-time environment for
testing the recording for correct run-time operation. The navigation path may be to web page
or, alternately, to a URL hosted on an intranet, extranet, or other type of network. After a
navigation path and extraction are recorded, teach time server 492 may perform a user
defined scraping of an electronic document. Teach time environment 420 and teach time
server 492 thus permit, for example, a user to select a web page, intranet page, extranet page
or other electronic document hosted on a ﬁet\vork as a source from which information will be
automatically extracted during run time execution of a business process.

[(0055] In some embodiments, system 400 includes the capability to integrate
streaming data from a variety of sources. For example, 1n a vanety of industries streaming
data is available from various sources on a variety of real time or quasi-real time data types.
Real time data access server 470 provides the capability to stream live changing data, from
the foundation server 440 and other providers, into a client such as open Excel documents.
Data provider API 472 provides a Java API that enables data to be streamed into the real time
data access message bus 474, stored and subsequently sent to any attached subscribers. Data
subscriber API 476 provides a Java API that enables applications to subscribe to the real time
data access message bus 474. Message bus (JMS) 474 1s a set of JMS topics that allow data
to be passed between the real time data access system components. Data store 478 1s

provided as a message driven EJB that stores streamed data into an RDBMS data repository.

1.

CA 02506233 2005-05-03

Administration console 480 provides a web interface for administrating streams and stream
history. Stream manager API 482 i1s a Java API that provides a mechanism for
creating/editing streams.

[0056] Note that a modification 1s made in desktop 401 to permit streaming data to be
received by an Excel workbook 488 via a SMP interface 490. Real time data access Excel
chent 484 1s a set of active templates library/common object® model (ATL/COM)
components that expose real time data access functionality to the Excel macro language
VBA. Real time data access Excel macro 486 is an Excel macro that adds real time data
access functionality to any active workbook.

[0057] System 400 includes a vanety of features that facilitate a user to create a
business process that may be run on a high performance server. Additionally, various
features extend the range of services that can be provided and facilitate interoperability
between different standards. Moreover, various features permit the aggregation of structured
and unstructured data, such as data from disparate sources. These features will be described

in more detail in the following sections.

1. Foundation Studio

[0058] Figure 5 shows in more detail submodules of an embodiment of the foundation
studio 410. The foundation studio 410 supports generation of business processes using a
declarative BPEL language, such as a declarative language based on the BPEL4WS
specification. In one embodiment each activity of a business process is defined as a web
service operation and has an associated WSDL (web service description language) definition
file. The business process itself 1s also exposed as a web service and can be invoked using
standard web methods.

[0059] In one embodiment, tight desktop integration is provided in the foundation
architecture by providing a world wide web distribl;ted authoring and versioning (WebDAYV)
interface 490 between the foundation studio 410 and the repository 442. This allows a copy
of a portion of repository 442 to exist on desktop 401 in the form of web folders 426, such
that the studio can save files directly to the repository. In addition, there is a capability to
search for existing applications and activities within the repository.

[0060] Flow canvas 550 permits a business process to be designed. Processes
authored within the foundation studio 410 generate a meta-data description file. Exemplary

meta data include the process name, the process description, process layout information,

12.

CA 02506233 2005-05-03

object model defining the internal studio format defining how nodes within the process are
related to each other, web service defimition, such as the WSDL definition of a process that
allows it to be called by external applications, and a flow definition which is the BPEL
definition of a process that can be executed within the run-time environment. This meta-data
description file 1s written to a directory structure within the repository and preferably has a
well-defined file extension (in one embodiment, the default i1s .kpx extension). Since the
process file format 1s XML, migration of the process between releases can be achieved using
XSLT.

[0061] Process palette 560 permits processes to be orchestrated. Activity palette 502
permits activities to be orchestrated. For an activity, or web service operation, to be
recognized and used within the activity palette 502 a meta-data description file must exist
within a specified repository path. This description file may contain the following types of
information: an activity header containing information regarding the target namespace of the
service but also what platform provides the service, 1.e. NET™ or Java, an activity name, an
activity description, an 1con definition, such as either a URL or an encoded binary object,
information defining how an operation should be presented as an activity within the palette
and configured when placed within a process flow on the canvas.

[0062] The studio activity tools 504 can be used to import web and rule service
definitions into the repository such that they can be exposed as activities within the palette.
Examples of studio activity tools 504 include a web service import tool, a rule service import
tool, and a proxy generation tool. The web service import tool 1s utilized for importing an
existing WSDL, from either URL or file, and creating an associated service definition ﬁle'
within the repository. The rule service import tool 1s utilized for importing rule services from
a rule engine. This allows complex rule sets to be utilized within the process flow. The proxy
generation tool generates code that can be incorporated within client applications to call the
process externally. The generator supports code generation in the following languages: Java,
C#, VB, JavaScnpt, and J# (NET™ Java implementation).

[0063] The web service import tool 1s a wizard that defines the steps shown in Figure
6. These steps provide a mechanism for customizing the web service operations such that
they can be integrated seamlessly into the studio. Once the customization information is
provided by the user a number of XSL transformations are applied to the resulting documents
to output a studio activity definittion component properties XML (CPX) file. In one

embodiment a CPX file 1s an XML file descrnibing a set of activities for a particular web

13.

CA 02506233 2005-05-03

service. An activity may correspond to an operation 1n a web service. A WSDL file for an
original web service may, for example, descnibe interfaces, data type definitions, and binding
information. The CPX file describes additional details regarding which operations are
enabled as activities, the appropnate user interface representation of inputs and outputs,
special binding i1nformation (e.g., whether the operations are directly bindable), or other
information specific to Foundation Studio 410.

[0064] The web services import tool includes two style sheets, one that processes the
WSDL and creates a default intermediate user interface (UI) definition, and one that takes the
customized intermediate user interface definition and outputs the CPX file. Once the CPX
file is generated 1t 1s copied to the repository and registered, along with its source WSDL,
with the service registry.

[0065] Figure 7 shows the architecture of a rule service deployment such that it can
be used as an activity. An import wizard (not shown) 1s provided for loading rule service
definitions as activities for manipulation on the desktop visualization tool. As previously
described, in addition to conventional BPEL process flows, embodiments of the present
invention permit custom rules to be defined. A rule service is basically a web service that
contains all the information necessary to deploy and execute a rule set using a web service
SOAP request. The rule service import tool reads an existing rules file and creates a

deployment package that can then be automatically deployed on the same application server

environment used by the foundation server 440. Once the rule service is compiled, packaged
and deployed within the application server, the user 1s then allowed to customize the activity
representation using the existing web service import tool, which loads the rule service WSDL '
definition based on the deployment options specified.

[0066] Returning to Figure 5, the studio integration services consists of a number of
modules that are used for communicating with the run-time environment, these are
implemented as NET™ assemblies. The repository data access objects (DAQ) 510 is a set of
interfaces that wrap the implementation of the repository connection. This provides the
flexibility to be able to utilize a different repository structure if necessary. The WebDAV
libraries are an 1mplementation of the DAO interfaces that are able to communicate with
WebDAYV server implementations, as provided by the foundation server. The process debug
interface 518 provides a connection to the run-time over which execution state can be passed
allowing the studio to control and view execution of the process. The dynamic web service

process invoker 520 provides a mechanism for dynamically calling web services based on the

14.

CA 02506233 2005-05-03

WSDL definition. When a process 1s executed by the studio, the WSDL is loaded and a
dynamic assembly 1s built and used to process the request.

[0067] Since each new process 1s exposed as a web service by the foundation server
440 the studio needs a mechanism for dynamically executing these services based on the
WSDL description of the process. In order to do this, using NET™, a web service proxy
class needs to be dynamically compiled into an in memory assembly (DLL) and then called.
Figure 8 provides an overview of the dynamic web service generation and invocation
architecture. The architecture takes advantage of .NET™s WSDL import tools and ability to
create in memory assemblies. When an execute request 1s processed the proxy class is
generated from the process WSDL using the .NET™ code generator. Code compilation takes
place in memory resulting in an i memory assembly that is loaded into the current
application domain. Once loaded an instance of the proxy class 1s created using the NET™
type library, and method parameters are assigned based on the operation signature as defined
within the WSDL. The method 1s then invoked and the resulting object i1s passed back to the
studio by the proxy as the process output.

[0068] Refermng again to Figure 5, in one embodiment the .NET™ extension API
418 includes a CSV API 580 to get information from CSV files, a PDF API 582 to get
information from PDFs, an Excel API® 584 to get information from Excel documents, and a
database API 586 to get information from a database. JAVA extension API 416 may include
real time data access API 590 and dynamic activity scnipting API 592 for custom navigation
and extractions.

(0069] Since custom activities can be implemented in multiple programmingh
languages the foundation studio 410 provides a mechanism for creating custom activity
configuration Uls using these same implementation languages. This allows the developer to
customize the studio behavior using the implementation language most familiar to them. To
do this a configurator framework allows these Uls to be dynamically loaded and viewed from
within the studio by selecting a specific activity on the flow canvas. Which configurator to
use 1s determined by the CPX file definition that contains all the information necessary to
present the Ul.

[0070] For NET™ activities there 1s a standard API packaged as a .NET™ assembly.
NET™ custom configurators that need to be integrated into the studio must exist within an
independent assembly (DLL) and be defined within the .Configurators namespace. There is

an additional requirement that the class 1tself should be called Configurator. The entry point

15.

CA 02506233 2005-05-03

of this class can be listed within the CPX file under the operation <customUI> tag, and is
defined as the method name that should be called to start the configurator session.

[0071] When the configurator 1s launched, information regarding configurable inputs
and the application object model 1s passed in XML form. The inputs argument contains the
list of inputs and their currently assigned values, if any. The application object model
contains information on the process, such as container names, process steps, etc. The string
returned from the entry point should be an XML document containing the same input and
application object model information, with modifications based on the actions taken in the
configurator.

[0072] In contrast to the NET™ activity configurators the Java custom configurator
API is written in Java and 1s linked based on the configurator JavaUIlnvoker.dll, which is a
special instance of a NET™ activity configurator. JavaUIInvoker.dll opens a socket to allow
a Java Ul to communicate with a NET™ application. In this case when a Java configurator
1s loaded a Java virtual machine (JVM) 1s launched and a Configurator launcher class is
initialized. The target class 1s defined within the manifest of the jar file that will be loaded.
This ensures that the name of the configurator implementation class can be dynamic as
required by the component. This class then loads the implementation class, which usually
would utilize Java (Swing)/JFC (Java Foundation Classes).

[0073] Figure 9 shows how the communication between the studio and the
configurator 1s done to ensure that the configuration information is correctly displayed and
returned from the Java process. The basic .communication mechanism is based upon sockets.
When the JVM instance is started it is passed a socket port number that is passed as an
argument to the Java configurator launcher. The launcher then loads the configurator class,
which must extend the base class. As the configurator is initialized the base class will make a
connection back to the studio using the passed port, information can then be exchanged and
made accessible to the Java configurator code using a standard API. Input and application
object model information 1s passed as previously defined for the NET™ configurator XML
format, and UI events can be exchanged between the studio and the configurator until the

user completes the configuration actions.
I1. Configurable Electronic Document Navigation and Extraction

[0074] In some embodiments foundation studio 410 and foundation server 440 are

adapted to permit a user to define information of interest from electronic documents for

16.

CA 02506233 2005-05-03

automatic extractions. In these embodiments, a user may define a navigation path to an
electronic document and detine a target pattern for scraping information from a target page of
an electronic document. The extracted information may be published to a visualization tool,
such as an Excel® document. Alternately, the extracted information may also be read as an
input to a business process.

[0075] Figure 10 illustrates one embodiment of a system having a web recorder
configurator 1010 and a teach time server 492. Web recorder configurator 1010 records and
customizes web navigation steps and permits a user to define target information to be
extracted from the resulting page. In order to record navigation steps the web recorder Ul
initializes an instance of Internet Explorer® providing a browser like interface. The user can
then place the browser 1n record mode allowing each click or keyboard entry to be recorded
as they make their selections to navigate to the target page. This can include, for example,
recording a navigation path to an electronic document, including passwords, identifiers, or
other information required to access the electronic document, which may, for example, be
hosted on the internet, an extranet, or an intranet.

[0076] Once the navigation path has been customized it can be tuned using a number
of different mechanisms to ensure that the final navigation 1s robust to change. To test the
navigation the web recorder configurator 1010 provides a playback mode that will show how
the navigation will proceed. Playback 1s achieved using the run-time browser, NBNE (non-
browser navigation and extraction), which allows the navigation to be debugged for possible
run-time errors. Once the navigation is recorded the web recorder can be imtialized in
extraction mode. In this mode the user can select the region or regions of the target page that
should be extracted and placed into process vanables for later use. There are a number of
different strategies that can be employed for extracting information, including DOM based,
regular expressions, etc. Once again, when the extraction is ready for testing the user can
playback the extraction which results in the run-time browser being used and the resulting
table of extraction results 1s displayed to the user. When navigation or extraction recording is
completed the result 1s a navigation markup language (NML) or information markup
language (IML) file respectively.

[0077] The NML and IML files are XML files that describe the steps and parameters
required to perform the same navigation and extraction at run-time. An NML file is an XML
file that describes the user interaction with the browser in the process of accessing a specific

web page. An NML file may include, for example, the URL of the web page, any form field

17.

CA 02506233 2005-05-03

values the user might have put in (e.g., login, password, etc.) or the hyperlinks, if any. The
NML file permits the steps used to access the webpage to be reproduced at runtime. The
IML file 1s an XML descnbing the section of a web page to be extracted using the structure
(e.g., document object model (DOM)), content, or other criteria. An IML file may contain,
for example, information about the container elements (e.g., a table) and a structural pattern.
The structural pattern may, for example, be a group of elements having structural congruence
and at least one simple anthmetic progression on the relative indexes of one of the elements
in the lineage. The IML file provides information to extract data from a given web page into
a two-dimensional data structure at runtime. After the initial web recording is completed,
teach-time server 492 1s provided with the navigation path and target page to permit teach-
time server 492 to automatically navigate to the target page and extract information of
interest.

[0078] The teach-time environment provides the capability for the studio to record
navigation and extractions using the NBNE browser. Figure 11 illustrates proxy components
for the NBNE browser to act upon recorded navigations and extraction during a run time
execution of a business process. Figure 12 1llustrates the interaction of components of teach
time environment 420 and teach time server 492. A navigation proxy 1210 receives requests
from the studio user interface 1240 and passes the requests onto the NBNE browser session
1220. When instructed by the navigation and extraction controller 1230, the navigation
proxy 1210 will track these interactions and build a navigation information file. This file can
then be used on subsequent navigations to retrieve information from an electronic document,
such as a document available on the world wide web. A navigation and extraction controllerw
1230 controls the proxy and browser session 1n addition to providing access to base functions
of the browser to validate DOM information when recording an extraction. In one
embodiment, NBNE browser 1220 utilizes a Java browser.

[0079] When the navigation and extraction user interface 1250 of foundation studio
410 requests a navigation session 1t first initiates a connection to the navigation and
extraction controller 1230 using navigation and extraction interface 1240. The controller
should respond by allocating a session and passing information regarding the session back to
the studio. Once received the foundation studio 410 should then open an Internet Explorer®
session directed at the navigation proxy 1210. On this 1nitial connection the browser should
pass a navigation session ID, allocated by the controller to the studio, this will link the NBNE

session 1220 created to the session being maintained by the controller. Note that this step is

18.

CA 02506233 2005-05-03

only required 1f support for multiple navigation and extraction sessions is required per single
studio instance. If not required this correlation can be performed using the studio IP address.

[0080] Once this correlation has been made and the NBNE session has been initiated
the studio can request session recording by sending a record message to the controller, which
will notify the navigation proxy 1210 to start recording on that session. Recording will
continue until a stop recording message 1s received by the navigation and extraction
controller 1230, at which point recording is stopped and the navigation control file is returned
to the studio.

[0081] Extraction pattern recording is performed slightly differently. In one
embodiment, the NBNE session 1s maintained at the current screen and the user will select
DOM ranges within the Internet Explorer® session 1n the studio. Information on the selected
DOM 1s then passed to the extraction controller 1230 for validation against the current NBNE
session. If validated then the extraction 1s appropriately rendered and returned to the studio.

If not then the studio needs to notify the user, or needs to correct the selection internally.

III. Real Time Data Server

[0082] Reternng to Figure 13A, the real time data access server 470 provides a
mechanism for streaming data element updates from data providers 1302 to data subscribers
1304 using a Java messaging system (JMS) 474 and a client handler 1309. Data subscribers
1304 may, for example, be client applications such as Excel®, Microsoft Office®, or Java
applications. A stream loader 1308 permits loading of streaming data. Examples of
streaming data providers include, for example, the Bloomberg corporation and the '
International Energy Exchange (ICE). Other examples include custom process or
information obtained from an Excel® add-in, as described below in more detail. In some |
embodiments, the data 1s published to, for example, a visualization tool such as an Excel®
document so that a user can see current data values of selected types of streaming data.
However, the published data may also be used as a data provider for a business process. This
permits real time data to be integrated with static data sources.

[0083] Figure 13B illustrates in more detail sub-modules of the real time data access
server 470. The Java messaging service 474 is provided by the application server or by a 3™
party messaging service such as the message queuing (MQ) series. Messaging is provided by
JMS, which provides a number of advantages including its ability to be clustered and

transactional. Specifically, all data updates are published using a topic that provides a one-to-

19.

CA 02506233 2005-05-03

many publisher/subscriber delivery mechanism. Publishers and subscribers interact with
JMS 474 and stream management facilities using well-defined application programming
interfaces (APIs) to read selected data types from the data stream.

[0084] The publisher interface 472 provides the capability for creating new data
streams in addition to actually publishing updates to the JMS topic. The subscriber interface
476 provides an event notification mechanism that will pass updates to a set of listeners via a
listener interface.

[0085] The real time data publish activities 1310 1s a set of activities that provide the
capabilities to interact with the provider interface and also to the stream manager. Functions
that are exposed allow processes to create, update, and publish data streams.

[0086] Since JMS topics are one to many a persister 1305 is also implemented as
another subscriber allowing updates to be passed to the clients without introducing the
latency of storing the update. This means that subscriber delivery is extremely low latency.
The persister 1305 may be implemented as a message driven bean EJB (MDB) that
subscribes to the real time data access topic. Using MDBs not only has the advantage that it
can be clustered and 1s transaction, but also that the application will automatically handle
allocation of bean instances based on real time data access allowing for data updates to be
stored as quickly as possible.

[0087] The stream manager 482 may be implemented as an enterprise stateless
session bean that allows clients to change stream configuration and to query the current
content of streams.

[0088] The client manager 1320 provides a mechanism for allocating client manager‘
instances by type such that as new clients come online they can be load balanced and
clustered. The data warehouse 1330 1s the RDBMS and associated schema that stores all the
current and historical data streams updates. The administration client 1335 is a web based
interface for interacting with the stream manager object. The Excel® client manager 1340
handles multiple Excel® clients. Note that each workbook 488 as an individual client has an
on demand client interface 1350 for accessing data and a real time object linking and
embedding data base (OLEDB) provider interface 1360 for providing data.

[0089] In one embodiment, the publisher 1s an activity that exposes the publishing
interface for use within processes authored within foundation studio 410. = In this
embodiment, the subscriber 1s the Excel® client manager, which handles interactions with

multiple Excel® chients. When a workbook 1s opened within Excel® a set of macros is

20.

CA 02506233 2005-05-03

installed within the workbook that initiate a connection to an active instance of the Excel®
client manager. To locate an instance of the Excel® client manager, the Excel®/real time
data chient interface sends a request to the client manager using a web service call. The web
service call returns a location (IP address and port) that can be connected to. This lookup
mechanism allows Excel® client managers to be clustered. Once connected, the interaction
between Excel® and the Excel® client manager 1s done using a software module information
protocol (SMIP). The Excel® client can then subscribe to multiple streams and also publish

data back into the real time data access server 470.

IV. Foundation Server

[0090] Figure 14 shows in more detail submodules of an embodiment of the
foundation server 440 that 1s based on a J2EE application server architecture. In one
embodiment repository 442 for the foundation server 440 utilizes a content management
framework, based on the Apache Shde project of the Apache Software Foundation, which
provides support for the Apache community of open-source software. Slide provides a
hierarchical organization of content that can be stored into multiple data sources. Slide also
provides a framework for secunty, locking and versioning of assets stored within the
hierarchy. Additionally, Slide provides a WebDAYV servlet that may be used to communicate
with the Windows® Desktop. The repository 442 may also include a Slide browser and Slide
APL. |

[0091] In one embodiment, when repository content, either processes or activity
configuration files, 1s deployed to the repository 442, the repository 442 is responsible for
notifying any active run-time instance that the deployment has happened. This ensures that
when the process 1s next executed the correct version of the process is used since the current
entry will have been invahdated. In addition, since the run-time can be deployed in a
clustered environment the architecture ensures that all nodes within a cluster are notified. In
one embodiment, a slide content interceptor object 1s included. When content is added,
updated, or removed from the repository 442, methods are called on this slide content
interceptor object to allow processing of the content both before and after the event.

[0092] Scheduler 446 permits run-time environment processes to be invoked oh a
schedule. The schedule 1s implemented using JMX events linked within the management and
monitoring services provided by the foundation server 440. Using this mechanism allows for

the schedule information to be centrally stored, even within a clustered environment. When

21.

CA 02506233 2005-05-03

the scheduler application instance is initialized it creates a number of executor threads that
are available for execution of scheduled jobs.

[0093] RTE 448 includes an execution engine (not shown in Figure 14). The
execution engine provides orchestration of components by allowing them to be pieced
together using a BPEL document (process document). A process document describes which
components are to be used and how, including what data is accessed, where it is transferred,
how 1t 1s stored and what operations are performed on it. The execution engine then yses this
process document to execute the actual process described.

[0094] Figure 15 shows an embodiment of an execution engine 1502 in a run time
environment. As has been mentioned previously processes may be defined using the
BPEL4WS process execution language. The execution environment provides a web services
gateway 1505, service invocation bus 1520, BPEL parser 1525, BPEL compiler 1530,
processor 1535, session monitor 1555 and debug monitor 1560. Web services gateway
(WSG) 1505 1s the “adapter” or “gateway” from the execution engine to the web services
container 1n which it 1s deployed. It may be implemented using an Apache Axis 1550, where
the Apache Axis 1s an implementation of the SOAP protocol developed by the Apache
Software Foundation. WSG 1505 contains all classes and components for interacting with
serviet containers and web services containers. It routes web service invocations to the
correct process, dynamically deploys processes to the web services container and performs
any message translation necessary between the container and the process.

[0095] In one embodiment the W'SG 1505 consists of a process container 1570,
deployment manager 1565, process loader 1575, and web services controller 1580. The
process container 1570 1s a wrapper that exposes a process as a web service. The web
services controller 1580 handles loading the correct implementation of deployment manager
1565 based on the web services container. A container request handler is registered with the
web services container as the handler for all requests bound for process services. It is
registered with the web services container by the container specific implementation of
deployment manager 1565. The container request handler first performs any validation
required and translates the message into a WSIF request and WSIF response. It then invokes
the appropriate process service via the web services controller. At this point, the message has
armved at the correct process service. If the message is destined for an existing process, the
message 1s placed into the container of the appropriate activity, for instance a receive or pick.

If however, the message does not correspond to an existing process, a new one must be

22.

CA 02506233 2005-05-03

created. After the new process is created, the message 1s placed into the container for the
appropriate activity.

[0096] To facilitate more efficient execution of processes the service invocation bus
1520 will provide asynchronous execution of invoke and copy activities. A processor 1535
will determine whether a virtual process can be placed onto the SIB 1520. If it can, the
processor 1535 places the process onto the SIB where it will be picked up by a worker thread
from an invocation bus thread pool. When the invoke or copy activity has completed, the
corresponding processor thread will be notified via an event. The invocation bus 1520 is
preferably capable of growing or reducing the number of threads executing operations based
on administrative instructions or runtime statistics.

[0097] The BPEL parser 1525 parses the BPEL document and any associated WSDL
documents to create the document object model (DOM) 1555. The DOM 1555, as its name
suggests, 1s merely an object representation of the BPEL document. The BPEL parser checks
the BPEL document for syntax validity.

[0098] The BPEL compiler operates on a parsed DOM structure output by the parser
and creates an executable object model (EOM) 1560 of the process. Once a DOM 1555 has
been compiled mnto an EOM 1560, 1t 1s ready for execution by the processor 1535. The
compiler 1530 validates as much of the DOM 1535, for semantic correctness, as possible.

[0099] The processor 1535 1s a virtual multi-processor machine capable of executing
EOMs as virtual machine processes. A single processor is capable of executing a single, top
level process at a time. Since a process may spawn additional processes during execution, a
processor 1s capable of “context switching” between these processes to provide virtual-"
parallel processing. A processor executes 1ts own thread.

[00100] In order to provide parallel execution of processes, each processor must be
capable of context switching between the processes that are spawned during execution. In
one embodiment each process maintains an internal queue of steps. In this embodiment, a
processor knows whether a process 1s ready to execute a step and whether it is finished with
the step. If it 1s ready to execute, the processor instructs the process to execute. When the
step 1s complete, control 1s returned to the processor where a decision is made whether to
execute the next step, place the process back onto the process queue to execute later, or to
wait on a registered debug monitor.

[00101] A processor manages a process 1nstance to completion. A single processor

manager 1540 will manage all processors within the execution engine. When a process is

23.

CA 02506233 2005-05-03

placed onto a process queue by the process manager 1540 one of the processors removes it
from the queue and begins to execute it. The initial process is the primary process
corresponding to an EOM instance ‘for a particular request. However, each primary process
may spawn child processes that execute in the same processor. The processor manager 1540
is capable of growing or reducing the number of processors based on administrative
instructions or runtime statistics.

[00102] The session momitor 1548 allows remote monitoring of processes.that are
executing. During execution, a processor 1535 sends the state of the processes it is executing
to any registered session monitor listeners. This can be used, for instance, to allow
administrators to monitor executing processes via a web interface. There 1s no limit on the
number of session monitors 1548 that may watch a process. The processor’s 1535
responsibility is to publish the state of a process as often as 1s practical to a standard interface.
Process state 1s published at the end of each process step.

[00103] The debug monitor 1545 provides debugging capability down to the process
activity level. Durning execution, a processor 1535 will publish the state of the processes it is
executing to any registered debug monitors 1545. The processor will then receive a response
specifying whether it should stop or continue. If a breakpoint, or step condition is
encountered, the processor 1535 must transfer control to the debug monitor 1545 and wait for
the next instruction. This allows a debug client to control the execution and monitor the flow
of an executing process.

[00104] Figure 16 shows the architecture of the service invocation bus provider
interface. As a process executes, activities that are invocations of other web services or data '
transporters (such as copying) are placed onto the SIB. Internally, the SIB maintains a queue
of activities 1605 and a pool of threads 1610. The activity is placed into the queue 1605 and
picked up and executed by a thread from the pool 1610. This allows these activities to be
executed in parallel to the parent process and allows the processor to continue executing
queued processes. When an activity has finished on the SIB a notification event is sent to the
processor that owns the “primary process’ to which the activity belongs. The processor then
decides what to do with the finished activity. In most cases, the finished activity will simply
notify links or parent activities that 1t has fimshed. SIB includes a provider interface 1620.
Run-time binding to the appropriate provider occurs as activities are invoked within a
process. The SIB loads the WSDL definition for the web service that implements the activity

and evaluates the binding mechanism. Once the binding i1s determined the request is routed

24.

CA 02506233 2005-05-03

to the appropriate provider implementation that then performs the invocation. The provider
interface thus performs a mapping for the WSDL operation definition, including message
types, and binds the operation semantics onto the physical connection medium. Examples of
supported providers are a Java provider 1650, an EJB provider 1655 for remote method
invocation (RMI), a JMS provider 1660 for accessing a Java messaging server queue or topic,
a J2EE connector architecture (JCA) 1665 as a resource adapter database drivers, and a
HTTP/SOAP provider 1670. Additional providers can be added by creating a provider that
conforms to the WSIF (Web Services Invocation Framework) specification.

[00105]) Java enables any Java class to be loaded and invoked using Java reflection.
Methods on the Java class are discovered based on the types specified in the WSDL operation
definition. Activity parameters are translated from their XML Schemas definition (XSD)
schema types to their Java equivalent and passed in the order specified by the activities web
service operation. Enterprise Java beans (EJB) provides the capability for an EJB instance to
be connected to, via JNDI, and mapping the activity definition onto a specific method on the
EJB remote interface. JMS provides the capability to create a JMS message based on the
operation/activity parameters. The WSDL binding within the service WSDL contains
information that allows the parameters to be translated into either a text or an object message.
JCA provides the capability to define a service that binds activity operations to methods on a
JCA resource adapter interface.

[00106] One embodiment of a web services gateway 1s 1illustrated in Figure 17,
showing exemplary operations. The web services controller loads an appropnate deployment
manager, such as an Axis deployment manager. Request handlers use the web services.
controller to choose an appropriate process to invoke based on the name. The process service
wraps distinct processes. The process loader handles the details of parsing raw BPEL and
WSDL documents into BPEL process instances and definition instances, respectively.

100107) One embodiment of a virtual processor is illustrated in Figure 18. In this
embodiment, the processor has a process queue to schedule the execution of processes. A
step queue 1s used to execute a particular process as a sequence of steps.

[00108] Figure 19 illustrates an embodiment of a BPEL parser that operates on a
BPEL document and produces a document object model. In the 1illustrated example, the
reply, receive, and 1nvoke interfaces are representative of a collection of BPEL activities.

[00109] Figure 20 1s an example of a BPEL compiler that operates on a BPEL DOM

instances and produces Cprocess executable EOMs. The Cprocess 1s a single, unique

25.

CA 02506233 2005-05-03

instance of an executable process that can be executed within/on the execution engine/virtual
processor. The CActivit is the top level object in the EOM hierarchy.

[00110] An embodiment of the present invention relates to a computer storage
product with a computer-readable medium having computer code thereon for performing
various computer-implemented operations. The media and computer code may be those
specially designed and constructed for the purposes of the present invention, or they may be
of the kind well known and available to those having skill in the computer software arts.
Examples of computer-readable media include, but are not limited to: magnetic media such as
hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and
holographic devices; magneto-optical media such as optical disks; and hardware devices that
are specially configured to store and execute program code, such as application-specific
integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM
devices. Examples of computer code include machine code, such as produced by a compiler,
and files containing higher-level code that are executed by a computer using an interpreter.
For example, an embodiment of the invention may be implemented using Java, C++, or other
object-oriented programming language and development tools. Another embodiment of the
invention may be implemented 1n hardwired circuitry in place of, or in combination with,
machine-executable software instructions.

[00111] The foregoing description, for purposes of explanation, used specific
nomenclature to provide a thorough undqrstanding of the invention. However, it will be
apparent to one skilled in the art that specific details are not required in order to practice the
invention. Thus, the foregoing descriptions of specific embodiments of the invention are '
presented for purposes of 1llustration and description. They are not intended to be exhaustive
or to limit the invention to the precise forms disclosed; obviously, many modifications and
variations are possible in view of the above teachings. The embodiments were chosen and
described in order to best explain the principles of the invention and its practical applications,
they thereby enable others skilled 1n the art to best utilize the invention and various

embodiments with various modifications as are suited to the particular use contemplated. It

is intended that the following claims and their equivalents define the scope of the invention.

26.

Appendix .

1.
2.
3.
4.

CA 02506233 2005-05-03

Glossary and URLs of Selected Documents

Execution Object Model: (EOM) A compiled BPEL DOM that may be executed.
Document Object Model: (DOM) Object representation of BPEL Document.
Axis: Apache implementation of SOAP.

Business Process Execution Language (BPEL): Specification for orchestrating a

process flow with Web Services.

3.

Web Services Invocation Framework (WSIF): Apache API for invoking Web

Services regardless of how or where the services are provided.

6.

Web Services Description Language (WSDL): XML format for describing network

services (Web Services).

7.
8.
9.

Activity: Single unit of a BPEL Process. Examples are Invoke, Receive and Reply.
Step: Single unit of Process execution.

Process: Depending on context, a Process may be an executable object managed by a

Processor, a flow defined by a BPEL document, or the Web Service provided by the BPEL

document definition.

10.

Business Process Execution Language For Web Services (BPEL4WS) Specification,

Version 1.0. http://www-106.1bm.com/developerworks/webservices/hbrary/ws-bpel

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Web Services Description Language (WSDL) 1.1. http:/www.w3 .org/TR/wsd|

Web Services Invocation Framework (WSIF) 2.0. http://ws.apache.org/wsif

Apache Axis 1.0 http://ws.apache.org/axis/index.html|

WSDL — Web Services Description Language

BPEL4WS — Business Process Execution Language for Web Services

XML — eXtensible Markup Language

XSLT — eXtensible Stylesheet Language Transformation

DOM - Document Object Model

NBNE — Non Browser Navigation and Extraction

Business Process Execution Language for Web Services (BPEL4WS) specification
Web Services Description Language (WSDL) 1.1

XML Specification 1.0

XSD Schema Specification 1.0

27.

CA 02506233 2005-05-03

What is claimed is:
. A system for implementing a business process to integrate data, comprising:

a web services orchestration platform having a flow canvas for a user to create a
graphical representation of a business process execution language (BPEL) business process
accessing at least one data source, said web services orchestration platform generating a
corresponding BPEL document; and

an application server adapted to receive a BPEL document from said web services
orchestration platform, said application server having a run time environment (RTE) for

executing a BPEL process on desired data sources for a received BPEL document.

2. The system of claim 1, wherein said server includes a repository for receiving said
BPEL document.
3. The system of claim 1, wherein said server has a Java 2 platform enterprise edition

(J2EE) environment.

4. The system of claim 1, wherein said BPEL document 1s communicated from said web

orchestration platform to said server via a hypertext transfer protocol simple object access

protocol (HTTP/SOAP) interface.

5. The system of claim 1, wherein said at least one data source includes at least one of a

streaming data source, a web site, a database, and a network document.

0. The system of claim 1, further comprising a web services import tool for importing

web services.

7. The system of claim 1, further comprnsing a teach time environment for a user to
define a navigation path and target pattern for extracting information from an electronic

document.

28.

CA 02506233 2005-05-03

8. The system of claim 1, further comprnising: a real time data server adapted to access a
data stream and publish real time data to subscnbers, whereby said at least one data source

may comprise real time data.

. The system of claim 1, wherein said RTE comprises an execution engine including:

a web services gateway;

a parser for parsing a BPEL document to create a document object model (DOM);

a compiler that creates an executable object model (EOM) of a business process from
said DOM;

a processor for executing EOMs as virtual machine processes; and

a service invocation bus for binding an activity to a web service provider or data

transporter.

10. The system of claim 9, wherein said service invocation bus comprises:
a service invocation bus request queue;
a dispatcher thread pool;
a web services invocation foundation (WSIF) API; and

at least one provider interface.

11. The system of claim 10, wherein said service invocation bus includes:
a first provider interface for NET™ web services; and
a second provider interface for Java services to access at least one of a real time data

stream, a navigation and extraction, and a database.

12. The system of claim 1, further comprising a real time data server comprising:
a process engine;
a publisher interface;
a subscriber interface;
a Java messaging service;
a persister;,
a data warehouse;
a stream manager; and

a client manager.

29.

CA 02506233 2005-05-03

13. A method of integrating data, comprising:

providing a graphical user interface for a user to create a graphical representation of a
business process execution language (BPEL) business process having at least one activity
block representing a BPEL activity to be performed on at least one data source;

generating a BPEL document for a business process generated by said user with said
graphical user interface; and

executing said BPEL document in a run time environment of an application server.

14. The method of claim 13, wherein said executing includes:
parsing said BPEL document;
generating a document object model of said business process;
compiling an executable object model of said business process from said document

object model; and

running said executable object model.

15. The method of claim 14, wherein said running said executable object model

comprises: assigning a virtual processor to execute said executable object model.

16. The method of claim 13, further comprising:
in a proxy training session, receiving instructions to record web navigation and
extraction information to define data to be automatically extracted by at least one proxy; and
in response to said executing said BPEL document, utihzing said at least one proxy to

perform a web navigation and extraction to retrieve data for said business process.

17. The method of claim 13, further comprising:
receiving streaming data from a data provider; and
providing streaming data to a subscnber; and
in response to said executing said BPEL document, accessing subscribed streaming

data for said business process.

18. The method of claim 13, wherein said executing said BPEL document, comprises: '
for a first type of activity, accessing a first class of data sources using .NET™ web

services; and

30.

CA 02506233 2005-05-03

for a second type of activity, accessing a second class of data sources using Java web

services.

19. The method of claim 13, wherein executing said BPEL document comprises:

for a first type of activity, accessing a first class of data sources using .NET™ web
services, said first class including at least one of rich text format (RTF), Excel, and portable
data file (PDF) document file types; and

for a second type of activity, accessing a second class of data sources using Java web
services, sald second class of data sources including at least one of a database, real time data

from streaming data, and navigation and extraction of network documents.

31.

CA 02506233 2005-05-03

prd
E 061
w SUOIIBUNISIP
~ I puR S}ewIo]
J] ejep oidnny JAIRS
B :31:Tq|
m_ 081 JWI-[eay

X

o vleg

aseqeie(g

[OIA

saseqe)e
X|UI-PPV [99xT — _mcomm_om
, SWIAISAS K083
001 a— S ([swsisks ewsora
071 . . SWIISAS [RUINU]
1dv L9 SPUS gIM

Y44
0I1 u] e1eQ

CA 02506233 2005-05-03

Veold [weotwesg [

2/22

e padouss [wain o] [seseood [somy
«T<

A[IYM O

o
youms -
A1dsy Q-
SAIY
210N V-
017 I 4 Orc
uiof &
3o -
ugissy
SIOUOD) MOT] B=--
pasueApy -~
l%%mw d L suonewojsuel |, r-H
\ | . unduog B
O _OgiG_____ ©O suonelado B 0¢€C
v

'y

(11

owny e1eq ystand -8
- indinQ eieq B

D-§0¢ . a8eq qom o aredieN O--

. TIN 01 ediaeN ()--
eie JADI 19D¢ -

Jdd WOl 19D ty]--

d.Ld WO} 32D
199X wolj 190 fx].-

RSN G 0C7 aseqeie(wolij 190 @
piomssed < AMI ASDH woig 1o -

6 ol o o]|dpmuesreng Q-
199YS9]AIS SAIYDIY WoY Joenxy -
S10}0MeIed 193YSIAIS < Q osequiq oy R0 | O M| | coomosan 41 1 projuoq (-

I - D, -] o1 peojumod Q-

- WIOJSUeJ qg-C0¢ - s$220V eie(
X — b=$0¢ suoneduNWwWo) CHHP
0€7 09¢ o

T-COZ D-607 uowwo) S~
Al e
I KeiqrT Uopuno3
OO00 8 0xUdaddeed@YBER0
disH 8nga@ sjooL MaIA NP3 314
X0} [=] ¢ 01pruS uonepuno g o%mE.&oam

q-§0¢C

q ureans ereq 4
[« R -)

Jqueail§ wvregqd

Qw. Q N 4 eied
Bled <
gurddejq <

il

dS 1o &end

0CC

JWeN o[l <
ureang <

&

09C
0§¢C

AR G- PP D W el PP Pabdrw B0 B W e 9 PPP-SU 6 1 DN B0 N Swew

m
|
m
|
|
m

CA 02506233 2005-05-03

3/22

Foundation Library
I I L2

-+ Common

! B0 Communications

B-&l Data Access
"® Download File

Download HTTP resources
t--O Extract from Archive
(O Extract from Web Page
i~[] Get From CSV File
0 Get from Database
t-.] Get from Excel

Get from FTP

Get from PDF

s X’Get KM Data

'“O Navigate to URL

0 Navngate To Web Page
E -D Data Output

Compress Files
Convert to HTML

§"Q: Send to FTP
§-I:l Write to CSV File
:- (d Write to Database

- X Write to Excel
m-['_‘l Operations

t-- O Check File Existence
t-- [Compute Totals
k[Copy File

- Delete File

== List directory

+-- Q, List FTP Files

"“'B Move File

t..apy Rename File

t-- X Run Excel Macro
-1 Publish Data

: [@-£3 Scripting
i [@-03 Transforinations
H--03 Advanced

{ [{-0 Communications
M- Data Access
A-L1 Data Output
-3 Operations
-3 Publish Data

i [M-0 Transformations
H-~=J Flow Controls

i-t:l Assign

(P r Y T I X P T IR R Y Y NPT T P P Y LT Ty rYYLIrTY)

AQeNeeve000¢

2000060A08 S0

T YT Y Ay Rl i Iy

RSO PAR0020000660ADIRS

t

€9 Fork
@ Join

i"A’ Note
- Receive
'“O Reply
-[] Switch
i-O While

pad .q.‘ ®

=
FIG. 2B

220

230

240

4/22

CA 02506233 2005-05-03

| ||
¢ DIA _gowp] nding
AIeiqQiT] §59501J 3ulpeoO]
Sa1JIALOR SUIPRO] S[IYM PAI0SISP alam S3UIUIB A pue SI0UY
..... SONNIANDY Suipeo] duog-----
(xdo 2014105 ASI) Juauodwio) ASD :991AIaG BUISSV0IJ UO(]
(xdo-ao1a19Qasodsuesy) asodsuel | 1321A19G BUIsSa001d U0
‘puno. 10N ($0Ot) (10119 Ue PalIN}Al JIAISS 9JOWal Y]

[PSN901AIaGI0}0BIIX P J/SIOIAIIS/I3ATISIY/ [00 :3SOUJRI0]//:ANY: N TASA -391A10G J013e1XT J(IJ 130} SUORIULI(321A135G3 | SUIssa001d J[IYM JOLT 44
‘pUNO. 10N (Y0f) 10D UB PILITYDI JSAIIS JOWAI Y |

lﬂ||ﬂ UM Omr

01z Kiday O~
109y O-
JON V-
ur] K
uiof -
0 -
ugIsSy e

S[OLUOT) MOJ.]
suoneuuoysuel] r-H
Sunduog B
ejeq ystqngd o6
suonieiedO B
indinQ eieQg my

$$900V Tt 38
suonedIUNuUI0)) 48

Iseqele(d woij 190 IAISIY PIJUBADY Q-
suoneunojsuel] -8
Sundusg -8B

m.*.-.--*--m.ﬁ.ﬂ- re

{1l

9[L.] 03 WeasS AN ULIOJSURY | Swm_o%mm%m M.:M

indinQ ereq O~

sousnbag SSAVVVY vie(=1
suoOnEIIUNUIWO.) (Y

uowwo)) -t

m.".."......“......"-m WOOCTY A0 PSS P PSPPI N

3og
1SITI9WO0ISN)ISN

S T s]
© 000 8 O 4R« a,o,@_muna%@ m_hn_

. dioH 8ngoQ s[00] MmalA NPT 9]
pad}(=]ieed ¢ OIPMS UOIEPUNO.] IPRUIMOUY

5/22

CA 02506233 2005-05-03

vy DIA

(uonoenxyg
CEMIRER pue uonediABN ‘Ss30V

ajn1 Surpnjoup) ereq] SW] 189y ‘dL] (4ad ‘199%3 ‘414

SIIIAIRS
uonepunod L[N

SIOTAIAG ‘ASD ‘LISX ‘oseqere(])
Aled pig SITAISS

uonepunoj eAef

JOAISS
W] yoea

CoV 097
ror 4] 4
vy 4%
0L 8.% R a
.Iﬁmm_ dVOS ‘YOI ‘SIAf ‘eaef)
b/ b 1 2101S BIR(] AW] -[RY SNgJ JOPIAOIJ 3ITAISS §CP
(XIAL)
IdV 1a8euey (XINI) S31AID (SN
N %V Weans sz—,v snyg wammoz J[NPaYSS mg .mmwu:uomﬂ\é \CmemOQONm - N V “u
Juatageue N
2[OSUO)) dV 14V ANS13oY Iageuey
ey suit] ooy) \22a1osans eieq) | sspisosg e S LA T wousodey
. UONRISIUTWPY UOIIBPUNO]
7/ b 0rr
08F QLY (SSOM[‘@13ydSgam ‘VIg) JoAlag uonedddy J4z(¢ vew 14 bt Op 7CH
’ TINIS dVOS/dL1lO

$10}emM31uo)
omy

IdV
UoISUIX7

LAN

£ 0311 [39%H €] SWneod
3 et

OIJBJA] [99XH BiR(J SWN-[e3Yy

S3ITAJAS UOIIRIAIU] OIPNIS

“
N

$10j2IZ1JU0)

woisny) 1dV YIomawel SI9PJO] Ga M
SAMODUI
95y A00QAIOM [99X3 JUSUWIUOIAUS cowmwwxm OIPTS il

SWIM-Yyoes |

[29XH YOSOINA

4 0IpnIS UoRpUNO 1P 9cr /
007

ooy — SOF [0F d0IS3(] SMOPUIM. ~— ()¢ 0]

CA 02506233 2005-05-03

6/22

dVOS/dLLH rry 06

¢ DIA dOY-TNX/dLLH AVQ32M/dLLH
R
0Cs
SSIY JINOAU]]
vle(d wzmuafom m.uOﬁw.uSw@GOU $§230.1d O_EMC%Q IdV AVAY4° A
06§ ‘- QWL ANALOY WOISN,) BAR[¢

[V UOISUIXY BAR[

aoejiau] 3nga(g OV Alojsoday

SUIYORIA [ENUIA BAR
OB [BIUIA BARL S3DIAISG UOnRIZAIU] 01pMIS

STwreuA(d
oI _ e

SIF pIb ~
JONOAU] JO3RINSIJUOY) AR
98¢ ylomawelJ Alanayuonedijddy
1459 oo I oINVy { RIANOY
ey Bhe) (sewmomons
13101dXq 13pI0d3 a ASD —
4V UOIsuAIXT LAN 08¢ bOS 095 0SS

i ZIb

INHN

1144 JUQUIUOITAUT dWN-Ydea |

1784 - oUIYOBIA [ENLIA BAE[OIpNIS uonepuno g

CA 02506233 2005-05-03

7/22

puyq

o[} XdO
10] Ansigas

A1ANOY 3y} Ul
AJIUS 331N

A1oyisodai
0} Sa[1J
XdO 201§

°lJ XdO
0} UONIUIjap
[N drejsuel]

[sx Inxdazipsm

duisn 1ISX

9 OIA

3y 01

uoniuisp 1]
[RULISIUT LI

ON

3ZIWOISND 0}
SOIIAIIOR QIO

uoniuijep
AJIATIOR 3ZIWOISN))

UuonIuIJap AjiAnoe
ZIWO0ISNd 0}
suonelado 193124

JRULIO]
[eUIIUT OJU!

uonIuijap
11 PEO7]

uonruiysp 11l
9)RIPaULIIUL OJUI

TASM ejsuel]
[WX INZpsm

aursn TLSX

3[1] [820] 0
1ASM

PROJUMO(]

TdN 10 314
2)J1N0S

TASM 19995

CA 02506233 2005-05-03

8/22

Run-time

WSDL Generation using URL
http://<host>:<port>/<application
context>/services/<ruleservicename>?wsdl

Process invocation ustng URL
http.//<host>:<port>/<application
context>/services/<ruleservicename>

J2EE Application Server .
Web Application Container .

Apache
AXis
Generated Rule service
interface
Ruleset Execution

Rule Engine ~
Object Model
Ruleset libraries

FIG. 7

CA 02506233 2005-05-03

9/22

Invoke process

Proxy
DLL loaded?

No

Load process
WSDL
Generate C# proxy

Yes

Modify code to add
header attributes
Compile code

Create instance of
~ proxy

Setup invocation
parameters

Invoke service
method
Return result

FIG. &

CA 02506233 2005-05-03

10/22

SSB[d J0jeIN3IJU0))
woisn,)

(1dV)
sse]D) aseq Jojein3yyuo)d)

(dHSS) uonvauu0d
UOTIBOIUNUIWO)

6 ‘DI

13youne

joyen3iuo)

1032IN31JU0)D)
INOAU] I BARf

[dV J05ean3yuo) 1IN

o1pm§

01pNIS

SUIYORIA [BNMIA BAR[

yiomawesJ LN’

CA 02506233 2005-05-03

11722

1210{dxq 12UIU]

SUIPIOAT UOTIORIIXD
pue uonesiAeN 10J pas)

0101

144

0ly

01 DIA

(INEN)

JOAJIS JWN-Yoea]

159} pue yoeqAeid
3Wi-uni Joj pasn

) .@muswmcou
J3PIOIY GIM

[dV joleI3nuod) LIN'

OIpNIS

O1prus

4] 4

yiomaweld [N

CA 02506233 2005-05-03

12722

cor

011

JUSWUOIIAUS aW3-yoea]

0771 -

UO0ISSIS
Iasmolg gNEN

SN (M ilifo]g'
uoIoRnXY

®
uonesiAeN

AX0Id JL1H
uonesiAeN

0ECT
Odd-"TINX/dLLH

0y

3[OSU0))
uonenSIUuIWPY

dvVOS/dL1lH

[DIA

SIOTAIDG

ULIONUOIA]
Jusurageueiy

Idd-"TNX/dLLH

SOIAIIS UONRIZAU] 01PN

uonedijddy o1pnig

J1oAI9S
uonednddy 39zf

K10311s0day

193BUBIA

Wi-un
At A1011soday

AVA9M/dLLH

SI9P]0 GaA\ SMOPUIM

O1pMS

dO1Sa(] SMOpUI A

Ory

CA 02506233 2005-05-03

13/22

420
Internet Explorer NaVEgatiop and 1250
Session Extraction
Ul
1240

Navigation and Extraction
Interface

HTTP XML-RPC

Navigation HTTP Navigation and 1230
Proxy Extraction
Controlier

1220

NBNE

Browser
Session

FIG. 12

CA 02506233 2005-05-03

14/22

BAR[‘901IJO

S "190xH
SB yons
sdde juar)

(uonezijensia)
$19qLIOSqNS BIR(]

60&1

(IdV eae()

SI9]pueH
i}l e

19QUIOSANS

19181819
SN[weans

(10A10G SwBessajA) SIS

J9A12G uonednddy 9gzr
rLY
0Ly
e
"Eﬂi“
S19p1A01] ul-ppy B S — -
[90X] % "!ﬁul"
59001 S ———
e te———— G T = e @ e o
SI9PIA01] Ble(] .. ,
COET gy

§¢EI

3[OSU0) UOHBNSIUIWPY

CA 02506233 2005-05-03

15/22

90BLISIU]

12quIsSqNS

Ja8euejp|
WSO [99X%Yd

1434

19plA0ld €TI0

HOOqHoM
190X

90BLIAU]
ysHqnd

20BJI3)U]

WD

1:14

0EET

OLr

ASNOYIIB A\
e

)
)
<>

IaZRUBA JUSID)

0CE]

§EET

q¢1 OlA

414

JogrUBIA Weang

9LY

00

UONRISIUTIUPY

JOAIDG UOIIBPUNO.]

19151519

201A1G FUIZRSSAJA BAR[

90BJINU] 20B}J101U]
1aquIOSqNS Iaysnqng

SIRIARDY Ystjqnd
BjR(] dwi] [eay

2UTIBUT SS90013

SIEI

$O0¢E1

LY

e

CA 02506233 2005-05-03

16/22

vl OIA

(918 ‘puewd(UQ ‘dLd
SIDIAILS - ‘ASD ‘17ISX ‘eseqere()
Aued plg SIOIAIAS |

UONRpUNO.J BARS

(dra ‘dvos ‘VOr ‘SIAf ‘eaef)
stg I9pIA0I] 9JIAISS

(XAI)

SADIAILG
3]OSU0) BULI0)IUOIN © JUSUWIUOITAU
UONBISIUTWPY JusWwageue N auwm-uny

uoijepuno

Y4

494

(ssOodr ‘araydsgam ‘vad) 19a1sg vonednddy 3921

dVOS/dL1H
Idd"TNX/dLLH

4744

(4ad ‘199%7 “41Y)
SAITAIDS

uonepunod [N

1a8euriy
A1031s0day]

19AJ9S UOHEPUNO]

AVA4°M/dL1LH

067

20BJISIU UOTINIIX] aoeJIauy surysiiqng

CA 02506233 2005-05-03

COST
Y4V
JOJIUOA]
JHSS g
I03IUOTA]
_ L] uossag

147

$1 OIA

a9 "VOr ‘eaef ‘SN[
dVOS/Odd-"TINX/dL1LH

07C]T S UOIBOOAU] J0IAIDG

CECT

NOH

10559901

09¢1

193eUBN

10S595014

0FS1

I9]j0nu0))
SIOTAIS QI M

0881 CLST

dVOS
Idd-"TINX/dLLH

Iapdwon)

0EST

I2UIRIUO))

$59901J

0LS] COCT

STXY

,]
0§81

NOd

19SIB
‘1ddd

I9dreue
JjuswAorda(g

$§9€1

JUSWIUOITAUY SWII-UNy

CA 02506233 2005-05-03

18/22

9] DIA

0L9]

0291

0791

091

depy

IVOS 32IN0S3Y aido] 10
dLLH VOI ananQ SIS WY

§991 09917 CcoJ
<
QO ...W. 3 22, ,.nm aa) @
N .= o . =
5 3 S 3 z 32 D 3
E S > =
.

[dV AISM
[004 peaty] Joyojedsi(]

anang) 1sanbay shg UONILIOAU] 3IIAIAS

]

uond3Joy

Java
Provider

SN UOIJBIOAU] 901AJ2S

0§91

CA 02506233 2005-05-03

19/22

Jo8eupyjuawiAo|dogsiXy

195(0) : (201A125SS3001 : 39IAISS)A0]dap

1a8eueyn JudwAojdag

<<2J8]INUT> >

p1oA : (asuodsay JISM : dsuodsal ‘JsanbaydISM - 1sanbar)aoialas
uontunga(: (Juoniuiyagla3d

Juing : OoweN1e3

aureNQ : (ppes

(uoniuija(] : Jop ‘ss9201d13dd : 201d)adIAIRSSS00I]

-

901AIIGSSD01]

PIOA : (J2]AI3S : S)19]AIIS193
191A13S : 19]A12G193
192(q0) : (BUINg : JWEBU)IINAIIG)E
3018397 : ()S901A13S193

101839] : ()SSWEBNI91AISS193

p10A : (291AJ3GSSa001(: @01AI13s)Ko[dap

13[]0IU0)SIDIAIISGIM

proa : (ureanginduy : weangjadq ‘weanginduf : weangipsa)peo]
proA : (TYN : IN1edq “TAN * HNIPsSa)peo]

19peOSS9901d

Aemajen) SadJAI3S 3\

CA 02506233 2005-05-03

20/22

1517 : ()9)12]duIod

dais
<<IVBLIBIUIS >

ued|ooq : ()Adwgs!

da1s : ()sAowal
P10A : (s dai1g)ppe

anandalg

8l DI

ueajooq : (JuoneirddQeres!
| uesjooq : ()paysiur st
uea[00q : ()Apeayst

3s17 : ()dass
3ung :)sweNye3

$§29001d
<<IJBLIAIUI> >

10SS9201J JenMIIA

uesj00q :)Adwgs!

§S2001 : ()aA0Wd

p1oA : (1 IsT)ppe
DIOA : (d $$9201J)ppe

anan()ssad0.id

10559201

pIoA & ()uels

pealy]

CA 02506233 2005-05-03

21722

61 DId o

<<LIVBLIUT> >

MOAU] : (JaNOAUI31BAID
A1day : OAjdayaieald

IATIY : ()IA13I3Y1E3ID
guing : (JoweN3s3

I
592014 T14dd

SAI03Y
< <IIBLIBJUTS>

A1doy
<<IJBJINUI>>

3uing : ()adA 1393

guing : owenped

1517 © ()892Jn0S103

PI0A : (AJIA1IOY : 10B)32IN0OSPpE
1517 : ()s1981e 1108

PIOA : (AJIAT}OY : Joe)1a8Ie] ppe

ATANOY
<<IVELINUIS>

$$3001d'14dg : (TN : [An)asted

-
195184134 €

INO(pue 1oseled TidH

CA 02506233 2005-05-03

22/22

23essaA « ()oBessaNIe3

uonesadQeie(
<<IVELIJNUD>

ueajooq : (Juonelad(ele(st
ueaj00q : ()paysiul s
ueajooq : ()Apeaysi

1517 - ()dass

3uing : OaweNe3

$§900.1d
<<IOBLISIUI> >

07 ‘DI

AATIY D)

YOAULD) INCEN [0

J2uUdSITHUIT ¢ (MIouslsiTo19]dW0)22IN0SAIB2ID
PIOA : (JUSISITAIIALIDY : [R)Idud)siJuonisuRl | ppe
proA : (JaudsIyur] ¢ j()1sudls1yaejdwonppe
3uing : ()2185193

3uing : OaweN198.

PIOA : ()21N238X?d

PIOA : ()aleAlldR

8umS P JLV.LS AI1ITdNOD
3ulng : J1VLS ONINNNY
3uns : 4LV.LS a3 19VNI
3UINS ' ALVLS JIlVALLOY
3uns 1 JLVLS a3 1g9vsIid

$§590014))

sauanbag)

MOI4D

2d02S)D

IUASITTANALDY : ()I3Ud)SITUONISURT | PJIYDIRAID
: P1oA @ (AIANDY D) 198)ANIANOYPPE

ATAIIDYPaINIdNIIS)

§53204d)) : (sS20014T3€d : ssadoid)afidwiod

o
1ppdwo)13dd

JNOF pue J9jidwo) 7349

Database

Data In 110
Data Out
Web sites €] | ———ou API
Internal systems | , 120 -t} B
External syste [__ Pre-built Real-time 120
ystems e iyt — Process Data
Legacy systems activiues]
Server Multiple data
’ formats and il
Relational = Excel Add-In [X destinations ‘
Databases | _ 100 B

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - abstract drawing

