04/040445 A1 I 0K O 0 OO OO A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

13 May 2004 (13.05.2004)

(10) International Publication Number

WO 2004/040445 A1l

GOOF 9/45

(51) International Patent Classification’:

(21) International Application Number:
PCT/RU2002/000469

(22) International Filing Date: 29 October 2002 (29.10.2002)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): MO-
TOROLA, INC. [US/US]; 1303 East Algonquin Road,
Schaumburg, 1. 60196 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): OWENS, Howard,
Dewey [US/US]; 1808 Romeria Drive, Austin, TX
78757-3326 (US). KIRILLIN, Vyacheslav Alexeevich
[RU/RU]; ul. Marshala Kazakova, 73-12, St.Peters-
burg, 198302 (RU). KUTUZOV, Mikhail Andreevich
[RU/RU]; ul. Kompozitorov, 38-11/1, St.Petersburg,
194355 (RU). PREOBRAZHENSKY, Dmitry Sergee-
vich [RU/RUJ; ul. Kolpinskaya, 15-17, St.Petersburg,
197110 (RU).

(74) Agents: EGOROVA, Galina et al.; Law Firm "Gorodissky
& Partners" LTD, ul. Bolshaya Spasskaya, 25-3, Moscow,
129010 (RU).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SI, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, US, UZ,

VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,

TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND APPARATUS FOR SELECTIVELY OPTIMIZING INTERPRETED LANGUAGE CODE

{20 §21

'/—16

<22 §23

IDENTIFY BLOCKS
T0 BE COMPILED
OR INTERPRETED

COMPILE
SELECTED BLOCKS

REFERENCES IN

RESOLVE JuMP MODIFY
EXCEPTION TABLE

IF NECESSARY

MIXED CODE

(57) Abstract: In one embodiment of the present invention an interpreted language, such as, for example, Java, is selectively opti-
mized by partitioning the interpreted language code (98) into a plurality of blocks (80-83) based on the complexity of each of the
interpreted language instructions. In one embodiment of the present invention, each of the plurality of blocks is identified as either
a block to be compiled into native code (80-82) if the block is simple, or a block to be interpreted (83) if the block is complex. The
compiled and interpreted blocks are appended to form in-line mixed code (99) that contains both native code (90-92) and interpreted
language code (93). This mixed code is formed before run-time, so that no further compilation is required at run-time. A processing
unit (102) may be used to execute the native code directly without the use of the Java VM (10), while also executing, in-line, the
interpreted language code (93) which requires use of the Java VM (10) to interpret the Java bytecodes.



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

METHOD AND APPARATUS FOR SELECTIVELY OPTIMIZING
INTERPRETED LANGUAGE CODE

Field of the Invention

The present invention relates generally to an
interpreted language, and more specifically to a method and
apparatus for selectively optimizing an interpreted
language.

Background of the Invention

Interpreted languages, such as Java, are high-level
languages compiled to an intermediate level that requires
an extra level of indirection to execute. For example, an
interpreted language, such as Java, is independent of the
hardware platform. It is generally more difficult for
software code written in an interpreted language to breach
the security of the host system which is executing the
intermediate level code.

Java is an object-oriented, multi-threaded programming
language that compiles to a compact intermediate form known
as bytecodes. Java is a common interpreted language which
is wused to transfer applications over the internet.
Traditional Java technology generally cannot be efficiently
applied for embedded software development. Java bytecode
may be either directly executed by a Java bytecode
interpreter or accelerated by a Just-In-Time (JIT)
complier. Both methods have their advantages and drawbacks.
Java bytecode interpreters require no or little memory for
execution, but the speed of interpretation is relatively
slow. Conventional JIT compilers are too big for embedded
applications and wuse a lot of memory, although JIT
compilers provide significant acceleration by compiling
Java Dbytecode into a native language at run-time. Some
compilers minimize the resources used by compiling only

performance-crucial fragments of applications. However,



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

2

these compiled fragments may contain relatively complex
instructions (e.g. method invocation instructions), which
results in huge generated code and additional overhead for
compilation.

Brief Description of the Drawings

The present invention is illustrated by way of example
and not limited by the accompanying figures, in which like
references indicate similar elements, and in which:

FIG.1 illustrates one embodiment of a Java virtual
machine 10 in accordance with one embodiment of the present
invention;

FIG.2 illustrates one embodiment of the Java method
optimization 16 of FIG.1 in accordance with one embodiment
of the present invention;

FIG.3 illustrates one embodiment of step 20 of FIG.2
in which blocks to be compiled or interpreted are
identified in accordance with one embodiment of the present
invention;

FIG.4 illustrates one embodiment of step 21 of FIG.2
in which selected blocks identified in step 20 are now
compiled in accordance with one embodiment of the present
invention;

FIG.5 illustrates one embodiment of Java bytecode
interpreter 17 and interpreter extension 18 of FIG.1 in
accordance with one embodiment of the present invention;

FIG.6 illustrates one embodiment of the code 98 (i.e.
original bytecode for Java VM 10) and a translation which
produced code 99 (i.e. mixed code structure for Java VM
10); and

FIG.7 illustrates a data processing system 100 in
accordance with one embodiment of the present invention.

Skilled artisans appreciate that elements in the

figures are illustrated for simplicity and clarity and have



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

3

not necessarily been drawn to scale. For example, the
dimensions of some of the elements in the figures may be
exaggerated relative to other elements to help improve the
understanding of the embodiments of the present invention.

Detailed Description

In one embodiment of the present invention, an
interpreted language (e.g. Java) is selectively optimized
by partitioning the interpreted language code into a
plurality of blocks based on the complexity of each of the
interpreted language instructions. In one embodiment of the
present invention, each of the plurality of blocks is
identified as either a block to be compiled into native
code if the block is simple, or a block to be interpreted
(e.g. left as Java bytecodes) if the block is complex. In
one embodiment of the present invention, a simple
instruction is a Java bytecode that doées not hgve any
dependencies on Java VM 10 services (e.g. memory
allocation, garbage collection, etc.). The compiled and
non-compiled (i.e. interpreted) blocks are appended to form
in-line mixed code (e.g. 99 in FIG.6) that contains both
native code (e.g. 90-92) and interpreted language code
(e.g. 93). It is this in-line mixed code that is executed
at run time. Thus, no JIT compiler is required at run time.
A processing unit (e.g. 102 in FIG.7) may be used to
execute the native code directly without the use of a Java
VM 10, while also executing, in-line, the interpreted
language code which requires use of the Java VM 10 to
perform the interpretation of the Java  bytecodes.
Consequently, for simple blocks, the extra level of
indirection added by the Java VM 10 can be avoided, thus
saving time and/or memory for systems (e.g. 100 in FIG.7)
which are executing an interpreted language. This

time/memory savings may be especially important for



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

4

portable or handheld devices which can download files from
the internet, and thus can execute an interpreted language
such as Java.

As used herein, the term "bus" is used to refer to a
plurality of signals or conductors which may be used to
transfer one or more various types of information, such as
data, addresses, control, or status.

FIG.1 illustrates one embodiment of a Java virtual
machine 10 in accordance with one embodiment of the present
invention. In one embodiment, the present invention
utilizes a Java virtual machine (VM) 10 which receives Java
class files 12 from a source external to thé Java VM 10.
The Java VM 10 includes a class loader 14 which loads one
or more Java classes from Java class files 12. The class
loader 14 provides Java class files to the portion of the
Java VM 10 that 1s responsible for crucial method
identification 15. The crucial method identification 15
process identifies performance-crucial functions (e.g. Java
methods) of the loaded Java class files using a profiler or
externally-supplied information, e.g. special Java method
attributes. Any appropriate process for performing the
crucial method identification 15 process may be used (e.g.
profiling). For some applications, 80% of the application’s
execution time is spent executing 20% of the application’s
code. Thus acceleration of this 20% of the application’s
code may very significantly improve performance. The
performance-crucial functions are passed from step 15 to
step 16 where the Java methods are optimized. The method
optimization step 16 is described in more detail in FIG.2.

The output of method optimization step 16 is mixed
code 19 which may include both interpreted language
instructions (e.g. bytecodes for Java) and native

instructions. In one embodiment of the present invention,



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

5

the interpreter extension 18 extends the original Java
bytecode interpreter 17 by recognizing and handling a
special instruction (i.e. Java bytecode) called
“run_native” which transfers control from the interpreted
language instructions to the native instructions of the
mixed code. Control of the host processor (e.g. 102 of
FIG.7) is transferred from executing the Java virtual
machine 10 to executing a subsequent native instruction in
the mixed code. In one embodiment, the interpreter
extension 18 implements an efficient binary interface with
the compiled native code; for example, the interpreter
extension 18 may cache the most significant variables of
the Java bytecode interpreter 17 in registers. When the
interpreter extension 18 encounters a run_native
instruction, it transfers control to the following compiled
native code. Other Java bytecode instructions are
interpreted using the Java bytecode interpreter 17. The
interpreter extension 18 may be implemented in any manner.
In one embodiment of the present invention, to
minimize Java operand stack access in the native code,
stack values used by the native code are cached in a
special register file (e.g. in processing unit 102 or
memory 104 of FIG.7). The register file is a set of
registers which mimic top Java operand stack values. In one
embodiment of the present invention, in the beginning of
the compiled code, all Java stack values used by the
compiled code are transferred into the register file. At
the end of the compiled code, all new values are copied
back into the Java operand stack. The size of the compiled
code 1is iimited so that all used stack values are kept in
the register file. Fortunately, due to the nature of Java
applications, most compiled fragments use five or less Java

stack elements. Moreover, most compiled fragments do not



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

6

transfer any data to their neighbors via the Java operand
stack so the generated binary code is usually very compact.

FIG.2 illustrates one embodiment of the Java method
optimization of FIG.l in accordance with one embodiment of
the present invention. In step 20, the blocks to be
compiled are identified and the blocks to be interpreted
are identified. Then in step 21, the blocks selected to be
compiled are actually compiled. Step 22 resolves any jump
references in the mixed code, and step 23 modifies the
exception table as necessary.

The present invention thus compiles only the most
profitable blocks of the Java method’s bytecodes which may
be significantly accelerated without much memory overhead;
other blocks are left untouched. The set of compiled
instructions depends on the architecture of the Java
bytecode interpreter 17 and the target processor (e.gq.
processing unit 102 of FIG.7). In one embodiment of the
present invention, the blocks are selected so that each
block has just one entry point and one exit point. In some
embodiments, native code for each compiled Java instruction
will not exceed 10-15 instructions of the target processor
and will not include subroutine calls. Alternate
embodiments of the present invention may set other limits
on determining which instructions will be compiled. Note
that compilation of complex instructions does not
necessarily improve performance, but takes up additional
resources and complicates optimization. The compiled blocks
of Java bytecode are replaced by the generated binary code
prefixed with a special bytecode instruction run_native.

“Run_native” is a predetermined interpreted language
instruction which indicates to the interpreter extension 18
(see FIG.1) that the following code is native code. The

resultant mixed code 19 from method optimization 16



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

consists of blocks of native code and Java bytecode
instructions which cannot be well accelerated. The mixed
code structure of a Java method having mixed code is
illustrated in Figure 6. Alternate embodiments of the
present invention may use other approaches to indicate to
the interpreter extension that the following or subsequent
in-line code is native code.

FIG.3 illustrates one embodiment of step 20 of FIG.2
in which blocks to be compiled or interpreted are
identified in accordance with one embodiment of the present
invention. In step 30, jump targets are identified. The
flow then continues to step 31 where the variable “i” is
set to zero. The variable “i” indicates which bytecode is
currently being processed. In step 32, the current bytecode
“be” is set equal to bytecode(i). Note that alternate
embodiments of the present invention may perform step 32 as
the first step in the “NO” path after decision diamond 38
with step 31 linked directly with step 32 ‘and step 34 being
the input for decision diamond 38. At decision diamond 38
the question is asked “is the current bytecode “bc” the
last instruction?”. If “bc” is the last instruction, then
the end has been reached and the process continues with
step 21 in FIG.2. If “bc” is not the last instruction, then
the process continues to decision diamond 39 where the
question is asked “is bc a jump target?”. If bc is a jump
target, the process continues to step 37 where the current
block to be compiled (if any) is finished, and the process
continues to decision diamond 41. If bec is not a jump
target, the process continues to decision diamond 41 where
the question is asked ™ is bc a simple instruction?”

In one embodiment of the present invention, a simple
instruction is a UJava bytecode that does not have any

dependencies on Java VM 10 services (e.g. memory



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

allocation, garbage collection, etc.). Alternate
embodiments of the present invention may use any desired
criteria to determine which interpreted language
instructions are “simple”. If the current bytecode “bc¢” is
not a simple instruction, then the process continues to
step 35 where the current block to be compiled, if there is
any, is finished. From step 35, the process continues to
step 34 where the process determines the length of the
current bytecode “bc” so that the flow can move to the
beginning of the next bytecode. From step 34, the process
continues to step 32 where the next bytecode becomes the
current bytecode. If the current bytecode is a simple
instruction, then the process continues to decision diamond
40 where the question is asked “ is there a current block
to be compiled?”. If there is a current block to be
compiled, the process continues to step 33 where the
current bytecode is added to the current block to be
compiled. If there is not a current block to be compiled,
the brocess continues to step 36 where a new block to be
compiled is created. From step 36, the process continues to
step 33 where the next bytecode becomes the current
bytecode (e.g. by adding “bc” to the current block to be
compiled). The process then continues to step 34, then step
32, then decision diamond 38 as described above.

FIG.4 illustrates one embodiment of step 21 of FIG.2
in which selected blocks identified in step 20 are now
compiled in accordance with one embodiment of the present
invention. The process starts at decision diamond 50 where
the question is asked “is the current block a block to be
compiled?”.

If the current block is a block to be compiled, i.e.
is a block to be compiled as native code, the process

continues at step 55 where the variable “i” is set equal to



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

the block offset. The process continues to step 56 where
“bc” is set equal to the current bytecode “bytecode (i)”.
The process continues to step 57 where the current bytecode
“bc” is compiled. The compilation step 57 results in
compiled code in the native language of processing unit 102
(see FIG.7). The process continues to step 58 where the
compiled code in the native language is appended to the
mixed code (see right-hand column in FIG.6). The process
continues to step 59 where the process determines the
length of the current bytecode so that the flow can move to
the beginning of the next bytecode. The process continues
to decision diamond 51 where the question is asked “is bc
the last instruction in the block?”. If the current
bytecode 1is the 1last one in the block, the process
continues to step 22 in FIG.2. If the current bytecode is
not the last one in the block, the process continues to
step 56 where the next bytecode in the block is made the
current bytecode, and the steps 57-59 are repeated.

If the current block is not a block to be compiled,
i.e. is a block to be left as Java bytecodes, then the flow
continues from decision diamond 50 to step 52 where a
native header (e.g. native header 95 in FIG.6) is appended
to the mixed code. The native header 95 can be used to
return control from the native code back to the Java
bytecode interpreter 17 (see FIG.1l). The mixed code may
include both Java bytecodes and native instructions. From
step 52, the process continues to step 53 where the
interpreted bytecode is appended to the mixed code. In one
embodiment of the present invention, no compilation of the
interpreted Dbytecodes is performed. The interpreted
bytecodes remain unchanged and are merely appended as they
are to the in-line mixed code 99 of FIG.6. From step 53,

the process continues to step 54 where a special bytecode



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

10

called “run_native” is appended to the mixed code (see
run_native 94 appended to mixed code 99 of FIG;6) in
preparation of the next block to be compiled.

The special bytecode “run native” is used to transfer
control from the interpreted language instructions to the
native instruction of the mixed code. 1In one embodiment,
control of the host processor (e.g. 102 of FIG.7) 1is
transferred from executing the Java virtual machine 10 to
executing a subsequent native instruction in the mixed
code.

In alternate embodiments of the present invention,
steps 356-59 and decision diamond 51, which process one
bytecode at a time, may be replaced by a parallel process
that considers a plurality of bytecodes at a time in order
to perform further optimization.

FIG.5 illustrates one embodiment of Java bytecode
interpreter 17 and interpreter extension 18 of FIG.1 in
accordance with one embodiment of the present invention. At
startup, Java bytecode interpreter 17 sets the current
bytecode “bc” equal to the next bytecode in step 70. The
process continues to decision diamond 75 in interpreter
extension 18 where the question is asked “is bc a special
bytecode “run native””?. If the current bytecode is not the
special bytecode “run _native”, the process continues to
step 74 where the Java bytecode interpreter 17 interprets
the current bytecode. The process then continues back to
step 70 where the next bytecode is selected.

Returning to decision diamond 75, if the current bytecode
is the special bytecode “run native”, thé process continues
to step 73.where the next code to be executed is compiled
code in native language. The process continues to step 72
where the compiled code in native language is executed. The

process continues to step 71 where a return from the



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

11

compiled code 1is performed. In one embodiment of the
present invention, the return from the compiled code is
implemented by way of a native header 95 (see FIG.6). From
step 71, the process continues to étep 70 where the next
bytecode is selected. If the next bytecode is the last
bytecode, and thus is of the type “return” at the highest
level, then the processing unit 102 of FIG.7 stops
executing the Java VM 10.

Note that the software used in the present invention
is not limited to the embodiments described in the flow
diagrams. For example, the ordering of the steps and
decision points described in the flow diagrams may be
varied for different embodiments of the present invention.
In addition, alternate embodiments of the present invention
may use different steps and/or decision diamonds than those
illustrated in the flow diagrams.

FIG.6 illustrates one embodiment of the code 98 (i.e.
original bytecode for Java VM 10) and a translation which
produced code 99 (i.e. mixed code structure for Java VM
10). In one embodiment of the present invention, code 99
includes compiled code 90, 91, and 92 in-line with appended
code 93, In one embodiment of the present invention,
appended code 93 is Java bytecode. Run native is a special
bytecode that is used as an instruction for the interpreter
extension 18 (see FIG.1l) to indicate that the following in-
line code is native code to be executed directly by
processing unit 102 (see FIG.7) without use of the Java VM
10. Native header 95 is used by processor 102 to return
control back to the Java bytecode interpreter 17 within the
Java VM 10. Note that this mixed code 99 is formed before

- .run-time, so that, wunlike JIT compilers, no further

compilation is required at run-time.

In one embodiment, code 98 is the original bytecode



WO 2004/040445

10

15

20

25

30

PCT/RU2002/000469

12

for the Java VM 10. The specific instruction used in FIG.6
are for illustrative purposes only. Other instructions
could have been used. Note that the interpreted language
instructions (e.g. block 93) are still interpreted by the
Java VM 10 running on host processor 102, wunlike the
compiled code 90-92 which is native code that is executed
directly by processor 102 without use of the Java VM 10.
Referring to code 98, Java bytecode “ILOAD 0” located
at offset 0 and Java bytecode “IFLE_8” located at offset 1
together form a block 80 that is determined to be “simple”
(see decision diamond 41 in FIG.3) and thus is to be
compiled. Java bytecode “ILOAD 0” located at offset 4 and
Java bytecode “GOTO 10” located at offset 5 together form a
block 81 that is determined to be “simple” (see decision
diamond 41 in FIG.3) and thus is to be compiled. Java
bytecode “ILOAD 0” located at offset 8 and Java bytecode
“INEG” located at offset 9 together form a block 82 that is
determined to be “simple” (see decision diamond 41 in
FIG.3) and thus is to be compiled. Block 80 is compiled to
Create compiled code 90; block 81 is compiled to create
compiled code 91; and block 82 is compiled to create
compiled code 92. A special bytecode instruction run_native
94 is placed in the in-line code just before the beginning
of the blocks of compiled code 80-82. The native header 95
is placed in the in-line code at the end of the native code
and just before the beginning of the interpreted code 93.
In one embodiment of the present invention, the interpreted
code 93 is the same as the block of code 83 that is to be
interpreted. In one embodiment, the translation process
from code 98 to code 99 merely copies the original Java
bytecodes from block 83 to block 93. In one embodiment,
mixed code 99 now includes both compiled code in the native

language and non-compiled code that is still Java



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

13

bytecodes. Code 98 and mixed code 99 may be stored. in
memory 104 (see FIG.7) or in any other portion of data
processing system 100.

FIG.7 1illustrates a data processing system 100 in
accordance with one embodiment of the present invention. In
one embodiment, data processing system 100 is a portable,
handheld device. In one embodiment of the present
invention, data processing system is capable of receiving
information from the internet via information port 106.
Although data processing system 100 has been shown to have
the architecture illustrated in FIG.7, any architecture may
be used for data processing system 100.

In one embodiment, data processing system 100 has a
processing unit 102, a memory 104, an information port 106,
other circuitry 108, and user interface 110 which are bi-
directionally coupled to bus 116. In one embodiment of the
present invention, memory 104 includes a Java virtual
machine 10. 1In alternate embodiments of the present
invention, Java VM 10 may be stored anywhere. Alternate
embodiments of the present invention may use other
circuitry 108 to implement any desired function. Alternate
embodiments of data processing system 100 may not include
information port 106, may not include other circuitry 108,
and/or may not include user interface 110. User interface
110 may include anything which allows a user to communicate
with data processing system 100, such as, for example, a
keypad, a mouse, a display, a touch screen, or audio I/O.

In the foregoing specification, the invention has been
described with reference to specific embodiments. However,
one of ordinary skill in the art appreciates that wvarious
modifications and changes can be made without departing
from the scope of the present invention as set forth in the

claims below. For example, although various embodiments of



WO 2004/040445 PCT/RU2002/000469

10

15

20

14

the present invention have been described in the context of
Java, the present invention is applicable to any
interpreted language, not Just Java. Similarly, any
architecture for data processing system 100 (see FIG.7) may
be used. Similarly, any software may be used to implement
the claimed invention. Accordingly, the specification and
figures are to be regarded in an illustrative rather than a
restrictive sense, and all such modifications are intended
to be included within the scope of present invention.
Benefits, other advantages, and solutions to problems
have been described above with regard to specific
embodiments. However, the benefits, advantages, solutions
to problems, and any element(s) that may cause any benefit,
advantage, or solution to occur or become more pronounced
are not to Dbe construed as a critical, required, or
essential feature or element of any or all the claims. As
used herein, the terms "comprises," "comprising," or any
other variation thereof, are intended to cover a non-
exclusive inclusion, such that a process, method, article,
or apparatus that comprises a list of elements does not
include only those elements but may include other elements
not expressly listed or inherent to such process, method,

article, or apparatus.



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

15

CLAIMS

In a virtual machine executing on a host processor, a
method for selectively optimizing interpreted language
code, comprising:
receiving interpreted language code comprising
interpreted language instructions; and
partitioning the interpreted language code into a
plurality of blocks based on a complexity of each
of the interpreted language instructions, each of
the plurality of blocks identified as one of a
block to be compiled or a block to be interpreted.
The method of claim 1, wherein a first block of the
plurality of blocks is identified as a block to be
compiled and a second block of the plurality of blocks
is identified as a block to be interpreted, said method
further comprising creating mixed code, said mixed code
comprising native instructions and interpreted language
instructions, wherein creating said mixed code
comprises:
compiling the first block;
appending the compiled first block to the mixed code,
wherein the compiled first block includes a
plurality of native instructions;
appending the second block to the mixed code, wherein
the second block comprises a plurality of
interpreted language instructions.
The method of claim 2, wherein the native instructions
run on the host processor and the interpreted language
instructions are interpreted by the virtual machine.
The method of claim 2, wherein, in the mixed code, the
interpreted language instructions are in-line with the

native instructions.



WO 2004/040445 PCT/RU2002/000469

16

5. The method of claim 2, wherein creating the mixed code
further comprises:
appending a predetermined interpreted language
instruction to the mixed code, wherein the
5 predetermined interpreted language instruction
transfers control from the interpreted language
instructions to the native instructions of the
mixed code.

6. The method of claim 5, wherein creating the mixed code

10 further comprises:

appending a native header to the mixed code.

7. The method of claim 1, wherein for each of the
interpreted language instructions in the interpreted
language code, partitioning further comprises:

15 determining if the interpreted language instruction is

a simple instruction;

if the interpreted language instruction is a simple
instruction, including the interpreted language
instruction into one of the plurality of blocks

20 identified as a block to be compiled; and

if the interpreted language instruction is not a
simple instruction, including the interpreted
language instruction into one of the plurality of
blocks identified as a block to be interpreted.

25 8. The method of claim 7, wherein each block identified as
a Dblock to be compiled comprises no complex
instructions.

9. The method of claim 7, wherein for each of the
interpreted language instructions in the interpreted

30 language code, partitioning further comprises:

determining if the interpreted language instruction is
a jump target; and

if the interpreted language instruction is a jump



WO 2004/040445 PCT/RU2002/000469

17

target, finishing a current block within the
plurality of blocks.
10. A data processing system for creating mixed code, said
mixed code comprising native instructions and
5 interpreted language instructions, said data processing
system comprising:
a processing unit for executing native instructions;
a memory coupled to the processing unit and having a
virtual machine, wherein said virtual machine is
10 executed by the processing unit and comprises:

a first set of instructions for receiving
interpreted language code comprising
interpreted language instructions;

a second set of instructions for partitioning the

15 interpreted language code into a plurality of
blocks based on a complexity of each of the
interpreted language instructions, each of
the plurality of blocks identified as one of
a block to be compiled or a block to be

20 interpreted;

a third set of instructions for compiling each of
the plurality of blocks identified as a block
to be compiled;

a fourth set of instructions for appending the

25 compiled blocks to the mixed code, wherein
the compiled Dblocks each comprises a
plurality of native instructions; and

a fifth set of instructiohs for appending each of
the plurality of blocks identified as a block

30 to be interpreted to the mixed code, wherein
each of the plurality of blocks identified as
a block to be interpreted comprises a

plurality of interpreted language



WO 2004/040445 PCT/RU2002/000469
18

instructions.
11. The data processing system of claim 10, wherein the
virtual machine further comprises:

a sixth set of instructions for receiving an

5 interpreted language instruction from the mixed
code;

a seventh set of instructions for determining if the
received interpreted language instruction from the
mixed code 1s a predetermined interpreted language

10 instruction;

an eighth set of instructions for transferring control
to a native instruction in the mixed code if the
received interpreted language instruction from the
mixed code is the predetermined interpreted

15 language instruction; and

a ninth set of instructions for interpreting the
received interpreted language instruction from the
mixed code if the received interpreted language
instruction from the mixed code is not the

20 predetermined interpreted language instruction.
12. The data processing system of claim 10, wherein the
second set of instructions further comprises:

a sixth set of instructions for determining if an
interpreted language instruction is a simple

25 instruction,

a seventh set of instructions for including the
interpreted language instruction into one of the
plurality of blocks identified as a block to be
compiled if the interpreted language instruction

30 is a simple instruction; and

an eighth set of instructions for including the

interpreted language instruction into one of the

plurality of blocks identified as a block to be



WO 2004/040445 PCT/RU2002/000469
19

interpreted if the interpreted language
instruction is not a simple instruction.
13. A hand held device comprising the data processing
system of claim 10.

5 14. A data processing system for creating mixed code, said
mixed code comprising native instructions and
interpreted language instructions, said data processing
system comprising:

means for receiving interpreted language code
10 comprising interpreted language instructions;
means for partitioning the interpreted language code
into a plurality of blocks based on a complexity
of each of the intérpreted language instructions,
each of the plurality of blocks identified as one
15 of a block to be compiled or a block to be
interpreted;
means for compiling each of the plurality of blocks
identified as a block to be compiled;
means for appending the compiled blocks to the mixed
20 code, wherein the compiled blocks each comprises a
plurality of native instructions; and
means for appending each of the plurality of blocks
identified as a block to be interpreted to the
mixed code, wherein each of the plurality of
25 blocks identified as a block to be interpreted
comprises a plurality of interpreted language
instructions.
15. The data processing system of claim 14, wherein the
data processing system further comprises:
30 means for receiving an interpreted language
instruction from the mixed code;
means for determining if the received interpreted

language instruction from the mixed code is a



WO 2004/040445 PCT/RU2002/000469

20

predetermined interpreted language instruction;
means for transferring control to a native instruction
in the mixed code 1if the received interpreted
language instruction from the mixed code is the
5 predetermined interpreted language instruction;
and
means for interpreting the received interpreted
language instruction from the mixed code if the
received interpreted language instruction from the
10 mixed code 1is not the predetermined interpreted
language instruction.
l6. The data processing system of «claim 14, further
comprising:
means for determining if an interpreted language
15 instruction is a simple instruction,
means for including the interpreted language
instruction into one of the plurality of blocks
identified as a block to be compiled if the
interpreted language instruction is a simple
20 instruction; and '
means for including the interpreted language
instruction into one of the plurality of blocks
identified as a block to be interpreted if the
interpreted language instruction is not a simple
25 instruction.
17. A hand held device comprising the data processing
system of claim 14.
18. A virtual machine stored on a computer readable medium,
said virtual machine capable of being executed by a
30 host processor, said virtual machine comprising:
a first set of instructions for receiving interpreted
language code comprising interpreted language

instructions;



WO 2004/040445 PCT/RU2002/000469

10

15

20

25

30

19.

21

a second set of instructions for partitioning the
interpreted language code into a plurality of
blocks based on a complexity of each of the
interpreted language instructions, each of the
plurality of blocks identified as one of a block
to be compiled or a block to be interpreted;

a third set of instructions for compiling each of the
plurality of blocks identified as a block to be
compiled;

a fourth set of instructions for appending the
compiled blocks to the mixed code, wherein the
compiled blocks each comprises a plurality of
native instructions capable of being executed by
the host processor; and

a fifth set of instructions for appending each of the
plurality of blocks identified as a block to be
interpreted to the mixed code, wherein each of the
plurality of blocks identified as a block to be
interpreted comprises a plurality of interpreted
language instructions.

The virtual machine of claim 18, wherein the wvirtual

machine further comprises:

a sixth set of instructions for receiving an
interpreted language instruction from the mixed
code;

a seventh set of instructions for determining if the
received interpreted language instruction from the
mixed code is a predetermined interpreted language
instruction;

an eighth set of instructions for transferring control
to a native instruction in the mixed code if the
received interpreted language instruction from the

mixed code 1s the predetermined interpreted



WO 2004/040445 PCT/RU2002/000469

22

language instruction; and

a ninth set of instructions for interpreting the
received interpreted language instruction from the
mixed code if the received interpreted language

5 instruction from the mixed code is not the
predetermined interpreted language instruction.

20. The virtual machine of claim 18, wherein the second set
of instructions further comprises:

a sixth set of instructions for determining if an

10 interpreted language instruction is a simple
instruction,

a seventh set of instructions for including the
interpreted language instruction into one of the
plurality of blocks identified as a block to be

15 compiled if the interpreted language instruction
is a simple instruction; and

an eighth set of instruction for including the
interpreted language instruction into one of the
plurality of blocks identified as a block to be

20 interpreted if the interpreted language
instruction is not a simple instruction.

21. In a virtual machine executing on a host processor, a
method for executing mixed code, said mixed code
comprising native instructions in-line with interpreted

25 language instructions, the native instructions executed
by the host processor and the interpreted language
instructions interpreted by the virtual machine, said
method comprising:

receiving an interpreted language instruction from the

30 mixed code;

determining if the received interpreted language

instruction from the mixed code is a predetermined

interpreted language instruction which indicates



WO 2004/040445 PCT/RU2002/000469
23

that the subsequent instruction is a native
instruction;
transferring control of the host processor from
executing the wvirtual machine to execute the
5 subsequent instruction in the mixed code if the
received interpreted language instruction from the
mixed <code is the predetermined interpreted
language instruction; and
interpreting the received interpreted language
10 instruction from the mixed code if the received -
interpreted language instruction from the mixed
code is not the predetermined interpreted language
instruction.
22. The method of claim 21, further comprising creating
15 said mixed code prior to receiving the interpreted
language instruction from the mixed code, wherein
creating said mixed code comprises:
receiving interpreted language code comprising
interpreted language instructions; and
20 partitioning the interpreted language code into a
plurality of blocks based on a complexity of each
of the interpreted language instructions, each of
the plurality of blocks identified as one of a

block to be compiled or a block to be interpreted.



PCT/RU2002/000469

WO 2004/040445

1/5

AJVSSFOIN 41
318v1 NOILd30X3

A

4000 Q3XIN

G 1o

NI SIONFYI4TY |-

SM00718 43193135

-

03LFYdYIINT 4O
(371400 38 01
SH0078 AJIIN3IAT

ANIHOVA VNLYIA VAP

AJIO0N dHF IAT0S3Y J1IdH0
£7° 2z 17
o
o worsvaa || waimsawa
3007 TN WIUNINT [T 30003048 VAWP
61> 4 Cor Vo<
‘ _ SI ] Y
NoTwvzINILd0 | | womvorsmmaer | |
QOHLIN [ aonLan wiomo [ d1av0T SSY1D
91~ Spr

o1 -

QN.V

NENIE!

SSY1D VAVP



PCT/RU2002/000469

2/5

WO 2004/040445

(ANV 41) Q371dW09D . Q31IdW09 38 oL
38 0L %018 el %0078 MIN
INJ¥¥ND HSINI4 LY
/e Iy 9¢”
\
$1394V1 (ANY 41) 037Idw09 031Idw00 38 oL
dinr v 9q 38 01 X079 =1 (QQHINTT=H | %0078 INI¥uND
SI INF¥¥N) HSINI4 JHL 0L °9 qay
Ge° Lie cc”

ENOTLONYLSNT
1SYT 3HL 99

&€t

A
o
1l
1

SN [11300031A8=09

S1394Y1 Al'
. ~ dANP A4IINIAI 18v1S

2€” Ic° 0€ -

0z



PCT/RU2002/000469

WO 2004/040445

I IN4

(QQHINT =+ |

3/5

N3

65°

¢X3078 3HL NI

4000 Q3XIN 0L
3000 Q371dW0I
(N3ddv

99 F1IdR0J

g5 °

/G P) A

NOILONYISNI 1S¥1 N

[1]300031A8=29

A

135440 X0018=!

JH1 29 ST
Ig >
m_m_%%H hﬁ_ﬁh‘:%h 3000 03XIN 0L 3000 Q3IXIN
- 30093148 ~<—1 300031A8 0313y4d 01 ¥3avH

VIJ3dS vV ON3ddV

—Y3INI QN3ddY

JATLYN V' ON3ddY

¢(31IdN0D
38 01 X018 v
1T SI

bG

£5-

25°

14v1S



WO 2004/040445 PCT/RU2002/000469

—
(0]
<,

RETURN FROM . EXECUTE
COMPILED CODE COMPILED CODE

17

- - -

| | 70
|

INTERPRETER)_so.| be=NEXT
STARTUP BYTECODE

)
L 73

NEXT CODE TO BE
EXECUTED IS
COMPILED CODE

e e e e e —— e —
b o e — 4

MIXED CODE STRUCTURE FOR

ORIGINAL BYTECODE FOR JAVA VIRTUAL MACHINE 10

JAVA VIRTUAL MACHINE 10

N _L RN NATIVE g
BLOCK 80 T0 BE 0 ILOAD_O
COMPILED - ' TFLE 8 COMPILED CODE %
BLOCK 81 TO BE 4 1L0AD_0
COMPILED CODE
COPILED | 5 goro 10 9
BLOCK 82 TO BE 8 ILOAD_O
COMPILED CODE
COPILED | g ueg ] P
BLOCK 83 TO BE 10 INVOKESTATIC F NATIVE HEADER 95
INTERPRETED 13 IRETURN INVOKESTATIC F
IRETURN 93
9353’

g
F7G.6 ”



WO 2004/040445 PCT/RU2002/000469

5/5
’/'100
102 MEMORY 104
%\ JAVA' VIRTUAL MACHINE 10
PROCESSING
UNIT
A
A
. I gBUi 116
} } )
106 y 108 y ¢110
INFORMATION OTHER USER
PORT CIRCUITRY INTERFACE
l} A

’\—112

1G. 7

~114
y i



INTERNATIONAL SEARCH REPORT

International application No.
PCT/RU 02/00469

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/45

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOGF 9/00, 9/06, 9/30, 9/44, 9/45, 15/00, 15/02, 15/16, 13/00, HO4L 9/00, 9/06, 9/28

searched:

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*  |Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No

line 66-column 4, line 36

line 26-57, fig. 8

Jun. 25, 2002

10.04.2000

Y US 6412109 B1 (SUN MICROSYSTEMS, INC.) Jun. 25, 2002, column 3, 1

Y US 6408433 B1 (SUN MICROSYSTEMS, INC.) Jun. 18, 2002, column 11, 1

A US 6412107 B1 (TEXAS INSTRUMENTS INCORPORATED) 1-22

A RU 2147378 C1 (KOMMKVEST TEKNOLODZHIZ, INC.) 1-22

_jFllrtller documents are listed in the continuation of Box C.

[—I See patent family annex

* Special categories of cited documents:

"AY document defining the general state of the art which is not considered
to be of particular relevance

"E"  earlier document but published on or after the international filing date

"L"  document with may throw doubts on priori claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O"  document referring to an oral disclosure, use, exhibition or other

means
"P*  document published prior to the international filing date but later than

the priority date claimed

"T" later document published after the international filing date or prio-
rity date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive
step when the documentis taken alone
"Y"  document of particular relevance; the claimed invention cannot

be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&"  document member of the same patent family

report 28 May 2003 (28.05.2003)

Date of the actual completion of the international search Date of mailing of the international search report

05 June 2003 (05.06.2003)

Name and mailing address of the ISA/RU FIPS
Russia, 123995, Moskva, G-59, GSP-5
Berezhkovskaya nab., 30-1

Facsimile No.

Authorized officer

0. Krysanova

Telephone No. (095)240-25-91

Form PCT/ISA/210 (second sheet)(July 1998)



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

