Title: TRANSPARENT OXIDE SEMICONDUCTOR THIN FILM TRANSISTORS

Abstract: This invention relates to novel, transparent oxide semiconductor thin film transistors (TFT’s) and a process for making them.
TITLE
TRANSPARENT OXIDE SEMICONDUCTOR THIN FILM TRANSISTORS

FIELD OF THE INVENTION
The present invention relates to a transistor fabricated with a transparent oxide semiconductor selected from the group consisting of zinc oxide, indium oxide, tin oxide, and cadmium oxide deposited without the intentional incorporation of additional doping elements and the process for deposition of the oxide semiconductors. Transparent oxide semiconductors are useful in fabrication of transparent thin film transistors. Transparent transistors can be used to control pixels in a display. By being transparent, the transistor may not significantly reduce the active area of the pixel.

TECHNICAL BACKGROUND
Goodman (US 4204217 A) discloses a liquid crystal transistor.
Seager et al. (Appl. Phys. Lett. 68, 2660-2662, 1996) describe using the electric field emanating from a ferroelectric insulator to control or modulate resistance in a conducting film of ZnO:Al or ZnO:In.
Transparent conducting oxides are reviewed in the August, 2000 issue of the Materials Research Bulletin, Volume 25 (8) 2000, devoted to materials and properties of transparent conducting oxide compounds.
SUMMARY OF THE INVENTION

This invention relates to novel, transparent oxide semiconductor (TOS) thin film transistors (TFT's) and the process for their deposition, where the transparent oxide semiconductor (TOS) is selected from the group consisting of zinc oxide (ZnO), indium oxide (In₂O₃), tin oxide (SnO₂), or cadmium oxide (CdO) semiconductor and combinations thereof. The TFT structure described includes the TOS with conducting electrodes, commonly referred to as a source and a drain, for injecting a current into the TOS and a capacitance charge injection scheme for controlling and/or modulating the source-drain current. The semiconductor deposition process uses magnetron sputtering of an oxide (ZnO, In₂O₃, SnO₂, CdO) or metal (Zn, In, Sn, Cd) target in an atmosphere with a controlled partial pressure of oxygen in an inert gas. This is a low temperature process which is compatible with temperature sensitive substrates and components. One particularly attractive application of TOS TFT's is in the drive circuits for displays on flexible, polymer substrates.

The process specifically involves depositing an undoped transparent oxide semiconductor in a field effect transistor, comprising a method selected from the group consisting of:

a) physical vapor deposition of undoped TOS in an effective partial pressure of oxygen mixed with an inert gas;
b) resistive evaporation of undoped TOS in an effective partial pressure of oxygen;
c) laser evaporation of undoped TOS in an effective partial pressure of oxygen;
d) electron beam evaporation of undoped TOS in an effective partial pressure of oxygen; and
e) chemical vapor deposition of undoped TOS in an effective partial pressure of oxygen.

The invention also concerns a transistor comprising with an undoped transparent oxide semiconductor. In one embodiment the transistor is on a flexible substrate and further comprises a gate dielectric fabricated from
a material selected from the group consisting of zinc oxide, indium oxide, tin oxide, and cadmium oxide.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the dependence of resistivity on p_{O_2} for ZnO films rf magnetron sputtered in 10 mTorr and 20 mTorr of argon and oxygen.

Figure 2 shows the general resistance characteristic as a function of the partial pressure of the oxygen source for ZnO films made by PVD or CVD methods.

Figure 3 shows the ZnO TFT test configuration.

Figure 4 shows a ZnO TFT I-V curve for rf (radio frequency) magnetron sputtered films made with $p_{O_2} = P_c$

Figure 5 shows a ZnO TFT I-V curve for rf magnetron sputtered films made with $p_{O_2} = 2P_c$

Figure 6 shows a ZnO TFT I-V curve for rf magnetron sputtered films made with $p_{O_2} = 0.75P_c$

Figure 7 shows a ZnO TFT I-V curve for rf magnetron sputtered films made with $p_{O_2} = 0.08P_c$

Figure 8 shows a ZnO TFT I-V curve for rf magnetron sputtered films made with $p_{O_2} = 20P_c$

Figure 9 (a) and (b) show a I-V curve for ZnO TFT fabricated on a flexible substrate. Figure 9 (a) shows a curve of Id versus Vd varying the gate voltage from 0V to 20V in steps of 1V. Figure 9(b) shows Id versus gate voltage as Vd = 20V. In this transistor, $W = 400 \mu m$ and $L = 40 \mu m$.

Figure 10 shows optical images of a TFT comprised of only ZnO.

Figure 11 shows I-V curve for a TFT comprised of only ZnO.

Figure 12 shows I-V curve for a indium oxide TFT fabricated with p_{O_2} near P_c.

Figure 13 shows a graph of transistor current (I_d) versus drain voltage (V_d) curves for gate voltages between zero and three (3) volts and V_d between 0 and 3 V.

DETAILED DESCRIPTION

While most electronic devices are fabricated today on rigid substrates, such as single crystalline Si or glass, there is a growing interest in devices on plastic or flexible substrates, particularly because they would be more mechanically robust, lighter weight, and potentially cheaper to manufacture by roll-to-roll processing. However, plastic substrates, such as polyethylene terephthalate (e.g., Mylar®, E. I. DuPont
de Nemours Inc., and Wilmington, DE) limit device processing to below
100 C. One consequence is that electronics based on Si, even
amorphous Si, is incompatible with temperature-sensitive plastic
substrates. This has fueled a broad interest in organic semiconductors as
a low temperature class of alternative materials. However, most organic
semiconductors generally have inferior electronic properties, compared to
amorphous Si, for device application. Further, organic materials commonly
degradate in normal atmospheric conditions, requiring protection strategies.
In contrast a stable inorganic semiconductor with processing compatible
with temperature-sensitive substrates, and electronic properties equivalent
to amorphous Si would enable electronics for a variety of flexible
substrates. For this application thin film transistors based on novel
sputtered transparent oxide semiconductors can be made with excellent
electronic properties on flexible substrates. The TOS is also transparent in
the visible part of the electromagnetic spectrum. This may be of particular
advantage (1) in electronic display applications.

As an example, magnetron sputtering is used to form the ZnO
semiconductor layer. Using a unique range of deposition conditions, with
no intentional substrate heating (compatible with low temperature plastic
substrates), novel ZnO layers were made that were polycrystalline (X-ray
diffraction) with good electron transport properties. The ZnO layers are
suitable for application as semiconductors in TFTs.

The good transport characteristics of the ZnO semiconductor of this
invention, and prototypical of these TOS, include high electrical resistivity,
for low device ‘off’ current combined with high charge carrier mobility for
high ‘on’ device current. In the sputtered ZnO thin films of the present
invention, the electrical resistivity is controlled by metering the partial
pressure of oxygen during deposition. A novel aspect of our preparation of
ZnO was the discovery that sputtering conditions favorable for achieving
low ZnO film stress were also favorable for high transconductance and
high on/off current ratio in ZnO TFT devices made at room temperature. It
is believed the reason is that low stress ZnO films have fewer defects and
a favorable electronic structure, which promote higher charge carrier mobility. Consequently, the ZnO films of the present invention exhibit better TFT device performance.

In one embodiment of this invention, the source, drain, and gate electrodes are resistance evaporated Al about 100 nm thick. The ZnO semiconductor is about 100 nm thick layer made by rf magnetron sputtering in a mixture of Ar and O₂ gases. The gate insulator is Al₂O₃, e-beam vapor-deposited with thickness between 100 nm and 300 nm. The substrates are polyethylene terephthalate (PET and Kapton® polyimide, E. I. DuPont de Nemours Inc., Wilmington, DE). All depositions were carried out, while maintaining the substrate at or near room temperature.

A thin film transistor (TFT) is an active device, which is the building block for electronic circuits that switch and amplify electronic signals. Attractive TFT device characteristics include a low voltage to turn it on, a high transconductance or device current / (gate) control voltage ratio, and a high 'on' (Vg > 0) current to 'off' (Vg ≤ 0) current ratio. In a typical TFT structure of this invention, the substrate is paper or polymer, such as PET, PEN, Kapton, etc. Source and drain conducting electrodes are patterned on the substrate. The TOS is then deposited, followed by a gate insulating layer such as SiO₂ or Al₂O₃. Finally, a gate conducting electrode is deposited on the gate insulating layer. One of skill in the art will recognize, this is one of many possible TFT fabrication schemes. In the operation of this device, a voltage applied between the source and drain electrodes establishes a substantial current flow only when the control gate electrode is energized. That is, the flow of current between the source and drain electrodes is modulated or controlled by the bias voltage applied to the gate electrode. The relationship between material and device parameters of the TOS TFT can be expressed by the approximate equation,
\[I_{sd} = \frac{W}{2L} C \mu (V_g)^2 \]

where \(I_{sd} \) is the saturation source-drain current, \(C \) is the geometric gate capacitance, associated with the insulating layer, \(W \) and \(L \) are physical device dimensions, \(\mu \) is the carrier (hole or electron) mobility in the TOS, and \(V_g \) is the applied gate voltage. Ideally, the TFT passes current only when a gate voltage of appropriate polarity is applied. However, with zero gate voltage the “off” current between source and drain will depend on the intrinsic conductivity,

\[\sigma = n q \mu \]

of the TOS, where \(n \) is the charge carrier density, and \(q \) is the charge, so that

\[(I_{sd}) = \sigma (W/t/L) V_{sd} \quad @V_g=0 \]

Here \(t \) is the TOS layer thickness and \(V_{sd} \) is the voltage applied between source and drain. Therefore, for the TFT to operate as a good electronic switch, e.g. in a display, with a high on/off current ratio, the TCOS semiconductor needs to have high carrier mobility but very small intrinsic conductivity, or equivalently, a low charge carrier density. On/off ratios >10³ are desirable for practical devices.

Specifically, when undoped ZnO thin films are dc or rf magnetron sputtered from a Zn or ZnO target in a partial pressure of oxygen, \(pO_2 \), the bulk resistivity (\(R \)) changes abruptly from strongly semi-conducting (\(R \sim 10^{-2} \) ohm cm), to nearly insulating (\(R \sim 10^6-10^8 \) ohm cm), with increasing \(pO_2 \). This dependence of \(R \) on \(pO_2 \) for ZnO films rf magnetron sputtered from an undoped ZnO target is shown in Figure 1. (The dependence of \(R \) on \(pO_2 \) will be similar for indium oxide, tin oxide, and cadmium oxide thin films). The sputtering system consisted of a cryo-pumped stainless steel vacuum chamber (about 25 inch diameter x 15 inch high) with a water-
cooled stationary table for substrates. The target diameter was 6.5 inches, the substrate-to-target distance was about 3 inches, and rf (13.56 MHz) power was coupled to the target through a standard impedance matching network. The vendor analysis of the target indicated it contained impurities of As, Fe, Cd, Cu, Ca, Mn, Na, Pb in amounts < 20 ppm. For the ZnO films whose resistivities are given in Figure 1, there is a critical oxygen partial pressure, P_c, for which the change in resistivity, ΔR_c in the vicinity of P_c is very large and abrupt. P_c is defined as the oxygen partial pressure corresponding to the mid point of the abrupt rise in resistivity. Specifically, ΔR_c increased by $>10^4$ ohm cm for pO_2 between $P_c/2$ and $2P_c$. For Figure 1, the critical pressure, P_c is approximately 10^5 Torr. This characteristic of an abrupt, large change in R versus pO_2, occurring at a critical oxygen partial pressure P_c is a general result, as sketched in Figure 2, for ZnO films and other TOS films prepared by any vapor deposition method, chemical or physical, that requires a source of oxygen for the synthesis. Physical vapor deposition (PVD) principally involves all forms of sputtering (rf, dc, magnetron, diode, triode, ion-beam) and evaporation (resistive, laser, electron beam). Commonly PVD of TOS relies on a solid or molten source of the corresponding metal or metal oxide. Chemical vapor deposition (CVD) requires chemical vapor transport and chemical reaction for film formation. Reactants are commonly gaseous, and examples of reaction types include pyrolysis, reduction, oxidation, disproportionation, and compound formation. CVD processes include low-pressure (LPCVD), plasma-enhanced (PECVD), atomic layer chemical vapor deposition (ALCVD, also known as atomic layer deposition, ALD), and laser-enhanced (LECVD) methods. Independent of preparation method, P_c defines oxide growth conditions, for which the arrival rate of atomic oxygen just matches the arrival rate of atomic Zn, In, Sn, or Cd to form the stoichiometric oxide, e.g. ZnO, with semi-insulating resistivity, i.e. $\sim 10^8$ ohm cm. Consequently, only a small deviation from stoichiometry e.g., Zn$_{1.0001}$ O$_{1.0000}$, will reduce the resistivity by orders of magnitude, since 0.01% excess Zn corresponds to $\sim 10^{19}$ free electrons (two electrons per interstitial Zn ion) or a resistivity ~ 1
ohm cm for μ~1cm²/V-s. Therefore, in the vicinity of P_c, only a very small change in pO₂ will cause a large, abrupt change in resistivity, independent of the preparation method.

However, the actual value of P_c will depend on specific deposition conditions and the specific oxide as well as the physical and dynamic characteristics of the deposition system. Also, the actual magnitude of the resistance change, ΔR_c in the vicinity of P_c, will depend on the level of impurities (dopants) incorporated into the oxide film. A lower impurity level will increase the magnitude of ΔR_c, whereas a higher concentration of impurities will reduce it. But the general resistance characteristic will be system invariant, so that one skilled in the art of vapor deposition can find P_c for that particular system used to make undoped TOS films.

The field effect transistors of the present invention based on a nominally undoped TOS must be deposited under an effective partial pressure of oxygen using physical vapor deposition or chemical vapor deposition, preferably rf magnetron sputtering. An effective partial pressure of oxygen is a range of oxygen partial pressure about the critical partial pressure such that the electrical resistivity is intermediate between a low, nearly-conductive value observed for very low oxygen partial pressures and a high, nearly-insulating value value observed for high oxygen partial pressures. The best performance (high channel current and high device on/off ratio) occurs when a TOS is made by vapor deposition in the preferable range of oxygen partial pressure, 0.1 P_c< pO₂ < 10 P_c, and more preferably in the range, 0.5 P_c< pO₂ < 2 P_c. The following examples of magnetron sputtered ZnO thin film transistors and an In₂O₃ TFT illustrate this effect. Conditions for ZnO preparation with pO₂ in the range 0.1 P_c< pO₂ < 10 P_c, where P_c≈ 10⁻⁵ Torr were chosen for sputtering in Examples 1-3. Examples 4 and 5 illustrate that sputtering outside the preferred pO₂ produces TFTs with inferior properties. Example 6 illustrates the structure and properties of a ZnO TFT fabricated on a flexible substrate. Example 7 illustrates properties of a ZnO TFT comprised of conducting ZnO source, drain, and gate electrodes, semiconducting ZnO channel, and a ZnO dielectric. Example 8 describes
properties of an indium oxide TFT made near the critical oxygen partial pressure.

The general structure of the ZnO and In$_2$O$_3$ field effect transistor of these examples is shown in Figure 3. TFTs were fabricated on heavily doped n-type Si substrates with a thermal oxide layer about 100 nm thick on one side. Ti-Au source and drain electrodes (10 nm Ti followed by 100 nm Au), 200 μm wide with a 20 μm gap were deposited and patterned directly on the thermal silicon oxide layer by traditional photolithography. Ti-Au was also deposited on the back-side of the Si as a common gate electrode, and ZnO or In$_2$O$_3$ about 100 nm thick was then sputtered between source and drain electrodes using a shadow mask.

The TFT structure described herein includes a transparent oxide semiconductor with conducting electrodes, commonly referred to as a source and a drain, for injecting a current into the oxide semiconductor and a capacitance charge injection scheme for controlling and/or modulating the source-drain current. The semiconductor deposition process uses magnetron sputtering of an oxide or metal target in an atmosphere with a controlled partial pressure of oxygen in an inert gas. This is a low temperature process which is compatible with temperature sensitive substrates and components. One particularly attractive application of TOS TFT’s is in the drive circuits for displays on flexible, polymer substrates. TOS transistors and/or transistor arrays are useful in applications including, but not limited to, flat panel displays, active matrix imagers, sensors, rf price labels, electronic paper systems, rf identification tags and rf inventory tags.

The TFT structure described herein is applicable to flexible substrates. The flexible substrate may be a polymer film such as, but not limited to, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulphone (PES) and polycarbonate (PC). Flexible substrates can also be thin metal foils such as stainless steel provided they are coated with an insulating layer to electrically isolate the thin film transistor.
By control of the oxygen partial pressure during deposition, it is possible to control the electrical conductivity of the undoped metal oxide such that the metal oxide can be an insulator, semiconductor or conductor. Thus by varying the oxygen partial pressure, all elements of a thin film transistor, semiconductor, conductors (source, drain and gate) and insulators (gate dielectric) can be made from the same oxide material but deposited under different conditions.
EXAMPLES

EXAMPLE 1

Using the transistor configuration shown in Fig. 3, a ZnO thin film semiconductor was rf magnetron sputtered at room temperature to deposit between source and drain electrodes, using a shadow mask. The ZnO target was 6.5 inch diameter and the rf power for sputtering was 100 W. The total gas pressure during sputtering was 20 mTorr, comprised of 1x10^{-5} Torr of oxygen, or pO_2=P_c, with the balance being argon. The ZnO film thickness, determined optically, was 849 Å for a sputtering time of 500 sec. Fig. 4 is a set of corresponding drain current (I_d) versus drain voltage (V_d) transistor curves for gate voltages (V_g) between zero and 50 V. For this device, the field effect mobility (\mu_{FE}) from the linear current-voltage characteristics was determined to be 1.2 cm^2/V-s with an on/off ratio equal to 1.6x10^6. This on/off ratio corresponds to the ratio of source-drain current with 50 V and 0 V bias on the gate electrode while applying 10V between source and drain electrodes.

EXAMPLE 2

Using the transistor configuration shown in Fig. 3, a ZnO thin film semiconductor was rf magnetron sputtered at room temperature to deposit between source and drain electrodes, using a shadow mask. The ZnO target was 6.5 inch diameter and the rf power for sputtering was 100 W. The total gas pressure during sputtering was 20 mTorr, comprised of 2x10^{-5} Torr of oxygen, or pO_2=2P_c, with the balance being argon. The ZnO film thickness, determined optically, was 677 Å for a sputtering time of 500 sec. Fig. 5 is a set of corresponding drain current (I_d) versus drain voltage (V_d) transistor curves for gate voltages (V_g) between zero and 50 V. For this device, the field effect mobility (\mu_{FE}) from the linear current-voltage
characteristics was determined to be 0.3 \text{cm}^2/\text{V-s} with an on/off ratio equal to 1.0 \times 10^5.

EXAMPLE 3

Using the transistor configuration shown in Fig. 3, a ZnO thin film semiconductor was rf magnetron sputtered at room temperature to deposit between source and drain electrodes, using a shadow mask. The ZnO target was 6.5 inch diameter and the rf power for sputtering was 100 W. The total gas pressure during sputtering was 20 mTorr, comprised of 0.75 $\times 10^{-5}$ Torr of oxygen, or $pO_2=0.75 \times 10^{-5}$, with the balance being argon. The ZnO film thickness, determined optically, was 897 Å for a sputtering time of 500 sec. Fig. 6 is a set of corresponding drain current (I_d) versus drain voltage (V_d) transistor curves for gate voltages (V_g) between zero and 50 V. For this device, the field effect mobility (μ_{FE}) from the saturation current-voltage characteristics was determined to be 6.8 \text{cm}^2/\text{V-s} with an on/off ratio equal to 1\times10^3.

EXAMPLE 4

Using the transistor configuration shown in Fig. 3, a ZnO thin film semiconductor was rf magnetron sputtered at room temperature to deposit between source and drain electrodes, using a shadow mask. The ZnO target was 6.5 inch diameter and the rf power for sputtering was 100 W. The total gas pressure during sputtering was 20 mTorr, comprised of 0.8 $\times 10^{-6}$ Torr of oxygen, or $pO_2=0.08 \times 10^{-6}$, with the balance being argon. The value $pO_2=0.08 \times 10^{-6}$ is outside our preferred range of oxygen partial pressure. The ZnO film thickness, determined optically, was 1071 Å for a sputtering time of 465 sec. Fig. 7 shows a set of the corresponding drain current (I_d) versus drain voltage (V_d) curves for gate voltages (V_g) of zero, 30 V and 40 V. This device does not have the performance characteristics of a transistor. There is negligibly small modulation of the current by application of a gate voltage and the ratio of the device current with no
gate and either 30 or 40 V gate is unacceptably close to one. The device acts more like a resistor.

EXAMPLE 5

Using the transistor configuration shown in Fig. 3, a ZnO thin film semiconductor was rf magnetron sputtered at room temperature to deposit between source and drain electrodes, using a shadow mask. The ZnO target was 6.5 inch diameter and the rf power for sputtering was 100 W. The total gas pressure during sputtering was 20 mTorr, comprised of 2x10^-4 Torr of oxygen, or pO_2=20 P_c, with the balance being argon. The value pO_2=20 P_c is outside our preferred range of oxygen partial pressure. The ZnO film thickness, determined optically, was 1080 A for a sputtering time of 465 sec. Fig. 8 shows a set of the corresponding drain current (Id) versus drain voltage (Vd) curves for gate voltages (Vg) of zero to 50 V. The device I-V curve is characteristic of a thin film transistor, however the drain current is quite small. For this device, the field effect mobility (\mu_{FE}) from the linear current-voltage characteristics was determined to be 5x10^{-5} cm^2/V-s with an on/off ratio equal to about 700. Both the mobility and the on/off ratio are much smaller than for TFT devices made within the preferred range of pO_2.

EXAMPLE 6

As an example of a ZnO TFT on a flexible substrate, transistors were fabricated on DuPont Pyralux® (Cu-coated) polyimide. Cu source and drain were lithographically patterned using DuPont Riston® uv-imaged through a phototool, followed by sputtering 100 nm thick ZnO semiconductor. (The ZnO sputtering conditions were identical to those in Example 1). A fluoropolymer dielectric (relative dielectric constant, \varepsilon=8.7) was then laminated at 120° C over the semiconductor active region, and Al gates were thermally evaporated using a shadow mask. Figure 9 (a) and (b) shows the performance of these flexible transistors, which have \mu \sim 0.4 cm^2/V-s and on/off ratios larger than 10^4.
EXAMPLE 7

By tailoring the resistivity of ZnO films from semiconducting to semi-insulating, as shown in Fig. 1, a transparent thin film transistor was fabricated using only ZnO. The substrates were glass and polyethylene terephthalate (PET). Source-drain electrodes of conducting ZnO were first grown by sputtering at 100 W from a ZnO target in 10 mTorr of Ar without oxygen. The semiconducting channel layer, 100 nm thick, was then sputtered at 20 mTorr Ar and 1×10^{-5} Torr of O$_2$. The next layer was a semi-insulating ZnO for the gate dielectric, 500 nm thick, made by sputtering a ZnO target in a 50% mixture of Ar+O$_2$ at a total pressure of 10 mTorr. Finally the ZnO gate electrode was sputtered at the same conditions used for the source-drain electrodes. As shown in Figure 10, this structure is optically transparent, allowing easy reading of the caption, "ZnO TFT" beneath the transistor. The current–voltage characteristic in Figure 11 illustrates that the source-drain current can be modulated by an application of a gate voltage.

EXAMPLE 8

Using the transistor configuration shown in Fig. 3, an indium oxide thin film semiconductor was rf magnetron sputtered at room temperature to deposit between source and drain electrodes, using a shadow mask. The indium oxide target was 6.5 inch diameter and the rf power for sputtering was 100 W. The total gas pressure during sputtering was 12 mTorr, comprised of 2 mTorr of oxygen, or pO$_2$ close to P$_0$, with the balance of 10 mTorr argon. The indium oxide film thickness, determined optically, was 1285 A for a sputtering time of about 33 min. Fig. 12 is a set of corresponding drain current (I_d) versus drain voltage (V_d) transistor curves for gate voltages (V_g) between −20 V and 10 V. For this device, the field effect mobility (μ_{FE}) from the linear current-voltage characteristics was determined to be
17 cm²/V-s with an on/off ratio equal to about 2x10². This on/off ratio can likely be improved by use of a higher gate voltage and optimization of sputtering conditions.

EXAMPLE 9

This example illustrates low voltage and high current operation in a ZnO TFT on an aluminum oxide gate dielectric. The substrate, which also served as the gate electrode, was a heavily doped (with Phosphorous), n-type silicon wafer, 1-inch x 1-inch x 475 microns thick. One side of this wafer was coated with an aluminum oxide gate dielectric layer by electron-beam evaporation from a high purity, solid aluminum-oxide source. The measured aluminum oxide film thickness was 4483 Å. Aluminum-metal source and drain electrodes, about 1500 Å thick, were thermally evaporated on the oxide dielectric through a shadow mask to create a transistor channel length 80 microns by about 800 microns wide. A shadow mask was then used to magnetron sputter ZnO semiconductor, 918 Å thick, in the channel between source and drain electrodes. Sputtering was in 20 mTorr Ar and 1x10⁻⁵ Torr O₂. Figure 13 is a set of transistor current (Iₜₜₜ) versus drain voltage (Vₜₜₜ) curves for gate voltages between zero and three (3) volts and Vₜₜₜ between 0 and 3 V. For this device the field-effect mobility was determined to be ~ 3 cm²/V-s with an on-off ratio > 10³. For three volt operation the current is substantial at > 1 microampere.
CLAIMS

1. A process for depositing undoped transparent oxide semiconductors, selected from the group consisting of zinc oxide, indium oxide, tin oxide, and cadmium oxide, in a field effect transistor, comprising a method selected from the group consisting of:
 a) physical vapor deposition of undoped TOS in an effective partial pressure of oxygen mixed with an inert gas;
 b) resistive evaporation of undoped TOS in an effective partial pressure of oxygen;
 c) laser evaporation of undoped TOS in an effective partial pressure of oxygen;
 d) electron beam evaporation of undoped T-OS in an effective partial pressure of oxygen; and
 e) chemical vapor deposition of undoped T-OS in an effective partial pressure of oxygen.

2. The process of Claim 1 where the physical vapor deposition is rf magnetron sputtering.

3. The process of Claim 1 where the physical vapor deposition is dc magnetron sputtering.

4. The process of Claim 1 where the physical vapor deposition is diode sputtering.

5. The process of Claim 1 where the physical vapor deposition is triode sputtering.

6. The process of Claim 1 where the physical vapor deposition is ion beam sputtering.
7. The process of any of claims 1(a), 2, 3, 4, 5 or 6 wherein deposition is by physical vapor deposition and wherein the inert gas is selected from the group consisting of helium, neon, argon, krypton, and xenon.

8. The process of Claim 1(e) wherein the chemical vapor deposition is low pressure chemical vapor deposition.

9. The process of Claim 1(e) wherein the chemical vapor deposition is plasma-enhanced chemical vapor deposition.

10. The process of Claim 1(e) wherein the chemical vapor deposition is laser-enhanced chemical vapor deposition.

11. The process of Claim 1(e) wherein the chemical vapor deposition is atomic layer chemical vapor deposition.

12. The process of any one of claims 1 to 11 wherein the effective partial pressure of oxygen is between 0.1 and 10 times the critical pressure.

13. The process of any one of claims 1 to 11 wherein the effective partial pressure of oxygen is between 0.5 and 2 times the critical pressure.

15. A transistor comprising a transparent oxide semiconductor made by a process selected from the group of process consisting of the process as of Claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13.

16. A flat panel display comprising one or an array of transparent oxide semiconductor transistors as described by Claim 14.
17. An active matrix imager comprising an array of transparent oxide semiconductor transistors as described by Claim 14.

18. A sensor comprising an array of transparent oxide semiconductor transistors as described by Claim 14.

19. A rf price label comprising an array of transparent oxide semiconductor transistors as described by Claim 14.

20. A rf identification tag comprising an array of transparent oxide semiconductor transistors as described by Claim 14.

21. A rf inventory tag comprising an array of transparent oxide semiconductor transistors as described by Claim 14.

22. The transistor of Claim 14 deposited on a flexible substrate.

23. The transistor of Claim 14 or Claim 15 further comprising source, drain and gate electrodes fabricated from a material selected from the group consisting of zinc oxide, indium oxide, tin oxide, and cadmium oxide.

24. The transistor of Claim 22 further comprising a gate dielectric fabricated from a material selected from the group consisting of zinc oxide, indium oxide, tin oxide, and cadmium oxide.
FIG. 10
FIG. 13

- $V_g = 3V$
- $V_g = 2.5V$
- $V_g = 2.0V$
- $V_g = 1.0V$
- $V_g = 0.5, 0V$

V_d (Volts) vs I_d (A)