(54) **Title:** SILICON OR SILICA SUBSTRATE WITH A MODIFIED SURFACE, PROCESS FOR PRODUCING THE SAME, NEW ORTHOESTERS AND PROCESS FOR PRODUCING THE SAME

(54) **Bezeichnung:** SILICIUM- ODER SILICIUMDIOXID-SUBSTRAT MIT MODIFIZIERTER OBERFLÄCHE UND VERFAHREN ZU DESENN HERSTELLUNG, SOWIE NEUE ORTHOESTER UND VERFAHREN ZU DEREN HERSTELLUNG

![Chemical Structure](attachment:structure.png)

(57) **Abstract**

The silicon or silica substrates described have a modified surface of a new type occupied by the alcohol fraction of an orthoester. The alcohol fraction may be saturated or unsaturated. The surface of the substrate is modified by being treated with an orthoester, the water being eliminated from the surface by hydrolysis and then replaced by the resulting alcohol or silyl ether. Besides many other compounds, new orthoesters having the formula $R_1COCH_2CH_2O-C=CH=CH_2$, in which R_1 stands for hydrogen or for a cleavable organic residue, R stands for $(CH_2)_n$, in which n stands for an integer between 1 and 18, and new orthoesters having the formula (I), are particularly appropriate. In the formula (I), R_1 stands for hydrogen or an organic residue, R_3 stands for hydrogen or an alkyl group with 1 to 6 carbon atoms; and R_4 stands for hydrogen, an alkyl group or an alkyl group or a phenyl group. The modified surfaces have a larger wetting or contact angle, and thus a reduced wettability. In addition, they are capable of reacting with other monomers or polymers by means of all sorts of reactive substituents. This kind of surface modification advantageously replaces the silanization which was up to now usual for glass an other silicates.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakei</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakische Republik</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
Silicium- oder Siliciumdioxid-Substrat mit modifizierter Oberfläche und Verfahren zu dessen Herstellung, sowie neue Orthoester und Verfahren zu deren Herstellung

Die Erfindung betrifft ein Silicium- oder Siliciumdioxid-Substrat mit modifizierter Oberfläche und Verfahren zu dessen Herstellung, ferner neue Orthoester und Verfahren zu deren Herstellung.

Der vorliegenden Erfindung liegt hingegen die Erkenntnis zugrunde, dass die an der Oberfläche eines solchen Substrates, beispielsweise einer Glasoberfläche, vorhandenen Hydroxylgruppen mindestens teilweise Teil von auf der Siliciumdioxid-Oberfläche molekular verankertem Wasser sind.

Aufgabe der Erfindung ist daher die Schaffung von Silicium- und Siliciumdioxid-Substraten, welche in neuerter Weise mit organischen Verbindungen modifiziert sind, neuartige Eigenschaften aufweisen und insbesondere als Grundlage für die Verankerung von organischen Polymeren dienen können.

Das erfindungsgemässe Silicium- oder Siliciumdioxid-Substrat mit modifizierter Oberfläche ist nun dadurch gekennzeichnet, dass seine Oberfläche mit einem Alkohol oder einem Silylether besetzt ist.

Eine derart modifizierte Oberfläche weist im Vergleich zu der entsprechenden nicht-modifizierten Oberfläche einen wesentlich vergrößerten Rand- oder Kontaktwinkel von Wasser auf, d.h. die Benetzungbarkeit ist für Wasser vermindert, für viele organische Stoffe hingegen erhöht.

Das erfindungsgemässe Verfahren zur Herstellung solcher modifizierter Oberflächen ist dadurch gekennzeichnet, dass man die zu modifizierende Oberfläche mit einem Orthoester behandelt.
Als "Orthoester" bezeichnet man bekanntlich die aliphatischen und aromatischen Ester der in freier Form nicht bekannten entsprechenden Orthocarbonsäuren, somit also Verbindungen vom Typ $R^1-C[OR^2]_3$.

Dies kann schematisch wie folgt dargestellt werden:

```
\[ \begin{array}{c}
\text{Substrat} \\
\hline
\text{H} \quad \text{H} \\
\text{OR} \\
\hline
\text{R}^1-C[OR^2]_3 \\
\hline
\text{H} \quad \text{R}^2 \\
\end{array} \]
```

Beispiele der vielfältigen Einsatzgebiete der neuen Technologie sind in der nachstehenden Tabelle 1 zusammengestellt.

Von den dort aufgeführten Anwendungen findet das erfindungsge-mäße Verfahren insbesondere Anwendung zur Modifizierung der Oberflächen von Glas, Quarz, Silicium und mit Siliciumdioxid.

Durch eine solche Behandlung kann beispielsweise die Haftfähigkeit von vielen Polymeren auf dem Substrat auf billige Weise wesentlich verbessert werden. Insbesondere ermöglicht sie auch das direkte Aufpolymerisieren von Klebstoffen und Beschichtungsmassen und von Polymer-Zwischenschichten für die spätere chemische Umsetzung mit Klebstoffen und Beschichtungsmassen.
<table>
<thead>
<tr>
<th>Produktgruppe/Produkte</th>
<th>Anwendung</th>
<th>Einsätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Silikat-Füllstoffe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Pyrogene Kieselsäure</td>
<td>Hydrophobierung</td>
<td>Klebstoffe</td>
</tr>
<tr>
<td></td>
<td>- Oberflächen-</td>
<td>Dichtmassen</td>
</tr>
<tr>
<td></td>
<td>beschichtung</td>
<td>Kunststoffe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coatings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lacke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formmassen</td>
</tr>
<tr>
<td>12 Gefällte Kieselsäure</td>
<td>Hydrophobierung</td>
<td>Klebstoffe</td>
</tr>
<tr>
<td></td>
<td>- Oberflächen-</td>
<td>Dichtmassen</td>
</tr>
<tr>
<td></td>
<td>beschichtung</td>
<td>Kunststoffe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coatings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lacke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formmassen</td>
</tr>
<tr>
<td>13 Silikagele</td>
<td>Hydrophobierung</td>
<td>Katalysatoren</td>
</tr>
<tr>
<td></td>
<td>- Oberflächen-</td>
<td>Trocknungsmittel</td>
</tr>
<tr>
<td></td>
<td>beschichtung</td>
<td>Chromatographieträger</td>
</tr>
<tr>
<td>14 Quarzmehle</td>
<td>Hydrophobierung</td>
<td>Klebstoffe</td>
</tr>
<tr>
<td></td>
<td>- Oberflächen-</td>
<td>Dichtmassen</td>
</tr>
<tr>
<td></td>
<td>beschichtung</td>
<td>Kunststoffe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coatings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lacke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formmassen</td>
</tr>
<tr>
<td>Produktgruppe/Produkte</td>
<td>Anwendung</td>
<td>Einsätze</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>15 Glaspulver</td>
<td>- Hydrophobierung</td>
<td>- Dentalprodukte</td>
</tr>
<tr>
<td></td>
<td>- Oberflächen-</td>
<td>- Formmassen</td>
</tr>
<tr>
<td></td>
<td>beschichtung</td>
<td>- Composites</td>
</tr>
<tr>
<td>16 Diverse Silikate</td>
<td>- Hydrophobierung</td>
<td>- Zeolithe</td>
</tr>
<tr>
<td></td>
<td>- Oberflächen-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beschichtung</td>
<td></td>
</tr>
<tr>
<td>2 Fasern + Textilien</td>
<td>- Hydrophobierung</td>
<td>- Composites</td>
</tr>
<tr>
<td></td>
<td>- Schichten</td>
<td>- Glasfaserverstärkte</td>
</tr>
<tr>
<td></td>
<td>- Haftvermittler</td>
<td>- Kunststoffe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Telekommunikation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Messtechnik</td>
</tr>
<tr>
<td>22 Glastextilien</td>
<td>- Hydrophobierung</td>
<td>- Elektrolamine</td>
</tr>
<tr>
<td></td>
<td>- Schichten</td>
<td>- Composites</td>
</tr>
<tr>
<td></td>
<td>- Haftvermittler</td>
<td>- Glasfaserverstärkte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Kunststoffe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Industrieschutzanzüge</td>
</tr>
<tr>
<td>23 Glaswolle/Steinwolle</td>
<td>- Hydrophobierung</td>
<td>- Isoliermaterialien</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Baustoffe</td>
</tr>
<tr>
<td>3 Flächengläser</td>
<td>- Hydrophobierung</td>
<td>- Isolierglasfenster</td>
</tr>
<tr>
<td></td>
<td>(einschließlich</td>
<td>- Sicherheitsverbund-</td>
</tr>
<tr>
<td></td>
<td>Isolierglassysteme)</td>
<td>- glas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Autoscheiben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Korrosionsschutz</td>
</tr>
<tr>
<td>Produktgruppe/Produkte</td>
<td>Anwendung</td>
<td>Einsätze</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>32 Optische Gläser</td>
<td>Hydrophobierung</td>
<td>Optische Messtechnik</td>
</tr>
<tr>
<td></td>
<td>Haftvermittler</td>
<td>Bildschirme</td>
</tr>
<tr>
<td></td>
<td>Oberflächenbe-</td>
<td>Photographie</td>
</tr>
<tr>
<td></td>
<td>schichtung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Korrosionsschutz</td>
</tr>
<tr>
<td>33 Glasmembranen</td>
<td>Hydrophobierung</td>
<td>Chemische Messtechnik</td>
</tr>
<tr>
<td></td>
<td>Haftvermittler</td>
<td>Biotechnologie</td>
</tr>
<tr>
<td></td>
<td>Oberflächenbe-</td>
<td>Chemische Verfahrens-</td>
</tr>
<tr>
<td></td>
<td>schichtung</td>
<td>technik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Korrosionsschutz</td>
</tr>
<tr>
<td>4 Spezielle Silikate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 Silicium-Wafers für</td>
<td>Hydrophobierung</td>
<td>Technische Isolier-</td>
</tr>
<tr>
<td>Elektronik und</td>
<td>Oberflächenbe-</td>
<td>schichten</td>
</tr>
<tr>
<td>Solartechnik</td>
<td>schichtung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Korrosionsschutz</td>
</tr>
<tr>
<td>42 Aerogel-Gläser</td>
<td>Hydrophobierung</td>
<td>Leichtglas für Fahr-</td>
</tr>
<tr>
<td></td>
<td>Oberflächenbe-</td>
<td>zeugbau</td>
</tr>
<tr>
<td></td>
<td>schichtung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Korrosionsschutz</td>
</tr>
</tbody>
</table>
"Aerogele" sind neue Entwicklungsmaterialien der Silkatforschung in der Form von transparenten, glasartigen Körpern, z.B. Platten, mit einem spezifischen Gewicht von 0,05 bis 0,1 g/cm³. Sie haben bisher noch keinen industriellen Einsatz gefunden, was auf ihre geringe Hydrolysebeständigkeit zurückgeführt wird. Durch die erfindungsgemässe Behandlung mit Orthoester kann dieser Mangel behoben werden.

Die erfindungsgemässe Modifizierung der Oberflächen von Silicium- und Siliciumdioxid-Substraten weist gegenüber der bisherigen Anwendung von Silanen eine Reihe von wesentlichen Vorteilen auf:

- Die Herstellung der Orthoester ist wesentlich billiger als diejenige von Silanen, da sie auf einer organischen Rohstoffbasis, nämlich dem Erdöl, beruhen, und damit energetisch gene
tuell günstiger ist als diejenige organischer Siliciumprodukte.

- Sie können nach einfacher zu beherrschenden Herstellungsverfahren, ohne die Anwendung von Chlorchemie, d.h. sicherer und umweltfreundlicher hergestellt werden.
Zumindest bei einfachen Orthoestern ist deren Anwendung physiologisch unbedenklich.

Es werden besser überschaubare und analytisch erfassbare Resultate der Behandlung, insbesondere bei Coatings, erhalten.

Es besteht eine sehr große Vielfalt an Synthesemöglichkeiten für anwendungsspezifische Orthoester und damit die Möglichkeit der Herstellung von neuen oder besser angepassten Coatings.

Da im allgemeinen die C-O-Bindung im Vergleich zur Si-O-Bindung hydrolytisch stabiler ist, werden auch entsprechend resistentere Haftbrücken über die organischen Alkohol-Addukte erhalten.

Der Alkoholteil der genannten Orthoester kann einen Kohlenwasserstoffteil aufweisen, dessen Sequenz gegebenenfalls durch Heteroatome, insbesondere Sauerstoff, unterbrochen ist. Desgleichen kann ein aromatischer Alkoholteil substituiert sein. Insbesondere kann der Alkoholteil epoxidiert sein, d.h. er kann sich von Glycidylalkoholen ableiten.

Bevorzugt werden Alkoholteile, welche entweder ungesättigt oder epoxidiert sind man erhält dabei Substratoberflächen, welche durch radikalische Polymerisation bzw. durch Polyaddition mit anderen Substanzen weiter umgesetzt werden können.
Als besonders geeignet haben sich die folgenden Orthoester der allgemeinen Formel

\[R^1-C(OR^2)_3 \]

erwiesen:

1. Trimethylorthoformiat
 = Orthoameisensäuremethylester
 = Trimethoxymethan
 \(R^1 = H \quad R^2 = CH_3 \)

2. Trimethylorthoacetat
 = Orthoessigsäuremethylester
 = Trimethoxyethan
 \(R^1 = CH_3 \quad R^2 = CH_3 \)

3. Triethylorthoformiat
 = Orthoameisensäureethylester
 = Triethoxymethan
 \(R^1 = H \quad R^2 = CH_2-CH_3 \)

4. Triethylorthoacetat
 = Orthoessigsäureethylester
 = Triethoxyethan
 \(R^1 = CH_3 \quad R^2 = CH_2-CH_3 \)
5. Tributylorthoformiat
 = Orthoameisensäurebutylester
 = Tributoxymethan
 \(R^1 = H \quad R^2 = \text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \)

6. Triethylorthovalerat
 = Orthovaleriansäureethylester
 = Triethoxypentan
 \(R^1 = (\text{CH}_2)_3-\text{CH}_2 \quad R^2 = \text{CH}_2-\text{CH}_3 \)

7. Triallylorthoformiat
 = Orthoameisensäureallylester
 = Triallyloxymethan
 \(R^1 = H \quad R^2 = \text{CH}_2-\text{CH} = \text{CH}_2 \)

8. Tri(ethylacrylat)orthoformiat
 = Orthoameisensäure(ethylacrylat)ester
 = Tri(ethoxyacrylat)methan
 \(R^1 = H \quad R^2 = \text{CH}_2-\text{CH}_2-\text{O}-\text{CO}-\text{CH}=\text{CH}_2 \)

Die letztgenannte Verbindung 8 gehört zu einer ersten Gruppe der erfindungsgemäßen neuen Orthoester, nämlich den Orthoestern der Formel

\[R^1\text{C}[\text{OR}^2-\text{O}-\text{CO}-\text{CH}=\text{CH}_2]_3 \quad (1) \]
worin R^1 Wasserstoff oder einen organischen Rest und $R^2 \ (CH_2)_n$ bedeuten, wobei n eine ganze Zahl von 1 bis 18 ist.

Die neuen Orthoester der Formel (1) werden erfindungsgemäß hergestellt durch Umsetzung eines Säureamids der Formel

$$R^1-\text{CO-NH}_2$$

mit Benzamid und dem entsprechenden (2-Hydroxyalkyl)-acrylat. Zweckmässigerweise führt man die Umsetzung als Eintopf-Verfahren durch.

Als besonders geeignet haben sich weiter Orthoester erwiesen, deren Alkoholteile sich von den folgenden Glycidylalkoholen ableiten:

2,3-Epoxy-2-methyl-3-phenyl-1-propanol
= 2-Methyl-3-phenylglycidol

![Chemical structure](image)

(entsprechend dem Orthoester 9)
2,3-Epoxy-2-methyl-1-propanol

CH₃
HO-CH₂-CH₂

(entsprechend dem Orthoester 10)

2,3-Epoxy-1-propanol

HO-CH₂-CH-CH₂

(entsprechend dem Ortoester 11)

Die Orthoester 9 bis 11 gehören zu einer zweiten Gruppe der erfundungsgemäßen Orthoester, nämlich den Ortoestern der Formel

\[R^1C \left[\begin{array}{c} R_3 \\ \text{O-CH}_2-\text{C} \\ \text{C} \\ \text{O} \\ \text{R}_4 \end{array} \right]_3 \]

worin

\(R^1 \) Wasserstoff oder einen organischen Rest,

\(R^3 \) Wasserstoff oder eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen; und

\(R^4 \) Wasserstoff, eine Alkylgruppe oder eine Phenylgruppe bedeuten.
Die Orthoester der Formel (4) werden erfindungsgemäß hergestellt durch Umesterung eines Orthoesters der Formel

\[R^1C(O-R^5-CH_3)_3 \]

(8).

worin \(R^5 \) \((CH_2)_m\) bedeutet, wobei \(m \) eine ganze Zahl von 0 bis 5 ist, mit einem Alkohol der Formel

\[\text{HO-CH}_2\text{-C-C-R}_4 \]

(9).

Für die Behandlung mit den genannten Orthoestern wird das Substrat zweckmässigerweise vorgetrocknet, beispielweise bei 150 °C/1 bis 3 mbar. Das Aufbringen selbst erfolgt vorzugsweise bei Raumtemperatur, insbesondere bei Acrylverbindungen, oder am Rückfluss, oder in der Gasphase.

Ist der Alkoholteil des Orthoesters ungesättigt oder epoxidiert, so kann die modifizierte Oberfläche mit anderen reaktiven Substanzen weiter umgesetzt werden.
Auf diese Weise kann auf der modifizierten Substratoberfläche entweder:

- eine Klebstoffschicht oder eine Beschichtungsmasse direkt verankert werden (Substanz-Gruppe 1 hiernach),

oder aber

- eine Polymerschicht mit aktiven Wasserstoffatomen an ihrer Oberfläche erzeugt werden, welche in der Folge mit einem Klebstoff oder einer Beschichtungsmasse, die mit den aktiven Wasserstoffatomen chemische Bindungen einzugehen vermögen, weiter umgesetzt werden (Substanz-Gruppe 2 hiernach).

Für die weitere Umsetzung mit ungesättigten Alkoholteilen geeignete reaktive Substanzen sind beispielsweise:

1 Ungesättigte Verbindungen ohne aktive Wasserstoffatome, insbesondere:

1.1 Monomere mit mindestens einer olefinischen Doppelbindung;

1.2 Alkylacrylate und/oder Alkylmethacrylate;

1.3 Styrol und/oder Acrylnitril;
2 Ungesättigte Verbindungen mit aktiven Wasserstoffatomen, insbesondere:

2.1 Verbindungen der allgemeinen Formel

\[
\begin{align*}
R-\text{CH} &= \text{C}-\text{C} \\
& \quad \text{XR'} \\
& \quad R''
\end{align*}
\]

worin bedeuten:

R und R' unabhängig voneinander ein Wasserstoffatom oder einen Substituenten mit mindestens einem aktiven Wasserstoffatom; und

R'' ein Wasserstoffatom oder einen Substituenten mit mindestens einem aktiven Wasserstoffatom oder einen niedrigen Alkylrest oder CN;

X ein Sauerstoff- oder Schwefelatom oder den Rest NH; beispielsweise:

2.1.1 Acrylsäure;
2.1.2 2-Hydroxyethylacrylat;
2.1.3 4-Hydroxybutylacrylat;
2.1.4 2,3-Dihydroxypropylacrylat;
 = Glycerylmonoacrylat;
2.1.5 2,3-Dihydroxypropylmethacrylat = Glycerilmonomethacrylat;
2.1.6 Hydroxypropylmethacrylat; oder
2.1.7 Acrylamid;

2.2 Verbindungen der allgemeinen Formel

\[HY(CH_2)_n-C=CH_2 \]

worin bedeuten:

n eine ganze Zahl von 0 bis 18; und

Y ein Sauerstoff- oder Schwefelatom oder einen der Reste NH, COO und SO_3; beispielsweise:

2.2.1 4-Hydroxystyrol; oder
2.2.2 4-Aminostyrol;

2.3 ungesättigte Dicarbonsäuren und/oder deren Anhydride; beispielsweise:

2.3.1 Maleinsäure und/oder Maleinsäureanhydrid;
2.4 Epoxyacrylate und/oder Epoxymethacrylate; beispielsweise

2.4.1 2,3-Epoxypropylacrylat; oder
2.4.2 2,3-Epoxypropylmethacrylat.

Die genannten Stoffklassen sind beliebig kombinierbar, d.h. jedes Molekül des behandelten Substrates kann mit Verbindungen jeder der genannten Verbindungsklassen weiter umgesetzt sein.

Die Umsetzung der genannten ungesättigten Verbindungen mit einem auf dem Substrat fixierten ungesättigten Alkohol erfolgt vorzugsweise durch radikalische Polymerisation in Gegenwart von Azoisobuttersäurenitril oder Dibenzoylperoxid als Radikalbildner.

Bei der weiteren Umsetzung der modifizierten Oberflächen mit den genannten reaktiven Substanzen erhält man ein auf der Oberfläche des Siliciumentoxid-Substrates fest verankertes Polymerisat.

Für die weiter Umsetzung von modifizierten Oberflächen, welche mit epoxidierten Alkoholen besetzt sind, eignen sich insbesondere Epoxyverbindungen und Isocyanate.
Beispiel 1

Synthese von Triallylorthooformiat = Orthoameisensäureallylester =

Triallyloxymethan (Verbindung 7)

Zu einem Gemisch von 45 g (1 mol) Formamid, 174 g (3 mol) Allyalkohol und 200 ml Petrolether wurden unter Kühlen und Rühren innerhalb von 20 min 140,5 g (1 mol) Benzoylchlorid zugetropft. Die Lösung wurde 1 h bei 35 °C gerührt, und das entstandene Ammoniumchlorid und die entstandene Benzoesäure wurden abfiltriert. Das Filtrat wurde unter Rühren und Kühlen in 500 ml Natriumhydrat-Lösung getropft. Die organische Phase wurde in einem Scheidetrichter abgetrennt, mit 50 ml Wasser gewaschen und über Nacht über CaH₂ getrocknet.

Ausbeute: 123,7 g (61 % d.Th.)

1H-NMR:
s 5,30 ppm (1 H)
dxt 4,12 ppm (6 H)
dxdxt 5,93 ppm (3 H)
dxdxt 5,18 ppm
dxdxt 5,31 ppm (3 H)

13C-NMR: 111,53 ppm

65,13 ppm
134,05 ppm
116,98 ppm
Beispiel 2

Synthese von Triglycidylorthoformiat (Verbindung 11)

Zu einem Gemisch von 3,15 g (0,297 mol) Trimethylorthoformiat (Verbindung 1 - Sdp. 75 = 44 °C) und 106,5 g (1,44 mol) Glycidol (Sdp. 0,006 = 26 °C) wurden 30 mg p-Toluolsulfonsäure-monhydrat, gelöst in 1 ml Methanol, zugegeben.

Das Reaktionsgemisch wurde auf 110 °C erhitzt, so dass die klare Lösung leicht kochte. Über ein Vigreux-Kolonne (10 cm) destillierte dabei während rund 1 h ca. 12 ml (0,3 mol) entstandenes Methanol ab. In den folgenden 5 h wurde der Druck mit dem Wasserstrahlvakuum langsam aber kontinuierlich auf 100 mbar gesenkt, so dass die Reaktionslösung immer leicht kochte, die Dampfentemperatur aber die Siedetemperatur von Methanol nicht überschritt. Um die Reaktion zu vervollständigen wurden noch weitere 3 h bei 110 °C und 100 mbar gekocht (totale Reaktionsdauer: 9 h). Insgesamt konnten ca. 28 ml (0,7 mol) Methanol abgetrennt werden.

Nachdem überschüssiges Glycidol und Nebenprodukte abdestilliert worden waren, konnten 14,65 g (0,063 mol) Triglycidylorthoformiat in Form einer klaren, öligen Flüssigkeit bei 0,007 Torr und einer Dampfentemperatur von 138 °C destilliert werden.
Analyse des Triglycidylorthoformiates:

Ausbeute: 14,65 g (21 % d.Th.)
Sdp. 0,07: 138 °C
nD 20: 1,463

Mikroanalyse:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>berechnet:</td>
<td>51,72 %</td>
<td>6,94 %</td>
<td>41,34 %</td>
</tr>
<tr>
<td>gefunden:</td>
<td>51,74 %</td>
<td>6,80 %</td>
<td>41,48 %</td>
</tr>
</tbody>
</table>

FT-IR (gemessen als Flüssigkeitsfilm zwischen 2 Salzplatten)

3060 w, 3002 m C-H st (Epoxid)
2932 m, 2888 m C-H st (C-C-H)
1483 w, 1458 w, 1428 w -CH₂ delta
1256 m C-O-C st as (Epoxid)
1101 s, 1063 s C-O-C st as (HC-O-CH₂)

¹H-NMR (200 MHz, CDCl₃):

\[
\begin{align*}
\text{delta (Hₐ)} &= 3.83 \text{ ppm} \\
\text{delta (Hₐ)} &= 3.83 \text{ ppm} \\
\text{delta (Hₐ)} &= 3.48 \text{ ppm} \\
\text{delta (Hₐ)} &= 3.13 \text{ ppm} \\
\text{delta (Hₐ)} &= 2.76 \text{ ppm} \\
\text{delta (Hₐ)} &= 2.58 \text{ ppm}
\end{align*}
\]
13C-NMR (50 MHz, CDCl$_3$):

\[
\begin{align*}
\delta (C_a) &= 112 \text{ ppm} \\
\delta (C_b) &= 65 \text{ ppm} \\
\delta (C_c) &= 50 \text{ ppm} \\
\delta (C_d) &= 44 \text{ ppm}
\end{align*}
\]

Bemerkung:

Da es sich beim Kohlenstoffatom C$_c$ um ein chirales Zentrum handelt, gibt es vom Triglycidylorthoformiat 2 Enantiomerenpaare, welche im NMR leicht unterschiedliche chemische Verschiebungen zeigen.

Beispiel 3

Behandlung von Substraten mit Orthoestern

Glasplatten, Silicium, Siliciumdioxid und Aerosil 200 wurden bei 10-2 mbar getrocknet, über Nacht in 2%ige Orthoesterlösungen in CCl$_4$ eingetaucht und über Nacht unter Rückfluss erhitzt. Im Falle von Aerosil wurden die Reaktionsprodukte mittels IR- und 13C-Festkörper-NMR-Spektroskopie sowie TGA (Thermogravimetrische Analyse) untersucht. Der Gewichtsanteil an organismem Produkt auf Aerosil 200 betrug typischerweise ca. 3 %.
Die zentralen Orthoester-Kohlenstoffatome waren in allen Fällen im 13C-NMR-Spektrum verschwunden; nur die Signale der betreffenden Alkohole waren sichtbar.

Bei Verbindungen der Formel RC(OR')_3 waren auf dem Substrat im Falle $R = \text{Aryl}, R' = \text{Alkyl}$ im IR-Spektrum nur C-H-Schwingungen von Alkylgruppen zu beobachten. Im Falle $R = \text{Alkyl}, R' = \text{Aryl}$ waren im IR-Spektrum nur Signale von aromatischen C-H-Streckschwingungen vorhanden.

Beispiel 4

Behandlung von Aerosil 200 mit Tri(2,3-epoxy-1-propyl)orthoformiat = Orthoameisensäureglycidylester = Triglycidylorthoformiat

Das Aerosil 200 wurde bei 120 °C/10^{-2} mbar während 1 h getrocknet, in eine 10%ige Lösung des genannten Orthoesters in CC14 eingetaucht und während 3 h bei Raumtemperatur gerührt. Das Reaktionsprodukt wurde mittels IR- und 13C-Festkörper-NMR-Spektroskopie sowie TGA (Thermogravimetrische Analyse) untersucht. Der Gewichtsanteil an organismem Produkt auf dem Aerosil 200 betrug typischerweise ca. 3 bis 5 %.

Das zentrale Orthoester-Kohlenstoffatom war in allen Fällen im 13C-NMR-Spektrum verschwunden; nur die 13C-Signale des betreffenden Epoxylalkohols waren sichtbar.
Beispiel 5

Polymerisation

130 mg Dibenzoylperoxid (aus CHCl₃/MeOH umkristallisiert) wurden in 100 ml frisch destilliertem Styrol und 20 ml frisch destillieter Methacrylsäure gelöst.

Glasplatten, Silicium, Siliciumdioxid und Aerosil, welche nach der Vorschrift von Beispiel 2 mit Tri(ethylacryl)orthoformiat behandelt worden waren, wurden bei 10⁻² mbar getrocknet und dann 8 h bei 60 °C mit einer Styrol/Methacrylsäure/Dibenzoylperoxid-Lösung umgesetzt. Der Gewichtsanteil an organismem Produkt auf Aerosil betrug 15 %. Dieser Gewichtsanteil veränderte sich auch nach 3tägigem Waschen mit Tetrahydrofuran, Chloroform, Tetra-
chlorkohlenstoff, Dimethylsulfoxid oder Toluol nicht. Im IR-Spek-
trum waren Signale von Säuregruppen und Phenylringen identifi-
zierbar.

Beispiel 6

In der Folge werden die Resultate von Messungen der Rand- oder Kontaktwinkel von Wasser auf verschiedenen Substraten unmittelbar nach der Behandlung mit den angegebenen Orthoestern und/oder nach Einstellen der behandelten Oberflächen mit verschiedenen Lösungs-
mitteln im Ultraschallbad wiedergegeben.
Als "Si(300ÅOx)" wird eine Silicium-Schicht mit einer Siliciumentoxyd-Oberflächenschicht von 300 Å Dicke bezeichnet.

Die Extraktionsmittel sind abgekürzt wie folgt bezeichnet:

<table>
<thead>
<tr>
<th>Molekül</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl₄</td>
<td>Tetrachlorkohlenstoff = Tetrachlormethan</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran = Tetramethylenoxid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
</tbody>
</table>

6.1 **Trimethyloorthoformiat = Orthoamisensäuremethylester = Trimethoxymethan**

<table>
<thead>
<tr>
<th>Extraktion</th>
<th>Glas</th>
<th>Quarz</th>
<th>Si(300ÅOx)</th>
<th>Silicium</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl₄ 15 min</td>
<td>44°</td>
<td>57°</td>
<td>62°</td>
<td>69°</td>
</tr>
<tr>
<td>CCl₄ 15 h</td>
<td>44°</td>
<td>55°</td>
<td>75°</td>
<td>75°</td>
</tr>
<tr>
<td>EtOH 15 min</td>
<td>32°</td>
<td>36°</td>
<td>50°</td>
<td>62°</td>
</tr>
<tr>
<td>EtOH 3 h</td>
<td>38°</td>
<td>34°</td>
<td>47°</td>
<td>64°</td>
</tr>
<tr>
<td>THF 15 min</td>
<td>45°</td>
<td>41°</td>
<td>51°</td>
<td>67°</td>
</tr>
<tr>
<td>Unbehandelt</td>
<td>8°</td>
<td>14°</td>
<td>46°</td>
<td>42...70°</td>
</tr>
</tbody>
</table>
6.2 **Triethylorthoformiat = Orthoameisensäureethylester =**
Triethoxymethan

<table>
<thead>
<tr>
<th>Extraktion</th>
<th>Glas</th>
<th>Quarz</th>
<th>Si(300ÅOx)</th>
<th>Silicium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unextrahiert</td>
<td>50°</td>
<td>47°</td>
<td>72°</td>
<td>78°</td>
</tr>
<tr>
<td>CCl₄ 15 min</td>
<td>60°</td>
<td>64°</td>
<td>75°</td>
<td>82°</td>
</tr>
<tr>
<td>CCl₄ 15 h</td>
<td>60°</td>
<td>50°</td>
<td>70°</td>
<td>78°</td>
</tr>
<tr>
<td>EtOH 15 min</td>
<td>50°</td>
<td>47°</td>
<td>70°</td>
<td>78°</td>
</tr>
<tr>
<td>EtOH 15 h</td>
<td>49°</td>
<td>46°</td>
<td>68°</td>
<td>78°</td>
</tr>
<tr>
<td>THF 15 min</td>
<td>49°</td>
<td>46°</td>
<td>68°</td>
<td>78°</td>
</tr>
<tr>
<td>Aceton 15 min</td>
<td>48°</td>
<td>46°</td>
<td>67°</td>
<td>78°</td>
</tr>
<tr>
<td>DMSO 15 min</td>
<td>49°</td>
<td>45°</td>
<td>68°</td>
<td>80°</td>
</tr>
<tr>
<td>H₂O 15 min</td>
<td>50°</td>
<td>44°</td>
<td>62°</td>
<td>78°</td>
</tr>
<tr>
<td>Unbehandelt</td>
<td>8°</td>
<td>14°</td>
<td>46°</td>
<td>42...70°</td>
</tr>
</tbody>
</table>

6.3 **Tributylorthoformiat = Orthoameisensäurebutylester =**
Tributoxymethan

<table>
<thead>
<tr>
<th>Extraktion</th>
<th>Glas</th>
<th>Quarz</th>
<th>Si(300ÅOx)</th>
<th>Silicium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unextrahiert</td>
<td>70°</td>
<td>53°</td>
<td>78°</td>
<td>93°</td>
</tr>
<tr>
<td>CCl₄ 15 min</td>
<td>70°</td>
<td>58°</td>
<td>78°</td>
<td>93°</td>
</tr>
<tr>
<td>CCl₄ 15 h</td>
<td>59°</td>
<td>58°</td>
<td>77°</td>
<td>90°</td>
</tr>
<tr>
<td>EtOH 15 min</td>
<td>49°</td>
<td>30°</td>
<td>48°</td>
<td>91°</td>
</tr>
<tr>
<td>DMSO 15 min</td>
<td>48°</td>
<td>32°</td>
<td>35°</td>
<td>85°</td>
</tr>
<tr>
<td>H₂O 15 min</td>
<td>42°</td>
<td>30°</td>
<td>33°</td>
<td>90°</td>
</tr>
<tr>
<td>Unbehandelt</td>
<td>8°</td>
<td>14°</td>
<td>46°</td>
<td>42...70°</td>
</tr>
</tbody>
</table>
6.4 Triallylorthoformiat = Orthoameisensäureallylester =
Triallyloxymethan

<table>
<thead>
<tr>
<th>Extraktion</th>
<th>Glas</th>
<th>Quarz</th>
<th>Si(300AOx)</th>
<th>Silicium</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl₄ 15 min</td>
<td>45°</td>
<td>50°</td>
<td>66°</td>
<td>93°</td>
</tr>
<tr>
<td>CCl₄ 15 h</td>
<td>46°</td>
<td>47°</td>
<td>67°</td>
<td>93°</td>
</tr>
<tr>
<td>EtOH 15 min</td>
<td>48°</td>
<td>43°</td>
<td>66°</td>
<td>93°</td>
</tr>
<tr>
<td>THF 15 min</td>
<td>46°</td>
<td>45°</td>
<td>64°</td>
<td>90°</td>
</tr>
<tr>
<td>Aceton 15 min</td>
<td>46°</td>
<td>42°</td>
<td>62°</td>
<td>90°</td>
</tr>
<tr>
<td>DMSO 15 min</td>
<td>44°</td>
<td>44°</td>
<td>63°</td>
<td>90°</td>
</tr>
<tr>
<td>H₂O 15 min</td>
<td>39°</td>
<td>30°</td>
<td>49°</td>
<td>87°</td>
</tr>
<tr>
<td>Unbehandelt</td>
<td>8°</td>
<td>14°</td>
<td>46°</td>
<td>42...70°</td>
</tr>
</tbody>
</table>

Diese Beispiele zeigen, dass die mittels der Behandlung mit Orthoestern, Acetalen oder Ketalen auf die Oberflächen aufgebrachten Substanzen nicht nur sehr extraktionsbeständig sind, sondern dass die Rand- oder Kontaktwinkel durch die Extraktion in manchen Fällen sogar noch vergrößert und die Benetzungseitigkeit somit herabgesetzt wird. Die erklärt sich dadurch, dass die Lösungsmittel adsorbierte polare Verbindungen von der Oberfläche wegwaschen.
Beispiel 7

Zugscherprüfung in Anlehnung an DIN 54451

Klebstoff: \(\text{BETASEAL}^{(R)} \) HV-3 (eingetragenes Warenzeichen der Gurit-Essex AG, CH-8807 Freienbach)

Klebefläche: 25x10 mm

Höhe der Kleberaupe: 2 mm

Verklebte Materialien: Elektrotäuchgrundiertes Blech
100x25x1 mm;
und
Glas 100x25x5 mm

A = unbehandelt

B = mit \(\text{BETASEAL}^{(R)} \) WIPE VP 04604 (eingetragenes Warenzeichen der Gurit-Essex AG, CH-8807 Freienbach) behandelt

C = nach Beispiel 4 behandelt

Aushärtung: 7 Tage bei 23 °C/50 % relativer Luftfeuchtigkeit

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugserfestigkeit ([\text{N/mm}^2])</td>
<td>1,1</td>
<td>6,2</td>
</tr>
<tr>
<td>Druchart</td>
<td>adhäsiv</td>
<td>kohäsiv</td>
</tr>
</tbody>
</table>
Alterung: 7 Tage bei 70 °C/100 % relativer Feuchtigkeit + 1 Tag bei -20 °C

Zugscherfestigkeit [N/mm²] 0,9 3,5 5,1
Bruchart adhäsv 80 % kohäsiv kohäsiv

Beispiel 8

Temperatur-Beständigkeit der Oberflächenmodifikation

Es wurden an Aerosil 200, dessen Oberfläche nach Beispiel 2 mit Triethylorthoformiat modifiziert war, die Desorptionstemperaturen verschiedener adsorbiertes Alkohole mittels TGA (Thermogravimetrischer Analyse) unter Stickstoff bestimmt. Die Resultate sind in der nachstehenden Tabelle zusammengestellt.

<table>
<thead>
<tr>
<th>Desorptionstemperatur [°C]</th>
<th>Gewichtsverlust [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>485</td>
</tr>
<tr>
<td>Ethanol</td>
<td>570</td>
</tr>
<tr>
<td>Butanol</td>
<td>550</td>
</tr>
<tr>
<td>Allylalkohol</td>
<td>550</td>
</tr>
<tr>
<td>2-Hydroxyacrylat</td>
<td>430</td>
</tr>
<tr>
<td>Phenol</td>
<td>195</td>
</tr>
</tbody>
</table>
Beispiel 9

Beständigkeit der Oberflächenmodifikation gegenüber Wasser

Es wurde an Aerosil 200, an dessen nach Beispiel 2 mit Triethylorthoformiat modifizierter Oberfläche Ethanol adsorbiert war, versucht, den Alkohol durch Wasser zu substituieren. Zu diesem Zweck wurde das Produkt auf verschiedene Arten mit Wasser in Kontakt gebracht:

Desorptionsversuche:

a) 17 Monate an der Luft gelagert, Raumtemperatur
b) 1 Monat in wassergesättigter Atmosphäre gelagert, Raumtemperatur
c) 1 Woche in Wasser gerührt, Raumtemperatur
d) 3 Tage in Wasser gekocht, ca. 100 °C
e) 1 Woche im Kumagawa-Extraktor extrahiert, ca. 100 °C.

Als versucht wurde, das Produkt in das Wasser zu bringen, zeigte sich, dass sich das Produkt nicht mehr hydrophil verhielt wie vor der Behandlung mit dem Orthoester, sondern einen hydrophoben Charakter angenommen hatte. Das drückte sich in einer

Anhand von IR-Messungen konnte bei den Versuchen b) bis e) keine Veränderung bezüglich adsorbiertem Alkohol und Wassergehalt festgestellt werden.
Patentansprüche

1. Silicium- oder Siliciumdioxid-Substrat mit modifizierter Oberfläche, dadurch gekennzeichnet, dass seine Oberfläche mit einem Alkohol oder Silylether besetzt ist.

2. Substrat nach Anspruch 1, dadurch gekennzeichnet, dass seine Oberfläche mit einem gesättigten Alkohol oder Silylether, insbesondere mit einem Alkohol oder Silylether, welcher einen gesättigten aliphatischen Rest aufweist, vorzugsweise mit Methanol, Ethanol einem Propanol oder einem Butanol, oder einem Silylether derselben, oder mit einem Glycidylalkohol oder Glycidylsilylalkohol, besetzt ist.

3. Substrat nach Anspruch 1, dadurch gekennzeichnet, dass seine Oberfläche mit einem ungesättigten Alkohol oder Silylether, insbesondere mit einem Alkohol oder Silylether, welcher einen ungesättigten aliphatischen Rest aufweist, vorzugsweise mit mit Allylalkohol oder (2-Hydroxyethyl)-acrylat oder einem Silylether derselben, oder mit einem Glycidylalkohol oder einem Glycidylsilylalkohol, besetzt ist.

7. Substrat nach Anspruch 6, dadurch gekennzeichnet, dass der Alkohol oder der Silylether mit einer oder mehreren ungesättigten Verbindungen der allgemeinen Formel

\[
\text{R-C=}=\text{C-}\text{C}^{\text{O}}
\]

\[
\text{\text{XR'}}
\]

\[
\text{\text{R'}}
\]

\[
\text{\text{R''}}
\]
worin

R und R' unabhängig voneinander ein Wasserstoffatom oder
einen Substituenten mit mindestens einem aktiven
Wasserstoffatom;

R'' ein Wasserstoffatom oder einen Substituenten mit
mindestens einem aktiven Wasserstoffatom oder
einen niedrigen Alkylrest oder CN; und

X ein Sauerstoff- oder Schwefelatom oder den Rest NH
bedeuten, vorzugsweise mit Acrylsäure: 2-Hydroxyethylacrylat;
4-Hydroxybutylacrylat; 2,3-Dihydroxypropylacrylat; 2,3-Dihydr-
oxypropylmethacrylat; und/oder Hydroxypropylmethacrylat, umge-
setzt ist.

8. Substrat nach Anspruch 6, dadurch gekennzeichnet, dass der
Alkohol oder der Silylether mit Acrylamid umgesetzt ist.

9. Substrat nach Anspruch 6, dadurch gekennzeichnet, dass der
Alkohol oder der Silylether mit einer oder mehreren ungesättig-
ten Verbindungen der allgemeinen Formel

\[HY(CH_2)_n - (\bigcirc) - CH = CH_2 \]

worin

n eine ganze Zahl von 0 bis 18; und

Y ein Sauerstoff- oder Schwefelatom oder einen der
Reste NH, COO und SO_3;

bedeuten, umgesetzt ist.
10. Substrat nach Anspruch 9, dadurch gekennzeichnet, dass der Alkohol oder der Silylether mit 4-Hydroxystyrol oder 4-Aminostyrol umgesetzt ist.

11. Substrat nach Anspruch 6, dadurch gekennzeichnet, dass der Alkohol oder der Silylether mit einer oder mehreren ungesättigten Dicarbonsäuren und/oder deren Anhydriden, insbesondere mit Maleinsäure und/oder Maleinsäureanhydrid, umgesetzt ist.

12. Substrat nach Anspruch 6, dadurch gekennzeichnet, dass der Alkohol oder der Silylether mit einem oder mehreren Epoxyacrylaten und/oder Epoxymethacrylaten, insbesondere mit 2,3-Epoxypropylacrylat oder 2,3-Epoxypropylmethacrylat, umgesetzt ist.

13. Substrat nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Substrat ein silikatischer Füllstoff, insbesondere pyrogene Kieselsäure, gefällte Kieselsäure, Silikagel, Quarzmehl oder Glaspulver, ist.

15. Substrat nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Substrat ein Flächenglas, insbesondere ein Fensterglasverbund, vorzugsweise ein Isolierglassystem, oder ein optisches Glas oder eine Glasmembran, ist.

16. Substrat nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Substrat ein Silicium-Wafer, insbesondere ein oxiderter Wafer, ist.

17. Substrat nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Substrat ein Aerogel-Glas ist.

18. Verfahren zur Herstellung eines Substrates nach Anspruch 1, dadurch gekennzeichnet, dass man die zu modifizierende Oberfläche mit einem Orthoester behandelt.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass man die zu modifizierende Oberfläche mit einem Orthoester mit gesättigten Alkoholteil, insbesondere mit einem Alkoholteil, welcher einen gesättigten aliphatischen Rest aufweist, vorzugsweise einem solchen, welcher sich von Methanol, Ethanol einem Propanol oder einem Butanol, oder einem Silylether derselben, oder einem Glycidylalkohol oder Glycidylsilylether, ableitet.
20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass man die zu modifizierende Oberfläche mit einem Orthoester mit ungesättigtem Alkoholteil, insbesondere einem solchen, dessen Alkoholteil einen ungesättigten aliphatischen Rest aufweist, vorzugweise einen solchen, welcher sich von Allylalkohol oder (2-Hydroxyethyl)-acrylat ableitet, behandelt.

24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass man die modifizierte Oberfläche mit einer oder mehreren ungesättigten Verbindungen der allgemeinen Formel

\[
\text{R} \text{-CH= C - C\text{=}0}
\]

\[
\text{\text{XR'} R''}
\]

worin
R und R' unabhängig voneinander ein Wasserstoffatom oder einen Substituenten mit mindestens einem aktiven Wasserstoffatom; und
R" ein Wasserstoffatom oder einen Substituenten mit mindestens einem aktiven Wasserstoffatom oder einen niederer Alkylrest oder CN;
X ein Sauerstoff- oder Schwefelatom oder den Rest NH;
bedeuten, insbesondere mit Acrylsäure; 2-Hydroxymethylacrylat; 4-Hydroxybutylacrylat; 2,3-Dihydroxypropylacrylat; 2,3-Dihydroxypropylmethacrylat; und/oder Hydroxypropylmethacrylat, umsetzt.

26. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass man die modifizierte Oberfläche mit einer oder mehreren unge- sättigten Verbindungen der allgemeinen Formel

\[
HY(CH_2)_n\begin{array}{c}
\hline
\hline
\end{array}CH=CH_2
\]

worin

\(n\) eine ganze Zahl von 0 bis 18; und

\(Y\) ein Sauerstoff- oder Schwefelatom oder einen der Reste \(NH, COO\) und \(SO_3\);

bedeuten, umgesetzt.

27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass man die modifizierte Oberfläche mit 4-Hydroxystyrol oder 4-Aminostyrol umsetzt.

29. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass man die modifizierte Oberfläche mit einem oder mehreren Epoxyacrylaten und/oder Epoxymethacrylaten, insbesondere mit 2,3-Epoxypropylacrylat oder 2,3-Epoxypropylmethacrylat, umsetzt.

30. Orthoester der Formel

\[R^1C(OR^2-CH_2-O-CO-CH=CH_2)_3 \] (1),

worin

- \(R^1 \) Wasserstoff oder einen organischen Rest, und
- \(R^2 (CH_2)_n \), wobei \(n \) eine ganze Zahl von 1 bis 18 ist,

diebeuten.

31. Orthoester nach Anspruch 30 der Formel

\[R^1C(OCH_2-CH_2-O-CO-CH=CH_2)_3 \] (2),

worin

- \(R^1 \) Wasserstoff oder einen organischen Rest
bedeutet.
32. Verfahren zur Herstellung von Orthoestern nach Anspruch 30, dadurch gekennzeichnet, dass man ein Säureamid der Formel

\[R^1\text{-CO-NH}_2 \]

(3).

worin

\(R^1 \) Wasserstoff oder einen organischen Rest bedeutet, mit Benzamid und dem entsprechenden (2-Hydroxy-alkyl)-acrylat umsetzt.

33. Verfahren nach Anspruch 31 zur Herstellung von Orthoestern nach Anspruch 31, dadurch gekennzeichnet, dass man ein Säureamid der Formel

\[R^1\text{-CO-NH}_2 \]

(3).

worin

\(R^1 \) Wasserstoff oder einen organischen Rest bedeutet, mit Benzamid und (2-Hydroxyethyl)-acrylat umsetzt.

34. Verfahren nach einem der Ansprüche 32 und 33, dadurch gekennzeichnet, dass man die Umsetzung als Eintopf-Verfahren durchführt.
35. Orthoester der Formel

\[\left[R^1C \begin{array}{c} O-CH_2-C-C-H \\ 3 \end{array} \right] \]

worin

- \(R^1 \) Wasserstoff oder einen organischen Rest.
- \(R^3 \) Wasserstoff oder eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen; und
- \(R^4 \) Wasserstoff, eine Alkylgruppe oder eine Phenylgruppe bedeuten.

36. Orthoester nach Anspruch 35 der Formel

\[\left[R^1C \begin{array}{c} O-CH_2-C-C-H \\ 3 \end{array} \right] \]

worin

- \(R^1 \) Wasserstoff oder einen organischen Rest, und
- \(R^3 \) Wasserstoff oder eine Methylgruppe.

bedeuten.
37. Orthoester nach Anspruch 35 der Formel

$$R^1C\left[\begin{array}{c} \text{O} \\ \text{CH}_2 - \text{C} - \text{CH}_2 \end{array}\right]$$ \[3\] (6),

worin

R^1 Wasserstoff oder einen organischen Rest, und

R^3 Wasserstoff oder eine Methylgruppe,

die unter den in Anspruch 35 genannten Bedingungen umgesetzt werden.

38. Orthoester nach Anspruch 35 der Formel

$$R^1C\left[\begin{array}{c} \text{O} \\ \text{CH}_2 - \text{CH} = \text{CH}_2 \end{array}\right]$$ \[3\] (7),

worin

R^1 Wasserstoff oder einen organischen Rest,

die unter den in Anspruch 35 genannten Bedingungen umgesetzt werden.

39. Verfahren zur Herstellung von Orthoestern nach Anspruch

35, dadurch gekennzeichnet, dass man einen Orthoester der Formel

$$R^1C(O-R^5-\text{CH}_3)_3$$ \[3\] (8),
worin

R¹ Wasserstoff oder einen organischen Rest, und
R⁵ (CH₂)ₘ, wobei m eine ganze Zahl von 0 bis 5 ist,
bedeuten.

mit einem Alkohol der Formel

\[
\text{HO-CH}_2\text{-C}^\text{O} \quad \text{H} \quad \text{R}_4
\]

worin

R³ Wasserstoff oder eine Alkylgruppe mit 1 bis 6 Kohlen-
stoffatomen; und
R⁴ Wasserstoff, eine Alkylgruppe oder eine Phenylgruppe
bedeuten.

umestert.