发明名称

一种用于打印引擎的供墨装置

摘要

本发明涉及一种用于打印引擎的打印头的供墨组件。所述打印头包括一排微电子机械系统 (MEMS) 喷墨装置和一个供墨通道，喷墨装置安装在一个晶片的第一表面上，供墨通道从位于所述晶片另一侧的晶片的背面延伸至各喷墨设备而贯穿晶片。喷墨装置成组设置。相应地，供墨装置包括一个安装在晶片背面的料块，所述料块中设有多个管，各管开设至所述料块的第一表面而与晶片的背面相邻接。进墨孔与每个管相连通，这些进墨孔开设至所述料块的第二表面。
1. 一种用于打印引擎的打印头的供墨装置，所述打印头包括一个与一晶片的第一表面相邻的喷嘴护板，一排安装在所述晶片的第一表面上的微电子机械系统喷墨装置和多个供墨通道，所述供墨通道贯穿所述晶片而从相对于所述第一表面位于所述晶片另一侧的第一晶片的背面延伸至相应的喷墨装置，所述喷墨装置成多组设置，所述供墨装置包括：
一个安装在所述晶片背面的料块，所述料块中设有多个管，每个管对应其中一组喷墨装置且每个管开口至所述料块的第一表面而与所述晶片背面相连接；及
多个开设进所述料块的第二表面的进墨孔，所述进墨孔设置为使每个管与至少一个进墨孔相连通，其中
每个喷墨装置所喷射的墨水经由所述喷嘴护板喷射出，其中
所述供墨装置进一步包括分隔装置，其用于将每个进墨孔与其相邻的进墨孔隔开，其中，所述分隔装置包括横向延伸的密封材料垫片。

2. 如权利要求1所述的供墨装置，其特征是，所述料块的第二表面与第一表面相对设置。

3. 如权利要求1所述的供墨装置，其特征是，所述料块是一个硅晶片。

4. 如权利要求3所述的供墨装置，其特征是，所述料块粘接在所述装有微电子机械系统设备的晶片上。

5. 如权利要求3所述的供墨装置，其特征是，所述管和进墨孔是蚀刻到硅晶片上的。
一种用于打印引擎的供墨装置

本申请是申请人2000年6月30日申请的题为“一种用于打印引擎的供墨组件”的中国专利申请00819701.6的分案申请。

技术领域

本发明涉及一种打印引擎。本发明特别应用于具有即时打印功能的数码相机上，更确切地说，本发明涉及一种用于向打印引擎的打印头供墨的供墨装置。

背景技术

人们不难理解，页宽打印机上打印引擎部分使用的是专用的打印头，其外形尺寸以毫米为单位表示，尾数以小数来表示。打印头的宽度通常为600微米。在一列喷墨喷嘴中，相邻两个喷嘴间的间距是百微米数量级的。打印头的基层是由硅晶片做的，而向基片供墨的供应机构是用塑料做成的结构件。为了控制塑料使得各种墨水可送到基片上每个供墨通道中，要求极高的精度，因而制作成本也非常高。

“页宽”是指打印介质经过打印头时，打印头在打印介质上一次打印一行，而不在打印介质上横轴滑动或光栅化。

发明内容

本发明的目的在于提供一种易于制造的用于打印引擎的供墨装置。

一种用于打印引擎的打印头的供墨装置，所述打印头包括一个与一晶片的第一表面相邻的喷嘴护板、一排安装在所述晶片的第一表面上的微电子机械系统喷墨装置和多个供墨通道，所述供墨通道贯穿所述晶片而从相对于所述第一表面位于所述晶片另一侧的所述晶片的背面延伸至相应的喷墨装置，所述喷墨装置成多组设置，所述供墨装置包括：

一个安装在所述晶片背面上的料块，所述料块中设有多个管，每个管对应其中一组喷墨装置且每个管开口至所述料块的第一表面而与所述
晶片背面相邻接；及

多个开设进所述料块的第二表面的进墨孔，所述进墨孔设置为使每个管与至少一个进墨孔相连通，其中

每个喷墨装置所喷射的墨水经由所述喷嘴护板喷射出，其中

所述供墨装置进一步包括分隔装置，其用于将每个进墨孔与其相邻的进墨孔隔开，其中，所述分隔装置包括横向延伸的密封材料垫片。

优选的是，所述料块的第二表面与第一表面相对设置。

所述料块可以是一个硅晶片。所述料块粘在安装有微电子机械系统（MEMS）设备的晶片上。

所述管和进墨孔可以是蚀刻在硅晶片上的。

本发明的有益效果在于，通过设置在供墨装置中的料块提供将供墨尺寸减小到打印头尺寸的转换器，由此使得制造更为容易。由于使用了横向延伸的密封材料垫片，减少了必须在料块上进行的制造步骤数量，因此进一步使得制造更为容易。

附图说明

下面结合例子和附图对本发明进行说明：

图1是根据本发明绘制的打印引擎的三维视图，包括其组件：

图2是打印引擎的三维分解图；

图3是使用可拆卸打印盒的打印引擎的三维视图，图中将打印引擎移去了；

图4是打印引擎的三维后视图，其中的打印盒以虚线表示；

图5是打印引擎的三维剖面图；

图6是打印引擎上打印头分组件的三维分解图；

图7是打印头分组件的局部剖视图；

图8是打印头分组件的截面端视图，图中的盖顶机构位于盖顶位置；
图 9 显示的是打印头分组件，图中的盖顶机构位于开盖位置；

图 10 是本发明的打印引擎打印头的供墨装置的局部三维示意图；

图 11 是沿图 10 中 XI-XI 线的供墨装置的截面端视示意图；

图 12 是沿图 10 中 XII-XII 线的供墨装置的截面端视示意图；

图 13 是沿图 10 中 XIII-XIII 线的供墨装置的截面端视示意图；

图 14 是沿图 10 中 XIV-XIV 线的供墨装置的截面端视示意图；

具体实施方式

在图中，附图标记 500 通常是指符合本发明的打印引擎。打印引擎 500 带有一个打印引擎组件 502，其中装有一个可拆卸的打印盒 504。

在我们公告的名称为 “打印盒”（备案号 CA02）及 “墨水盒”（备案号 CA04）的同类专利申请中详细描述了该打印盒 504，上述两个专利是同时申请的，其国际专利申请号分别为 PCT / AU00 / 00741 和 PCT / AU00 / 00742，这里专门结合其内容以做参考。

打印引擎组件 502 包括一个第一分组件 506 和一个第二分组件 508。

分组件 506 上有一个底盘 510。底盘 510 包括一个第一模塑件 512，其上模制有供墨管 514。打印盒 504 中的墨水经由供墨管 514 送入打印头分组件 508 的打印头 516（图 5, 6, 7）。打印头 516 可以用四种颜色的墨水打印也可以用三种颜色的墨水再加上第四种只有在红外光谱下可见的墨水（以下称为红外墨水）来进行打印。相应地，就需要在模塑件 512 上预制出 4 个供墨管 514 及一个供气管 518。空气由供气管 518 吹向打印头 516，以便防止外界的颗粒物在打印头 516 的喷嘴护板上堆积。

底盘 510 上还包括一个盖状模塑件 520。盖状模塑件 520 上装有一个泵 522。泵 522 是一个抽气泵，通过进气孔细管 524 和进气孔 526，经由打印盒 504 中的空气过滤器汲取空气。空气由出气孔 528 排出，提供给底盘 510 上的供气管 518。

底盘 510 上还装有一个第一驱动电机，该电机是一个步进电机 530。
步进电机 530 通过第一轮系 532 来驱动泵 522。该步进电机 530 还通过第二轮系 538 与打印盒 504 上的滚轮组件 536 中的主动滚轮 534（图 5）相连。轮系 538 与装在主动滚轮 534 一端上的可啮合部件 540（图 2）啮合。因而使步进电机 530 可以控制向分组件 508 的打印头 516 中输送打印介质 542 的进给，从而实现当打印介质 542 在打印头 516 下通过时，在上面打印图像。要注意：当在打印介质 542 上进行打印时，步进电机 530 只负责驱动打印介质 542，而泵 522 只负责向打印头 516 吹气。

底盘 510 上的模塑件 512 上安装有多个供墨导管，即与供墨管 514 相连通的细管 544。供墨细管 544 贯穿于打印盒 504 上的弹性凸缘组件 546 当中，用于从打印盒 504 的墨水腔或存储格 548（图 5）中抽吸墨水以供给给打印头 516。

底盘 510 上的盖状模塑件 520 上通过夹子 552 支撑有一个第二电机 550，即直流电机。该电机 550 用来驱动切割装置—刀轮组件 554，在完成图像在打印介质 542 上的打印后，使其与剩余的打印介质切开。电机 550 的输出轴上带有斜齿轮 556。斜齿轮 556 与刀轮组件 554 的蜗轮 560 上带有的斜齿轮 558 啮合。蜗轮 560 通过轴 562 装在打印头分组件 508 的底盘底板 564 上，可以转动。

刀轮组件 554 带有一个刀轮 566，该刀轮 566 安装在安装架 570 上的弹性柔性臂 568 上。蜗轮 560 从安装架 570 旁经过的过程为：当蜗轮 560 转动时，安装架 570 和刀轮 566 从底盘底板 564 处横向经过。安装架 570 与底板 564 的盖 572 贴在一起，以阻止安装架 570 相对于蜗轮 560 转动。而且，刀轮 566 紧贴着打印头分组件 508 的上壳或盖部件 574，以有效切割打印介质 542。盖部件 574 是金属的。因而当刀轮 566 从盖部件 574 处经过时，形成一个类似于剪刀的动作，将已打上图像的打印介质 542 同其余部分切开。

分组件 506 包括一个喷射机构 576。喷射机构 576 装在底盘 510 上并且上面有一个带有夹子 580 的凸缘 578，将喷射机构 576 夹在并贴附在底
盘 510 上。凸缘 578 处装有一个由弹性材料制成的插件 582。插件 582 上设有多个开口 584。开口 584 将细管 544 上的进孔封闭，以阻止外面的颗粒进入致管 544 中，并由此进入管 514 和打印头 516 中。此外，插件 582 表面形成的面平台 586 将进气细管 524 堵住，起到与上述相同的封闭作用。

底盘 510 和凸缘 578 之间装有一个螺旋弹簧 588，这在图 3 中可以清楚地看到，当打印盒 504 从打印引擎 500 上拆下时，该螺旋弹簧 588 将凸缘 578 推到一个与底盘 510 隔开的位置。图 4 中所示的喷射机构 576 处于收起的位置。

上面已经提到：打印头分组件 508 带有一个底板 564。装在底板 564 上的盖顶机构 590 是可以移动的，可以移向或移离打印头 516。盖顶机构 590 上带有一个细长的肋状凸缘 592，肋状凸缘 592 设置在载架 593 上。载架 593 由位移机构 594 支撑，当打印头 516 不工作时，该位移机构 594 移动肋状凸缘 592 与打印头 516 对接。反过来，当打印头 516 工作时，该位移机构 594 产生动作，使肋状凸缘 592 回缩，从而与打印头 516 分开。

打印头分组件 508 上带有一个打印头支撑模塑件 596，打印头 516 安装在上面。该模塑件 596 与模塑件 596 上的插件 599 形成了一个通道 598，当在打印介质 542 上打印图像时，打印介质 542 由此处通过。模塑件 596 上有一个凹槽 700，当盖顶机构 590 处于其盖顶位置时，盖顶机构 590 由槽 700 处伸出来。

进墨装置 702 由插件 599 支撑于盖部件 574 的下面。进墨装置 702 上带有一个脊面形部件 704，并且在部件 704 上装有一个铸件 706。脊形部件 704 和铸件 706 之间形成了一个墨水进给纵槽 708，该纵槽与底盘 510 上的供墨管 514 相连通，墨水经由通道 710（图 7）送往打印头 516。

打印头 516 旁边的脊形部分 704 上有一个供气管 711（图 8）。
电信号经由磁带自动连接膜片 712 传送到打印头 516，磁带自动连接膜片 712 挂置于插件 599 和进墨装置 702 之间。

模塑件 596 上带有一个有角度的翼状部件 714。一个柔性印刷电路板（PCB）716 安装并固定在翼状部件 714 上。插件 599 上的肋状凸缘 718 推动柔性印刷电路板 716 与磁带自动连接膜片 712 接触，使两者导通。柔性印刷电路板 716 上装有排线 720。排线 720 用来向打印头 516 和打印引擎 500 的其它带电部件供电。此外，柔性印刷电路板 716 上带有一个微机打印引擎控制芯片 721 和一个质量控制芯片（未画出），质量控制芯片可以识别打印盒 504 与打印引擎 500 的兼容性和适用性。为此，印刷电路板 716 上带有一个触头 723，与打印盒 504 中的触头 725 相接合。

从图 7 中可以清楚地看到：打印头本身带有一个喷嘴护板 722，安装在硅晶片 724 上。墨水经由供墨构件 726 提供给打印头 516 的喷嘴阵（未画出）。需要供墨时，供墨构件 726 与进墨装置 702 的墨水通道 710 上的出口接通，将墨水送往打印头 516 的喷嘴阵。

从图 10 到图 14 中可以清楚的看到打印头的布局。供墨构件 726 是一块硅晶片，装在硅晶片 724 上。供墨构件 726 中带有多个贯穿其中的管 728。

上面已经谈到：打印头 516 是一个多色打印头，其上的喷嘴 757 排列成一组一组的形式。每组负责打印一种颜色的墨水或打印红外墨水。喷嘴 757 是一种微电子机械系统（MEMS）设备，安装在硅晶片 724 的一个表面 730 上，而构件 726 安装在相对于表面 730 位于硅晶片 724 另一侧的表面 732 上。从图 10 中可以看到：提供给每组喷嘴 757 中的墨水是来自于供墨通道 734。

因而，构件 726 上的每个管 728 与其相应的通道 734 组相通，每个管 728 上有多个进墨孔 736、738、740 和 742。例如，进墨孔 736 向晶片 724 上的第一组供墨通道 734 提供黑色墨水。而在有三种颜色的墨水和一
种红外墨水的情况下：进墨孔 736 向第一组通道提供红外墨水；品红色墨水经过第二组喷嘴的进墨通道 734 由进墨口 738 进入其中；黄色墨水经过第三组喷嘴的进墨通道 734 由进墨口 740 进入其中；最后一组进墨口 742 是用来向第四组喷嘴提供青色墨水的。

进墨孔 736、738、740 和 742 之间由一个横着展开的密封材料垫片 744 将其与相邻的孔隔开。可以看出进墨装置 702 与构件 726 的顶部 746 紧挨着，这样就将进墨孔 736 和 742 彼此隔开了。

同样，也可以看到磁带自动连接膜片 712 是用胶粒 748 粘在晶片 724 的面 730 上的，由胶粒 748 形成的液态紧封将晶片 724 的边封住。

从每个微电子机械系统（MEMS）设备 757 中喷射出的墨水经由喷嘴护板 722 上的一个通道 750 喷射出去。为了使喷嘴护板上的面 752 以及护板 722 到晶片 724 之间的区域 754 保持清洁，没有外来的颗粒，采用向喷嘴护板 722 上的面 752 吹气的方法，空气经由进气孔 756 从通道 710 中进入区域 754。

构件 726 是一个硅晶片，在这个晶片上利用蚀刻技术预制出管 728 及进墨孔 736 和 742。

如介绍中所述，通道 734 之间的间隔是百微米数量级的。而每个进墨孔 736、738、740、742 的长度 L 大约为 0.5 毫米。相邻进孔之间的间隔也是 0.5 毫米数量级的。如果将打印头 516 的宽度作为 X，而将打印头的长度作为 Y，则该供墨构件 726 有效地起到一个转换器的作用，将较小的 X 转换为较大的 Y。因而，用模塑件制作一个上面带有输送管道的进墨装置 702，就很容易了，这要比制作一个将墨水直接送入打印头 516 上的晶片 724 中的进墨装置要简易得多。

本领域的技术人员知道：在不背离本发明的精神和保护范围的前提下，可以对给出的实施方式进行各种变动和/或修改。因而无论从哪一方面来讲，都应将当前给出的实施仅视为说明性的和非限定性的。