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COMPUTATIONAL IMAGING PIPELINE

Cross-reference to related applications

[0001] This application claims benefit of the earlier priority date of U.S. Patent Application No.
14/082,396, entitled “APPARATUS, SYSTEMS, AND METHODS FOR PROVIDING
COMPUTATIONAL IMAGING PIPELINE,” filed on November 18, 2013, which claims priority
to the Romanian Patent Application OSIM Registratura A/00812, entitled “APPARATUS,
SYSTEMS, AND METHODS FOR PROVIDING CONFIGURABLE AND COMPOSABLE
COMPUTATIONAL IMAGING PIPELINE,” filed on November 6, 2013, and to the U.K. Patent
Application No. GB1314263.3, entitled “CONFIGURABLE AND COMPOSABLE
COMPUTATIONAL IMAGING PIPELINE,” filed on August 8, 2013. This application also
claims benefit of the earlier priority date of U.S. Patent Application No. 14/082,645, entitled
“APPARATUS, SYSTEMS, AND METHODS FOR PROVIDING CONFIGURABLE
COMPUTATIONAL IMAGING PIPELINE,” filed on November 18, 2013, which claims priority
to the Romanian Patent Application OSIM Registratura A/00812, entitled “APPARATUS,
SYSTEMS, AND METHODS FOR PROVIDING CONFIGURABLE AND COMPOSABLE
COMPUTATIONAL IMAGING PIPELINE,” filed on November 6, 2013, and to the U.K. Patent
Application No. GB1314263.3, entitled “CONFIGURABLE AND COMPOSABLE
COMPUTATIONAL IMAGING PIPELINE,” filed on August 8, 2013. Each one of the

applications is hereby incorporated by reference herein in its entirety.

Field of the application

[0002] The present application relates generally to processing devices suitable for image and

video processing.
Background

[0003] Computational image and video processing is very demanding in terms of memory
bandwidth as image resolutions and frame rates are high, with aggregate pixel rates in the high
hundreds of megapixels per second being common place. Furthermore, as this field is in its relative
infancy, algorithms are in constant flux. Therefore, it is difficult to implement them entirely in
hardware as changes to the algorithms can mean hardware is unable to adapt. At the same time, a
software approach relying on implementation in processors alone is unrealistic. Accordingly, it is
generally desirable to provide a flexible architecture / infrastructure, which can accommodate

processors and hardware accelerators.

[0004] At the same time, the demand for such video and image processing is coming to a large

extent from portable electronic devices, for example tablet computers and mobile devices, where
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power consumption is a key consideration. As a result, there is a general need for a flexible
infrastructure to couple programmable multicore processors and hardware accelerators with a high
bandwidth memory subsystem that allows them to deliver a sustained data transfer rate at low

power levels necessary for portable electronic devices.
Summary

[0005] In accordance with the disclosed subject matter, apparatus, systems, and methods are
provided for providing configurable and composable computational imaging pipeline.

[0006] Disclosed subject matter includes a parallel processing device. The processing device
includes a plurality of processing elements each configured to execute instructions and a memory
subsystem comprising a plurality of memory slices including a first memory slice associated with
one of the plurality of processing elements. The first memory slice comprises a plurality of random
access memory (RAM) tiles each having individual read and write ports. The parallel processing
device can include an interconnect system configured to couple the plurality of processing elements
and the memory subsystem. The interconnect system can include a local interconnect configured to
couple the first memory slice and the one of the plurality of processing elements, and a global
interconnect configured to couple the first memory slice and the remaining of the plurality of
processing elements.

[0007] In some embodiments, the one of the plurality of RAM tiles is associated with an
arbitration block, wherein the arbitration block is configured to receive memory access requests
from one of the plurality of processing elements and to grant, to the one of the plurality of
processing elements, an access to the one of the plurality of RAM tiles.

[0008] In some embodiments, the arbitration block is configured to grant access to the one of

the plurality of RAM tiles in a round-robin manner.

[0009] In some embodiments, the arbitration block comprises a clash detector configured to
monitor memory access requests to the one of the plurality of RAM tiles and to determine whether
two or more of the plurality of processing elements are attempting to access the one of the plurality

of RAM tiles simultancously.

[0010] In some embodiments, the clash detector is coupled to a plurality of address decoders,
wherein each of the plurality of address decoders is coupled to one of the plurality of processing
elements and is configured to determine whether the one of the plurality of processing elements is

attempting to access the one of the plurality of RAM tiles associated with the arbitration block.

[0011] In some embodiments, the plurality of processing elements comprises at least one vector

processor and at least one hardware accelerator.
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[0012] In some embodiments, the parallel processing device includes a plurality of memory

slice controllers each configured to provide access to one of the plurality of memory slices.

[0013] In some embodiments, the interconnect system comprises a first bus configured to

provide communication between the at least one vector processor and the memory subsystem.

[0014] In some embodiments, the interconnect system comprises a second bus system
configured to provide communication between the at least one hardware accelerator and the

memory subsystem.

[0015] In some embodiments, the second bus system comprises a slice address request filter
configured to mediate communication between the at least one hardware accelerator and the
memory subsystem by receiving a memory access request from the at least one hardware
accelerator and by granting, to the at least one hardware accelerator, access to the memory

subsystem.

[0016] In some embodiments, one of the plurality of processing devices comprises a buffer to
increase a throughput of the memory subsystem, wherein a number of elements in the buffer is

greater than a number of cycles for retrieving data from the memory subsystem.

[0017] Disclosed subject matter includes a method for operating a parallel processing system.
The method includes providing a plurality of processing elements including a first processing
element and a second processing element, wherein each of the plurality of processing elements is
configured to execute instructions. The method also includes providing a memory subsystem
comprising a plurality of memory slices including a first memory slice associated with the first
processing element, wherein the first memory slice comprises a plurality of random access memory
(RAM) tiles each having individual read and write ports. The method further includes receiving,
by an arbitration block associated with one of the plurality of RAM tiles via a local interconnect of
an interconnect system, a first memory access request from the first processing element. The
method additionally includes sending, by the arbitration block via the global interconnect, a first
authorization message to the first processing element to authorize the first processing element to

access the one of the plurality of RAM tiles.

[0018] In some embodiments, the method further includes receiving, by the arbitration block
via a global interconnect of the interconnect system, a second memory access request from a
second processing element; and sending, by the arbitration block via the global interconnect, a
second authorization message to the second processing element to authorize the second processing

element to access the one of the plurality of RAM tiles.
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[0019] In some embodiments, the method further includes sending, by the arbitration block, a
plurality of authorization messages to the plurality of processing elements to authorize access to the

one of the plurality of RAM tiles in a round-robin manner.

[0020] In some embodiments, the method further includes monitoring, by a clash detector in
the arbitration block, memory access requests to the one of the plurality of RAM tiles; and
determining whether two or more of the plurality of processing elements are attempting to access

the one of the plurality of RAM tiles simultaneously.

[0021] In some embodiments, the plurality of processing elements comprises at least one vector

processor and at least one hardware accelerator.

[0022] In some embodiments, the method further includes providing a plurality of memory

slice controllers each configured to provide access to one of the plurality of memory slices.

[0023] In some embodiments, the method further includes providing communication between
the at least one vector processor and the memory subsystem via a first bus system of the

interconnect system.

[0024] In some embodiments, the method further includes providing communication between
the at least one hardware accelerator and the memory subsystem via a second bus system of the

interconnect system.

[0025] In some embodiments, the second bus system comprises a slice address request filter
configured to mediate communication between the at least one hardware accelerator and the
memory subsystem by receiving a memory access request from the at least one hardware
accelerator and by granting, to the at least one hardware accelerator, access to the memory

subsystem.

[0026] Disclosed subject matter includes an electronic device. The electronic device includes a
parallel processing device. The processing device includes a plurality of processing elements each
configured to execute instructions and a memory subsystem comprising a plurality of memory
slices including a first memory slice associated with one of the plurality of processing elements.
The first memory slice comprises a plurality of random access memory (RAM) tiles each having
individual read and write ports. The parallel processing device can include an interconnect system
configured to couple the plurality of processing elements and the memory subsystem. The
interconnect system can include a local interconnect configured to couple the first memory slice
and the one of the plurality of processing elements, and a global interconnect configured to couple
the first memory slice and the remaining of the plurality of processing elements. The electronic

device also includes a processor, in communication with the parallel processing device, configured
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to run a module stored in memory. The module is configured to receive a flow graph associated
with a data processing process, wherein the flow graph comprises a plurality of nodes and a
plurality of edges connecting two or more of the plurality of nodes, wherein each node identifies an
operation and each edge identifies a relationship between the connected nodes; and assign a first
node of the plurality of nodes to a first processing element of the parallel processing device and a
second node of the plurality of nodes to a second processing element of the parallel processing
device, thereby parallelizing operations associated with the first node and the second node.

[0027] In some embodiments, the flow graph is provided in an extensible markup language

(XML) format.

[0028] In some embodiments, the module is configured to assign the first node of the plurality
of nodes to the first processing element based on a past performance of a memory subsystem in the

parallel processing device.

[0029] In some embodiments, the memory subsystem of the parallel processing device
comprises a counter that is configured to count a number of memory clashes over a predetermined
period of time, and the past performance of the memory subsystem comprises the number of

memory clashes measured by the counter.

[0030] In some embodiments, the module is configured to assign the first node of the plurality
of nodes to the first processing element while the parallel processing device is operating at least a

portion of the flow graph.

[0031] In some embodiments, the module is configured to receive a plurality of flow graphs,
and assign all operations associated with the plurality of flow graphs to a single processing element

in the parallel processing device.

[0032] In some embodiments, the module is configured to stagger memory accesses by the
processing elements to reduce memory clashes.

[0033] In some embodiments, the electronic device comprises a mobile device.

[0034] In some embodiments, the flow graph is specified using an application programming
interface (API) associated with the parallel processing device.

[0035] In some embodiments, the module is configured to provide input image data to the

plurality of processing elements by dividing the input image data into strips and providing one strip

of the input image data to one of the plurality of processing elements

[0036] In some embodiments, a number of the strips of the input image data is the same as a

number of the plurality of processing elements.
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[0037] Disclosed subject matter includes a method. The method includes receiving, at a
processor in communication with a parallel processing device, a flow graph associated with a data
processing process, wherein the flow graph comprises a plurality of nodes and a plurality of edges
connecting two or more of the plurality of nodes, wherein each node identifies an operation and
cach edge identifies a relationship between the connected nodes. The method also includes
assigning a first node of the plurality of nodes to a first processing element of the parallel
processing device and a second node of the plurality of nodes to a second processing element of the
parallel processing device, thereby parallelizing operations associated with the first node and the
second node. The parallel processing device also includes a memory subsystem comprising a
plurality of memory slices including a first memory slice associated with the first processing
element, wherein the first memory slice comprises a plurality of random access memory (RAM)
tiles each having individual read and write ports; and an interconnect system configured to couple
the first processing element, the second processing element, and the memory subsystem. The
interconnect system includes a local interconnect configured to couple the first memory slice and
the first processing element, and a global interconnect configured to couple the first memory slice

and the second processing element.

[0038]  In some embodiments, assigning the first node of the plurality of nodes to the first
processing element of the parallel processing device comprises assigning the first node of the
plurality of nodes to the first processing element based on a past performance of a first memory

slice in the parallel processing device.

[0039] In some embodiments, the method also includes counting, at a counter in the memory
subsystem, a number of memory clashes in the first memory slice over a predetermined period of
time, and the past performance of the first memory slice comprises the number of memory clashes

in the first memory slice.

[0040] In some embodiments, assigning the first node of the plurality of nodes to the first
processing element is performed while the parallel processing device is operating at least a portion

of the flow graph.

[0041] In some embodiments, the method also includes staggering memory accesses by the
processing elements to the first memory slice in order to reduce memory clashes.

[0042] In some embodiments, the flow graph is specified using an application programming
interface (API) associated with the parallel processing device.

[0043] In some embodiments, the method also includes providing an input image data to the

plurality of processing elements by dividing the input image data into a plurality of strips and
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providing one of the plurality of strips of the input image data to one of the plurality of processing

elements.

[0044] In some embodiments, a number of the plurality of strips of the input image data is the
same as a number of the plurality of processing elements.

Description of Drawings

[0045] Various objects, features, and advantages of the disclosed subject matter can be more
fully appreciated with reference to the following detailed description of the disclosed subject matter
when considered in connection with the following drawings, in which like reference numerals
identify like elements.

[0046] FIG. 1 describes a computational imaging platform of Chimera.
[0047] FIG. 2 describes a multicore architecture of a Cell processor.
[0048] FIG. 3 describes an efficient low-power microprocessor (ELM) architecture.

[0049] FIG. 4 illustrates an improved memory subsystem in accordance with some

embodiments.

[0050] FIG. 5 illustrates a section of the parallel processing device in accordance with some

embodiments.

[0051] FIG. 6 illustrates a centralized clash detection system in a tile control logic in

accordance with some embodiments.

[0052] FIG. 7 illustrates a distributed clash detection system in a tile control logic in

accordance with some embodiments.

[0053] FIG. 8 shows an arbitration block for reporting a clash signal to a requester in

accordance with some embodiments.

[0054] FIG. 9 illustrates a cycle-oriented arbitration block in accordance with some

embodiments.

[0055] FIG. 10 illustrates a mechanism for reducing a memory access latency due to memory

access arbitration in accordance with some embodiments.

[0056] FIG. 11 illustrates an application of scheduling software in accordance with some

embodiments.

[0057] FIG. 12 provides a hierarchical structure of a system having a parallel processing device

in accordance with some embodiments.
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[0058] FIG. 13 illustrates how the description of the directed acyclic graph (DAG) or the flow
graph can be used to control operations of a parallel processing device in accordance with some

embodiments.

[0059] FIGS. 14A-14B illustrate the scheduling and the issuing of tasks by the compiler and the

scheduler in accordance with some embodiments.

[0060] FIG. 15 illustrates an operation of a real-time DAG compiler in accordance with some

embodiments.

[0061] FIG. 16 compares a schedule generated by an OpenCL scheduler to a schedule

generated by the proposed online DAG scheduler in accordance with some embodiments.

[0062] FIG. 17 illustrates a barrier mechanism for synchronizing an operation of processors

and/or filter accelerators in accordance with some embodiments.

[0063] FIG. 18 illustrates the parallel processing device having different types of processing

elements in accordance with some embodiments.

[0064] FIG. 19 illustrates the proposed multicore memory subsystem in accordance with some

embodiments.

[0065] FIG. 20 illustrates a single slice of the connection matrix (CMX) infrastructure in

accordance with some embodiments.

[0066] FIG. 21 illustrates an accelerator memory controller (AMC) Crossbar architecture in

accordance with some embodiments.

[0067] FIG. 22 illustrates an AMC crossbar port controller in accordance with some

embodiments.

[0068] FIG. 23 illustrates a read operation using an AMC in accordance with some

embodiments.

[0069] FIG. 24 illustrates a write operation using an AMC in accordance with some

embodiments.
[0070] FIG. 25 illustrates the parallel processing device in accordance with some embodiments.

[0071] FIG. 26 illustrates an electronic device that includes a parallel processing device in

accordance with some embodiments.
Detailed Description

[0072] In the following description, numerous specific details are set forth regarding the
systems and methods of the disclosed subject matter and the environment in which such systems

and methods may operate, etc., in order to provide a thorough understanding of the disclosed
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subject matter. It will be apparent to one skilled in the art, however, that the disclosed subject
matter may be practiced without such specific details, and that certain features, which are well
known in the art, are not described in detail in order to avoid complication of the subject matter of
the disclosed subject matter. In addition, it will be understood that the examples provided below
are exemplary, and that it is contemplated that there are other systems and methods that are within
the scope of the disclosed subject matter.

[0073] One possible way of interconnecting such different processing resources (e.g.,
processors and hardware accelerators) is to use a bus as outlined in the computational photography
engine of Chimera, developed by NVidia. FIG. 1 illustrates the computational photography engine
of Chimera. The Chimera computational photography engine 100 includes multiple Graphics
Processing Unit (GPU) cores 102 that are connected to a Multicore ARM processor sub-system 104
and hardware (HW) Image Signal Processing (ISP) accelerators 106 via a flat-level bus
infrastructure 108 (e.g., a single hierarchy bus system that connects all processing elements). The
Chimera computational photography engine is presented generally as a software framework that
abstracts the details of the underlying GPU cores 102, CPUs 104, and ISP blocks 106 from the
programmer. Furthermore, the Chimera computational photography engine 100 describes dataflow
through their computational photography engine via two information busses 108-0, 108-1, the first
bus 108-0 carrying image or frame data and the second bus 108-1 carrying state information

associated with each frame.

[0074] The use of a flat-level bus infrastructure, as in Chimera, can be cheap and convenient to
implement. However, the use of a flat-level bus infrastructure can have a number of notable
disadvantages as a means of interconnecting heterogeneous processing elements (e.g., processing
elements of various types), such as GPU cores 102, CPUs 104, and ISP blocks 106. First, the use
of a bus to interconnect computational resources means that memory can be distributed throughout
the system local to each central processing unit (CPU) 104, a graphics processing unit (GPU) 102,
and/or an image signal processor (ISP) block 106. Therefore, memory cannot be allocated flexibly
within the processing pipeline in accordance with the requirements of the computational
photography pipeline the programmer wishes to implement. This lack of flexibility may mean that
certain image or video processing are either difficult or impossible to implement or that an

implementation is limited in terms of frame-rate, image quality or otherwise.

[0075] Second, the use of a flat-level bus infrastructure also means that different computational
resources (CPUs 104, GPUs 102, and ISP blocks 106) have to contend for bus bandwidth. This
contention requires arbitration, which reduces the amount of available bus bandwidth. Therefore,

progressively less of the theoretical bandwidth is available for actual work. The reduction of

9
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bandwidth may mean that a processing pipeline fails to meet the performance requirements of the

application in terms of a frame rate, image quality and/or power.

[0076] Third, insufficient memory in proximity to a particular computational resource may
mean that data has to be transferred back and forth between memory associated with a given GPU
102, CPU 104, or hardware ISP block 106 and another computational resource. This lack of
locality means that additional bus bandwidth and arbitration overhead can be incurred.
Furthermore, the lack of locality also means that additional power is consumed. Therefore, it may

be difficult or impossible to support a particular algorithm at a particular target frame-rate.

[0077] Fourth, the use of a flat-level bus infrastructure may also compound difficulties in
constructing a pipeline from heterogeneous processing elements, each of which may have different
latency characteristics. For instance, GPU cores 102 are designed to tolerate latency by running
multiple overlapping process threads to handle multiple outstanding accesses to memory (usually
external DRAM) to cover latency, whereas normal CPUs 104 and hardware ISP blocks 106 are not

designed to be latency tolerant.

[0078] Another way to interconnect different processing resources is provided by a Cell
processor architecture developed by IBM, which is illustrated in FIG. 2. The Cell processor
architecture 200 includes a local storage (LS) 202 available to each processor 204, also known
as a synergistic execution unit (SXU). The Cell processor 200 relies on a time-shared
infrastructure and direct memory access (DMA) 206 transfers to programmatically schedule
data-transfers between one processor’s LS 202 and another processor’s LS 202. The difficulty
with the Cell architecture 200 is the complexity faced by the programmer to explicitly schedule
background data-transfers many hundreds of cycles in advance (due to the high latencies in the
Cell architecture 200) so as to ensure that shared data is available to each processor 204 when
required. If the programmer does not explicitly schedule background data transfers, processors

204 would stall, which would degrade the performance.

[0079] Another way to interconnect different processing resources is to use a shared multicore
memory subsystem to share data efficiently between processors in a multicore processing system.
This shared multicore memory subsystem is used in the Efficient Low-power Microprocessor
(ELM) system. FIG. 3 illustrates the ELM system. The ELM system 300 includes an ensemble
302, the primary physical design unit for compute resources in an ELM system. The ensemble 302
includes a cluster of four processors 304 that are loosely coupled. The cluster of four processors
304 share local resources such as an ensemble memory 306 and an interface to the interconnection
network. The ensemble memory 306 captures instruction and data working sets close to the

processors 304, and is banked to allow the local processors 304 and network interface controller to
10
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access it concurrently. Each processor 304 within an ensemble 302 is assigned a preferred bank in
the ensemble memory 306. Accesses by a processor 304 to its preferred bank are prioritized ahead
of accesses (and will block accesses) by other processors and the network interface. Instructions
and data that are private to a single processor 304 may be stored in its preferred bank to provide
deterministic access times. The arbiters that control access to the read and write ports are biased to
establish an affinity between processors 304 and memory banks 306. This allows software to make
stronger assumptions about bandwidth availability and latency when accessing data that may be

shared by multiple processors.

[0080] However, the ELM architecture 300 can consume a lot of power due to the physically
large random access memory (RAM) blocks. Furthermore, the ELM architecture 300 can suffer
from low throughput where there is a lot of data-sharing between processors 304. In addition, no
provision is made for data-sharing between processors 304 and hardware accelerators, which can be

advantageous in terms of power and performance in certain cases.

[0081] The present disclosure relates to apparatus, systems, and methods for enabling multiple
processors and hardware accelerators to access shared data simultaneously with other processors
and hardware accelerators. The present disclosure provides apparatus, systems, and methods for
accessing shared data simultancously, without being blocked by a local processor that has a higher

affinity (e.g., a higher priority) to access local storage.

[0082] The disclosed apparatus, systems, and methods provide substantial benefits over
existing multicore memory architectures. Existing multicore memory architectures use a single
monolithic block of RAM per processor, which can limit the bandwidth at which data can be
accessed. The disclosed architecture can provide a mechanism for accessing memory at a
substantially higher bandwidth compared to existing multicore memory architectures that use a
single monolithic block of RAM. The disclosed architecture obtains this higher bandwidth by
instantiating multiple physical RAM blocks per processor, instead of instantiating a single large
RAM block per processor. Each RAM block can include a dedicated access arbitration block and a
surrounding infrastructure. Therefore, each RAM block in the memory subsystem can be accessed
independently of others by multiple processing elements in the system, for example, vector
processors, reduced instruction set computing (RISC) processors, hardware accelerators, or DMA

engines.

[0083] This is somewhat counter intuitive that the use of multiple small RAM instances is
beneficial compared to using a single large RAM instance because a memory bank based on a
single large RAM instance is more area efficient than a memory bank based on multiple, smaller

RAM instances. However, the power dissipation for smaller RAM instances is typically
11
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significantly lower than for a single large RAM instance. Furthermore, if a single large physical
RAM instance were to achieve the same bandwidth as multi-instance RAM blocks, the single large
physical RAM instance would incur at a substantially higher power than one composed of multiple
physical RAM instances. Therefore, at least from the power dissipation perspective, the memory
subsystem can benefit from using multiple physical RAM instances than using a single large RAM

instance.

[0084] The memory subsystem with multiple physical RAM instances can have an added
advantage in that the cost per RAM access, for example, the memory access time or the power
consumption, of smaller RAM blocks is typically a lot lower than that of larger RAM blocks. This
is due to the shortened bit-lines used to read/write data from the RAMSs. Furthermore, the access-
time for reads and writes for smaller RAM blocks is also lower (due to the reduced resistance-
capacitance (RC) time-constants associated with shorter bit-lines). Therefore, the processing
elements coupled to the multi-RAM based memory subsystem can operate at a higher frequency,
which in turn reduces static power due to static leakage current. This can be useful particularly
when the processors and memory are isolated into power domains. For example, when a given
processor or filter accelerator has completed its task, the power domain associated with the given
processor or filter accelerator can be advantageously gated off. Therefore, the memory subsystem
in the disclosed architecture has superior characteristics in terms of available bandwidth and power
dissipation.

[0085] In addition, a memory subsystem with multiple RAM instances, each with arbitrated
accesses, can provide many ways for data to be shared between processors and hardware
accelerators, without dedicating a RAM block to a particular processor by locking the RAM block.
In principle, if a larger RAM is subdivided into N sub-blocks, then the available data bandwidth is
increased by approximately a factor of N. This is based on the assumption that data can be
opportunely partitioned to reduce contemporaneous sharing (e.g., an access clash) by multiple
processing elements. For example, when a consumer processor or a consumer accelerator reads
data from a data buffer that is being filled by a producer processor or a producer accelerator, then

there is a contemporaneous sharing of a data buffer, resulting in an access clash.

[0086] In some embodiments, the disclosed architecture can provide mechanisms for reducing a
contemporancous sharing of data. In particular, the disclosed architecture can be amenable for
reducing the contemporaneous sharing via a static memory allocation mechanism and/or a dynamic
memory allocation mechanism. For example, in the static memory allocation mechanism, data is
mapped to different portions of memory before a program is started, e.g., during the program

compilation stage, in order to reduce the contemporaneous sharing of the data. On the other hand,

12
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in the dynamic memory allocation scheme, data is mapped to different portions of memory during
the program execution. Static memory allocation mechanism provides a predictable mechanism for
allocating memory to data, and it does not incur any substantial overhead in terms of power or

performance.

[0087] As another example, the disclosed architecture can be used in conjunction with a
runtime scheduler running on a controller (e.g., a supervising RISC processor) or one or more
processors that mediate access to data-structures partitioned across multiple RAM blocks. The
runtime scheduler can be configured to stagger the start-times of different processing elements
operating on parts (e.g., lines or tiles) of data (e.g., an image frame) in order to reduce simultancous

access to shared data.

[0088] In some embodiments, the runtime scheduler can be complemented with a hardware
arbitration block. For example, the hardware arbitration block can be configured to mediate shared
memory accesses by processors (such as vector processors) via a shared deterministic interconnect
designed to reduce stalling. In some cases, the hardware arbitration block can be configured to
perform a cycle-oriented scheduling. The cycle-oriented scheduling can include scheduling a use
of a resource at a clock-cycle granularity, as opposed to scheduling a use of a resource at a task-
level granularity, which may require multiple clock-cycles. Scheduling resource allocations at a

clock cycle granularity can provide higher performance.

[0089] In other embodiments, the runtime scheduler can be complemented with a multiplicity
of hardware accelerators each of which can include an input buffer and an output buffer to store
data. The input and output buffers can be configured to absorb (or hide) the variance of delays in
accessing external resources, such as external memory. The input and output buffers can include a
first-in-first-out (FIFO) buffer, and the FIFO buffer can include a sufficient number of slots to store
sufficient amount of data and/or instructions to absorb the variance of delays in accessing external

reésources.

[0090] In some embodiments, the disclosed apparatus, systems, and methods provide a parallel
processing device. The parallel processing device can include a plurality of processors, such as a
parallel processor, cach of which may execute instructions. The parallel processing device can also
include a plurality of memory slices, each memory slice being h associated with one of the parallel
processing devices and giving preferential access to that processor over other processing devices in
the parallel processing device. Each memory slice can include a plurality of RAM tiles, where each
RAM tile can include a read port and a write port. In some cases, each memory slice may be
provided with a memory slice controller for providing access to a related memory slice. The

processors and the RAM tiles can be coupled to one another via a bus. In some cases, the bus can
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couple any of the processors with any of the memory slices. Suitably, each RAM tile can include a
tile control logic block for granting access to the tile. The tile control logic block is sometimes
referred to as a tile control logic or an arbitration block.

[0091] In some embodiments, the parallel processing device can further include at least one
hardware accelerator configured to perform a predefined processing function, for example, image

processing. In some cases, the predefined processing function can include a filtering operation.

[0092] In some embodiments, at least one hardware accelerator can be coupled to the memory
slices via a separate bus. The separate bus can include an associated accelerator memory controller
(AMC), which is configured to receive requests from at least one hardware accelerator and to grant,
to the hardware accelerator, an access to a memory slice through the related memory slice
controller. It will thus be appreciated that the memory access path employed by the hardware
accelerators can be different to the path employed by the vector-processors. In some
embodiments, the at least one hardware accelerator can include an internal buffer (e.g., a FIFO

memory) to account for delays in accessing the memory slices.

[0093] In some embodiments, the parallel processing device can include a host processor. The
host processor can be configured to communicate with an AMC via a host bus. The parallel
processing device can also be provided with an application-programming interface (API). The API
provides a high level interface to the vector processors and/or hardware accelerators.

[0094] In some embodiments, the parallel processing device can operate in conjunction with a
compiler that provides instructions for the parallel processing device. In some cases, the compiler
is configured to run on a host processor, which is distinct from the processing elements, such as a
vector processor or a hardware accelerator. In some cases, the compiler is configured to receive a
flow graph, via the image/video API 1206 (FIG. 12), specifying an image processing process. The
compiler can be further configured to map one or more aspects of the flow graph to one or more of
the processing elements, such as a vector processor or a hardware accelerator. In some
embodiments, a flow graph can include nodes and edges, where each node identifies an operation,
and each edge identifies relationships between nodes (e.g., operations), such as an order in which
the operations are carried out. The compiler can be configured to assign a node (e.g., an operation)
to one of the processing elements to parallelize the computation of the flow graph. In some
embodiments, the flow graph may be provided in an extensible mark-up language (XML) format.
In some embodiments, the compiler can be configured to allocate multiple flow graphs to a single

processing element.

[0095] In some embodiments, the parallel processing device can be configured to measure its

performance and provide the information to the compiler. Therefore, the compiler can use the past
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performance information received from the parallel processing device to determine the allocation of
current tasks to processing elements in the parallel processing device. In some embodiments, the
performance information can be indicative of a number of access clashes experienced by one or

more processing elements in the processing device.

[0096] In some cases, the parallel processing device can be used in video applications, which
may be computationally expensive. To address the computational demand of video applications,
the parallel processing device can configure its memory subsystem to reduce the access clashes
between processing units during memory access. To this end, as discussed previously, the parallel
processing device can subdivide monolithic memory banks into multiple physical RAM instances,
instead of using the monolithic memory banks as a single physical block of memory. With this
subdivision, each physical RAM instance can be arbitrated for read and write operations, thereby

increasing the available bandwidth by the number of physical RAM instances in the memory bank.

[0097] In some embodiments, the hardware cycle-oriented arbitration can also provide multiple
traffic classes and programmable scheduling masks. The multiple traffic classes and programmable
scheduling masks can be controlled using the runtime scheduler. The hardware cycle-oriented
arbitration block can include a port arbitration block, which can be configured to allocate multiple
requesters of a single shared resource in a round-robin scheduling scheme. In the round-robin
scheduling scheme, requesters (e.g., processing elements) are granted access to a resource (e.g.,
memory) in the order the request was received from the requesters. In some cases, the port
arbitration block can augment the round-robin scheduling scheme to account for the multiple traffic
classes. The single shared resource can include a RAM-tile, shared registers, or other resources
that vector-processors, filter accelerators, and RISC processors can access to share data.
Additionally, the arbitration block can allow for overriding the round-robin allocation of resources
with a priority vector or super-priority vector. The priority vector or the super priority vector can
be provided by a runtime scheduler in order to prioritize certain traffic classes (e.g., video traffic

classes) as needed by a particular application of interest.

[0098] In some embodiments, a processing element can include one or more of a processor,
such as a vector processor or a streaming hybrid architecture vector engine processor, a hardware

accelerator, and a hardware filter operator.

[0099] FIG. 4 illustrates a parallel processing device having a memory subsystem, which
allows multiple processors (e.g., Streaming Hybrid Architecture Vector Engine (SHAVE)
processors) to share a multiport memory subsystem in accordance with some embodiments.
Specifically, FIG. 4 shows a parallel processing device 400, which is suitable for processing image

and video data. The processing device 400 comprises a plurality of processing elements 402, such
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as a processor. In the exemplary configuration of FIG. 4, the processing device 400 includes 8
processors (SHAVE 0 402-0 — SHAVE 7 402-7). Each processor 402 can include two load store
units 404, 406 (LSUOQ, LSU1) by which data may be loaded from and stored to memory 412. Each
processor 402 can also include an instruction unit 408 into which instructions may be loaded. A
particular embodiment in which the processor includes a SHAVE, the SHAVE can include one or
more of a reduced instruction set computer (RISC), a digital signal processor (DSP), a very long
instruction word (VLIW), and/or a graphics processing unit (GPU). The memory 412 comprises a
plurality of memory slices 412-0 ... 412-7 referred to herein as connection matrix (CMX) slices.

Each memory slice 412-N is associated with a corresponding processor 402-7.

[0100] The parallel processing device 400 also includes an interconnection system 410 that
couples the processors 402 and the memory slices 412. The interconnection system 410 is referred
to herein as an inter-shave interconnect (ISI). The ISI can include a bus through which processors

402 can read or write data to any part of any one of the memory slices 412.

[0101] FIG. 5 illustrates a section of the parallel processing device in accordance with some
embodiments. The section 500 includes a single processor 402-N, a memory slice 412-N
associated with the single processor 402-N, the ISI 410 that couples the single processor 402-N and
other memory slices (not shown), and a tile control logic 506 for arbitrating communication
between a tile in the memory slice 412-N and processors 402. As illustrated in the section 500, the
processor 402-N can be configured to directly access the memory slice 412-N associated with the

processor 402-N; the processor 402-N can access other memory slices (not shown) via the ISI.

[0102] In some embodiments, each memory slice 412-N can include a plurality of RAM tiles or
physical RAM blocks 502-0 ... 502-N. For instance, a memory slice 412-N having the size of
128kB can include four 32kB single-ported RAM tiles (e.g., physical RAM elements) organized as
4k x 32-bit words. In some embodiments, a tile 502 can also be referred to as a logical RAM
block. In some embodiment, a tile 502 can include a single ported complementary metal—oxide—
semiconductor (CMOS) RAM. The advantage of a single ported CMOS RAM is that it is generally
available in most semiconductor processes. In other embodiments, a tile 502 can include a multi-

ported CMOS RAM.

[0103] In some embodiments, each tile 502 can be associated with a tile control logic 506. The
tile control logic 506 is configured to receive requests from processors 402 and provides access to
the individual read and write-ports of the associated tile 502. For example, when a processing
element 402-N wants to access data in a RAM tile 502-0, before the processing element 402-N
sends the memory data request to the RAM tile 502-0 directly, the processing element 402-N can

send a memory access request to the tile control logic 506-0 associated with the RAM tile 502-0.
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The memory access request can include a memory address of data requested by the processing
element 402-N. Subsequently, the tile control logic 506-0 can analyze the memory access request
and determine whether the processing element 402-N can access the requested memory. If the
processing element 402-N can access the requested memory, the tile control logic 506-0 can send
an access grant message to the processing element 402-N, and subsequently, the processing

element 402-N can send a memory data request to the RAM tile 502-0.

[0104] As there is potential for simultaneous access by multiple processing elements, in some
embodiments, the tile control logic 506 can include a clash detector, which is configured to detect
an instance in which two or more processing elements, such as a processor or an accelerator,
attempt to access any one of the tiles in a memory slice. The clash detector can monitor access to
cach tile 502 for an attempted simultancous access. The clash detector can be configured to report

to the runtime scheduler that an access clash has occurred and needs to be resolved.

[0105] FIG. 6 illustrates a centralized clash detection system in a tile control logic in
accordance with some embodiments. The clash detection system can include a centralized
arbitration block 608, which includes a plurality of clash detectors 604 and a plurality of one-hot
address encoders 602. In some embodiments, the one-hot address encoder 602 is configured to
receive a memory access request from one of the processing elements 402 and to determine
whether the memory access request is for data stored in the RAM tile 502 associated with the one-
hot address encoder 602. Each clash detector 604 can be coupled to one or more one-hot address
encoder 602, which is also coupled to one of the processing elements 402 that can access the tile
502 associated with the clash detector 602. In some embodiments, a clash detector 604 can be

coupled to all one-hot address encoders 602 associated with a particular RAM tile 502.

[0106] If the memory access request is for data stored in the RAM tile 502 associated with the
one-hot address encoder 602, then the one-hot address encoder 602 can provide a bit value “1” to
the particular RAM tile’s clash detector 604; if the memory access request is not for data stored in
the RAM tile 502 associated with the one-hot address encoder 602, then the one-hot address
encoder 602 can provide a bit value “0” to the particular RAM tile’s clash detector 604 .

[0107] In some embodiments, the one-hot address encoder 602 is configured to determine
whether the memory access request is for data stored in the RAM tile 502 associated with the one-
hot address encoder 602 by analyzing the target address of the memory access request. For
example, when the RAM tile 502 associated with the one-hot address encoder 602 is designated
with a memory address range of 0x0000 and 0x00ff, then the one- hot address encoder 602 can
determine whether the target address of the memory access request falls within the range of 0x0000

and 0x00ff. If so, the memory access request is for data stored in the RAM tile 502 associated with
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the one-hot address encoder 602; if not, the memory access request is not for data stored in the
RAM tile 502 associated with the one-hot address encoder 602. In some cases, the one-hot address
encoder 602 can use a range compare block to determine whether the target address of the memory

access request falls within the address range associated with a RAM tile 502.

[0108] Once the clash detector 604 receives bit values from all one-hot address encoders 602,
the clash detector 604 can count the number of “1”’s in the received bit values (e.g., sum the bit
values) to determine whether there is more than one processing elements 402 currently requesting
access to the same RAM tile 502. If there is more than one processing element currently requesting

access to the same RAM tile 502, the clash detector 604 can report a clash.

[0109] FIG. 7 illustrates a distributed clash detection system in a tile control logic in
accordance with some embodiments. The distributed clash detection system can include a
distributed arbiter 702, which includes a plurality of clash detectors 704. The operation of the
distributed clash detection system is substantially similar to the operation of the centralized clash
detection system. In this case, the clash detectors 704 are arranged in a distributed manner. In
particular, the distributed arbiter 702 can include clash detectors 704 that are arranged in a serial
manner, where each clash detector 704 is coupled to only a subset of one-hot address encoders 602
associated with a particular RAM tile 502. This arrangement is different from the centralized clash
detection system in which a clash detector 704 is coupled to all one-hot address encoders 602

associated with a particular RAM tile 502.

[0110] For example, when a particular RAM tile 502 can be accessed by 64 processing
clements 402, a first clash detector 704-0 can receive a memory access request from 32 processing
elements, and the second clash detector 704-1 can receive a memory access request from the
remaining 32 processing elements. The first clash detector 704-0 can be configured to analyze one
or more memory access requests from the 32 processing elements coupled to itself and determine a
first number of elements, of the 32 processing elements coupled to itself, that are requesting access
to a particular RAM tile 502-0. In parallel, the second clash detector 704-1 can be configured to
analyze one or more memory access requests from the 32 processing elements coupled to itself and
determine a second number of elements, of the 32 processing elements coupled to itself, that are
requesting access to the particular RAM tile 502-0. Then the second clash detector 704 can add the
first number and the second number to determine how many of the 64 processing elements are

requesting access to the particular RAM tile 502-0.

[0111] Once a clash detection system detects a clash, the clash detection system can send a halt
signal to a requester 402. FIG. 8 shows an arbitration block for reporting a clash signal to a

requester in accordance with some embodiments. More particularly, the outputs of the range-
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compare blocks in clash detection systems are combined using an OR gate to generate a halt signal
to the requester. The half signal indicates that more than one processing element is attempting to
access the same physical RAM sub-block within the memory slice associated with the requester.
Upon receiving the halt signal, the requester can halt the memory access operation until the clash
has cleared. In some embodiments, the clash can be cleared by the hardware independently of the

program code.

[0112] In some embodiments, the arbitration block can operate at a cycle granularity. In such
embodiments, the arbitration block allocates resources at a clock cycle granularity rather than at a
task level granularity, which may include multiple clock cycles. Such cycle-oriented scheduling
can improve the performance of the system. The arbitration block can be implemented in hardware
so that the arbitration block can perform the cycle-oriented scheduling in real time. For example, at
any particular instance, the arbitration block implemented in hardware can be configured to allocate

resources for the next clock cycle.

[0113] FIG. 9 illustrates a cycle-oriented arbitration block in accordance with some
embodiments. The cycle-oriented arbitration block can include a port arbitration block 900. The
port arbitration block 900 can include a first port selection block 930 and a second port selection
block 932. The first port selection block 930 is configured to determine which one of the memory
access requests (identified as a bit position in the client request vector) is assigned to the slice port
[0] for accessing a memory slice coupled to the slice port [0], whereas the second selection block
932 is configured to determine which one of the client request vectors is assigned to the slice port

[1] for accessing a memory slice coupled to the slice port [1].

[0114] The first port selection block 930 includes a first leading one detector (LOD) 902-0 and
a second LOD 902-1. The first LOD 902-0 is configured to receive a client request vector, which
can include a plurality of bits. Each bit in the client request vector indicates whether or not a
message access request has been received from a requestor associated with that bit position. In
some cases, the client request vector operates in an “active high” mode. Once the first LOD 902-0
receives the client request vector, the first LOD 902-0 is configured to detect a bit position,
counting from the left to the right, at which the request becomes non-zero for the first time, thereby
identifying the first memory access request, counting from the left to right, to the first port selection
block 930. In parallel, the client request vector can be masked by an AND logic operator 912 to
generate a masked client request vector using a mask generated by a mask register 906 and a mask
left shifter 904. The mask register 906 can be set by a processor in communication with the mask
register 906, and the mask left shifter 904 can be configured to shift, to the left, the mask
represented by the mask register 906. The second LOD 902-1 can receive the masked client
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request vector from the AND logic operator 912, and detect the leading 1 in the masked client

request vector.

[0115] The output from the first LOD 902-0 and the second LOD 902-1 are then provided to
the port [0] winner selection block 908. The port [0] winner selection block 908 further receives
two additional inputs: a priority vector and a super-priority vector. The port [0] winner selection
block 908 is configured to determine which one of the received memory access requests should be
assigned to the slice port [0], based on the priorities of the inputs. In some embodiments, the
priorities of the inputs can be ranked as follows: starting with super-priority vector, which has the
highest priority, priority vector which divides the masked LOD vector into priority and non-priority
requests, followed by the unmasked LOD vector which has the lowest priority. In other

embodiments, other priorities can be specified.

[0116] While the first port selection block 930 can be configured to determine whether the
client request vector can be assigned to the slice port [0], the second port selection block 932 can
be configured to determine whether the client request vector can be assigned to the slice port [1].
The second port selection block 932 includes a first trailing one detector (TOD) 912-0, a second
TOD 912-1, a mask register 914, a mask right shifter 916, a port [1] winner selection block 918,
and a masking AND logic block 920. The TOD 912 is configured to receive a client request vector,
which can include a plurality of bits, and detect a bit position, counting from the right to the left, at
which the vector becomes non-zero for the first time. The operation of the second port selection
block 932 is substantially similar to the first port selection block 930 except that it operates from
right to left of the input vector selecting the trailing one in the input request vector using a trailing-

one detector 912-0.

[0117] The outputs of the port winner selection blocks 908, 918 are also provided to the same
winner detection block 910, which is configured to determine if the same memory access request
has won access to both slice port [0] and slice port [1]. If the same client request vector has won
access to both slice port [0] and slice port [1], the same winner detection block 910 selects one or
the slice ports to route the request and allocates the other port to the next highest ranking request in
the input vector. This avoids over-allocation of resources to a particular request, thereby improving

the allocation of resources to competing requesters.

[0118] The operation of the port arbitration block 900 works by starting from the left hand side
of the 32-bit client request vector and masked LOD 902-1 outputs the position of the first masked
request vector, if this masked request vector is not superseded by a higher priority input via the
priority or super-priority vectors the requester corresponding to the LOD position wins and is

granted access to port [0]. The LOD position is also used to advance the mask position via the 32-
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bit left-shifter 904 and is also used to compare with the port 1 LOD assignment to check if the same
requester has been given access to both ports and in this case only one of the ports is granted with a
flip-flop being toggled to grant access on an alternating basis between ports 0 and 1 in the case of
successive same winner detections. In the case the LOD output from the masked detector 902-1
has been assigned priority via a corresponding one bit in the priority vector, the requesting client is
granted 2 back-to-back cycles access to port 0. In the case that there is no leading one in the
masked client request vector and no higher priority request exists the unmasked LOD wins and is
assigned access to port 0. In the case of any of the above cases a 1-bit in the super-priority vector

will override any of the previous requests and grant unrestricted access to port 0 to the requester.

[0119] The logic in the lower part of the diagram starts from the right-hand side of the request
vector and otherwise operates in the same manner as the upper part which starts from the left-hand
side of the request vector. In this case, operation of the port 1 arbitration block in terms of

priorities etc. is identical to that of the port 0 portion of the logic.

[0120] In some embodiments, a processing element 402 can include a buffer to reduce a latency
of memory access due to memory access arbitration. FIG. 10 illustrates a mechanism for reducing
a memory access latency due to memory access arbitration in accordance with some embodiments.
In a typical memory access arbitration scheme, the memory access arbitration block is pipelined,
which leads to a fixed overhead arbitration penalty when allocating a shared resource, such as a
RAM tile 502, to one of the plurality of processing elements (e.g., requesters). For example, when
a requester 402 sends a memory access request to an arbitration block 608/702, it takes at least four
cycles for the requester 402 to receive an access grant message because it takes at least one cycle in
cach of the following steps: (1) analyze the memory access request at the one-hot address encoder
602, (2) analyze the output of the one-hot address encoder 602 at the arbitration block 608/702, (3)
send an access grant message to the one-hot address encoder 602 by the arbitration block 608/702,
and (4) send the access grant message to the requester 402 by the one-hot address encoder 602.
Then, subsequently, the requester 402 has to send a memory data request to the RAM tile 502, and
receive data from the RAM tile 502, each of which takes at least one cycle. Therefore, a memory
access operation has a latency of at least six cycles. This fixed penalty would reduce the bandwidth

of the memory subsystem.

[0121] This latency issue can be addressed with a memory access request buffer 1002
maintained in the processing element 402. For example, the memory access request buffer 1002
can receive memory access requests from the processing element every clock cycle, and store the
received memory access requests until they are ready to be sent to the memory arbitration block

608/702. The buffer 1002 in effect synchronizes the rate at which memory access requests are sent
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to the memory arbitration block 608/702 and the rate at which the data is received from the
memory subsystem. In some embodiments, the buffer can include a queue. The number of
elements in the buffer 1002 (e.g., the depth of the buffer) can be greater than the number of cycles
for retrieving data from the memory subsystem. For example, when the RAM access latency is 6
cycles, the number of elements in the buffer 1002 can be 10. The buffer 1002 can reduce the
arbitration latency penalty and improve the throughput of the memory subsystem. With the
memory access request buffer, in principle, up to 100% of total memory bandwidth can be

allocated between requesters.

[0122] It will be understood that a potential problem with using multiple RAM instances is that,
by allowing simultaneous access by multiple processing elements to sub-instances within a bank, a

memory contention may result.

[0123] The present disclosure provides at least two approaches to address the memory
contention. First, care is taken in the software design, as will be described later, to avoid a
memory contention and/or a memory clash by carefully laying out the data in the memory
subsystem so as to reduce the contention and/or the memory clash. Furthermore, the software
development tools associated with the parallel processing device can allow the memory contention
or the memory clash to be reported during the software design phase. Therefore, the memory
contention issues or the memory clash issues can be corrected by improving the data layout in

response to the memory contention or the memory clash reported during the software design phase.

[0124] Second, as described further below, the IST block within the architecture is configured to
detect port-clashing (contention) in hardware and stall processing elements with lower priorities.
For example, the ISI block is configured to analyze memory access requests from processing
elements, service the sequence of memory access requests, and route memory access requests in
accordance with the priority order so that all data reads or writes from all processing elements are

completed in the priority order.

[0125] The priority order amongst the processing elements can be established in a number of
ways. In some embodiments, the priority order may be defined statically at system design time.
For example, the priority order can be coded as a reset state for system registers so that when a
system powers up, the system powers up with a set of pre-assigned priorities. In other

embodiments, the priority order can be dynamically determined via user-programmable registers.

[0126] In some embodiments, programmers may plan the data-layout for their software
applications in order to reduce contention for shared sub-blocks of memory within a memory slice.
In some cases, the planning of the data-layout can be assisted by an arbitration block. For example,

the arbitration block can detect a memory contention, grant access to the memory, on the basis of
22



WO 2015/019197 PCT/IB2014/002541

priority, to a processing element associated with the highest priority task, stall other processing
elements which are contending, and unroll the contention process by process until the contention

has been resolved.

[0127] FIG. 11 illustrates an application of scheduling software in accordance with some
embodiments. In this application, the scheduling software can coordinate an implementation of a
3x3 blur kernel within a processing pipeline. The scheduling software can, in runtime, determine
an ordering of operations and coordinate the operations by the processing elements. A flow-graph
1100 for the pipeline includes element 1 — element 5 1102-1110. The element 1 1102 can include
an input buffer 1112, a processing block 1144, and an output buffer 1114. The input buffer 1112
and the output buffer 1114 can be implemented using a flip-flop. In some embodiments, each of

the other elements 1104-1110 can have a substantially similar structure as the element 1 1102.

[0128] In some embodiments, the element 2 1104 can include a processing element (e.g., a
vector processor or a hardware accelerator) that can filter an input with a 3x3 blur filter. The
element 2 1104 can be configured to receive an input from the shared buffer 1118, which
temporarily maintains an output of the element 1 1102. In order to apply a 3x3 blur kernel to an
input, the element 2 1104 can receive at least 3 lines of data from the shared input buffer 1118
before it can commence operation. Thus the SW scheduler 1120, which can run on a RISC
processor 1122, can detect that the correct number of lines of data is contained in the shared buffer

1118 before signalling to the element 2 1104 that it can commence the filtering operation.

[0129] Following the initial signal that 3 lines of data are present, the SW scheduler 1120 can
be configured to signal, to the element 2 1104, when each additional new line has been added to the
rolling 3-line buffer 1118. In addition to the line-by-line synchronisation, cycle-by-cycle
arbitration and synchronisation is performed for each element in the pipeline. For instance, the
element 1 1102 can include a hardware accelerator which produces one complete output pixel per
cycle. In order to achieve this throughput, the hardware accelerator can keep the input buffer 1112
full so the processing block 1114 has sufficient data to continue its operations. This way, the
processing block 1114 can produce sufficient output to keep the throughput of the element 1102 as
high as possible.

[0130] In some embodiments, a software tool chain can predict memory conflicts from
analyzing software program using the memory subsystem. The software tool chain can include a
graphic user interface (GUI)-based integrated development environment (IDE) (e.g., Eclipse-based
IDE) from which the developer can edit code, call the compiler, assembler and perform source-
level debugging when required. The software tool chain can be configured to predict memory

conflicts via dynamic analysis of programs running on multiple processors using a system
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simulator, which models all processing, bus, memory elements and peripherals. The software tool
chain can also be configured to log, in a log file or a display device, if different programs running
on different processors or hardware resources attempt contemporaneous access to a particular block

of a memory slice. The software tool chain can be configured to log in a cycle-by-cycle basis.

[0131] In some embodiments, the pipeline 1100 can also include one or more hardware
counters (e.g., one counter for each memory instance) which are incremented each time a memory
clash occurs. These counters may then be read by a hardware debugger (e.g., JTAG) and displayed
on a screen or logged to a file. Subsequent analysis of the log files by the system programmer can
allow memory accesses to be scheduled differently so as to reduce possibility for memory port

clashing.

[0132] One key difficulty for programmers of IBM’s Cell architecture (illustrated in FIG. 2) is
programmatically scheduling data-transfers hundreds of cycles in advance so that data can be
controlled by the DMA and be stored in local storage (LS) by the time a vector processor accesses
the data. Some embodiments of the disclosed architecture can address this issue by handling the
arbitration and scheduling of accesses in hardware and logging clashes in user-readable hardware
counters. This allows the disclosed architecture to be used to create a high performance video
/image processing pipeline.

[0133] FIG. 12 provides a hierarchical structure of a system having a parallel processing device
in accordance with some embodiments. The system 1200 can include a parallel computing system
1202 having a plurality of processing elements, such as filters, and a software application 1204 that
runs on the parallel computing system 1204, an application programming interface (API) 1206 for
interfacing the application 1204 with the parallel computing system 1202, a compiler 1208 that
compiles the software application 1204 for running on the parallel computing system 1202, and a
runtime scheduler 1210 for controlling operations of the processing elements in the parallel

computing system 1202.

[0134] In some embodiments, the disclosed parallel processing device can be configured to
operate in conjunction with a pipeline description tool (e.g., a software application) 1204, which
allows image-processing pipelines to be described as a flow-graph. The pipeline description tool
1204 is capable of describing image/vision processing pipelines in a flexible way that is
independent of the underlying hardware/software platform. In particular, the flow-graph, used by
the pipeline description tool, allows tasks to be described independently of the processing elements
(e.g., the processor and filter accelerator resources) that may be used to implement the flow-graph.

The resulting output of the pipeline description tool can include a description of the directed acyclic
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graph (DAG) or flow graph. The description of the DAG or the flow graph can be stored in a
suitable format, such as XML.

[0135] In some embodiments, the description of the DAG or the flow graph can be accessible
to all other tools in the system 1200, and can be used to control operations of the parallel
processing device in accordance with the DAG. FIG. 13 illustrates how the description of the DAG
or the flow graph can be used to control operations of a parallel processing device in accordance

with some embodiments.

[0136] Prior to the actual operation of the computing device, a compiler 1208 for the parallel
processing device 1202 can take (1) a description of the flow-graph 1306 and (2) a description of
available resources 1302, and generate a task list 1304 indicating how the DAG can be performed
across multiple processing elements. For example, when the task cannot be performed on a single
processing element, the compiler 1208 can split the task across multiple processing elements; when
the task can be performed on a single processing element, the compiler 1208 can assign the task to

a single processing element.

[0137] In some cases, when the task would only use a portion of the capabilities of a processing
clement, the compiler 1208 can fuse and schedule multiple tasks to be executed on a single
processing element in a sequential manner, up to the limit that can be supported by a processing
element. FIG. 14A illustrates the scheduling and the issuing of tasks by the compiler and the
scheduler in accordance with some embodiments. The advantage of scheduling tasks using a
compiler and the scheduler is that the compiler and the scheduler can automatically schedule tasks
based on operations performed by the tasks. This is a big advantage to prior art in which a
programmer had to determine manually the schedule for code running on a processing element or a
group of processing elements running a particular task, including when to schedule data transfers
by DMA from peripherals to CMX, from CMX to CMX block and from CMX back to peripherals.
This was a laborious and error-prone task and the usage of DFGs allows this process to be

automated saving time and increasing productivity.

[0138] During runtime of the computing device, the runtime scheduler 1210 can dynamically
schedule the task across the available processing elements based on the task list 1304 generated by
the compiler 1208. The runtime scheduler 1210 can operate on the host RISC processor 1306 in a
multicore system and can schedule tasks across the processing elements, such as a plurality of
vector processors, filter accelerators, and Direct Memory Access (DMA) engines, using the
statistics from the hardware performance monitors and timers 1308. In some embodiments, the

hardware performance monitors and timers 1308 can include stall counters, CMX-clash counters,
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bus cycle-counters (ISI, APB and AXI) and cycle-counters, which may be read by the runtime
scheduler 1210.

[0139] In some embodiments, the runtime scheduler 1210 can assign tasks to available
processing elements based on statistics from hardware performance monitors and timers 1308. The
hardware performance monitors and timers 1308 can be used to increase the efficiency of the
processing elements, or to perform a task using fewer number of processing elements in order to

save power or allow other tasks to be computed in parallel.

[0140] To this end, the hardware performance monitors and timers 1308 can provide a
performance metric. The performance metric can be a number that indicates the activity level of a
processing element. The performance metric can be used to control the number of instantiated
processing elements for performing a task. For example, when the performance metric associated
with a particular processing element is greater than a predetermined threshold, then the runtime
scheduler 1210 can instantiate an additional processing element of the same type as the particular
processing element, thereby distributing the task over more processing elements. As another
example, when the performance metric associated with a particular processing element is less than
a predetermined threshold, then the runtime scheduler 1210 can remove one of the instantiated
processing elements of the same type as the particular processing element, thereby reducing the

number of processing elements performing a certain task.

[0141] In some embodiments, the runtime scheduler 1210 can prioritize the use of processing
elements. For example, the runtime scheduler 1210 can be configured to determine whether the

task should be preferably assigned to a processor or a hardware filter accelerator.

[0142] In some embodiments, the runtime scheduler 1210 can be configured to change the
CMX buffer layout in the memory subsystem so that the system can comply with runtime
configuration criteria. The runtime configuration criteria can include, for example, image
processing throughput (frames per second), the energy consumption, the amount of memory used
by the system, the number of operating processors, and/or the number of operating filter

accelerators.

[0143] An output buffer can be laid out in memory in one of several ways. In some cases, the
output buffer can be physically contiguous in memory. In other cases, the output buffer can be
“chunked” or “sliced.” For example, the output buffer can be split into N vertical strips, where N
is the number of processors assigned to the image processing application. Each strip is located in a
different CMX slice. This layout can favour processors, since each processor can locally access
input and output buffers. However, this layout can be detrimental for filter accelerators because

such a layout can cause a lot of clashes for filter accelerators. Filter accelerators often process data
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from left to right. Therefore, all filter accelerators would initiate their processes by accessing the
first strip of image, which could cause a lot clashes from the start. In other cases, the output buffer
can be interleaved. For example, the output buffer can be split across all 16 CMX slices, with a
predetermined size interleaving. The predetermined size can be 128 bits. The interleaved layout of
the output buffer can favour filter accelerators because spreading the accesses across CMX reduces

the likelihood of clashes.

[0144] In some embodiments, a buffer, such as an input buffer or an output buffer, can be
allocated based on whether its producers and consumers are hardware and/or software. Consumers
are more important, since they typically need more bandwidth (filters usually read multiple lines
and output one line). The hardware filters are programmed accordingly to the layout of the buffers

(they support contiguous, interleaved and sliced memory addressing).

[0145] FIG. 14B shows a process for automatically scheduling a task using the compiler and
the scheduler in accordance with some embodiments. The compiler determines a list of tasks to be
performed by the parallel processing device based on the DAG. In step 1402, the runtime
scheduler is configured to receive the list of tasks, and maintain the list of tasks in separate queues.
For example, when the list of tasks include (1) tasks to be performed by the DMA, (2) tasks to be
performed by a processor, and (3) tasks to be performed by a hardware filter, the runtime scheduler
can store the tasks in three separate queues, for example, a first queue for the DMA, a second queue

for the processor, and the third queue for the hardware filter.

[0146] In steps 1404-1408, the runtime compiler is configured to issue the tasks to associated
hardware components as the associated hardware components become available for new tasks. For
example, in step 1404, when the DMA becomes available to perform a new task, the runtime
compiler is configured to dequeue the first queue for the DMA, and provide the dequeued task to
the DMA. Likewise, in step 1406, when the processor becomes available to perform a new task,
the runtime compiler is configured to dequeue the second queue for the processor, and provide the
dequeued task to the processor. Also, in step 1408, when the hardware filter becomes available to
perform a new task, the runtime compiler is configured to dequeue the third queue for the hardware

filter, and provide the dequeued task to the hardware filter.

[0147] In some embodiments, the runtime scheduler 1210 may use the counter values from the
hardware performance monitors and timers 1308 to adjust the usage of the processing elements,
especially where more than one pipeline (e.g., a software application 1204) is running on the array
of processing elements simultanecously, as these pipelines have not necessarily been co-designed.
For instance, if the effective bus bandwidth allocated to each pipeline is less than expected, and a

number of clashes occurring in accessing the CMX memory is large, the runtime scheduler 1210
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may use this information to stagger execution of the 2 pipelines by modifying the order in which

tasks are taken from the 2 pipeline queues, thereby reducing memory clashes.

[0148] In some embodiments, the DAG compiler can operate in real-time (e.g., online). FIG.
15 illustrates an operation of a real-time DAG compiler in accordance with some embodiments.
The real-time DAG compiler 1502 can be configured to receive an input XML description of the
DAG, the description of the available processing elements, and any user-defined constraints such as
the number of processors, frame-rate, power-dissipation target etc. Then, real-time DAG compiler
1502 can be configured to schedule the DAG components across the processing elements,
including, for example, the DMA engine, a processor, a hardware filter, and memory to ensure that
the DAG as specified can satisfy the user-defined constraints when mapped to the system
resources. In some embodiments, the real-time DAG compiler 1502 can determine whether the
tasks in the DAG can be performed in parallel in a breath-first manner. If the breadth of the DAG
is larger than the number of processing elements available to perform the tasks in parallel (e.g., the
amount of available processing power is less than the parallelism of the DAG), the real-time DAG
compiler 1502 can “fold” the tasks so that the tasks are performed sequentially on the available

processing clements.

[0149] FIG. 16 compares a schedule generated by an OpenCL scheduler to a schedule
generated by the proposed online DAG scheduler in accordance with some embodiments. The
schedule produced by the proposed scheduler 1208/1502 can eliminate redundant copies and DMA
transfers that are present in a typical OpenCL schedule. These data-transfers are present within an
OpenCL schedule because the GPU used to perform the processing on a DAG task is remote from
the processor executing the schedule. In a typical Application Processor used in a mobile device,
large blocks of data are transferred back and forth between the processor executing the schedule
and the GPU doing the processing. In the proposed design, all of the processing elements share the
same memory space and hence no copying back and forth is required saving considerable time,

bandwidth and power dissipation.

[0150] In some embodiments, when a task would only use a portion of the capabilities of a
processing element, the runtime scheduler 1210 can also be configured to fuse and schedule
multiple tasks to be executed on a single processing element in a sequential manner, up to the limit

that can be supported by a processing element, as illustrated in FIG. 14.

[0151] In an image processing application, a scheduler can be configured to divide up
processing tasks amongst processors by dividing an image into strips. For example, the image can

be divided into vertical strips or horizontal strips of a predetermined width.
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[0152] In some embodiments, the scheduler can predetermine the number of processors used
for a particular image processing application. This allows the scheduler to predetermine the
number of strips for the image. In some embodiments, a filtering operation can be performed by
the processors in series. For example, when there are 5 software filters executed by the application,
the processors 402 can each be configured to execute the first software filter simultaneously at a
first time instance, the second software filter simultancously at a second time instance, etc. This
means that the computational load is more evenly balanced among the processors assigned to the
particular image processing application. This is because the processors are configured to

simultaneously execute the same list of filters in the same order.

[0153] When too many processors are assigned to the image processing application, the
processors can spend a lot of time idling, waiting on hardware filter accelerators to complete the
tasks. On the other hand, when too few processors are assigned to the application, the hardware
filter accelerators can spend a lot of time idling. In some embodiments, the run scheduler 1210 can
be configured to detect these situations, and adapt accordingly. In other embodiments, the
scheduler 1210 can be configured to over-assign processors to the particular image processing
applications, and allow the processors to power down once the processors have completed its tasks

ahead of the hardware filter accelerators.

[0154] In some embodiments, the scheduler can use a barrier mechanism to synchronize
processing elements, such as hardware filter accelerators and processors. The output of the
scheduler can include a stream of commands. These commands can include (1) start commands for
processing elements, such as hardware filter accelerators and processors, and (2) barrier commands.
A barrier command indicates that the processing elements should wait from proceeding with a next
set of commands until all processing elements in the group have reached the barrier command, even
if some of the processing elements have actually completed their tasks. In some embodiments, the
scheduler may provide the barrier command based on dependencies between tasks performed by

the processing elements.

[0155] FIG. 17 illustrates a barrier mechanism for synchronizing processing elements in
accordance with some embodiments. The stream of commands includes barrier commands (1702,
1712) and task commands (1704, 1706, 1708, 1710). Each task command can be associated with a
processing element, and as indicated in the graph below, the task commands can be completed at
different times. The scheduler can therefore insert a barrier command 1712 so that the processing
elements do not proceed with future tasks until the barrier command 1712 is cleared. This barrier

mechanism can be considered a temporal pipelining of the parallel tasks.
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[0156] In some embodiments, the barrier mechanism is implemented in hardware using
interrupt signals 1714. For example, the scheduler can program a bit mask, which specifies which
processing elements belong to a group. As the processing elements complete the assigned tasks,
interrupt signals associated with the respective processing elements are asserted. Once all interrupt
signals associated with the processing elements in the group have been asserted, the controller of
the processing elements can receive a global interrupt signal indicating that all processing elements

have reached the barrier command.

[0157] In some embodiments, the interrupt sources can include SHAVE vector processors,
RISC processors, hardware filters or external events. In particular the hardware filters can support
various modes including a non-circular buffer mode where the input/output buffer contains a frame
and the filter can be configured to issue a single interrupt either when it has processed the whole
input frame or written the complete corresponding output frame. The filters are also programmable
to operate on lines, patches or tiles from frames using appropriate settings for image dimensions,

buffer base address/line stride etc.

[0158] One important challenge with a complex parallel processing device how to program the
processing elements in the parallel processing device, particularly for embedded systems which are
very power-sensitive and scarce in terms of resources like computational resources and memory.
Computational imaging, video and image processing in particular are very demanding in terms of
performance on embedded systems as the frame dimensions and rates are very high and increasing

strongly from year to year.

[0159] The solution to this problem presented herein is to provide an Application Programming
Interface (API) 1206 which allows applications to be written at high level by a programmer without
intimate knowledge of the details of the multicore processor architecture 1202. Using the software
API 1206, the programmer can rapidly create new image or video processing pipelines without
knowing the intimate details of the implementation as details of whether functions are implemented
in software on programmable processors or in hardware are abstracted away from the programmer.
For instance, an implementation of a blur filter kernel is provided as a reference software
implementation running on one or more processors or hardware accelerator filters. The
programmer can initially use a software blur filter implementation and can switch to using the
hardware filter with no change to the overall pipeline implementation as the ISI, AMC and CMX
arbitration block deal with which processor and HW resources get access to the physical memory

blocks and in which order, not the programmer.

[0160] While the multi-ported memory approach described above is adequate for sharing

memory at high bandwidth and low-latency between identical processors it is not ideal for sharing
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bandwidth with other devices. These other devices may be hardware accelerators and other
processors with differing latency requirements particularly in very high bandwidth applications

such as computational video and image processing.

[0161] The disclosed architecture can be used in conjunction with a multi-ported memory
subsystem to provide higher bandwidth to support more simultaneous accesses from a multiplicity
of programmable VLIW processors with highly deterministic latency requirements, a large cohort
of programmable image/video processing hardware filters, and bus interfaces to allow control and
data-access by a conventional host-processor and peripherals. FIG. 18 illustrates the parallel
processing device having different types of processing elements in accordance with some
embodiments. The parallel processing device includes a plurality of processors 1802 and a
plurality of filter accelerators 1804, and the plurality of processors 1802 and the plurality of filter
accelerators 1804 can be coupled to the memory subsystem 412 via the ISI 410 and the accelerator

memory controller (AMC) 1806, respectively.
[0162] The subsystem of AMC 1806 and Multicore Memory (CMX) subsystem 412 provides

on chip storage facilitating low power streaming digital signal processing in software on the
processors 1802 as well as hardware filter accelerators 1804 for particular image/video processing
applications. In some embodiments, the CMX memory 412 is organized into 16 slices of 128kB
organised as 64-bit words (2MB in total). Each processor 1802 can have direct access to a slice in
the memory subsystem 412 and indirect (higher latency) access to all other slices in the memory
subsystem 412. The processors 1802 may use the CMX memory 412 for storing instructions or

data while hardware filter accelerators 1804 use CMX memory 412 to store data.

[0163] In order to facilitate data-sharing between heterogeneous processing elements whilst
allowing latency-intolerant processors 1802 to achieve high performance when accessing a shared
CMX memory 412 with HW filter accelerators 1804, the HW filter accelerators 1804 are designed
to be latency tolerant. This is achieved by providing each HW filter accelerators (filters) 1804 with
local FIFOs, which make timing more elastic, as well as a cross-bar switch to share access to the
CMX leaving the ISI free to support inter-SHAVE communication without contention from HW

filter accelerators, as illustrated in FIG. 10 in accordance with some embodiments.

[0164] In addition to external going port clashes, it is possible to clash with an incoming ISI
410 port access. If more than one external slice attempts to access the same slice of memory in any
one cycle then a port clash may occur. The mapping of LSU port to ISI interconnect port is fixed,
so it is possible for SHAVE 0 1802-0 to access slice 2 through LSU port 0 and SHAVE 11 (1702-
11) to access slice 2 through LSU port 1 without any clashes. The ISI matrix can allow for 8 x 2

ports x 64-bits of data to be transferred every cycle. For example, SHAVE N 1802 can access Slice
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N+1 through LSU port 0 and 1, and all 8 SHAVE processors can access simultancously without
any stalling.

[0165] In some embodiments, the memory subsystem 412 can be logically divided into slices
(blocks). FIG. 19 illustrates the proposed multicore memory subsystem in accordance with some
embodiments. FIG. 19 shows a detailed bus inter-connection between AXI, AHB, SHAVEs, ISI
and CMX as well as filter accelerators, AMC and CMX. The diagram shows two AMC input and
two AMC output ports, 2 ISI input and 2 ISI output ports, connections to L2 cache and mutual
exclusion (mutex) blocks as well as internal read/write arbitration and source multiplexing to
address the 4 memory tiles and FIFO as well as output destination selection of the 4 memory block

outputs to ISI and AMC.

[0166] Each slice can connect to two of 16 possible ISI input sources, including 12 SHAVEs,
DMA, Texture Management Unit (TMU) and AHB bus interface to the on-board host processor.
Similarly, each slice has 2 output ISI ports which allow a slice to send data to 2 of 16 possible
destinations including 12 SHAVEs, DMA, Texture Management Unit (TMU) and AXI and AHB
bus interfaces to the on-board host processor. In the preferred implementation the slice contains 4
physical RAM blocks with input arbitration block which in turn connects to the local SHAVE
processor (2x LSUs and 2x 64-bit instruction ports), 2 ISI input ports, 2 AMC input ports and FIFO

used for inter-SHAVE messaging as well as a messaging FIFO, L2 cache and mutex blocks.

[0167] On the output path from a CMX slice, the input to the destination selection block is
connected to the 4 RAM instances, along with the L2 cache and hardware mutex blocks. The
outputs from the destination selection block, as illustrated in FIG. 20 as the block 2002, connects to
the 2 local LSU ports and Instruction ports (SP_1 and SP_0) as well as 2x ISI output ports and 2x
AMC output ports. The 2 ISI ports allow a local slice to be connected to two destinations from the
12 possible processors, DMA, TMU AXI and AHB host busses. processors are provided with
access to the memory via the Inter SHAVE Interconnect (ISI) which connects to the 2 x 64-bit ISI
input and 2 x 64-bit ISI output ports contained in a multicore memory subsystem slice. The high-
bandwidth, low-latency deterministic access provided by the ISI interconnect reduces stalling in the

processors and provides high computational throughput.

[0168] FIG. 21 illustrates an AMC Crossbar architecture in accordance with some
embodiments. The AMC crossbar 1806 can be configured to connect hardware image-processing
filters 1804 to the AMC ports of the CMX multicore memory slices 412. The AMC 1806 can
includes one or more slice port controllers 2102, preferably one for each CMX slice 412. The slice
port controllers 2102 are in turn connected to the slice address request filter (SARF) 2104. The
SARF 2104 is in turn connected to the AMC clients (in this embodiment the AMC clients are
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hardware image-processing accelerators). The SARF 2104 accepts read/write requests from the
filter accelerators and provides request or grant signalling to them, accepting data and addresses
from SIPP blocks that have been granted write access, and providing read data to those that have
been granted read access. Additionally the SARF provides AXI mastering over the AXI host bus to
the system host processor, which allows the host to interrogate (read/write) the CMX memory via

the AMC crossbar switch.

[0169] In some embodiments, a slice port controller 2102 is provided in the AMC 1806 which
communicates with the 2x read and 2x write ports in the associated CMX memory slice 412 as
shown in FIG. 21. Seen from the filter accelerator side of the CMX memory subsystem 412, each
hardware filter is connected to a port on the accelerator memory controller (AMC) crossbar 1806.
The AMC 1806 has a pair of 64 bit read, and a pair of 64-bit write-ports, which connect it to each
slice of CMX memory 412 (there are 16 slices for a total of 2MB in the preferred implementation).
Connecting the image processing hardware accelerators to the AMC 1806 via read or write-client
interfaces and local buffering within the accelerators allows more relaxed latency requirements
leaving more bandwidth available to the ISI and processors with highly deterministic timing

allowing stalling of the processors to be reduced.

[0170] FIG. 20 illustrates a single slice of the CMX infrastructure in accordance with some
embodiments. The slice contains an arbiter and source multiplexing which allows up to 4 out of
eight possible 64-bit sources access to the 4 physical SRAM tiles in the CMX slice, shared L2
cache, shared mutex hardware blocks for inter-processor negotiation of mutual exclusion among
threads, as well as a 64-bit FIFO used for inter-SHAVE low bandwidth messaging. The six input
sources are: AMCoutl and AMCout0 which are connected the corresponding slice port[1] and
slice_port[0] ports from the ACM shown in FIG. 21; additionally 2 ISI ports, ISIoutl and ISIout0;
2x LSU ports LSU 1 and LSU_0; and finally 2x instruction ports SP_1 and SP_0 which when
combined allow a 128-bit instruction to be read from CMX. The arbiter and source multiplexing
generates read/write address and 64-bit data to control the 4x SRAM tiles in response to priority
access from the 8 input sources. While the input of the 64-bit inter-SHAVE communications FIFO
is connected to the arbiter and source multiplexer its output is only readable by the local processor
in the CMX slice. In practice processors communicate with each other’s messaging FIFOs via the
ISIout1 and ISTout0 ports and the ISI infrastructure external to the CMX slice, which connects the

CMX, slices and processors together.

[0171] In addition to arbitrating between 64 requesters on each of the 2 AMC ports in a slice
shown in FIG. 20, an additional 2:1 arbiter is provided to arbitrate between AMC ports 1 and 0.
The purpose of this 2:1 arbiter is to prevent one or other of the 2 AMC ports from saturating all of
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the AMC port bandwidth, which could lead to excessive stalling on one of the requesting ports.
This enhancement provides more balanced allocation of resources in the presence of multiple heavy
requesters of port bandwidth and hence higher sustained throughput for the overall architecture.

Similarly a 2:1 arbiter arbitrates between the 2 processor ports SP1 and SP 0 for similar reasons.

[0172] The arbitration and multiplexing logic also controls access by the processors, either
directly or via the ISI to a shared L2 cache, via a second level of arbitration which shares access on
a strictly round-robin basis between 16 possible sources, where one 64-bit port is connected
between the second level arbiter and each of the 16 CMX slices. Similarly the same logic allows
access to the 32 hardware mutexes which are used for inter-processor negotiation of mutual
exclusion among threads running on the 12 on-board processors and 2x 32-bit RISC processors (via

the AHB and AXI bus connections on the ISI).

[0173] The priority in the preferred implementation is that SP_1 and SP_0 have the highest
priority, then LSU 1 and LSU_0, followed by ISloutl and ISIout0 and finally AMCoutl and
AMCout0 and finally the FIFO have the lowest priority. The reason for this priority assignment is
that SP_1 and SP_0 control program access by the processor to CMX and the processor will stall
immediately if the next instruction is not available, followed by LSU 1 and LSU_0 which will
again cause the processor to stall; similarly ISIout] and ISIout0 come from other processors and
will cause them to stall if data is not immediately available. The AMCoutl and AMCout0 ports
have the lowest priority as they have built-in FIFOs and hence can tolerate a lot of latency before
stalling. The processor FIFO is only required for low bandwidth inter- processor messaging and

hence has the lowest priority of all.

[0174] Once the arbiter has allowed access to up to 4 sources to the 4 SRAM tiles, L2 cache,
mutexes and FIFO the output data from the six read-data sources including 4 SRAM tiles, L2 cache
and mutexes is selected and directed to up to 4 out of 8 possible 64-bit destination ports; 4 on the
processor associated with the slice (SP_1, SP_0, LSU 1 and LSU_0); 2 associated with the ISI
(ISIoutl and ISIout0) and finally 2 associated with the AMC (AMCoutl and AMCout0). No
prioritisation is required in the output multiplexer as only 4 64-bit sources need be distributed to 8

destination ports.

[0175] FIG. 22 illustrates an AMC crossbar port controller in accordance with some
embodiments. The AMC crossbar port controller 2202 includes a round-robin arbiter 2204, which
connects the port controller 2202 to the Accelerators 1804 whose requests have been filtered via the
processor. The arbiter can then push valid requests from AMC clients onto the port-controller
FIFO. In the case of read requests a response to the request (read-client ID and line index) is

pushed onto the read TX ID FIFO. Returned slice port data and valid signals are input into the
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port-controller read logic which pops Read client ID and line indices from the Rd TX ID FIFO and
pushes corresponding slice port read data and valid signals onto the Rd Data FIFO from where it
can be read by the requesting AMC client. On the CMX side of the FIFO the port stall logic pops
requests from the FIFO and provides slice port control to the 2x AMC input ports on the associated
CMX memory slice.

[0176] The number of read and write client interfaces to the CMX are separately configurable.
Any client may address any slice (or slices) of CMX. With 16 slices in CMX, 2 ports per slice and
a system clock frequency of 600MHz the maximum total data memory bandwidth which may be
supplied to the clients is 143GB/s: Max bandwidth = 600MHz * (64/8) * 2 * 16 = 1.536¢11 B/s =
143GB/s.

[0177] At the higher clock-rate of 800MHz the bandwidth rises to 191GB/sec. The AMC
arbitrates between simultancous accesses on its client read/write interfaces of the hardware
accelerator blocks connected to it. A maximum of two read/write accesses may be granted per slice
per clock cycle, giving a maximum slice memory bandwidth of 8 9GB/s at a system clock
frequency of 600MHz. Client access is not restricted to CMX address space. Any access falling
outside of CMX address space is forwarded to the AMC*s AXI bus master.

[0178] FIG. 23 illustrates a read operation using an AMC 1806 in accordance with some
embodiments. In this illustration, 4 data words are read from address range A0-3. The AMC client
(e.g., a filter accelerator 1804) first asserts a request on the port controller input. The port
controller 2202 responds by issuing a grant signal (gnt) which in turn causes the client to emit the
addresses A0, Al, A2 and finally A3. The corresponding rindex values appear on the rising edge
of the clock (clk) corresponding to each grant. It can be seen that the timing on the client side can
be quite elastic when compared to the index addresses and data, which are output from the CMX
slice to the port-controller. The deterministic timing on the CMX side of the port-controller allows
efficient shared access to the CMX between AMC clients and processors which are very sensitive
to latency, while the FIFOs allow and local storage in the AMC clients allows timing to be highly
variable on the AMC client (e.g., filter accelerator) side of the CMX memory subsystem 412.

[0179] FIG. 24 illustrates a write operation using an AMC 1806 in accordance with some
embodiments. In the timing diagram the transfer of 4 data words via the AMC to the CMX is
shown. A request is issued by the AMC client and on the following rising edge of the clock (clk)
the grant signal (gnt) goes high transferring the data-word DO associated with address AQ via the
AMC. The gnt signal then goes low for once clock cycle and on the following rising edge of clk
gnt goes high for 2 clock cycles allowing D1 and D2 to addresses A1 and A2 respectively before

gnt goes low again. On the next rising clk edge gnt goes high again, allowing data word D3 to be
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transferred to address A3, whereupon req and gnt go low on the next rising edge of clk awaiting the

next read/write request.

[0180] The Streaming Image Processing Pipeline (SIPP) software framework used in
conjunction with the exemplary arrangement of FIG. 12 provides a flexible approach to
implementing image processing pipelines using CMX memory 412 for scan-line buffers, frame
tiles (subsections of frames) or indeed entire frames at high resolution with the adjunct of an
external DRAM die in package wire-bonded to a substrate to which the image/video processing die
is attached. The SIPP framework takes care of complexities such as handling image borders
(replication of pixels) and circular line buffer management making the implementation of ISP

(Image Signal-Processing) functions in software (on the processor) simpler and more generic.

[0181] FIG. 25 illustrates the parallel processing device 400 in accordance with some
embodiments. The parallel processing device 400 can include a memory subsystem (CMX) 412, a
plurality of filter accelerators 1804, and a bus structure 1806 for arbitrating access to the memory
subsystem 412. The memory subsystem (CMX) 412 is constructed to allow a plurality of
processing elements 402 to access, in parallel, data and program code memory without stalling.
These processing elements 402 can include, for example, SHAVE (Streaming Hybrid Architecture
Vector Engine) processors, suitably VLIW (Very Long Instruction Word) processors, parallel
access to data and program code memory without stalling, or a filter accelerator. Additionally, the
memory subsystem (CMX) 412 can make provision for a host processor (not shown) to access the
CMX memory subsystem 412 via a parallel bus such as AXI (not shown). In some embodiments,
each processing element 402 can read/write up to 128-bits per cycle through its LSU ports and read
up to 128 bit program code per cycle through its instruction port. In addition to ISI and AMC
interfaces for processors and filter accelerators, respectively, the CMX 412 provides simultancous
read/write access to memory through the AHB and AXI bus interfaces. The AHB and AXI are
standard ARM parallel interface busses which allow a processor, memory and peripherals to be
connected using a shared bus infrastructure 1806. The CMX memory subsystem 412 can be

configured to handle a peak of 18 x 128-bit memory accesses per cycle.

[0182] The Accelerators 1804 include a collection of hardware image processing filters that can
be used in the SIPP software framework 1200. The Accelerators 1804 can enable some of the most
computationally intensive functionality to be offloaded from the processing elements 1802. The
diagram shows how a plurality of filter accelerators 1804 may be connected to the AMC 1804
which performs Address filtering, arbitration and multiplexing. Also connected to the AMC 1804
may be multiple MIPI camera serial interfaces 2502, in the preferred implementation a total of 12

MIPI serial lanes are connected in 6 groups of 2 lanes. The AMC 1804 also is connected to AXI
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and APB interfaces to allow the 2 system RISC processors in the reference implementation to
access the CMX memory via the AMC. The final element of the diagram is the CMX 412 which
the AMC 1804 arbitrates access to, allowing simultancous access by multiple hardware filter
accelerators 1804 to the physical RAM instances in the CMX memory 412. A reference filter
accelerator 1804 is also shown, in this case a 5x5 2D filter kernel, which contains an fp16
(IEEE754-like 16-bit floating-point format) arithmetic pipeline, an associated pipeline stall
controller, line buffer read client to store a line of input to the fp16 pipeline, a line start control
input and line buffer write client to store output from the fp16 pipeline. To allow the Accelerators
to fit within the SIPP framework they require high bandwidth access to CMX memory, this is
provided by the Accelerator Memory Controller (AMC).

[0183] In some embodiments, the CMX memory subsystem 412 can be split into 128kB blocks
or slices associated with their neighbouring processing element 402 for high-speed, low power
access. Within a slice, the memory is organized as a number of smaller tiles, for example 3x32kB,
1 x16kB and 2x8KB independent SRAM blocks. The physical RAM size can be chosen as a trade-
off of area utilization and configuration flexibility. Any processing element 402 can access physical
RAM anywhere in the memory subsystem (CMX) 412 with the same latency (3 cycles) but access
outside of a local processor slice is limited in bandwidth and will consume more power than an
access a local slice. In general, to decrease the power consumption and to increase performance, a

processing element 402 can store data locally in a dedicate memory slice.

[0184] In some embodiments, each physical RAM can be 64-bit wide. If more than one
processing element 402 attempts to access a single physical RAM, a clash can occur resulting in a
processor stall. The CMX will automatically arbitrate between port clashes and ensure that no data
is lost. For every port clash, a processing element 402 is stalled for a cycle resulting in lower
throughput. With careful data layout (by the programmer) within the CMX 412, port clashes can be

avoided and processor cycles better utilized.

[0185] In some embodiments, a plurality of processors are provided with accelerators and

CMX memory.

[0186] It can be seen from the image-processing HW architecture shown in FIG. 25 that each
filter accelerator 1804 can include at least one AMC read and/or write client interface to access
CMX memory 412. The number of read/write client interfaces on the AMC 1806 is suitably
configurable. The AMC 1806 can include a pair of 64 bit ports into each slice of CMX memory
412. The AMC 1806 routes requests from its clients to the appropriate CMX slice 412 (by partial

address decode). Simultaneous requests to the same slice from different clients can be arbitrated in
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round-robin manner. Read data returned from CMX 412 is routed back to the requesting AMC read

clients.

[0187] AMC clients (accelerators) 1804 present a full 32 bit address to the AMC 1806.
Accesses from clients which do not map to CMX memory space are forwarded to the AMC’s AXI
master. Simultaneous accesses (outside CMX memory space) from different clients are arbitrated in

a round-robin manner.

[0188] The AMC 1806 is not limited to providing CMX 412 access to filter accelerators 1804;
any hardware accelerator or 3rd party elements may use the AMC 1806 to access CMX and the
wider memory space of the platform if its memory interfaces are suitably adapted to the read/write

client interfaces on the AMC.

[0189] The hardware image processing pipeline (SIPP) can include the filter accelerators 1804,
an arbitration block 1806, MIPI control 2502, APB and AXI interfaces and connections to the
CMX multiport memory 412 as well as an exemplary hardware 5x5 filter kernel. This arrangement
allows a plurality of processors 1802 and hardware filter accelerators 1804 for image-processing
applications to share a memory subsystem 412 composed of a plurality of single-ported RAM
(Random Access Memory) physical blocks.

[0190] The use of single-ported memories increases the power and area efficiency of the
memory subsystem but limits the bandwidth. The proposed arrangement allows these RAM blocks
to behave as a virtual multi-ported memory subsystem capable of servicing multiple simultancous
read and write requests from multiple sources (processors and hardware blocks) by using multiple

physical RAM instances and providing arbitrated access to them to service multiple sources.

[0191] The use of an Application Programming Interface (API), and data partitioning at the
application level is important in order to ensure that contention for physical RAM blocks between
processors and filter accelerators, or processors among themselves is reduced and hence the data
bandwidth delivered to processors and hardware is increased for a given memory subsystem

configuration.

[0192] In some embodiments, the parallel processing device 400 can reside in an electronic
device. FIG. 26 illustrates an electronic device that includes a parallel processing device in
accordance with some embodiments. The electronic device 2600 can include a processor 2602,

memory 2604, one or more interfaces 2606, and a parallel processing device 400.

[0193] The electronic device 2600 can have memory 2604 such as a computer readable
medium, flash memory, a magnetic disk drive, an optical drive, a programmable read-only memory

(PROM), and/or a read-only memory (ROM). The electronic device 2600 can be configured with
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one or more processors 2602 that process instructions and run software that may be stored in
memory 2604. The processor 2602 can also communicate with the memory 2604 and interfaces
2606 to communicate with other devices. The processor 2602 can be any applicable processor such
as a system-on-a-chip that combines a CPU, an application processor, and flash memory, or a

reduced instruction set computing (RISC) processor.

[0194] In some embodiments, the compiler 1208 and the runtime scheduler 1210 can be
implemented in software stored in memory 2604, and operate on the processor 2602. The memory
2604 can be a non-transitory computer readable medium, flash memory, a magnetic disk drive, an
optical drive, a programmable read-only memory (PROM), a read-only memory (ROM), or any
other memory or combination of memories. The software can run on a processor capable of
executing computer instructions or computer code. The processor might also be implemented in
hardware using an application specific integrated circuit (ASIC), programmable logic array (PLA),

field programmable gate array (FPGA), or any other integrated circuit.

[0195] In some embodiments, the compiler 1208 can be implemented in a separate computing
device in communication with the electronic device 2600 over the interface 2606. For example,

the compiler 1208 can operate in a server in communication with the electronic device 2600.

[0196] The interfaces 2606 can be implemented in hardware or software. The interfaces 2606
can be used to receive both data and control information from the network as well as local sources,
such as a remote control to a television. The electronic device can also provide a variety of user
interfaces such as a keyboard, a touch screen, a trackball, a touch pad, and/or a mouse. The

electronic device may also include speakers and a display device in some embodiments.

[0197] In some embodiments, a processing element in the parallel processing device 400 can
include an integrated chip capable of executing computer instructions or computer code. The
processor might also be implemented in hardware using an application specific integrated circuit
(ASIC), programmable logic array (PLA), field programmable gate array (FPGA), or any other

integrated circuit.

[0198] In some embodiments, the parallel processing device 400 can be implemented as a
system on chip (SOC). In other embodiments, one or more blocks in the parallel processing device
can be implemented as a separate chip, and the parallel processing device can be packaged in a
system in package (SIP). In some embodiments, the parallel processing device 400 can be used for
data processing applications. The data processing applications can include image processing
applications and/or video processing applications. The image processing applications can include
an image processing process, including an image filtering operation; the video processing

applications can include a video decoding operation, a video encoding operation, a video analysis
39



WO 2015/019197 PCT/IB2014/002541

operation for detecting motion or objects in videos. Additional applications of the present invention
include machine learning and classification based on sequence of images, objects or video and
augmented reality applications including those where a gaming application extracts geometry from
multiple camera views including depth enabled cameras, and extracts features from the multiple
views from which wireframe geometry (for instance via a point-cloud) can be extracted for

subsequent vertex shading by a GPU.

[0199] The electronic device 2600 can include a mobile device, such as a cellular phone. The
mobile device can communicate with a plurality of radio access networks using a plurality of
access technologies and with wired communications networks. The mobile device can be a smart
phone offering advanced capabilities such as word processing, web browsing, gaming, e-book
capabilities, an operating system, and a full keyboard. The mobile device may run an operating
system such as Symbian OS, iPhone OS, RIM’s Blackberry, Windows Mobile, Linux, Palm
WebOS, and Android. The screen may be a touch screen that can be used to input data to the
mobile device and the screen can be used instead of the full keyboard. The mobile device may
have the capability to run applications or communicate with applications that are provided by
servers in the communications network. The mobile device can receive updates and other

information from these applications on the network.

[0200] The electronic device 2600 can also encompasses many other devices such as
televisions (TVs), video projectors, set-top boxes or set-top units, digital video recorders (DVR),
computers, netbooks, laptops, tablet computers, and any other audio/visual equipment that can
communicate with a network. The electronic device can also keep global positioning coordinates,

profile information, or other location information in its stack or memory.

[0201] It will be appreciated that whilst several different arrangements have been described
herein, that the features of each may be advantageously combined together in a variety of forms to

achieve advantage.

[0202] In the foregoing specification, the application has been described with reference to
specific examples. It will, however, be evident that various modifications and changes may be
made therein without departing from the broader spirit and scope of the invention as set forth in the
appended claims. For example, the connections may be any type of connection suitable to transfer
signals from or to the respective nodes, units or devices, for example via intermediate devices.
Accordingly, unless implied or stated otherwise the connections may for example be direct

connections or indirect connections.

[0203] It is to be understood that the architectures depicted herein are merely exemplary, and

that in fact many other architectures can be implemented which achieve the same functionality. In
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an abstract, but still definite sense, any arrangement of components to achieve the same
functionality is effectively “associated” such that the desired functionality is achieved. Hence, any
two components herein combined to achieve a particular functionality can be seen as “associated
with” each other such that the desired functionality is achieved, irrespective of architectures or
intermediate components. Likewise, any two components so associated can also be viewed as
being “operably connected,” or “operably coupled,” to each other to achieve the desired

functionality.

[0204] Furthermore, those skilled in the art will recognize that boundaries between the
functionality of the above described operations are merely illustrative. The functionality of
multiple operations may be combined into a single operation, and/or the functionality of a single
operation may be distributed in additional operations. Moreover, alternative embodiments may
include multiple instances of a particular operation, and the order of operations may be altered in

various other embodiments.

[0205] However, other modifications, variations and alternatives are also possible. The
specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a

restrictive sense.

[0206] In the claims, any reference signs placed between parentheses shall not be construed as
limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps
than those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one
or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in
the claims should not be construed to imply that the introduction of another claim element by the
indefinite articles “a” or “an” limits any particular claim containing such introduced claim element
to inventions containing only one such element, even when the same claim includes the
introductory phrases "one or more" or "at least one" and indefinite articles such as “a” or “an.” The
same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and
“second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these
terms are not necessarily intended to indicate temporal or other prioritization of such elements. The

mere fact that certain measures are recited in mutually different claims does not indicate that a

combination of these measures cannot be used to advantage.

[0207] We claim:
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CLAIMS

1. A parallel processing device, the processing device comprising;:
a plurality of processing elements each configured to execute instructions;

a memory subsystem comprising a plurality of memory slices including a first memory slice
associated with one of the plurality of processing elements, wherein the first memory slice
comprises a plurality of random access memory (RAM) tiles each having individual read and write

ports; and

an interconnect system configured to couple the plurality of processing elements and the

memory subsystem, wherein the interconnect system includes:

a local interconnect configured to couple the first memory slice and the one of the

plurality of processing elements, and

a global interconnect configured to couple the first memory slice and the remaining

of the plurality of processing elements.

2. The processing device of claim 1, wherein the one of the plurality of RAM tiles is
associated with an arbitration block, wherein the arbitration block is configured to receive memory
access requests from one of the plurality of processing elements and to grant, to the one of the

plurality of processing elements, an access to the one of the plurality of RAM tiles.

3. The processing device of claim 2, wherein the arbitration block is configured to grant access

to the one of the plurality of RAM tiles in a round-robin manner.

4. The processing device of claim 2, wherein the arbitration block comprises a clash detector
configured to monitor memory access requests to the one of the plurality of RAM tiles and to
determine whether two or more of the plurality of processing elements are attempting to access the

one of the plurality of RAM tiles simultancously.

5. The processing device of claim 4, wherein the clash detector is coupled to a plurality of
address decoders, wherein each of the plurality of address decoders is coupled to one of the

plurality of processing elements and is configured to determine whether the one of the plurality of
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processing elements is attempting to access the one of the plurality of RAM tiles associated with

the arbitration block.

6. The processing device of claim 1, wherein the plurality of processing elements comprises at

least one vector processor and at least one hardware accelerator.

7. The processing device of claim 6, further comprising a plurality of memory slice controllers

each configured to provide access to one of the plurality of memory slices.

8. The processing device of claim 7, wherein the interconnect system comprises a first bus
configured to provide communication between the at least one vector processor and the memory

subsystem.

9. The processing device of claim 8, wherein the interconnect system comprises a second bus
system configured to provide communication between the at least one hardware accelerator and the

memory subsystem.

10.  The processing device of claim 9, wherein the second bus system comprises a slice address
request filter configured to mediate communication between the at least one hardware accelerator
and the memory subsystem by receiving a memory access request from the at least one hardware
accelerator and by granting, to the at least one hardware accelerator, access to the memory

subsystem.

11.  The processing device of claim 1, wherein one of the plurality of processing devices
comprises a buffer to increase a throughput of the memory subsystem, wherein a number of
elements in the buffer is greater than a number of cycles for retrieving data from the memory

subsystem.

12. A method for operating a parallel processing system, the method comprising:

providing a plurality of processing elements including a first processing element and a
second processing element, wherein each of the plurality of processing elements is configured to

execute instructions;
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providing a memory subsystem comprising a plurality of memory slices including a first
memory slice associated with the first processing element, wherein the first memory slice
comprises a plurality of random access memory (RAM) tiles each having individual read and write
ports;

receiving, by an arbitration block associated with one of the plurality of RAM tiles via a
local interconnect of an interconnect system, a first memory access request from the first

processing element; and

sending, by the arbitration block via the global interconnect, a first authorization message
to the first processing element to authorize the first processing element to access the one of the

plurality of RAM tiles.

13. The method of claim 12, further comprising:

receiving, by the arbitration block via a global interconnect of the interconnect system, a

second memory access request from a second processing element; and

sending, by the arbitration block via the global interconnect, a second authorization message
to the second processing element to authorize the second processing element to access the one of

the plurality of RAM tiles.

14.  The method of claim 12, further comprising sending, by the arbitration block, a plurality of
authorization messages to the plurality of processing elements to authorize access to the one of the

plurality of RAM tiles in a round-robin manner.

15. The method of claim 12, further comprising:

monitoring, by a clash detector in the arbitration block, memory access requests to the one

of the plurality of RAM tiles; and

determining whether two or more of the plurality of processing elements are attempting to

access the one of the plurality of RAM tiles simultaneously.

16.  The method of claim 12, wherein the plurality of processing elements comprises at least one

vector processor and at least one hardware accelerator.
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17.  The method of claim 16, further comprising providing a plurality of memory slice

controllers each configured to provide access to one of the plurality of memory slices.

18.  The method of claim 17, further comprising providing communication between the at least

one vector processor and the memory subsystem via a first bus system of the interconnect system.

19.  The method of claim 18, further comprising providing communication between the at least
one hardware accelerator and the memory subsystem via a second bus system of the interconnect

System.

20.  The method of claim 19, wherein the second bus system comprises a slice address request
filter configured to mediate communication between the at least one hardware accelerator and the
memory subsystem by receiving a memory access request from the at least one hardware
accelerator and by granting, to the at least one hardware accelerator, access to the memory

subsystem.

21.  An clectronic device comprising:
a parallel processing device comprising:
a plurality of processing elements each configured to execute instructions;

a memory subsystem comprising a plurality of memory slices including a first memory slice
associated with one of the plurality of processing elements, wherein the first memory slice
comprises a plurality of random access memory (RAM) tiles each having individual read and write

ports; and

an interconnect system configured to couple the plurality of processing elements and the

memory subsystem, wherein the interconnect system includes:

a local interconnect configured to couple the first memory slice and the one of the plurality

of processing elements, and

a global interconnect configured to couple the first memory slice and the remaining of the

plurality of processing elements;

a processor, in communication with the parallel processing device, configured to run a

module stored in memory that is configured to:
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receive a flow graph associated with a data processing process, wherein the flow graph
comprises a plurality of nodes and a plurality of edges connecting two or more of the plurality of
nodes, wherein each node identifies an operation and each edge identifies a relationship between

the connected nodes; and

assign a first node of the plurality of nodes to a first processing element of the parallel
processing device and a second node of the plurality of nodes to a second processing element of the
parallel processing device, thereby parallelizing operations associated with the first node and the

second node.

22. The electronic device of claim 21, wherein the flow graph is provided in an extensible

markup language (XML) format.

23.  The electronic device of claim 21, wherein the module is configured to assign the first node
of the plurality of nodes to the first processing element based on a past performance of a memory

subsystem in the parallel processing device.

24.  The electronic device of claim 23, wherein the memory subsystem of the parallel processing
device comprises a counter that is configured to count a number of memory clashes over a
predetermined period of time, and the past performance of the memory subsystem comprises the

number of memory clashes measured by the counter.

25.  The electronic device of claim 21, wherein the module is configured to assign the first node
of the plurality of nodes to the first processing element while the parallel processing device is

operating at least a portion of the flow graph.

26.  The electronic device of claim 21, wherein the module is configured to receive a plurality of
flow graphs, and assign all operations associated with the plurality of flow graphs to a single

processing element in the parallel processing device.

27.  The electronic device of claim 21, wherein the module is configured to stagger memory

accesses by the processing elements to reduce memory clashes.
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28. The clectronic device of claim 21, wherein the electronic device includes a mobile device.

29.  The electronic device of claim 21, wherein the flow graph is specified using an application

programming interface (API) associated with the parallel processing device.

30.  The electronic device of claim 21, wherein the module is configured to provide input image
data to the plurality of processing elements by:

dividing the input image data into a plurality of strips; and

providing one of the plurality of strips of the input image data to one of the plurality of

processing elements.

31.  The electronic device of claim 30, wherein a number of the plurality of strips of the input

image data is the same as a number of the plurality of processing elements.

32. A method comprising:

receiving, at a processor in communication with a parallel processing device, a flow graph
associated with a data processing process, wherein the flow graph comprises a plurality of nodes
and a plurality of edges connecting two or more of the plurality of nodes, wherein each node

identifies an operation and each edge identifies a relationship between the connected nodes; and

assigning a first node of the plurality of nodes to a first processing element of the parallel
processing device and a second node of the plurality of nodes to a second processing element of the
parallel processing device, thereby parallelizing operations associated with the first node and the

second node,
wherein the parallel processing device also comprises:

a memory subsystem comprising a plurality of memory slices including a first memory slice
associated with the first processing element, wherein the first memory slice comprises a plurality of
random access memory (RAM) tiles each having individual read and write ports; and

an interconnect system configured to couple the first processing element, the second

processing element, and the memory subsystem, wherein the interconnect system includes:

a local interconnect configured to couple the first memory slice and the first processing

clement, and
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a global interconnect configured to couple the first memory slice and the second processing

element.

33.  The method of claim 32, wherein the flow graph is provided in an extensible markup

language (XML) format.

34.  The method of claim 32, wherein assigning the first node of the plurality of nodes to the
first processing element of the parallel processing device comprises assigning the first node of the
plurality of nodes to the first processing element based on a past performance of a first memory

slice in the parallel processing device.

35.  The method of claim 34, further comprising counting, at a counter in the memory
subsystem, a number of memory clashes in the first memory slice over a predetermined period of
time, and the past performance of the first memory slice comprises the number of memory clashes

in the first memory slice.

36.  The method of claim 32, wherein assigning the first node of the plurality of nodes to the
first processing element is performed while the parallel processing device is operating at least a

portion of the flow graph.

37.  The method of claim 32, further comprising staggering memory accesses by the processing

elements to the first memory slice in order to reduce memory clashes.

38.  The method of claim 32, wherein the flow graph is specified using an application

programming interface (API) associated with the parallel processing device.

39.  The method of claim 32, further comprising providing an input image data to the plurality
of processing elements by dividing the input image data into a plurality of strips and providing one

of the plurality of strips of the input image data to one of the plurality of processing elements.

40.  The method of claim 39, wherein a number of the plurality of strips of the input image data

is the same as a number of the plurality of processing elements.
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