PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

GO6F 17/30 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/43918

27 July 2000 (27.07.00)

(21) International Application Number: PCT/US00/02053

(22) International Filing Date: 25 January 2000 (25.01.00)

(30) Priority Data:

09/237,219 25 January 1999 (25.01.99) us

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
us
Filed on

09/237,219 (CIP)
25 January 1999 (25.01.99)

(71) Applicant (for all designated States except US): WEST PUB-
LISHING COMPANY d.b.a. WEST GROUP [US/US]; 610
Opperman Drive, Eagan, MN 55123 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ROSENOFF, Douglas,
T. [US/US]; 1605 West 156th Street, Bumnsville, MN
55306 (US). MEDINA, Anthony, Mario [US/US]; 311 Fir
Acres Drive Northwest, Bainbridge Island, WA 98110-1724
(US). RUNDE, Craig [US/US]; 509 Crowne Oak Circle,
Winston-Salem, NC 27106-3386 (US).

(74) Agent: VIKSNINS, Ann, S.; Schwegman, Lundberg, Woessner
& Kluth, P.O. Box 2938, Minneapolis, MN 55402 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: SYSTEM FOR INSERTING HYPERLINKS INTO DOCUMENTS

(57) Abstract

Through the Internet, it is possible to elec-
tronically link documents, by embedding hyper-
links into documents. The hyperlinks, which func-
tion as network addresses for specific documents,
can be selected to "jump" electronically from a
document on one computer system to a document
on another computer system. One problem with

—.

310
TOKENIZING

304

conventional hyperlinks is that occasionally they
become out dated and ineffective, as documents

are deleted, for example. Another problem is that
hyperlinks are typically generated without regard .-3'6
to connection time or charges involved in accessing 308 CASELAW
specific computers, leading users to waste time or PROCESSING
. o MATCH 306
incur unnecessary charges when hyperlinking. Ac- CITE UST 318
cordingly, the inventors devised a system, method, STATUTE
and software that automatically locate and mark PROCESSING
specific portions of a document and define hyper- 320
links including at least a portion of the marked text.
An exemplary implementation, tailored for legal W&?&M
citations, processes the portion of the marked text PROCESSING
as a search term, and allows completion of hyper- 322
links without the necessity of including complete o
file addresses. This implementation also defines a RETURN
portion of the hyperlinks based on the cost or time ioUITENSD
of executing the hyperlink, to reduce the cost or 4
time of executing the hyperlink. 432
MARK CITES

SHORT FORM 302

PROCESSING

§ 32 328
BUILD LINKS -—{msem um(:ﬂ

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/43918 PCT/US00/02053

SYSTEM FOR INSERTING HYPERLINKS INTO DOCUMENTS

5
Technical Field
This invention concerns computer systems and software, particularly
computer networks, word processors, and document processors that facilitate
insertion of hyperlinks into electronic documents.
10 Background of the Invention

Personal computers have a wide variety of uses. One of the most
common uses is as a word processor, a device that allows electronic creation and
manipulation of documents, such as letters, resumes, research papers, and legal
briefs. Another common use is to communicate with other computers via a

15 network, such as, the Internet --- a worldwide network of computers
interconnected through public and private communication systems. Recent years
have witnessed the convergence of these seemingly distinct uses through the
World Wide Web.

The term “World Wide Web” generally refers to a portion of the Internet

20 that encompasses electronically linked documents written with special internal
format codes, such as the hypertext markup language (HTML.) Within the Web,
each document has a unique identifier, known as a uniform resource locator (or
URL) which serves as its unique electronic address. The URL for any document
can be included as part of one or more other Web documents, providing a

25 selectable link ---more precisely, a hyperlink--- between the documents. With
proper computer software and Internet access, a user of a document including a
hyperlink to another document can select the hyperlink, which is normally
displayed in a contrasting color from other text in the document, using
conventional point-and-click commands.

30 Selecting the hyperlink connects the computer hosting the document with
the hyperlink to the computer hosting the document associated with the
hyperlink (the hyperlinked document), and ultimately allows the user who
invoked the hyperlink to view the hyperlinked document, which can be located
anywhere in the world. The hyperlinked document can also contain hyperlinks

WO 00/43918 PCT/US00/02053

10

15

20

25

30

2

to other documents, allowing the user to “hop” around the world viewing various
hyperlinked documents at will.

Hyperlinks are typically inserted into documents manually or
automatically. Manual insertion often occurs through a document editor or word
processing program, such as Microsoft Word 6.0 or Corel WordPerfect 8.0, that
includes a hyperlink definition capability. More particularly, manual insertion
requires a user to select text in a document, to indicate a desire to associate a
hyperlink with the text, and then to enter the URL for the document to hyperlink
to. For example, a user writing a paper on the American Revolution might select
text referring to George Washington and insert the URL for a document
providing a brief biography of George Washington. However, manual insertion
of hyperlinks can be not only tedious and time-consuming, but also error prone.

Conventionally, one of the few methods for automatic insertion of
hyperlinks is through execution of an index-generation program, which builds an
alphabetical “back-of-the-book” type index for a document. For example,
WebAnchor (TM) software from Iconovex Corporation of Bloomington,
Minnesota, uses semantic (meaning-based) analysis to extract key words, phrases
and ideas from one or more documents and then automatically builds an index
that includes hyperlinks to those extracted words, phrases, and ideas in the
documents. A user viewing the index can select a word, phrase, or idea in the
index and then hyperlink to the specific portion of the document containing it.
(See also U.S. Patent 5,708,825, entitled Automatic Summary Page Creation and
Hyperlink Generation, filed May 26, 1995 and issued January 13, 1998.)

One problem in using conventional manually and automatically
generated hyperlinks concemns their longevity. In particular, as documents
containing hyperlinks age, many hyperlinks become out dated and ineffective
because the documents they point to have been deleted, revised, or moved to
other computers, or because the computer hosting a hyperlinked document no
longer recognizes or understands one or more parts of the URL for the hyperlink.

Whatever the reason, attempting to execute or invoke these ineffective
hyperlinks results in an error message, such as “file not found,” being shown to
the user, instead of the desired document. Although the user can update or

replace the URL associated with an ineffective hyperlink, this can be

WO 00/43918 PCT/US00/02053

10

15

20

25

30

3

inconvenient and time consuming, particularly in documents with many
hyperlinks.

Another problem with manually and automatically generated hyperlinks
concerns the time or cost of accessing the hyperlinked documents. In particular,
hyperlinks are typically generated without regard to either the time needed to
execute a hyperlink or the charges a user may incur in hyperlinking to specific
host computers. This is especially troublesome when a user wastes time or
incurs charges hyperlinking to a document on another computer system that also
exists on her computer system.

Accordingly, there is a need for hyperlinks that are less likely to become
ineffective over time and that are generated with concern for user preferences,
such as connection time and cost.

Summary of the Invention

To address these and other needs, the inventors devised a system,
method, and software that automatically locate and mark specific portions of a
document and define hyperlinks including at least a portion of the marked text.
An exemplary implementation of the method finds and marks legal citations ---
for example, references to court opinions, government laws, and legal treatises---
and automatically defines each hyperlink to include at least a portion of a marked
legal citation and a name of a common computer system. The exemplary
method further entails activating one of the hyperlinks, connecting to a computer
system referenced in the one hyperlink, and conducting a search of one or more
databases based on the portion of marked text included in the hyperlink. Thus,
this implementation of the method avoids the problem of hyperlinks becoming
outdated and ineffective by directing them to a common external computer
system and including a searchable term as part of the hyperlink instead of a
precise document address.

Another feature of the exemplary method defines the name of the
common computer system in the hyperlinks based on the cost or time of
executing the hyperlink. In particular, the exemplary method determines
whether the hyperlinks are to include the name of a local computer system that
includes a database, for example, a CD-ROM library, containing legal

documents or the name of an external computer system including this

WO 00/43918

10

15

20

25

30

4

information. Another feature of this implementation allows for the possibility
that the local computer system lacks this information and redirects failed
hyperlinks to a local computer system to the external computer system, which is
likely to have a more extensive database.
Brief Description of the Drawings
Figure 1 is a block diagram of an exemplary computer system 10
embodying several aspects of the invention;
Figure 2 is a block diagram of exemplary marking-and-linking software
embodying the invention;
Figure 3 is a flowchart illustrating an exemplary method embodied in the
marking-and-linking software; and
Figure 4 is a diagram of an exemplary data structure for a hyperlink
defined in accord with the invention. |
Detailed Description of the Invention
The following detailed description, which references and incorporates
Figures 1-4, describes and illustrates one or more exemplary embodiments of the
invention. These embodiments, offered not to limit but only to exemplify and
teach the invention, are shown and described in sufficient detail to enable those
skilled in the art to make and use the invention. Thus, where appropriate to
avoid obscuring the invention, the description may omit certain information
known to those of skill in the art.
Definitions
The description includes many terms with meanings derived from their
usage in the art or from their use within the context of the description. Asa
further aid, the following term definitions are presented.
The term "document" refers to any logical collection or arrangement of
machine-readable data having a filename.
The term "database" includes any logical collection or arrangement of
machine-readable documents.
The term “hyperlink” includes any token conforming literally or
functionally to any past, present, or future Uniform Resource Locator (URL)
standard. It also includes any token including information identifying a specific

computer system or networked device.

PCT/US00/02053

WO 00/43918 PCT/US00/02053

10

15

20

25

30

5

The term “program modules” include routines, programs, objects,
components, data structures, and instructions, or instructions sets, and so forth,
that perform particular tasks or implement particular abstract data types.

E lary C S Emhodving the I)

Figure 1 shows a diagram of an exemplary computer system 10
incorporating a system, method, and software for automatically marking one or
more portions of a document and defining one or more corresponding hyperlinks
for each marked portion. Generally, system 10 comprises an exemplary personal
computer 12 which hosts an exemplary document 128. Exemplary document
128 includes marked portions 128a, 128b, and 128¢ and respective hyperlinks
129a, 129b, and 129c, which are automatically generated and defined according
to an exemplary embodiment of the invention. Hyperlinks 129a, 129b, and 129¢
are selectable to link respective marked portions 128a, 128b, and 128¢ of
document 28 to databases 17, 18, and 19 via computer network 14 and web
server 16. (In the exemplary embodiment, the hyperlinks are embedded “on top
of their associated marked text, that is, in place; however, in other embodiments,
they are on a separate page of the document.)

More particularly, the most pertinent features of computer 12 include a
processor 121, a network communications device 122, and a data-storage device
123. Additionally, system 12 includes display devices 124 and user-interface
devices 125. In the exemplary embodiment, processor 121 is an Intel Pentium II
processor; network communications device 122 is a 56-Kilobyte-per-second (or
higher-speed) modem; and storage device 123 include one or more hard drives.
However, other embodiments of the invention, use other types of processors,
network communications devices, and data-storage devices. For example, other
embodiments use distributed processors or parallel processors, and other
embodiments use one or more of the following data-storage devices: a read-only
memory (ROM), a random-access-memory (RAM), an electrically-erasable and
programmable-read-only memory (EEPROM), an optical disk, or a floppy disk.
Exemplary display devices include a color monitor and virtual-reality goggles,
and exemplary user-interface devices include a keyboard, mouse, joystick,

microphone, video camera, body-field sensors, and virtual-reality apparel, such

WO 00/43918 PCT/US00/02053

10

15

20

25

30

6

as gloves, headbands, bodysuits, etc. Thus, the invention is not limited to any
genus or species of computerized platforms.

System 12 also includes, within data-storage device 123, document-
processing software 126, document-marking-and-linking software 127, and an
exemplary document 128. In the exemplary embodiment, exemplary document-
marking-and-link-building software 127 is an add-on tool to document-
processing software 126. However, in other embodiments, it operates as a
separate application program or as part of the kernel or shell of an operating
system. (Software 126 and 127 can be installed on system 12 separately or in
combination through a network-download or through a computer-readable
medium, such as an optical or magnetic disc, or through other software transfer
methods.) General examples of suitable document-processing software include
word-processing programs, HTML-editing programs, spread-sheet programs,
presentation-development programs, browsing programs, document-management
programs, and file-backup programs. More particular examples include
Microsoft Word97 software, Corel WordPerfect 8.0 software, Microsoft
Explorer 4.0 software, Netscape Navigator 4.0, Microsoft FrontPage 98, Adobe
Acrobat Exchange, and Adobe Acrobat Reader software. Thus, the invention is
not limited to any particular genus or species of document-processing software.

Figure 1 also shows that exemplary document 128 includes portions
128a, 128b, and 128c which have been marked, for example, visibly in a
contrasting color or font, or in other ways, to signify its association with an
existing hyperlink. Document 128 also includes hyperlinks 129a, 129b, and
129¢ that are associated logically with respective portions 128a, 128b, and 128c.
Hyperlinks 129a, 129b, and 129¢ which are defined in accord with the present
invention, can be activated (in accord with conventional techniques, for
example) to create a network connection to respective searchable databases 17,
18, and 19 via computer network 14 and web server 16. (Although Figure 1
shows that the hyperlinks all point to server 14 in the exemplary embodiment,
other embodiments of the invention generate hyperlinks that point to the same or
multiple web servers.)

In the exemplary embodiment, computer network 14 is a wide-area

network such as the Internet; however in other embodiments it is a local-area

WO 00/43918 PCT/US00/02053

10

15

20

25

30

7

network, or an ethernet. Server 16 is a web server, such as a Microsoft Internet
Information Server 4.0 running on a network of several NT servers with Pentium
class processors and extended memory and disk configurations. Though not
shown explicitly in Figure 1, server 16 includes URL processing software in
accord with the invention (as described below.) Databases 17, 18, and 19 can
take on any number of forms on a variety of computer platforms. Moreover,
databases 17, 18, and 19 include overlapping content in some embodiments to
allow for more than one computer, like computer 12, to hyperlink
simultaneously to multiple copies of the same document. Thus, domain server
14 includes software capabilities such as that described in U.S. Patent 5,644,720
entitled Interprocess Communications Interface for Managing Transactions
Requests and issued July 1, 1997. (This patent is incorporated herein by

reference.)

Figure 2 shows an exemplary architecture for marking-and-link-building
software 127, specifically a component-based architecture including one or more
objects. The objects expose their functionality and communicate with other
objects using COM (Component Object Model) interfaces. However, for clarity
many of these interfaces have been omitted from the figures. The exemplary
software is tailored to find, mark, and build hyperlinks for legal citations.
However, other embodiments of the software operate similarly on proper names
of persons or places, or other identifiable document content, which can be
isolated and identified by syntactic, formatting, contextual, semantic, or
document-markup information.

More particularly, exemplary software 127 includes an integration object
127a, a tokenizer object 127b, a content-finder object 127c, a publications object
127d, a publication database 127e, a phrases object 127f, a phrases database
127g, an options object 127h, and a link-builder object 127i. Integration object
127a functions to integrate the software as a tool into document-processing
software 126 according to conventional techniques. Integration object 127a
takes data from an active document in an active edit window of document-
processing software 126 and passes it to tokenizer object 127b, as a stream of

text. (In one embodiment, Integration object actually passes the text to the

WO 00/43918 PCT/US00/02053

10

15

20

25

30

8

content-finder object, which then in turn passes it to the tokenizer object)
Integration object 127a is also responsible for creating and initializing several
other objects, such as tokenizer object 127b and content-finder object 127¢ and
link-builder object 127h. (In one embodiment, the integration object does not
always create the tokenizer object. If the integration object does not specify to
the citefinder object which tokenizer object to use, the citefind object will create
and use the default text tokenizer. This is the case in the exemplary Word and
WordPerfect implementations. In the HTML implementation, the integration
object creates the HTML tokenizer and passes it into the citefinder object.)

In the exemplary embodiment, the procedure for extraction and
formatting depends on particulars of the client application, or document-
processing software. For example, in Microsoft Word, the integration object
uses the Word object model to retrieve the text and in Corel WordPerfect the
Integration object (third party handler) sends the WordPerfect application
specific PerfectScript tokens that instruct the WordPerfect application to select
the requested text and then retrieve the text from the current selection. The
integration object uses registry settings to determine how much text to extract
each time, with the amount of text largely dependent on the document-
processing software. After extracting the text, the integration object then
optionally pre-formats the text, specifically removing any application specific
codes before passing the text to an input text buffer of tokenizer object 127b.

Tokenizer object 127b receives, buffers, and parses the stream of text into
a collection of tokens, which it passes to content-finder object 127¢. In doing so,
tokenizer object 127b, which assumes a variety forms depending on the actual
form of the text it receives for tokenization, insulates content-finder object 127¢
from the actual format of the text, that is, it removes fonts and other features of
the text that are deemed to carry no distinguishing value in locating legal
citations. (However, in other embodiments, this formatting may carry useful
semantic information and thus is not removed.) In one embodiment, software
127 includes several tokenizers, for example, an HTML tokenizer, a Microsoft
Word tokenizer, a WordPerfect tokenizer, an Adobe Acrobat tokenizer, a text
tokenizer, an RTF tokenizer, an XML tokenizer, a Microsoft Word Format

tokenizer, a WordPerfect Format Tokenizer, and an Adobe PDF format

WO 00/43918

10

15

20

25

30

9

tokenizer. In multi-tokenizer embodiments, document-processing software 127
selects or defines which one is necessary for the applicable text. If no specific
tokenizer is specified, software 127 uses a default tokenizer object, which parses
and creates tokens from straight UNICODE text.

An important feature of tokenizer object 127b is that it can retrieve
tokens as it moves both forward and backward through a text buffer and thus can
parse in both directions. (In the exemplary embodiment, the text buffer holds a
portion of the text in UNICODE format.) This is useful when trying, for
example, to find the title for a located citation that spans more than one text
buffer. The tokenizer in the exemplary embodiment saves a portion of the
preceding text buffer since it is possible that some citations (or tokenizable
content) will span two or more buffers. This buffer manipulation is completely
hidden from content-finder object 127c, allowing it to focus on whole tokens and
the finding of legal citations.

Each token created by tokenizer object 127b contains information that
identifies what the entity is and where it is located in the document. For
example, a text character is considered a single token. As another example,
consider the HTML tag for line break
. An HTML implementation of the
tokenizer treats this tag as a single token that represents a new line, even though
it is four characters long. So the content-finder object only has to deal with a
single new line token and does not have to “worry” that it is represented as

in one format and “0x0d” in another.

Content-finder object 127c processes tokens from tokenizer object 127b,
specifically looking for citations. In processing the tokens, it interacts with
publication object 127d and phrase object 127f to locate legal citations. In the
exemplary embodiment, content-finder object 127¢ processes only a predefined
collection of tokens, so that it requires no modification to support a new text
format. One only needs to add a new tokenizer object to support tokenization of
the new text format. Based on the options set in options object 127h (described
below), the content-finder object scans the tokens for legal citations.

When a citation is located, the content-finder object creates a found

object, which encapsulates the information for the found citation, and passes the

PCT/US00/02053

WO 00/43918

10

15

20

25

30

PCT/US00/02053

10

found object to the client via a content-finder event object through an outgoing

event interface.

Content-finder options object 127h provides a mechanism for the

content-finder client (document-processing software 126) to control or adjust

properties of the cite-finding process. The client can indicate what types of cites

they want to locate, as well as setting other options that control how the cites are

located. The following list identifies and describes options available in the

exemplary embodiment and other embodiments of the invention:

FindCaselaw

FindStatutes

Indicates whether caselaw authorities
should be located
Indicates whether statute authorities should

be located

FindLawReviewAndJournals Indicates whether law review and journal

FindCourtRules

FindAdmins

FindRegulations

FindShortForms

FindTitles
FindInQuotes

authorities should be located

Indicates whether court rule and order
authorities should be located

Indicates whether administrative report and
decision authorities should be located
Indicates whether regulation authorities
should be located

Indicates if short form citations should be
located

Indicates if titles should be found

Indicates if authorities within quotations

should be located

OverlapSize

MaxTitleLength
MaxNumberLength
MaxEditorPhraseLength

Amount of previous buffer saved when
new buffer is passed in

Maximum length of a title

Maximum length of a number

Maximum length of editor phrase

MaxKeywordPhraseLength Maximum length of a keyword phrase

WO 00/43918 PCT/US00/02053

10

15

20

25

30

11

MaxStatuteKeywords Maximum number of words examined
when locating statute keywords
MaxStatutePubWords Maximum number of publication words

allowed in a statute authority

MaxCourtLength Maximum length of court name
MinCourtLength Minimum length of court name
MaxDateLength Maximum length of a date
MaxExtensionPageDiff Maximum distance allowed between page

numbers considered to be part of same

authority
BeginningYear Specifies first number recognized as a year
EndingYear Specifies last number recognized as a year

In the exemplary embodiment, these options cannot be set by the user, although
other embodiments allow this. The properties and definitions that can be
changed (see note in next paragraph) are the same as the list of options above.
The property is the thing (like Beginning Year); the method is the way to change
the property.(See Table above.)

To optionally change a cite-finding option in the exemplary embodiment,
document-processing software 126 creates an instance of the content-finder
options object and a conventional interface to set the desired properties. The
pointer to the created interface is then passed to content-finder object 127c. If
the document-processing software does not create an instance of the content-
finder options object, content-finder object 127¢ creates one that contains default
settings.

Found object 1271, one or more of which is created by content-finder
object 127¢c, encapsulates all the information about found content, such as a
legal citation in the exemplary embodiment. This includes information such as
the citation category, the citation form (main, short, id, infra, parallel citation,
string citation), the citation title and the citation location (in the text.) In other
embodiments, it includes information concerning key words or key content in a

portion of the extract text. (See, for example, U.S. Patent 5,708,825, entitled

WO 00/43918

10

15

20

25

30

12

Automatic Summary Page Creation and Hyperlink Generation, which
incorporated herein by reference.)

Publications object 127d, as noted earlier, assists content-finder object
127¢ in locating specific content, such as legal citations. In doing so, it interacts
with publication database 127e, which supplies access to a list of valid
publications and their associated abbreviations. Each publication has one or
more abbreviations, aliases, or alternative names associated with it. Publication
abbreviations typically occur in legal citations for a specific case, statute, article
or other document within a publication. For example, 'S. Ct.' --- an abbreviation
for the Supreme Court Reporter publication--- often occurs in cites to specific
U.S. Supreme Court cases, for example Talley v. California, 80 S. Ct. 536
(1960). Thus, cite-finding object 127¢ uses the publications object 127d and
publication database 127¢ to determine if a given text string is a valid
publication abbreviation or not. This function entails creation use of a
publication-information object, which represents a single publication through a
presentation of its properties, such as its display and court name, the category it
belongs to (for example, case law), its jurisdiction (state or federal), the services
of a domain server that it is available on (for example, KeyCite data-retrieval
services) and information regarding its location and the location of its
abbreviations in the publication files.

Publications object 127d also supports adding, modifying and deleting
publications and abbreviations within publication database 127e. The exemplary
embodiment allows a user to modify this list through a user interface using
conventional interfacing techniques. Examples of specific modifications
include: adding a new publication (including defining the category it belongs to,
its display and court name and its list of abbreviations); adding new
abbreviations for predefined or user defined publications; modifying or deleting
abbreviations added by the user for both predefined and user defined
publications; modifying any property of a user-defined publication; an deleting
any user-defined publication. As a safeguard, the exemplary embodiment
precludes users from deleting predefined abbreviations or publications.

Example of suitable publications include those listed in past, present, and

future editions of The Blue Book: A Uniform System of Citation, compiled by

PCT/US00/02053

WO 00/43918 PCT/US00/02053

10

15

20

25

30

13

editors of the Columbia, Harvard, and University of Pennsylvania Law Reviews.
(Additionally, the exemplary embodiment includes publications listed in past,
present, and future editions or versions of the California Code Yellow book and
in past, present, and future editions of the California Style Manual by Robert E.
Formichi (1986.)

Phrases object 127f and phrase database 127g are similar to the
publication object and database, except that they assist content-finding object
127c determine whether text extracted from a document includes citation-related
phrases. The object fetches each phrase in a list of phrases and determines if
each is contained in the list. It also allows the user to add, modify or delete
phrases. Each instance of the phrases object accesses a single phrase list. A
phrase list is physically represented by two files. One file contains the standard,
predefined phrases, which in the exemplary embodiment, cannot be modified or
deleted; and the other file stores user changes and additions to the standard
phrase list. The phrases object merges the two files together into a unified,
sorted list of phrases. In the exemplary implementation, no distinction is made
between the standard and user defined phrases when searching for a phrase or
when retrieving the phrases, but this is not a requirement. However, the client
can determine if a returned phrase is a standard or user defined phrase.

Phrases database 127g includes several lists of phrases in the exemplary

embodiment. These lists are identified and described below and included in full

as Appendix A.:.

Phrase List Description

Date Month names and abbreviations that are
used to determine if a string is a date

Explanatory Explanatory phrases that are used to
determine if a citation is explanatory
history for the previous citation

Extension Phrases that can be used in conjunction

with short form references, like id, infra,
and supra

Identifying Contains a list of identifying phrases

WO 00/43918

10

15

20

25

30

14

Invalid Caselaw Publication Phrases that cannot be contained in a valid
case law publication
Invalid Statutes Publication Phrases that cannot be contained in a valid
statutes publication
Invalid Title Phrases that cannot be contained in a valid
title
In Re List of in re phrases that are valid at the
beginning of a title
Keyword Keyword phrases that can be used in a
statute citation
Other Caselaw Other phrases that can be used in a case
law citation
Title Word Lower-case single word phrases that are
allowed to be included in a title
Title Words Lower-case, multi-word phrases that are
allowed to be included in a title
Versus Phrases that can be used to represent
‘versus’ in a title |
Weight of Authority List of weight of authority phrases that will

be included with a case law citation

Link-builder object 127j builds, or defines, hyperlinks, such as
hyperlinks 129a, 129b, and 129c, according a URL standard in accord with the
invention. More particularly, once content-finder object 127c creates a found
object 127¢, link-builder object defines a URL for the object. The URL in the
exemplary embodiment includes a domain name and at least a portion of the text
with which it will be associated, thus enabling a web server, such as web server
16, to associate it dynamically with particular document, even if the document is
moved or revised over the life of the hyperlink. Further details on the nature of
the hyperlink follows a more detailed description of how the exemplary
marking-and-link-building software operates.

PCT/US00/02053

WO 00/43918

10

15

20

25

30

15

\ary Method of Findi | Marking Specific C

Figure 3 generally shows an exemplary method which software 126
executes in the context of one or more cite-finding sessions initiated by
document-processing software 127. Each cite-finding session relates to a single
document. Specifically, Figure 3 shows that the exemplary method includes
process blocks 310, 312, 314, ..., 328, which when executed affect a numbers list
302, a short-form list 304, a cite list 306, and a match-cite list 308.

Number list 302 includes all the numbers found in the current buffer and
the text buffer location of each number. Once the processing of the current
buffer is completed, number list 302 is cleared. Short-form list 304 includes all
unmatched short forms that have been located during the entire session. In this
context, short forms are considered any citation that is referenced using the terms
id, ibid, infra or supra. Short-form list 304 also stores the location of each short
form reference in the document. The lifetime of this list is the same as the
session, meaning that it lives as long as document text associated with a given
session is being processed. As soon as a short form is matched to its full-form
citation, it is removed from short-form list 304 and added to cite list 306.

Cite list 306 includes all matched cites found in the current text buffer.
Once the processing of the current buffer is complete, the content-finder object
loops through the cite list and returns each of the citations to the document-
processing software 127 (via integration object 127a) in the form of a found
object. After returning all the cites, this list is cleared. Match-cite list 308
includes the unique full-form citations that have been found since the beginning
of the session. It is used to match non-full form cites (short-form cites) to their
corresponding full-form citations. This list is not cleared until the session
terminates.

Before describing each processing block, it may be helpful to understand
that there are several similarities between the processing steps of the exemplary
method. First, each examines the current buffer using tokenizer object 127b to
request tokens for the current buffer. Second, each block can result in a change
to the buffer restart position. The restart position specifies the position at which
processing (parsing) will start the next time a buffer is passed in by the

document-processing software. For example, if the content-finding object finds

PCT/US00/02053

WO 00/43918 PCT/US00/02053

10

15

20

25

30

16

a partial number during number processing in block 312 but reaches the end of
the current buffer before finding the end of the number, it will set the restart
position to the beginning of the number so that it will be picked up during the
processing of the next text buffer, which be enlarged to include a portion of the
previous buffer with the partial number.

Generally, after a session is initiated, document-processing software 126
(through integration object 127a) repeatedly passes sequential buffers of text
from the document to tokenizer 127b, which converts the text into tokens and
passes them (on request) to content-finder object 127c which executes many of
the processing blocks. More particularly, block 310 shows that initial processing
entails extraction of text from a document in an editing window of document-
processing software 126. In the exemplary embodiment, integration object 127a
extracts and formats the next buffer of text from the current document. After
extracting the text, the integration object optionally pre-formats the text. It
examines the text for any application specific codes and then removes the codes
from the buffer.

Block 312 entails tokenizing the text extracted from the document. In the
exemplary embodiment, processor 121, or more precisely processor 121 acting
through integration object 127a, passes tokenizer 127b a new buffer of text from
document 128, for example. Tokenizer object 127b maintains the internal
buffer of text. When it receives a new buffer of text, it determines where in the
buffer to start parsing and how much of the old buffer to retain. To determine a
start-parsing position, it first checks if one or more of the processing steps
specified a restart position during the last processing round. If so, it takes the
specified restart position that is farthest from the end of the old buffer as its new
start parsing position. If no restart position was indicated during the last
processing round, then the start parsing position is the beginning of the new
buffer. The Tokenizer object then updates its internal text buffer, retaining a
certain number of characters from the old buffer and appending on the new
buffer. (In the exemplary embodiment, the start parsing position defaults to 500
characters back from the new starting position, and text is tokenized on the fly as

it is requested.)

WO 00/43918

10

15

20

25

30

17

After tokenizing the text in block 310, the processor , through content-
finding object 127¢c, executes number-processing block 312. Number processing
entails sequentially requesting each token in the buffer from the tokenizer object
and scans forward through the tokens to locate valid numbers. This is the only
time in the exemplary embodiment of the cite finding process that the buffer is
completely scanned from beginning to end. Once a token representing a valid
number is found, the content-finder object adds it to the number list along with
its beginning and ending positions within the text buffer. If the processor
reaches the end of the buffer before completing a number under “construction,”
it will specify a parsing restart position to the beginning of the number, so that
during the next processing round the full number can be tokenized.

Short-form processing block 314 entails scanning forward through the
tokens to locate the words id, ibid, supra, and infra. When one of these words is
found, the process adds a short-form entry to the short-form list. The short-form
entry includes the position of the short form and its type (id, supra or infra). If
the processor reaches the end of the buffer with part of a potential short-form
entry (for example, the text buffer ends with 'su’' which could turn out to be
‘supra’) it will set the restart parsing position with the tokenizer object to the
beginning of the potential short form so that the tokenizer will address this
during the next round of tokenization.

After identifying all the complete short-form terms in the current text
buffer, the processor loops through each of the short forms, associating found
titles or numbers with each short form. To find the title for the short form, the
processor first asks the tokenizer to jump to beginning of the short form in the
buffer. It then scans a pre-determined number of tokens (for example, either to
the last citation or two hundred tokens characters) backwards from
the beginning of the short form. Using capitalization rules and a number of
phrase files (Invalid Title, Title Word, Title Words and Versus), it determines if
a title is found. If a title is found, the title information is added to the entry in the
short form list and the starting position of the short form is updated to the
beginning of the title.

In addition to finding a title for each short form, the processor also tries

to attach associated numbers to the short form. For each short form in the list, it

PCT/US00/02053

WO 00/43918 PCT/US00/02053

10

15

20

25

30

18

will scan through the number list to find the first number that follows the end of
the short form. If the distance between the end of the short form and the
beginning of the number is within a given threshold, for example, the processor
will examine the text between the short form and the number. If the text
contains an extension phrase (based on contents of an extension list), the number
is considered to be associated with the short form. The number is marked as
being used in the number list and the short form entry is updated to include the
number information in the short form list. (Though shown sequentially in Figure
3, number-processing block 312 and short-form-processing block 314 are
executed concurrently in the exemplary embodiment.)

In block 316, the processor, again through content-finder object 127¢ in
the exemplary embodiment, identifies case law-like citations. Case law-like
citations are those citations including a <volume> <publication> <page number>
structure. In identifying these citation forms, the exemplary method does not re-
parse the entire buffer, but instead examines the text surrounding each of the
numbers previously located in the buffer by the number processor.

In examining this surrounding text, the processor first determines
whether the first word before the number is the word 'at’. If it is, then this
number is flagged as not being part of a full-form citation. Next, the processor
tries to locate a valid case law-like publication for the potential citation that
precedes the number. In doing so, the processor determines how far to go back
to look for the potential publication, taking the minimum of the distance between
the start of the current number and the end of the previous number (if there is
one) and the pre-defined maximum length of a publication. It then calls the
Publications object to determine if this text contains a publication.

If the text does not contain a publication and there is an active cite
pending, then the processor checks to see if the number is an extension page or
note reference for the pending cite. This is the case if the page number for the
cite and the current number being processed are separated by a comma or words
such as “n.” or “fn.” If the number is an extension page or note reference, then it
is added to the pending cite and marked as used. If it is not the case, the pending
cite is completed and added to the cite list. In either case the processing for the

number is ended.

WO 00/43918 PCT/US00/02053

10

15

20

25

30

19

At this point, the processor assumes a publication has been found. If
there is no previous number, then the publication must support a zero volume.
This is a property of the PublicationInfo object. If there is no previous number
and the publication does not have a zero volume, then the processing of the
number is ended.

A valid <volume> <publication> <page number> combination has now
been located. The current number is considered the page number and the
previous number (if exists) is considered to be the volume. Next, the processor
then checks if there is a title associated with the <volume> <publication> <page
number> combination.

Next, the processor determines if the just-found “<volume>
<publication> <page number>" combination is the start of a new cite or if it is
associated with a pending cite. If there is a cite already active and it is separated
from the <volume> <publication> <page number> combination by only the
comma character, then the <volume> <publication> <page number>
combination is considered to be a parallel for the active cite. If this is the case,
the <volume> <publication> <page number> combination is added to the
pending cite, the current number is marked as used and the processing of the
current number is ended.

If the volume-publication-page combination is not a parallel for a
pending cite, then it is considered the start of a new cite. If there was an active
cite, it is completed and added to the cite list. At this point, the processing of the
number is ended and the current number is marked as being used.

At several points in the caselaw processing, cites are deemed completed
and added to the cite list. When a cite is completed, there is actually some
additional processing that takes place in the exemplary embodiment. In
particular, the text that immediately follows the citation is scanned, that is,
searched, to locate and evaluate any associated parenthetical information for
court-and-date or weight-of-authority information. If so, then the parentheses is
included as part of the citation. Next, the case law processor checks to see if the
current cite is a history cite for the previous cite. If the two cites are separated

only by an explanatory phrase, then the current cite is deemed a history cite for

WO 00/43918 PCT/US00/02053

10

15

20

25

30

20

the previous cite. When this occurs, the current cite is appended to the previous
cite. At this point, a complete citation has been located.

The next step is to determine if this cite matches any of the citations that
were previously used in the document. To do this, the processor loops through
the match cite list to see if it can find a match to its newly found cite. If a match
is found, the new cite is given the same match text as the cite that it matches.
This match text is used to build a cite entry for a Table of Authorities (TOA).
All of the cites with the same match text will be included as a single entry in the
TOA. If no match is found in the match cite list and the cite is a full form cite,
then it is added to the match cite list. In either case, the cite is added to the cite
list.

If there is an active cite pending when the end of the buffer is reached,
the case law processor will set the restart position using the Tokenizer object to
the beginning of the pending cite.

In block 318, the processor attempts to identify all statute-like citations.
Similar to the case law processor, the statute processor examines all of the
unused numbers in the number list. (Numbers are marked of as used in checking
for short forms and case law.) Because case law processing is done first, many
of the numbers in the number list will already be included as part of a citation
and marked as used in the list. The statute processor skips all of the numbers
that are marked as used and processing those that have not been marked
according as follows.

First, if a statute-like publication has not already been found (no pending
cite), then the processor check to see if this is a cite that starts with a statute
keyword. In doing so, the processor tries to locate a valid statute keyword that
precedes the number, using the keyword phrases file. If a keyword is found, then
a new pending cite is created with the starting position of the keyword taken as
the start of the potential cite. A valid publication must be found before this
becomes an actual cite.

Second, if a publication has not already been found and the statute
processor did not find any keywords preceding the current number, then it will
check for presence of a valid publication before the number. This is done as in

case law processing. If a publication is found, then the processor adds the

WO 00/43918 PCT/US00/02053

10

15

20

25

30

21

publication and the current number to the pending cite if there is one, or if not, it
creates a new pending cite.

Third, if a publication had already been found, then it checks to see if
there is a statute keyword between the current number and the previous number.
If so, then the end of the cite is set to the end of the current number. If there is
no statute keyword between the current and previous number, then the pending
cite is deemed completed and added to the list.

Just as in case law processing, further statute processing entails trying to match
all completed statute-like cites to those found in the match cite list. If a match is
not found then the cite is added to the match cite list. All statute cites that are
found are also added to the cite list. If there is an active cite pending when the
end of the buffer is reached, the processor sets the restart parsing position (used
in tokenization) to the beginning of the pending cite.

In block 320, the processor performs short form and match processing,
which entails match the short-form cites (id, ibid, infra and supra) stored in the
short-form list to the complete full-form cites they reference. (Short forms were
identified in block 314.) Execution of this block is appropriate at this point in
the exemplary embodiment, since all the case law-like and statute-like citations
in the current buffer have been located.

More particularly, the processor takes each of the entries in the short
form list and tries to match it to its corresponding cite stored in the cite list.
Based on the type of the short form, the processor compares the starting and
ending positions and/or the titles of the short form to find its match in the cite
list. Once a match is found, the short form is removed from the short form list
and added to the cite list. Before it is added to the cite list, it is updated with
information from its matching cite. However, not every short form cite will be
matched each time. For example, an infra may be used to refer to a cite that is
used much later in the document and has not yet been found by content-finder
object 127c. Therefore, the short form list is not cleared until after the session
has been completed.

In block 322, content-finder object 127c notifies the client, that is,
document-processing software 126, through integration object 127a about each

of the found citations listed in the cite list. More particularly, the content-finder

WO 00/43918

10

15

20

25

30

22

object creates a found object 127i (also referred to as a found object in the
exemplary embodiment) for each listed cite, using the information in the cite list
entry to fill in the properties of the found object. The content-finder object then
triggers a cite-found event that is captured by the client, with the found object
specified as a parameter of the cite-found event. After all of the cites have been
returned to the client, the cite and number lists are cleared.

In block 324, the processor, through integration object 127a, marks each
of the found cites in the document. In the exemplary embodiment, this entails
getting the citation position from each of the found objects and locating the
citation in the original text of the current document. Integration object 127a
then marks the citation (or found text) with the appropriate hyperlink. First, it
examines the text in the range of the citation to determine if any hyperlinks
already exist. Then, depending on an overwrite-existing-hyperlinks option
(defined in the cite-link options object), it will either overwrite the existing
hyperlink(s) or it will not insert the conflicting hyperlink.

In block 326, integration object 127a calls link-builder object 127i to
build a URL for the marked citation or other portion of the document. In doing
so, the Integration object passes the link-builder object the desired destination of
the URL based on a user setting defining whether computer 12 includes or has
access either directly or via a local-area network or enthroned to a CD-ROM
library or online database library that contains legal documents that may be
related to those cited in the marked portions of document 128 and the link text
for the citation retrieved from the Found object. The link text is the standard
form of the citation that is used when linking to the citation. The link-builder
object then returns the properly formatted URL that will execute a find on the
specified citation when activated.

In block 328, the integration object takes the URL from the link-builder
object and instructs document-processing software 126 to insert a hyperlink
including the URL over the range of text encompassing the found citation. The
particulars of inserting the hyperlink dependent on the document-processing
software. Details of the exemplary URL structure and content are described

below.

PCT/US00/02053

WO 00/43918 PCT/US00/02053

10

15

20

25

30

23

After completion of block 328, the exemplary method continues
optionally with activities related to generating a Table of Authorities or other
found content collection and collation activities (e.g. creation of an index or
Table of Contents). In particular, if the user has selected to generate a Table of
Authorities (TOA), the integration object will insert the appropriate TOA entry
tag for the citation. This entails determining if the citation already has a TOA
entry tag. If there is an entry tag for the citation, the Integration object removes
it and instructs the client application to insert a TOA entry tag immediately
following the citation. How this is accomplished is dependent on the client
application. The type of TOA entry tag is also dependent on the whether or not
the found citation is a long form or short form. Once all the TOA entry tags
have been inserted, the user can select to generate a Table of Authorities in
accord with the particular document-processing software.

Exemplary Persistent URI, Standard

In the exemplary embodiment, link-builder object 127i applies a
consistent URL syntax based the Internet URL RFC 1738 (which is incorporated
herein by reference.) A seminal aspect of the structure is that rather than
including a specific filename or location for a document, it includes information
that a web server, such as server 16 in Figure 1, can process to find the document
with high certainty. In the exemplary embodiment, the content is assumed to be
a legal citation and the hyperlink is built to direct the hyperlink to a server that
provides access to legal documents. However, in other embodiments, it can be
specific content understood to refer to scientific or academic citations or classes
of terms. Even more broadly, one could simply direct hyperlinks to semantically
key terms in a document to a common universal data provider. In any case, a
major advantage of the predefined structure for automatically generated
hyperlinks is that changing the file name or file location within (and in some
embodiments without) the domain does not invalidate any hyperlinks referencing
the document. .

Figure 4 shows a diagram of an exemplary URL or hyperlink token
structure 400. The structure includes the following fields or elements: domain
name field 402, application-specific path information field 404, operation-name

field 406, application-name field 408, request-source field 410, version number

WO 00/43918 PCT/US00/02053

10

15

20

25

30

24

field 412, spohsorship field 414, and application-specific-parameters field 414.
The structure can also be represented as
http://www.domain.com/ApplicationSpecificPathInformation/
[OperationName]/ApplicationName?rs=RequestSourcen.n&vr=n.n
&sp=AlphaString&OperationSpecificParameters=Values
&ApplicationSpecificParameters=Values

Examples for domain-name field 404 include www keycite.com,
www.westlaw.com, and www.westdoc.com. Examples of application-specific-
path information field 406 are subdirectories or electronic commerce token
information. Thus, for example, one embodiment of the structure includes
customer account information for the particular domain name or a credit or debit
account number with associated personal-identification numbers. These can be
specified within a computer systems, like system 12 in Figure 1, and inserted by
link-builder object 127i into a particular hyperlink.

Operation-name field 406 includes information indicating a major,
common operation to use in accessing content identified in other parts of the
structure. The exemplary embodiment provides the following operation
identifiers: 'find', 'keycite', and 'search’. However, other embodiments can
identify almost any number of functions.

Application-name field 408 is the name of the application or script that
performs a service specified in the URL, for example, based on information
provide in the URL. Scripts can conform to the asp (act server page) standard,
for example.

Request-source field 410 includes information identifying the application
program, such as document-processing software 126, that built the URL and/or
invoked the hyperlink, that is, the request for specific content. The exemplary
embodiment includes this field in all URLSs, even if multiple URLSs are used to
build the page (for example, HTML frames). This element shows the origin of
the URL (q.v. the application originally creating the URL), and the release
version number of the origin. The release version number directly follows the
request source name. In the exemplary embodiment, the request source value
will be set to the current (URL generating) application, even if the original URL
was built by a different application. For example, a URL originally built to

http://www.domain.com/ApplicationSpecificPathInformation/
http://www.keycite.com
http://www.westlaw.com
http://www.westdoc.com

WO 00/43918 PCT/US00/02053

10

15

20

25

30

25

access content from source will have a particular request source value (e.g.
CL1.0), but URL links from that original page will have a request source value
appropriate for the content source (e.g. Westlaw). No default value is assigned
to URLSs of the exemplary embodiment.

Version field 412 indicates which version of the URL syntax standard
was used to generate the URL. It identifies the major and minor version number
for the syntax standard (for example, vr=2.1). Specifying the version facilitates
graceful transitions to future versions of the URL syntax standard. In the
exemplary embodiment, this field is not optional; however, in other
embodiments it is. Moreover, the exemplary embodiment, link-builder does not
assign a default value to URLs. |

In the exemplary embodiment, actual values for the request source and
version are determined by the document-processing software. These values are
to be registered with content provider. The length of the request source should be
kept to a minimum, and the request source value should not be used for page
presentation information. In the exemplary embodiment, all URLSs to content and
content images have optional vr and rs parameters.

Sponsor field 414, which takes the form “sp=AlphaString” in the
exemplary embodiment, is optional and provides a mechanism for subscribers to
a particular online database to sponsor use of the database by non-subscribers.

Operation-specific-parameters field 416 takes the exemplary form:
OperationSpecificParameters=Values. These parameters and their respective
values are used by an application or script at server 16 to service the request. The
parameters (for example, ‘cite' for a find operation and 'query"' for a search
operation) are recognized and have meaning within the specific operation or
service. An operation specific parameter for unique document id (for example,
docid) can also be added so that the application will be able to retrieve a specific,
unique document.

Application-specific-parameter field 418 has the exemplary form
“ApplicationSpecificParameters=Values” and includes additional parameters and
their respective values that an application or script will use to service the request.
These parameters are recognized and have meaning only to the application in the

exemplary embodiment.

WO 00/43918 PCT/US00/02053

10

15 .

20

25

30

26

All domains that support the major common operations must use the
same OperationName, ApplicationName, and OperationSpecificParameters
names defined for that operation. In the exemplary embodiment, the operation-
name field can be used to redirect a hyperlink to another domain name based on
the operation requested, if the specified operation is not supported by the domain
included in the URL with the operation-name field. For example, a user wishing
to retrieve the case 101 S.Ct.1, rﬁay inadvertently use the URL:

http://www.westgroup.com/
find/default.asp?
cite=101sct1.
A server, in this case, www.westgroup.com, however, may gracefully redirect
the user’s request to http://www.westdoc.com/find/default.asp?cite=101sct1
instead of returning a "Not Found" response.

Several other examples of the exemplary hyperlink structure are
described below to further illustrate its utility. In the following examples,
optional parameters are indicated with square brackets.

http://www.westdomain.com/
find/default.asp?rs=requestsourcen.n&vr=n.n

[&sp=alphastring] &cite=document_citation.

In this example, document_citation is part of the specific content found
and marked in a document such as document 128 in Figure 1. For the “&cite=
parameter”, most standard citation formats are allowed. If an unsupported
citation format is used, an appropriate error message will be returned. Spaces
within citations should be avoided or replaced by the plus symbol (+). In the
exemplary embodiment, completion of this hyperlink requires the request source
to be registered with the domain server. The &sp= parameter identifies the
sponsor for the request. The operation specific parameter (that is, “&cite=") is a
required field to retrieve a specific document. Omission of this parameter gives
access to the specified service, but will not retrieve a specific document.

The following examples retrieve 101 S.Ct.1 from a document retrieval

service known as WestDoc (tm):

http://www.westgroup.com/
http://www.westgroup.com
http://www.westdoc.com/find/default.asp?cite=101sctl
westdomain.com/

WO 00/43918 PCT/US00/02053

10

15

20

25

27

http://www.westdoc.com/
find/default.asp?rs=myprogram1.0
&vr=1.0&cite=101sct1
or
http://www.westdoc.com/
find/default.asp?rs=mysource2.0
&vr=1.0&cite=101+sct+1

The following examples retrieve 101 S.Ct.1 from a document citator
service known as KeyCite (tm):
http://www.westdomain.com/
keycite/default.asp?rs=requestsourcen.n

&vr=n.n[&sp=alphastring] &cite=document_citation

In this example, the request source must be registered with listed domain server;
the “&sp= parameter” identifies the sponsor for the request. The operation
specific parameter (i.e., &cite=) is a required to retrieve a specific document;
however omission of this parameter still allows access to the specified service.
For the “&cite= parameter,” most standard citation formats are allowed. If an
unsupported citation format is used, an appropriate error message will be

returned. Spaces within citations should be avoided or replaced by the plus

symbol (+).

The following examples check 107 S.Ct.3102 in KeyCite:
http://www keycite.com/
keycite/default.asp?rs=myprogram1.0

&vr=1.0&cite=107sct3102

or

http://www.westdoc.com/
http://www.westdoc.com/
http://www.westdomain.com/
http://www.keycite.com/

WO 00/43918 PCT/US00/02053

10

15

20

25

30

28

http://www .keycite.com/
keycite/default.asp?rs=mysource2.0
&vr=1.0&cite=107+sct+3102

The following URL syntax is used to embed a search within a document:
http://www.westdomain.com/search/
default.asp?rs=requestsourcen.n
&vr=n.n[&sp=alphastring] &db=database identifier&method=search_method&
query=query_string&action=action_type

In these examples, the request source must be registered with content
provider. The “&sp= parameter” identifies the sponsor for the request. The
operation-specific-parameters (that is, “&db=, &method=, &query=, &action="")
are required fields to retrieve a specific search result. If you omit this parameter,
one will gain access to the service, but will not retrieve a specific result. In the
exemplary embodiment, the “&db= parameter” must be a valid database
identifier code. A list of valid database identifiers must be obtained from the
content provider. The valid search methods for the “&method= parameter” are
tnc for terms and connectors and win for natural language.

The “&query= parameter” contains the specific search text for the
request.
If the search method is win, any phrase may be used in the query string. If the
search method is tnc, key search words and connectors such as “and” and “or”
can be used. Blanks between words can be represented by the plus symbol (+).
The exemplary embodiment recognizes a boolean query system used for
WestLaw Document Retrieval Service. Appendix B includes a table showing
many of the basic commands of this query system. The valid action type for the
&action= parameter is search.

This example performs a natural language search in federal case law for
insurance liability related to hail storms:

http://www.westdoc.com/search
/default.asp?rs=myprogram1.0&vr=1.0&db=allfeds
&method=win&query=insurance+liability+for+hail+storms

&action=search

http://www.keycite.com/
http://www.westdomain.com/search/
http://www.westdoc.com/search

WO 00/43918 PCT/US00/02053

10

15

20

25

30

29

This example performs a terms and connectors search in the Wall Street
Journal for the word "earnings" and "surprises" in the same sentence:
http://www.westdoc.com/search/
default.asp?rs=myprogram1.0&vr=1.0&db=ws;j
&method=tnc&query=earnings+/s+surprises
&action=search
This example performs a terms-and-connectors search in the Dow Jones
“AllNews” database for the terms "IBM" and "buyout":
http://www.westdoc.com/search
/default.asp?rs=myprogram1.0&vr=1.0
&db=allnews&method=tnc&query=ibm-+and+buyout
&action=search
Exemplary Hyperlink Processing

Once a hyperlink, such as hyperlink 129a, 129b, or 129c, is selected or
invoked by a user, computer 12 establishes a connection via communications
device 122 and network 14 to server 16. Server 16, which serves the domain
name identified in the hyperlink, forms an HTML page that may include the
following information:

Users invoking a hyperlink can be asked for a username and/or password
for the first access to a service. Subsequent accesses through the same service
through the same or different hyperlinks to the same service will not (in most
cases) result in another authentication prompt. However, if too much time has
elapsed, for example three months, since the last request. The amount of time
allowable between requests may vary for each service.

The desired content is returned as defined by the service completing the
request. The presentation of the content can vary significantly from service to
service and over time. Each service may vary in presentation technique. For
example, some services use HTML frames and others do not. Results can vary
from day to day as new functionality is added to each service. For example, a
document retrieved with three active links may have more (or fewer) active links
when retrieved in the future.

Additionally, the content for a specific citation can change over time. For

specific citations, most services will return the most current version of a

http://www.westdoc.com/search/
http://www.westdoc.com/search

WO 00/43918

10

15

20

25

30

30

document rather than an older version. For this reason, a cite retrieved for an
older hyperlink can return a newer version of the document if the same link is
run in the future. Similarly, the same search completed through a given hyperlink
can provide time variant results because more documents may meet it
encapsulated search criteria.

Because of the persistent nature of URLSs, the use of any authentication,
or user-specific information in the URL is avoided in the exemplary
embodiment. While it is likely that the content addressed by this proposal will be
protected and the user will need to present authentication information, the
prompting for this remain outside of the actual URL syntax in the exemplary
embodiment. Users, however, can share URLs without allowing others access to
their data access account.

One potential use of the invention would be when publishers may want to
allow other users access to their account in the form of sponsored links. The
third party publisher would have an agreement with the content provider to
provide a slice of content to their subscribers or even to the general Internet
community. In this case, pages at the publisher’s site would contain URL links
that link to the content provider . These URL links would contain a sponsorship
parameter (“&sp=") to identify the sponsoring publisher and any required
authentication information. The use of the sponsor parameter does not preclude
the use of other forms of authentication, since the various business rules are
contained on the server.

In another embodiment, users can specify, through their computer
systems, that a document be retrieved from a CD-ROM or that a search be
executed against a CD-ROM in their local CD-ROM library during definition or
execution of a hyperlink. If the requested document is unavailable, local client
applications can then pass along the URL to online content provider resources or
not, depending on user preferences. This embodiment requires that URLs must
be able to point to CD-ROM content as well as on-line information.

One embodiment of the invention warns users when a document pointed
to by a URL has experienced a change in status or validity (e.g., case overturned,
court rules changed, legislation superseded). These warnings can reference

other content provider products or services.

PCT/US00/02053

WO 00/43918

10

15

31
Conclusion

In furtherance of the art, the inventors have presented a system, method,
and software that automatically locate and mark specific portions of a document
and define hyperlinks including at least a portion of the marked text. An
exemplary implementation of the method finds and marks legal citations;
automatically defines each hyperlink to include at least a portion of a marked
legal citation and a name of a common computer system; and conducting a
search of one or more databases based on the portion of marked text included in
the hyperlink. Another feature of the exemplary method defines the name of the
common computer system in the hyperlinks based on the cost or time of
executing the hyperlink.

The embodiments described above are intended only to illustrate and
teach one or more ways of practicing or implementing the present invention, not
to restrict its breadth or scope. The actual scope of the invention, which
embraces all ways of practicing or implementing the concepts of the invention, is

defined only by the following claims and their equivalents.

PCT/US00/02053

WO 00/43918 PCT/US00/02053

10

15

20

25

30

32

Appendix A:
Exemplary Phrase Lists for Phrase Database 127g

Date phrases: Apr., April, Aug., August, Dec., December, Feb., February, Jan.,
January, Jul., July, Jun., June, Mar., March, May, Nov., November, Oct.,
October, Sep., Sept., September

Explanatory phrases: abrogated, acq., acq. in results, acquiesced, acquiescing,
adhered to, adhering, aff'd, aff'd after abatatement, aff'd enbanc., aff'd in part,
aff'd in part and remanded in part, affd mem., aff'd o. b., aff'd on other grounds,
aff'd on rehearing, aff'd percuriam, aff'd without op., aff'd without opinion, aff'g,
affirmed, affirmed enbanc., affirmed mem., affirmed without opinion, affirming,
after remand, allocatur denied, alloc. denied, amad., amended, amending, app.
den., app. denied, app. dism., app. dismd., app. dismissed, appeal after remand,
appeal allowed, appeal den., appeal denied, appeal dism., appeal dism. sub nom.,
appeal dismissed, appeal dismissed sub nom., appeal filed, appeal gr., appeal
granted, appealing after remand, appeals dismissed sub nom., app. filed, app. gr.,
application den., application denied, approved, approved by, approved en banc,
approving, app. withdrawn, argued, as stated in, cause dismd., cause dismissed,
cause remanded, cert. den., cert. denied, cert. denied with opinion, cert. dism.,
cert. dismissed, cert. gr., cert. granted, cert. granted in part, cert. if den., cert. if
denied, cert. if gr., certification denied, certification granted, certifying questions
to, certiorari, certiorari denied, cert. quashed, cited in, clarified, concurred,
concurring, conformed to, corrected, criticized by, den., denied, denied in part,
den. ovo., denying app., denying cert., denying cert. to, digest op. at,
disapproved, disapproved on other grounds, disc. rev. denied, disc. review
denied, dism'd, dism'g, dismissed, dismissed as moot, dismissing, dismissing
appeal from, enbanc., enforcement granted, enforcement denied, enforcing, error
denied, error dism'd, error dismissed, error ref'd nre., extension denied, gr.,
granted, habeas corpus, in part, inrelevant part, judgment affirmed, judgment
aff'd, judgment den., judgment denied, judgment gr., judgment granted,
Jjudgment vacated, jurisdiction accepted, later proceeding, Iv. den., lv. denied, lv.

dismissed, mandamus den., mandamus denied, mod., modified, modified on

WO 00/43918 PCT/US00/02053

10

15

20

25

30

33

rehearing, modifying, mod. on other grounds, motion den., motion denied,
motion dism'd, motion gr., motion ovrr., motion to certify overruled, motion to
vacate den., nonacq., nre., on mem. below, on op. below, on opinion below, on
other gnds., on other grounds, on reconsideration, on reh., on rehearing, on
remand, on remand to, on unrelated grounds, op. combined at, opinion after
remand, op. withdrawn, ordered published, order on remand, order reinstated,
overruled, overruled by, overruled in part, overruled on other grounds, overruled
on unrelated grounds, overruling, ovrd., ovrld., percuriam, pet. denied, pet. for
cert. filed, petition den., petition for cert. filed, petition for rev. denied, petition
for rev. dism., petition for rev. dismissed, pet. ref'd, postconviction proceeding,
postconviction relief den., postconviction relief gr., prob. juris noted, quashed,
quashing, reaff'd, reaffirmed, receded from on other grounds, reconsideration
den., reconsideration denied, reconsideration gr., reconsideration granted, reh.,
reh. den., rehearing, rehearing denied, rehearing granted, rehearing overr., reh'd
denied, reh'g, reh'g denied, reh'g granted, reh. granted, reinstated, remanded,
rem'd, reported in full, rev. allowed, rev'd, rev. den., rev. denied, rev'd in part,
rev'd on other grounds, rev'd percuriam, rev'd sub nom., reversed, reversed on
other grounds, reversed percuriam, reversing, rev'g, rev. granted, review den.,
review denied, review dismd., reviewed, review granted, reviewing, review
pending, rev. on other grounds, rvd., set aside, stay allowed, stay den., stay gr.,
stay vac., subnom., substitute dop., summary op. at, superseded, supllemental of,
supp. op., trans. denied, transfer denied, vacated, vacated as moot, vacated in
part, vacated on other grounds, vacating, withdrawing, withdrawn, without op.,
writ den., writ denied, writ denied percuriam, writ dismd., writ granted, writ

ref'd, writ refused

Extension phrases: @, @@, act, acts, amend, amendments, amends, ammended,
apps., art., article, articles, arts., at, at p., at page, at pages, at pp., c., canon.,
canons., cc, ch., chap., chaps., chapt., chapter, chapters, chapts., chs., cl., clause,
clauses, cls., div., division, divisions, divs., fn., item, n., nn., no., nos., note, p.,
page, pages, para., paragraph, paragraphs, paras., pars., part, pg., pgs., pp-» pt.,

pts., rule, rules, s., sec., secs., sect., section, sections, ss., suba., subart.,

WO 00/43918

10

15

20

25

30

34

subarticle, subarticles, subarts., subc., subch., subchap., subchapt., subchapter,
subchapters, subd., subdiv., subdivision, subdivs., subds., subp., subpar.,
subpara., subparagraph, subparagraphs, subparas., subpart, subparts, subpt.,
subs., subsec., subsecs., subsect., subsection, subsections, subsects., subt., subtit.,
subtitle, subtitles, supp., suppl., supplement, supplements, supra, t., ti., tit., title,

titles, tits., vol., vols., volume, volumes, °, *°

Invalid caselaw phrases: en banc, in banc, mem., memorandum, per curiam,

unpublished
versus phrases: v., Versus, vs.

Multi-word Title phrases: and the, at the, ex rel, for a, for the, in the, of the, on

the

Editor phrases: BLACK, BNA, CCH, CRANCH, DALL, HOW, MET, PET,
PH, WHEAT

Extension phrases: @, @@, act, acts, amend, amendments, amends, ammended,
apps., art., article, articles, arts., at, at p., at page, at pages, at pp., c., canon.,
canons., cc, ch., chap., chaps., chapt., chapter, chapters, chapts., chs., cl., clause,
clauses, cls., div., division, divisions, divs., fn., item, n., nn., no., nos., note, p.,
page, pages, para., paragraph, paragraphs, paras., pars., part, pg., pgs., pp-, pt.,
pts., rule, rules, s., sec., secs., sect., section, sections, ss., suba., subart.,
subarticle, subarticles, subarts., subc., subch., subchap., subchapt., subchapter,
subchapters, subd., subdiv., subdivision, subdivs., subds., subp., subpar.,
subpara., subparagraph, subparagraphs, subparas., subpart, subparts, subpt.,
subs., subsec., subsecs., subsect., subsection, subsections, subsects., subt., subtit.,
subtitle, subtitles, supp., suppl., supplement, supplements, supra, t., ti., tit., title,

titles, tits., vol., vols., volume, volumes, °, ®

Idnt phrases: act, and, as, in, of; see, see also, to, under

PCT/US00/02053

WO 00/43918

10

15

20

25

30

35

In re phrases: estate of, guardianship of, in re, matter of, will of

Invalid caselaw phrases: NO, NO., No, No., Sec,, Sec., arm, at, ch, col, col., d,

in, no, no., or, p, p., pars, s, Sec, ss

Invalid statute phrases: As, as, Cost, cost, hrs, hrs., in, Last, last, Most, most,

Past, past

Explanatory phrases: accord, according, according to, accordingly, also, also
see, and see, appeal of, application of, article, as, but see, cf., cite, cite as, citing,
comment, compare, compare with, contra, decided, duties under, eg., enforced,
enforcing, finally, generally, however, ibid, id, ii, iii, in, more over, note,
principle of, principles of, pursuant to, quoted in, quoting, reliance on, reported
at, rule, see, see also, see eg., see generally, similarly, specifically, supra, the,

thus, under

Key word phrases for statutes: @, @@, act, acts, amend, amendments, amends,
ammended, and, apps., art., article, articles, arts., as, c., canon., canons., cc, ch.,
chap., chaps., chapt., chapter, chapters, chapts., chs., cl., clause, clauses, cls.,
div., division, divisions, divs., in, McKinney, McKinney's, no., nos., number,
numbers, N.Y. McKinney's, of, order no., p., page, pages, para., paragraph,
paragraphs, paras., pars., part, pg., pgs., pp-, pt., pts., rule, rules, s., sec., secs.,
sect., section, sections, ss., suba., subart., subarticle, subarticles, subarts., subc.,
subch., subchap., subchapt., subchapter, subchapters, subd., subdiv., subdivision,
subdivs., subds., subp., subpar., subpara., subparagraph, subparagraphs,
subparas., subpart, subparts, subpt., subs., subsec., subsecs., subsect., subsection,
subsections, subsects., subt., subtit., subtitle, subtitles, supp., suppl., supplement,
supplements, supra, t., through, thru, ti., tit., title, titles, tits., to, under, vol.,
vols., volume, volumes, °, ®°

othcphr.dat: citing, emphasis added, quoting

Titile word phrases: a, as, and, for, mm, of, on, or, re, rel, supra, the, to, with

PCT/US00/02053

WO 00/43918 PCT/US00/02053

36

Appendix B:
Exemplary Boolean Query System

Connector Character | Retrieves
Codes
AND & Search terms in the same document:
narcotics & warrant
5 |OR Space Either search term or both:
car automobile
Grammatical /p Search terms in the same paragraph:
Connectors hearsay /p utterance
/s Search terms in the same sentence:
design*** /s defect!
+s The first term preceding the second within
the same sentence: palsgraf +s island
10 +p The first term preceding the second within
the same paragraph: ti(mikkelson +p
mikkelson)
Numerical /n Search terms within “n” terms of each
Connectors other (where “n” is a number):
person**/3 jurisdiction
+n The first term preceding the second by “n”
terms (where “n” is a number): 20+51080
Phrase “r Search terms appearing in the same order
as in the quotation marks: “attractive
nuisance”

15 | Excluding terms | % (but not) | Documents not containing the term or
terms following the % symbol:
laminectomy % to(413)

SUBSTITUTE SHEET (RULE 26)

WO 00/43918 PCT/US00/02053

10

15

20

25

30

37

What is claimed is:

1. A method of automatically inserting hyperlinks into a document,
comprising:
searching one or more documents for content matching predefined forms;
marking one or more portions of one or more of the documents based on
results of searching the one or more documents; and
generating one or more hyperlinks, with each hyperlink having a format
based on the content of the one or more marked portions of the

documents;

2. A computer system comprising:
means for searching one or more documents for content matching
predefined forms;
means for marking one or more portions of one or more of the documents
based on results of searching the one or more documents; and
means for generating one or more hyperlinks, with each hyperlink having
a format based the content of the one or more marked portions of

the documents.

3. A computer system comprising:

a processor;
a memory coupled to the processor, with the memory storing:

a first set of instructions for searching one or more documents for
content matching predefined forms;

a second set of instructions for marking one or more portions of
one or more of the documents based on results of
searching the one or more documents;

a third set of instructions for generating one or more hyperlinks,
with each hyperlink having a format based the content of

the one or more marked portions of the documents;

WO 00/43918 PCT/US00/02053

38

4. A computer-readable medium comprising:

a first set of instructions for searching one or more documents for
content matching predefined forms;

a second set of instructions for marking one or more portions of

5 one or more of the documents based on results of
searching the one or more documents;

a third set of instructions for generating one or more hyperlinks,
with each hyperlink having a format based the content of
the one or more marked portions of the documents;

10
5. An automated method of defining hyperlinks for a document,
comprising:
marking one or more portions of the document; and
defining one or more hyperlinks for one or more of the marked portions
15 of the document, with each hyperlink including information based
on form or content of at least a portion of one of the marked

portions of the document.

6. The method of claim 5, wherein each hyperlink includes at least a portion

20 of one of the marked portions of the document.

7. The method of claim 5, wherein each hyperlink includes a domain name
common to all the hyperlinks and at least a portion of one of the marked portions

of the document.

25
8. The method of claim 5, wherein each hyperlink includes a domain name
common to all the hyperlinks and information based on a syntactic or semantic
analysis of at least a portion of one of the marked portions of the document.

30 9. An automated method of processing a document comprising one or more

legal citations, comprising:
marking one or more portions of the document, with each portion

including at least one of the legal citations;

WO 00/43918 PCT/US00/02053

39

defining one or more hyperlinks for one or more of the marked portions
of the document, with each hyperlink including information based
on form or content of the one legal citation in the marked portion
of the document;

5 in response to a selection of one of the hyperlinks, connecting a first
computer hosting the document to a second computer associated
with the one hyperlink;

querying a user for commercial account information in response to
connecting the first computer to the second computer;
10 verifying the commercial account information;
in response to a positive verification of the commercial account
information, searching a database associated with the second
computer, based on the information based on form or content of
the one legal citation in the marked portion of the document, for a
15 document corresponding to the legal citation;
transferring at least a portion of the document corresponding to the legal

citation to the first computer.

10. The method of claim 9, wherein each hyperlink includes at least a portion

20 of one of the marked portions of the document.

11. The method of claim 9, wherein each hyperlink includes a domain name
common to all the hyperlinks and at least a portion of one of the marked portions
of the document.

25
12. The method of claim 9, wherein each hyperlink includes a domain name

common to all the hyperlinks and information based on a syntactic or semantic

analysis of at least a portion of one of the marked portions of the document.

30 13. A method of defining a hyperlink in a computer system, comprising:
marking a portion of a first document;

identifying two or more destinations for the hyperlink; and

WO 00/43918

10

15

20

25

30

PCT/US00/02053

40

defining the hyperlink to point to one of the two or more destinations

based on one or more predefined preferences.

14. The method claim 13 wherein retrieving one or more predefined user-
preferences includes retrieving information related to one or more preferred
hyperlink destinations, or information related to cost, or information related to
access time; and wherein defining the hyperlink includes defining the hyperlink
to point to one of the two or more destinations includes selecting one of the

destination based on the retrieved preferences.

15. A method of redirecting hyperlink that includes an error, the method
comprising:
selecting an alternative domain name for the hyperlink; and

substituting the alternative domain name for that of the hyperlink.

16. A method of automatically inserting hyperlinks into a document,
comprising:
searching one or more documents for specific content based on lexical,
syntactical, formatting, synergetic, or heuristic combinations of
specific content;
marking one or more portions of one or more of the documents based on
results of searching the one or more documents;
automatically generating and embedding one or more hyperlinks within
the document, with each hyperlink having a format based on the
content of the one or more marked portions of the documents and
a position within the document based on a position of at least one

of the marked portions of the document.

17. A method of processing a hyperlink that results in an error or warning
based on content unavailability, errors in the URL syntax, incorrect
authentication information, or the user’s content access agreement, comprising;:

receiving the hyperlink;

WO 00/43918 PCT/US00/02053

41

associating a new domain name with one or more original portions of the
hyperlink; and
attempting to establish a connection rerouting the hyperlink to the other

domain name.

18. A method of processing a hyperlink including a domain name,
comprising:
detecting an operation name within the hyperlink, with the operation
name having an associated computerized operation or service;

10 determining whether a computer system associated with the domain
name supports the associated computerized operation or service;
and

routing the hyperlink to another computer system associated with another
domain name if the computer system associated with the domain

15 name does not support the associated computerized operation or

service.

19. A data structure for a hyperlink or a resource locator, the data structure
comprising:
20 a domain name;
a computer operation identifier; and
a parameter taken from a document for use with the computer operation

corresponding to the computer operation identifier.

25 20. The data structure of claim 19, wherein the computer operation identifier
identifies a search or find operation, and the parameter comprises at least a

portion of a citation existing within a document.

21. A data structure for a hyperlink in a document, the data structure
30 comprising:
an operation name field which includes information identifying an

operation to use in accessing specific content;

WO 00/43918

10

15

20

25

30

42
a request-source field which includes information identifying an
application program that generated the hyperlink;
an operation-specific-parameter field which includes information for use

in performing the operation identified in the operation-name field;

22. A data structure for a hyperlink or a resource locator embedded within a
document, the data structure comprising:
a domain name; and

a citation to a document.

23. The data structure of claim 22, wherein at least a portion of the citation

identifies a published or soon-to-be-published book containing the document.

24, The data structure of claim 22, wherein at least a portion of the citation

identifies a page number in the published book containing the document.

25. The data structure of claim 22, wherein the citation identifies a hard copy

of a judicial opinion.

26. A data structure for a hyperlink or a resource locator, the data structure
comprising:

a domain name; and

a request-source field containing information identifying an application

program which generated the hyperlink.

27. The data structure of claim 23, wherein the application program is a word

processor.

28. A method of defining a hyperlink in a computer system, comprising:
marking a portion of a first document;
providing two or more text segments for use in the hyperlink; and
defining the hyperlink to include at least one of the two or more text

segments based on one or more predefined preferences.

PCT/US00/02053

WO 00/43918 PCT/US00/02053

1/4
12 10
124 125 4
DISPLAY INTERFACE
DEVICES DEVICES
121 122
& <.
NETWORK
PROCESSOR COMM
DEVICE

STORAGE DEVICES
126 1271 128

DOC MARK .
PROD'G| | LINK DOC k~
S/W S/W N

[e ey |

COMPUTER
NETWORK

SERVER

FIG. 1 éé%

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02053

WO 00/43918

2/4

SNOLLJO
Y30NY

w
uLel

Z ‘Old
103rg0
aNNo4

- 1

103r80 S3SV¥HJ 103rg0

430NI4

103r80 NOLLYONand =IN3INOD
@ pLZL Jed)

103rd0

YIZINIMOL
azzl”

133r80
NOLLVYO3LNI

oszi

— e e e e e e e e em e b e e ot e e e em e e = e = e e = e = -

JAIVMLIOS
ONISS300¥d
INJINNJ0a

Vadl

9cl

SUBSTITUTE SHEET (RULE 26)

WO 00/43918

304

3/4

310

TOKENIZING

; 312

NUMBER
PROCESSING

‘ 314

SHORT
FORM UST N\

308

MATCH
CITE UST

SHORT FORM
PROCESSING

; 316

CASELAW
PROCESSING

§ 318

STATUTE

PCT/US00/02053

302
~

NUMBER
LIST

PROCESSING

; 320

SHORT FORM
AND MATCH
PROCESSING

{ 322

RETURN
FOUND =

CITES

{ 324

MARK CITES

; 326

328

4

BUILD LINKS —=

INSERT LINKS

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02053

WO 00/43918

4/4

¥ "Old
"0 |avssovoas| NN | downos | | awe | Sl | a
NOWVIIddY NOLLYONddY
Y b} Y % 5 5 5 3
9l 1 454 Ly oLy 80V 90+ 14012 0y

\\

00+

SUBSTITUTE SHEET (RULE 26)

