
(12) United States Patent
Sargent et al.

USOO8126895B2

(10) Patent No.: US 8,126,895 B2
(45) Date of Patent: Feb. 28, 2012

(54) METHOD, APPARATUS, AND COMPUTER
PROGRAM PRODUCT FOR INDEXING,
SYNCHRONIZING AND SEARCHING
DIGITAL DATA

Inventors: Antony John Sargent, Belmont, CA
(US); Erik Andrew Kay, Foster City,
CA (US); David Moore, San Francisco,
CA (US); Daniel L. Willhite, San
Francisco, CA (US); Linus Upson,
Redwood, CA (US)
Computer Associates Think, Inc.,
Islandia, NY (US)
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 442 days.

Appl. No.: 11/245,100
Filed: Oct. 7, 2005

Prior Publication Data

US 2006/008O3O3 A1 Apr. 13, 2006

Related U.S. Application Data
Provisional application No. 60/616,925, filed on Oct.
7, 2004.
Int. C.
G06F 7700
G06F 7/00 (2006.01)
G06F 3/00 (2006.01)
U.S. C. 707/741; 707/711; 707/715; 707/746;

715/241; 715/712
Field of Classification Search 707/3, 102,

707/101, 203,999.203, 741, 711, 715, 746;
709/11, 206: 711/216, 162; 715/255-272,

715/241,712; 702/179
See application file for complete search history.

(75)

(73) Assignee:

Notice: (*)

(21)
(22)
(65)

(60)

(51)
(2006.01)

(52)

(58)

10

18
internet

Search
Index(es)

(56) References Cited

U.S. PATENT DOCUMENTS

5,469,540 A * 1 1/1995 Powers et al. 71.5/2O3
5,825,355 A * 10/1998 Palmer et al. ... 715,712
5,828,374. A * 10/1998 Coleman et al. ... 715,786
6,631,522 B1 * 10/2003 Erdelyi 7.25/53
6,735,604 B2* 5/2004 Miller et al. ... TO7/600
7,506,257 B1 * 3/2009 Chavez et al. . T15,714
7,801,896 B2 * 9/2010 Szabo 707f739

2001/0042114 A1* 1 1/2001 Agraharam et al. TO9,223
2002/0178341 A1* 11/2002 Frank 711,216
2003/0065652 A1* 4/2003 Spacey 707/3
2003/0149748 A1* 8/2003 Duisenberg ... TO9,219
2005/0028026 A1* 2/2005 Shirley et al. T14?6
2005, 0096866 A1* 5, 2005 Shan et al. .. 702/179
2006,0047715 A1* 3, 2006 Parizeau 707/2O3
2007, OO61533 A1* 3, 2007 Burton et al. 711,162
2009,0006496 A1 1/2009 Shoens et al. TO7,203
2009/009.4332 A1* 4/2009 Schemers et al. TO9,206

* cited by examiner

Primary Examiner — Mohammad Ali
Assistant Examiner — Bao Tran
(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
& Fox PL.L.C.

(57) ABSTRACT

A system, method and computer program product provide a
search module for searching digital data. The search module
operates, according to an embodiment, by indexing stored
data without interrupting use of the stored data, Synchroniz
ing the indexed data with data stored Subsequent to the index
ing step, searching at least one of the synchronized data and
the indexed data, and outputting results of the searching step.

33 Claims, 15 Drawing Sheets

() Processor 604 J 600

Secondary Memory 610

() Main Memory 605

Communication
infrastructure

808

Hard disk drivs 612

Removable Storage Drive Removable
84 Storage Unit 615

Rernowable
terface 62 - - - Storage Unit 622

82S

Communications -: () terface 624
Communications Path 826

US 8,126,895 B2 Sheet 1 of 15 Feb. 28, 2012 U.S. Patent

N
00||

U.S. Patent Feb. 28, 2012 Sheet 2 of 15 US 8,126,895 B2

8

S.

US 8,126,895 B2 Sheet 3 of 15

999

Feb. 28, 2012

uue16oud uoueas

U.S. Patent

US 8,126,895 B2 Sheet 4 of 15 Feb. 28, 2012

007

U.S. Patent

US 8,126,895 B2 Sheet 5 of 15 Feb. 28, 2012 U.S. Patent

96 0 || ||

* [AT]ae

069

U.S. Patent Feb. 28, 2012 Sheet 6 of 15 US 8,126,895 B2

Processor 604 J 600

Main Memory 605

Secondary Memory 610

Communication
Infrastructure

606

Hard Disk Drive 612

Removable
Storage Unit 615

Removable Storage Drive
614

Removable
interface 620 - - - - - - - - Storage Unit 622

Communications
interface 624

Communications Path 626

FIG. 6

U.S. Patent Feb. 28, 2012 Sheet 7 of 15 US 8,126,895 B2

700

702
Index stored data without interrupting

use of the stored data

Synchronize the indexed data with 704
data stored subsequent to the indexing

Step

706
Search at least one of the indexed
data and the synchronized data

708

Output results of the searching step

FIG. 7

U.S. Patent Feb. 28, 2012 Sheet 8 of 15 US 8,126,895 B2

800

Has a
GO to previous indexing - synchronizing

operation been Step 902
completed?

806

Continue indexing TO
Did it start? from last data or step

file indexed 902

810
ls

indexing based on
categories?

Index using
Category-based

technique

814
s

indexing based
priority?

Index using
priority-based
technique

818
ls Index using

indexing using Compression
compression? based technique

822
s

indexing using
language?

index using
language-based

technique

Perform indexing

FIG. 8

6 "SDH

US 8,126,895 B2

Z06

U.S. Patent

906

U.S. Patent Feb. 28, 2012 Sheet 10 of 15 US 8,126,895 B2

Has
notification been

received?

Compare indexed
messages to storage
device messages and

index changes

FIG. 10

U.S. Patent Feb. 28, 2012 Sheet 11 of 15 US 8,126,895 B2

906 O 6

Has a
message in the
storage device

changed?

Compare storage
device message(s) to
indexed message(s)
and index changes 1102

a time perio
passed?

F.G. 11

U.S. Patent Feb. 28, 2012 Sheet 12 of 15 US 8,126,895 B2

1200
Has

Move or
deletion
OCCurred?

1202

properties of
message be
determined?

NO

1204

Determine properties
of message

Use determined properties to
find indexed message and

Stored message

Compare stored and indexed
messages and index changes

Use incremental change
synchronization

F.G. 12

U.S. Patent Feb. 28, 2012 Sheet 13 of 15 US 8,126,895 B2

Have
any notifications been

dropped?

Perform folder-to
folder synchronization

FIG. 13

U.S. Patent Feb. 28, 2012 Sheet 14 of 15 US 8.126,895 B2

91

HaS
application recently

launched?

Synchronize n
modified message
based on time of
modification of

message

Are
there more
messages?

F.G. 14

U.S. Patent Feb. 28, 2012 Sheet 15 Of 15 US 8,126,895 B2

ls network Online?

Perform a
Synchronization

method

F.G. 15

US 8, 126,895 B2
1.

METHOD, APPARATUS, AND COMPUTER
PROGRAM PRODUCT FOR INDEXING,
SYNCHRONIZING AND SEARCHING

DIGITAL DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

The application claims benefit under 35 U.S.C. S 119(e) to
U.S. Provisional Application No. 60/616,925, filed Oct. 7,
2004, which is incorporated by reference herein in its entirety.

COPYRIGHTS AND TRADEMARKS

A portion of the disclosure of this patent document con
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever. Various terms and icons in the figures may be
trademarks or registered trademarks of this or other compa
1CS

BACKGROUND

1. Field of the Invention
The present invention is related to searching digital data.
2. Related Art
As the use of email and email software packages have

become more engrained in our daily lives, the amount of
information received and stored by the software packages has
increased dramatically. Most people now rely on their email
Software systems to communicate and keep track of every
aspect of their lives through email, calendars, tasks, appoint
ment, address books, etc. As the information grows in each of
these, it has become harder and harder to find desired infor
mation in a timely manner. While most of these packages
come with FIND functions, they are typically not robust
enough to quickly find information, and sometimes cannot
find the information at all if the user has forgotten specifics
about what the information contains. Currently, no known
search engines are specifically designed for real time Syn
chronization of indexed and/or underlying data, or specifi
cally designed to search an email product, while being inte
grated with the email product.

Therefore, what is needed is a system, method and com
puter program product that allows for more effective search
ing of large amounts of digital information.

SUMMARY

An embodiment of the present invention provides a method
comprising the following steps. Indexing Stored data without
interrupting use of the stored data. Synchronizing the indexed
data with data stored Subsequent to the indexing step. Search
ing at least one of the synchronized data and the indexed data.
Outputting results of the searching step.

Another embodiment of the present invention provides a
system comprising a controller, at least one storage device, a
graphical user interface, and a search module. The storage
device stores initial data, indexed data, and synchronized data
under control of the controller. The graphical user interface is
controlled by the controller and enables a user to enter search
commands. The search module searches at least one of the
indexed data and the synchronized data. The graphical user
interface displays the results of the search module.

10

15

25

30

35

40

45

50

55

60

65

2
In a further embodiment, the present invention provides a

computer program product comprising a computer useable
medium having computer program logic recorded thereon for
controlling at least one processor, the computer program
logic comprising computer program code modules that per
form operations similar to the above-mentioned method and
system embodiments.

Further embodiments, features, and advantages of the
present inventions, as well as the structure and operation of
the various embodiments of the present invention, are
described in detail below with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and form a part of the specification, illustrate one or
more embodiments of the present invention and, together
with the description, further serve to explain the principles of
the invention and to enable a person skilled in the pertinentart
to make and use the invention.

FIG. 1 shows a system, according to one embodiment of
the present invention.

FIG. 2 shows an EMAIL window including search pro
gram command areas on a toolbar, according to one embodi
ment of the present invention.

FIG. 3 shows a search window, according to one embodi
ment of the present invention.

FIG. 4 shows a search window, according to an alternative
embodiment of the present invention.

FIG. 5 shows a display of a user system, according to one
embodiment of the present invention.

FIG. 6 shows an exemplary computer system for perform
ing operations associated with a search program, according to
one embodiment of the present invention.

FIG. 7 shows a flowchart depicting a method, according to
one embodiment of the present invention.

FIG. 8 shows a flowchart depicting an indexing method,
according to one embodiment of the present invention.

FIG. 9 shows a flowchart depicting a synchronization
method, according to one embodiment of the present inven
tion.

FIG. 10 shows an exemplary notification based method,
according to one embodiment of the present invention.

FIG. 11 shows an exemplary non notification based syn
chronization method, according to one embodiment of the
present invention.

FIG. 12 shows an exemplary deleted/moved message syn
chronization method, according to one embodiment of the
present invention.

FIG.13 shows an exemplary dropped notification synchro
nization method, according to one embodiment of the present
invention.

FIG. 14 shows an exemplary post application launch based
synchronization method, according to one embodiment of the
present invention.

FIG. 15 shows an online/offline synchronization method,
according to one embodiment of the present invention.
The present invention will now be described with reference

to the accompanying drawings. In the drawings, like refer
ence numbers may indicate identical or functionally similar
elements. Additionally, the left-most digit(s) of a reference
number may identify the drawing in which the reference
number first appears.

US 8, 126,895 B2
3

DETAILED DESCRIPTION

I. Overview
II. Exemplary Environment and Display Windows
III. Exemplary Computer System
IV. Exemplary Operations

A. Overall Method(s)
B. Indexing Method(s)
1. Category Based Indexing
2. Priority Based Indexing
3. Compression Based Indexing

a. Stemming
b. Phonetic Coding
c. Levenshtein distance

4. Language Based Indexing
5. Default Indexing

V. Synchronization Method(s)
A. Notification Based Synchronization
B. Non Notification Based Synchronization
C. Deleted/Moved Message Based Synchronization
D. Dropped Notification Based Synchronization
E. Post Application Launch Based Synchronization
F. Online and Offline Based Synchronization

VI. Exemplary Additional or Alternative Aspects of the
Embodiment(s)
VII. Conclusion

I. OVERVIEW

While specific configurations and arrangements are dis
cussed, it should be understood that this is done for illustrative
purposes only. A person skilled in the pertinent art will rec
ognize that other configurations and arrangements can be
used without departing from the spirit and scope of the
present invention. It will be apparent to a person skilled in the
pertinent art that this invention can also be employed in a
variety of other applications.
One or more embodiments of the present invention provide

a digital data (e.g., email data, stored data, messages, folders,
files, etc., which are all used interchangeably throughout)
search module that is, for example, downloadable onto a local
computer via, for example, a computer readable medium, the
Internet from a website, or through other known methods.
Once downloaded onto the local computer, the search module
is installed and then associates itself with one or more other
programs already on the local computer. Once installed and
opened, the search module has several functions and opera
tions, for example, a building and maintaining an index func
tion (e.g., indexing and synchronizing) and a searching func
tion.

For example, the search program can build an index of
digital data, which can allow for very rapid textual searches
against the index. Then, the search program can maintain the
index through synchronizing changes to the stored data or
adding newly stored data to the index. When it is said herein
that a data object in the storage device is compared to a data
object in the index, it is meant that the data object in the
storage device is compared to corresponding and/or related
index information in the index. The indexed based searching
function can allow for more efficient and effective searching
of digital data on or associated with the local computer, for
example, searching of emails, previously viewed website
addresses, files, folders, calendars, address books, contacts,
appoints, documents, etc. that may be stored locally or
remotely via a wired or wireless network.

In one example, the index based searching allows for
searching in five one hundredths of a second. However, actual

10

15

25

30

35

40

45

50

55

60

65

4
performance will vary based on a number of factors, includ
ing but not limited to hardware configuration.

Also, in one example, an autocomplete function allows for
autocompletion against both what may have been previously
searched and/or what the user may be looking for based on
indexed data.
The search program allows for instant search of digital

data, for example, but not limited to, email data, website
addresses, etc. In the email example, as an overview, the
search program builds an index of the user's saved mail, and
then allows for the ability to search gigabytes of data and
quickly obtain results, often in a few hundredths of a second
or less.

II. EXEMPLARY ENVIRONMENT AND
DISPLAY WINDOWS

FIG. 1 is an exemplary environment 100 according to one
embodiment of the present invention. In environment 100,
one or more user systems 102 (either wired or wireless sys
tems that can be handheld, portable, or stationary) include at
least a CPU 112, a storage device 118 and a display 110. In the
example of FIG.1, an email program 114 and browser 116 are
executing in the user system 102. The user system 102 is
connected to the Internet 108.
The user system 102 also includes a search module 104 and

search indexes 120. According to embodiments of the inven
tion, the search module 104 can be integrated and/or associ
ated with other programs, such as but not limited to the email
program 114 and the browser 116.
An index, e.g., each of search indexes 120, is a collection of

indices each having a set of fields. For example, the fields for
email messages can be, but are not limited to, Subject, body,
from, to, cc, bcc, logical fields for type of message, size,
attachments (yes or no), last modified date, and internal fields
Such as long term entryid, record key, search key, folder id,
etc. Other fields can also be used. Fields for email as well as
other data types will be apparent to persons skilled in the
relevant art(s). These fields (or combinations thereof) can be
indexed and used for searching. For example, a user can either
chose to search a set offields for a text search or search across
all fields.
One function of search module 104 is to detect when an

action has occurred to an object in a store, Such as storage 118,
and thenact on that action in order to interrogate the object for
its properties to properly index and/or synchronize the object
for future searching.

In one example, search module 104 may be based on a
C-LUCENE portion of an open source search engine called
LUCENE that utilizes a JAVA library for indexing text.

In one example, email searching leverages additional
structure found in an email, as compared to searching a
webpage or other free-form data. For example, an embodi
ment of the invention enables searching in a number of field,
Such as to, from, cc. bcc, Subject, body, etc. Also, email
searching involves searching of all aspects of an email prod
uct, such as tasks, appointments, calendar, address book, etc.
(hereinafter all are collectively referred to as messages,
unless otherwise discussed).

In one example, search module 104 is designed to integrate
with MICROSOFT OUTLOOKR (“Outlook”), while in
other examples the search module 104 will integrate with
MICROSOFT OUTLOOK EXPRESSR (“Outlook
Express'), the Start button on the MICROSOFT WIN
DOWS(R) taskbar, INTERNET EXPLORER(R) (IE), instant
messaging clients, as well as other products.

US 8, 126,895 B2
5

In one example, integration involves two aspects: (1) user
interface integrated with an underlying client, and (2) Syn
chronizing the indices or objects in the index with the under
lying data store (e.g., folders and messages) in current or real
time (e.g., wheneveran action occurs within a message store).
This latter aspect is more challenging because of the varied
notification methodology each underlying email client uses
when messages are created, sent, received, moved, copied,
deleted, renamed, draft, resaved draft, etc. for different types
of folders, for example, private, public, etc.

It is to be appreciated that the elements in environment 100
and/or user system 102 are only exemplary and more or less
elements could be used based on a desired configuration of
the user. Also, while user system 102 is shown as being in a
single location or product, the parts might be coupled together
from one or more remote locations. Further, additional
peripheral elements may be connected to environment 100
and/or user system 102, as would be appreciated by a skilled
artisan upon reading and understanding this description. All
these combinations and permutations are contemplated
within the scope of the present invention.

FIG. 2 shows a window 200 associated with email product
114 as seen on display 110, according to one embodiment of
the present invention. Window 200 includes a toolbar 220 that
has a command button 222 for the search module 104, as well
as buttons for functions associated with the search module
104, such as approve 224 and block 226 related to spam
filtering. The toolbar 220 also includes a search box 228.
Some of the functions and operations associated with this
window are discussed below, while the operation of others
will be apparent to persons skilled in the art based on the
teachings contained herein.

FIG. 3 shows a search window 300, according to one
embodiment of the present invention. The search window 300
includes a search results window 336. This embodiment of
the invention displays, for each completed search, an ICON
representing the area searched (i.e., EMAIL, WEB, PAGES
IVE SEEN, MY COMPUTER, IM, etc.), FROM, TO, SUB
JECT, DATE, and OTHER (some of these fields may not
apply to all objects found by a given search). There are also
Scroll bars 332 within the window 300. Some of the functions
and operations associated with this window are discussed
below, while the operation of others will be apparent to per
Sons skilled in the art based on the teachings contained herein.

FIG. 4 shows search window 400, according to another
embodiment of the present invention. Search window 400
includes a tool bar 440 associated with search module 104
that includes a search area 442 and search choices 446
EMAIL, WEB, PAGES I'VE SEEN, MY COMPUTER, and
IM. The search choices 446 enable a user to search in one or
more of these areas. Search results are displayed in a search
results window 444. This embodiment of the invention dis
plays, for each completed search, the TYPE (i.e., whether the
hit was in EMAIL, WEB, PAGES I'VE SEEN, MY COM
PUTER, IM, etc.), SUBJECT (for example, the file name or
an excerpt of the identified object), DATE, FOLDER, and
SIZE. The results window 444 may also display the number
ofhits in each area (for example, 123 hits in email, 1,234,344
hits on the Web, 2 hits in IM, etc.).

The results window 444 also allows the user to perform the
same search (or different searches) in any of the other areas
446. For example, the user may perform an email search, and
then perform the same search on the Web by clicking the
corresponding search choice 446.

In some embodiments, the search module 104 displays in
Summary form the results (perhaps just counts) of the same
search in other areas. For example, ifa user searches a certain

10

15

25

30

35

40

45

50

55

60

65

6
text string in an email client, Summary results (number of
hits) of the same search in IM, Internet, Internet email, and
desktop data may also be displayed in the results window 444,
along with links to enable the user to easily perform the
searches.

Search results can also include other links relevant to the
search. For example, search module 104 can detect informa
tion relevant to the search or the search results, such as an
address in the message or a contact, and provide a link to a
map. In another example, search module 104 can detect infor
mation about a flight in an email message search result and
provide a link to a flight tracker. In yet another example, the
search program can detect information about a company in a
contact or an email message search result and provide a link
to the company or stock information. These links can be based
on contact, patterns, words, symbols, formats of information,
etc., either found in a search string or the search results. The
links can also be based on a profile of a user.

In some embodiments, the results window 444 displays
advertisements. The ads are chosen based on a number of
factors, such as the search, content of the results, a profile of
the user, etc., or combinations thereof. For example, if an
email message includes a question to another person regard
ing a topic, the ads can include information regarding that
topic.
The invention enables search results to be displayed using

simple text, or in HTML. In embodiments, search results
across all search areas are displayed in either simpletext form
or HTML. Using a common format enables the advertise
ments to be unobtrusively integrated into the search results,
thereby increasing the possibility that users will peruse and/or
click-through the advertisements from one search area to the
next (desktop, email, browser history, etc.).

FIG. 5 shows an example display 110 having a number of
open windows each corresponding to one or more active
programs, including an EMAIL window 550, an EMAIL
message window 560, a BROWSER window 570, and a WEB
PAGE window 580. According to embodiments of the inven
tion, the search module 104 can be integrated with these, as
well as other, applications.

In particular, each open window 550, 560, 570, and 580
includes a toolbar including a searchbox 590 associated with
search module 104. Also, a desktop toolbar 595 includes a
search box 590 associated with search module 104. In the
example of FIG. 5, the desktop toolbar 595 is located next to
the operating system START button.

According to an embodiment of the invention, search
boxes 590 (i.e., the search module 104) are integrated with
these applications (for example, the email program 114 and
the browser program 116) by utilizing the application pro
gram interfaces (APIs) of the applications. While APIs differ
from program to program, the use of Such APIs to integrate
different programs is well known.

In an embodiment, the context or location of the searchbox
590 identifies the default area in which searches initiated from
that search box are directed. For example, searches initiated
in the EMAIL window 550 are performed among email data.
More particularly, in Outlook and Outlook Express, search
boxes 590 will default to searching email (and other PIM data
Such as contacts, appointments, etc.). Similarly, search boxes
590 in IE will default to searching the web and/or browser
history (previously displayed pages), and the search box in
the desktop toolbar 595 will search files in the local computer.
Search boxes 590 used to search the Internet can be config
ured by the user to search using one or more particular search
engines, such as GOOGLE, YAHOO, etc. Each search box
590 also enables searching in other areas via pop-up or drop

US 8, 126,895 B2
7

down windows, such as window 592. Alternatively, the user
can select the area to search by selecting among icons dis
played next to the search boxes 590 (not shown in FIG. 5),
where the icons correspond to the different search areas. Also,
the user may change the default search area settings of the
Search boxes 590.

It is to be appreciated that the user interface windows of
FIGS. 3-5 are merely examples. Windows having different
options and/or different layouts will be apparent to persons
skilled in the relevant art(s) based on the teachings contained
herein. All Such permutations and combinations are contem
plated and within the scope of the present invention.

III. EXEMPLARY COMPUTER SYSTEM

Embodiments of the invention described herein can be
implemented using well known computers, such as the
example computer 600 shown in FIG. 6.
The computer 600 includes one or more processors 604.

Processor 604 can be a special purpose or a general purpose
digital signal processor. The processor 604 is connected to a
communications infrastructure 606 (for example, a bus or
network).

Computer system 600 also includes a main memory 605,
Such as random access memory (RAM), and may also include
secondary memory devices 610. The secondary memory
devices 610 may include, for example, a hard disk drive 612
and/or a removable storage drive 614, representing a floppy
disk drive, a CD drive, a DVD drive, a magnetic tape drive, an
optical disk drive, etc. The removable storage drive 614 reads
from and/or writes to a removable storage unit 615 in a well
known manner. Removable storage unit 615 represents a
floppy disk, magnetic tape, optical disk, CD, DVD, etc. As
will be appreciated, the removable storage unit 618 includes
a computer usable storage medium having stored therein
computer Software and/or data.

In alternative implementations, secondary memory 610
may include other similar means for allowing computer pro
grams or other instructions to be loaded into computer 600.
Such means may include, for example, a removable storage
unit 622 and an interface 620. Examples of such means may
include a program cartridge and cartridge interface (such as
that found in video game devices), a removable memory chip
(such as an EPROM or PROM) and associated socket, etc.
Computer system 600 may also include a communications

interface 624. Communications interface 624 allows software
and data to be transferred between computer system 600 and
external devices. Examples of communications interface 624
may include a modem, a network interface (Such as an Eth
ernet card), a communications port, a PCMCIA slot and card,
wireless communication interfaces, etc. Software and data
transferred via communications interface 624 are in the form
of signals 658 (electromagnetic, optical, etc.) capable of
being received and/or transmitted by communications inter
face 624. These signals 624 traverse a communications path
or medium 626. Communications path 626 carries signals
625 and may be implemented using wire or cable, fiber optics,
a phone line, a cellular phone link, a wireless link, an RF link
and/or other communications channels.

Computer programs (also called computer control logic)
are stored in main memory 608 and/or secondary memory
610. Computer programs may also be received via commu
nications interface 624. Such computer programs, when
executed, enable the computer system 600 to implement the
functions of the invention as discussed herein.

Articles of manufacture in which computer programs are
stored, such as main memory 605, secondary memory 610,

10

15

25

30

35

40

45

50

55

60

65

8
signals 625, etc., are herein called "computer program prod
ucts.” Such computer program products include a computer
readable or useable medium in which computer programs are
stored. The computer programs, when executed, cause pro
cessor(s) 604 to perform the features and functions of the
invention described herein. The invention is also directed to
Such computer program products having stored therein soft
ware that enables computer(s) to perform the functions
described herein.

IV. EXEMPLARY OPERATIONS

A. Overall Method(s)
FIG. 7 is a flowchart depicting a searching method 700

according to an embodiment of the present invention. The
searching method 700 is performed by the search module 104
executing in the user system 102.

In step 702, the search module 104 indexes data stored in
the storage device 118. The resulting indices form part of the
search indexes 120. The data indexed by the search module
104 in this step includes, but is not limited to, emails, calen
dars, tasks, appointments, address books, documents and
other files or data objects stored in the user system. Such data
is stored in storage device 118, which in implementation may
be one or more devices either local or remote (i.e., over a
network) to computer system 102. According to embodi
ments of the invention, the indexing of step 702 is performed
without interrupting access or use of the data in storage device
118.

In step 704, the search module 104 synchronizes the
indexed data with any changes to the data in the storage
device 118 subsequent to operation of the indexing step 702.
This synchronization step allows for real-time updates to
indexed objects to account for any changes that may have
occurred to the stored data since indexing the stored data, e.g.,
deleting, moving, revising, etc, or to add any newly stored
data to the index. This will allow for a later quick and accurate
search on the indexed data, without having to completely
re-index the entire data store of storage device 118. As dis
cussed above, when it is said herein that a data object in the
storage device is compared to a data object in the index, it is
meant that the data object in the storage device is compared to
corresponding and/or related index information in the index.

In step 706, the search module 104, in accordance with
search requests issued by the user, uses the search indexes 120
to search either the indexed data or the synchronized data. For
example, after the initial indexing, searches would be per
formed on the indexed data of step 702. However, if all or
some of the indexed data has also been further processed
through the synchronization step 704, the search would be
performed on the indexed data and any data that has Subse
quently been synchronized.

In step 708, the search module 104 displays the results of
the search operation(s) performed in step 706.

According to embodiments of the invention, steps 706 and
708 can be performed during the indexing step 702 and/or
during the synchronizing step 704.
Example user interfaces used during performance of steps

706 and 708 are shown in FIGS. 2-5, described above.
B. Indexing Method(s)
Step 702 of FIG. 7, the indexing step, shall now be

described in greater detail.
In order to allow for fast searching of stored data, e.g.,

email, search module 104 first builds and then maintains an
index of all of the user's stored data, e.g., email and other PIM
(personal information manager) data including appoint
ments, contacts, tasks, notes, journal entries, etc. (hereinafter,

US 8, 126,895 B2
9

all referred to as messages). Maintaining the index is per
formed through one or more of the synchronization processes
(step 704) described throughout. In one example, the building
and maintaining of the index is performed without interrupt
ing use of the stored data, if a user so desires.
One concern for indexing is minimal annoyance to the user,

while allowing for a later faster and more effective search.
Reducing annoyance can be based on when indexing is done
and/or how indexing is done. In other words, text indexing
systems have a trade-off between fast reads and fast writes. In
one example, search module 104 is optimized for fast writes
when building the initial index. Search module 104 also does
fast writes when updating the index, i.e., performing synchro
nization. Search module 104 incurs the cost of optimizing the
index for fast reads when the user is idle.

FIG. 8 is a flow chart depicting an indexing method 800,
according to one embodiment of the present invention.
Method 800 represents an embodiment of step 702 of FIG. 7.

In step 802, a determination is made whether a previous
indexing operation has completed. If yes, the entire data store
in storage device 118 is not re-indexed. Instead, the existing
indexes 120 are augmented/updated via synchronization
(step 704), which is described in greater detail below with
reference to flowchart 900 in FIG. 9. If no, in step 804 a
determination is made whether a previous indexing operation
has started, but not completed. If yes, in step 806 the previous
indexing operation is re-initiated from the last stored data
indexed. Step 806 involves performance of step 902, illus
trated in FIG. 9 and described below.

If no at step 804 (no indexing has started), indexing is
started. Indexing can performed using any well known tech
niques, e.g., using categories, prioritizing files or folders,
compressing data, etc. Select techniques for indexing are
described in more detail below, although it should be under
stood that the invention is not limited to the indexing embodi
ments described herein. Again, if no at step 804, method 800
moves onto one or more of steps 808, 812, 816, 820, and 824
described below.

1. Category Based Indexing
In step 808 a determination is made whether indexing will

be performed using a category-based technique. If no.
method 800 moves to step 812. If yes, at step 810 the stored
data is indexed using categories. Category-based indexing is
well known, and shall not be described herein except as
follows. In this embodiment, indexing is enhanced when
search criteria are used to set the parameters for the indexing.
For example, what is indexed (what categories are used) and
how the messages are interrogated (what processing is done
to the text) contribute to forming indexed categories that are
more susceptible to better, more effective, and faster search
1ng

2. Priority Based Indexing
In step 812 a determination is made whether indexing is

based on prioritizing the stored data. If no, method 800 moves
to step 816. If yes, at step 814 the stored data is indexed using
a priority-based technique. Priority-based indexing is well
known, and shall not be described herein except as follows. In
one example, when search module 104 builds the initial
index, search module 104 starts with the folder most likely to
be searched first by the user. For example, with respect to the
EXCHANGE email software client, search module 104 starts
with the Contacts folder first, and Inbox next, since these are
heavily used by users. The folder most likely to be searched
first can be preset as: known important folders, folders with
the most last modified messages, etc. Then, folders with the

10

15

25

30

35

40

45

50

55

60

65

10
least messages are indexed, and so on. The public, SPAM
(e.g., bulk, junk, etc.), and deleted folders can be indexed last,
if at all.

It is to be appreciated that other priority-based indexing
techniques can also be used, as are defined by individual
user's preferences.

3. Compression Based Indexing
In step 816 a determination is made whether the indexing

will be performed using compression of the stored data. If no.
method 800 moves to step 820. If yes, at step 818 the stored
data is indexed using a compression-based technique. Com
pression-based indexing is well known, and shall not be
described herein except as follows. Compression-based tech
niques are useful because they often decrease the amount of
information indexed. This is of particular importance with the
present invention, where the data set to be indexed can include
many fields, such as Subject, body, from, to, cc. bcc, type,
attachment, last modification date, long term entryid, record
key, search key, folder id, etc. According to embodiments of
the invention, a number of compression-based techniques can
be used, including but not limited to stemming, phonetic
coding, and Levenshtein distance techniques, which are
described below. Indices for the compressed data are typi
cally kept in their own fields in the index separate from any
other indices related to the data in its uncompressed form

a. Stemming
When using stemming, the search module 104 identifies

the stems of search terms input by the user, and then performs
the search using both the search terms and their respective
stems. For example, the stem of running is run. The stem of
ran is also run. Stems can be identified using well known
algorithms, dictionaries, or a combination of both. Stemming
is well known, and shall not be described herein except as
follows.
When Stemming is used for compression-based indexing,

search module 104 uses word stemming for fields that are
likely to contain normal words and sentences, but not for
fields that are less likely to contain normal words and sen
tences. This is most important in languages having nouns that
stem, e.g., German. According to an embodiment, the Subject
and body fields are stemmed. Otherfields that do not typically
contain data that is useful to stem are not stemmed (for
example in email, To, From, Name. Address, PhoneNumber,
and Category are typically not stemmed).

In one example, during the indexing step 818, search mod
ule 104 keeps the stems in separate fields of the search indexes
120 so that the original word positions are maintained.
Accordingly, when performing searches, the search module
104 is aware when it has an exact match, or when it has
matched a stem. In embodiments, search module 104 estab
lishes a section/separate field of the index 120 that only saves
messages including stems of words to make searching faster.
However, a user always has the option to search all full
messages and not just the stems. Thus, a user may be given the
option to search stems only or entire messages. For example,
when autocomplete is being used (described further below), a
user may want to autocomplete against full terms, and not
StemS.

b. Phonetic Coding
Phonetic coding is well known, and shall not be described

herein except as follows.
When phonetic coding is used for compression-based

indexing, search module 104 uses phonetic coding on fields
that contain words and names (e.g., name, addresses, Subject,
body, etc.). For example, Anderson, Andersen, Andersin, etc.,
as well as soundex, metaphone, double metaphone, are
examples of phonetic coding algorithms. It is to be appreci

US 8, 126,895 B2
11

ated that different algorithms can be used based on the lan
guage of the data store in the storage device 118. Phonetic
coding allows for later fuZZy matches on misspelled words
and names. For example, the search module 104 will use
words that sound alike to index into phonetic fields. Search
module 104 also allows for both a field of phonetic coded data
to be saved along side of all data from a message so that a user
has the option of searching the compressed data as well as the
full data.

c. Levenshtein Distance
Levenshtein distance techniques are well known, and shall

not be described herein except as follows.
When Levenshtein distance is used for compression-based

indexing, search module 104 uses Levenshtein distance to
handle misspellings. Levenshtein distance is a measure of the
similarity between two strings, which we will refer to as the
Source string (S) and the target String (t). The distance is the
number of deletions, insertions, or Substitutions required to
transforms into t. For example, if “s' is “test” and “t is “test”,
then LD(s,t)=0, because no transformations are needed. The
strings are already identical. In another example, if 's' is
“test” and “t is “tent, then LD(s,t)=1, because one substitu
tion (change's to “n”) is sufficient to transforms into t. The
greater the Levenshtein distance, the more different the
strings are. This is a way to do string matching with errors. It
does not rely on stems or phonetics. Instead, it is just the
number of edits that need to be made to turn one string into
another string, i.e., changes to individual characters in a word.
Use of Levenshtein distance is effective for catching typo
graphical errors, and is useful for all fields.

4. Language Based Indexing
In step 820 a determination is made whether the indexing

will be language-based. If no, method 800 moves to step 824.
If yes, search module 104 in step 822 detects the language
(e.g., English, German, French, etc.) of the data object being
indexed, and indexes the data object using indexing algo
rithms specific to that language. Step 822 is performed using
language specific indexing parameters (Stemming, phonetic
coding, etc.). Language-based indexing is well known, and
shall not be described further.

5. Default Indexing
If no at steps 804, 808, 812, 816, and 820, i.e., indexing has

not started and indexing will not involve categories, priorities,
compression or language, then at step 824 indexing is per
formed by storing indices relating to the data objects from
storage device 118 into index 120.

It is to be appreciated that the order of steps 808/810,
812/814, 816/818, and 820/822 can be changed, so long as
these steps occur before default indexing is performed at Step
824. Thus, it is to be appreciated that other techniques can be
used to interrogate messages in order to index the messages as
desired, as would be apparent to one skilled in the art upon
reading and understanding this disclosure.

In one example, the present invention includes two sepa
rate indices, one for folders and one for individual messages.
Each index is updated and/or synchronized against an actual
folder or message store.

In one example, folders inherit the index status of their
parent if copied within a same area as parent. If the folder is
moved, the folder can keep the index status of a previous
position.

V. SYNCHRONIZATION METHOD(S)

Step 706 of FIG. 7, the synchronization step, shall now be
described in greater detail. While the following is presented in

10

15

25

30

35

40

45

50

55

60

65

12
the context of email messages, these embodiments are gen
erally applicable to any type of data objects.
As discussed above, after the initial indexing step 702 is

completed, the indexed data in indexes 120 is maintained or
synchronized to include Subsequent changes to the stored
data in storage device 118. Such operation is performed in the
synchronization step 704.
As discussed, changes can be, but are not limited to, addi

tions, deletions, modifications, moves, etc., occurring to data
and/or folders in the storage device 118 from one time period
to a subsequent time period. The synchronization step 704
operates generally as follows. The data objects associated
with stored data in storage device 118 is compared to data
objects in the index 120 to determine ifa change has occurred.
If a change has occurred, the index 120 is updated to reflect
that change. Also, data object associated with folders includ
ing multiple pieces of data in the storage device 118 are
compared to data objects of the folders in the index 120. If
contents of the folders have changed, the index 120 is updated
to reflect those changes.

FIG. 9 shows a flowchart depicting a synchronization
method 900, according to one embodiment of the present
invention. Synchronization method 900 can occur during step
704 discussed above.

In step 902, a determination is made whether synchroniza
tion has occurred within a specific time period. If yes, then it
is not necessary to synchronize the search index 120, and the
method 900 remains at step 902. The length of the time period
is implementation specific, and may be adjusted by the user in
Some embodiments.

If no in step 902, then method 900 moves to one or more of
steps 904 (Notification Based Synchronization), 906 (Non
Notification Based Synchronization), 908 (Deleted/Moved
Message Based Synchronization), 910 (Dropped Message
Based Synchronization), 912 (Application Launch Based
Synchronization), and 914 (Time Based Synchronization),
which are each discussed in more detail below.

A. Notification Based Synchronization
In step 904, when an underlying software program allows

for files, messages, or folders to notify search module 104 that
an event has occurred, notification based synchronization is
performed.

FIG.10 shows an exemplary notification based method that
can occur during step 904, according to one embodiment of
the present invention. In step 1000, a determination is made
whether a notification has been received from a software
program. If no, method 904 remains at step 1000. If yes, in
step 1002 search module 104 compares data objects associ
ated with the notifications with corresponding data objects in
storage device 118 to identify changes—the search module
104 then reflects those changes in the index 120. Then,
method 904 returns to step 1000.

In notification based synchronization, for an email
example, search module 104 tracks notifications for changes
to the indexed messages. Search module 104 can provide
Support for create, delete, update, move, and copy operations.
Once a notification is received by the search module 104,
synchronization is performed. In one example, by waiting a
short period before processing a notification, search module
104 can avoid doing unnecessary processing. For example,
Suppose an email arrives into the user's inbox, and then a rule
moves the email from the inbox to a folder. If the search
module 104 immediately processed the arrival of the email
into the inbox, search module 104 would then have to also
process the move of the email from the inbox to the folder. By
waiting a short time, search module 104 need only update the
index 120 to reflect the email in the folder.

US 8, 126,895 B2
13

For an example using OUTLOOK, all notifications related
to local personal folders contain a stable long-term identifier,
entryid, that can be used by search module 104 to find the
corresponding message in the index 120. Thus, it relatively
easy to update index 120 and link to messages in local per
Sonal folders. Also, the long-term entryid allows search mod
ule 104 to find a given message, as well as all various prop
erties of the message. In embodiments, every time search
module 104 requests a message from the index 120 using
entryid, it should always receive the same message. Thus,
search module 104 can easily update (synchronize) the index
120 based on the notifications.

B. Non Notification Based Synchronization
In step 906, when an underlying software program does not

allow for files, messages, or folders to notify search module
104 that an event has occurred, non-notification based syn
chronization is performed.

FIG. 11 shows an exemplary non-notification based syn
chronization method that can occur during step 906, accord
ing to one embodiment of the present invention. In step 1100,
a determination is made whether one or more data objects in
storage device 118 have been changed. If yes, search module
104 compares the changed data object in storage device 118
with the corresponding data object in index 120 to synchro
nize the data objects and indexed the changes. Thereafter, the
method 906 returns to step 1100. If no in step 1100, at step
1104 a determination is made whether the system 102 has
been idle. If yes, method 906 moves to step 1102. Ifno, in step
1106 a determination is made whether a specified time period
has passed. If yes, method 906 moves to step 1102. If no.
method 906 moves to step 1100.

For example, OUTLOOK EXPRESS has no notification
scheme. In non-notification based synchronization, search
module 104 monitors underlying data files in order to index
and synchronize.

Public folders typically do not provide notifications, so
search module 104 can use incremental change synchroniza
tion (ICS) or other synchronization algorithms to find
changes there. For example, during ICS search module 104
asks the EXCHANGE store what has been changed since the
last request, and the added, created, and deleted messages can
be determined. This can be used to determine what message
was removed from message store, and the index 120 can then
be appropriately updated. This is most helpful with the back
side or source side of moves and deletes, which are discussed
in more detail below.

In an example using public folders, which as noted above
typically do not provide notifications, synchronization can be
performed either periodically or when the system 102 is idle.
Alternatively, the public folder can be interrogated using the
ICS methodology discussed above.
As another example, when an EXCHANGE store has too

many messages, some notifications may not be generated.
This can occur when a user performs a great many actions at
a single time, e.g., mark all read, mark all unread, move an
entire folder, delete a lot of email at once, when saving a draft,
editing the saved draft, and resaving the draft. In one example,
when no notification is generated because of these circum
stances, synchronizing starts at the folder level and then
moves to the message level, processing all messages in a
single folderata time. Thus, the Synchronizing operations can
be delayed and then checked for a last action in time to use as
the final message to synchronize for indexing.

C. Deleted/Moved Message Based Synchronization
In step 908, when data objects have been moved or deleted,

a deleted/moved data object based synchronization method is
performed.

10

15

25

30

35

40

45

50

55

60

65

14
FIG. 12 shows an exemplary deleted/moved message syn

chronization method that can occur during step 908, accord
ing to one embodiment of the present invention.

In step 1200, a determination is made whether a move or
deletion has occurred. If no, method 908 remains at step 1200.
If yes, then in step 1202 a determination is made whether
properties of the message can be determined, where exem
plary properties are discussed below.

If no at step 1202, then at step 1204 incremental change
synchronization (ICS) is performed, which is described in
more detail below. The method then returns to step 1200.

If yes at step 1202, then at step 1206 the search module 104
determines the properties of the message.

In step 1208, search module 104 uses the properties to find
data objects related to the indexed and related stored mes
Sages.

In step 1210, search module 104 compares the related data
objects of the indexed and stored messages to what is in the
search indexes 120, and indexes the changes. Then, method
908 returns to step 1200.

For example, while the EXCHANGE message store allows
search module 104 to monitor for newly created messages,
the backside of moves (e.g., the location from which a mes
sage is moved or a moved from area) and delete notifications
use a short-term entryid that is usually no longer valid when
indexing, synchronizing, and/or searching is performed. This
short term entryid cannot be used to look up the message in
the message store or the index 120. Even though
EXCHANGE allows for conversion of short-term entryids to
long term entryids, in EXCHANGE the long term entryids
may not be unique. This short term entryid can be used for
synchronizing of create, update, copy, and destination side of
moves (moved to location) because synchronizing is usually
done timely enough by search module 104 to use this to at
least initially index the message.

In various examples, search module 104 overcomes this
inability to use short term entryids in several ways for deletes
and backsides of moves. In one example, as represented in
FIG. 12 and described above, the search module 104 looks at
other properties of the message to find the original message in
the index 120.

In an example using EXCHANGE, search module 104 can
use the PR RECORD KEY or the PR SOURCE KEY.
Since there may be duplicates in the index, search module 104
can probe the stored longterm entry id of the indexed message
to see if it is still there. For hard deletes, search module 104
can try to leverage EXCHANGE's soft delete feature. Search
module 104 can try to open the short-term entry id in the
notification using the SHOW SOFT DELETES option.
Search module 104 can also use the incremental change Syn
chronization (ICS) to get change lists from the EXCHANGE
server. As a last resort, search module 104 can synchronize
the folder in which the message was deleted. When this is
done, search module 104 will discover the message that is
missing (i.e., deleted).

In another example for deleted messages and backside of
moved messages, search module 104 can use record key
PR RECORD KEY. While PR RECORD KEY is unique
within a given message store, PR RECORD KEY may
appear in multiple stores (where each occurrence of PR RE
CORD KEY refers to a different message). Thus, search
module 104 can use a record key of the message itself, the
record key of a folder holding the message, and the last
modification date of the message to assist in indexing. Using
these three properties allows for uniquely identifying mes
sages for indexing and retrieving from the index 120, or at
least allows a message to be found and interrogated for prop

US 8, 126,895 B2
15

erties to be indexed. These three properties are found after
opening a message, and not from any notification service of
an EXCHANGE Source.

Another source to assistin Synchronizing deleted messages
and backside moves of messages is to use a soft delete func
tion (SHOW SOFT DELETE) in the EXCHANGE store.
Soft deletes do not permanently delete messages, but rather
move them to another folder (e.g., recently deleted mail),
from which they are restorable for a period of time or until a
cache is full, depending on a document retention policy.
Search module 104 can still search for these messages and
interrogate them for properties to index them even if the
message is deleted.
A still further source to assist in synchronizing deleted

messages and backside moves of messages is to use a
PR SEARCH KEY, which is a unique random number cre
ated for each message. This can be used because it copies and
moves with the message, and Survives with a destination
message. Thus, search module 104 can use a new id and a
search key to find a message, and then interrogate it for
indexing. This is not as helpful in the case of deletions, but is
helpful with backside of moves.

In a still further example, opening a new message (moved
to message), interrogating the message, obtaining the search
key, and then looking at the index to see if another message
had the search key allows search module 104 to find the
moved from or backside location of the message or the back
side message.

In a still further example, ICS can be used. As described
above, ICS asks the EXCHANGE store what has been
changed since the last request, and the added, created, and
deleted messages can be determined. This can be used to
determine what message was removed from message store,
which message and associated information can then be
deleted from the index. This is most helpful with backside or
Source side of moves and deletes.

D. Dropped Notification Based Synchronization
In step 910, when notifications are determined to have been

dropped, a dropped notification based synchronization
method is performed.

For example, EXCHANGE can sometimes drop notifica
tions. When search module 104 gets more than a threshold
rate of notifications (such threshold being implementation
dependent), search module 104 assumes that some were
dropped. In an embodiment, as a consequence, the search
module 104 synchronizes affected folders (perhaps all fold
ers).

FIG. 13 shows an exemplary dropped notification synchro
nization method that can occur during step 910, according to
one embodiment of the present invention. In step 1300, a
determination is made whether notifications have been
dropped. This can be based on one of the techniques or criteria
described below. If no, method 910 remains at step 1300. If
yes, in step 1302 folder-to-folder based synchronization is
performed between respective data objects associated with
folders in index 120 and storage device 118, which is
described in more detail below. Then, method 910 returns to
step 1300.
As discussed above, in EXCHANGE, many notifications

may not be generated when a large number of messages are
generated.
When used with other email systems, in an embodiment,

the search module 104 assumes that if a certain number of
notifications happen in a certain period of time, some notifi
cations were dropped.

For example, search module 104 can delay updates to the
index 120 when the same message has multiple changes in a

10

15

25

30

35

40

45

50

55

60

65

16
given period of time. In one example, a delay of about 0.1
seconds to about 2 seconds is used, and then only a last change
is interrogated to index the message. This can be done using
a coalescing algorithm. For example, if search module 104
detects an update, update, delete, then search module 104
indexes only the last delete. Such operation results in a reduc
tion of overhead and wasted operations.

In another example, a large number of notifications can
affect two folders of messages. This typically occurs after a
large move (folder-to-folder) or a large delete of messages. In
one example, if this occurs, search module 104 ignores indi
vidual changes, and instead looks only to folder notifications
or changes. Then, search module 104 determines the affected
folders and synchronizes data objects associated with mes
sages in those folders. This approach is effective because
search module 104 can aggregate a large number of Small
changes into a single large change. For example, if a large
number of messages are moved from one folder to another,
search module 104 synchronizes just the two folders instead
of processing all of the individual notifications.

In one example, the search module 104 performs folder
to-folder synchronization by Scanning data objects associated
with the entire list of messages in a given folder, and also
scanning the data objects associated with messages that
should be in the folder from index 120. The search module
104 compiles a list of the messages that have changed, and
updates the indexes 120 accordingly

In anther example, during folder synchronization when a
difference is found between data objects associated with data
in the storage device 118 and index 120, all messages that
were in the affected folder in the index 120 are deleted and
then updated later when message synchronization is per
formed. Also, a user can chose which folders are indexed. For
example, a user may not want a public folder, spam folder, or
deleted messages folder indexed. The user interface of search
module 104 includes a folder menu to allow the user to choose
which folders to synchronize.

It is to be appreciated that folder synchronization can also
be performed during steps 904,906,908,912, and 914.

E. Post Application Launch Based Synchronization
In step 912, when the search module 104 is relaunched (or

for Some other reason has been idle for some time), a post
application launch based synchronization method is per
formed.

FIG. 14 shows an exemplary post application launch based
synchronization method that can occur during step 912,
according to one embodiment of the present invention. In step
1400, a determination is made whether the search module 104
has been recently launched. If no, method912 remains at step
1400. If yes, at step 1402 the search module 104 selects a data
object associated with a message from a list where the mes
sages are ordered from most recently modified to least
recently modified, and then synchronizes the selected mes
sage. It is to be appreciated that any of the synchronization
embodiments described herein can be used in step 1402.

In step 1404, a determination is made whether there are
more messages from the ordered list to process. If no, method
912 returns to step 1400. If yes, then control returns to step
1402 where the next message from the ordered list is selected
and synchronized.

Post application launch based synchronization shall now
be described in greater detail.
The storage device 118 may changed during periods when

the search module 104 is not running or is otherwise inactive.
This can happen, for example, when multiple clients interact
with the storage device 118. It can also happen when the user
disables search module 104 and then enables it again later. In

US 8, 126,895 B2
17

these situations, search module 104 synchronizes shortly
after application launch to catch changes while search mod
ule 104 was idle.

In one example, two enumerators can be used for synchro
nizing after application launch: (1) a first enumerator for
information regarding a folder, or a message within a folder,
is compared to (2) a second enumerator for current informa
tion in the index 120. Synchronization is performed starting
with a last modified date of each message (most recently
modified) to an oldest modified date of a message (least
recently modified). Time periods are saved to about the hun
dredth of a nanosecond, in some examples. Although last
modified dates can be kept to about one-hundred nanosec
onds, occasionally two messages can have the same last
modified date. In this case, in one example, a secondary sort
is used through use of the record key for each message along
with a primary sort of last modified date. This is allowed
because a record key is unique across each respective mes
Sage Store.

In one example, search module 104 compares each modi
fied message in the folder/message to data in the index 120
using the last modified time. When a message is found in the
storage device 118 that is not in the index 120, it is inserted
into the index 120. When a message is found in the index 120,
but not found in the storage device 118, then it is deleted from
the index 120.

Thus, if there is a gap in the index 120 (referred to B
messages in the following examples), then a message or
folder has been added and an insertion is required in the index
120. If there is a gap in storage device 118 (referred to A
messages in the following examples), then a folder or mes
sage has been deleted and deletion is required from the index
120. This should allow an updated data object of a message to
be added to the index 120 as being new first, and then later the
original data object of a message is deleted from the index 120
because it is determined to be unmatched.

For example, Suppose A. time. 1 is a first message (i.e., most
recently modified) in the storage device 118, and B.time. 1 is
a first message in the index 120. If there is an A. time.1+n
message, but only a B.time.1+n+1 (i.e., message B.time.1+n
does not exist), then the A. time.1+n is new, and a matching
B.time.1+n is inserted into the index 120.

In another example, Suppose there is an A. time.1 and an
A. time.1+n+1, and a B.time. 1, B.time.1+n, and B.time.1+n+
1. In this case, B.time.1+n is deleted from index 120 because
A. time.1+n was missing and must have been deleted from
storage device 118.

In one example, the synchronization method for individual
messages or files is incremental in that not all messages need
to be loaded at once time. For example, search module 104
can compare A. time.1 to B.time. 1, then A. time.2 to B.time.2.
etc. By operating in this manner it is unlikely any amount of
messages will overwhelm the system.

Thus, search module 104 allows for interruptions in its
operation since it always starts synchronization at the last
modified message. Thus, it does not matter where search
module 104 discontinued its operation. Further, this allows
for easy synchronization after restarting of the email applica
tion. For example, operation of the search module 104 can be
discontinued when the email application becomes idle, and
then re-activated when the email application becomes active.

F. Online and Offline Based Synchronization
In step 914, an online and offline based synchronization

method is used when the search module 104 is operating with
an application that is connected via a network to storage
device 118 and/or index 120.

10

15

25

30

35

40

45

50

55

60

65

18
FIG. 15 shows an online/offline synchronization method

that can occur during step 914, according to one embodiment
of the present invention. In step 1500, a determination is made
whether the network is online. If no, method 914 remains at
step 1500. If yes, in step 1502 one or more of the synchroni
zation embodiments described herein are performed. Then,
method 914 returns to step 1500.
The online/offline synchronization embodiment shall now

be described in greater detail.
When OUTLOOK is used it interacts with some mail serv

ers (EXCHANGE) that store mail in a centralized repository.
Whenever OUTLOOK starts up, it connects to these mail
servers and displays the user's email in its user interface.
While there are many advantages to keeping email on a cen
tralized server, it can be inconvenient when a user is on a
computer that does not have constant access to the network or
when the server is not running for some reason. OUTLOOK,
like many other email clients, has a feature called “Work
Offline' that allows users to automatically download some or
all of their email to their local machine so that they can access
their email while offline When in offline mode, it may appear
that some of the user's folders have been deleted or emptied
of all their contents, when in reality they are simply not
accessible because the user is not connected to the server.
Conventional implementations of an indexing algorithm
would delete the information from the index for each of these
folders when the user is offline and reinsert the info whenever
the user was back online. In contrast to these conventional
programs, search module 104 operates by Scanning the con
tents of the email client’s repository and attempts to connect
to the server in some way to verify that the folder is accessible.
Then, search module 104 requests each folder for its subfold
ers. If search module 104 fails to connect with a folder, search
module 104 records this fact and ignores any differences to
any of its subfolders. In this way, search module 104 is able to
distinguish between folders that have been deleted and fold
ers that are not available because the user is in offline mode.
Search module 104 can thenavoid changing the index for any
folders that the search program 104 cannot access when
offline. Once back online, any of the synchronization meth
ods described herein can be used to synchronize data in index
120 and storage device 118.

In one example, pseudo code for synchronizing a folder list
is as follows:

// MAPI is the message store for Outlook
get list of stores and folders in them from MAPI
for each store
check for record key of last folder The search program were syncing, use
Of
Ole

found
get all folders from MAPI with (record key >= last folder's record
key)
sorted by record key
get all folders from index with (record key >= last folder's record
key)
sorted by record key
e mapi = enumerator for MAPI folders
e index = enumerator for index folders
f mapi = e mapi->next()
f index = e index->next()
while (f mapi && f index) {compare f mapi and f index's record keys
if (they're equal) check for different name?parent between the two,
update
index if necessary
if (folder not selected for indexing) delete all messages in message
index for
this folder

US 8, 126,895 B2
19

-continued

f mapi = e mapi->next()
f index = e index->next()
else if (compare showed f mapi not in index) (add f mapi to folders

index
f mapi = e mapi->next()
else {

if (parent folder is reachable) remove all messages from message index
for
this folder remove folder from folders index
f index = e index->next()

if (f mapi) begin fast insert
while (f mapi) add f mapi to folders index
f mapi = e mapi->next()

end fast insert

while (f index) {
if (parent folder is reachable) {
remove all messages from message index for this folder
remove folder from folders index

f index = e index->next()

optimize folders index

In another example, pseudo code for synchronizing mes
sages is as follows:

// The algorithm below doesn't operate on all of the fields of the
// messages or the index. It only needs a Subset of the data the search
program
call
if the SyncMessageIData. The fields of the SyncMessage.Data are:
if message identifier

for Outlook this is a concatenation of the store, folder,
message

record keys
if message last modified date
if the compare operator compares by last mod date and then by message
identifier
for each folder
last => retrieve last sync state
e folder => enumerator for all sync message data from mail
folder >= last
e index => enumerator for all sync message data from index >=
last
m folder = e folder->next()
m index = e index->next()
while (m folder && m index) {
if (m folder == m index) {
m folder = e folder->next()
m index = e index->next()
else if (m folder < m index) {

persist m folder as last sync state forf
insertim folder into index
m folder = e folder->next()
else {

delete m index from index
m index = e index->next()

if (m folder) { // insert the rest
while (m folder) {
persist m folder as last sync state forf
insertim folder into index
m folder = e folder->next()

else if (m index) { // delete the rest
while (m index) {
delete m index from index
m index = e index->next()

10

15

25

30

35

40

45

50

55

60

65

20
-continued

if to be safe, The search program don't ever persist m index as last
sync state
if there is no update case since the search program use lastmod as
a key

For convenience, the above description has included
examples to particular Software programs, such as OUT
LOOK and EXCHANGE. Such reference has been made for
illustrative purposes, and are not limiting. Many other email
programs can also be used, each with their own set of notifi
cations and message properties, which can be used during
indexing/synchronizing, as would be apparent to one skilled
in the art based on the teachings contained herein.

VI. EXEMPLARY ADDITIONAL OR
ALTERNATIVE ASPECTS OF THE

EMBODIMENT(S)

In one example, search module 104 can generate a well
come screen on a graphical user interface to help a user begin
initial indexing after they install the program. For example,
for an antispam aspect of search module 104, as described in
U.S. Provisional Patent Application No. 60/616,432, filed
Oct. 7, 2004, and U.S. application Ser. No. 1 1/245,100, filed
Oct. 7, 2005, which are incorporated by reference herein in
their entireties, a welcome panel assists a user in building a
list of approved senders. Then, for the search aspect of search
module 104, the welcome panel alerts the user that an index
should be built for his saved messages when he begins using
a software application associated with the saved messages,
for example an email product.
The welcome panel can also help the user upgrade his

index if the format of the index changes (e.g., a new version of
the search module 104 is released, downloaded, and
installed).
The welcome panel can also allow the user to resume an

interrupted index build. This could occur, for example, if the
mail application was closed during the index building pro
cess. One way to do this is using the ICS method described
above. In one example, a user can decide not to use an initial
index build, and instead have the index built later via options
on a drop down menu associated with a tool bar in the email
product. In one example, the welcome panel does not alert the
user to build and index again until they upgrade to a new
version of the software, in which case the user will get an
update panel again. In another example, if the user is using an
old version of search module 104, a welcome panel will alert
him to the search module’s search capabilities and the need to
build an index for searching. It is to be appreciated that other
operations can be performed with the welcome panel func
tions.

In one example, search module 104 can allow for an auto
completion mode for terms that the user is typing against
terms in the index. For example, search module 104 may be
Scoped to fields (for example, only auto complete against
terms in the Subject field) or may autocomplete against origi
nal source terms, not stems or phonetically coded terms.

In one example, autocompletion can use old searches,
compressed indexes, and/or other terms in the index to Sug
gestion completions for the users input.

In one example, search module 104 can suggest other
searches using terms that are close to those entered (using a
variety of methods, such as Levenshtein distance, phonetic
coding, etc.). The search module 104 can also be useful to
Suggest corrections to misspellings and spelling variations.

US 8, 126,895 B2
21

In one example, a search box can be placed next to anti
spam controls on a tool bar of the email application. Within
the search box, many different search schemes can be used,
Such as simple word searching, Boolean searching, field
searching, etc., based on the underlying text searching engine
incorporated into search module 104.

In one example, search results (e.g., message, contact, task,
etc.) are shown in another window, which may also include
another search box and/or other search queries. Then, once a
result is opened, another search box can appear in the opened
message, contact, etc., which can be used to search within the
message itself.

In one example, the search module 104 may suggest other
terms/searches similar to the search inputted, and can show
the number of hits for these suggested searches. This can be
achieved using the Levenshtein distance technique, for
example. The search module 104 may also suggest other areas
to search. Additionally, the search module 104 may display
links which, if clicked, will execute the Suggested searches. In
another example, this can be done foremail, IM, Internet, files
stored in the computer, etc.

In one example, the data in the storage device 118 does not
need to be in the index 120. The search module 104 can access
the data as needed from the storage device 118.

In one example, search module 104 maps a single qualifier
in the query language to multiple fields in the index 120. For
example, the search module 104 may map the virtual field
“name: in the query language to all fields that contain names
in the index 120 (from, to, cc, assistant, etc.). In some embodi
ments, users may define the Scope of virtual fields (i.e., define
the fields that map to a given virtual field).

Users download search bars onto their desktops or search
engines from companies such as GOOGLE and YAHOO in
order to utilize their popup blocking features, as much as to
have ease of searching. According to an embodiment of the
present invention, search module 104 is bundled with anti
spam and/or anti-fraud products to increase user acceptance
and/or use of the search module 104. This is similar to bun
dling a pop-up blocker with a browser search bar, since spam
is to email as pop-ups are to web pages. By default, search
module 104 excludes a spam folder from search results,
although this is user adjustable.

Further, this bundling increases functionality of the search
module 104 by ensuring that all spam folders are identified
and eliminated from a query, if a user so chooses. Also, the
anti-spam filter can be used to filter out spam from the search
results produced by the search module 104. Thus, by bundling
the search module 104 with anti-spam applications, spam can
be excluded from search results.

VII. CONCLUSION

While various embodiments of the present invention have
been described above, it should be understood that they have
been presented by way of example only, and not limitation. It
will be apparent to persons skilled in the relevant art that
various changes inform and detail can be made therein with
out departing from the spirit and scope of the invention. Thus,
the breadth and scope of the present invention should not be
limited by any of the above-described exemplary embodi
ments, but should be defined only in accordance with the
following claims and their equivalents.

It is to be appreciated that the Detailed Description section,
and not the Summary and Abstract sections, is intended to be
used to interpret the claims. The Summary and Abstract sec
tions can set forth one or more, but not all exemplary embodi
ments of the present invention as contemplated by the inven

10

15

25

30

35

40

45

50

55

60

65

22
tor(s), and thus, are not intended to limit the present invention
and the appended claims in any way.
What is claimed is:
1. A method, comprising:
organizing data stored in a data storage device in one or

more folders;
organizing the one or more folders in an order based on

usage history;
indexing, using a processing device, the data storage

device, the indexing being performed during a plurality
of time segments and further being performed based on
the order;

scanning, using the processing device, a folder in the data
storage device at a first moment in the plurality of time
Segments;

scanning, using the processing device, the folder in the data
storage device at a Subsequent second moment in the
plurality of time segments;

monitoring for movement of sets of data stored in the data
storage device from a first set storage location to a sec
ond set storage location in the data storage device;

detecting, using the processing device, a value correspond
ing to a number of changes in the data stored in the data
storage device between the first and second moments in
time;

determining, using the processing device, whether the
value exceeds a predetermined number between the first
and second moments;

compiling a list of stored data that changed between the
first and second moments;

re-indexing the first set storage location to the second set
storage location stored in the data storage device based
on a respective notification associated with a last one of
the changes if the value exceeds the predetermined num
ber between the first and second moments, wherein the
re-indexing is performed at a Subsequent time segment
using the last one of the changes indexed from a previous
time segment, and the list is used to perform the re
indexing; and

searching, using the processing device, the re-indexed
data.

2. The method of claim 1, further comprising compressing
the data stored in the data storage device prior to the indexing.

3. The method of claim 2, wherein the compressing step
comprises at least one of stemming, phonetic coding, and
Levenshtein techniques.

4. The method of claim 1, wherein the indexing comprises
using historical searching criteria to categorize the data stored
in the data storage device.

5. The method of claim 1, wherein the indexing is per
formed during time periods during which the data stored in
the data storage device is not accessed.

6. The method of claim 1, wherein the data stored in the
data storage device comprises a message.

7. The method of claim 6, wherein the message is at least
one of email, tasks, contacts, notes, journal entries, messages,
and appointments.

8. The method of claim 1, wherein the scanning at the first
moment in time, the Scanning at the Subsequent second
moment in time, the detecting, and the determining are per
formed during use of the data stored in the data storage
device.

9. The method of claim 1, wherein the data stored in the
storage device is accessed during at least one of the indexing,
the Scanning at the first moment in time, the Scanning at the
Subsequent second moment in time, the detecting, the deter
mining, the re-indexing, and searching via a network.

US 8, 126,895 B2
23

10. The method of claim 9, wherein the scanning at the first
moment in time, the Scanning at the Subsequent second
moment in time, the detecting, and the determining occur
when the network is online.

11. The method of claim 9, further comprising determining
whether the network is online and wherein the re-indexing is
performed only if the network is online.

12. The method of claim 1, wherein the each of the changes
comprises at least one of creating, deleting, updating, mov
ing, and copying of the data stored in the data storage device.

13. The method of claim 1, wherein when the data stored in
the data storage device moves from a source to a destination
location, the re-indexing comprises re-indexing based on
information correlating to the data stored in the data storage
device.

14. The method of claim 1, wherein an oldest time period of
one of the data stored in the data storage device is re-indexed
with a most recent time period of the one of the data stored in
the data storage device during the re-indexing.

15. The method of claim 1, wherein the organizing the one
or more folders in an order based on usage history comprises
organizing the one or more folders in an order correlating to
most used to least used, and the most used folder comprises
the folder with a most amount of the stored data.

16. The method of claim 1, wherein the organizing the one
or more folders in an order based on usage history comprises
organizing the one or more folders in an order correlating to
most used to least used, and the most used folder comprises
the folder having a last modified one of the data stored in the
data storage device.

17. The method of claim 1, further comprising:
outputting results of the searching, wherein the searching

and outputting are performed during the indexing.
18. The method of claim 1, wherein the indexing com

prises:
processing the data stored in the data storage device to find

fields present in the stored data; and
forming categories based on the fields.
19. The method of claim 18, wherein the fields comprise at

least one of Subject, body, logical fields, from, to, cc. bcc,
type, size, attachments, last modified date, and first modified
date of each one of the stored data.

20. The method of claim 18, wherein the fields comprise at
least one of stemming, phonetic coding, and Levenshtein
parameters associated with each of the stored data.

21. The method of claim 18, wherein the processing
includes determining a language of the stored data.

22. The method of claim 18, wherein the processing
includes filtering the stored data to remove unwanted types of
the stored data.

23. The method of claim 1, further comprising:
outputting results of the searching, wherein the outputting

comprises outputting results in an output format that
allows for Subsequent searching.

24. The method of claim 1, further comprising:
outputting results of the searching, wherein the outputting

comprises outputting statistical results.
25. The method of claim 1, wherein the data storage device

is coupled to at least one of an email system, an Internet
system, and a computer system.

26. The method of claim 1, wherein the searching step
comprises allowing for autocompletion of search terms.

27. A computer program product comprising a tangible
computer useable storage memory having computer program
logic stored thereon for controlling at least one processor, the
computer program logic comprising:

first computer program code means for causing said at least
one processor to organize data stored in a data storage
device in one or more folders;

10

15

25

30

35

40

45

50

55

60

65

24
second computer program code means for causing said at

least one processor to organize the one or more folders in
an order based on usage history;

third computer program code means for causing said at
least one processor to index the data storage device, the
indexing being performed during a plurality of time
segments and further being performed based on the
order;

fourth computer program code means for causing said at
least one processor to scan a folder in the data storage
device at a first moment in the plurality of time seg
ments;

fifth computer program code means for causing said at
least one processor to scan the folder in the data storage
device at a Subsequent second moment in the plurality of
time segments;

sixth computer program code means for causing said at
least one processor to monitor for movement of sets of
data stored in the data storage device from a first set
storage location to a second set storage location in the
data storage device;

seventh computer program code means for causing said at
least one processor to detect a value corresponding to a
number of changes in the data in the data storage device
between the first and second moments in time;

eighth computer program code means for causing said at
least one processor to determine whether the value
exceeds a predetermined number between the first and
second moments;

ninth computer program code means for causing said at
least one processor to compile a list of stored data that
changed between the first and second moments in time;

tenth computer program code means for causing said at
least one processor to re-index the first set storage loca
tion to the second set storage location stored in the data
storage device based on a respective notification associ
ated with a last one of the changes if the value exceeds
the predetermined number between the first and second
moments, wherein the eighth computer program code
means for causing said at least one processor to re-index
comprises ninth computer program code means for
causing said at least one processor to re-index at a Sub
sequent time segment using the last one of the changes
indexed from a previous time segment, and tenth com
puter program code means for causing said at least one
processor to use the list to re-index; and

eleventh computer program code means for causing said at
least one processor to search the re-indexed data.

28. The computer program product of claim 27, further
comprising:

twelfth computer program code means for causing said at
least one processor to compress the data stored in the
data storage device prior to the index of the stored data.

29. The computer program product of claim 27, wherein
the third computer program code means comprises:

twelfth computer program code means for causing at least
one processor to use historical searching criteria to cat
egorize the data stored in the data storage device.

30. The computer program product of claim 27, wherein
the fourth, fifth, seventh, and eighth computer program code
means is executed during use of the data stored in the data
storage device.

31. The computer program product of claim 27, wherein
the each of the changes comprises at least one of creating,
deleting, updating, moving, and copying of the data stored in
the data storage device.

US 8, 126,895 B2
25

32. The method of claim 1, further comprising:
receiving an input that is indicative which of the one or
more folders to index during at least one of the indexing
or the re-indexing steps.

33. The method of claim 32, wherein the receiving com
prises receiving the input from a user interface, wherein the

26
user interface comprises a folder menu configured to allow
a user to select which one of the one or more folders to
index.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,126,895 B2 Page 1 of 1
APPLICATIONNO. : 1 1/245 100
DATED : February 28, 2012
INVENTOR(S) : Sargent et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16, line 28, please replace “anther example with -another example--.
Column 25, line 2, please replace “indicative which with -indicative of which--.

Signed and Sealed this
Eighth Day of May, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

