

## SCHWEIZERISCHE EIDGENOSSENSCHAFT

BUNDESAMT FÜR GEISTIGES EIGENTUM

**11)** CH 661 457

(51) Int. Cl.4: **B 23 B** 

31/02

**A5** 

## Erfindungspatent für die Schweiz und Liechtenstein

Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

## 12 PATENTSCHRIFT A5

(21) Gesuchsnummer:

6334/83

(73) Inhaber:

Günter Horst Röhm, Sontheim (DE)

22) Anmeldungsdatum:

25.11.1983

30 Priorität(en):

25.02.1983 DE 3306571

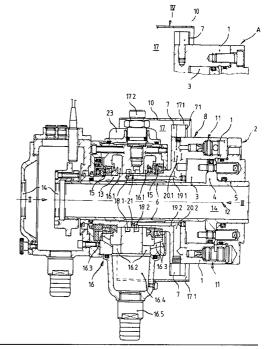
(72) Erfinder:

Röhm, Günter Horst, Sontheim (DE)

24) Patent erteilt:

31.07.1987

(74) Vertreter:


Patentanwalts-Bureau Isler AG, Zürich

45 Patentschrift veröffentlicht:

31.07.1987

Hydraulisch betätigter Spannzylinder für Spanneinrichtungen an einer rotierenden Spindel, insbesondere Drehmaschinenspindel.

(57) Zur Abführung der im Anschlussgehäuse (16) des Spannzylinders durch seine Drehung entstehenden Wärme dient ein das Anschlussgehäuse im wesentlichen axial bestreichender Kühlluftstrom. Zu dessen Erzeugung dienen mit dem Spannzylinder rotierende Gebläseflügel (7), die auf der Mantelfläche (8) des Zylindergehäuses (1) freistehend angeordnet sind. Die Gebläseflügel (7) sind jeweils um einen Winkel von mehr als 45° gegen die Zylinderachse (12) geneigt. Der Kühlluftstrom fliesst in einem Ringraum (17), der aussen durch eine Strömungsleithülse (10) begrenzt ist, die sich axial über die Gebläseflügel (7) und mindestens einen Teil des Anschlussgehäuses (16) erstreckt und nirgends den Ringraum (17) im Vergleich zum Strömungsquerschnitt im Bereich der Gebläseflügel (7) verengt. Zur ausreichenden Kühlwirkung auch bei hohen Drehzahlen reichen schon zwei sich diametral am Zylindergehäuse (1) gegenüber stehende Gebläseflügel (7).



## **PATENTANSPRÜCHE**

- 1. Hydraulisch betätigter Spannzylinder für Spanneinrichtungen an einer rotierenden Spindel, insbesondere Drehmaschinenspindel mit einem an die Spindel anschliessbaren Zylindergehäuse und einem in dessen Zylinderkammer verstellbaren Spannkolben, wobei das Zylindergehäuse und der Spannkolben mit der Spindel rotieren, ferner mit einem äussere Zu- und Abführanschlüsse für die Druckflüssigkeit aufweisenden feststehenden Anschlussgehäuse, das koaxial zur Zylinderachse auf einem Führungsansatz des Zylindergehäuses gelagert ist, der zwischen sich und dem Anschlaggehäuse eine mit der Druckflüssigkeit gefüllte Ringspaltdichtung bildet und Verbindungskanäle zwischen den Zu- und Abführanschlüssen einerseits und den Zylinderräumen beidseits des Spannkolbens andererseits aufweist, und mit aussen 15 am Zylindergehäuse im wesentlichen radial angeordneten, mit dem Zylindergehäuse rotierenden Gebläseflügeln, die in einem das Anschlussgehäuse umgebenden Ringraum einen die Aussenfläche des Anschlussgehäuses bestreichenden Kühlluftstrom erzeugen, dadurch gekennzeichnet, dass die Gebläseflügel (7) auf der Mantelfläche (8) des Zylindergehäuses (1) im Bereich des grössten Gehäusedurchmessers freistehend angeordnet sind, dass die Ebene der Gebläseflügel (7) jeweils um einen Winkel (9) von mindestens 45° gegen die Achse (12) des Zylindergehäuses (1) geneigt ist, und dass 25 der Ringraum (17) aussen durch eine Strömungsleithülse (10) begrenzt ist, die vom Anschlussgehäuse (16) her axial die Gebläseflügel (7) bis mindestens zu ihren dem Anschlussgehäuse (16) abgewandten Stirnkanten (7.1) übergreift, wobei der lichte Ringquerschnitt zwischen der Strömungsleithülse (10) einerseits und dem Zylindergehäuse (1) bzw. dem Anschlussgehäuse (16) andererseits überall mindestens gleich dem entsprechenden Ringquerschnitt im Bereich der Gebläseflügel (7) ist.
- 2. Spannzylinder nach Anspruch 1, dadurch gekennzeichnet, dass die Gebläseflügel (7) in dem dem Anschlussgehäuse (16) zugewandten Randbereich der Mantelfläche (8) sitzen.
- 3. Spannzylinder nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Bereich der Gebläseflügel (7) der radiale Abstand zwischen der Mantelfläche (8) des Zylindergehäuses (1) und der Strömungsleithülse (10) höchstens gleich der doppelten radialen Höhe der Gebläseflügel (7) ist.
- 4. Spannzylinder nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass bei im Vergleich zum Zylindergehäuse (1) im Aussendurchmesser überall kleinerem Anschlussgehäuse (16) die Strömungsleithülse (10) im wesentlichen zylindrisch ausgebildet ist.
- 5. Spannzylinder nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Strömungsleithülse (10) sich axial im wesentlichen über die gesamte Länge der Ringspaltdichtung (21) erstreckt.
- 6. Spannzylinder nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass nur zwei Gebläseflügel (7) vorgesehen sind, die sich diametral am Zylindergehäuse (1) gegensber stehen.

Die Erfindung betrifft einen hydraulisch betätigten Spannzylinder für Spanneinrichtungen an einer rotierenden Spindel, insbesondere Drehmaschinenspindel, mit einem an die Spindel anschliessbaren Zylindergehäuse und einem in dessen Zylinderkammer verstellbaren Spannkolben, wobei das Zylindergehäuse und der Spannkolben mit der Spindel rotieren, ferner mit einem äussere Zu- und Abführanschlüsse für die Druckflüssigkeit aufweisenden feststehenden Anschlussgehäuse, das koaxial zur Zylinderachse auf einem Führungsansatz des Zylindergehäuses gelagert ist, der zwischen sich und dem Anschlaggehäuse eine mit der Druckflüssigkeit gefüllte Ringspaltdichtung bildet und Verbindungskanäle zwischen den Zu- und Abführanschlüssen einerseits und den Zylinderräumen beidseits des Spannkolbens andererseits aufweist, und mit aussen am Zylindergehäuse im wesentlichen radial angeordneten, mit dem Zylindergehäuse rotierenden Gebläseflügeln, die in einem das Anschlussgehäuse umgebenden Ringraum einen die Aussenfläche des Anschlussgehäuses bestreichenden Kühlluftstrom erzeugen.

Der Kühlluftstrom dient dazu, in der Ringspaltdichtung entstehende Wärme abzuführen und dadurch unzulässige Erhitzungen des Anschlussgehäuses zu verhindern. - Bei einem aus der DE-OS 2 847 950 bekannten Spannzylinder dieser Art sind die Gebläseflügel in grösserer Anzahl bei zur Zylinderachse paralleler Ausrichtung längs eines am Zylindergehäuse festen Gebläserades angeordnet, das an der dem Anschlussgehäuse zugekehrten Stirnseite des Zylindergehäuses in einem Ringkanal umläuft, der sich in unmittelbarer Verbindung mit dem Ringspalt der Ringspaltdichtung zwischen dem Zylindergehäuse und dem Anschlussgehäuse befindet und nach aussen durch eine perforierte Schutzhaube abgedeckt ist. Der vom Kühlluftstrom durchsetzte Ringraum ist zwischen zwei zueinander und zur Zylinderachse koaxialen Ringwänden aus gut wärmeleitendem Werkstoff gebildet, die zwischen zwei stirnseitigen Abschlusskappen des Anschlussgehäuses angeordnet sind, in welchen sich in Umfangsrichtung des Anschlussgehäuses verlängerte Einund Austrittsöffnungen für den Kühlluftstrom befinden. Die mit dem Zylindergehäuse rotierenden Gebläseflügel beschleunigen die Luft im Ringkanal im wesentlichen tangential, so dass die beschleunigte Luft durch die Perforationen der Schutzhaube nach aussen austritt und im Ringkanal selbst einen Unterdruck entstehen lässt, der eine durch den Ringraum in den Ringkanal gerichtete Kühlluftströmung längs des Anschlussgehäuses entstehen lässt. Jedoch ist der sich im Ergebnis ausbildende Kühlluftstrom vielfach behindert, so an den Ein- und Austrittsöffnungen in den stirnseitigen Abschlusskappen des Ringraumes, an den Perforationen der Schutzkappe und schliesslich durch die vielfachen Strömungsumlenkungen nicht nur an den Berandungen der Ein-45 und Austrittsöffnungen und der Perforationen, sondern vor allem auch im Ringkanal selbst, wo der Kühlluftstrom eine Umlenkung von wenigstens 90° erfährt. Im Ergebnis reicht der Kühlluftstrom besonders bei sehr hohen Drehzahlen und entsprechend grosser Wärmeentwicklung im Ringspalt nicht 50 zu einer hinlänglichen Kühlung des Anschlussgehäuses aus. Darüber hinaus ist der Kühlluftstrom ebenfalls bei hohen Drehzahlen mit einer untragbaren Lärmentstehung verbunden, da die Luft an der Vielzahl der Gebläseflügel, der Einund Austrittsöffnungen der Perforationen stark verwirbelt wird, was zu entsprechend lauten Strömungsgeräuschen führt. Schliesslich ist der im Ringkanal entstehende Unterdruck mit dem besonderen Nachteil verbunden, dass eine Ölabsaugung aus der Ringspaltdichtung erfolgt. Das abgesaugte Öl wird von der Luft aus dem Ringkanal durch die Schutzhaube nach aussen mitgeführt und verunreinigt die Umgebung des Spannzylinders in mit der Zeit immer wachsendem Umfang.

Der Erfindung liegt die Aufgabe zugrunde, bei einem Spannzylinder der eingangs genannten Art die Gebläsekühlung so zu verbessern, dass die Kühlwirkung wesentlich grösser ist, die Lärmentwicklung aber sehr viel geringer, und dass eine Ölabsaugung aus der Ringspaltdichtung vermieden wird.

3 661 457

Diese Aufgabe wird nach der Erfindung dadurch gelöst, dass die Gebläseflügel auf der Mantelfläche des Zylindergehäuses im Bereich des grössten Gehäusedurchmessers freistehend angeordnet sind, dass die Ebene der Gebläseflügel jeweils um einen Winkel von mindestens 45° gegen die Achse der Zylindergehäuse geneigt ist, und dass der Ringraum aussen durch eine Strömungsleithülse begrenzt ist, die vom Anschlussgehäuse her axial die Gebläseflügel bis mindestens zu ihren dem Anschlussgehäuse abgewandten Stirnkanten übergreift, wobei der lichte Ringquerschnitt zwischen der Strömungsleithülse einerseits und dem Zylindergehäuse bzw. dem Anschlussgehäuse andererseits überall mindestens gleich dem entsprechenden Ringquerschnitt im Bereich der Gebläseflügel ist.

Durch die Erfindung wird erreicht, dass sich im Ringraum über die ganze Länge der Strömungsleithülse ein praktisch unbehinderter und kaum mehr wesentliche Ablenkungen erfahrender axialer Luftstrom ausbilden kann, der je nach Drehrichtung des Spannzylinders und Schrägstellung der Gebläseflügel in Richtung vom Zylindergehäuse zum Anschlussgehäuse oder umgekehrt strömt und an beiden Enden der Strömungsleithülse ohne Umlenkungen frei einbzw. austreten kann. Dabei strömt kühle, aus der weiteren Gehäuseumgebung stammende und nicht schon durch längeren Kontakt mit dem Anschluss- oder Zylindergehäuse angewärmte Luft in den Ringraum ein. Der Kühlluftstrom zeichnet sich im Ergebnis durch grosse Strömungsgeschwindigkeit und hohen Luftdurchsatz bei zugleich niedriger Temperatur der Kühlluft aus, so dass auch grosse entstehende Wärmemengen sicher abgeführt werden können und sich eine überraschend starke Kühlwirkung ergibt. Da Verwirbelungen des Kühlluftstromes mangels nennenswerter Strömungshindernisse gering sind, ebenso die Strömungsablenkung an den schräg stehenden Gebläseflügeln, treten auch nur entsprechend geringe Strömungsgeräusche auf.

Schliesslich kann sich wegen der erfindungsgemässen Strömungsführung an der Ringspaltdichtung auch kein nennenswerter Unterdruck mehr aufbauen, so dass eine Ölabsaugung aus der Ringspaltdichtung unterbleibt.

Zumeist genügt es für die benötigte Kühlwirkung, dass die Gebläseflügel in dem dem Anschlussgehäuse zugewandten Randbereich der Mantelfläche sitzen. Jedoch können die Gebläseflügel axial auch weiter weg vom Anschlussgehäuse auf dem Zylindergehäuse angeordnet sein. Dann bestreicht der Kühlluftstrom auch das Zylindergehäuse über eine entsprechend grössere axiale Länge mit dem Ergebnis einer noch verbesserten Kühlwirkung. Weiter ist die Anordnung vorzugsweise so getroffen, dass im Bereich der Gebläseflügel der radiale Abstand zwischen der Mantelfläche des Zylindergehäuses und der Strömungsleithülse höchstens gleich der doppelten radialen Höhe der Gebläseflügel ist. Dadurch werden die radialen Bewegungskomponenten des Kühlluftstroms auch im Bereich der Gebläseflügel gering gehalten und die der Luft von den Gebläseflügeln erteilte Bewegungsenergie wird weitgehend in die axialen Bewegungskomponenten der Strömung transformiert.

Bezüglich Anordnung und Ausbildung der Strömungsleithülse besteht weitgehend Freiheit, soweit unzulässige Verengungen des Strömungsquerschnittes im Ringraum und Behinderungen des freien axialen Strömungsein- und -austritts an den Hülsenenden nach Möglichkeit vermieden werden. Besonders bewährt hat sich allerdings eine Ausführungsform, die dadurch gekennzeichnet ist, dass bei im Vergleich zum Zylindergehäuse im Aussendurchmesser überall kleinerem Anschlussgehäuse die Strömungsleithülse im wesentlichen zylindrisch ausgebildet ist. Zweckmässig erstreckt sich im übrigen die Strömungsleithülse axial im wesentlichen über die gesamte Länge der Ringspaltdichtung. Die Praxis

hat gezeigt, dass die Wirkung einer nach der Lehre der Erfindung gestalteten Gebläsekühlung überraschenderweise schon dann völlig ausreichende Ergebnisse bringt, wenn nur zwei Gebläseflügel vorgesehen sind, die sich diametral am Zylindergehäuse gegenüberstehen. Durch diese kleine Flügelanzahl ist das Gebläsegeräusch weiter verringert. Schon drei Flügel erhöhen die Lärmentwicklung beträchtlich bei überraschenderweise geringerer Kühlwirkung.

Im folgenden wird die Erfindung an einem in der Zeich-10 nung dargestellten Ausführungsbeispiel näher erläutert; es zeigen:

Fig. 1 einen hydraulisch betätigten Hohlspannzylinder nach der Erfindung in einem Axialschnitt,

Fig. 2 eine Stirnansicht des Spannzylinders nach Fig. 1 in Richtung des dort eingetragenen Pfeiles II, teils im Schnitt,

Fig. 3 eine Stirnansicht des Spannzylinders nach Fig. 1 in Richtung des dort eingezeichneten Pfeiles III,

Fig. 4 eine Seitenansicht eines Teils des Hohlspannzylinders nach Fig. 1 in Richtung des dort eingetragenen Pfeiles IV bei weggebrochener Strömungsleithülse.

In der Zeichnung ist das Zylindergehäuse mit 1 bezeichnet. An seiner vorderen Stirnwand 2 ist es in üblicher, hier nicht weiter zu beschreibender Weise zum Anschluss an die nicht dargestellte Maschinenspindel einer Drehmaschine eingerichtet. Im Zylindergehäuse 1 befindet sich eine Zylinderkammer 3, in der axial verschiebbar ein Zylinderkolben 4 angeordnet ist, der an seiner Vorderseite einen Kragen 5 trägt, der durch die spindelseitige Stirnwand 2 des Zylindergehäuses 1 führt und an ein ebenfalls nicht dargestelltes, in der hohlen Drehmaschinenspindel angeordnetes Kraftübertragungsglied, beispielsweise eine Spannstange oder ein Spannrohr, anschliessbar ist. Der Spannkolben 4 ist gegen das Zylindergehäuse 1 abgedichtet, so dass die in den Zylinderraum 3 beidseits des Spannkolbens 4 eintretende Druckflüssigkeit nicht entweichen kann. Um ausserdem die Druckflüssigkeit in den Zylinderteilräumen gegen unbeabsichtigte Druckverluste zu sichern, sind Sperrventile 11 vorgesehen, die in bekannter Weise funktionieren und hier keiner weiteren Beschreibung bedürfen.

An seinem rückwärtigen Ende trägt das Zylindergehäuse 1 einen zur Zylinderachse 12 koaxialen hohlzylindrischen Führungsansatz 13, in dem innen ein mit dem Spannkolben 4 verbundenes Rohr 6 geführt ist, dessen lichter Querschnitt den Durchgang 14 des Hohlspannzylinders bildet. Der Füh-45 rungsansatz 13 nimmt zusammen mit dem Zylindergehäuse 1 und dem Kolben 4 an der Drehung der Spindel bzw. des Spannrohres teil. Auf der Aussenseite des Führungsansatzes 13 ist über Wälzlager 15 ein feststehendes, d.h. an der Drehung des Führungsansatzes 13 nicht teilnehmendes Anschlussgehäuse 16 gelagert, das die äussere Zu- und Abfuhr der Druckflüssigkeit über Druckleitungsanschlüsse 17.1, 17.2 ermöglicht, von welchen einer in Fig. 1 um 105° versetzt dargestellt ist. Das Anschlussgehäuse 16 besitzt eine innere Führungsbehrung mit im Ausführungsbeispiel zwei Ringnu-55 ten 18.1, 18.2, die mit den Druckleitungsanschlüssen 17.1, 17.2 verbunden sind. Im Führungsansatz 13 verlaufen an diese Ringnuten 18.1, 18.2 anschliessende, in der Zeichnung nur teilweise dargestellte Verbindungskanäle 19.1, 19.2, 20.1, 20.2 zu den Zylinderräumen 3 beidseits des Spannkolbens 4. 60 Zwischen dem Führungsansatz 13 und dem Anschlussgehäu se 16 befindet sich die mit der Druckflüssigkeit gefüllte Ringspaltdichtung 21, die einen Spalt von nur wenigen hundertstel Millimetern Breite darstellt. Das durch die Ringnuten 18.1, 18.2 in die Verbindungskanäle 19.1, 19.2 oder umgekehrt strömende und dabei den Spalt 21 durchquerende Drucköl breitet sich seitlich im Spalt 21 aus. Das aus dem Spalt am Ende austretende Öl kann zum Teil unmittelbar

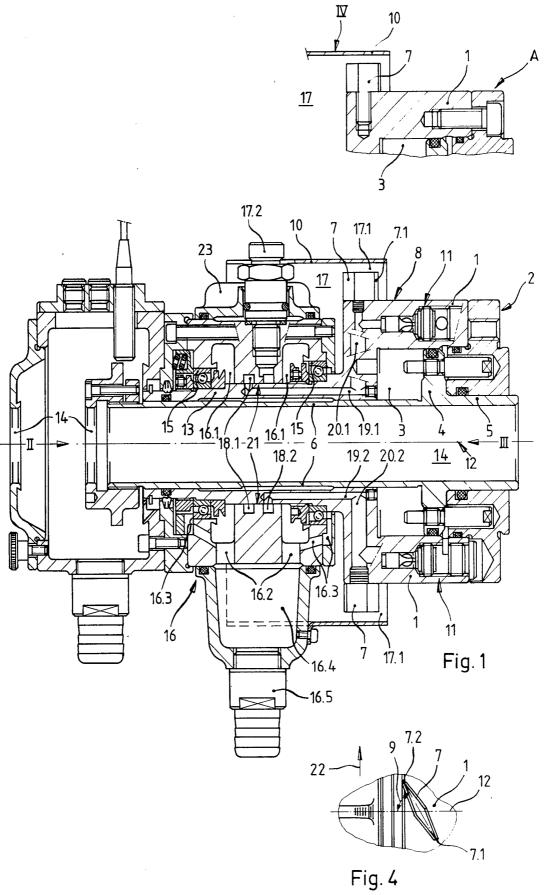
durch in der Führungsbohrung des Anschlussgehäuses 16

4 661 457

befindliche Ringnuten 16.1 und daran anschliessende Leitungen 16.2 und zum anderen Teil nach Schmierung und Kühlung der Wälzlager 15 durch Ringkanäle 16.3 in einen Ölsammelraum 16.4 gelangen, aus dem das Lecköl durch einen Ölablaufanschluss 16.5 entweichen kann.

Aussen am Zylindergehäuse 1 sind im wesentlichen radial angeordnete, mit dem Zylindergehäuse rotierende Gebläseflügel 7 vorgesehen, die in einem das Anschlussgehäuse 16 umgebenden, allgemein mit 17 bezeichneten Ringraum einen die Aussenfläche des Anschlussgehäuses bestreichenden 10 Luftstrom erzeugen. Diese Gebläseflügel 7 sind auf der Mantelfläche 8 des Zylindergehäuses freistehend angeordnet. Ist die Mantelfläche 8 des Zylindergehäuses nicht - wie im Ausführungsbeispiel - zylindrisch, so sitzen die Gebläseflügel 7 auf der Mantelfläche 8 im Bereich des grössten Gehäusedurchmessers, so dass die entstehende Luftströmung nicht durch Partien des Spannzylinders beeinträchtigt werden kann, welche axial vor oder hinter den Gebläseflügeln 7 über diese radial vorstehen. Ausserdem ist die Ebene der Gebläseflügel jeweils um einen Winkel 9 von mindestens 45° ge- 20 hend vermieden werden. Das Anschlussgehäuse 16 ist im gen die Achse 12 des Zylindergehäuses 1 geneigt, wie insbesondere aus Fig. 4 ersichtlich ist. Der Ringraum 17 ist aussen durch eine Strömungsleithülse 10 begrenzt, die wie das Anschlussgehäuse 16 feststehend angeordnet ist, also an der Drehung des Zylindergehäuses 1 nicht teilnimmt. Die Strömungsleithülse 10 übergreift, vom Anschlussgehäuse 16 her gesehen, axial die Gebläseflügel 7 bis mindestens zu ihren dem Anschlussgehäuse 16 abgewandten Stirnkanten 7.1. Dabei ist der lichte Ringquerschnitt 17 zwischen der Strömungsleithülse 10 einerseits und dem Zylindergehäuse 1 bzw. dem Anschlussgehäuse 16 andererseits überall mindestens gleich dem entsprechenden Ringquerschnitt 17.1 im Bereich der Gebläseflügel 7. Es wird dadurch erreicht, dass der durch die rotierenden Gebläseflügel 7 erzeugte Kühlluftstrom sich praktisch ungehindert in axialer Richtung ausbilden und an beiden Enden der Strömungsleithülse 10 frei und ohne nennenswerte Umlenkungen ein- bzw. austreten kann. Die Richtung des Kühlluftstromes hängt ab von der Drehrichtung des Spannzylinders 1 einerseits und der Schrägstellung der Gebläseflügel 7. Dreht sich im Ausführungsbeispiel das Zylindergehäuse 1, axial vom Ende des Anschlussgehäuses 16 her gesehen, gegen den Uhrzeigersinn (Pfeil 22), so ergibt die im Ausführungsbeispiel gezeigte Schrägstellung der Gebläseflügel 7, bei der die dem Anschlussgehäuse 16 zugekehrten Flügelkanten 7.2 den entgegengesetzten Flügelkanten 7.1 in Drehrichtung vorlaufen, einen Kühlluftstrom, der im Ringraum in Richtung vom Anschlussgehäuse 16 zum Zylindergehäuse 1 strömt. Umkehr der Drehrichtung oder des Winkels 9 der Gebläseflügel 7 ergibt die umgekehrte Richtung des Kühlluftstroms. Die weitgehend fehlenden Strömungsbehinderungen und Strömungsumlenkungen in Verbindung damit, dass sich der lichte Strö-

mungsquerschnitt über die gesamte axiale Länge des Ringraumes 17 praktisch nirgends im Vergleich zum Strömungsquerschnitt 17.1 im Bereich der Gebläseflügel 7 verengt, ergeben einen Kühlluftstrom, der sich durch grosse Strö-5 mungsgeschwindigkeit und hohen Luftdurchsatz bei niedriger Lufttemperatur auszeichnet, so dass auch grosse Wärmemengen aus dem Anschlussgehäuse 16 zuverlässig abgeführt werden können. Das beschriebene Strömungsbild hat auch zur Folge, dass sich an den Enden der Ringspaltdichtung 21 kein Unterdruck aufbauen kann, der zu einer Ölabsaugung aus der Ringspaltdichtung führen könnte.


Im Ausführungsbeispiel sitzen die Gebläseflügel 7 in dem dem Anschlussgehäuse 16 zugewandten unmittelbaren Randbereich der Mantelfläche 8 des Zylindergehäuses 1. In 15 diesem Bereich der Gebläseflügel 7 ist der radiale Abstand zwischen der Mantelfläche 8 des Zylindergehäuses und der Strömungsleithülse 10 geringer als die doppelte radiale Höhe der Gebläseflügel 7, so dass radiale Bewegungskomponenten der von den Gebläseflügeln 7 beschleunigten Luft weitge-Aussendurchmesser überall kleiner als das Zylindergehäuse 1, was in Fig. 1 für ein im Vergleich zum Anschlussgehäuse 16 nicht wesentlich grösseres Zylindergehäuse 1 dargestellt ist, während dieselbe Figur in der Teildarstellung A den Fall 25 eines im Durchmesser wesentlich grösseren Zylindergehäuses 1 zeigt. In jedem Fall wird daher die Bedingung, dass sich der lichte Strömungsquerschnitt über die axiale Länge des Ringraumes 17 nicht gegenüber seiner Grösse im Bereich der Gebläseflügel 7 verringern soll, ohne weiteres dadurch er-30 füllt, dass die Strömungsleithülse 10 im wesentlichen zylindrisch ausgebildet ist. Sie erstreckt sich axial über die gesamte Länge der Ringspaltdichtung 21. Im übrigen sind im Ausführungsbeispiel nur zwei Gebläseflügel 7 vorgesehen, die sich diametral am Zylindergehäuse 1 gegenüber stehen. Das 35 Anschlussgehäuse 16 kann schliesslich aussen Kühlrippen 23 aufweisen, die sich axial erstrecken. An den Kühlrippen 23 kann die Strömungsleithülse 10 mit Laschen 101 befestigt

Mit der dargestellten und beschriebenen Anordnung 40 wird eine überraschend starke Kühlwirkung erzielt. So haben praktische Versuche beispielsweise ergeben, dass - jeweils in Millimetern – bei einem Spannzylinder 1 mit einem Zylindergehäusedurchmesser von 162, einer zylindrischen Strömungsleithülse 10 mit einem Innendurchmesser von 200, 45 einem Anschlussgehäuse 16 mit einer axialen Länge von 140 und einem Aussendurchmesser von 160, ferner bei einer Ringspaltdichtung 21 mit einer Spaltlänge von 27 und zwei unter 45° gegen die Zylinderachse 12 geneigten Gebläseflügeln 7 mit jeweils einer radialen Höhe von 15 bei einer axialen Flügellänge 35 die Temperatur des Anschlussgehäuses 16 selbst bei Drehzahlen 8000/Minute nicht 49 ° $\bar{C}$  = 318 °K überschreitet.

55

60





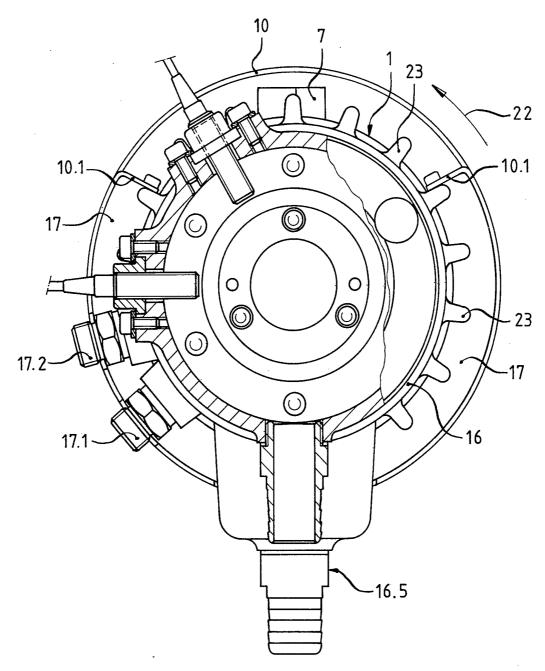
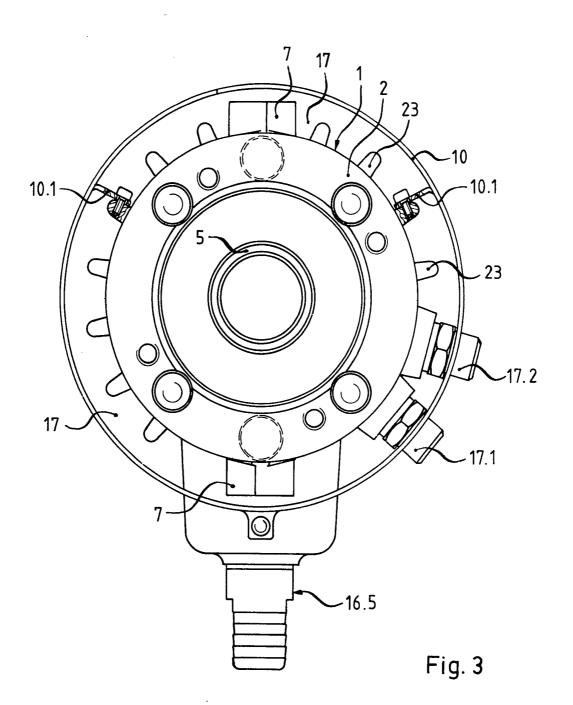




Fig. 2



-

-