Title: APPARATUS AND METHOD TO INJECT FLUIDS INTO BONE MARROW AND OTHER TARGET SITES

Abstract: Apparatus for delivering a quantity of fluid to bone marrow of a bone or providing access to remove fluids from a target site is provided. The apparatus may include a driver, a plunger operating and cartridge assembly mechanism, a cartridge assembly having a fluid reservoir and a bone penetrating needle.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
APPARATUS AND METHOD TO INJECT FLUIDS INTO BONE MARROW AND OTHER TARGET SITES

TECHNICAL FIELD

The present disclosure is related to apparatus and methods for delivery of fluids to a target site such as, but not limited to, bone marrow of a bone and removal of fluids from a target site.

BACKGROUND

Every year, millions of patients are treated for life-threatening emergencies in the United States. Such emergencies include shock, trauma, cardiac arrest, drug overdoses, diabetic ketoacidosis, arrhythmias, burns, and status epilepticus just to name a few. For example, according to the American Heart Association, more than 1,500,000 patients suffer from heart attacks (myocardial infarctions) every year, with over 500,000 of them dying from its devastating complications.

An essential element for treating all such emergencies is the rapid establishment of an intravenous (IV) line in order to administer drugs and fluids directly into the circulatory system. Whether in the ambulance by paramedics, or in the emergency room by emergency specialists, the goal is the same - to start an IV in order to administer life-saving drugs and fluids. To a large degree, the ability to successfully treat such critical emergencies is dependent on the skill and luck of the operator in accomplishing vascular access. While it is relatively easy to start an IV on some patients, doctors, nurses and paramedics often experience great difficulty establishing IV access in approximately 20 percent of patients. These patients are probed
repeatedly with sharp needles in an attempt to solve this problem and may require an invasive procedure to finally establish an intravenous route.

A further complicating factor in achieving IV access occurs "in the field" e.g. at the scene of an accident or during ambulance transport where it is difficult to see the target and excessive motion make accessing the venous system very difficult.

In the case of patients with chronic disease or the elderly, the availability of easily-accessible veins may be depleted. Other patients may have no available IV sites due to anatomical scarcity of peripheral veins, obesity, extreme dehydration or previous IV drug use. For these patients, finding a suitable site for administering lifesaving drugs becomes a monumental and frustrating task. While morbidity and mortality statistics are not generally available, it is known that many patients with life-threatening emergencies have died of ensuing complications because access to the vascular system with life-saving IV therapy was delayed or simply not possible. For such patients, an alternative approach is required.

SUMMARY

In accordance with teachings of the present disclosure, an apparatus operable to deliver a quantity of fluid to a target site such as bone marrow of a bone may be provided. The apparatus may include a driver, a plunger operating and cartridge drive mechanism and a cartridge assembly having a fluid reservoir with a bone penetrating needle coupled thereto.

In another embodiment an apparatus for delivering a quantity of medication to a target site may include a
driver, a plunger operating assembly or a plunger barrel having a first spring, a retractable sleeve having a second spring and a fluid reservoir with a bone penetrator attached thereto.

In still another embodiment an apparatus for delivering a quantity of fluid to bone marrow of a bone is provided that may include a powered driver having a drill shaft operable for attachment with a plunger operating and cartridge drive mechanism, a gear assembly operable to engage and rotate the drill shaft, a motor, a power supply and associated circuitry operable to power the motor. The plunger operating and cartridge drive mechanism may include a plunger operating assembly and a retractable sleeve. A cartridge assembly having a fluid reservoir along with a plunger assembly and a bone penetrating needle may be releasably engaged with the plunger operating and cartridge drive mechanism.

In another embodiment a method for delivering a quantity of medication to a target site such as, but not limited to, bone marrow of a bone may be provided including compressing or cocking a portion of a plunger operating and cartridge drive mechanism, inserting a fluid filled cartridge assembly into the cocked plunger operating and cartridge drive mechanism and penetrating into bone marrow until the plunger operating and cartridge drive mechanism injects a quantity of fluid into the bone marrow.

In a further embodiment a cartridge assembly operable to deliver medication to bone marrow of a bone may be provided with a detachable fluid reservoir, a plunger assembly, a bone penetrating needle and associated fittings. The fluid reservoir may be formed...
at least in part from glass, glass composites, plastic or plastic composites.

For some embodiments, a bone penetrating needle may include a hollow longitudinal bore with a closed tip at one end of the longitudinal bore. Side ports communicating with the longitudinal bore of the bone penetrating needle may be angled to block or facilitate passage of certain substances.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete and thorough understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and

FIGURE IA is a schematic drawing in elevation showing one example of an apparatus operable to deliver a quantity of medication to bone marrow;

FIGURE IB is an exploded, schematic drawing in section and in elevation with portions broken away showing one example of an apparatus operable to deliver a quantity of medication to bone marrow in an unloaded, cocked position;

FIGURE IC is a schematic drawing in section with portions broken away showing one example of an apparatus operable to deliver a quantity of medication to bone marrow in a loaded position;

FIGURE ID is a schematic drawing in section with portions broken away showing one example of an apparatus operable to delivery a quantity of medication to bone marrow in a third, released position;
FIGURE IE is a schematic drawing in section and in elevation with portions broken away showing a bone penetrator communicating with bone marrow in accordance with teachings of the present disclosure;

FIGURE IF is a schematic drawing showing an isometric view with portions broken away of one example of a pawl latch assembly satisfactory for use with the apparatus of FIGURES IB-ID;

FIGURE IG is a schematic drawing showing an isometric view with portions broken away of a pawl latch assembly holding a plunger operating assembly or plunger barrel in a first, cocked position;

FIGURE IH is a schematic drawing showing an isometric view in section with portions broken away of the pawl latch assembly and plunger operating assembly of FIGURE IG in a second, released position;

FIGURE II is a schematic drawing in section taken along lines 11-11 of FIGURE IG;

FIGURE IJ is a schematic drawing in section taken along lines IJ-IJ of FIGURE IH;

FIGURE 2A is a schematic, exploded drawing in elevation showing one example of a cartridge assembly satisfactory for use with an apparatus operable to deliver a quantity of medication to bone marrow;

FIGURE 2B is a schematic drawing in elevation and in section showing the cartridge assembly of FIGURE 2A;

FIGURE 2C is a schematic, exploded drawing in elevation showing another example of a cartridge assembly satisfactory for use with an apparatus operable to deliver a quantity of medication to bone marrow;

FIGURE 2D is a schematic drawing in elevation and in section showing the cartridge assembly of FIGURE 2C;
FIGURE 3A is a schematic drawing in elevation with portions broken away showing one example of a bone penetrating needle operable for communicating fluids with bone marrow;

FIGURE 3B is a schematic drawing in elevation with portions broken away showing another example of a bone penetrating needle operable for communicating fluids with bone marrow;

FIGURE 3C is a schematic drawing in section taken along lines 3C-3C of FIGURE 3A;

FIGURE 4A is an exploded, schematic drawing in section and in elevation with portions broken away showing one example of a cartridge assembly releasably engaged with a plunger operating and cartridge drive mechanism incorporating teachings of the present disclosure;

FIGURE 4B is a schematic drawing in section and in elevation with portions broken away showing release of the cartridge assembly of FIGURE 4A from the plunger operating and cartridge drive mechanism in accordance with teachings of the present disclosure;

FIGURE 5 is a block diagram showing one method of delivering a quantity of medication to bone marrow;

FIGURE 6 is a schematic drawing in section and in elevation showing another example of an apparatus including a driver operable to deliver a quantity of medication to bone marrow;

FIGURE 7A is a schematic drawing in section and in elevation with portions broken away showing another example of a cartridge assembly releasably engaged with a plunger operating and cartridge drive mechanism.
incorporating accordance with teachings of the present disclosure;

FIGURE 7B is a schematic drawing in section and in elevation with portions broken away showing release of the cartridge assembly of FIGURE 7A from the plunger operating and cartridge drive mechanism in accordance with teachings of the present disclosure;

FIGURE 8A is a schematic drawing in section and in elevation with portions broken away showing still another example of a cartridge assembly releasably engaged with a plunger operating and cartridge drive mechanism incorporating teachings of the present disclosure; and

FIGURE 8B is a schematic drawing in section and in elevation with portions broken away showing release of the cartridge assembly of FIGURE 8A from the plunger operating and cartridge drive mechanism in accordance with teachings of the present disclosure.

DETAILED DESCRIPTION

Preferred embodiments of the disclosure and advantages are best understood by reference to FIGURES 1A-8B wherein like numbers refer to same and like parts.

The term "fluid" may be used within this patent application to include any liquid or any mixture of liquids, particulate matter, dissolved medication and/or drugs appropriate for injection into bone marrow or other target sites. The term "fluid" may also be used within this patent application to include body fluids such as, but not limited to, blood and cells which may be withdrawn from a target site.

The terms "fluid reservoir" and "reservoir" may be used in this patent application to include any chamber, cavity, ampoule, barrel, receptacle or any other device
satisfactory for use with a cartridge assembly or other apparatus incorporating teachings of the present disclosure.

Examples of apparatus operable to access bone marrow and other target sites in accordance with teachings of the present disclosure are shown generally in FIGURES IA-4B and 6-8B. One example of a method to access bone marrow or other target sites in accordance with teachings of the present disclosure is shown generally in FIGURE 5.

However, the present disclosure is not limited to examples such as shown in FIGURE 1A-4B and 6-8B or the method of delivering fluid to bone marrow as outlined in FIGURE 5.

Various features of the present disclosure may be described with respect to apparatus 20 as shown in FIGURES IA-ID and apparatus 220 as shown in FIGURE 6. Apparatus 20 may have several positions such as an uncocked and unloaded position (not expressly shown), a cocked and unloaded position such as shown in FIGURE IB, a cocked and loaded position such as shown in FIGURE 1C and a discharged position after fluid has been injected from a cartridge assembly at a target site such as shown in FIGURE ID.

Apparatus 20, as shown in FIGURES IA-ID, may include housing 22 with driver assembly 30 and plunger operating and cartridge drive mechanism 50 disposed therein.

Cartridge assembly 130 may be disposed within portions of housing 22. See FIGURES IB, 1C and ID. Housing 22 may include handle 24 which has been sized and contoured to fit the hand of an operator (not expressly shown). Handle 24 may include on/off switch or trigger 32.

Housing 22 may also include receiver portion 26 having a
generally hollow, tubular configuration. First end or distal end 27 of receiver portion 26 may be open with portions of retractable sleeve 58 slidably disposed therein. Second end or proximal end 28 of receiver portion 26 may be sealed or closed to protect various components associated with driver assembly 30 and plunger operating and cartridge drive mechanism 50.

Driver assembly 30 may include motor 34 connected to gearbox 36. Gearbox 36 may be attached to drive shaft 38 to produce rotational motion of plunger operating and cartridge drive mechanism 50. Various types of motors may be satisfactorily used to produce rotational, reciprocal or any other type of motion suitable to achieve desired results. In this example embodiment, motor 34 may be powered by battery pack 40. In alternative embodiments, motor 34 may be powered by electricity from a standard wall outlet, an AC to DC converter or solar power generator. A compressed or wound spring, gas cartridge or any other satisfactory power source for operating a motor may also be used to operate apparatus 20.

Plunger operating and cartridge drive mechanism 50 may include first spring 51, second spring 52 and third spring 53. See FIGURES IB, 1C and ID. First spring 51 may sometimes be referred to as "plunger spring" 51. Second spring 52 may sometimes be referred to as "retractable sleeve spring" 52. Third spring 53 may sometimes be referred to as "torsional spring" or "pawl latch spring" 53. Various functions associated with springs 51, 52 and 53 will be discussed later in more detail.
Plunger operating and cartridge drive mechanism 50 may also include rotatable housing 54, retractable sleeve 58, plunger operating assembly 82, and pawl latch assembly 110. Retractable sleeve 58 may sometimes be referred to as "spring loaded retractable sleeve 58." Plunger operating assembly 82 may sometimes be referred to as "spring loaded plunger barrel 82." Pawl latch assembly 110 may sometimes be referred to as "spring loaded pawl latch assembly 110." Each of these components will be discussed later in more detail.

Drive housing 54 may be used to transmit rotational forces or drilling forces from drive shaft 38 to a cartridge assembly releasably engaged within plunger operating and cartridge drive mechanism 50. The cartridge assembly may include a fluid reservoir, a plunger assembly and a hollow, bone penetrating needle. Hollow, bone penetrating needles and hollow drill bits incorporating teachings of the present disclosure may sometimes be referred to as "bone penetrators."

Rotational and/or drilling forces from drive shaft 38 may be used to insert a bone penetrating needle into bone marrow at a selected target site.

Examples of cartridge assemblies incorporating teachings of the present disclosure are shown in FIGURES IB, ID, 1C, 2A and 2B. However, a wide variety of other cartridge assemblies may be satisfactorily used with a plunger operating and cartridge drive mechanism incorporating teachings of the present disclosure. The present disclosure is not limited to cartridge assemblies 130 and 130a. The present disclosure is also not limited to using only rotational and/or drilling forces to insert a bone penetrating needle attached to a cartridge
assembly at a selected target site. A plunger operating and cartridge drive mechanism incorporating teachings of the present disclosure may also apply longitudinal or axial force to a cartridge assembly to insert an attached bone penetrating needle into bone marrow at a selected target site. Examples of drivers which apply linear force (sometimes referred to as "impact drivers" or "impact driver devices") are shown in copending patent application serial number 11/064,156 entitled "Impact-Driven Intraosseous Needle" filed February 23, 2005. Such drivers may be satisfactorily used with a cartridge assembly incorporating teachings of the present disclosure.

Drive housing 54 may be described as having a hollow, generally cylindrical configuration defined in part by longitudinal bore 56. Plunger operating assembly 82 may be slidably disposed within longitudinal bore 56 which extends between first end 54a and second end 54b of rotational housing 54. Portions of plunger operating assembly 82 may extend from first end 54a of rotational housing 54. See FIGURES IB, C, D and H. First end 54a of rotational housing 54 may also be operable to releasably engage a cartridge assembly incorporating teachings of the present disclosure with plunger and drive mechanism 50.

Second end 54b of drive housing 54 may be securely engaged with drive shaft 38. For embodiments such as shown in FIGURES IB, C and D, coupling 42 may be securely engaged with exterior portions of drive shaft 38 and interior portions of rotational housing 54 proximate second end 54b. Various types of mechanical fasteners such as set screws, pins, and/or detents may be
satisfactorily used to engage coupling 42 with drive shaft 38 and drive housing 54. Engagement between second end 54b and drive shaft 38 generally prevents longitudinal movement of drive housing 54 relative to receiver portion 26 of housing 22.

The exterior dimensions and configurations of drive housing 54 may be selected to allow rotation of drive housing 54 with respect to retractable sleeve 58 and other components associated with plunger operating and cartridge drive mechanism 50. Drive housing 54 may also be rotatably disposed within various components associated with housing 22 such as receiver portion 26 and interior support 23b.

Plunger operating assembly 82 may be triggered or activated to apply force to a plunger assembly associated with a cartridge assembly engaged with first end 54a of drive housing 54 to inject fluids from the cartridge assembly into bone marrow at a target site. Plunger operating assembly 82 may have a first, retracted or cocked position such as shown in FIGURES IB and IG and a second, extended or released position such as shown in FIGURE ID and IH. Plunger operating assembly 82 preferably includes first end 82a which may extend from first end 54a of drive housing 54. Second end 82b of plunger operating assembly 82 may be disposed adjacent to coupling 42 when plunger operating assembly 82 is in its first retracted or cocked position. See FIGURE IB. As discussed later in more detail, pawl latch assembly 110 may be releasably engaged with shoulder 88 to hold plunger operating assembly 82 in its first, retracted or cocked position. See FIGURES IB and IG.
Plunger operating assembly 82 may sometimes be described as a "plunger barrel." Plunger operating assembly 82 may have a generally cylindrical configuration defined in part by reduced outside diameter portion 84 and enlarged outside diameter portion 86. See FIGURES IG and IH. Shoulder 88 may be formed on the exterior of plunger operating assembly 82 between reduced outside diameter portion 84 and enlarged inside diameter portion 86. Reduced outside diameter portion 84 may include a generally hollow, cylindrical chamber or cavity 94.

A plunger rod or plunger shaft extending from an associated cartridge assembly may be disposed within cavity 94. For example, FIGURES 1C and ID show cartridge assembly 130 releasably engaged with first end 54a of drive housing 54 and portions of plunger shaft 142 extending from cartridge assembly 130 into cavity 94. During loading of apparatus 20, portions of plunger shaft 142 extending from cartridge assembly 130 or plunger shaft 142a extending from cartridge assembly 130a may be inserted into cavity 94.

Enlarged outside diameter portion 86 (FIGURE IB) may include generally hollow, cylindrical chamber or cavity 96 with portions of first spring or plunger spring 51 disposed therein. When plunger operating assembly 82 is released from its first position by activation of pawl latch assembly 110, first spring 51 may provide sufficient force or energy to propel plunger shaft 142 and attach plunger or piston 144 into attached cartridge assembly 130 to inject fluids from cartridge assembly 130 into bone marrow at a target site.
Plunger and drive mechanism 50 may also include retractable sleeve 58 slidably disposed within housing 22. Sleeve 58 may be described as a generally elongated, hollow cylinder defined in part by first end or distal end 58a and second end or proximal 58b. Sleeve 58 may have a first, extended position such as shown in FIGURES IA, IB and 1C and a second, retracted position such as FIGURE ID.

As shown in FIGURES IA - ID, cut-out or window 60 may be formed in sleeve 58 proximate first end or distal end 58a. Window 60 may be used to confirm that a cartridge assembly has been loaded and properly seated into apparatus 20. For some applications a retractable sleeve may be formed from clear, plastic-type material (not expressly shown) which would not require the use of cut-out or notch 60 to indicate when a cartridge assembly has been releasably installed within apparatus 20.

As shown in FIGURES IB - ID and IG - IJ, sleeve 58 may include reduced outside diameter portion 64 and enlarged outside diameter portion 66 with shoulder 68 formed therebetween. Ramp or trigger 70 may be formed on the inside diameter of sleeve 58 proximate shoulder 68. See FIGURES 1C, II and IJ. Ramp 70 may contact pawl latch assembly 110 while drive housing 54 is rotating to release plunger operating assembly 82 when an associated cartridge assembly has been inserted to a desired depth at a target site. As shown in FIGURES ID, II and IJ, longitudinal movement or sliding of sleeve 58 from first end 27 of housing 22 towards second end 28 of housing 22 will result in ramp 70 contacting portions of pawl latch assembly 110 when drive housing 54 is rotating. Movement of retractable sleeve 58 from its first extended position
to a second retracted position will generally not result in ramp 70 contacting or releasing pawl latch assembly 110.

For some applications, receiver portion 26 of housing 22 may include first interior support 23a and second interior support 23b. See FIGURES IB, IC and ID. Interior supports 23a and 23b are preferably spaced from each other and securely engaged with receiver portion 26. For some applications interior supports 23a and 23b may have a generally circular opening formed therein (not expressly shown). The opening in first interior support 23a may be sized to slidably receive reduced outside diameter portion 64 of sleeve 58. As shown in FIGURES IB and IC interior support 23a may engage or contact shoulder 66 when sleeve 58 is in its first, extended position.

Second interior support 23b may have a generally circular opening formed therein (not expressly shown) and may be sized to be compatible with the outside diameter of drive housing 54. See FIGURES IB - ID. Second spring 52 may be disposed within receiver portion 26 of housing 22 between second support 23b and a recess defined in part by shoulder 72 formed on the interior of enlarged outside diameter portion 66 of sleeve 58. Portions of drive housing 54 may be disposed within second spring 52. See FIGURE IC.

When a bone penetrating needle of an associated cartridge assembly is inserted into bone marrow at a target site, sleeve 58 will generally retract or slide from first end 27 of housing 22 towards second end 28 of housing 27. See FIGURE ID. This movement will compress second spring 52 between second support 23b and shoulder
72 formed on the interior of enlarged outside diameter portion 66. When apparatus 20 is removed from contact with a patient's skin, second spring 52 will return sleeve 58 to its first, extended position as shown in FIGURE IB with shoulder 68 contacting first support 23a.

Movement of retractable sleeve 58 from its first, extended position (FIGURES IB and IC) to its second, retracted position (FIGURE ID), as an associated bone penetrating needle is inserted into bone marrow at a target site, may result in pawl latch assembly 110 contacting ramp or trigger 70 during rotation of drive housing 54. See FIGURES II and IJ. Ramp 70 will then move pawl latch assembly 110 from its first, blocking position (FIGURES IB and IG) to its second position (FIGURES ID and IJ) which results in release of plunger operating assembly 82 from its first, cocked position such as shown in FIGURE IB. First spring 51 may then move plunger operating assembly 82 to its second, released or fired position such as shown in FIGURE ID.

Pawl latch assembly 110 is only one example of a mechanism satisfactory for releasing a plunger operating assembly from a cocked position.

FIGURE IE shows bone penetrator 160 inserted into bone 334 and associated bone marrow 336. Bone 334 may be generally described as a humeral head. For some applications a humeral head may be a preferred target site due to relatively high blood flow rates through associated bone marrow and relatively easy access. Various types of connections may be used to communicate fluids with bone marrow 336 via bone penetrator 160 and intravenous tubing 340. For example right angle connector 342 may be engaged with one end of tubing 340.
Right angle connector 342 has the advantage of allowing tubing 340 to be connected to bone penetrator 160 at an angle that will not kink or pinch off the lumen of tubing 340. Right angle connector 342 may also include Luer fitting 343 sized to be inserted into end 302 of hub 300. Lock nut 344 may be used to engage right angle connector 342 with threaded connection 303 adjacent to second end 302 of hub 300.

Many medical devices such as syringes, hypodermic needles, catheters, IV tubing and stop cocks may include either a pin (male) or box (female) Luer type fitting. The pin end or box end may include threads which allow releasably engaging an associated medical device with other equipment having a complimentary Luer type fitting. Luer type connections may sometimes be described as Luer slips or Luer locks. Luer slips may require a half twist of an associated collar to securely engage a pin end and a box end with each other. A Luer lock functions by forming a watertight fit between a pin and a box when engaged and when twisted by a half turn or more. Luer locks frequently include a threaded locking-collars on a box end which mates with ears or projections from an associated pin end to provide a more positive, locked connection. Luer connections generally form fluid tight seals. Some Luer connections may include tapered fittings.

For some applications second end 302 of hub 300 may be modified to have one or more features of such previously described Luer connections. Second end 302 and threaded connection 303 of hub 300 may be designed to accommodate attachment of various types of connectors.
used to communicate fluids with bone marrow or other target sites via bone penetrator 160. FIGURE I E illustrates only one example of a connector that may be used to communicate fluids between bone penetrator 160 and tubing 340. Intravenous tubing may be used to provide intravenous fluids and/or medications to associated bone marrow. The tubing may also be used in withdrawing a sample of blood from the bone marrow. Other connectors or adapters may also be used to connect a penetrator to intravenous tubing, other types of tubing and/or a syringe.

As shown in FIGURES IB, 1C, ID and IF – IJ pawl latch assembly 110 may be disposed within portions of drive housing 54 intermediate first end 54a and second end 54b. Pawl latch assembly 110 may include pivot shaft 112 with pawl or cam 114 rotatably mounted thereon. Pawl 114 may include first lobe 114a and second lobe 114b extending from pivot shaft 112. First lobe or first portion 114a may be sized to releasably engage shoulder 88 formed on the exterior of plunger operating assembly 82. Second lobe or second portion 114b may be sized to engage ramp or trigger 70. Third spring or pawl spring 53 may also be mounted on pivot shaft 112 and engaged with pawl 114.

Pawl 114 may have a first position such as shown in FIGURES IB and IG which corresponds with the first, cocked position of associated plunger operating assembly 82. Third spring 53 preferably biases pawl 114 to its first position which releasably engages first lobe 114a with shoulder 88. Pawl 114 may have a second position which corresponds with the second, released position for plunger operating assembly 82. See FIGURES ID and IH.
For some applications drive housing 54 may include opening or channel 116 extending from first end 54a. Opening or channel 116 may be sized to accommodate insertion of pivot pin 112 into associated pawl 114 and third spring 53. FIGURES IG AND H Drive housing 54 may also include opening or channel 118 sized to receive the opposite end of pivot shaft 112. FIGURES IB AND ID A window or notch may be formed in the exterior of drive housing 54 to allow inserting portions of pawl 114 including lobe 114b therethrough.

When plunger operating assembly 82 is in its first, cocked position, second lobe or second portion 114b of pawl 114 will be spaced longitudinally from ramp or trigger 70. During rotation of an associated cartridge assembly and insertion of a bone penetrator at a target site, retractable sleeve 58 will slide longitudinally relative to the exterior of drive housing 54. The longitudinal movement of retractable sleeve 58 in combination with rotation of drive housing 54 will result in ramp or trigger 70 engaging second lobe 114b which rotates pawl 114 on pivot pin 112. Such rotation results in first lobe 114a releasing or allowing plunger operating assembly 82 to move from its first, cocked position to its second, released position. As previously discussed, this movement may result in injection of fluids from cartridge assembly 130 through penetrator 160 into bone marrow at a target site.

Cartridge assemblies formed in accordance with teachings of the present disclosure may include a fluid reservoir having a generally hollow, cylindrical configuration defined in part by a first, distal end and a second, proximal end. A hub with a hollow, bone
penetrating needle may be attached to the first, distal end. Portions of a plunger assembly may be slidably disposed within the fluid reservoir to force fluids contained in the fluid reservoir through an attached hollow, bone penetrating needle. The plunger assembly may include a plunger shaft and plunger piston. Portions of the plunger shaft may extend from the second, proximal end of the fluid reservoir.

For some applications, cartridge assemblies incorporating teachings of the present disclosure may be prefilled with a specific fluid using techniques associated with prefilled syringes. For other applications, cartridge assemblies incorporating teachings of the present disclosure may normally be empty until filled with a fluid or medication prior to use of each cartridge assembly. Cartridge assemblies incorporating teachings of the present disclosure will often be disposed of after a single use. However, for some applications, cartridge assemblies incorporating teachings of the present disclosure may be used multiple times and may be used at one or more target sites.

Cartridge assemblies and associated fluid reservoirs may have a wide variety of configurations and functions similar to a hypodermic syringe, an insulin syringe or a tuberculin syringe. For example, fluid reservoirs 132 and 132a (FIGURES 2A and 2C) may contain a quantity of fluid with medication or a drug for delivery to bone marrow or another selected target site. The medication or drug may often be available in liquid form. However, any suitable form of drug including solid, powder, capsule or any other known form may be used. Medication or drugs may include, for example, emergency drugs for
cardiac resuscitation, antibiotics, antidotes and any-
other drug suitable for administration to a body. Fluid
reservoirs 132 and 132a may also be used for injection of
intravenous fluids or any other substance desired for a
specific purpose.

Various features of the present disclosure may be
described with respect to cartridge assemblies 130 and
130a as shown in FIGURES 2A-2D. Cartridge assemblies
incorporating teachings of the present disclosure may
have some characteristics associated with medical
syringes. However, various components associated with
cartridge assemblies 130 and 130a may be modified in
accordance with teachings of the present disclosure to
accommodate insertion of an associated hollow, bone
penetrating needle into bone marrow or other selected
target sites.

Cartridge assembly 130 may include barrel or fluid
reservoir 132 having a generally hollow, cylindrical
configuration defined in part by inside diameter 134.
Barrel 132 may include first end 131 and second end 133.
Hub 300 and associated hollow bone penetrating needle or
bone penetrator 160 may be releasably engaged with first
end 131. Barrel 132 may be formed from reusable glass,
disposable plastic, glass composite, plastic composites
and any other material suitable to contain fluids
depending upon intended uses for cartridge assembly 130.
Barrel 132 may sometimes be described as an "ampoule."

Various types of plunger assemblies may be
satisfactorily used with a cartridge assembly
incorporating teachings of the present disclosure. For
some applications plunger assembly 140 may include
plunger shaft or plunger rod 142 and plunger piston 144.
For some applications first end 145 of plunger shaft 142 may be releasably engaged with plunger piston 144. For other applications plunger shaft 142 may be securely engaged with plunger piston 144. One or more projections 146 may be formed on the outside diameter of plunger piston 144 to form a generally fluid tight, moveable seal with respect to inside diameter 134 of barrel 132. Plunger piston 144 may also function as a fluid seal or stopper to maintain any fluids contained within fluid reservoir 132 prior to loading cartridge assembly 130 into apparatus 20 or 220. Various types of elastomeric materials may be satisfactorily used to form plunger piston 144.

Plunger assembly 140 may slidably move from second end 133 of barrel 132 toward first end 131 in response to an axial force applied to plunger shaft 142. Release of plunger operating assembly 82 from its first, retracted or cocked position (FIGURE 1B) allows first spring or plunger spring 51 to apply an axial force or a longitudinal force to plunger shaft 142 and move piston 144 from its first position adjacent to second end 133 to a second position adjacent to first end 131 of fluid reservoir 132 (FIGURE 1D). Such movement of piston 144 may result in fluid from barrel 132 being injected through bone penetrating needle 160 into bone marrow or another target site.

Piston 144 may include recess 148 sized to receive threaded connection 303 formed adjacent to second end 302 of hub 300. Engagement of piston 144 with the threaded connection 303 may allow disengagement of reservoir 132 from hub 300. Drive connector 150 may be securely
engaged with second end 133 of barrel 132 opposite from hub 300 (FIGURES 2A and 2B).

Drive connector 150 may have one or more recesses 152 formed therein and sized to receive corresponding segment 154 extending from first end 54a of drive housing 54. See for example FIGURES 4A and 4B. The dimensions of each recess 152 may be selected to form a secure, snug fit with associated segment 154. Rotation of drive housing 54 will result in each segment 154 contacting associated recess 152 to rotate drive connector 150 and attached barrel 132. The connection formed between hub 300 and first end 131 of barrel 132 is preferably designed to allow transfer of such rotation to attached bone penetrating needle 160.

As shown in FIGURES 2A and 2B, a plurality of magnets 138 may be disposed in drive connector 150 at locations which allow forming a releasable magnetic engagement with first end 54a of drive housing 54. Recesses 152, segments 154 and magnets 138 cooperate with each other to allow releasable engagement between cartridge assembly 130 and first end 54a of drive housing 54.

As shown in FIGURES 1E, 2A and 2B, hub 300 may be used to stabilize an attached bone penetrator such as, but not limited to, bone penetrating needle 160 during insertion into a patient's skin, soft tissue and adjacent bone or other target site. The combination of hub 300 with bone penetrator 160 may sometimes be referred to as a penetrator set or intraosseous needle. First end 301 of hub 300 may have a size and configuration compatible with a selected target site for inserting bone penetrator 160. Examples of such target sites include, but are not
limited to, a humeral head, a tibia, or a sternum. Second end 302 and threaded connection 303 of hub 300 may be operable to be releasably engaged with barrel 132. End 131 of barrel 132 may have a generally circular opening sized to receive second end 302 of hub 300 therein. Optional O-ring 306 or any other suitable fluid seal may be disposed on exterior portions of hub 300 to form a fluid barrier between adjacent interior portions of barrel 132. See FIGURES 2A and 2B.

Cartridge assembly 130a as shown in FIGURES 2C and 2D may include barrel or fluid reservoir 132a having a hollow, generally cylindrical configuration defined in part by inside diameter portions 134a, 134b and 134c. Barrel 132a may include first end 131a and second end 133. Hub 300 and associated bone penetrating needle 160 may be engaged with first end 131a. Barrel 132a may be formed from materials such as used to form barrel 132.

Various types of plunger assemblies may be satisfactorily used with cartridge assembly 130a. For some applications plunger assembly 140a may include plunger shaft or plunger rod 142a and plunger piston 144a. For some applications, first end 145 of plunger shaft 142a may be securely engaged with plunger piston 144a. For other applications, first end 145 may be releasably engaged with piston 144a such as shown in FIGURES 2D, 4B, 7B and 8B.

One or more projections 146 may be formed on the outside diameter of plunger piston 144a to form a generally fluid tight, moveable seal with respect to inside diameter portion 134a. First end 147 of piston 144a may be configured to form a generally fluid tight seal with tapered interior surface 134b of barrel 132a.
Plunger piston 144a may also function as a fluid seal or stopper to maintain fluids contained within reservoir 132a prior to inserting cartridge assembly 130a into apparatus 200 or 220. Various types of elastomeric materials may be satisfactorily used to form plunger piston 144a.

Plunger assembly 140a may slidably move from second end 133 of barrel 132a towards first end 131a in response to an axial force applied to plunger shaft 142a. Release of plunger operating assembly 82 from its first, retracted position allows first spring or plunger spring 51 to apply an axial force or a longitudinal force to move piston 144a from its first position adjacent to second end 133 to a second position which forms a generally fluid tight seal with tapered, inside diameter portion 134b of barrel 132a.

As shown in FIGURES 2C and 2D, second end 302 of hub 300a may also be engaged with barrel 132a. End 131a of barrel 132a may include reduced inside diameter portion 134c with threads 137 formed therein. The dimensions of inside diameter portion 134c may be selected to be compatible with the outside diameter of second end 302 of hub 300a. Second end 302 of hub 300a may include threads 303 or other suitable fitting formed on the exterior therein. Threads 303 may be engaged with threads 137. Second end 302 may have a generally cylindrical pin type configuration compatible with engaging first end or box end 131a of barrel 132a. For many applications hub 300a will remain securely engaged with first end 131a of barrel 132a during use of associated cartridge assembly 130a.
For some applications first end 301 of hub 300a may have the general configuration of a flange. Slot or groove 304 may be formed in first end 301 and sized to receive one end of protective cover or needle cap 334. Slot or groove 304 may be used to releasably engage cover 334 with hub 300a.

As shown in FIGURES 2C and 2D, a plurality of ridges 320 may be formed on exterior portions of hub 300a to allow an operator to grasp the associated penetrator assembly or penetrator set while loading an associated cartridge assembly into apparatus 20 or 220. Ridges 320 may also aid in removal of bone penetrator 160 from a target site. Longitudinal ridges 320 may also be grasped for engagement and/or disengagement of hub 300a with first end 131a of barrel 132a.

The dimensions and configuration of first end 301 of hub 300a may be varied to accommodate various target sites and/or patients. Hub 300a may be satisfactorily used with a wide variety of flanges or other configurations compatible with contacting a patient's skin. The present disclosure is not limited to hub 300a or bone penetrator 160.

For some applications a cartridge assembly may include only a single hollow bone penetrating needle. For other applications a cartridge assembly may include an outer penetrator such as a cannula or hollow bone needle or hollow drill bit (not expressly shown) and an inner penetrator such as a stylet, trocar or other removable device (not expressly shown) disposed within the outer penetrator. For some embodiments bone penetrating needles 160 and 160a may include a stylet (not expressly shown).
Penetrators may be relatively small for pediatric patients, medium-sized for adults and large for oversized adults. The length and diameter of the penetrator used in a particular application may depend upon the size of a bone to which the apparatus may be applied. Penetrators may be provided in a wide variety of configurations depending upon intended clinical purposes for insertion of the associated penetrator assembly. For example, there may be one configuration for administering drugs or fluids to a patient's bone marrow and an alternative configuration for sampling bone and/or blood from a patient. Other configurations may be appropriate for bone and/or tissue biopsy. Some penetrators may be suitable for more than one purpose. The configuration and size of a bone penetrator may also vary depending upon the target site chosen for insertion of each penetrator. The present disclosure is not limited to bone penetrators 160 or 160a.

A wide variety of hollow bone penetrating needles and hollow drills may be satisfactorily used to deliver a quantity of medication to bone marrow or other target sites in accordance with teachings of the present disclosure. Hollow, bone penetrating needles 160 and 160a as shown respectively in FIGURES 3A and 3B are representative of only two examples of bone penetrators that may be satisfactorily used with apparatus of the present disclosure. Bone penetrators 160 and 160a are examples of a single, hollow penetrator. The size of bone penetrators 160 and 160a may vary depending upon a selected target site and/or intended applications for an associated cartridge assembly.
Bone penetrating needles 160 and 160a may be formed of stainless steel or any other suitable material. Respective closed tips 162 suitable for drilling through a bone into associated bone marrow, may be formed on a respective first end of bone penetrators 160 and 160a. Closed tip 162 may include at least one cutting edge 170 that enables efficient drilling through bone to associated bone marrow with minimal trauma to respective outer bony cortex.

Outside diameter or exterior portion 168 of bone penetrators 160 and 160a may be selected to accommodate secure engagement with an associated hub. A second end of each bone penetrator 160 and 160a opposite from respective tip 170 may be sized to receive fluid from an attached cartridge assembly.

Bone penetrators 160 and 160a may include one or more side ports 164 for release of medication or communication of fluid with adjacent bone marrow. Side ports 164, holes in the side of bone penetrators 160 and 160a, may be configured to block passage of bone chips and debris into longitudinal bore 166. By way of example and not limitation, one way to configure side ports 164 is to angle each side port 164 in a direction that is opposite to the direction of drilling. Alternatively, bone penetrating needle 160 and 160a may include a sleeve (not expressly shown) that blocks passage of bony fragments into longitudinal bore 166 of bone penetrator 160 or 160a.

FIGURE 3C is a schematic drawing in section showing side port 164 offset or angled relative to longitudinal axis 169 of longitudinal bore 166. One or more side ports 164 may be formed at an acute angle relative to
associated longitudinal bore 166 and longitudinal axis 169 to minimize obstruction or clogging of each side port 164 and associated longitudinal bore 166 by bone fragments (not expressly shown) and/or soft body tissue (not expressly shown). For example if drilling occurs in a clockwise direction, side ports 164 may be angled counter-clockwise. See FIGURE 3C.

FIGURES 4A and 4B show another mechanism satisfactory for releasably engaging a cartridge assembly with portions of a plunger operating and cartridge drive mechanism in accordance with teachings of the present disclosure. However, a wide variety of releasable mechanisms other than magnets 138 such as shown in FIGURES 2A-2D or ball detent mechanisms such as shown in FIGURES 4A, 4B or collet latch mechanisms such as shown in FIGURES 7A, 7B, 8A and 8B may be satisfactorily used with an apparatus operable to deliver fluid to bone marrow in accordance with teachings of the present disclosure.

One of the features of such ball detent mechanisms and collet latch mechanisms includes maintaining positive engagement between an associated plunger operating and cartridge drive mechanism and an attached cartridge assembly until after an associated plunger assembly has moved from a first position to a second position. Such movement may result in fluids contained in the cartridge assembly being injected at a target site before disengagement of the cartridge assembly from the plunger operating and cartridge drive mechanism.

Plunger operating and cartridge drive mechanism 50a such as shown in FIGURES 4A and 4B may include retractable sleeve 158 which functions similar to
previously described retractable sleeve 58. Retractable sleeve 158 may include groove or recess 170 formed on the inside diameter of retractable sleeve 158. Balls 172 cooperate with drive connector 150 to maintain positive engagement between cartridge assembly 132a and first end 54a of drive housing 54 until after fluid has been injected from cartridge assembly 132a.

As an associated drive apparatus inserts bone penetrator 160 to a desired depth at a target site, retractable sleeve 158 will move to its second position which allows balls 172 to move radially outward into recess 170. See FIGURE 4B. Movement of balls 172 into recess 170 may allow disengagement of drive connector 150 from first end 54a of drive housing 54. Portions of plunger shaft 142a may slide out of cavity 94 in plunger operating assembly 82. See FIGURE 4B. After plunger operating and cartridge drive mechanism 50a has inserted bone penetrator 160 at a target site and plunger shaft 142a has moved piston 144 from its first position to its second position proximate inside diameter portion 134a, the associated drive apparatus may be disengaged from cartridge assembly 132a. End 145 of plunger shaft 142a may also be disengaged from piston 144a.

In one embodiment steps such as outlined in FIGURE 5 may be followed to employ apparatus 20 in delivering medication or fluid to bone marrow at a target site. Method 500 may begin with first step 502 which includes manually compressing plunger barrel 82 and plunger barrel spring 52. Plunger barrel 82 may be releasably engaged by pawl latch assembly 110 when plunger barrel spring 52 has been compressed. Step 504 may include inserting or loading cartridge assembly 130 or 130a into retractable
sleeve 58 and releasably engaging respective cartridge assembly 130 or 130a with an associated plunger operating and cartridge drive mechanism. In one embodiment, cartridge assembly 130 or 130a may engage drive housing 54 by a magnetic mechanism such as one or more magnetic discs 138.

Once cartridge assembly 130 or 130a is engaged with drive housing 54 and plunger operating assembly 82 is in its compressed position, apparatus 20 may be considered "armed" and ready to "fire" an associated bone penetrator into a target site such as a bone overlying bone marrow. Alternative target sites may include other body tissues or body cavities. Use of apparatus 20 to deliver medication or fluid may be applied to any desirable sites in the body.

After preparing a selected target site, for example a humeral head or a proximal tibia, apparatus 20 may be seated with first end 58a of retractable sleeve 58 disposed against skin overlying a bone and bone marrow at the target site for insertion of bone penetrating needle 160. Switch or trigger 32 may be activated to begin drilling into the bone and adjacent target bone marrow. See FIGURES 1C and ID. Bone penetrating needle 160 may first penetrate the skin, followed by adjacent soft tissue, outer bone cortex and enter bone marrow at the target site. As first end 58a pushes against tissue overlying a target bone marrow, retractable sleeve 58 will contact pawl latch assembly 110 to release plunger operating assembly 82. As first spring 51 decompresses, plunger operating assembly 82 moves plunger shaft 142 into reservoir 132. As plunger shaft 142 is forced into reservoir 132, fluid or any other substance present
within reservoir 132 is forced into the target bone marrow or intraosseous space of a bone.

After medication or fluid delivery, apparatus 20 may be disengaged from cartridge assembly 130. Reservoir 132 may then be detached from hub 300. Bone marrow may then be accessed through a connector attached with second end 302 of hub 300. See FIGURE IE. These steps describe only one embodiment of an apparatus operable to administer fluid such as a drug or medication to a target site. Other mechanisms may or may not include one or more of these steps.

Apparatus 220 as shown in FIGURE 6 represents another embodiment operable to provide access to bone marrow or any other target site. Apparatus 220 may have several positions including plunger operating and cartridge drive mechanism 250 in an uncocked and unloaded position (not expressly shown), a cocked and unloaded position (not expressly shown), a cocked and loaded position such as shown in FIGURE 6, and a discharge position after fluid has been injected from cartridge assembly 130a at a target site (not expressly shown).

Apparatus 220, as shown in FIGURE 6, may include driveri 221 with housing 222 and a drive assembly (not expressly shown) disposed therein. The drive assembly may include a motor, gearbox or gear head, and drive shaft 238 extending from housing 222. Driver 221 may sometimes be referred to as "powered" driver. Plunger operating and cartridge drive mechanism 250 may or may not be releasably engaged with driver 221. Plunger operating and cartridge drive mechanism 250 will typically be in an uncocked and unloaded position while engaging drive shaft 238 of driver 221 therewith.
Housing 222 may include handle 224 which has been sized and contoured to fit the hand of an operator (not expressly shown). Handle 224 may include on/off switch or trigger 232. Drive shaft 238 may extend from first end 227 of housing 222. Second end 228 of housing 222 may be sealed or closed to protect various components such as a motor, gearbox or gear head and a power source that may be disposed within housing 222.

Examples of power drivers satisfactory for use with a plunger operating and cartridge drive assembly incorporating teachings of the present disclosure are shown in U.S. Patent 6,183,442 entitled "Tissue Penetrating Device and Methods of Using Same" and U.S. Patent 5,554,154 entitled "Intra-Osseous Needle Drill."

Power drivers which may also be satisfactorily used with a plunger assembly incorporating teachings of the present disclosure are shown in pending U.S. Patent Application Serial No. 10/449,530 entitled "Apparatus and Method to Provide Emergency Access to Bone Marrow" filed May 30, 2003 and Serial No. 10/449,476 entitled "Apparatus and Method to Access Bone Marrow" filed May 30, 2003. Manual drivers (not expressly shown) may also be satisfactorily used with cartridge drive mechanisms and/or plunger operating assemblies incorporating teachings of the present disclosure to provide access to bone marrow or other target sites in a patient's body.

Plunger operating and cartridge drive mechanism 250 may include first spring 251 and second spring 252. First spring 251 may sometimes be referred to as "plunger spring" 251. Second spring 252 may sometimes be referred to as "retractable sleeve spring" 252. One or more additional springs may also be disposed within plunger
operating and cartridge drive mechanism 250 depending upon mechanisms used to releasably retain a cartridge assembly within plunger operating and cartridge drive mechanism 250 and/or allow plunger operating assembly 280 to move from a first, cocked position to a second, uncocked position.

Plunger operating assembly 280 may be disposed within longitudinal bore 256 of plunger operating and drive mechanism 250 adjacent to second end 254b. Plunger operating assembly 280 may include plunger barrel 282. Plunger barrel 282 may include chamber or cavity 292 which is sized to receive portions of a plunger assembly therein. Plunger operating assembly 280 may be moved from an uncocked position (not expressly shown) to a cocked position such as shown in FIGURE 6. A cartridge assembly and bone penetrating needle incorporating teachings of the present disclosure may be inserted into retractable sleeve 258 and releasably engaged with an associated drive connector. Drive connectors 150, 150a, 150b or any other drive connector incorporating teachings of the present disclosure may be used.

First end or distal end 258a of retractable sleeve 258 may then be placed adjacent to a selected target site. Switch 232 may be depressed to activate driver 221 to rotate drive shaft 238 and insert bone penetrating needle 160 to a desired depth at the target site. As bone penetrating needle 160 is inserted into the target site, retractable sleeve 258 will move longitudinally from a first, extended position to a second, retracted position which results in release of plunger operating assembly 280 from its first, cocked position and allows first spring or plunger spring 251 to force plunger
assembly 140a to move from its first position to its second position which results in the injection of fluids contained within reservoir 132a into bone marrow at the selected target site. After plunger assembly 140a has completed injection of the fluid, various release mechanisms such as shown in FIGURES 4A, 4B, 7A, 7B, 8A and 8B may be satisfactorily used to disengage cartridge assembly 130a from plunger operating and cartridge drive mechanism 250.

Plunger operating and cartridge drive mechanism 250 may also include drive housing 254 defined in part by: first end 254a and second end 254b. Drive housing 254 may have a generally hollow cylindrical configuration defined in part by longitudinal bore 256 extending from first end 254a towards second end 254b. Retractable sleeve 258 may be slidably disposed within longitudinal bore 256 and extend from first end 254a. Retractable sleeve 258 may also include first end or distal end 258a and second end or proximal end 258b. The outside diameter of retractable sleeve 258 and the inside diameter of longitudinal bore 256 are preferably selected to allow longitudinal, sliding movement of retractable sleeve 258 from its first, extended position as shown in FIGURE 6 to a second, retracted position (not expressly shown).

Second end 254b of drive housing 254 may be generally closed except for opening 262 which is preferably sized to receive drive shaft 238. Rotation of drive shaft 238 may be transmitted through portions of drive housing 250 adjacent to opening 256. Drive housing 254 may be used to transmit rotational forces or drilling forces from drive shaft 238 to a cartridge assembly
releasably engaged with plunger operating and cartridge drive mechanism 250.

FIGURES 7A and 7B show portions of plunger operating and cartridge drive mechanism 50b with cartridge assembly 130a releasably attached thereto. Release mechanism 180 may be generally described as a collet latch assembly having a plurality of collet fingers 182 with respective collet heads 184 disposed on the end of each collet finger 182. Collet latch assembly 180 may be satisfactorily used to releasably engage drive connector 150a of cartridge assembly 130a proximate first end 54a of drive housing 54b.

Plunger barrel 82a may include recess or groove 188 formed on the exterior thereof. As an associated plunger barrel 82a is shifted from a cocked position to a released position, groove 188 will be aligned with second end 186 of collet fingers 182. The dimensions of groove 188 are preferably selected to allow second end 186 of each collet finger 182 to be received therein. An associated retractable sleeve (not expressly shown) may include an enlarged inside diameter portion which accommodates radial expansion of collet fingers 182 and associated collet heads 184 to release their engagement with drive connector 150a. As a result the associated drive apparatus may be removed from cartridge assembly 130a.

FIGURES 8A and 8B show portions of plunger operating and cartridge drive mechanism 50c with cartridge assembly 130a releasably attached thereto. Release mechanism 180a may be generally described as a collet latch assembly having a plurality of collet fingers 182a with respective collet heads 184a disposed on the end of each collet
finger 182a. Collet latch assembly 180a may be satisfactorily used to releasably engage drive connector 150a of cartridge assembly 130a proximate first end 54a of drive housing 54c.

Plunger shaft or plunger rod 142b may include recess or groove 176 formed on the exterior thereof. As an associated plunger barrel (not expressly shown) moves from a cocked position to a released position, recess or groove 176 will be aligned with balls 172a and second end 186a of each collet finger 182a. The dimensions of recess 176 are preferably selected to allow balls 172a to be received therein. An associated retractable sleeve (not expressly shown) may include an enlarged inside diameter portion which accommodates radial expansion of collet fingers 182a and associated collet heads 184a to release their engagement with drive connector 150a. As a result, the associated drive apparatus may be removed from cartridge assembly 130a.

Apparatus 20 or 220 may be used to access the bone marrow of any bone in the body including but not limited to the tibia, humeral head, or sternum. Apparatus 20 or 220 may be used to access the femur, radius, ulna, iliac crest and medial malleolus or any other target site in a body including non-bony targets. Apparatus 20 or 220 may be used to access the bones and bone marrow of adults, children and any animal species. Apparatus 20 or 200 may also be used to access other tissues or body cavities.

Apparatus 20 and 220 may be used to administer a unit dose of medication to bone marrow or other target sites in any form suitable for delivery. Such drugs include, but are not limited to medications for resuscitation during the treatment of cardiac arrest,
antibiotics, poison antidotes, nerve gas antidotes and radioprotectants to protect the body against radiation exposure. Apparatus 20 or 220 may be used to administer any suitable fluids or other substances suitable for injection into bone marrow or other sites in the body. Such fluids may include, but are not limited to, normal saline, lactated Ringer's solution, blood, plasma, albumin or any other bio-compatible fluid.

Apparatus 20 and 220 formed in accordance with teachings of the present disclosure may have ergonomic designs that allow insertion pressure or forces, such as rotational, drilling, impact, longitudinal, and/or manual forces, to be applied with relative ease and at the same time permit insertion of a bone penetrator extending from an associated cartridge assembly. Handle 22 and 222 may be aligned with an anatomically neutral position of an operator's hand and wrist as a powered driver rotates a releasably engaged cartridge assembly with a bone penetrator extending therefrom. This alignment may allow better axial orientation of apparatus 20 and 220 as an associated bone penetrator is inserted into bone marrow or other target site with less chance of excessive movement and/or misalignment of the bone penetrator which might result in undesired widening and/or elongation of an associated insertion hole.

Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alternations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
WHAT IS CLAIMED IS:

1. An apparatus for delivering a quantity of fluid to bone marrow of a bone comprising;
 a driver;
 a plunger operating and cartridge drive mechanism coupled with the driver;
 a cartridge assembly having a fluid reservoir with a plunger assembly slidably disposed in the fluid reservoir;
 a hollow bone penetrating needle attached to and extending from the fluid reservoir; and
 the plunger operating and cartridge drive mechanism operable to rotate the cartridge assembly and insert the bone penetrating needle into bone marrow of the bone.

2. The apparatus of Claim 1 further comprising the plunger operating and cartridge drive mechanism operable to deliver a fluid contained in the fluid reservoir after the bone penetrating needle has been inserted into the bone marrow.

3. The apparatus of Claim 1 wherein the plunger and drive mechanism comprises a spring loaded plunger operating assembly.

4. The apparatus of Claim 1 wherein the plunger operating and cartridge drive mechanism comprises a spring loaded retractable sleeve.

5. The apparatus of Claim 1 further comprising means for releasably engaging the cartridge assembly with the plunger operating and cartridge drive mechanism.
6. The apparatus of Claim 1 wherein the plunger assembly further comprises a plunger shaft and a piston.

7. The apparatus of Claim 1 wherein the fluid reservoir comprises a luer fitting.

8. The apparatus of Claim 1 wherein the bone penetrating needle comprises a closed tip having at least one cutting edge operable for drilling into a bone.

9. The apparatus of Claim 1 wherein the bone penetrating needle comprises a longitudinal bore having side ports extending therefrom.

10. The apparatus of Claim 1 wherein the driver comprises a housing, a motor, a power source, and a gearbox.

11. An apparatus for delivering a quantity of medication to bone marrow of a bone comprising:
 a driver;
 a plunger operating and cartridge drive mechanism rotatably engaged with the driver;
 a cartridge assembly having a drive connector attached thereto;
 the drive connector operable to be releasably engaged with one end of the plunger operating and cartridge drive mechanism; and
 a bone penetrating needle engaged with the cartridge assembly opposite from the drive connector.
12. The apparatus of Claim 11 wherein the drive connector further comprises at least one magnet operable to releasably engage the cartridge assembly with the one end of the plunger operating and cartridge drive mechanism.

13. The apparatus of Claim 11 further comprising a ball and detent mechanism operable to releasably engage the cartridge assembly with the one end of the plunger operating and cartridge drive mechanism.

14. The apparatus of Claim 11 wherein the plunger operating and cartridge drive mechanism further comprises:

 a plunger operating assembly having a first, cocked position and a second, released position;
 a first spring operable to move the plunger operating assembly from its first position to its second position;
 a retractable sleeve operable to slide longitudinally relative to the plunger operating and cartridge drive mechanism;
 a second spring operable to bias the retractable sleeve to move from a retracted position to an extended position;
 a pawl latch assembly having a first position which releasably engages the plunger operating assembly in its first position;
 the pawl latch assembly having a second position which allows movement of the plunger operating assembly from its first position to its second position; and
a third spring operable to bias the pawl latch assembly in its first position.

15. An apparatus for delivering a quantity of medication to the bone marrow of a bone comprising:
 a driver;
 a plunger operating assembly;
 a plunger spring;
 a spring loaded retractable sleeve; and
 a cartridge assembly having a fluid reservoir and a bone penetrating needle.

16. An apparatus for delivering a quantity of medication to bone marrow comprising:
 a powered driver engaged with a plunger operating and cartridge drive mechanism; and
 a spring loaded plunger operating assembly operable to inject fluid containing the medication from a cartridge assembly releasably engaged with the plunger operating and cartridge drive mechanism.

17. An apparatus for delivering a quantity of medication to the bone marrow of a bone comprising:
 a powered driver configured to attach to a spring loaded plunger and drive mechanism comprising a housing, a connector operable to releasably attach a spring loaded plunger and drive mechanism, a drill shaft, a gear assembly operable to engage and rotate the drill shaft, a motor, a power supply and associated circuitry operable to power the motor;
a spring loaded plunger and drive mechanism
comprising a spring, a plunger barrel, a spring loaded
retractable sleeve; and
a releasable cartridge having a fluid reservoir
comprising a plunger, a luer fitting and a bone
penetrating needle.

18. A method for delivering a quantity of fluid to
bone marrow comprising:
compressing a spring associated with a plunger
operating assembly coupled with a driver;
engaging a fluid filled cartridge assembly with the
plunger operating assembly;
inserting a bone penetrating needle extending from
the cartridge assembly into bone marrow at a target site
using the driver; and
injecting a quantity of fluid into the bone marrow
by releasing the spring to activate the plunger operating
assembly.

19. The method of Claim 18 further comprising
filling the fluid reservoir with a fluid having
medication.

20. The method of Claim 18 further comprising
selecting the target site from the group consisting of a
humeral head and a tibia.

21. The method of Claim 18 wherein inserting the
bone penetrating needle further comprises using the
driver to rotate the cartridge assembly and insert the
bone penetrating needle through portions of a bone at the target site.

22. A method of manufacture of an apparatus for delivering a quantity of medication to the bone marrow of a bone comprising:

forming a powered driver configured to attach to a spring loaded plunger and drive mechanism comprising a housing, a connector operable to releasably attach a spring loaded plunger and drive mechanism, a drill shaft, a gear assembly operable to engage and rotate the drill shaft, a motor and a power supply and associated circuitry operable to power the motor;

forming a plunger operating and cartridge drive mechanism comprising a spring, a plunger barrel, and a spring loaded retractable sleeve; and

forming a releasable cartridge having a fluid reservoir comprising a plunger, a luer fitting and a bone penetrating needle.

23. A cartridge assembly for delivering a quantity of medication to bone marrow of a bone comprising:

a fluid reservoir having a first end and a second end;

a hollow, bone penetrating needle engaged with the first end of the fluid reservoir;

a plunger assembly including a plunger shaft and a piston slidably disposed in the fluid reservoir;

a drive connector attached to the second end of the fluid reservoir opposite from the bone penetrating needle; and
24. The cartridge assembly of Claim 23 further comprising the fluid reservoir formed at least in part by a material selected from the group consisting of glass composite, plastic, or a plastic composite.

25. The cartridge assembly of claim 24 comprising:
 a detachable fluid reservoir comprising a plunger;
 and
 a bone penetrating needle.

26. The cartridge assembly of Claim 24 further comprising a hub operable for releasably engaging the bone penetrating needle with the first end of the fluid reservoir.

27. The cartridge assembly of Claim 24 further comprising the fluid reservoir filled with one or more fluids selected from the group consisting of medications for treatment of cardiac arrest, antibiotics, poison antidotes, nerve gas antidotes, radioprotectants to protect the body against radiation exposure, normal saline solutions, lactated Ringer's solution, blood, plasma, albumin and other bio-compatible fluids.

28. An apparatus operable to deliver a quantity of fluid to bone marrow of a bone comprising:
 a plunger operating and cartridge drive mechanism;
 and
a cartridge assembly having a fluid reservoir and a bone penetrating needle.

29. The apparatus of Claim 28 wherein the plunger operating and cartridge drive mechanism further comprises a plunger barrel, a spring disposed in the plunger barrel and a latch mechanism operable to release the spring to provide sufficient force to inject fluid from the fluid reservoir into the bone marrow.

30. A bone penetrating needle operable to attach to a cartridge assembly for delivering a quantity of fluid to bone marrow of a bone comprising:
 a first end having a closed tip;
 a second end operable to receive the fluid from a fluid reservoir;
 a longitudinal bore extending from the second end to a location proximate the closed tip; and
 at least one side port disposed at an acute angle relative to the longitudinal bore to minimize obstruction of the side port and the longitudinal bore by bony fragments.

31. The bone penetrating needle of Claim 30 further comprising multiple side ports communicating with the longitudinal bore.
OPERATOR COMPRESSES PLUNGER BARREL SPRING

OPERATOR INSERTS CARTRIDGE ASSEMBLY INTO RETRACTING SLEEVE AND RELEASABLY ENGAGES WITH DRIVE HOUSING

OPERATOR SEATS APPARATUS ON SKIN OVERLYING TARGET SITE SUCH AS BONE MARROW

OPERATOR ACTIVATES SWITCH AND INSERTS PENETRATOR THROUGH BONE TO DESIRED DEPTH IN ASSOCIATED BONE MARROW

UPON CONTACT BETWEEN RETRACTING SLEEVE AND INJECTION SITE, PAWL LATCH RELEASES AND RESERVOIR FLUID IS DELIVERED TO BONE MARROW

APPARATUS IS DISENGAGED FROM CARTRIDGE

RESERVOIR DETACHED FROM PENETRATOR LEAVING PENETRATOR IN BONE MARROW OR OTHER TARGET SITE FOR FUTURE ACCESS AS NEEDED

FIG. 5