(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局
2016年7月14日（14.07.2016）
WO 2016/111116 A1

(51) 国際特許分類:
D01F 6/54 (2006.01) D03D 100 (2006.01)
A41D 31/100 (2006.01) D03D 15/12 (2006.01)
D01F 6/40 (2006.01)

(52) 国際出願番号:
PCT/JP2015/084781

(54) 語: CLOTHING

(56) 指定国: 表示のない国

(57) 摘要: 本発明は、アーク性アクリル系繊維、アーク防護服用布帛、及びアーク防護服に関するものである。アーク性アクリル系繊維は、耐外流吸収剤を含有するもので、耐外流吸収剤は、赤外線光に対する遮蔽効果を有するものである。本発明は、耐外流吸収剤を含有する布帛を使用したアーク防護服用布帛に関するものである。
国際調査報告（条約第21条(3)）
明 細 書

発明の名称:
耐アーク性アクリル系繊維、アーク防護服用布帛、及びアーク防護服

技術分野
[0001] 本発明は、耐アーク性を有する耐アーク性アクリル系繊維、アーク防護服用布帛、及びアーク防護服に関する。

背景技術
[0002] 近年、アークフラッシュによる事故が数多く報告されており、アークフラッシュの危険性を防ぐために、電気整備士、工場労働者等の電気アークに実際に曝される危険性がある環境下で作業する作業者が着用する防護服に耐アーク性を持たせることが検討されている。

[0003] 例えば、特許文献1及び特許文献2には、モダクリル繊維とアラミド繊維を含むアーク防護用糸や布帛を用いた防護服が記載されている。また、特許文献3には、アンチモン含有モダクリル繊維又は難燃アクリル繊維、及びアラミド繊維を含む糸や布帛をアーク防護服に用いることが記載されている。

先行技術文献

特許文献
[0004] 特許文献1 :特表2007-529649号公報
特許文献2 :特表2012-528954号公報
特許文献3 :米国特許出願公開第2006/0292953号公報

発明の概要

発明が解決しようとする課題
[0005] しかし、特許文献1及び特許文献3では、モダクリル繊維やアラミド繊維の配合量を調整することで糸や布帛に耐アーク性を付与しており、モダクリル繊維の耐アーク性を向上することについては検討されていない。また、特許文献2では、アンチモンの量を減らしたモダクリル繊維をアラミド繊維と混紡品にすることで耐アーク性を付与しており、モダクリル繊維の耐アーク
本発明は、耐アーク性を有する耐アーク性アクリル系繊維、アーク防護服用布帛、及びアーク防護服を提供する。

課題を解決するための手段

本発明は、アクリル系重合体で構成されたアクリル系繊維であって、アクリル系重合体の全体重量に対して赤外線吸収剤を1重量％以上30重量％以下含むことを特徴とする耐アーク性アクリル系繊維に関する。

本発明は、また、上記の耐アーク性アクリル系繊維を含み、布帛の全体重量に対する赤外線吸収剤の含有量が0.5重量％以上であることを特徴とするアーク防護服用布帛に関する。

上記赤外線吸収剤は、酸化スズ系化合物であることが好ましく、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドープ酸化スズ、フッ素ドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上であることがより好ましい。

上記耐アーク性アクリル系繊維は、さらに、紫外線吸収剤を含むことが好ましい。上記紫外線吸収剤が酸化チタンであることがより好ましい。

上記アクリル系重合体は、アクリル系重合体の全体重量に対して、アクリロニトリルを40〜70重量％、他の成分を30〜60重量％含むことが好ましい。

上記アーク防護服用布帛は、さらにアラミド繊維を含むことが好ましい。また、上記アーク防護服用布帛は、さらにセルロース系繊維を含むことが好ましい。

上記アーク防護服用布帛は、目付8oz/yd²以下において、ASTM F1959/F1959M-12（Standard Test Method for Determining the Arc Rating of Materials for Clothing）に基づいて測定したATPV値が8caI/cm²以上であることが好ましい。
[0014] 上記アーチ防護服用布帛は、波長750〜2500 nmの入射光に対する平均全反射率が50%以下であることが好ましい。

[0015] 本発明は、また、セルロース系繊維を含む布帛であって、上記布帛は、さらに赤外線吸収剤と難燃剤を含み、波長750〜2500 nmの入射光に対する平均全反射率が60%以下であることを特徴とするアーチ防護服用布帛に関する。

[0016] 本発明は、また、上記のアーチ防護服用布帛を含むことを特徴とするアーチ防護服に関する。

発明の効果

[0017] 本発明は、アクリル系繊維に赤外線吸収剤を含ませることにより、耐アーチ性を有する耐アーチ性アクリル系繊維を提供することができる。また、布帛にアクリル系繊維と、赤外線吸収剤を含ませることにより、耐アーチ性を有するアーチ防護服用布帛及びそれを含むアーチ防護服を提供することができる。また、本発明は、セルロース系繊維を含む布帛に、さらに赤外線吸収剤と難燃剤を含まず、且つ波長750〜2500 nmの入射光に対する平均全反射率を60%以下にすることで、耐アーチ性を有するアーチ防護服用布帛及びそれを含むアーチ防護服を提供することができる。

図面の簡単な説明

[0018] [図1]図1は、実施例の布帛の250〜2500 n.mの波長領域における全反射率を示したグラフである。
[図2]図2は、比較例の布帛の250〜2500 n.mの波長領域における全反射率を示したグラフである。
[図3]図3は、実施例の布帛の250〜2500 n.mの波長領域における全反射率を示したグラフである。
[図4]図4は、実施例の布帛の250〜2500 n.mの波長領域における全反射率を示したグラフである。
[図5]図5は、実施例の布帛の250〜2500 n.mの波長領域における吸光率を示したグラフである。
図6] 図6は、実施例及び比較例の布帛の250〜2500 nmの波長領域における全反射率を示したグラフである。

[図7]図7は、布帛の入射光に対する全反射率を測定する測定方法の模式説明図である。

[図8]図8は、布帛の入射光に対する透過率を測定する測定方法の模式説明図である。

発明を実施するための形態

[0019]本発明者らは、繊維や布帛に耐アーク性を付与することについて、鋭意検討した結果、アクリル系繊維に赤外線吸収剤を含ませて光の反射及び/又は吸収を調整することで、アクリル系繊維にアーク性能を付与でき、耐アーク用繊維として使用できることを見出し、本発明に至った。通常、繊維に赤外線吸収剤を含ませて熱線である赤外線を吸収することで保溫性を付与することが行われているが、本発明は、観光に、アクリル系繊維又はアクリル系繊維を含む布帛に赤外線吸収剤を含ませて、赤外線領域の光を吸収することにより、アクリル系繊維又はアクリル系繊維を含む布帛が高い耐アーク性を示すことを見出した。また、セルロース系繊維を含む布帛に、赤外線吸収剤と難燃剤を含ませるとともに、布帛の波長750〜2500 nmの入射光に対する平均全反射率を60 %以下にすることで、布帛にアーク性能を付与でき、耐アーク用布帛として使用できることを見出し、本発明に至った。

(耐アーク性アクリル系繊維)

上記耐アーク性アクリル系繊維は、赤外線吸収剤を含む。上記赤外線吸収剤は、繊維内部に存在していてもよく、繊維表面に付着していてもよい。風合いや耐洗濯性の観点から、赤外線吸収剤は、繊維内部に存在することが好ましい。上記耐アーク性アクリル系繊維は、アクリル系重合体の全体重量に対して赤外線吸収剤を1〜30重量%含む。赤外線吸収剤の含有量が1重量%以上であると、アクリル系繊維が高い耐アーク性を有する。赤外線吸収剤の含有量が30重量%以下であると、風合いが良好になる。耐アーク性を向上させる観点から、上記耐アーク性アクリル系繊維は、アクリル系重合体の
全体重量に対して赤外線吸収剤を2重量％以上含むことが好ましく、より好ましくは3重量％以上含み、さらに好ましくは5重量％以上含む。風合いの観点から、上記耐アーク性アクリル系繊維は、アクリル系重合体の全体重量に対して赤外線吸収剤を28重量％以下含むことが好ましく、より好ましくは26重量％以下含み、さらに好ましくは25重量％以下含む。

[0021] 上記赤外線吸収剤は、赤外線吸収効果を有するものであらゆく、特に限定されない。例えば、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドーブ酸化スズ、フッ素ドープ酸化スズ、酸化チタン基材に担持したアンチモンドープ酸化スズ、アルドープ酸化チタン、フッ素ドープ酸化チタン、窒素ドープ酸化チタン、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化亜鉛などが挙げられる。インジウムスズ酸化物は、インジウムドープ酸化スズとスズドープ酸化インジウムを含む。耐アーク性を向上させる観点から、上記赤外線吸収剤は、酸化スズ系化合物であることが好ましく、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドーブ酸化スズ、フッ素ドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上であることがより好ましく、アンチモンドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上であることがさらに好ましく、酸化チタン基材に担持したアンチモンドープ酸化スズであることがさらにより好ましい。上記赤外線吸収剤は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。

[0022] 上記赤外線吸収剤は、アクリル系繊維を構成するアクリル系重合体中に分散しやすい観點から、粒子径が2μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。また、赤外線吸収剤の粒子径が上述した範囲内であると、アクリル系繊維の繊維表面に付着する場合も、分散性が良好になる。本発明において、赤外線吸収剤の粒子径は、粉体の場合は、レーザー回折法で測定することができ、水や有機溶媒に分散した分散体（分散液）の場合は、レーザー回折法又は
動的光散乱法で測定することができる。

[0023] 上記耐アーク性アクリル系繊維は、さらに、紫外線吸収剤を含むことが好ましい。赤外線領域に加えて紫外線領域の光を吸収することで、耐アーク性がより向上する。上記紫外線吸収剤としては、特に限定されず、例えば、酸化チタン、酸化亜鉛などの無機化合物、トリアジン系化合物、ベンゾフエノン系化合物、ベンゾトリアゾール系化合物などの有機化合物などを用いることができる。中でも、着色度の観点から、酸化チタンであることが好ましい。上記耐アーク性アクリル系繊維は、アクリル系重合体の全体重量に対して紫外線吸収剤を0.3〜10重量％含むことが好ましく、より好ましくは0.5〜7重量％含み、さらに好ましくは1〜5重量％含む。耐アーク性を向上させるとともに、風合いも良好になる。

[0024] 上記紫外線吸収剤は、アクリル系繊維を構成するアクリル系重合体中に分散しやすい観点から、粒子径が2μm以下であることが好ましく、1〜5μm以下であることがより好ましく、1μm以下であることがさらに好ましい。また、紫外線吸収剤の粒子径が上述した範囲内であると、アクリル系繊維の繊維表面に付着する場合も、分散性が良好になる。また、酸化チタンの場合は、粒子径が0.4μm以下であることが好ましく、0.2μm以下であることがより好ましい。有機系紫外線吸収剤で、紡糸原液の作製時に使用する有機溶剤に溶解する化合物については、粒子径に関する制限はない。本発明において、紫外線吸収剤の粒子径は、粉体の場合は、レーザー回折法で測定することがで、水や有機溶剤に分散した分散体の場合は、レーザー回折法又は動的光散乱法で測定することができる。

[0025] 上記耐アーク性アクリル系繊維は、アクリル系重合体の全体重量に対して、アクリロニトリルを40〜70重量％、他の成分を30〜60重量％含むアクリル系重合体で構成されていることが好ましい。上記アクリル系重合体中のアクリロニトリルの含有量が40〜70重量％であれば、アクリル系繊維の耐熱性及び難燃性が良好になる。

[0026] 上記他の成分としては、アクリロニトリルと共重合可能なものであればよ
く特に限定されない。例えば、ハロゲン含有ビニル系単量体、スルホン酸基含有単量体などが挙げられる。

[0027] 上記ハロゲン含有ビニル系単量体としては、例えば、ハロゲン含有ビニル、ハロゲン含有ビニリデンなどが挙げられる。ハロゲン含有ビニルとしては、例えば、塩化ビニル、臭化ビニルなどが挙げられ、ハロゲン含有ビニリデンとしては、塩化ビニリデン、臭化ビニリデンなどが挙げられる。これらのハロゲン含有ビニル系単量体は、1種又は2種以上を組み合わせて用いてもよい。耐熱性及び難燃性の観点から、上記耐アーク性アクリル系繊維は、アクリル系重合体の全体重量に対して、他の成分としてハロゲン含有ビニル系単量体を30%以上含むことが好ましい。

[0028] 上記スルホン酸基を含有する単量体としては、例えば、メタクリルスルホン酸、アクリルスルホン酸、スチレンスルホン酸、2_アクリルアミド_2_メチルプロパンスルホン酸、及びそれらの塩などが挙げられる。上記において、塩としては、例えば、p-スチレンスルホン酸ソーダなどのナトリウム塩、カリウム塩、アンモニウム塩などを挙げることができるが、これらに限定されるものではない。これらのスルホン酸基を含有する単量体は、1種又は2種以上を組み合わせて用いてもよい。スルホン酸基を含有する単量体は必要に応じて使用されるが、上記アクリル系重合体中のスルホン酸基を含有する単量体の含有量が3重量％以下であれば紡糸工程の生産安定性に優れる。

[0029] 上記アクリル系重合体は、40%～70重量％のアクリロニトリルと、30%～57重量％のハロゲン含有ビニル系単量体、0～3重量％のスルホン酸基を含有する単量体を共重合した共重合体であることが好ましい。よくは、上記アクリル系重合体は、45%～65重量％のアクリロニトリルと、35%～52重量％のハロゲン含有ビニル系単量体、0～3重量％のスルホン酸基を含有する単量体を共重合した共重合体である。

[0030] 上記耐アーク性アクリル系繊維は、アンチモン化合物を含んでもよい。上記アクリル系繊維におけるアンチモン化合物の含有量は、繊維全体重量に対
して1.6〜3.3重量%であることが好ましく、より好ましくは3.8〜21重量%である。上記アクリル系繊維におけるアンチモン化合物の含有量が上記範囲内であれば、紡糸工程の生産安定性に優れるとともに防炎性が良好になる。

[0031] 上記アンチモン化合物としては、例えば、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸、アンチモン酸ナトリウムなどのアンチモン酸の塩類、オキシ塩化アンチモンなどが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。紡糸工程の生産安定性の面から、上記アンチモン化合物は、三酸化アンチモン、四酸化アンチモン及び五酸化アンチモンからなる群から選ばれる1種以上の化合物であることが好ましい。

[0032] 上記耐アーキ性アクリル系繊維の繊度は、特に限定されないが、布帛とした際の風合いや強度の観点から、好ましくは1〜20d texであり、より好ましくは1.5〜15d texである。また、上記アクリル系繊維の纖維長は、特に限定されないが、強度の観点から、好ましくは3.8〜127mmであり、より好ましくは3.8〜76mmである。本発明において、繊維の繊度は、JIS L 1015に基づいて測定したものである。

[0033] 上記耐アーキ性アクリル系繊維の強度は、特に限定されないが、紡績性や加工性の観点から、1.0〜4.0 cN/d texであることが好ましく、1.5〜3.0 cN/d texであることがより好ましい。また、上記耐アーキ性アクリル系繊維の伸度は、特に限定されないが、紡績性や加工性の観点から、20〜35%であることが好ましく、より好ましくは20〜25%である。本発明において、繊維の強度及び伸度は、JIS L 1015に基づいて測定したものである。

[0034] 上記耐アーキ性アクリル系繊維は、赤外線吸収剤や紫外線吸収剤などを紡糸原液に添加する以外は、一般的なアクリル系繊維の場合と同様に湿式紡糸することで製造することができる。或いは、アクリル系繊維を赤外線吸収剤や紫外線吸収剤の水分散体に浸漬することで、アクリル系繊維に赤外線吸収
剤や紫外線吸収剤を付着させることで製造してもよい。この際に繊維加工に
使用するバインダーを用いても良い。

上記耐アーク性アクリル系繊維の耐アーク性は、アラミド繊維の耐アー
ク性に対する相対値で評価することができる。具体的には、アラミド繊維
100重量％の布帛の比ATPVに対する耐アーク性アクリル系繊維100重量
％の布帛の比ATPVの相対値で評価することができる。比ATPV（cal/c㎡
)/(oz/yd²) は、ATPVを目付で除した単位目付 (oz/yd²) 当たりのATPV
cal/c㎡であり、ATPV（arc
thermal performance value）、アーク熱性値と
は、ASTM F1959/F1959M-12 (Standard Te
st Method for Determining the Arc
Rating of Materials for Clothing) に
基づいたアーク試験にて測定したものである。ATPVは、布帛の種類に影
響されるので、同じ種類の布帛を用いて評価する必要がある。同じ種類の布
帛がない場合や耐アーク性アクリル系繊維100重量％の布帛がない場合、
後述する方法にて、耐アーク性アクリル系繊維の耐アーク性を評価する
ことができる。

（アーク防護服用布帛）

以下、本発明のアーク防護服用布帛について説明する。まず、実施形態1
のアーク防護服用布帛を説明する。

（実施形態1）

本発明の実施形態1のアーク防護服用布帛は、上記耐アーク性アクリル系
繊維を含み、布帛の全体重量に対する赤外線吸収剤の含有量が0.5重量％
以上である。耐アーク性の観点から、好ましくは、布帛の全体重量に対する
赤外線吸収剤の含有量が1重量％以上であり、さらに好ましくは5重量％以
上である。風合いの観点から、アーク防護服用布帛は、布帛の全体重量に対
して、赤外線吸収剤を10重量％以下含むことが好ましい。赤外線吸収剤と
しては、上述した耐アーク性アクリル系繊維に用いたものと同様のものを用

いることができる。

上記アーク防護服用布帛は、さらに、布帛の全体重量に対して紫外線吸収剤を0.15～5重量％含むことが好ましく、より好ましくは0.75～3.5重量％含む。紫外線吸収剤としては、上述したアラミド系繊維に用いたものと同様のものを用いることができる。

上記アーク防護服用布帛は、耐久性の観点から、アラミド繊維を含むことがより好ましい。アラミド繊維は、パラアラミド繊維であってもよく、メタアラミド繊維であってもよい。上記アラミド繊維の繊維度は、特に限定されないが、強度の観点から、好ましくは1～20d texであり、より好ましくは1.5～15d texである。また、上記アラミド繊維の繊維長は、特に限定されないが、強度の観点から、好ましくは38～127mmであり、より好ましくは38～76mmである。

上記アーク防護服用布帛は、布帛の全体重量に対して、アラミド繊維を5～30重量％含むことが好ましく、10～20重量％含むことがより好ましい。上記アーク防護服用布帛におけるアラミド繊維の含有量が上記範囲内であると、布帛の耐久性を向上させることができる。

上記アーク防護服用布帛は、風合いの観点から、さらにセルロース系繊維を含んでもよい。セルロース系繊維としては、特に限定されず、耐久性の観点から、天然セルロース系繊維を用いることが好ましい。上記天然セルロース系繊維としては、例えば、綿（コットン）、カーポック、亜麻（リネン）、苧麻（ラミー）、黄麻（ジュート）などを用いることができる。また、上記天然セルロース系繊維は、綿（コットン）、カーポック、亜麻（リネン）、苧麻（ラミー）、黄麻（ジュート）などの天然セルロース繊維を、N−メチロールホスホネート化合物、テトラキスヒドロキシアルキルホスホニウム塩などのリン系化合物などの難燃剤で難燃化処理された難燃化セルロース繊維であってもよい。これらの天然セルロース系繊維は、1種又は2種以上を組み合わせて用いてもよい。強度の観点から、上記天然セルロース系繊維の繊維
長は、好ましくは15〜38 mmであり、より好ましくは20〜38 mmである。

0042 上記アーク防護服用布帛は、布帛の全体重量に対して、天然セルロース系繊維を30〜60重量%含むことが好ましく、より好ましくは30〜50重量%含み、さらに好ましくは35〜40重量%含む。上記アーク防護服用布帛における天然セルロース系繊維の含有量が上記範囲内であると、布帛に優れた風合いや吸湿性を与えるとともに、布帛の耐久性を向上させることができる。

0043 上記アーク防護服用布帛は、上記耐アーク性アクリル系繊維以外のアクリル系繊維（以下において、他のアクリル系繊維とも記す。）を含んでもよい。他のアクリル系繊維としては、特に限定されず、赤外線吸収剤を含まないあらゆるアクリル系繊維を用いることができる。他のアクリル系繊維としては、酸化アンチモンなどのアンチモン化合物を含むアクリル系繊維を用いてもよく、アンチモン化合物を含まないアクリル系繊維を用いてもよい。

0044 上記アーク防護服用布帛は、耐熱性の観点から、布帛の全体重量に対して、アクリル系繊維を合計で30重量%以上含むことが好ましく、より好ましくは35重量%以上含み、さらに好ましくは40重量%以上含む。

0045 上記アーク防護服用布帛は、目付（単位面積（1平方ヤード）当たりの布帛の重量（オンス））が、3〜10 oz/y d²であることが好ましく、4〜9 oz/y d²であることがより好ましく、4〜8 oz/y d²であることがさらに好ましい。目付が上記範囲であれば、軽量で作業性に優れる防護服を提供することができる。

0046 上記アーク防護服用布帛は、目付8 oz/ y d²以下において、ASTM F1959/F1959M-12（Standard Test Method for Determining the Arc Rating of Materials for Clothing）に基づいて測定したATPV値が8 cal/cm²以上であることが好ましい。軽量で耐アーク性が良好な防護服を提供することができる。
ち比 A T P V (c a l / c m²) / (o z / y d²) が 1.1 以上であることが好ましく、1.2 以上であることがより好ましく、1.3 以上であることがさらに好ましい。

[0047] 上記アーク防護服用布帛は、波長 750 〜 2500 nm の入射光に対する平均全反射率が 50 % 以下であることが好ましく、より好ましくは 40 % 以下であり、さらに好ましくは 30 % 以下であり、さらにより好ましくは 20 % 以下である。波長 750 〜 2500 nm の入射光に対する平均全反射率が上記範囲内であると、赤外線を吸収する能力が高く、耐アーク性に優れる。また、上記アーク防護服用布帛は、赤外線を吸収する能力が高く、耐アーク性に優れる観点から、2000 nm 以上の波長域において全反射率が 30 % 以下であることが好ましく、より好ましくは 25 % 以下であり、さらに好ましくは 20 % 以下である。このように、上記アーク防護服用布帛は、波長 750 〜 2500 nm の入射光（赤外線領域の光）を反射するより吸収することにより、アーク照射時に、アークが直接照射された面が炭化し、透過光をより低減することが可能となる。本発明において、布帛の全反射率は、表面及び裏面のいずれの面で測定してもよい。上記アーク防護服用布帛は、表面を測定面とした全反射率測定と裏面を測定面とした全反射率測定において、波長 750 〜 2500 nm の入射光に対する平均全反射率の差が 10 % 以下であることが好ましく、5 % 以下であることがより好ましく、0 % であることがさらに好ましい。

[0048] 上記アーク防護服用布帛は、形態としては、織物、編物、不織布などを挙げることができるが、これに限定されるものではない。また、織物は交織させてもよく、編物は交編させてもよい。

[0049] 上記アーク防護服用布帛は、特に限定されないが、作業着としての生地の強さ、及び快適性の観点から、厚みが 0.3 〜 1.5 mm であることが好ましく、0.4 〜 1.3 mm であることがより好ましく、0.5 〜 1.1 mm であることがさらに好ましい。厚みは、JIS L 1096 (2010) に準じて測定するものである。
上記織物の組織については、特に限定されず、平織、綾織、朱子織などの三原組織でもよく、ドビーやジャガーなどの特殊織機を用いた柄織物でもよく。また、上記織物の組織も、特に限定されず、丸編、横編、経編のいずれでもよい。引裂き強度が高く、耐久性に優れるという観点から、布帛は、織物であることが好ましく、綾織の織物であることがより好ましい。

上記赤外線吸収剤は、赤外線吸収効果を有するものであればよく、特に限定されない。例えば、アンチモンド一プ酸化スズ、インジウムスズ酸化物、二ォプド一プ酸化スズ、リンド一プ酸化スズ、フッ素ドー酸化スズ、酸化

（実施形態2）
本発明の実施形態2のアーク防護服用布帛は、セルロース系繊維、赤外線吸収剤及び難燃剤を含み、波長750～2500nmの入射光に対する平均全反射率が60%以下である。

上記セルロース系繊維としては、特に限定されず、耐久性の観点から、天然セルロース繊維を用いることが好ましい。上記天然セルロース繊維としては、例えば、綿（コットン）、カーポック、亜麻（リネン）、苧麻（ラミー）、黄麻（ジュート）などを用いることができ、中でも、耐久性により優れる観点から、綿（コットン）が好ましい。これらの天然セルロース系繊維は、1種で用いてもよく、2種以上を組み合わせて用いてもよい。

上記天然セルロース繊維は、強度の観点から、繊維長が好ましくは15～38mmであり、より好ましくは20～38mmである。

上記赤外線吸収剤は、赤外線吸収効果を有するものであればよく、特に限定されない。例えば、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドープ酸化スズ、フッ素ドープ酸化スズ、酸化
チタン基材に担持したアンチモンドープ酸化スズ、鉄ドープ酸化チタン、炭素ドープ酸化チタン、フッ素ドープ酸化チタン、窒素ドープ酸化チタン、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化亜鉛などが挙げられる。インジウムスズ酸化物は、インジウムドープ酸化スズとスズドープ酸化インジウムを含む。耐アーカ性を向上させる観点から、上記赤外線吸収剤は、酸化スズ系化合物であることが好ましく、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドープ酸化スズ、フッ素ドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上であることがより好ましく、アンチモンドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上であることがさらに好ましく、酸化チタン基材に担持したアンチモンドープ酸化スズであることがさらに好ましい。上記赤外線吸収剤は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。

[0056] 上記アーカ防護服用布帛は、耐アーカ性に優れる観点から、布帛の全体重量に対して紫外線吸収剤を0.15〜5重量％含むことが好ましく、より好ましくは0.3〜3.5重量％含み、さらに好ましくは、0.4〜2.5重量％含む。紫外線吸収剤としては、上記した耐アーカ性アクリル系繊維に用いたものと同様のものを用いることができる。

[0057] 上記難燃剤は、特に限定されないが、耐アーカ性を向上する観点から、リン系難燃剤であることが好ましく、N—メチロールホスホネート化合物、テトラキシピドロキシアルキルホスホニウム塩などのリン系化合物であることがより好ましい。N—メチロールホスホネート化合物は、セルロース分子と反応してセルロース分子に結合しやすい。N—メチロールホスホネート化合物としては、例えば、N—メチロールジメチルホスホノプロピオニ酸アミドなどを含むN—メチロールジメチルホスホノカルボン酸アミドなどを用いることができる。テトラキシピドロキシアルキルホスホニウム塩は、セルロース系繊維中で不溶性ポリマーを形成しやすい。テトラキシピドロキシアルキルホスホニウム塩としては、例えば、テトラキシピドロキシメチルホスホニ
ウムクロリド（T H P C）、テトラキシヒドロキシメチルホスホニウムサルフェート（T H P S）などを用いることができる。

上記アーク防護服用布帛は、耐アーク性に優れる観点から、布帛の全体重量に対して難燃剤を5〜30重量%含むことが好ましく、より好ましくは10〜28重量%含み、さらに好ましくは12〜24重量%含む。

上記アーク防護服用布帛は、波長750〜2500nmの入射光に対する平均全反射率が55%以下であることが好ましく、より好ましくは50%以下であり、さらに好ましくは45%以下であり、さらにより好ましくは40%以下である。波長750〜2500nmの入射光に対する平均全反射率が上記範囲内であると、赤外線を吸収する能力が高く、耐アーク性に優れる。

また、上記アーク防護服用布帛は、赤外線を吸収する能力が高く、耐アーク性に優れる観点から、2000nm以上の波長域において全反射率が45%以下であることが好ましく、より好ましくは40%以下であり、さらに好ましくは35%以下である。本発明において、布帛の全反射率は、表面及び裏面のいずれの面で測定してもよい。上記アーク防護服用布帛は、表面を測定面とした全反射率測定と裏面を測定面とした全反射率測定において、波長750〜2500nmの入射光に対する全反射率の差が10%以下であることが好ましく、5%以下であることがより好ましく、0%であることがさらに好ましい。

上記アーク防護服用布帛は、耐久性の観点から、アラミド繊維を含んでもよい。アラミド繊維は、バラアラミド繊維であってもよく、メタアラミド繊維であってもよい。上記アラミド繊維の繊度は、特に限定されないが、強度の観点から、好ましくは1〜20d texであり、より好ましくは1.5〜15d texである。また、上記アラミド繊維の繊維長は、特に限定されないが、強度の観点から、好ましくは38〜127mmであり、より好ましくは38〜76mmである。

上記アーク防護服用布帛は、布帛の全体重量に対して、アラミド繊維を5〜30重量%含むことが好ましく、10〜20重量%含むことがより好まし
し。上記アーク防護服用布帛におけるアラミド繊維の含有量が上記範囲内であると、布帛の耐久性を向上させることができる。

[0062] 上記アーク防護服用布帛は、本発明の効果を阻害しない範囲内において、さらに綿及び麻などの植物繊維、羊毛、ラクダ毛、山羊毛及び絹などの動物繊維、ビスコースレーヨン繊維及びキュプラ繊維などの再生繊維、アセテート繊維などの半合成繊維、ナイロン繊維、ポリエステル繊維及びアクリル繊維などの合成繊維などの他の繊維を含んでもよい。他の繊維は、布帛の全体重量に対して、40重量％以下含むことが好ましい。この中でも、炭化しづかすさから植物繊維や再生繊維が好ましい。

[0063] 上記アーク防護服用布帛は、目付（単位面積（1平方ヤード）当たりの布帛の重量（オンス））が、3〜10 oz/yd²であることが好ましく、4〜9 oz/yd²であることがより好ましく、4〜8 oz/yd²であることがさらに好ましい。目付が上記範囲であれば、軽量で作業性に優れる防護服を提供することができる。

[0064] 上記アーク防護服用布帛は、目付8 oz/yd²以下において、ASTM F 1959/F 1959M-12（Standard Test Method for Determining the Arc Rating of Materials for Clothing）に基づいて測定したATPV値が8 cal/cm²以上であることが好ましい。軽量で耐アーク性が良好な防護服を提供することができる。単位目付当たりのATPV、即ち比ATPV（cal/cm²）/(oz/yd²)が1.1以上であることが好ましく、1.2以上であることがより好ましく、1.3以上であることがさらに好ましい。

[0065] 上記アーク防護服用布帛は、形態としては、織物、編物、不織布などを挙げることができるが、これらに限定されるものではない。また、織物は交織させてもよく、編物は交編させてもよい。

[0066] 上記織物の組織については、特に限定されず、平織、綾織、朱子織などの三原組織でもよく、ドビーやジャガーなどの特殊織機を用いた柄織物でもよ
し。また、上記編物の組織も、特に限定されず、丸編、横編、経編のいずれでもよい。引裂き強度が高く、耐久性に優れるという観点から、布帛は、織物であることが好ましく、綾織の織物であることがより好ましい。

[0067] 上記アーク遮蔽服用布帛は、特に限定されないが、作業着としての生地の強さ、及び快適性の観点から、厚みが 0.3 〜 1.5 mm であることが好ましく、0.4 〜 1.3 mm であることがより好ましく、0.5 〜 1.1 mm であることがさらに好ましい。厚みは、JIS L 1096 (2010) に準じて測定するものである。

[0068] 上記アーク遮蔽服用布帛は、セルロース系繊維を含む布帛に難燃剤で難燃化処理した後、さらに、赤外線吸収剤を付着させることで製造することができる。

[0069] 難燃剤として、N-メチロールホスホネート化合物、テトラキシドロキシアルキルホスホニウム塩などのリン系化合物を用いる場合、上記リン系化合物による難燃化処理は、特に限定されないが、例えば、上記リン系化合物を上記天然セルロース繊維のセルロース分子と結合させるという観点から、ピロパテックス加工法で行うことが好ましい。ピロパテックス加工法は、例えば、ハンツマン社のピロパテックス C P の技術資料などに記載されているような公知の一般的な手順で行えればよい。

[0070] また、上記リン系化合物による難燃化処理は、特に限定されないが、例えば、リン系化合物がセルロース繊維中で不溶性ポリマーを形成しやすい観点から、テトラキシドロキシメチルホスホニウム塩を用いたアンモニアキュアリング法（以下において、THP_ アンモニアキュア法とも記す。）で行うことが好ましい。THP_アンモニアキュア法は、例えば特公昭59-39549公報などに記載されているような公知の一般的な手順で行えればよい。

[0071] 次に、難燃化処理された天然セルロース繊維を含む布帛に、例えば、赤外線吸収剤を分散させた水分散体を含浸させることで布帛に赤外線吸収剤を付着させることができる。この際に繊維加工に使用するバインダーを用いても
良い。

[0072] （アーク防護服）

本発明のアーク防護服は、本発明のアーク防護服用布帛を用い、公知の方法により製造することができる。上記アーク防護服は、上記アーク防護服用布帛を単層で用いて単層の防護服として用いることができるし、上記のアーク防護服用布帛を2以上の層で用いて多層防護服として用いることもできる。多層防護服の場合、全ての層に上記のアーク防護服用布帛を用いてもよく、一部の層に上記アーク防護服用布帛を用いてもよい。多層防護服の一部の層に上記アーク防護服用布帛を用いる場合、外側の層に上記アーク防護服用布帛を用いることが好ましい。

[0073] 本発明のアーク防護服は、耐アーク性に優れる上、難燃性及び作業性も良好である。さらに、洗濯を繰り返しても、その耐アーク性や難燃性が維持される。

[0074] 本発明は、上述したアクリル系繊維を耐アーク性アクリル系繊維として使用する方法を提供する。具体的には、耐アーク性アクリル系繊維としての使用であって、上記耐アーク性アクリル系繊維は、アクリル系重合体で構成され、アクリル系重合体の全体重量に対して赤外線吸収剤を1重量％以上30重量％以下含む使用を提供する。また、上述した布帛をアーク防護服用布帛として使用する方法を提供する。具体的には、アーク防護服用布帛としての使用であって、上記アーク防護服用布帛は、上記耐アーク性アクリル系繊維を含み、布帛の全体重量に対する赤外線吸収剤の含有量が0.5重量％以上である使用を提供する。また、アーク防護服用布帛としての使用であって、上記アーク防護服用布帛は、セルロース系繊維、赤外線吸収剤及び難燃剤を含み、波長750〜2500nmの入射光に対する平均全反射率が50％以下である使用を提供する。

実施例

[0075] 以下、実施例により本発明を詳述する。但し、本発明はこれらの実施例に限定されるものではない。以下において、特に指摘がない場合、「％」及び
「部」は、それぞれ、「重量％」及び「重量部」を意味する。

[実施例1]

アクリロニトリル51重量％、塩化ビニリデン48重量％及びp-フェニレンスルホン酸ソーダ1重量％からなるアクリル系共重合体ジメチルホルムアミドに樹脂濃度が30重量％になるように溶解させた。得られた樹脂溶液に、樹脂重量100重量部に対して10重量部のトリフタル酸ジペシレン（Sb_2O_3）、日本精薬社製、品名「Patex M」）と10重量部のアンチモンドープ酸化スズ（ATO、石原産業社製、品名「SN 100P」）を添加し、紡糸原液とした以外は、実施例1と同様にして、アクリル系繊維を

[実施例2]

得られた樹脂溶液に、樹脂重量100重量部に対して20重量部のアンチモンドープ酸化スズ（ATO、石原産業社製、品名「SN 100P」）を添加し、紡糸原液とした以外は、実施例1と同様にして、アクリル系繊維を
得た。得られた実施例 2 のアクリル系繊維 (以下において、「Arc2」とも記す。) は、繊度 2.71 dtx、強度 1.77 cN/dtex、伸度 23.0%、カット長 51 mm であった。

(実施例 3)
得られた樹脂溶液に、樹脂重量 100 重量部に対して 5 重量部のアンチモンドープ酸化スズ (ATD、石原産業社製、品名「SN-100P」) を添加し、紡糸原液とした以外は、実施例 1 と同様にして、アクリル系繊維を得た。得られた実施例 3 のアクリル系繊維 (以下において、「Arc3」とも記す。) は、繊度 1.80 dtx、強度 2.60 cN/dtex、伸度 28.5%、カット長 51 mm であった。

(実施例 4)
得られた樹脂溶液に、樹脂重量 100 重量部に対して 5 重量部の酸化チタン基材に担持したアンチモンドープ酸化スズ (石原産業社製、品名「ET521W」) を添加し、紡糸原液とした以外は、実施例 1 と同様にして、アクリル系繊維を得た。上記酸化チタン基材に担持したアンチモンドープ酸化スズは、ジメチルホルムアミドに対して 30 重量%になるように添加し、均一分散させた分散液を調整して用いた。上記酸化チタン基材に担持したアンチモンドープ酸化スズの分散液において、レーザー回折法で測定したアンチモンドープ酸化スズの粒子径は 0.2 - 0.3 μm であった。得られた実施例 4 のアクリル系繊維 (以下において、「Arc4」とも記す。) は、繊度 1.85 dtx、強度 2.63 cN/dtex、伸度 27.2%、カット長 51 mm であった。

(実施例 5)
得られた樹脂溶液に、樹脂重量 100 重量部に対して 10 重量部のアンチモンドープ酸化スズ (ATD、石原産業社製、品名「SN-100D」) を添加し、紡糸原液とした以外は、実施例 1 と同様にして、アクリル系繊維を得た。上記アンチモンドープ酸化スズは、水に対して 30 重量%になるように添加して分散した水分散体であり、レーザー回折法で測定した粒子径が 0
085〜0.120 μmであった。得られた実施例5のアクリル系繊維（以下において、「Arc5」とも記す。)は、纖度1.76 dtex、強度2.80 cN/dtex、伸度29.2%、カット長51mmであった。

[0081]（実施例6）
得られた樹脂溶液に、樹脂重量100重量部に対して10重量部のアントモンドープ酸化スズ（AT0、石原産業社製、品名「SN_100P」）を添加し、紡糸原液とした以外は、実施例1と同様にして、アクリル系繊維を得た。得られた実施例6のアクリル系繊維（以下において、「Arc6」とも記す。)は、纖度1.53 dtex、強度2.80 cN/dtex、伸度26.5%、カット長51mmであった。

[0082]（実施例7）
得られた樹脂溶液に、樹脂重量100重量部に対して5重量部のアントモンドープ酸化スズ（AT0、石原産業社製、品名「SN_100P」）と、10重量部の酸化チタン（堺化学工業社製、品名「R_22L」）を添加し、紡糸原液とした以外は、実施例1と同様にして、アクリル系繊維を得た。上記酸化チタンは、予め、ジメチルホルムアミドに対して30重量%になるように添加し、均一分散させて調製した分散液として用いた。上記酸化チタンの分散液において、レーザー回折法で測定した酸化チタンの粒子径は0.4 μmであった。得られた実施例7のアクリル系繊維は（以下において、「Arc7」とも記す。)、纖度1.75 dtex、強度1.66 cN/dtex、伸度22.9%、カット長51mmであった。

[0083]（実施例8）
得られた樹脂溶液に、樹脂重量100重量部に対して20重量部の酸化チタン基材に担持したアントモンドープ酸化スズ（石原産業社製、品名「ET521W」）と10重量部の三酸化アントモン（Sb2O3、日本精錬社製、品名「Patx_M」）を添加し、紡糸原液とした以外は、実施例1と同様にして、アクリル系繊維を得た。上記酸化チタン基材に担持したアントモンドープ酸化スズは、予め、ジメチルホルムアミドに対して30重量%になる
ように添加し、均一分散させて調製した分散液として用いた。上記酸化チタ
ン基材に担持したアンチモン酸化スズの分散液において、レーザー
回折法で測定したアンチモン酸化スズの粒子径は0.2〜0.3 μm
であった。得られた実施例8のアクリル系繊維（以下において、 'Arc8'
）は、繊度1.81d tex、強度2.54cN/d tex、
伸度27.5％、カット長51mmであった。

[0084] （実施例9）
アクリロニトリル51重量％、塩化ビニリデン48重量％及びp−スチレン
スルホン酸ソーダ1重量％からなるアクリル系共重合体に代えて、アクリ
ロニトリル51重量％、塩化ビニリデン48重量％及びp−スチレンスルホン酸
ソーダ1重量％からなるアクリル系共重合体を用いた以外は、実施例8と同
様にして、アクリル系繊維を得た。得られた実施例9のアクリル系繊維（以
下において、 'Arc9'』とも記す。）は、繊度1.78cセorate、強度1
.97cN/d tex、伸度33.3％、カット長51mmであった。

[0085] （比較例1）
得られた樹脂溶液に、樹脂重量100重量部に対して10重量部の三酸化
アンチモン (Sb2O3、日本精薬社製、品名「Patx_M」) を添加し、紡
糸原液とした以外は、実施例1と同様にして、アクリル系繊維を得た。得ら
れた比較例1のアクリル系繊維（以下において、「Arc101」とも記す
。）は、繊度1.71dtex、強度2.58cN/dtex、伸度27.4％、カット長51mmであった。

[0086] （比較例2）
得られた樹脂溶液に、樹脂重量100重量部に対して10重量部の三酸化
アンチモン (Sb2O3、日本精薬社製、品名「Patx_M」) と10重量部
の酸化チタン（興化学工業社製、品名「R_22L」）を添加し、紡糸原液
とした以外は、実施例1と同様にして、アクリル系繊維を得た。上記酸化チ
タンは、予め、ジメチルホルムアミドに対して30重量％になるように添加
し、均一分散させて調製した分散液として用いた。上記酸化チタンの分散液
において、レーザー回折法で測定した酸化チタンの粒子径は0.4 μmであった。得られた比較例2のアクリル系繊維（以下において、「Arc 102」とも記す。）は、繊度1.74 dtex、強度2.37 cN/ dtex、伸度28.6％、カット長51mmであった。

[0087]（比較例3）

得られた樹脂溶液に、樹脂重量100重量部に対して10重量部の三酸化アンチモン（Sb2O3、日本精薬社製、品名「Patx_M」）と10重量部の酸化チタン（信化学工業社製、品名「STR_60A_LP」）を添加し、紡糸原液とした以外は、実施例1と同様にして、アクリル系繊維を得た。上記酸化チタンは、ジメチルホルムアミドに対して30重量％になるように添加し、均一分散させて調製した分散液として用いた。上記酸化チタンの分散液において、レーザー回折法で測定した酸化チタンの粒子径は0.05 μmであった。得られた比較例3のアクリル系繊維（以下において、「Arc 103」とも記す。）は、繊度1.70 dtex、強度2.59 cN/ dtex、伸度27.1％、カット長51mmであった。

[0088]（比較例4）

得られた樹脂溶液に、樹脂重量100重量部に対して10重量部の三酸化アンチモン（Sb2O3、日本精薬社製、品名「Patx_M」）と10重量部の酸化亜鉛（信化学工業社製、品名「FINEX_25_LPT」）を添加し、紡糸原液とした以外は、実施例1と同様にして、アクリル系繊維を得た。上記酸化亜鉛は、ジメチルホルムアミドに対して30重量％になるように添加し、均一分散させて調製した分散液として用いた。上記酸化亜鉛の分散液において、レーザー回折法で測定した酸化亜鉛の粒子径は0.06 μmであった。得られた比較例4のアクリル系繊維（以下において、「Arc 104」とも記す。）は、繊度1.83 dtex、強度2.13 cN/ dtex、伸度26.2％、カット長51mmであった。

[0089]（比較例5）

得られた樹脂溶液に、樹脂重量100重量部に対して10重量部の三酸化
アンチモン (Sb₂O₃、日本精薬株社製、品名「P ax M」) と 10 重量部の S B ー U V A 6 1 6 4 (トリアジン系紫外線吸収剤、SHUANCHANG INDUSTRIAL CORP. 製) を添加し、紡糸原液とした以外は、実施例 1 と同様にして、アクリル系繊維を得た。上記 S B ー U V A 6 1 6 4 は、予め、ジメチルホルムアミドに対して 5 重量％になるように添加し、溶解させて調製した溶液として用いた。得られた比較例 5 のアクリル系繊維（以下において、「Arc 1 0 5 」とも記す。）は、繊度 1. 7 1 d t e x 、強度 2. 2 6 c N/d tex 、伸度 2 6 . 9 ％、カット長 5 1 m m であった。

[0090]（比較例 6）

得られた樹脂溶液に、樹脂重量 1 0 0 重量部に対して 1 0 重量部の三酰化アンチモン (Sb₂O₃、日本精薬社製、品名「P ax M」) と 1 0 重量部の S B ー U V A 6 5 7 7 (トリアジン系紫外線吸収剤、SHUANCHANG INDUSTRIAL CORP. 製) を添加し、紡糸原液とした以外は、実施例 1 と同様にして、アクリル系繊維を得た。上記 S B ー U V A 6 5 7 7 は、予め、ジメチルホルムアミドに対して 5 重量％になるように添加し、溶解させて調製した溶液として用いた。得られた比較例 6 のアクリル系繊維（以下において、「Arc 1 0 6 」とも記す。）は、繊度 1. 7 7 d t e x 、強度 2. 4 6 c N/d tex 、伸度 3 1 . 2 ％、カット長 5 1 m m であった。

[0091]（実施例 A 1 ～実施例 A 1 2 、比較例 A 1 ～A 7）

下記表 1 に示す配合割合で、実施例 1 ～ 9 及び比較例 1 ～ 6 のアクリル系繊維と、パラアラミド繊維（Yantai Tayho Advanced Materials Co., Ltd. 製、品名「撫養」(T a p a r a n 、登録商標」）、繊度 1. 6 7 d t e x 、繊維長 5 1 m m 、以下において、「PA」とも記す。）とメタアラミド繊維（Yantai Tayho Advanced Materials Co., Ltd. 製、品名「撫実実」(T a m e t a r 、登録商標」）、繊度 1. 5 d t e x 、繊維長 5 1 m m 、以下において、「MA」とも記す。）、アクリル系繊維（カネカ社製、品名「Prot
アクリロニトリル51重量％、塩化ビニリデン48重量％及びp-スチレンスルホン酸ソーダ１重量％からなるアクリル系共重合体で形成され、樹脂（アクリル系共重合体）重量に対して10重量％の三酸化アンチモンを含む、繊度1.7d tex、纖維長51mm、以下において、「Proc」とも記す。)、アクリル系繊維（カネカ製、品名「PBB」、アクリロニトリル51重量％、塩化ビニリデン48重量％及びp-スチレンスルホン酸ソーダ1重量％からなるアクリル系共重合体で形成されたもの、繊度1.7d tex、纖維長51mm、以下において「PBB」とも記す。)を混合し、リング紡糸により紡績した。得られた紡績糸は、英式綿番手20番の混紡糸であった。該紡績糸を用いて、通常の製造方法により、横編み機を用いて、下記表1に示した目付の天竺編物を製造した。

アクリル系繊維（P r o C）50重量％とパラアラミド繊維（P A）50重量％を混合し、リング紡糸により紡績した。得られた紡績糸は、英式綿番手20番の混紡糸であった。該紡績糸を用いて、通常の製造方法により、横編み機を用いて、下記表1に示す目付の天竺編物を製造した。得られた布帛をアンチモンドープ酸化スズの分散体（石原産業社製、品名「SN 100D」、アンチモンドープ酸化スズを水に対して30重量％になるように添加して分散した水分散体、レーザー回折法で測定した粒子径分布が0.085～0.120μmであった。）に含浸させた後、乾燥させることで、布帛の全体重量に対してアンチモンドープ酸化スズを2重量％付着させた。

まず、アクリロニトリル51重量％、塩化ビニリデン48重量％及びp-スチレンスルホン酸ソーダ1重量％からなるアクリル系共重合体をジメチルホルムアミドに樹脂濃度が30重量％になるように溶解させた。得られた樹脂溶液に、樹脂重量100重量部に対して26重量部の三酸化アンチモン（Sb2O3）、日本精薬社製、品名「Pat X M」）を添加し、紡績原液とした。得られた紡績原液をノズル孔径0.08mm及び孔数300ホールのノ
ズルを用い、50重量％のジメチルホルムアミド水溶液中へ押し出しして凝固させ、次いで水洗した後120℃で乾燥し、乾燥後に3倍に延伸してから、さらに145℃で5分間熱処理を行うことにより、アクリル系繊維を得た。得られたアクリル系繊維は、繊度2.2dtex、強度3.3cN／dtex、伸度22.3％、カット長51mmであった。

次いで、得られたアクリル系繊維（以下において、「Pro M」とも記す。）60重量％と、市販の綿（中繊維綿、以下において、「Cot」とも記す。）40重量％を混合し、リング紡績により紡績した。得られた紡績糸は、英式綿番手20番の混紡糸であった。該紡績糸を用いて、通常の製織方法により、下記表1に示した目付の織維の織物（布帛）を製造した。得られた布帛を酸化チタン基材に担持したアンチモンドープ酸化スズ（石原産業社製、品名「ET521W」）の分散体（酸化チタン基材に担持したアンチモンドープ酸化スズをジメチルホルムアミドに対して30重量％になるように添加して分散した分散体、レーザー回折法で測定した粒子径が0.2〜0.3μmであった。）に含浸させた後、乾燥させることで、布帛の全体重量に対して酸化チタン基材に担持したアンチモンドープ酸化スズを1.3重量％付着させた。

[0094]（実施例A15）

実施例A14と同様にして、下記表1に示した目の練織の織物（布帛）を製造した。得られた布帛を、アンチモンドープ酸化亜鉛の分散体（日産化学工業社製、品名「セルナックスCX—Z610M—F2」、アンチモンドープ酸化亜鉛をメタノールに対して60重量％になるように添加して分散したメタノール分散体、レーザー回折法で測定した平均粒子径（D50）が15nmであった。）に含浸させた後、乾燥させることで、布帛の全体重量に対してアンチモンドープ酸化亜鉛を0.66重量％付着させた。

[0095]（実施例A16）

布帛の全体重量に対してアンチモンドープ酸化亜鉛を1.4重量％付着させた以外は、実施例A15と同様にして、布帛を作製した。
実施例 A 1 7
布帛の全体重量に対してアンチモンドープ酸化亜鉛を 2.1 重量％付着させた以外は、実施例 A 1 5 と同様にして、布帛を作製した。

（参考例 1）
パララミド繊維 (P A) 50 重量％と、メタラミド繊維 (M A) 50 重量％を混合し、リング紡績により紡績した。得られた紡績糸は、英式綿番手 20 番の混紡糸であった。該紡績糸を用いて、通常の製織方法により、下記表 1 に示した目付の綾織の織物 (布帛) を製造した。

（参考例 2）
アクリル系繊維 (P r o C) 50 重量％と、パララミド繊維 (P A) 25 重量％と、メタラミド繊維 (M A) 25 重量％を混合し、リング紡績により紡績した。得られた紡績糸は、英式綿番手 20 番の混紡糸であった。該紡績糸を用いて、通常の製織方法により、下記表 1 に示した目付の綾織の織物 (布帛) を製造した。

（参考例 3）
アクリル系繊維 (P r o C) 50 重量％と、パララミド繊維 (P A) 25 重量％と、メタラミド繊維 (M A) 25 重量％を混合し、リング紡績により紡績した。得られた紡績糸は、英式綿番手 20 番の混紡糸であった。該紡績糸を用いて、通常の製織方法により、横編み機を用いて、下記表 1 に示した目付の天竺織物を製造した。

実施例 1 ～ 9 及び比較例 1 ～ 6 のアクリル系繊維の耐アーク性は、実施例 A 1 ～ A 1 7 及び比較例 A 1 ～ A 7 のアクリル系繊維を含む布帛を用いてアーク試験を行い、下記の基準で評価し、その結果を下記表 1 に示した。実施例 A 1 ～ A 1 7 及び比較例 A 1 ～ A 7 で得られた布帛の耐アーク性をアーク試験にて評価し、その結果を下記表 1 に示した。また、実施例 A 1 ～ A 1 0 、A 1 4 ～ 1 7 及び比較例 A 1 ～ A 7 で得られた布帛の厚みを下記のよう測定し、その結果を下記表 1 に示した。なお、下記表 1 において、赤外線吸収剤の含有量は、布帛の全体重量に対する重量割合である。また、実施例 A 1
〜A 17並びに比較例A 1〜A 7で得られた布帛の全反射率を下記のように測定し、その結果を図1、図2、図3、図4、下記表2及び表3に示した。下記表2及び表3において、平均全反射率は、波長750〜2500nmの入射光に対する平均全反射率である。また、実施例A 4及びA 8、並びに比較例A 7の布帛の透過率を下記のように測定した。実施例A 4及びA 8、並びに比較例A 7の布帛の全反射率及び透過率に基づいて算出した吸光率（光吸収率）のデータを図5、表4に示した。下記表4において、平均吸光率は、波長750〜2500nmの入射光に対する平均吸光率である。

[0101]（アーク試験）

アーク試験は、ASTM F1959/F1959M-12（Standard Test Method for Determining the Arc Rating of Materials for Clot hing）に基づいて行い、ATPV（cal/cm²）を求めた。

[0102]（比ATPV）

布帛の目付及びアーク試験で求めたATPVに基づいて、布帛の単位目付当たりのATPV（cal/cm²）/（oz/yd²）、即ち比ATPVを算出した。

[0103]（アクリル系繊維の耐アーク性）

（1）参考例1布帛（繊物）の比ATPVをRef 1とし、参考例2の布帛（繊物）の比ATPVをRef 2とし、参考例3の布帛（繊物）の比ATPVを、Ref 3とし、下記式により、アラミド繊維100重量％の繊物の比ATPVを算出した。

アラミド繊維100重量％の繊物の比ATPV = Ref 1 X Ref 3 / Ref 2

（2）バリアラミド繊維とメタアラミド繊維の耐アーク性は同じであると仮定し、アラミド繊維100重量％の繊物の比ATPVをアラミド繊維の比ATPVとし、対象布帛の比ATPVを使用し、対象布帛中のアクリル系繊維の比ATPVを下記式（1）により算出した。
アクリル系繊維の比 \(\frac{A T P V}{V} = \frac{X \cdot Y \cdot W_a}{100} \) \(/ \) \((W_b/100) \)
式 (1) 中、\(X \) は対象布帛の比 \(A T P V \) (\(c a \) \(l/cm^2 \) / \(o z/yd^2 \))、\(Y \) はアラミド繊維の比 \(A T P V \)、\(W_a \) は対象布帛の全体重量に対するアラミド繊維の含有量（重量％）、\(W_b \) は対象布帛の全体重量に対するアクリル系繊維の含有量（重量％）である。

(3) アラミド繊維の比 \(A T P V \) を 1 とし、アクリル系繊維の耐アーク性を下記式 \(II \) で算出した \(A T P C \) で評価した。
アクリル系繊維の \(A T P C = \frac{A T P V}{A T P V \text{の比} A T P V} \) （\(II \)）

(4) アクリル系繊維の \(A T P C \) の値が 2.1 以上の場合は耐アーク性が合格であると判断した。\(A T P C \) の値が高いほど耐アーク性が良好であることになる。

なお、対象布帛がアクリル系繊維とアラミド繊維に加えて他の繊維を含む場合、上記 (2) において、式 (1) は下記に示す式 (\(III \)) に代わる。
アクリル系繊維の比 \(A T P V = \frac{c a \ l/cm^2}{o z/yd^2} = \frac{(X - Y \cdot W_a/100 - Z \cdot W_z/100)}{(W_b/100)} \) （\(III \)）
式 (\(III \)) 中、\(X \) は対象布帛の比 \(A T P V \)、\(Y \) はアラミド繊維の比 \(A T P V \)、\(Z \) は他の繊維の比 \(A T P V \)、\(W_a \) は対象布帛の全体重量に対するアラミド繊維の含有量（重量％）、\(W_b \) は対象布帛の全体重量に対するアクリル系繊維の含有量（重量％）、\(W_z \) は対象布帛の全体重量に対する他の繊維の含有量（重量％）である。

【0104】（厚み）
厚みは、JIS L 1096 (2010) に準じて測定した。

【0105】（全反射率及び透過率）
(1) まず、分光光度計（日立ハイテクノロジーセ社製、型式「U-4100」）を用いて布帛の全反射率を測定した。具体的には、図 7 に示しているように、キセノンランプ 1 カ所の光を分光し、分光した光を裏面にアルミナ
板２を置いた布帛３の表面に照射し、反射した光を積分球４で積分し、光電子増倍管５でその光強度を測定することで、全反射率（R）を算出した。なお、全反射光は、布帛の表面で反射した光と、布帛の裏面に透過した光がアルミナ板で反射され、再度布帛の表面から放出する全ての光量を考慮したものである。

（２）次に、分光光度計（日立ハイテクノロジーズ社製、型式「U−4100」）を用いて布帛の透過率を測定した。具体的には、図8に示しているように、キセノンランプ１１からの光を分光し、分光した光を積分球１４の光照射側入口に直接配置した布帛１３の表面に照射し、透過した光を積分球１４で積分し、光電子増倍管１５でその光強度を測定することで、透過率（t）を算出した。図8において、12は、アルミナ板である。

（３）全反射率（R）及び透過率（t）を用い、下記の連立方程式により吸光率（α）を算出した。なお、下記の連立方程式において、r1は布帛が持つ反射率を意味する。

[数1]

\[1 = r_1 + t_1 + a_1 \cdots \cdots \cdots \cdots \cdots \cdots \cdots (1) \]

\[R = r_f + \frac{t_f^2}{1−r_f^2} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (2) \]

（４）得られた入射光の波長を横軸とし、全反射率を縦軸とする全反射率のグラフにおいて、波長750nm〜2500nm、全反射率0％〜100％で囲まれる面積の内、全反射率のグラフ曲線の下方部分の占める面積の割合を求め、波長750〜2500nmの入射光に対する平均全反射率とした。

（５）得られた入射光の波長を横軸とし、吸光率を横軸とする吸光率のグラフにおいて、波長750nm〜2500nm、吸光率0％〜100％で囲まれる面積の内、吸光率のグラフ曲線の下方部分の占める面積の割合を求め、波長750〜2500nmの入射光に対する平均吸光率とした。
表1

<table>
<thead>
<tr>
<th>被生物番号</th>
<th>糸維構成</th>
<th>赤外線吸収係数の含有量 (%)</th>
<th>アクリル系繊維番号</th>
<th>添加剤及びその配合量</th>
<th>目付け (oz/yd²)</th>
<th>ATPV (cal/cm²)</th>
<th>比ATPV (/oz/yd²)</th>
<th>ATPC</th>
<th>濃度 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例A1</td>
<td>Arc1 50%</td>
<td>8.3 Arc1 SN100P 10部</td>
<td>6.9 9.4 1.36 3.39 0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A2</td>
<td>Arc2 25%</td>
<td>4.2 Arc2 SN100P 20部</td>
<td>7.3 9.6 1.32 3.42 0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A3</td>
<td>Arc2 25%</td>
<td>2.1 Arc2 SN100P 20部</td>
<td>7.3 9.3 1.27 3.42 0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A4</td>
<td>Arc3 30%</td>
<td>2.4 Arc3 SN100P 5部</td>
<td>7.5 8.3 1.11 2.57 0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A5</td>
<td>Arc4 25%</td>
<td>2.4 Arc4 ETS21W 5部</td>
<td>7.4 9.5 1.28 3.14 0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A6</td>
<td>Arc5 25%</td>
<td>2.4 Arc5 SN100D 5部</td>
<td>7.4 8.7 1.18 2.79 0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A7</td>
<td>Arc6 30%</td>
<td>0.5 Arc6 SN100P 5部</td>
<td>7.4 7.5 1.00 2.23 0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A8</td>
<td>Arc6 25%</td>
<td>4.5 Arc6 SN100P 10部</td>
<td>7.5 10 1.33 3.30 0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A9</td>
<td>Arc6 25%</td>
<td>2.3 Arc6 SN100P 10部</td>
<td>7.6 12 1.58 4.09 0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A10</td>
<td>Arc7 20%</td>
<td>2.2 Arc7 R-22L 5部</td>
<td>7.6 12.2 1.61 4.18 0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例A11</td>
<td>Arc8 20%</td>
<td>1.3 Arc8 ETS21W 5部</td>
<td>7.5 8.7 1.12 3.73 0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2

<table>
<thead>
<tr>
<th>実施例</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均全反射率 (%)</td>
<td>19.9</td>
<td>22.4</td>
<td>31.1</td>
<td>28.2</td>
<td>28.3</td>
<td>37.4</td>
<td>36.2</td>
<td>27.9</td>
<td>29.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>実施例</th>
<th>A10</th>
<th>A11</th>
<th>A12</th>
<th>A13</th>
<th>A14</th>
<th>A15</th>
<th>A16</th>
<th>A17</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均全反射率 (%)</td>
<td>34.5</td>
<td>46.0</td>
<td>47.0</td>
<td>29.2</td>
<td>40.0</td>
<td>37.8</td>
<td>35.3</td>
<td>30.0</td>
</tr>
</tbody>
</table>
[01 08] [表3]

<table>
<thead>
<tr>
<th>比較例</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均全反射率(%)</td>
<td>71.4</td>
<td>70.3</td>
<td>70.7</td>
<td>74.4</td>
<td>74.2</td>
<td>74.8</td>
<td>74.0</td>
</tr>
</tbody>
</table>

[01 09] [表4]

<table>
<thead>
<tr>
<th>実施例A4</th>
<th>実施例A8</th>
<th>比較例A7</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均吸光率(%)</td>
<td>67.7</td>
<td>75.1</td>
</tr>
</tbody>
</table>

[01 10] 上記表1のデータから、赤外線吸収剤を含む実施例のアクリル系繊維は、A T P Cが2.1以上であり、赤外線吸収剤を含まない比較例のアクリル系繊維よりAPT Cが高く、耐アーク性が良好であることが分かった。赤外線吸収剤の含有量が高いと、アクリル系繊維の耐アーク性がより良好であった。赤外線吸収剤が酸化チタン基材に担持したアンチモン酸化スズの場合、アンチモン酸化スズより耐アーク性がより良好であった。また、赤外線吸収剤のアンチモン酸化スズと紫外線吸収剤の酸化チタンを併用した場合、赤外線吸収剤のアンチモン酸化スズのみを用いた場合より、耐アーク性がより良好であった。また、実施例の布帛は、比A T P Vが1(m2/cal) (oz/yd2)以上であり、耐アーク性が良好であった。

[01 11] 上記表2、表3及び図1、図2、図3及び図4から分かるように、実施例A1の布帛（図1A）、実施例A4の布帛（図1B）、実施例A5の布帛（図1C）、実施例A7の布帛（図1D）、実施例A8の布帛（図1E）、実施例A10の布帛（図1F）、実施例A12の布帛（図1G）、実施例A12の布帛（図1H）、実施例A13の布帛（図1I）、実施例A14の布帛（図1J）、実施例A15の布帛（図1K）、実施例A16の布帛（図1L）及び実施例A17の布帛（図1M）は、波長750〜2500nmの入射光に対する平均全反射率が50%以下であり、赤外線を吸収する性能が高かった。特に、実施例A1の布帛（図1A）、実施例A4の布帛（図1B）、実施例A5の布帛（図1C
実施例A8の布帛（図1E）及び実施例A10の布帛（図1F）は、2000nm以上の波長域において全反射率が20%以下であった。一方、比較例A1の布帛（図2A）、比較例A2の布帛（図2B）、比較例A3の布帛（図2C）、比較例A4の布帛（図2D）、比較例A5の布帛（図2E）、比較例A6の布帛（図2F）及び比較例A7の布帛（図2G）は、波長750 ～ 2500nmの入射光に対する平均全反射率が50%を超えており、赤外線を吸収する性能が低かった。実施例の布帛は、赤外線を吸収する性能が高いことで、耐アーク性が向上していると推測される。そして、図5A（実施例A4）、図5B（実施例A8）、図5C（比較例A7）の対比、表4及び表1の結果からも、赤外線吸収剤の含有量が高いほど、吸光率が高く（赤外線を吸収する性能が高い）、布帛の耐アーク性が向上していることが分かる。吸光率が高いとは、赤外線を吸収する性能が高いことを意味する。実施例A4、実施例A8及び比較例A7の波長750 ～ 2500nmの入射光に対する平均全反射率と平均吸光率は、逆相関、すなわち、平均全反射率が低いほど、平均吸光率は高い関係を有しており、平均全反射率で赤外線を吸収する性能を評価することができる。

[0112]（実施例B1）

天然セルロース繊維として、市販の綿（中繊維綿）を用い、リング紡績により紡績した。得られた紡績糸は、英式綿番手20番であった。該紡績糸を用いて、通常の方法により、横編み機を用いて、下記表5に示す目付の綿100重量%の天竺編物を製造した。

＜難燃化処理＞

得られた布帛（編物）について、リン系化合物を用い、ピロパテックス加工により難燃化処理を行った。まず、リン系化合物（商品名「ピロパテックスCPNEW」、ハンツマン製、N-メチロールジメチルホスホノプロピオン酸アミド）400g/㎡、架橋剤（商品名「ピッカミンJ-101」、DIC製、ヘキサメトキシメチロール型メラミン）60g/㎡、柔軟剤（商品名「ウルトラテックスFSA NEW」、ハンツマン社製、シリコン系
柔軟剤 30 g/L、85%リン酸20.7 g/L、浸透剤（商品名「イン
バジンPBN」、ハンツマン社製）5 ml/Lを含む難燃化処理液（加工薬
剤）を調製した。布帛に難燃化処理液を十分浸透させた後、絞り率が80土
2%となるように脱水機で難燃化処理液を絞った後、110℃で5分間前乾
燥し、150℃で5分間熟処理した。その後、布帛を炭酸ナトリウム水溶液
と水で洗浄し、過酸化水素水で中和を行い、水洗、乾水の後、タンブラーダー乾
燥機を用いて60℃で30分間乾燥を行い、難燃性布帛を得た。得られた難
燃性布帛は、布帛100重量部に対して、固形分としてピロパテックスを2
0重量部含有していた。

<赤外線吸収剤の付着>
得られた難燃性布帛を、アンチモンドーブ酸化スズの分散体（石原産業社
製、品名「SN100D」、アンチモンドーブ酸化スズを水に対して30
重量%になるように添加して分散した水分散体、レーザー回折法で測定した
粒子径が0.085〜0.120μmであった。）に含浸させた後、乾燥さ
せることで、難燃性布帛100重量部に対して、アンチモンドーブ酸化スズ
を0.42重量部付着させた。

[0113]（実施例B2）
実施例B1と同様にして、難燃性布帛を得た。得られた難燃性布帛を、ア
ンチモンドーブ酸化スズの分散体（石原産業社製、品名「SN100D」
、アンチモンドーブ酸化スズを水に対して30重量%になるように添加して
分散した水分散体、レーザー回折法で測定した粒子径が0.085〜0.1
20μmであった。）に含浸させた後、乾燥させることで、難燃性布帛10
0重量部に対して、アンチモンドーブ酸化スズを0.89重量部付着させた。

[0114]（実施例B3）
天然セルロース繊維として、市販の綿（中繊維錦）を用い、リング紡績に
より紡績した。得られた紡績糸は、英式錦番手20番であった。該紡績糸を
用いて、通常の製織方法により、目付7.4 oz/yd²の縦織の織物を製造
した。次いで、実施例B1と同様に難燃化処理して、難燃性布帛を得た。得られた難燃性布帛を、アンチモンドープ酸化スズの分散体（石原産業社製、品名「S N _ 1 0 0 D 」、アンチモンドープ酸化スズを水に対して30重量%になるように添加して分散した水分散体、）、アンチモン酸化スズを水に対して30重量%になるように添加して分散した水分散体、レーザー回折法で測定した粒子径が0.085〜0.120μmであった。）に含浸させた後、乾燥させることで、難燃性布帛100重量部に対して、アンチモンドープ酸化亜鉛を0.4重量部付着させた。

[01 15] （実施例B4）
実施例B3と同様にして難燃性布帛を得た。得られた難燃性布帛を、アンチモンドープ酸化亜鉛の分散体（日産化学工業社製、品名「セルナックスC X - Z 6 1 0 M _ F 2 」、アンチモンドープ酸化亜鉛をメタノールに対して60重量%になるように添加して分散したメタノール分散体、レーザー回折法で測定した平均粒子径（D 5 0 ）が15nmであった。）に含浸させた後、乾燥させることで、難燃性布帛100重量部に対して、アンチモンドープ酸化亜鉛を0.62重量部付着させた。

[01 16] （実施例B5）
難燃性布帛100重量部に対して、アンチモンドープ酸化亜鉛を1.21重量部付着させた以外は、実施例B4と同様にして、布帛を作製した。

[01 17] （実施例B6）
難燃性布帛100重量部に対して、アンチモンドープ酸化亜鉛を1.86重量部付着させた以外は、実施例B14と同様にして、布帛を作製した。

[01 18] （比較例B1）
天然セルロース繊維として、市販の綿（中繊維綿）を用い、リング紡績に より紡績した。得られた紡績糸は、英式綿番手20番であった。該紡績糸を 用いて、通常の方法により、横編み機を用いて、下記表5に示す目付の綿100重量％の天竺編物を製造した。得られた布帛を、アンチモンドープ酸化スズの分散体（石原産業社製、品名「S N _ 1 0 0 D 」、アンチモンドープ酸化スズを水に対して30重量%になるように添加して分散した水分散体、
レーザー回折法で測定した粒子径が0.085〜0.120μmであった。
(1)に含浸させた後、乾燥させることで、布帛100重量部に対して、アンチモンドープ酸化スズを2.3重量部付着させ、下記表4に示す目付の布帛を得た。

[0119] 実施例B1〜B6及び比較例B1で得られた布帛の耐アーク性を上述したアーク試験にて評価し、その結果を下記表5に示した。また、実施例B1〜B6及び比較例B1で得られた布帛の全反射率を上述したように測定し、その結果を図6、下記表5に示した。下記表5において、平均全反射率は、波長750〜2500nmの入射光に対する平均全反射率である。図6Aには実施例B1の布帛、図6Bには実施例B2の布帛、図6Cには実施例B3の布帛、図6Dには実施例B4の布帛、図6Eには実施例B5の布帛、図6Fには実施例B6の布帛、図6Gには比較例B1の布帛の全反射率のグラフをそれぞれ示した。また、実施例B1〜B6及び比較例B1で得られた布帛の厚みを上述したように測定し、その結果を下記表5に示した。

[0120] [表5]

<table>
<thead>
<tr>
<th></th>
<th>実施例B1</th>
<th>実施例B2</th>
<th>実施例B3</th>
<th>実施例B4</th>
<th>実施例B5</th>
<th>実施例B6</th>
<th>比較例B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>目付(oz/yd²)</td>
<td>7.0</td>
<td>7.0</td>
<td>7.4</td>
<td>7.4</td>
<td>7.5</td>
<td>7.5</td>
<td>6.1</td>
</tr>
<tr>
<td>ATPV(cal/cm²)</td>
<td>9.0</td>
<td>10.0</td>
<td>8.8</td>
<td>8.0</td>
<td>8.8</td>
<td>8.0</td>
<td>60未満</td>
</tr>
<tr>
<td>(oz/yd²)</td>
<td>1.29</td>
<td>1.43</td>
<td>1.19</td>
<td>1.08</td>
<td>1.17</td>
<td>1.07</td>
<td>0.98未満</td>
</tr>
<tr>
<td>厚み(mm)</td>
<td>0.54</td>
<td>0.54</td>
<td>0.56</td>
<td>0.53</td>
<td>0.50</td>
<td>0.51</td>
<td>0.62</td>
</tr>
<tr>
<td>平均全反射率 (%)</td>
<td>56.8</td>
<td>52.5</td>
<td>37.9</td>
<td>42.4</td>
<td>35.3</td>
<td>30.2</td>
<td>40.9</td>
</tr>
</tbody>
</table>

[0121] 上記表5から分かるように、天然セルロース繊維（綿）、難燃剤及び赤外線吸収剤を含み、波長750〜2500nmの入射光に対する平均全反射率が60%以下である実施例B1〜B6の布帛は、比ATPVが1（cal/ cm²）/(oz/yd²)以上であり、耐アーク性が良好であった。一方、天然セルロース繊維及び赤外線吸収剤を含むが、難燃剤を含まない比較例B1の布帛は、比ATPVが0.98（cal/ cm²）/(oz/yd²)未満である上、穴あきが生じており、耐アーク性が悪かった。
請求の範囲

[請求項1] アクリル系重合体で構成されたアクリル系繊維であって、アクリル系重合体の全体重量に対して赤外線吸収剤を1重量%以上30重量%以下含むことを特徴とする耐アーク性アクリル系繊維。

[請求項2] 前記赤外線吸収剤が、酸化スズ系化合物である請求項1に記載の耐アーク性アクリル系繊維。

[請求項3] 前記酸化スズ系化合物が、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドープ酸化スズ、フッ素ドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上である請求項2に記載の耐アーク性アクリル系繊維。

[請求項4] さらに、紫外線吸収剤を含む請求項1～3のいずれか1項に記載の耐アーク性アクリル系繊維。

[請求項5] 前記紫外線吸収剤が酸化チタンである請求項4に記載に耐アーク性アクリル系繊維。

[請求項6] 前記アクリル系重合体は、アクリル系重合体の全体重量に対して、アクリロニトリルを40～70重量%、他の成分を30～60重量%含む請求項1～5のいずれか1項に記載の耐アーク性アクリル系繊維。

[請求項7] 請求項1～6のいずれか1項に記載の耐アーク性アクリル系繊維を含み、布帛の全体重量に対する赤外線吸収剤の含有量が0.5重量%以上であることを特徴とするアーク防護服用布帛。

[請求項8] さらにアラミド繊維を含む請求項7に記載のアーク防護服用布帛。

[請求項9] さらにセルロース系繊維を含む請求項7又は8に記載のアーク防護服用布帛。

[請求項10] 前記アーク防護服用布帛は、目付8 oz/yd²以下において、ASTM F1959/F1959M-12 (Standard Test Method for Determining the A
arating of Materials for Clothing) に基づいて測定したATPV値が8cal/cm²以上である請求項7〜9のいずれか1項に記載のアーク防護服用布帛。

[請求項11] 波長750〜2500nmの入射光に対する平均全反射率が50％以下である請求項7〜10のいずれか1項に記載のアーク防護服用布帛。

[請求項12] セルロース系繊維を含む布帛であって、前記布帛は、さらに赤外線吸収剤と難燃剤を含み、波長750〜2500nmの入射光に対する平均全反射率が60％以下であることを特徴とするアーク防護服用布帛。

[請求項13] 前記アーク防護服用布帛は、目付8oz/yd²以下において、ASTM F1959/F1959M-12(Standard Test Method for Determining the Arc Rating of Materials for Clothing) に基づいて測定したATPV値が8cal/cm²以上である請求項12に記載のアーク防護服用布帛。

[請求項14] 請求項7〜13のいずれか1項に記載のアーク防護服用布帛を含むことを特徴とするアーク防護服。
[図3]
A

全反射率（%）

波長（nm）

B

全反射率（%）

波長（nm）

C

全反射率（%）

波長（nm）

D

全反射率（%）

波長（nm）
[図5] 吸光率 (%) に対する波長 (nm) の関係グラフ

A

B

C
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

D01 F65 4 (2006.01)i, A41D3 1/00 (2006.01)i, D01 F64 0 (2006.01)i, D03D1 /00 (2006.01)i.

D03D1 5/12 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

D01F1 /00- G/ 96, D01F9 /00- 9/04, A41D31 /00- 31/02, D03D1 /00- 27/18

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 7-324220 A (Japan Exian Co., Ltd.),</td>
<td>1, 4-6</td>
</tr>
<tr>
<td>A</td>
<td>claims; paragraphs [0009], [0019]; example s (Family: none)</td>
<td>2-3, 7-14</td>
</tr>
<tr>
<td>X</td>
<td>CN 102409422 A (Zhongyuan University of Technology),</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>11 April 2012 (11.04.2012),</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>claims; example s (Family: none)</td>
<td>7-14</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2013-147785 A (Daiwabo Holdings Co., Ltd.),</td>
<td>12-14</td>
</tr>
<tr>
<td>A</td>
<td>01 August 2013 (01.08.2013),</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>claims; paragraphs [0025], [0026], [0084] (Family: none)</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search

04 March 2016 (04.03.16)

Date of mailing of the international search report

15 March 2016 (15.03.16)

Name and mailing address of the ISA/Authorized officer

Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku,
Tokyo 100-8915, Japan

Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 57-106716 A (Kanebo Gos en., Ltd.), 02 July 1982 (02.07.1982), (Family : none)</td>
<td>1-14</td>
</tr>
</tbody>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. X As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
(Invention 1) claims 1-11 and 14
Claims 1 to 11 and 14 have a special technical feature relating to an acryl ic fiber "compri sing 1-30 wt %inclus ive of an infrared absorber". Thus these claims are regarded as Invention 1.

(Invention 2) claims 12-13
It is not considered that claims 12-13 have a special technical feature same as or corresponding to claims 1-11 and 14 which are classified into Invention 1.

Further, claims 12-13 are not dependent on claim 1.
Further, claims 12-13 have no relationship such that these claims are substantially same as or equivalent to any claim classified into Invention 1.

Consequently, claims 12-13 cannot be classified into Invention 1.
Claims 12-13 have a special technical feature "a fabric for arc-resistant protective clothing, said fabric comprising a cellulose-based fiber, an infrared absorber and a flame retardant". Thus these claims are regarded as Invention 2.
国際調査報告

国際出願番号 PCT/JP2015/084780

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. D01F6/54 (2006.01), A41D31/00 (2006.01), D01F6/40 (2006.01), D03D1/00 (2006.01), D03D15/12 (2006.01)

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. D01F1/00-6/96, D01F9/00-9/04, A41D3 1/00-3 1/02, D03D1/00-27/18

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国实用新案公報 1922-
日本国公開実用新案公報 1971-2
日本国实用新案登録公報 1996-
日本国登録实用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した年月）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するとときは、その関連する箇所の表示</th>
<th>関連する文献番項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 7-324220 A（日本エクスラン工業株式会社）1995.12.12、特許請求の範囲、[0009], [0019]、実施例（ファミリーなし）</td>
<td>1,4-6</td>
</tr>
<tr>
<td>Y</td>
<td>CN 102409422 A（中原工学院）2012.04.11、特許請求の範囲、実施例（ファミリーなし）</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>JP 2013-147785 A（ダイワボウホールディングス株式会社）</td>
<td>12-14</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ

A 特に関連のある文献ではなく、一般的技術水準を示すもの
E 国際出願日後の出願または特許であるが、国際出願日以前に公表されたもの
I 優先権主張に伴い提出する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
O 口頭による開示、使用、展示等に言及する文献
P 国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日

04.03.2016

国際調査報告の発送日

15.03.2016

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号100−8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

久保田 葵
電話番号03−3581−1101 内線 3474

様式PCT／ISA／210（第2ページ）（2015年1月）
国際調査報告 国際出願番号 P C T ／ J P 2 0 1 5 ／ 0 8 4 7 8 0

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 2013. 08. 01, 特許請求の範囲、[0025]、[0026]、[0084]（ファミリ－なし）</td>
<td>カネボウ合繊株式会社 1982. 07. 02, 特許請求の範囲、実施例（ファミリーなし）</td>
<td>1-11</td>
<td></td>
</tr>
<tr>
<td>A JP 57-106716 A (カネボウ合繊株式会社) 1982. 07. 02, 特許請求の範囲、実施例（ファミリーなし）</td>
<td>1—14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

様式 P C T ／ I S A ／ 2 1 0 (第２ページの続き) (2 0 1 5 年 1 月)
第四欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT 17条 (2) (a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. **請求項** [ご記入] は、この国際調査機関が調査をすることを要しない対象に係るものである。
 つまり、

2. **請求項** [ご記入] は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。
 つまり、

3. **請求項** [ご記入] は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第三欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

特別ページ参照。

1. [□] 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求項について作成した。

2. [○] 追加調査手数料を要するまでもなく、すべての調査可能な請求項について調査することができたので、追加調査手数料の納付を求めなかった。

3. [「」] 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかなかったので、この国際調査報告は、手数料の納付のある次の請求項のみについて作成した。

4. [□] 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求項について作成した。

追加調査手数料の異議の申立てに関する注意

- [□] 追加調査手数料及び、該当する場合には、異議申立手数料の納付と共に、出願人から異議申立てがあった。
- [○] 追加調査手数料の納付と共に出願人から異議申立てがあったが、異議申立手数料が納付命令書に示した期間内に支払われなかった。

様式PCT/ISA/210（第1ページの続き2）（2015年1月）
(発明１) 請求項 1－11、14
請求項 1－11、14は、アタリル系繊維について、「赤外線吸収剤を1重量％以上30重量％以下含む」という特別な技術的特徴を有しているので、発明1に区分する。

(発明2) 請求項 12－13
請求項12－13は、発明1に区分された請求項1－11、14と、同一又は対応する特別な技術的特徴を有しているとはいえない。
また、請求項12－13は、請求項1の従属請求項でもない。さらに、請求項12－13は、発明1に区分されたいずれの請求項に対しても実質同一又はそれに準ずる関係にはない。
従って、請求項12－13は発明1に区分できない。
そして、請求項12－13は、セルロース系繊維と赤外線吸収剤と難燃剤を含む、アーク防護服用布帛」いう特別な技術的特徴を有しているので、発明2に区分する。