Novel cyclohexane-ylidene derivatives of formula (I) are described herein. These compounds inhibit the production of Tumor Necrosis Factor and are useful in the treatment of disease states mediated or exacerbated by TNF production; they are also useful in the mediation or inhibition of enzymatic or catalytic activity of phosphodiesterase IV and are therefore useful in the treatment of disease states in need of mediation or inhibition thereof.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>CA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SK</td>
<td>Slovak Republic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SU</td>
<td>Soviet Union</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>MC</td>
<td>Mongolia</td>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MG</td>
<td>Madagascar</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MI</td>
<td>Mali</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"Compounds useful for Treating Inflammatory Diseases and Inhibiting Production of Tumor Necrosis Factor"

Field of Invention

The present invention relates to novel compounds, pharmaceutical compositions containing these compounds, and their use in treating allergic and inflammatory diseases and for inhibiting the production of Tumor Necrosis Factor (TNF).

Background of the Invention

Bronchial asthma is a complex, multifactorial disease characterized by reversible narrowing of the airway and hyperreactivity of the respiratory tract to external stimuli.

Identification of novel therapeutic agents for asthma is made difficult by the fact that multiple mediators are responsible for the development of the disease. Thus, it seems unlikely that eliminating the effects of a single mediator will have a substantial effect on all three components of chronic asthma. An alternative to the "mediator approach" is to regulate the activity of the cells responsible for the pathophysiology of the disease.

One such way is by elevating levels of cAMP (adenosine cyclic 3',5'-monophosphate). Cyclic AMP has been shown to be a second messenger mediating the biologic responses to a wide range of hormones, neurotransmitters and drugs; [Krebs Endocrinology Proceedings of the 4th International Congress Excerpta Medica, 17-29, 1973]. When the appropriate agonist binds to specific cell surface receptors, adenylyl cyclase is activated, which converts Mg$^{+2}$-ATP to cAMP at an accelerated rate.

Cyclic AMP modulates the activity of most, if not all, of the cells that contribute to the pathophysiology of extrinsic (allergic) asthma. As such, an elevation of cAMP would produce beneficial effects including: 1) airway smooth muscle relaxation, 2) inhibition of mast cell mediator release, 3) suppression of neutrophil degranulation, 4) inhibition of basophil degranulation, and 5) inhibition of monocyte and macrophage activation. Hence, compounds that activate adenylyl cyclase or inhibit phosphodiesterase should be effective in suppressing the inappropriate activation of airway smooth muscle and a wide variety of inflammatory cells. The principal cellular mechanism for the inactivation of cAMP is hydrolysis of the 3'-phosphodiester bond by one or more of a family of isozymes referred to as cyclic nucleotide phosphodiesterases (PDEs).

It has now been shown that a distinct cyclic nucleotide phosphodiesterase (PDE) isozyme, PDE IV, is responsible for cAMP breakdown in airway smooth muscle and inflammatory cells. [Torphy, "Phosphodiesterase Isozymes: Potential Targets for Novel Anti-asthmatic Agents" in New Drugs for Asthma, Barnes, ed. IBC Technical Services Ltd., 1989]. Research indicates that inhibition of this enzyme not only produces airway smooth muscle relaxation, but also suppresses degranulation of mast cells, basophils and neutrophils along with inhibiting the activation of monocytes and neutrophils. Moreover, the beneficial effects of PDE IV inhibitors are markedly potentiated when adenylyl cyclase activity of target cells is elevated by appropriate hormones or autacoids, as would be the case in vivo.

Thus PDE IV inhibitors would be effective in the asthmatic lung, where levels of
prostaglandin E₂ and prostacyclin (activators of adenylate cyclase) are elevated. Such compounds would offer a unique approach toward the pharmacotherapy of bronchial asthma and possess significant therapeutic advantages over agents currently on the market.

The compounds of this invention also inhibit the production of Tumor Necrosis Factor (TNF), a serum glycoprotein. Excessive or unregulated TNF production has been implicated in mediating or exacerbating a number of diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions; sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption diseases, reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia secondary to human acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis, or pyrosis, in addition to a number of autoimmune diseases, such as multiple sclerosis, autoimmune diabetes and systemic lupus erythematosus.

AIDS results from the infection of T lymphocytes with Human Immunodeficiency Virus (HIV). At least three types or strains of HIV have been identified, i.e., HIV-1, HIV-2 and HIV-3. As a consequence of HIV infection, T-cell-mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms. HIV entry into the T lymphocyte requires T lymphocyte activation. Viruses such as HIV-1 or HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HIV, the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication.

Cytokines, specifically TNF, are implicated in activated T-cell-mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by inhibition of cytokine production, notably TNF, in an HIV-infected individual aids in limiting the maintenance of T cell activation, thereby reducing the progression of HIV infectivity to previously uninfected cells which results in a slowing or elimination of the progression of immune dysfunction caused by HIV infection. Monocytes, macrophages, and related cells, such as kupffer and glial cells, have also been implicated in maintenance of the HIV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. [See Rosenberg et al., The Immunopathogenesis of HIV Infection, Advances in Immunology, Vol. 57, 1989]. Monokines, such as TNF, have been shown to activate HIV replication in monocytes and/or macrophages [See Poli et al., Proc. Natl. Acad. Sci., 87:782-784, 1990], therefore, inhibition of monokine production or activity aids in limiting HIV progression as stated above for T cells.
TNF has also been implicated in various roles with other viral infections, such as the cytomegalovirus (CMV), influenza virus, adenovirus, and the herpes virus for similar reasons as those noted.

TNF is also associated with yeast and fungal infections. Specifically *Candida albicans* has been shown to induce TNF production in vitro in human monocytes and natural killer cells. [See Riipi et al., Infection and Immunity, 58(9):2750-54, 1990; and Jafari et al., Journal of Infectious Diseases, 164:389-95, 1991. See also Wasan et al., Antimicrobial Agents and Chemotherapy, 35,(10):2046-48, 1991; and Luke et al., Journal of Infectious Diseases, 162:211-214,1990].

The ability to control the adverse effects of TNF is furthered by the use of the compounds which inhibit TNF in mammals who are in need of such use. There remains a need for compounds which are useful in treating TNF-mediated disease states which are exacerbated or caused by the excessive and/or unregulated production of TNF.

Summary of the Invention

This invention relates to the novel compounds of Formula (I) which are useful in the mediation or inhibition of the enzymatic activity (or catalytic activity) of phosphodiesterase IV (PDE IV). The novel compounds of Formula (I) also have Tumor Necrosis Factor (TNF) inhibitory activity.

This invention also relates to the pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent.

The invention also relates to a method of mediation or inhibition of the enzymatic activity (or catalytic activity) of PDE IV in mammals, including humans, which comprises administering to a mammal in need thereof an effective amount of a compound of Formula (I), as shown below.

The invention further provides a method for the treatment of allergic and inflammatory disease which comprises administering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I). The invention also provides a method for the treatment of asthma which comprises administering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I).

This invention also relates to a method of inhibiting TNF production in a mammal, including humans, which method comprises administering to a mammal in need of such treatment, an effective TNF inhibiting amount of a compound of Formula (I). This method may be used for the prophylactic treatment or prevention of certain TNF mediated disease states amenable thereto.

This invention also relates to a method of treating a human afflicted with a human immunodeficiency virus (HIV), which comprises administering to such human an effective TNF inhibiting amount of a compound of Formula (I).
The compounds of Formula (I) are also useful in the treatment of additional viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo.

The compounds of Formula (I) are also useful in the treatment of yeast and fungal infections, where such yeast and fungi are sensitive to upregulation by TNF or will elicit TNF production in vivo.

The novel compounds of this invention are represented by the structure:

![Chemical Structure](image)

wherein:

- **R₄** and **R₅** are independently selected from hydrogen or a C₁-2 alkyl;
- **R₆** is hydrogen, methyl, hydroxyl, aryl, halo substituted aryl, aryloxyC₁-3 alkyl, halo substituted aryloxyC₁-3 alkyl, indanyl, indenyl, C₇-₁₁ polycycloalkyl, tetrahydrofuranyl, furanyl, tetrahydropyranyl, pyranyl, tetrahydrothienyl, thienyl, tetrahydrothiopyranyl, thiopyranyl, C₃-₆ cycloalkyl, or a C₄-₆ cycloalkyl containing one or two unsaturated bonds, wherein the cycloalkyl and heterocyclic moieties may be optionally substituted by 1 to 3 methyl groups or one ethyl group;

provided that:

- a) when **R₆** is hydroxyl, then m is 2; or
- b) when **R₆** is hydroxyl, then r is 2 to 6; or
- c) when **R₆** is 2-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl, or 2-tetrahydrothienyl, then m is 1 or 2; or
- d) when **R₆** is 2-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl, or 2-tetrahydrothienyl, then r is 1 to 6;
- e) when n is 1 and m is 0, then **R₆** is other than H in -(CR₄R₅)ₙO(CR₄R₅)mR₆;
- X is YR₂, halogen, nitro, NR₄R₅, or formyl amine;
- Y is O or S(O)m';
- m' is a number having a value of 0, 1, or 2;
- X₂ is O or NR₈;
- **X₃** is hydrogen or X;
R₂ is independently selected from -CH₃ or -CH₂CH₃ optionally substituted by 1 or more halogens;

s is 0 to 4;

R₃ is hydrogen, halogen, C₁-₄ alkyl, halo-substituted C₁-₄ alkyl,

CH₂NHC(O)C(O)NH₂, -CH=CR₈R₈, cyclopropyl optionally substituted by R₈, CN,

OR₈, CH₂OR₈, NR₈R₁₀, CH₂NR₈R₁₀, C(Z')H, C(O)OR₈, C(O)NR₈R₁₀, or C≡CR₈;

Z is O, NR₉, NOR₈, NCN, (-CN)₂, CR₈CN, CR₈NO₂, CR₈C(O)OR₈,

CR₈C(O)NR₈R₈, C(-CN)NO₂, C(-CN)(C(O)OR₈, or C(-CN)(C(O)NR₈R₈;

Z is OR₁₄, OR₁₅, SR₁₄, S(O)ₙR₇, S(O)₂NR₁₀R₁₄, NR₁₀R₁₄, NR₁₄C(O)R₉,

NR₁₀C(Y')R₁₄, NR₁₀C(O)OR₇, NR₁₀C(Y')NR₁₀R₁₄, NR₁₀S(O)₂NR₁₀R₁₄,

NR₁₀C(NCN)NR₁₀R₁₄, NR₁₀S(O)₂R₇, NR₁₀C(CR₄NO₂)NR₁₀R₁₄,

NR₁₀C(NCN)SR₉, NR₁₀C(CR₄NO₂)SR₉, NR₁₀C(NR₁₀)NR₁₀R₁₄,

NR₁₀C(O)C(O)NR₁₀R₁₄ or NR₁₀C(O)(C(O)OR₁₄;

Y' is O or S;

R₇ is -(CR₄R₅)₉R₁₂ or C₁-₆ alkyl wherein the R₁₂ or C₁-₆ alkyl group is optionally substituted one or more times by C₁-₂ alkyl optionally or by one to three fluorines, -F, -Br, -Cl, -NO₂, -NR₁₀R₁₁, -C(O)R₈, -C(O)OR₈, -OR₈, -CN,

-C(O)NR₁₀R₁₁, -OC(O)NR₁₀R₁₁, -OC(O)R₈, -NR₁₀C(O)NR₁₀R₁₁, -NR₁₀C(O)R₁₁,

-NR₁₀C(O)OR₈, -NR₁₀C(O)R₁₃, -C(NR₁₀)NR₁₀R₁₁, -C(NCN)NR₁₀R₁₁,

-C(NCN)SR₉, -NR₁₀C(NCN)SR₉, -NR₁₀C(NCN)NR₁₀R₁₁, -NR₁₀S(O)₂R₉,

-S(O)ₙR₉, -NR₁₀C(O)(C(O)NR₁₀R₁₁, -NR₁₀C(O)(C(O)R₁₀, thiazolyl, imidazolyl,

oxazolyl, pyrazolyl, triazolyl, or tetrazolyl;

q is 0, 1, or 2;

R₁₂ is C₃-₇ cycloalkyl, (2-, 3-, or 4-pyridyl), pyrimidyl, pyrazolyl, (1- or 2- imidazolyl), thiazolyl, triazolyl, pyrrolyl, piperazinyl, piperidinyl, morpholinyl, furanyl, (2- or 3-thienyl), (4- or 5-thiazolyl), quinolinyl, naphthyl, or phenyl;

R₈ is independently selected from hydrogen or R₉;

R₈ is R₈ or fluorine;

R₉ is C₁-₄ alkyl optionally substituted by one to three fluorines;

R₁₀ is OR₈ or R₁₁;

R₁₁ is hydrogen, or C₁-₄ alkyl optionally substituted by one to three fluorines; or when R₁₀ and R₁₁ are as NR₁₀R₁₁ they may together with the nitrogen form a 5 to 7 membered ring optionally containing at least one additional heteroatom selected from O, N, or S;

R₁₃ is oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl, imidazolidinyl, thiazolidinyl, isoxazolyl, oxadiazolyl, or thiazidazolyl, and each of these heterocyclic rings is connected through a carbon atom and each may be unsubstituted or substituted by one or two C₁-₂ alkyl groups;
R₁₁₄ is hydrogen or R₇; or when R₁₀ and R₁₄ are as NR₁₀R₁₄ they may together with the nitrogen form a 5 to 7 membered ring optionally containing one or more additional heteroatoms selected from O, N, or S;

R₁₅ is C(O)R₁₄, C(O)NR₄R₁₄, S(O)₂R₇, or S(O)₂NR₄R₁₄;

provided that:

f) when Z is OH, X is YR₂, Y is oxygen, X₂ is oxygen, X₃ is hydrogen, s is 0, R₂ is CH₃ in YR₂, and R₁ is CH₃, then R₃ is other than CN or COOH;

g) when Z is OH, or OCH₃, X₂ is oxygen, X₃ is hydrogen, s is 0, and X is YR₂, then R₃ is other than H;

h) when Z is OS(O)₂C₁₋₆ alkyl or OS(O)₂ aryl, X₂ is oxygen, X₃ is hydrogen, s is 0, then R₃ is other than OR₈;

i) when R₁₂ is N-pyrazolyl, N-imidazolyl, N-triazolyl, N-pyrrolyl, N-piperazinyl, N-piperidinyl, or N-morpholinyl, then q is not 1; or

j) when Z is OH or OSO₂R₇ and R₃ is CH₃, CHOH or CH₂OC₁₋₃ alkyl, then R₁X₂ is not C₁₋₃ alkoxy and X is not halogen, methoxy, ethoxy, methylthio or ethylthio;

k) when Z is -NH₂, NH(C₁₋₃ alkyl), N(C₁₋₃ alkyl)₂, NH(CH₂)₂-5C(O)Ar where Ar is naphthyl or phenyl or Z is unsubstituted or substituted pyrroldinyl, piperidinyl, morpholinyl or piperazinyl and R₃ is CH₃, CHOH or CH₂OC₁₋₃ alkyl, then R₁X₂ is not C₁₋₃ alkoxy and X is not halogen, methoxy, ethoxy, methylthio or ethylthio;

or the pharmaceutically acceptable salts thereof.

Detailed Description of the Invention

This invention relates to the novel compounds of Formula (I), and to pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent. This invention also relates to a method of mediating or inhibiting the enzymatic activity (or catalytic activity) of PDE IV in a mammal in need thereof and to inhibiting the production of TNF in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I).

Phosphodiesterase IV inhibitors are useful in the treatment of a variety of allergic and inflammatory diseases including: asthma, chronic bronchitis, atopic dermatitis, urticaria, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, eosinophilic granuloma, psoriasis, rheumatoid arthritis, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury of the myocardium and brain, chronic glomerulonephritis, endotoxic shock and adult respiratory distress syndrome. In addition, PDE IV inhibitors are useful in the treatment of diabetes insipidus, [Kidney Int., 37:362, 1990; Kidney Int., 35:494, 1989] and central nervous system disorders such as depression and multi-infarct dementia.

The compounds of Formula (I) are also useful in the treatment of viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo. The viruses contemplated for treatment herein are those that produce TNF as a result of infection, or those which are sensitive to inhibition, such as by decreased replication, directly
or indirectly, by the TNF inhibitors of Formula (1). Such viruses include, but are not limited to HIV-1, HIV-2 and HIV-3, cytomegalovirus (CMV), influenza, adenovirus and the Herpes group of viruses, such as, but not limited to, Herpes zoster and Herpes simplex.

The compounds of Formula (I) are also useful in the treatment of yeast and fungal infections, where such yeast and fungi are sensitive to upregulation by TNF or will elicit TNF production in vivo. A preferred disease state for treatment is fungal meningitis. Additionally, the compounds of Formula (I) may be administered in conjunction with other drugs of choice for systemic yeast and fungal infections. Drugs of choice for fungal infections, include but are not limited to the class of compounds called the polymixins, such as Polymycin B, the class of compounds called the imidazoles, such as clotrimazole, econazole, miconazole, and ketoconazole; the class of compounds called the triazoles, such as fluconazole, and itraconazole, and the class of compound called the Amphotericins, in particular Amphotericin B and liposomal Amphotericin B.

The co-administration of the anti-fungal agent with a compound of Formula (I) may be in any preferred composition for that compound such as is well known to those skilled in the art, for instance the various Amphotericin B formulations. Co-administration of an anti-fungal agent with a compound of Formula (I) may mean simultaneous administration or in practice, separate administration of the agents to the mammal but in a consecutive manner. In particular, the compounds of Formula (I) may be co-administered with a formulation of Amphotericin B, notably for systemic fungal infections. The preferred organism for treatment is the Candida organism. The compounds of Formula (I) may be co-administered in a similar manner with anti-viral or anti-bacterial agents.

The compounds of Formula (I) may also be used for inhibiting and/or reducing the toxicity of an anti-fungal, anti-bacterial or anti-viral agent by administering an effective amount of a compound of Formula (I) to a mammal in need of such treatment. Preferably, a compound of Formula (I) is administered for inhibiting or reducing the toxicity of the Amphotericin class of compounds, in particular Amphotericin B.

The preparation of a pharmaceutically acceptable salt will be determined by the nature of the compound itself, and can be prepared by conventional techniques readily available to one skilled in the art.

When R1 is an alkyl substituted by 1 or more halogens, the halogens are preferably fluorine and chlorine, more preferably a C1-4 alkyl substituted by 1 or more fluorines. The preferred halo-substituted alkyl chain length is one or two carbons, and most preferred are the moieties -CF3, -CH2F, -CHF2, -CF2CHF2, -CH2CF3, and -CH2CHF2. Preferred R1 substituents for the compounds of Formula (I) are CH2-cyclopropyl, CH2-C5-6 cycloalkyl, C4-6 cycloalkyl, C7-11 polycycloalkyl, (3- or 4-cyclopentenyl), phenyl, tetrahydrofuran-3-yl, benzyl or C1-2 alkyl optionally substituted by 1 or more fluorines, -(CH2)1-3C(O)O(CH2)0-2CH3, -(CH2)1-3O(CH2)0-2CH3, and -(CH2)2-4OH.

When R1 term contains the moiety (CR4R5), the R4 and R5 terms are independently hydrogen or alkyl. This allows for branching of the individual methylene units as (CR4R5)n
or (CR4R5)n; each repeating methylene unit is independent of the other, e.g., (CR4R5)n wherein n is 2 can be -CH2CH(-CH3)-, for instance. The individual hydrogen atoms of the repeating methylene unit or the branching hydrocarbon can optionally be substituted by fluorine independent of each other to yield, for instance, the preferred R1 substitutions, as noted above.

5 When R1 is a C7-11 polycycloalkyl, examples are bicyclo[2.2.1]-heptyl, bicyclo[2.2.2]-octyl, bicyclo[3.2.1]-octyl, tricyclo[5.2.1.02,6]-decy1, etc. Additional examples of which are described in Saccamano et al., WO 87/06576, published 5 November 1987, whose disclosure is incorporated herein by reference in its entirety.

Z is preferably OR14, OR15, SR14, S(O)mR7, S(O)2NR10R14, NR10R14, NR14C(O)R9, NR10C(O)R14, NR10C(O)OR7, NR10C(O)NR10R14, NR10S(O)2NR10R14, NR10C(NCN)NR10R14, NR10S(O)2R7, NR10C(CR4N02)NR10R14, NR10C(NCN)SR9, NR10C(CR4N02)SR9, NR10C(NR10)NR10R14, NR10C(O)C(O)NR10R14, or NR10C(O)C(O)OR14; most preferred are those compounds wherein the R14 group of Z is R4.

10 Preferred X groups for Formula (I) are those wherein X is YR2 and Y is oxygen. The preferred X2 group for Formula (I) is that wherein X2 is oxygen. The preferred X3 group for Formula (I) is that wherein X3 is hydrogen. Preferred R2 groups, where applicable, is a C1-2 alkyl optionally substituted by 1 or more halogens. The halogen atoms are preferably fluorine and chlorine, more preferably fluorine. More preferred R2 groups are those wherein R2 is methyl, or the fluoro-substituted alkyls, specifically a C1-2 alkyl, such as -CF3, -CHF2, or -CH2CHF2 moiety. Most preferred are the -CHF2 and -CH3 moieties.

Preferred R3 moieties are C(O)NH2, CH2NHC(O)C(O)NH2, C=CR8, CN, C(Z)H, CH2OH, CH2F, CF2H, and CF3. More preferred are C=CH and CN. Z' is preferably O or NR8.

15 Preferred R7 moieties include optionally substituted -(CH2)1-2(cyclopropyl), -(CH2)0-2(cyclobutyl), -(CH2)0-2(cyclopentyl), -(CH2)0-2(cyclohexyl), -(CH2)0-2(2-, 3- or 4-pyridyl), (CH2)1-2(2-imidazolyl), (CH2)2(4-morpholinyl), (CH2)2(4-piperaziny1), (CH2)2(2-thienyl), (CH2)1-2(4-thiazolyl), and (CH2)0-2phenyl;

Preferred rings when R10 and R11 in the moiety -NR10R11 together with the nitrogen to which they are attached form a 5 to 7 membered ring optionally containing at least one additional heteroatom selected from O, N, or S include, but are not limited to 1-imidazolyl, 2-(R8)-1-imidazolyl, 1-pyrazolyl, 3-(R8)-1-pyrazolyl, 1-triazolyl, 2-triazolyl, 5-(R8)-1-triazolyl, 5-(R8)-2-triazolyl, 5-(R8)-1-tetrazolyl, 5-(R8)-2-tetrazolyl, 1-tetrazolyl, 2-tetrazolyl, morpholinyl, piperazinyl, 4-(R8)-1-piperazinyl, or pyrrolyl ring.

Preferred rings when R10 and R14 in the moiety -NR10R14 together with the nitrogen to which they are attached may form a 5 to 7 membered ring optionally containing at least one additional heteroatom selected from O, N, or S include, but are not limited to 1-imidazolyl, 1-pyrazolyl, 1-triazolyl, 2-triazolyl, 1-tetrazolyl, 2-tetrazolyl, morpholinyl,
piperazinyl, and pyrrolyl. The respective rings may be additionally substituted, where applicable, on an available nitrogen or carbon by the moiety R7 as described herein for Formula (I). Illustrations of such carbon substitutions includes, but is not limited to, 2-(R7)-1-imidazolyl, 4-(R7)-1-imidazolyl, 5-(R7)-1-imidazolyl, 3-(R7)-1-pyrazolyl, 4-(R7)-1-pyrazolyl, 5-(R7)-1-pyrazolyl, 4-(R7)-2-triazolyl, 5-(R7)-2-triazolyl, 4-(R7)-1-triazolyl, 5-(R7)-1-triazolyl, 5-(R7)-1-tetrazolyl, and 5-(R7)-2-tetrazolyl.

Applicable nitrogen substitution by R7 includes, but is not limited to, 1-(R7)-2-tetrazolyl, 2-(R7)-1-tetrazolyl, 4-(R7)-1-piperazinyl. Where applicable, the ring may be substituted one or more times by R7.

Preferred groups for NR10R14 which contain a heterocyclic ring are 5-(R14)-1-tetrazolyl, 2-(R14)-1-imidazolyl, 5-(R14)-2-tetrazolyl, 4-(R14)-1-piperazinyl, or 4-(R15)-1-piperazinyl.

Preferred rings for R13 include (2-, 4- or 5-imidazolyl), (3-, 4- or 5-pyrazolyl), (4- or 5-triazolyl[1,2,3]), (3- or 5-triazolyl[1,2,4]), (5-tetrazolyl), (2-, 4- or 5-oxazolyl), (3-, 4- or 5-isoxazolyl), (3- or 5-oxadiazolyl[1,2,4]), (2-oxadiazolyl[1,3,4]), (2-thiadiazolyl[1,3,4]), (2-, 4-, or 5-thiazolyl), (2-, 4-, or 5-oxazolidinyl), (2-, 4-, or 5-thiazolidinyl), or (2-, 4-, or 5-imidazolidinyl).

When the R7 group is optionally substituted by a heterocyclic ring such as imidazolyl, pyrazolyl, triazolyl, tetrazolyl, or thiazolyl, the heterocyclic ring itself may be optionally substituted by R8 either on an available nitrogen or carbon atom, such as 1-(R8)-2-imidazolyl, 1-(R8)-4-imidazolyl, 1-(R8)-5-imidazolyl, 1-(R8)-3-pyrazolyl, 1-(R8)-4-pyrazolyl, 1-(R8)-5-pyrazolyl, 1-(R8)-4-triazolyl, or 1-(R8)-5-triazolyl. Where applicable, the ring may be substituted one or more times by R8.

Preferred are those compounds of Formula (I) wherein R1 is -CH2-cyclopropyl, -CH2-C5-6 cycloalkyl, -C4-6 cycloalkyl, tetrahydrofuran-3-yl, (3- or 4-cyclopentenyl), benzyl or -C1-2 alkyl optionally substituted by 1 or more fluorines, and -(CH2)2-4 OH; R2 is methyl or fluoro-substituted alkyl, R3 is CN or C=CR8; and X is YR2.

Most preferred are those compounds wherein R1 is -CH2-cyclopropyl, cyclopentyl, methyl or CF2H; R3 is CN or C=CH; X is YR2; Y is oxygen; X2 is oxygen; X3 is hydrogen; and R2 is CF2H or methyl.

A preferred subgenus of Formula (I) is the compounds of Formula (Ia) and (Ib)

\[
\text{(Ia)}
\]
\[
\text{(Ib)}
\]

wherein:

R1 is -CH2-cyclopropyl, -CH2-C5-6 cycloalkyl, -C4-6 cycloalkyl, C7-11 polycycloalkyl, (3- or 4-cyclopentenyl), phenyl, tetrahydrofuran-3-yl, benzyl or C1-2 alkyl
optionally substituted by 1 or more fluorines, -(CH₂)₁₋₃C(O)(CH₂)₀₋₂CH₃,
-(CH₂)₁₋₃O(CH₂)₀₋₂CH₃, and -(CH₂)₂₋₄OH;

m is 0 to 2;
n is 1 to 4;
r is 1 to 6;
R₄ and R₅ are independently selected from hydrogen or a C₁₋₂ alkyl;
R₆ is hydrogen, methyl, hydroxyl, aryl, halo substituted aryl, aryloxyC₁₋₃ alkyl,
halo substituted aryloxyC₁₋₃ alkyl, indanyl, indenyl, C₇₋₁₁ polycycloalkyl,
tetrahydrofuranyl, furanyl, tetrahydropyranyl, pyranyl, tetrahydrothienyl, thieryl,
tetrahydrothiopyranyl, thiopyranyl, C₃₋₆ cycloalkyl, or a C₄₋₆ cycloalkyl containing one or
two unsaturated bonds, wherein the cycloalkyl and heterocyclic moieties may be optionally
substituted by 1 to 3 methyl groups or one ethyl group;

provided that:
a) when R₆ is hydroxyl, then m is 2; or
b) when R₆ is hydroxyl, then r is 2 to 6; or
c) when R₆ is 2-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl, or
2-tetrahydrothienyl, then m is 1 or 2; or
d) when R₆ is 2-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl, or
2-tetrahydrothienyl, then r is 1 to 6;
e) when n is 1 and m is 0, then R₆ is other than H in -(CR₄R₅)₇O(CR₄R₅)ₘR₆;
X is YR₂, halogen, nitro, NR₄R₅, or formyl amine;
Y is O or S(O)ₘ;
m' is 0, 1, or 2;
R₃ is -CH₃ or -CH₂CH₃ optionally substituted by 1 or more halogens;
R₃ is hydrogen, C₁₋₄ alkyl, CH₂NHC(O)(C(O)NH₂, halo-substituted C₁₋₄ alkyl,
CN, CH₂OR₈, C(Z)H, C(O)OR₈, C(O)NR₈R₁₀, or C≡CR₈;
Z' is O or NOR₈;
Z is OR₁₄, OR₁₅, SR₁₄, S(O)ₘR₇, S(O)₂NR₁₀R₁₄, NR₁₀R₁₄, NR₁₄C(O)R₉,
NR₁₀C(O)R₁₄, NR₁₀C(O)OR₇, NR₁₀C(O)NR₁₀R₁₄, NR₁₀S(O)₂NR₁₀R₁₄;
30 NR₁₀C(NCN)NR₁₀R₁₄, NR₁₀S(O)₂R₇, NR₁₀C(CR₄NO₂)NR₁₀R₁₄,
NR₁₀C(NCN)SR₉, NR₁₀C(CR₄NO₂)SR₉, NR₁₀C(NR₁₀)NR₁₀R₁₄,
NR₁₀C(O)C(O)NR₁₀R₁₄, or NR₁₀C(O)C(O)OR₁₄;
R₇ is -(CR₄R₅)ₗR₁₂ or C₁₋₆ alkyl wherein the R₁₂ or C₁₋₆ alkyl group is
optionally substituted one or more times by C₁₋₂ alkyl optionally substituted by one to three
fluorines, -F, -Br, -Cl, -NO₂, -NR₁₀R₁₁, -C(O)R₈, -C(O)OR₈, -OR₈, -CN,
-C(O)NR₁₀R₁₁, -OC(O)NR₁₀R₁₁, -OC(O)R₈, -NR₁₀C(O)NR₁₀R₁₁, -NR₁₀C(O)R₁₁,
-NR₁₀C(O)OR₉, -NR₁₀C(O)R₁₃, -C(NR₁₀)NR₁₀R₁₁, -C(NCN)NR₁₀R₁₁,
-C(NCN)SR₉, -NR₁₀C(NCN)SR₉, -NR₁₀C(NCN)NR₁₀R₁₁, -NR₁₀S(O)₂R₉,
-S(O)ₘR₉, -NR₁₀C(O)C(O)NR₁₀R₁₁, -NR₁₀C(O)C(O)R₁₀, thiazolyl, imidazolyl,
40 oxazolyl, pyrazolyl, triazolyl, or tetrazolyl;
q is 0, 1, or 2;
R12 is C3-7 cycloalkyl, (2-, 3- or 4-pyridyl), (1- or 2-imidazolyl), piperazinyl,
morpholiny1, (2- or 3-thienyl), (4- or 5-thiazolyl), or phenyl;
R8 is independently selected from hydrogen or R9;
R9 is C1-4 alkyl optionally substituted by one to three fluorines;
R10 is OR8 or R11;
R11 is hydrogen or C1-4 alkyl optionally substituted by one to three fluorines; or
when R10 and R11 are as NR10R11 they may together with the nitrogen form a 5 to 7
membered ring optionally containing at least one additional heteroatom selected from O, N,
or S;
R13 is oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl,
imidazolidinyl, thiazolidiny1, isoxazolyl, oxadiazolyl, or thia diazolyl, and each of these
heterocyclic rings is connected through a carbon atom and each may be unsubstituted or
substituted by one or two C1-2 alkyl groups;
R14 is hydrogen or R7; or when R10 and R14 are as NR10R14 they may together
with the nitrogen form a 5 to 7 membered ring optionally containing one or more additional
heteroatoms selected from O, N, or S;
R15 is C(O)R14, C(O)NR4R14, S(O)2R7, or S(O)2NR4R14;
provided that:
f) when Z is OH, X is YR2, Y is oxygen, X2 is oxygen, X3 is hydrogen, s is 0, R2
is CH3 in YR2, and R1 is CH3, then R3 is other than CN or COOH;
g) when Z is OH, or OCH3, X2 is oxygen, X3 is hydrogen, s is 0, and X is YR2,
then R3 is other than H;
h) when Z is S(O)2C1-6 alkyl or S(O)2 aryl, X2 is oxygen, X3 is hydrogen, s is 0,
then R3 is other than OR8;
i) when R12 is N-pyrazolyl, N-imidazolyl, N-triazolyl, N-pyrrolyl, N-piperazinyl,
N-piperidinyl, or N-morpholiny1, then q is not 1;
or the pharmaceutically acceptable salts thereof.
Exemplified compounds of Formula (I) are:
cis-[4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-1-ol];
trans-[4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-1-ol];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexan-1-ol];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-cyclohexan-1-ol];
trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexan-1-ol];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-1-ol];
cis-[4(3-cyclopentyloxy-4-methoxyphenyl)-4-ethynylcyclohexan-1-ol];
trans-[4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)-1-formyloxycyclohexane];
trans-4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-cyclohexan-1-ol;
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-formyloxycyclohexane];
cis- [4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-methylcyclohexan-1-ol];
trans- [4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-methylcyclohexan-1-ol];
cis-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)cyclohexyl-1-amine];
trans-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)cyclohexyl-1-amine];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-amine];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexyl-1-amine];
trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexyl-1-amine];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-[(N,N-dimethyl)amine];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexyl-1-[(N,N-dimethyl)amine];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N-methyl)amine];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N-methyl)amine];
trans-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)-1-phthalimidocyclohexane];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-phthalimidocyclohexane];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-amine];
trans-[1-N-(2-hydrazinocarbonylbenzamido)-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexane];
cis-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)-1-ureidocyclohexane];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-ureidocyclohexane];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-ureidocyclohexane];
cis-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
trans-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
cis-[4-cyano-4-(3-{4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
trans-[4-cyano-4-(3-{4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
cis-[1-acetamido-4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)cyclohexane];
trans-[1-acetamido-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexane];
methyl N-{cis-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)-cyclohexyl]-1-oxamate;};
methyl N-{trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl]-1-oxamate};
N-{cis-[4-cyano-4-(3-cyclopentyl oxy-4-methoxyphenyl)cyclohexyl]-1-oxamide};
N-{trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl]-1-oxamide};
N-{cis-[4-cyano-4-(3-cyclopentylxoy-4-methoxyphenyl)cyclohexyl]-1-oxamic acid};
cis-[4-cyano-4-(3-cyclopentylxoy-4-methoxyphenyl)-1-methoxycyclohexane];
trans-[4-cyano-4-(3-cyclopentylxoy-4-methoxyphenyl)-1-methoxycyclohexane]
cis-[4-cyano-4-(3-cyclopentylxoy-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane];
trans-[4-cyano-4-(3-cyclopentylxoy-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane];
cis-[4-cyano-4-(3-cyclopentylxoy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
and
trans-[4-cyano-4-(3-cyclopentylxoy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane];
cis-[4-cyano-4-(3-4-fluorobenzyl)-4-methoxyphenyl]-1-(N-hydroxyamino)cyclohexane];
trans-[4-cyano-4-(3-4-fluorobenzyl)-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane].

It will be recognized that some of the compounds of Formula (I) may exist in both racemic and optically active forms; some may also exist in distinct diastereomeric forms possessing distinct physical and biological properties. All of these compounds are considered to be within the scope of the present invention. Therefore another aspect of the present invention is the administration of either a racemate, a single enantiomeric form, a single diastereomeric form, or mixtures thereof.

The terms cis and trans denote stereochemistry at the C-1 position of the cyclohexane ring relative to the R3 group at the C-4 position.

The term "C1-3 alkyl", "C1-4 alkyl", "C1-6 alkyl" or "alkyl" includes both straight or branched chain radicals of 1 to 10, unless the chain length is limited thereto, including, but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl.

"Alkenyl" includes both straight or branched chain radicals of 1 to 6 carbon lengths, unless the chain length is limited thereto, including but not limited to vinyl, 1-propenyl, 2-propenyl, 2-propynyl, or 3-methyl-2-propenyl.

The term "cycloalkyl" or "cycloalkyl alkyl" includes 3-7 carbon atoms, such as cyclopentyl, cyclopentylmethyl, cyclopentenyl, or cyclohexyl.

"Aryl" or "aralkyl", unless specified otherwise, means an aromatic ring or ring system of 6-10 carbon atoms, such as phenyl, benzyl, phenethyl, or naphthyl. Preferably the aryl is monocyclic, i.e. phenyl. The alkyl chain includes both straight or branched chain radicals of 1 to 4 carbon atoms.

"Heteroaryl" means an aromatic ring system containing one or more heteroatoms, such as imidazolyl, triazolyl, oxazolyl, pyridyl, pyrimidyl, pyrazolyl, pyrrolyl, furanyl, or thienyl.

"Halo" means chloro, fluoro, bromo, or iodo.
The term "inhibiting the production of IL-1" or "inhibiting the production of TNF" means:

a) a decrease of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels by inhibition of the in vivo release of IL-1 by all cells, including but not limited to monocytes or macrophages;

b) a down regulation, at the translational or transcriptional level, of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels; or

c) a down regulation, by inhibition of the direct synthesis of IL-1 or TNF levels as a postranslational event.

The phrase "TNF mediated disease or disease states" means any and all disease states in which TNF plays a role, either by production of TNF itself, or by TNF causing another cytokine to be released, such as but not limited to IL-1 or IL-6. A disease state in which IL-1, for instance is a major component, and whose production or action, is exacerbated or secreted in response to TNF, would therefore be considered a disease state mediated by TNF. As TNF-β (also known as lymphotoxin) has close structural homology with TNF-α (also known as cachectin), and since each induces similar biologic responses and binds to the same cellular receptor, both TNF-α and TNF-β are inhibited by the compounds of the present invention and thus are herein referred to collectively as "TNF" unless specifically delineated otherwise. Preferably TNF-α is inhibited.

"Cytokine" means any secreted polypeptide that affects the functions of cells, and is a molecule which modulates interactions between cells in immune, inflammatory, or hematopoietic responses.

The cytokine inhibited by the present invention for use in the treatment of a HIV-infected human must be a cytokine which is implicated in (a) the initiation and/or maintenance of T cell activation and/or activated T cell-mediated HIV gene expression and/or replication, and/or (b) any cytokine-mediated disease associated problem such as cachexia or muscle degeneration. Preferably this cytokine is TNF-α.

All of the compounds of Formula (I) are useful in the method of inhibiting the production of TNF, preferably by macrophages, monocytes or macrophages and monocytes, in a mammal, including humans, in need thereof. All of the compounds of Formula (I) are useful in the method of inhibiting or mediating the enzymatic or catalytic activity of PDE IV and in treatment of disease states mediated thereby.

METHODS OF PREPARATION:

Preparing compounds of Formula (I) can be carried out by one of skill in the art according to the procedures outlined in the Examples, infra. The preparation of any remaining compounds of Formula (I) not described therein may be prepared by the analogous processes disclosed herein which comprise:

a) for compounds wherein R3 is other than C(=Z)H and wherein Z is OH, reacting a compound of Formula (2)
wherein R₁ represents R₁ as defined in relation to Formula (I) or a group convertible to R₁ and X and X₃ represent X and X₃ as defined in relation to Formula (I) or a group convertible to X or X₃ and R₃ represents R₃ as defined in relation to Formula (I) or a group convertible to R₃, with a suitable reducing agent, such as lithium borohydride, disiamylborane, lithium aluminum tris-(t-butoxide), or sodium borohydride, in a suitable non-reacting solvent, such as 1,2-dimethoxyethane, tetrahydrofuran or an alcohol, to provide compounds of Formula (I) wherein R₃ is other than C(=Z')H and wherein Z is OH; preparation of such compounds of Formula (I) wherein R₃ is C(=Z')H proceed in an analogous fashion from the compound of Formula (2) wherein =Z' is an aldehyde protecting group, such as a dimethylacetal or a dioxolane, followed by deprotection to the aldehyde and subsequent elaboration by standard procedures known to those of skill in the art to the remaining compounds of Formula (I) wherein Z' is other than O.

For compounds wherein R₃ is other than C(=Z')H and wherein Z is NH₂, NHCH₃, or N(CH₃)₂, reacting a compound of Formula (2) wherein R₁ represents R₁ as defined in relation to Formula (I) or a group convertible to R₁ and X and X₃ represent X and X₃ as defined in relation to Formula (I) or a group convertible to X or X₃ and R₃ represents R₃ as defined in relation to Formula (I) or a group convertible to R₃, with an ammonium salt, such as, for example, ammonium formate, methylamine hydrochloride, or dimethylamine hydrochloride, respectively, in the presence of a suitable reducing agent, such as sodium cyanoborohydride, in a suitable solvent, such as an alcohol, to provide compounds of Formula (I) wherein Z is NH₂, NHCH₃, or N(CH₃)₂, respectively; preparation of such compounds of Formula (I) wherein R₃ is C(=Z')H proceed in an analogous fashion from the compound of Formula (2) wherein =Z' is an aldehyde protecting group, such as a dimethylacetal or a dioxolane, followed by deprotection to the aldehyde and subsequent elaboration by standard procedures known to those of skill in the art to the remaining compounds of Formula (I) wherein Z' is other than O.

Alternatively, compounds of Formula (I) wherein Z is NH₂ may be prepared by reacting an appropriate alcohol of Formula (2) wherein Z is OH, R₁ represents R₁ as defined in relation to Formula (I) or a group convertible to R₁ and X and X₃ represent X and X₃ as defined in relation to Formula (I) or a group convertible to X or X₃ and R₃ represents R₃ as defined in relation to Formula (I) or a group convertible to R₃, with a complex of a phosphine, such as triphenyl phosphine, and an azodicarboxylate ester in the presence of an imide, such as phthalimide, followed by, e.g., hydrazinolysis in an alcoholic solvent.
Compounds of Formula (I) wherein Z is SR_{14} may be prepared by reacting an appropriate compound of Formula (2) wherein Z is a leaving group, e.g., a mesylate, tosylate, chloride, or bromide, R_{1} represents R_{1} as defined in relation to Formula (I) or a group convertible to R_{1} and X and X_{3} represent X and X_{3} as defined in relation to Formula (I) or a group convertible to X or X_{3} and R_{3} represents R_{3} as defined in relation to Formula (I) or a group convertible to R_{3}, with a metal salt of a mercaptan, such as NaSR_{14} in an appropriate aprotic solvent. Compounds of Formula (I) wherein Z is SH may be prepared by reacting an appropriate alcohol of Formula (2) wherein Z is OH with a complex of a phosphine, such as triphenyl phosphine, and an azodicarboxylate ester in the presence of thiolacetic acid, followed by hydrolysis of the resulting thiolacetate.

Compounds of Formula (I) wherein Z is OH may be interconverted using the standard alcohol inversion procedures known in the art. It will be recognized that compounds of Formula (I) may exist in two distinct diastereomeric forms possessing distinct physical and biological properties; such isomers may be separated by standard chromatographic methods. Such isomers may be independently converted to the remaining compounds of Formula (I) wherein Z is other than OH, SH, and NH_{2} by any of the wide variety of O, S, and N alkylation, sulfamidation, imidation, oxidation, or acylation procedures known to those of skill in the art.

For example, with proper manipulation of any chemically sensitive functional groups, compounds of Formula (I) wherein NR_{13}R_{14} represent a ring, such as a 1- or 2-tetrazole, may be derived from reaction of an appropriate compound of Formula (I) wherein Z is a leaving group, e.g., a mesylate, tosylate, chloride or bromide, with the appropriate metal salt of HNR_{13}R_{14}, e.g., 5-(R_{14})-tetrazole; the appropriate compound of Formula (I) wherein Z is mesylate, tosylate, Br or Cl, derived in turn from the appropriate compound of Formula (I) wherein Z is OH.

Compounds of Formula (2) may be prepared in turn by the processes described in co-pending application P 50071.

The following sets of examples are provided to illustrate how to make and use this invention. They are not intended to limit the scope of the invention but are given for illustration purposes only.

SYNTHETIC EXAMPLES

EXAMPLE 1

4-Cyano-4-(3-cycloptencyloxy-4-methoxyphenyl)cyclohexan-1-one

(Intermediate of the Formula 2)

la (3-Cycloptencyloxy-4-methoxyphenyl)acetonitrile To a solution of 3-cycloptencyloxy-4-methoxybenzaldehyde (20 g, 90.8 mmol) in acetonitrile (100 mL) was added lithium bromide (15 g, 173 mmol) followed by the dropwise addition of trimethylsilylchloride (17.4 mL, 137 mmol). After 15 min, the reaction mixture was cooled to 0°C, 1,1,3,3-tetramethyldisiloxane (26.7 mL, 151 mmol) was added dropwise and the resulting mixture
was allowed to warm to room temperature. After stirring for 3h, the mixture was separated into two layers. The lower layer was removed, diluted with methylene chloride and filtered through Celite. The filtrate was concentrated under reduced pressure, dissolved in methylene chloride and refiltered. The solvent was removed in vacuo to provide a light tan oil. To a solution of this crude a-bromo-3-cyclopentyloxy-4-methoxytoluene in dimethylformamide (160 mL) under an argon atmosphere was added sodium cyanide (10.1 g, 206 mmol) and the resulting mixture was stirred at room temperature for 18h, then poured into cold water (600 mL) and extracted three times with ether. The organic extract was washed three times with water, once with brine and was dried (potassium carbonate). The solvent was removed in vacuo and the residue was purified by flash chromatography, eluting with 10% ethyl acetate/hexanes, to provide an off-white solid (17.7 g, 84%): m.p. 32-34°C; an additional quantity (1.3 g) of slightly impure material also was isolated.

1b. Dimethyl 4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)pimelate To a solution of (3-cyclopentyloxy-4-methoxyphenyl)acetinitrile (7 g, 30.3 mmol) in acetonitrile (200 mL) under an argon atmosphere was added a 40% solution of Triton-B in methanol (1.4 mL, 3.03 mmol) and the mixture was heated to reflux. Methyl acrylate (27 mL, 303 mmol) was added carefully, the reaction mixture was maintained at reflux for 5h and then cooled. The mixture was diluted with ether, was washed once with 1N hydrochloric acid and once with brine, was dried (magnesium sulfate) and the solvent was removed in vacuo. The solid residue was triturated with 5% ethanol/hexane to provide a white solid (9 g, 74%): m.p. 81-82°C; and additional 1.1 g (9%) was also obtained from the filtrate.

Analysis Calc. for C_{22}H_{29}NO_{6}: C 65.49, H 7.25, N 3.47; found: C 65.47, H 7.11, N 3.49.

1c. 2-Carbomethoxy-4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-1-one

To a solution of dimethyl 4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)pimelate (5.9 g, 14.6 mmol) in dry 1,2-dimethoxethane (120 mL) under an argon atmosphere was added sodium hydride (80% suspension in mineral oil, 1.05 g, 43.8 mmol). The mixture was heated to reflux for 4.5h, then was cooled to room temperature and was stirred for 16h. Water was added and the reaction mixture was partitioned between ether and acidic water. The organic extract was dried (magnesium sulfate) and the solvent was removed in vacuo. The residue was purified by flash chromatography, eluting with 3:1 hexanes/ethyl acetate, to provide a white foam (4.9 g, 93%).

Analysis Calc. for C_{19}H_{23}NO_{3}·1/4H_{2}O: C 67.09, H 6.84, N 3.72; found: C 66.92, H 6.61, N 3.74.

1d. 4-Cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-1-one A mixture of 2-carbomethoxy-4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-1-one (0.80 g, 2.15 mmol), dimethyl sulfoxide (16 mL), water (1 mL) and sodium chloride (0.8 g) under an argon atmosphere was heated at 140-145°C for 5h. The reaction mixture was cooled and concentrated. The residue was purified by flash chromatography, eluting with 3:1
hexanes/ethyl acetate, to provide a yellow solid. Trituration with hexanes/ethyl acetate yielded a white solid (0.52 g, 77%): m.p. 111-112°C.

Analysis

Calc. for C₁₉H₂₃NO₃: C 72.82, H 7.40, N 4.47; found: C 72.72, H 7.39, N 4.48.

Example 2

4-(3,4-Bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-one

(Intermediate of the Formula 2)

2a. **3,4-Bisdifluoromethoxybenzaldehyde** A vigorously stirred mixture of 3,4-dihydroxybenzaldehyde (40 g, 290 mmol) and potassium carbonate (120 g, 870 mol) in dimethylformamide (500 mL) was heated under an atmosphere of chlorodifluoromethane at 80°C for 7h and then was stirred at room temperature overnight. The mixture was diluted with ether and was filtered. The filtrate was concentrated under reduced pressure, the residue was partitioned between ether and aqueous potassium carbonate and was extracted five times with ether. The organic extract was washed with aqueous potassium carbonate and dried (potassium carbonate). The solvent was removed in vacuo and the residue was purified by flash chromatography, eluting with 4:1 hexanes/ether to provide an oil (26.2 g, 38%).

2b. **3,4-Bisdifluoromethoxybenzyl alcohol**

3,4-Bisdifluoromethoxybenzaldehyde (26.2 g, 110 mmol) in absolute ethanol (150 mL) was treated with sodium borohydride (8.32 g, 220 mmol) under an argon atmosphere at room temperature for 0.5h. Ten percent aqueous sodium hydroxide (130 mL) was added, the ethanol was removed in vacuo, the mixture was partitioned between ether and water and was extracted twice with ether. The organic extract was dried (magnesium sulfate) and evaporated to a pale yellow oil (26.4 g, 100%).

2c. **2-(3,4-Bisdifluoromethoxyphenyl)acetonitrile** A solution of 3,4-bisdifluoromethoxybenzyl alcohol (26.4 g, 110 mmol) and pyridine (9.79 mL, 120 mmol) in chloroform (200 mL) under an argon atmosphere was treated with thionyl chloride (9.62 mL, 130 mmol) and the mixture was heated at reflux for 1h. The solvent was removed, ether was added and the precipitate was removed by filtration. The filtrate was concentrated to a purple oil. To a solution of this 3,4-bisdifluoromethoxybenzyl chloride in dimethylformamide (200 mL) under an argon atmosphere was added sodium cyanide (11.86 g, 240 mmol). The resulting mixture was stirred and gently heated at 45°C for 3h, was cooled and was concentrated. The mixture was partitioned between ether and 5% aqueous sodium carbonate and was extracted five times with ether. The organic extract was washed once with brine, was dried (sodium carbonate) and the solvent was removed in vacuo to provide an oil (27 g).

2d. **Dimethyl 4-cyano-4-(3,4-bisdifluoromethoxyphenyl)imidate** To a solution of 2-(3,4-bisdifluoromethoxyphenyl)acetonitrile (27 g, 108 mmol) and a 40% solution of Triton-B in methanol (5 mL, 11 mmol) in acetonitrile (450 mL) under an argon atmosphere at room temperature was added methyl acrylate (48.6 mL, 540 mmol). After 20 min, aqueous hydrochloric acid (3N, 20 mL) was added and the mixture was concentrated. The residue
was partitioned between water and ether, was extracted twice with ether, the ether layer was dried (magnesium sulfate) and evaporated in vacuo to provide a yellow oil (45.32 g, 99%).

2e. 2-Carbomethoxy-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-one To a solution of dimethyl 4-(3,4-bisdifluoromethoxyphenyl)-4-cyanopimelate (45.32 g, 107 mmol) in dry 1,2-dimethoxyethane (450 mL) under an argon atmosphere was added sodium hydride (80% dispersion in mineral oil, 13 g, 432 mmol). The resulting mixture was refluxed for 1h, was cooled to room temperature was quenched with water and was concentrated. The mixture was partitioned between ether and acidic brine, was extracted twice with ether, the organic layer was dried (magnesium sulfate) and the solvent was removed in vacuo. The residue was purified by flash chromatography, eluting with 3:1 hexanes/ethyl acetate, to provide a pale-orange oil (19.5 g, 46.6%).

Analysis Calc. for C$_{17}$H$_{15}$F$_4$NO$_5$: C 52.45, H 3.88, N 3.60; found: C 52.60, H 4.07, N 3.22.

2f. 4-(3,4-Bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-one A mixture of 2-carbomethoxy-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-one (0.55 g, 1.4 mmole), dimethyl sulfoxide (8 mL), water (0.5 mL) and sodium chloride (0.5 g) under an argon atmosphere was heated at 140-145°C for 4h. The reaction mixture was cooled to room temperature and concentrated. The residue was partitioned between ether and water, the organic layer was dried (magnesium sulfate) and the solvent was removed in vacuo. The product was purified by flash chromatography, eluting with 1:1 hexanes/ether. The residue was partitioned between water and ethyl acetate and the organic layer was evaporated to yield a yellow solid. Trituration from the minimal amount of ethyl acetate/hexanes provided a solid (0.3 g, 63.6%): m.p. 64-66°C.

Analysis Calc. for C$_{15}$H$_{13}$NO$_3$F$_4$: C 54.39, H 3.96, N 4.23; found: C 54.25, H 3.96, N 4.20.

EXAMPLES 3 and 4

cis- and trans-[4-Cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexan-1-ol]
cis-[4-Cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexan-1-ol] To a solution of 4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexan-1-one (0.25 g, 0.8 mmol) in 1,2-dimethoxyethane (5 mL) under an argon atmosphere was added sodium borohydride (0.06 g, 1.6 mmol) and the mixture was stirred at room temperature for 0.25 h. Water was added, the mixture was partitioned between ethyl acetate and brine, the organic extract was dried (magnesium sulfate) and evaporated. Purification by flash chromatography, eluting with 1:1 hexanes/ethyl acetate, provided cis-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexan-1-ol] as a wax (0.2 g, 79%).

Analysis Calc. for C$_{19}$H$_{25}$NO$_3$: C 72.35, H 7.99, N 4.44; found: C 72.20, H 7.94, N 4.17.
trans-4-cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)cyclohexan-1-ol] was also isolated from this procedure (0.05 g, 20%).

Proceeding in the same manner, but substituting the appropriate intermediates for those described above the following compounds were made:

 cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexan-1-ol]: m.p. 76-78°C. Analysis Calc. for C₁₈H₂₃NO₃: C 71.73, H 7.69, N 4.65; found: C 71.41, H 7.55, N 4.56;

cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-ol]: m.p. 48-51°C. Analysis Calc. for C₁₅H₁₅F₄NO₃: C 54.06, H 4.54, N 4.20; found: C 54.26, H 4.47, N 4.11;

trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexan-1-ol]: oil. Analysis Calc. for C₁₈H₂₃NO₃·1/4 H₂O: C 70.68, H 7.74, N 4.58; found: C 70.97, H 7.56, N 4.59;

cis-[4-Cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-1-ol]: m.p. 58-60°C. Analysis Calc. for C₁₈H₂₁F₂NO₃·1/5 H₂O: C 63.41, H 6.33, N 4.11; found: C 63.42, H 6.10, N 4.19;

trans-[4-Cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-1-ol]: oil. Analysis Calc. for C₁₈H₂₁F₂NO₃·1/5 H₂O: C 63.41, H 6.33, N 4.11; found: C 63.43, H 6.12, N 3.89; and

cis-[4-(3-Cyclopropylmethoxy-4-methoxyphenyl)-4-ethynylcyclohexan-1-ol]: m.p. 89-90°C. Analysis Calc. for C₂₀H₂₆O₃·1/8 H₂O: C 75.86, H 8.35; found: C 75.94, H 8.35.

EXAMPLE 5

cis-[4-Cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)-1-formyloxycyclohexan-1-ol]

trans-[4-Cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)cyclohexan-1-ol] (0.2 g, 0.63 mmol), triphenylphosphine (0.17 g, 0.63 mmol) and formic acid (0.024 mL, 0.63 mmol) in freshly distilled tetrahydrofuran (10 mL) under an argon atmosphere at room temperature were stirred vigorously as diethylazodicarboxylate (0.1 mL, 0.63 mmol) was slowly added. After stirring in the dark for 18h, an additional equivalent of each reagent was added and stirring was continued for 24h. The liquids were removed under reduced pressure and the residue was purified by flash chromatography, eluting with 3:1 hexanes/ethyl acetate, to provide the trans-formate as an oil (0.15 g, 69%).

EXAMPLE 6

trans-[4-Cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)cyclohexan-1-ol]

trans-[4-Cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)-1-formyloxycyclohexane] (0.12 g, 0.35 mmol) in ethyl acetate (2 mL) was treated with 10% aqueous sodium hydroxide (25 mL) at 60°C for 5 h. The mixture was partitioned between ethyl acetate and water, the organic layer was dried (potassium carbonate) and the solvent was removed in
vacuo. Purification by flash chromatography, eluting with 8% ethyl acetate/chloroform, provided the trans-alcohol as an oil (0.09 g, 82%).

Analysis Calc. for C19H25NO3·1/4 H2O: C 71.33, H 8.03, N 4.38; found: C 71.23, H 7.87, N 4.19.

Proceeding in the same manner, but substituting the appropriate intermediate, the following compound was made:

trans-4-(3,4-Bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-ol. Analysis Calc. for C15H15F4NO3: C 54.06, H 4.54, N 4.20; found: C 54.05, H 4.60, N 4.20.

EXAMPLE 7

trans-[4-(3,4-Bisdifluoromethoxyphenyl)-4-cyanocyclohexane]ciscis-[4-(3,4-Bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-ol] (0.46 g, 1.38 mmol), triphenylphosphine (0.72 g, 2.76 mmol) and formic acid (0.104 mL, 2.76 mmol) in freshly distilled tetrahydrofuran (11 mL) under an argon atmosphere at room temperature were stirred vigorously as diethylzodicarboxylate (0.1 mL, 0.63 mmol) was slowly added.

After stirring in the dark overnight, the liquids were removed under reduced pressure and the residue was purified by flash chromatography, eluting with 3:1 hexanes/ethyl acetate, to provide the trans-formate as an oil (0.41 g, 82%): m.p. 130-131°C.

Analysis Calc. for C16H15F4NO4: C 53.19, H 4.18, N 3.88; found: C 53.03, H 3.99, N 4.12.

EXAMPLES 8 and 9

cis- and trans-[4-(3,4-Bisdifluoromethoxyphenyl)-4-cyano-1-methylcyclohexan-1-ol]

To a solution of trimethylaluminum (2M in toluene, 1.36 mL, 2.70 mmol) at room temperature under an argon atmosphere was added a solution of 4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexan-1-one (0.3 g, 0.9 mmol). After 3.5h, the mixture was cooled to 0°C and saturated aqueous ammonium chloride solution was added. The mixture was extracted twice with methylene chloride, the organic extract was dried (magnesium sulfate) and evaporated. Purification by flash chromatography, eluting with 2:1 hexanes/ethyl acetate, provided trans-[4-(3,4-bisdifluoromethoxy-phenyl)-4-cyano-1-methylcyclohexan-1-ol] as a solid (0.12 g, 38%): m.p. 45-47°C.

Analysis Calc. for C16H17F4NO3: C 55.33, H 4.93, N 4.03; found: C 55.27, H 4.96, N 3.93.

cis-[4-(3,4-Bisdifluoromethoxyphenyl)-4-cyano-1-methylcyclohexan-1-ol] was also isolated from this procedure as a solid (0.05 g, 16%): m.p. 46-48°C.

EXAMPLES 10 and 11

cis- and trans-[4-Cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl-1-amine]

cis-[4-Cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl-1-amine] To a solution of 4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexan-1-one (0.2 g, 0.64 mmol) and ammonium acetate (0.49 g, 6.4 mmol) in absolute ethanol (5 mL) under an argon
atmosphere was added sodium cyanoborohydride (0.08 g, 1.28 mmol) and the mixture was stirred at room temperature for 4 h. Five percent aqueous sodium carbonate was added and the mixture was concentrated to near dryness. The residue was partitioned between ethyl acetate and basic brine, extracted twice more with ethyl acetate, the organic extract was dried (potassium carbonate) and evaporated. Purification by flash chromatography, eluting with 90:10:1 chloroform/methanol/water, provided cis-[4-cyano-4-(3-cyclopentylaxy-4-methoxyphenyl)cyclohexyl-1-amine] as a wax (0.1 g, 50%). Analysis Calc. for C_{19}H_{26}N_{2}O_{2}: C 70.55, H 8.41, N 8.66; found: C 70.41, H 8.10, N 8.41.

trans-[4-Cyano-4-(3-cyclopentylaxy-4-methoxyphenyl)cyclohexyl-1-amine] was also isolated from this procedure as an oil (0.015 g, 7.5%). The trans-amine was also isolated as the minor product (5%) of a similar reaction conducted on a 2 g quantity of ketone. Analysis Calc. for C_{19}H_{26}N_{2}O_{2}: C 70.55, H 8.41, N 8.66; found: C 70.71, H 8.28, N 8.45.

Proceeding in a similar manner, there were made:

cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-amine]: wax. Analysis Calc. for C_{15}H_{16}F_{4}N_{2}O_{2}: C 54.22, H 4.85, N 8.43; found: C 53.98, H 4.79, N 8.30;
cis-[4-cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)cyclohexyl-1-amine]: m.p. 84–86ºC. Analysis Calc. for C_{18}H_{24}N_{2}O_{2}: C 71.97, H 8.05, N 9.33; found: C 71.67, H 7.79, N 9.10;

trans-[4-cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)cyclohexyl-1-amine]: oil;
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N,N-dimethylamine]
(using dimethylamine hydrochloride in place of ammonium acetate) as an oil, which was converted to the hydrochloride salt: m.p. 228–230ºC. Analysis Calc. for C_{17}H_{20}F_{4}N_{2}O_{2}·HCl: C 51.46, H 5.34, N 7.06; found: C 51.57, H 5.43, N 6.82;
cis-[4-cyano-4-(3-cyclopentylmethoxy-4-methoxyphenyl)cyclohexyl-1-(N,N-dimethylamine]: m.p. 85–87ºC. Analysis Calc. for C_{20}H_{24}N_{2}O_{2}·1/2H_{2}O: C 71.18, H 8.66, N 8.30; found: C 71.09, H 8.54, N 8.53;
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N-methylamine]: oil.

Analysis Calc. for C_{16}H_{18}F_{4}N_{2}O_{2}·1/10H_{2}O: C 55.20, H 5.27, N 8.05; found: C 55.08, H 5.14, N 7.90; and

cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N-methylamine]: oil. Analysis Calc. for C_{16}H_{18}F_{4}N_{2}O_{2}: C 55.49, H 5.24, N 8.09; found: C 55.20, H 5.30, N 7.91.

EXAMPLE 12

trans-[4-Cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-phthalimido cyclohexane]

cis-[4-Cyano-4-(3-cyclopentylxy-4-methoxyphenyl)cyclohexan-1-ol] (0.2 g, 0.63 mmol), triphenylphosphine (0.166 g, 0.63 mmol) and phthalimide (0.093 g, 0.63 mmol) in freshly distilled tetrahydrofuran (10 mL) under an argon atmosphere at room temperature
were stirred vigorously with diethylazodicarboxylate (0.1 mL, 0.63 mmol) in the dark overnight. The liquids were removed under reduced pressure, with purification by flash chromatography, eluting with 3:1 hexanes/ethyl acetate, providing the trans-phthalimide as a solid (0.12 g, 42%): m.p. 130-131°C.

Analysis Calc. for C_{27}H_{28}N_{2}O_{4}·1/4H_{2}O: C 72.22, H 6.40, N 6.24; found: C 72.18, H 6.35, N 6.27.

Proceeding in a similar manner, the following compound was made:

trans-[4-(3,4-Bisfluoromethoxyphenyl)-4-cyano-1-phthalimidocyclohexane]: m.p. 38-42°C. Analysis Calc. for C_{23}H_{18}F_{4}N_{2}O_{4}: C 59.74, H 3.92, N 6.06; found: C 59.62, H 4.15, N 5.96.

EXAMPLE 13

trans-[4-(3,4-Bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-aminel

A solution of trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-phthalimido-cyclohexane] (0.55 g, 1.19 mmol) in ethanol (30 mL) was treated with hydrazine monohydrate (0.06 mL, 1.19 mmol) at room temperature under an argon atmosphere for 1.5h and then heated at reflux for 2.5h. The mixture was allowed to cool, the solid was removed by filtration and the filtrate was concentrated. Purification by flash chromatography, eluting with 90:10:1 chloroform/methanol water, provided the trans-amine as an oil (0.21g, 53%).

Analysis Calc. for C_{15}H_{16}F_{4}N_{2}O_{2}·1/8H_{2}O: C 53.85, H 4.90, N 8.37; found: C 53.69, H 4.82, N 8.11.

Proceeding in a similar manner but maintaining room temperature rather than reflux, the following compound was made:

trans-[1-N-(2-Hydrazinocarbonylbenzamido)-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexane]: m.p. 153-155°C. Analysis Calc. for C_{23}H_{22}F_{4}N_{4}O_{4}: C 55.87, H 4.49, N 11.33; found: C 55.99, H 4.38, N 11.04.

EXAMPLE 14

cis-[4-Cyano-4-(3-cyclopentoxy-4-methoxyphenyl)-1-ureidocyclohexanel

A solution of cis-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl-1-amine] (0.1 g, 0.32 mmol) and trimethylsilyl isocyanate (0.08 mL, 0.48 mmol) in tetrahydrofuran (1.6 mL) was heated at reflux under an argon atmosphere for 5h. The mixture was allowed to cool, was partitioned between methylene chloride and acidic water, the organic extract was dried (potassium carbonate) and evaporated. The product was triturated with methylene chloride to provided a yellow solid (0.08 g, 72%): m.p. 273°C. Analysis Calc. for C_{20}H_{27}N_{3}O_{3}: C 67.20, H 7.61, N 11.75; found: C 67.08, H 7.23, N 11.52.

Proceeding in a similar manner, the following compounds were made:
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-ureidocyclohexane]: m.p. 124-125°C. Analysis Calc. for C_{16}H_{17}F_{4}N_{3}O_{3}·1/4H_{2}O: C 50.59, H 4.64, N 11.06; found: C 50.59, H 4.42, N 10.83;

trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-ureidocyclohexane]: m.p. 161-162°C;

cis-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane]: m.p. 108-109°C. Analysis Calc. for C_{20}H_{27}N_{3}O_{4}·0.4 H_{2}O: C 63.11, H 7.36, N 11.04; found: C 63.15, H 7.36, N 10.81;

trans-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane]: m.p. 102-103°C. Analysis Calc. for C_{20}H_{27}N_{3}O_{4}·1.4 H_{2}O: C 60.25, H 7.18, N 10.51; found: C 60.33, H 7.07, N 10.41;

cis-[4-cyano-4-(3-[4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane]: m.p. 83-85°C. Analysis Calc. for C_{22}H_{24}FN_{3}O_{4}·0.85 H_{2}O: C 61.63, H 6.04, N 9.80; found: C 61.81, H 5.82, N 9.75;

trans-[4-cyano-4-(3-[4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane]: m.p. 87-89°C. Analysis Calc. for C_{22}H_{24}FN_{3}O_{4}·0.85 H_{2}O: C 61.63, H 6.04, N 9.80; found: C 61.64, H 5.76, N 9.69;

cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane]: m.p. 181-182°C. Analysis Calc. for C_{19}H_{25}N_{3}O_{4}·2/3 H_{2}O: C 61.44, H 7.15, N 11.31; found: C 61.57, H 6.81, N 11.14; and

trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyureido)cyclohexane]: m.p. 137-138°C. Analysis Calc. for C_{19}H_{25}N_{3}O_{4}·1/4 H_{2}O: C 62.71, H 7.06, N 11.55; found: C 62.80, H 6.82, N 11.31.

EXAMPLE 15

cis-[1-Acetamido-4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl-1-amine] (0.1 g, 0.32 mmol) in methylene chloride (2 mL) at 0°C under an argon atmosphere was added triethyl amine (0.044 mL, 0.32 mmol), 4-N,N-dimethylaminopyridine (0.04 g, 0.32 mmol) and acetic anhydride (0.06 mL, 0.64 mmol) and the mixture was allowed to warm slowly to room temperature. After 4.5h, the mixture was partitioned between methylene chloride and acidic water extracted twice with methylene chloride, the organic extract was dried (potassium carbonate) and evaporated. Purification by flash chromatography, eluting with 5% methanol/chloroform, provided a white solid (0.11 g, 96%); m.p. 277-278°C.

Analysis Calc. for C_{21}H_{28}N_{2}O_{3}: C 70.75, H 7.91, N 7.85; found: C 70.61, H 7.82, N 7.51.

Proceeding in a similar manner, the following compound was made:

cis-[1-acetamido-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexane]

(conducted in the absence of triethylamine and 4-N,N-dimethylaminopyridine): wax.
Analysis Calc. for C\textsubscript{17}H\textsubscript{18}F\textsubscript{4}N\textsubscript{2}O\textsubscript{3}: C 54.55, H 4.85, N 7.48; found: C 54.35, H 4.81, N 7.27.

EXAMPLE 16

Methyl N-(cis-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl]-1-oxamate)

To a solution of cis-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl]-amine (0.08 g, 0.25 mmol) and triethylamine (0.039 mL, 0.27 mmol) in methylene chloride (1.6 mL) at 0°C under an argon atmosphere was added methyl oxalyl chloride (0.29 mL, 0.25 mmol). After 0.25h, the mixture was partitioned between methylene chloride and acidic water, extracted twice with methylene chloride, the organic extract was dried (potassium carbonate) and evaporated. Purification by flash chromatography, eluting with 5% ethyl acetate/methylene chloride, provided a white solid (0.09 g, 90%).

In a similar manner there was prepared:

Methyl N-(trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl]-1-oxamate): oil.

EXAMPLE 17

N-(cis-[4-Cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl]-1-oxamide)

Into a solution of methyl N-(cis-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl]oxamate) (0.06 g, 0.15 mmol) in methanol (3 mL) contained in a pressure vessel at -78°C was condensed anhydrous ammonia (3 mL). The vessel was sealed, was allowed to come to room temperature and was stirred overnight. The vessel was cooled to -78°C, was opened and the ammonia was allowed to evaporate at room temperature. The mixture was partitioned between chloroform and water, extracted twice with chloroform, the organic extract was dried (potassium carbonate) and evaporated.

Trituration of the product with methylene chloride/ether provided a white solid (0.05 g, 88%): m.p. >215°C.

Analysis Calc. for C\textsubscript{21}H\textsubscript{27}N\textsubscript{3}O\textsubscript{4}: C 65.44, H 7.06, N 10.90; found: C 65.24, H 6.77, N 10.72.

In a similar manner there was prepared:

N-(trans-[4-(3,4-Bisdifluoromethoxyphenyl)-4-cyanocyclohexyl]oxamide): m.p. 130-131°C. Analysis Calc. for C\textsubscript{17}H\textsubscript{17}F\textsubscript{4}N\textsubscript{3}O\textsubscript{4}: C 50.63, H 4.25, N 10.42; found: C 50.77, H 4.32, N 10.33.

EXAMPLE 18

N-(cis-[4-Cyano-4-(3-cyclopentoxy-4-methoxyphenyl)cyclohexyl]-1-oxamic acid)

A solution of methyl N-(cis-[4-cyano-4-(3-cyclopentoxy-4-methoxyphenyl)-cyclohexyl]-1-oxamate) (0.05 g, 0.12 mmol) in methanol (1 mL), tetrahydrofuran (1 mL) and water at room temperature was stirred with a pellet of sodium hydroxide for 3h. The solvents were removed, the residue was dissolved in methanol and was acidified with 3N
hydrochloric acid. The solid was collected and washed with ether to provide a white solid (0.03 g, 62%): m.p. 78-83°C.

Analysis Calc. for C_{17}H_{16}F_{4}N_{2}O_{5}H_{2}O: C 48.34, H 4.30, N 6.63; found: C 48.34, H 4.30, N 6.46.

EXAMPLE 19

cis-[4-Cyano-4-(3-cycloptxyloxy-4-methoxyphenyl)-1-methoxycyclohexane]

cis-[4-Cyano-4-(3-cycloptxyloxy-4-methoxyphenyl)cyclohexan-1-ol] (0.17 g, 0.5 mmol), methyl iodide (1 mL) and silver oxide (0.19 g, 0.8 mmol) in acetonitrile (1 mL)

under an argon atmosphere were refluxed in the dark overnight. The mixture was cooled, the solid was removed by filtration and the filtrate was evaporated. The residue was purified by flash chromatography, eluting with 2:1 hexanes/ethyl acetate, to provide an oil (0.12 g, 66%). Analysis Calc. for C_{16}H_{17}F_{4}NO_{3}: C 55.33, H 4.93, N 4.03; found: C 55.33, H 4.91, N 3.77.

In a similar manner there was prepared:

cis-[4-Cyano-4-(3-cycloptxyloxy-4-methoxyphenyl)-1-methoxycyclohexane]: oil.

Analysis Calc. for C_{16}H_{17}F_{4}NO_{3}: C 55.33, H 4.93, N 4.03; found: C 55.44, H 4.86, N 3.97.

EXAMPLES 20 and 21

cis- and trans-[4-Cyano-4-(3-cycloptxyloxy-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane]

To a solution of 4-cyano-4-(3-cycloptxyloxy-4-methoxyphenyl)cyclohexan-1-oneoxime (0.42 g, 1.27 mmol) and a trace of methyl orange in methanol (5 mL) at room

temperature under an argon atmosphere was added in one portion sodium cyanoborohydride (0.054 g, 0.85 mmol) followed immediately by the dropwise addition of hydrochloric-saturated methanol to attain and maintain a deep red color. After 1.5h, water and 15% aqueous sodium hydroxide (to pH >9) were added, the mixture was extracted three times with methylene chloride, the organic extract was dried (potassium carbonate) and evaporated.

Purification by flash chromatography, eluting with 50% ethyl acetate/hexanes, provided the cis isomer as a white solid (0.11 g, 27%): m.p. 103-104°C. Analysis Calc. for

C_{19}H_{26}N_{2}O_{3}·1/4H_{2}O: C 68.14, H 7.98, N 8.36; found: C 67.95, H 7.81, N 8.23. Also isolated was the trans isomer as a white solid (0.08 g, 20%): m.p. 150-151°C. Analysis Calc. for C_{19}H_{26}N_{2}O_{3}·1/4 H_{2}O: C 68.14, H 7.98, N 8.36; found: C 68.22, H 7.81, N 8.20.

In a similar manner there were prepared:

cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane]: foam. Analysis Calc. for C_{18}H_{24}N_{2}O_{3}·1/4 H_{2}O: C 67.37, H 7.69, N 8.73; found: C 67.09, H 7.45, N 8.45;
trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane]: m.p. 142.5-144.5°C. Analysis Calc. for C_{18}H_{24}N_{2}O_{3}·1/4 H_{2}O: C 67.37, H 7.69, N 8.73; found: C 67.26, H 7.47, N 8.33;

cis-[4-cyano-4-(3-(4-fluorobenzyl)-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane]: m.p. 118-120°C. Analysis Calc. for C_{21}H_{23}FN_{2}O_{3}·0.45 H_{2}O: C 66.63, H 6.36, N 7.40; found: C 66.63, H 6.26, N 7.22; and

trans-[4-cyano-4-(3-{4-fluorobenzyl}-4-methoxyphenyl)-1-(N-hydroxyamino)cyclohexane]: m.p. 135-136°C.

METHODS OF TREATMENT

In order to use a compound of Formula (I) or a pharmaceutically acceptable salt thereof for the treatment of humans and other mammals, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition. The compounds of Formula (I) or a pharmaceutically acceptable salt thereof can be used in the manufacture of a medicament for the prophylactic or therapeutic treatment of any disease state in a human or other mammal which is mediated by inhibition of PDE IV, such as but not limited to asthma, allergic, or inflammatory diseases. The compounds of Formula (I) are administered in an amount sufficient to treat such a disease in a human or other mammal.

The method of treatment and monitoring for an HIV-infected human manifesting immune dysfunction or cytokine-mediated disease associated problems is taught in Hanna, WO 90/15534, December 27, 1990. In general, an initial treatment regimen can be copied from that known to be effective in interfering with TNF activity for other TNF mediated disease states by the compounds of Formula (I). Treated individuals will be regularly checked for T cell numbers and T4/T8 ratios and/or measures of viremia such as levels of reverse transcriptase or viral proteins, and/or for progression of monokine-mediated disease associated problems such as cachexia or muscle degeneration. If no effect is seen following the normal treatment regimen, then the amount of the monokine activity interfering agent administered is increased, e.g., by fifty percent per week.

The pharmaceutical composition of the present invention will comprise an effective, non-toxic amount of a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent. The compounds of Formula (I) are administered in conventional dosage forms prepared by combining a compound of Formula (I) in an amount sufficient to produce TNF production inhibiting activity, respectively, with standard pharmaceutical carriers according to conventional procedures. These procedures may involve mixing, granulating, and compressing or dissolving the ingredients as appropriate to the desired preparation.

Thus, if a solid carrier is used, the preparation can be tableted, placed in a hard gelatin capsule in powder or pellet form, or in the form of a troche or lozenge. The amount of solid carrier will vary widely but preferably will be from about 25 mg to about 1 gram. When a liquid carrier is used, the preparation will be in the form of a syrup, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampule or nonaqueous liquid suspension. Where the composition is in the form of a capsule, any routine encapsulation is suitable, for example
using the aforementioned carriers in a hard gelatin capsule shell. Where the composition is in
the form of a soft gelatin shell capsule any pharmaceutical carrier routinely used for preparing
dispersions or suspensions may be considered, for example aqueous gums, celluloses,
silicates, or oils and are incorporated in a soft gelatin capsule shell. A syrup formulation will
generally consist of a suspension or solution of the compound or salt in a liquid carrier for
example, ethanol, glycerine, or water with a flavoring or coloring agent.

The daily dosage regimen for oral administration is suitably about .001 mg/kg to 100mg/kg, preferably 0.01 mg/Kg to 40 mg/Kg, of a compound of Formula (I) or a
pharmacologically acceptable salt thereof calculated as the free base. The active ingredient may
be administered from 1 to 6 times a day, sufficient to exhibit activity.

While it is possible for an active ingredient to be administered neat, it is preferable to
present it as a pharmaceutical formulation. The active ingredient may comprise, for topical
administration, from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of formulation, although it may comprise as much as 10% w/w but preferably not in excess of 5% w/w and
more preferably from 0.1% to 1% w/w of Formulation.

Formulations of the present invention comprise an active ingredient together with one
or more acceptable carrier(s) thereof and optionally any other therapeutic ingredient(s). The
carrier(s) must be 'acceptable' in the sense of being compatible with the other ingredients of
Formulation and not deleterious to the recipient thereof.

It will be recognized by one of skill in the art that the form and character of the
pharmacologically acceptable carrier or diluent is dictated by the amount of active ingredient
with which it is to be combined, the route of administration, and other well-known variables.

UTILITY EXAMPLES

EXAMPLE A

Inhibitory effect of compounds of Formula (I) on in vitro TNF production by human monocytes

The inhibitory effect of compounds of Formula (I) on in vitro TNF production by
human monocytes may be determined by the protocol as described in Badger et al., EPO
published Application 0 411 754 A2, February 6, 1991, and in Hanna, WO 90/15534,
December 27, 1990.

EXAMPLE B

Two models of endotoxic shock have been utilized to determine in vivo TNF activity
for the compounds of Formula (I). The protocol used in these models is described in
Badger et al., EPO published Application 0 411 754 A2, February 6, 1991, and in Hanna,

The exemplified compounds herein demonstrated a positive in vivo response in
reducing serum levels of TNF induced by the injection of endotoxin.
No toxic effects are expected when these compounds are administered in accordance with the present invention.

EXAMPLE C

Isolation of PDE Isozymes

The phosphodiesterase inhibitory activity and selectivity of the compounds of Formula (I) can be determined using a battery of five distinct PDE isozymes. The tissues used as sources of the different isozymes are as follows: 1) PDE Ib, porcine aorta; 2) PDE Ic, guinea-pig heart; 3) PDE III, guinea-pig heart; 4) PDE IV, human monocyte; and 5) PDE V (also called "Ia"), canine trachealis. PDEs Ia, Ib, Ic and III are partially purified using standard chromatographic techniques [Torry and Cieslinski, Mol. Pharmacol., 37:206-214, 1990]. PDE IV is purified to kinetic homogeneity by the sequential use of anion-exchange followed by heparin-Sepharose chromatography [Torry et al., J. Biol. Chem., 267:1798-1804, 1992].

Phosphodiesterase activity is assayed as described in the protocol of Torry and Cieslinski, Mol. Pharmacol., 37:206-214, 1990. Positive IC50's in the nanomolar to μM range for compounds of the workings examples described herein for Formula (I) have been demonstrated.

EXAMPLE D

The ability of selected PDE IV inhibitors to increase cAMP accumulation in intact tissues is assessed using U-937 cells, a human monocyte cell line that has been shown to contain a large amount of PDE IV. To assess the activity of PDE IV inhibition in intact cells, nondifferentiated U-937 cells (approximately 10^5 cells/reaction tube) were incubated with various concentrations (0.01-1000 μM) of PDE inhibitors for one minute and 1μM prostaglandin E2 for an additional four minutes. Five minutes after initiating the reaction, cells were lysed by the addition of 17.5% perchloric acid, the pH was neutralized by the addition of 1M potassium carbonate and cAMP content was assessed by RIA. A general protocol for this assay is described in Brooker et al., Radioimmunassay of cyclic AMP and cyclic GMP., Adv. Cyclic Nucleotide Res., 10:1-33, 1979. The compounds of the working examples as described herein for Formula (I) have demonstrated a positive EC50s in the μM range in the above assay.
What is claimed is

1. A compound of Formula (I):

\[
\begin{array}{c}
\text{R}_1 X_2 \text{R}_3 \text{R}_4 (\text{R}_2)_s \\
\text{X}_3
\end{array}
\]

wherein:

- \(\text{R}_1 \) is \(-(\text{CR}_4\text{R}_5)_n\text{O}(\text{CR}_4\text{R}_5)_m\text{R}_6, -(\text{CR}_4\text{R}_5)_n\text{O}(\text{CR}_4\text{R}_5)_n\text{NR}_4(\text{CR}_4\text{R}_5)_m\text{R}_6,\)
 - \(-(\text{CR}_4\text{R}_5)_n\text{O}(\text{CR}_4\text{R}_5)_m\text{R}_6, \text{or} -(\text{CR}_4\text{R}_5)_n\text{R}_6\)
 wherein the alkyl moieties may be optionally substituted with one or more halogens;
 - \(m \) is 0 to 2;
 - \(n \) is 1 to 4;
 - \(r \) is 1 to 6;
 - \(\text{R}_4 \) and \(\text{R}_5 \) are independently selected from hydrogen or a \(\text{C}_1-2 \) alkyl;
 - \(\text{R}_6 \) is hydrogen, methyl, hydroxyl, aryl, halo substituted aryl, aryloxy\(\text{C}_1-3 \) alkyl, halo substituted aryloxy\(\text{C}_1-3 \) alkyl, indanyl, indenyl, \(\text{C}_7-11 \) polycycloalkyl, tetrahydrofuranyl, furanyl, tetrahydropyranyl, pyranyl, tetrahydrothienyl, thiienyl, tetrahydrothiopyranyl, thiopyranyl, \(\text{C}_3-6 \) cycloalkyl, or a \(\text{C}_4-6 \) cycloalkyl containing one or two unsaturated bonds, wherein the cycloalkyl and heterocyclic moieties may be optionally substituted by 1 to 3 methyl groups or one ethyl group;
 - provided that:
 a) when \(\text{R}_6 \) is hydroxyl, then \(m = 2 \); or
 b) when \(\text{R}_6 \) is hydroxyl, then \(r = 2 \) to 6; or
 c) when \(\text{R}_6 \) is 2-tetrahydrofuranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl, or 2-tetrahydrothiienyl, then \(m = 1 \) or 2; or
 d) when \(\text{R}_6 \) is 2-tetrahydrofuranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl, or 2-tetrahydrothiienyl, then \(r = 1 \) to 6;
 e) when \(n = 1 \) and \(m = 0 \), then \(\text{R}_6 \) is other than \(\text{H} \) in \(-\text{CR}_4\text{R}_5)_n\text{O}(\text{CR}_4\text{R}_5)_m\text{R}_6;\)
 - \(\text{X} \) is \(\text{YR}_2 \), halogen, nitro, \(\text{NR}_4\text{R}_5 \), or formyl amine;
 - \(\text{Y} \) is \(\text{O} \) or \(\text{S(O)}_m \);
 - \(m' \) is a number having a value of 0, 1, or 2;
 - \(\text{X}_2 \) is \(\text{O} \) or \(\text{NR}_8 \);
 - \(\text{X}_3 \) is hydrogen or \(\text{X} \);
 - \(\text{R}_2 \) is independently selected from \(-\text{CH}_3 \) or \(-\text{CH}_2\text{CH}_3 \) optionally substituted by 1 or more halogens;
 - \(s \) is 0 to 4;
 - \(\text{R}_3 \) is hydrogen, halogen, \(\text{C}_1-4 \) alkyl, \(\text{CH}_2\text{NHC(O)C(O)}\text{NH}_2 \), halo-substituted \(\text{C}_1-4 \) alkyl, \(-\text{CH} = \text{CR}_8'\text{R}_8' \), cyclopentyl optionally substituted by \(\text{R}_8' \), \(\text{CN} \), \(\text{OR}_8 \), \(\text{CH}_2\text{OR}_8 \), \(\text{NR}_8\text{R}_10 \), \(\text{CH}_2\text{NR}_8\text{R}_10 \), \(\text{C(Z')H} \), \(\text{C(O)OR}_8 \), \(\text{C(O)NR}_8\text{R}_10 \), or \(\text{C} = \text{CR}_8' \).

Z is O, NR9, NOR8, NCN, C(-CN)2, CR8CN, CR8NO2, CR8C(O)OR8, CR8C(O)NR8R8, C(-CN)NO2, C(-CN)C(O)OR8, or C(-CN)C(O)NR8R8;
Z is OR14, OR15, SR14, S(O)mR7, S(O)2NR10R14, NR10R14, NR14C(O)R9, NR10C(Y)R14, NR10C(Y)NR10R14, NR10S(O)2NR10R14,
NR10C(NCN)NR10R14, NR10S(O)2R7, NR10C(CR4NO2)NR10R14,
NR10C(NCN)SR9, NR10C(CR4NO2)SR9, NR10C(NR10)NR10R14,
NR10C(O)C(O)NR10R14, or NR10C(O)C(O)OR14;
Y' is O or S;
R7 is -(CR4R5)qR12 or C1-6 alkyl wherein the R12 or C1-6 alkyl group is optionally substituted one or more times by C1-2 alkyl optionally substituted by one to three fluorines, -F, -Br, -Cl, -NO2, -NR10R11, -C(O)R8, -C(O)OR8, -OR8, -CN,
-C(O)NR10R11, -OC(O)NR10R11, -OC(O)R8, -NR10C(O)NR10R11, -NR10C(O)R11, -NR10C(O)OR9, -NR10C(O)R13, -C(NR10)NR10R11,
-C(NCN)SR9, -NR10C(NCN)SR9, -NR10C(NCN)NR10R11, -NR10S(O)2R9,
-S(O)mR9, -NR10C(O)C(O)NR10R11, -NR10C(O)C(O)R10, thiazolyl, imidazolyl, oxazolyl, pyrazolyl, triazolyl, or tetrazolyl;
q is 0, 1, or 2;
R12 is C3-7 cycloalkyl, (2-, 3- or 4-pyridyl), pyrimidyl, pyrazolyl, (1- or 2-imidazolyl), thiazolyl, triazolyl, pyrrolyl, piperazinyl, piperidinyl, morpholinyl, furanyl, (2- or 3-thienyl), (4- or 5-thiazolyl), quinolinyl, naphthyl, or phenyl;
R8 is independently selected from hydrogen or R9;
R8' is R8 or fluorine;
R9 is C1-4 alkyl optionally substituted by one to three fluorines;
R10 is OR8 or R11;
R11 is hydrogen, or C1-4 alkyl optionally substituted by one to three fluorines; or when R10 and R11 are as NR10R11 they may together with the nitrogen form a 5 to 7 membered ring optionally containing at least one additional heteroatom selected from O, N, or S;
R13 is oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl, imidazolidinyl, thiazolidinyl, isoxazolyl, oxadiazolyl, or thiadiazolyl, and each of these heterocyclic rings is connected through a carbon atom and each may be unsubstituted or substituted by one or two C1-2 alkyl groups;
R14 is hydrogen or R7; or when R10 and R14 are as NR10R14 they may together with the nitrogen form a 5 to 7 membered ring optionally containing one or more additional heteroatoms selected from O, N, or S;
R15 is C(O)R14, C(O)NR4R14, S(O)2R7, or S(O)2NR4R14;
provided that:
f) when Z is OH, X is YR2, Y is oxygen, X2 is oxygen, X3 is hydrogen, s is 0, R2 is CH3 in YR2, and R1 is CH3, then R3 is other than CN or COOH;
g) when Z is OH, or OCH₃, X₂ is oxygen, X₃ is hydrogen, s is 0, and X is YR₂, then R₃ is other than H;

h) when Z is O(S(O)₂C₆H₁₃), or O(S(O)₂ aryl, X₂ is oxygen, X₃ is hydrogen, s is 0, then R₃ is other than OR₈;

i) when R₁₂ is N-pyrazolyl, N-imidazolyl, N-triazolyl, N-pyrrholyl, N-piperazinyl, N-piperidinyl, or N-morpholiny, then q is not 1; or

j) when Z is OH or OSO₂R₇ and R₃ is CH₃, CH₂OH or CH₂OC₆H₄-3 alkyl, then R₁X₂ is not C₁₋₃ alkoxy and X is not halogen, methoxy, ethoxy, methylthio or ethylthio; or

k) when Z is -NH₂, NH(C₁₋₃ alkyl), N(C₁₋₃ alkyl)₂, NH(CH₂)₂₋₅(C₆H₄)Ar where Ar is naphthyl or phenyl or Z is unsubstituted or substituted pyrrolidinyl, piperidinyl, morpholiny, or piperazinyl and R₃ is CH₃, CH₂OH or CH₂OC₆H₄₋₃ alkyl, then R₁X₂ is not C₁₋₃ alkoxy and X is not halogen, methoxy, ethoxy, methylthio or ethylthio;

or the pharmaceutically acceptable salts thereof.

2. A compound of claim 1 which is:

cis-[4-cyano-4-(3-cyclopentloxy-4-methoxyphenyl)cyclohexan-1-ol];

trans-[4-cyano-4-(3-cyclopentloxy-4-methoxyphenyl)cyclohexan-1-ol];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexan-1-ol];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-cyclohexan-1-ol];

trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexan-1-ol];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-cyclohexan-1-ol];

trans-[4-cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-1-ol];
trans-[4-cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-1-ol];
cis-[4-(3-cyclopentloxy-4-methoxyphenyl)-4-ethynylcyclohexan-1-ol];
trans-[4-cyano-4-(3-cyclopentloxy-4-methoxyphenyl)-1-formyloxycyclohexane];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-cyclohexan-1-ol];

trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-formyloxycyclohexane];
cis- [4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-methylcyclohexan-1-ol];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-methylcyclohexan-1-ol];
cis-[4-cyano-4-(3-cyclopentloxy-4-methoxyphenyl)cyclohexyl-1-amine];
trans-[4-cyano-4-(3-cyclopentloxy-4-methoxyphenyl)cyclohexyl-1-amine];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-amine];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexyl-1-amine];
trans-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexyl-1-amine];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N,N-dimethyl)amine];
cis-[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)cyclohexyl-1-(N,N-dimethyl)amine];
cis-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N-methyl)amine];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-(N-methyl)amine];
trans-[4-cyano-4-(3-cyclopentloxy-4-methoxyphenyl)-1-phthalimidocyclohexane];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-phthalimidocyclohexane];
trans-[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl-1-amine];
\[\text{trans-}[1-N-(2-hydrazinocarbonylbenzamido)-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexane};\]
\[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-ureidocyclohexane};\]
\[\text{cis-}[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-ureidocyclohexane};\]
\[\text{trans-}[4-(3,4-bisdifluoromethoxyphenyl)-4-cyano-1-ureidocyclohexane};\]
\[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{trans-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{cis-}[4-cyano-4-(3-[4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{trans-}[4-cyano-4-(3-[4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{cis-}[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{trans-}[4-cyano-4-(3-cyclopropylmethoxy-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{cis-}[1-acetamido-4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)cyclohexane};\]
\[\text{trans-}[1-acetamido-4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexane};\]
\[\text{methyl N-}[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-cyclohexyl]-1-oxamate};\]
\[\text{methyl N-}[\text{trans-}[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl]-1-oxamate};\]
\[\text{N-}[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)cyclohexyl]-1-oxamide};\]
\[\text{N-}[\text{trans-}[4-(3,4-bisdifluoromethoxyphenyl)-4-cyanocyclohexyl]-1-oxamide};\]
\[\text{N-}[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)cyclohexyl]-1-oxamic acid};\]
\[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-methoxycyclohexane};\]
\[\text{trans-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-methoxycyclohexane}\]
\[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-(N-hydroxyamino)-cyclohexane};\]
\[\text{trans-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-(N-hydroxyamino)-cyclohexane};\]
\[\text{cis-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{trans-}[4-cyano-4-(3-cyclopentylxy-4-methoxyphenyl)-1-(N-hydroxyureido)-cyclohexane};\]
\[\text{cis-}[4-cyano-4-(3-[4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyamino)-cyclohexane};\]
\[\text{trans-}[4-cyano-4-(3-[4-fluorobenzyl]-4-methoxyphenyl)-1-(N-hydroxyamino)-cyclohexane].\]
3. A pharmaceutical composition comprising a compound of Formula (I) according to claim 1 and a pharmaceutically acceptable excipient.

4. A method for treating an allergic or inflammatory state which method comprises administering to a subject in need thereof an effective amount of a compound of Formula (I) according to claim 1 alone or in combination with a pharmaceutically acceptable excipient.

5. A method for inhibiting the production of tumor necrosis factor which comprises administering to a subject in need thereof an effective amount of a compound of Formula (I) according to claim 1 alone or in combination with a pharmaceutically acceptable excipient.
A. CLASSIFICATION OF SUBJECT MATTER

- IPC(5): A61K 31/275; C07C 255/50
- US CL: 514/521,525; 558/426

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- U.S.: 558/431

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

- Chemical Abstracts Structure Search

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

- Further documents are listed in the continuation of Box C.
- See patent family annex.

- Special categories of cited documents:
 - "A": document defining the general state of the art which is not considered to be part of particular relevance
 - "E": earlier document published on or after the international filing date
 - "L": document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O": document referring to an oral disclosure, use, exhibition or other means
 - "P": document published prior to the international filing date but later than the priority date claimed

- "I": later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- "X": document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- "Y": document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

- "G": document member of the same patent family

- Date of the actual completion of the international search: 25 JUNE 1993

- Name and mailing address of the ISA/US Commissioner:
 - Box PCT
 - Washington, D.C. 20231
 - Facsimile No. NOT APPLICABLE

- Authorized officer: IN THE NAME OF THE INTERNATIONAL BUREAU OF THE WCTM
 - Telephone No. (703) 308-4548

Form PCT/ISA/210 (second sheet) (July 1992)
BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

I. Claims 1-5, drawn to compounds, compositions and methods of use wherein the compound contains a nitrogen-containing heterocyclic group, classified in classes 544, 546 and 548, subclasses various.

II. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of group I, above, and contains a sulfur-containing heterocyclic group, classified in class 549, subclasses 1-87.

III. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-II, above, and contains an oxygen-containing heterocyclic group, classified in class 549, subclasses 200+.

IV. Claims 1-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-III, above, and contains a cyano group, classified in class 558, subclasses 388-410.

V. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-IV, above, and contains a COOR group, classified in class 560, subclasses 8-113.

VI. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-V, above, and contains a COOH group, classified in class 562, subclasses 405-496.

VII. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-VI, above, and contains a NCSN group, classified in class 564, subclasses 17-31.

VIII. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-VII, above, and contains a NCON group, classified in class 564, subclasses 32-40.

IX. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-VIII, above, and contains a NCS group, classified in class 564, subclass 74.

X. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-IX, above, and contains a NSO₂N group, classified in class 564, subclass 79.

XI. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-X, above, and contains a NCOC group, classified in class 564, subclass 123.

XII. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-XI, above, and contains a NH group, classified in class 564, subclasses 225-299.

XIII. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-XII, above, and contains a NOH group, classified in class 564, subclasses 300-443.

XIV. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-XIII, above, and contains a SH or R-S-R group, classified in class 568, subclasses 38-61.

XV. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-XIV, above, and contains a COH group, classified in class 568, subclass 420.

XVI. Claims 1-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-XV, above, and contains a R-O-R group, classified in class 568, subclass 579.

XVII. Claims 1, 3-5, drawn to compounds, compositions and methods of use wherein the compound contains none of groups I-XVI, above, and contains a R-O-H group, classified in class 568, subclass 700.
Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
(Form PCT/ISA/206 Previously Mailed.)
Please See Extra Sheet.

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
 1-5 It is deemed that the first claimed invention is the first appearing species of claim 2 (which corresponds to group IV as fo

Remark on Protest

- ☐ The additional search fees were accompanied by the applicant’s protest.
- ☑ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)★