(12) STANDARD PATENT

(11) Application No. AU 2005286662 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Polipeptide compounds for inhibiting angiogenesis and tumor growth

(51) International Patent Classification(s)

C07K 14/705 (2006.01) **A61K 47/48** (2006.01)

A61K 38/00 (2006.01)

(21) Application No: **2005286662** (22) Date of Filing: **2005.09.23**

(87) WIPO No: **WO06/034455**

(30) Priority Data

(31) Number (32) Date (33) Country

60/612,488 2004.09.23 US

(43) Publication Date: 2006.03.30(44) Accepted Journal Date: 2011.10.06

(71) Applicant(s)

Vasgene Therapeutics, Inc.

(72) Inventor(s)

Zozulya, Sergey; Kertesz, Nathalie; Gill, Parkash; Krasnoperov, Valery; Reddy,

Ramachandra

(74) Agent / Attorney

Shelston IP, Level 21 60 Margaret Street, Sydney, NSW, 2000

(56) Related Art

WO 2004/020468 A2 (Maxygen ApS) 11 March 2004

US 56351777 A (Genentech, Inc.) 3 June 1997

EP 0442724 B1 (Kirin-Amgen, Inc.) 21 August 1991

WO 2001/081377 A2 (Amgen, Inc.) 1 November 2001

Noren, N. K. et al (2004) PNAS 101(15): 5583-88*

US 2002/0086819 A1 (Drummond, R. et al) 4 July 2004

WO 1999/052541 A2 (California Institute of Technology) 21 October 1999

WO 2002/026827 (Novartis) 4 April 2002

WO 2004/080425 A2 (Vasgene Therapeutics, Inc.) 23 September 2004

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 March 2006 (30.03.2006)

(10) International Publication Number WO 2006/034455 A3

- (51) International Patent Classification: C07K 14/705 (2006.01) A61K 38/00 (2006.01) A61K 47/48 (2006.01)
- (21) International Application Number:

PCT/US2005/034176

(22) International Filing Date:

23 September 2005 (23.09.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/612,488 23 September 2004 (23.09.2004) US

- (71) Applicant (for all designated States except US): VAS-GENE THERAPEUTICS, INC. [US/US]; 4 Hook Road, Sharon Hills, PA 19079 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KRASNOPEROV, Valery [RU/US]; 1699 Amberwood Drive, No. 112, South Pasadena, CA 91030 (US). ZOZULYA, Sergey [RU/US]; 14481 Yazoo Street, San Diego, CA 92129 (US). KERTESZ, Nathalie [CA/US]; 4240 Lost Hills Road, Apt. 1603, Calabasas, CA 91301 (US). REDDY, Ramachandra [IN/US]; 11408 Tidenhaven Court,

Pearland, TX 77584 (US). **GILL, Parkash** [US/US]; 29420 Cresthaven Ct., Agoura Hills, CA 91301 (US).

- (74) Agents: QUISEL, John, D. et al.; Fish & Neave IP Group, of Ropes & Gray LLP, One International Place, Boston, MA 02110-2624 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: POLIPEPTIDE COMPOUNDS FOR INHIBITING ANGIOGENESIS AND TUMOR GROWTH

Amino acid sequence of the B4ECv3 protein

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSG
LDEEQHSVRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTM
LECLSLPRAGRSCKETFTVFYYESDADTATALTPAWMENPYIKVDTV
AAEHLTRKRPGAEATGKVNVKTLRLGPLSKAGFYLAFQDQGACMALL
SLHLFYKKCAQLTVNLTRFPETVPRELVVPVAGSCVVDAVPAPGPSP
SLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCRACAQGTFKPLSGE
GSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRS
VVSRLNGSSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGD
LTFDPGPRDLVEPWVVVRGLRPDFTYTFEVTALNGVSSLATGPVPFE
PVNVTTDREVPPAVSDIRVTRSSPSSLSLAWAVPRAPSGAWLDYEVK
YHEKGAEGPSSVRFLKTSENRAELRGLKRGASYLVQVRARSEAGYGP
FGQEHHSQTQLDESEGWREQGSKRAILQIEGKPIPNPLLGLDSTRTG

(57) Abstract: In certain embodiments, this present invention provides polypeptide compositions, including compositions a modified polypeptide, and methods for inhibiting Ephrin B2 or EphB4 activity. In other embodiments, the present invention provides methods and compositions for treating cancer or for treating angiogenesis-associated diseases.

WO 2006/034455 A3

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

 $\begin{tabular}{ll} \textbf{(88)} & \textbf{Date of publication of the international search report:} \\ \end{tabular}$

20 July 2006

10

20

25

30

POLYPEPTIDE COMPOUNDS FOR INHIBITING ANGIOGENESIS AND TUMOR GROWTH

RELATED APPLICATIONS

This application claims the benefit of the filing date of U.S. Provisional Application No. 60/612,488, filed September 23, 2004, the specification of which is incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

Angiogenesis, the development of new blood vessels from the endothelium of a preexisting vasculature, is a critical process in the growth, progression, and metastasis of solid tumors within the host. During physiologically normal angiogenesis, the autocrine, paracrine, and amphicrine interactions of the vascular endothelium with its surrounding stromal components are tightly regulated both spatially and temporally. Additionally, the levels and activities of proangiogenic and angiostatic cytokines and growth factors are maintained in balance. In contrast, the pathological angiogenesis necessary for active tumor growth is sustained and persistent, representing a dysregulation of the normal angiogenic system. Solid and hematopoietic tumor types are particularly associated with a high level of abnormal angiogenesis.

It is generally thought that the development of tumor consists of sequential, and interrelated steps that lead to the generation of an autonomous clone with aggressive growth potential. These steps include sustained growth and unlimited self-renewal. Cell populations in a tumor are generally characterized by growth signal self-sufficiency, decreased sensitivity to growth suppressive signals, and resistance to apoptosis. Genetic or cytogenetic events that initiate aberrant growth sustain cells in a prolonged "ready" state by preventing apoptosis. It is a goal of the present disclosure to provide agents and therapeutic treatments for inhibiting angiogenesis and tumor growth.

SUMMARY OF THE INVENTION

According to a first aspect, the present invention provides an isolated soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4

10

20

25

30

protein fused to an albumin protein or a fragment thereof, wherein the polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide, and has an *in vivo* serum half-life at least 50% greater than that of the extracellular domain of the EphB4 alone, and wherein the polypeptide inhibits signaling that results from the interaction between EphB4 and EphrinB2.

According to a second aspect, the present invention provides a pharmaceutical composition comprising a polypeptide of the first aspect, and a pharmaceutically acceptable carrier.

According to a third aspect, the present invention provides use of a polypeptide of the first aspect for preparing a medicament for inhibiting signaling through Ephrin B2/EphB4 pathway.

According to a fourth aspect, the present invention provides use of a polypeptide of the first aspect for preparing a medicament for reducing the growth rate of the tumor.

According to a fifth aspect, the present invention provides use of a polypeptide of
the first aspect for preparing a medicament for treating cancer in a patient.

According to a sixth aspect, the present invention provides use of a polypeptide of the first aspect for preparing a medicament for inhibiting angiogenesis in a patient.

According to a seventh aspect, the present invention provides use of a polypeptide of the first aspect for preparing a medicament for treating a patient suffering from an angiogenesis-associated disease.

According to an eighth aspect, the present invention provides a cosmetic composition comprising the polypeptide of the first aspect, and a pharmaceutically acceptable carrier

According to a ninth aspect, the present invention provides a method of inhibiting signaling through Ephrin B2/EphB4 pathway comprising administering a polypeptide of the first aspect.

According to a tenth aspect, the present invention provides a method of reducing the growth rate of a tumor comprising administering a polypeptide of the first aspect

According to an eleventh aspect, the present invention provides a method of treating cancer in a patient comprising administering a polypeptide the first aspect.

According to a twelfth aspect, the present invention provides a method of inhibiting angiogenesis in a patient comprising administering a polypeptide of the first aspect.

10

According to a twelfth aspect, the present invention provides a method of inhibiting angiogenesis in a patient comprising administering a polypeptide of the first aspect.

According to a thirteenth aspect, the present invention provides a method of treating a patient suffering from an angiogenesis-associated disease comprising administering a polypeptide of the first aspect.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

In certain aspects, the disclosure provides polypeptide agents that inhibit EphB4 or EphrinB2 mediated functions, including monomeric ligand binding portions of the EphB4 and EphrinB2 proteins. As demonstrated herein, EphB4 and EphrinB2 participate in various disease states, including cancers and diseases related to unwanted or excessive angiogenesis. Accordingly, certain polypeptide agents disclosed herein may be used to

treat such diseases. In further aspects, the disclosure relates to the discovery that EphB4 and/or EphrinB2 are expressed, often at high levels, in a variety of tumors. Therefore, polypeptide agents that down-regulate EphB4 or EphrinB2 function may affect tumors by a direct effect on the tumor cells as well as an indirect effect on the angiogenic processes recruited by the tumor. In certain embodiments, the disclosure provides the identity of tumor types particularly suited to treatment with an agent that downregulates EphB4 or EphrinB2 function. In preferred embodiments, polypeptides disclosed herein are modified so as to have increased serum half-life in vivo.

5

10

15

20

25

30

In certain aspects, the disclosure provides soluble EphB4 polypeptides comprising an amino acid sequence of an extracellular domain of an EphB4 protein. The soluble EphB4 polypeptides bind specifically to an EphrinB2 polypeptide. The term "soluble" is used merely to indicate that these polypeptides do not contain a transmembrane domain or a portion of a transmembrane domain sufficient to compromise the solubility of the polypeptide in a physiological salt solution. Soluble polypeptides are preferably prepared as monomers that compete with EphB4 for binding to ligand such as EphrinB2 and inhibit the signaling that results from EphB4 activation. Optionally, a soluble polypeptide may be prepared in a multimeric form, by, for example, expressing as an Fc fusion protein or fusion with another multimerization domain. Such multimeric forms may have complex activities, having agonistic or antagonistic effects depending on the context. In certain embodiments the soluble EphB4 polypeptide comprises a globular domain of an EphB4 protein. A soluble EphB4 polypeptide may comprise a sequence at least 90% identical to residues 1-522 of the amino acid sequence defined by Figure 65 (SEQ ID NO:10). A soluble EphB4 polypeptide may comprise a sequence at least 90% identical to residues 1-412 of the amino acid sequence defined by Figure 65 (SEQ ID NO:10). A soluble EphB4 polypeptide may comprise a sequence at least 90% identical to residues 1-312 of the amino acid sequence defined by Figure 65 (SEQ ID NO:10). A soluble EphB4 polypeptide may comprise a sequence encompassing the globular (G) domain (amino acids 29-197 of Figure 65, SEQ ID NO:10), and optionally additional domains, such as the cysteine-rich domain (amino acids 239-321 of Figure 65, SEQ ID NO:10), the first fibronectin type 3 domain (amino acids 324-429 of Figure 65, SEQ ID NO:10) and the second fibronectin type 3 domain (amino acids 434-526 of Figure 65, SEQ ID NO:10). Preferred polypeptides described herein and demonstrated as having ligand binding activity include polypeptides corresponding to 1-537, 1-427 and 1-326, respectively, of the amino acid sequence shown in Figure 65 (SEQ ID NO:10). A soluble EphB4 polypeptide may comprise a sequence as set forth in Figure 1

or 2 (SEQ ID Nos. 1 or 2). As is well known in the art, expression of such EphB4 polypeptides in a suitable cell, such as HEK293T cell line, will result in cleavage of a leader peptide. Although such cleavage is not always complete or perfectly consistent at a single site, it is known that EphB4 tends to be cleaved so as to remove the first 15 amino 5 acids of the sequence shown in Figure 65 (SEQ ID NO:10). Accordingly, as specific examples, the disclosure provides unprocessed soluble EphB4 polypeptides that bind to EphrinB2 and comprise an amino acid sequence selected from the following group (numbering is with respect to the sequence of Figure 65, SEO ID NO:10): 1-197, 29-197, 1-312, 29-132, 1-321, 29-321, 1-326, 29-326, 1-412, 29-412, 1-427, 29-427, 1-429, 29-429, 1-526, 29-526, 1-537 and 29-537. Additionally, heterologous leader peptides may be 10 substituted for the endogeneous leader sequences. Polypeptides may be used in a processed form, such forms having a predicted amino acid sequence selected from the following group (numbering is with respect to the sequence of Figure 65, SEQ ID NO:10): 16-197, 16-312, 16-321, 16-326, 16-412, 16-427, 16-429, 16-526 and 16-537. Additionally, a 15 soluble EphB4 polypeptide may be one that comprises an amino acid sequence at least 90%, and optionally 95% or 99% identical to any of the preceding amino acid sequences while retaining EphrinB2 binding activity. Preferably, any variations in the amino acid sequence from the sequence shown in Figure 65 (SEQ ID NO:10) are conservative changes or deletions of no more than 1, 2, 3, 4 or 5 amino acids, particularly in a surface loop 20 region. In certain embodiments, the soluble EphB4 polypeptide may inhibit the interaction between Ephrin B2 and EphB4. The soluble EphB4 polypeptide may inhibit clustering of or phosphorylation of Ephrin B2 or EphB4. Phosphorylation of EphrinB2 or EphB4 is generally considered to be one of the initial events in triggering intracellular signaling pathways regulated by these proteins. As noted above, the soluble EphB4 polypeptide may 25 be prepared as a monomeric or multimeric fusion protein. The soluble polypeptide may include one or more modified amino acids. Such amino acids may contribute to desirable properties, such as increased resistance to protease digestion.

The present disclosure provides soluble EphB4 polypeptides having an additional component that confers increased serum half-life while still retaining EphrinB2 binding activity. In certain embodiments soluble EphB4 polypeptides are monomeric and are covalently linked to one or more polyoxyaklylene groups (e.g., polyethylene, polypropylene), and preferably polyethylene glycol (PEG) groups. Accordingly, one aspect of the invention provides modified EphB4 polypeptides, wherein the modification comprises a single polyethylene glycol group covalently bonded to the polypeptide. Other

30

aspects provide modified EphB4 polypeptides covalently bonded to one, two, three, or more polyethylene glycol groups.

The one or more PEG may have a molecular weight ranging from about 1 kDa to about 100 kDa, and will preferably have a molecular weight ranging from about 10 to about 60 kDa or about 10 to about 40 kDa. The PEG group may be a linear PEG or a branched PEG. In a preferred embodiment, the soluble, monomeric EphB4 conjugate comprises an EphB4 polypeptide covalently linked to one PEG group of from about 10 to about 40 kDa (monoPEGylated EphB4), or from about 15 to 30 kDa, preferably via an ϵ -amino group of EphB4 lysine or the N-terminal amino group. Most preferably, EphB4 is randomly PEGylated at one amino group out of the group consisting of the ϵ -amino groups of EphB4 lysine and the N-terminal amino group.

10

15

20

25

30

In one embodiment, the pegylated polypeptides provided by the invention have a serum half-life *in vivo* at least 50%, 75%, 100%, 150% or 200% greater than that of an unmodified EphB4 polypeptide. In another embodiment, the pegylated EphB4 polypeptides provided by the invention inhibit EphrinB2 activity. In a specific embodiment, they inhibit EphrinB2 receptor clustering, EphrinB2 phosphorylation, and/or EphrinB2 kinase activity.

Surprisingly, it has been found that monoPEGylated EphB4 according to the invention has superior properties in regard to the therapeutic applicability of unmodified soluble EphB4 polypeptides and poly-PEGylated EphB4. Nonetheless, the disclosure also provides poly-PEGylated EphB4 having PEG at more than one position. Such polyPEGylated forms provide improved serum-half life relative to the unmodified form.

In certain embodiments, a soluble EphB4 polypeptide is stably associated with a second stabilizing polypeptide that confers improved half-life without substantially diminishing EphrinB2 binding. A stabilizing polypeptide will preferably be immunocompatible with human patients (or animal patients, where veterinary uses are contemplated) and have little or no significant biological activity.

In a preferred embodiment, the stabilizing polypeptide is a human serum albumin, or a portion thereof. A human serum albumin may be stably associated with the EphB4 polypeptide covalently or non-covalently. Covalent attachment may be achieved by expression of the EphB4 polypeptide as a co-translational fusion with human serum albumin. The albumin sequence may be fused at the N-terminus, the C-terminus or at a non-disruptive internal position in the soluble EphB4 polypeptide. Exposed loops of the

EphB4 would be appropriate positions for insertion of an albumin sequence. Albumin may also be post-translationally attached to the EphB4 polypeptide by, for example, chemical cross-linking. An EphB4 polypeptide may also be stably associated with more than one albumin polypeptide. In some embodiments, the albumin is selected from the group consisting of a human serum albumin (HSA) and bovine serum albumin (BSA). In other embodiments, the albumin is a naturally occurring variant. In one preferred embodiment, the EphB4-HSA fusion inhibits the interaction between Ephrin B2 and EphB4, the clustering of Ephrin B2 or EphB4, the phosphorylation of Ephrin B2 or EphB4, or combinations thereof. In other embodiments, the EphB4-HSA fusion has enhanced in vivo stability relative to the unmodified wildtype polypeptide.

5

10

15

20

25

30

In certain aspects, the disclosure provides soluble EphrinB2 polypeptides comprising an amino acid sequence of an extracellular domain of an EphrinB2 protein. The soluble EphrinB2 polypeptides bind specifically to an EphB4 polypeptide. The term "soluble" is used merely to indicate that these polypeptides do not contain a transmembrane domain or a portion of a transmembrane domain sufficient to compromise the solubility of the polypeptide in a physiological salt solution. Soluble polypeptides are preferably prepared as monomers that compete with EphrinB2 for binding to ligand such as EphB4 and inhibit the signaling that results from EphrinB2 activation. Optionally, a soluble polypeptide may be prepared in a multimeric form, by, for example, expressing as an Fc fusion protein or fusion with another multimerization domain. Such multimeric forms may have complex activities, having agonistic or antagonistic effects depending on the context. A soluble EphrinB2 polypeptide may comprise residues 1-225 of the amino acid sequence defined by Figure 66 (SEQ ID NO:11). A soluble EphrinB2 polypeptide may comprise a sequence defined by Figure 3. As is well known in the art, expression of such EphrinB2 polypeptides in a suitable cell, such as HEK293T cell line, will result in cleavage of a leader peptide. Although such cleavage is not always complete or perfectly consistent at a single site, it is known that EphrinB2 tends to be cleaved so as to remove the first 26 amino acids of the sequence shown in Figure 66 (SEQ ID NO:11). Accordingly, as specific examples, the disclosure provides unprocessed soluble EphrinB2 polypeptides that bind to EphB4 and comprise an amino acid sequence corresponding to amino acids 1-225 of Figure 66 (SEQ ID NO:11). Such polypeptides may be used in a processed form, such forms having a predicted amino acid sequence selected from the following group (numbering is with respect to the sequence of Figure 66, SEO ID NO:11): 26-225. In certain embodiments, the soluble EphrinB2 polypeptide may inhibit the interaction between Ephrin

B2 and EphB4. The soluble EphrinB2 polypeptide may inhibit clustering of or phosphorylation of EphrinB2 or EphB4. As noted above, the soluble EphrinB2 polypeptide may be prepared as a monomeric or multimeric fusion protein. The soluble polypeptide may include one or more modified amino acids. Such amino acids may contribute to desirable properties, such as increased resistance to protease digestion.

5

10

15

20

25

30

In certain aspects, the disclosure provides pharmaceutical formulations comprising a polypeptide reagent and a pharmaceutically acceptable carrier. The polypeptide reagent may be any disclosed herein, including, for example, soluble EphB4 or EphrinB2 polypeptides. Additional formulations include cosmetic compositions and diagnostic kits.

In certain aspects the disclosure provides methods of inhibiting signaling through Ephrin B2/EphB4 pathway in a cell. A method may comprise contacting the cell with an effective amount of a polypeptide agent, such as (a) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein, wherein the EphB4 polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide; (b) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an Ephrin B2 protein, wherein the soluble Ephrin B2 polypeptide is a monomer and binds with high affinity to an EphB4 polypeptide.

In certain aspects the disclosure provides methods for reducing the growth rate of a tumor, comprising administering an amount of a polypeptide agent sufficient to reduce the growth rate of the tumor. The polypeptide agent may be selected from the group consisting of: (a) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein, wherein the EphB4 polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide, and optionally comprises an additional modification to increase serum half-life, such as a PEGylation or serum albumin or both; (b) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an Ephrin B2 protein, wherein the soluble Ephrin B2 polypeptide is a monomer and binds with high affinity to an EphB4 polypeptide Optionally, the tumor comprises cells expressing a higher level of EphB4 and/or EphrinB2 than noncancerous cells of a comparable tissue.

In certain aspects, the disclosure provides methods for treating a patient suffering from a cancer. A method may comprise administering to the patient a polypeptide agent. The polypeptide agent may be selected from the group consisting of: (a) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein, wherein the EphB4 polypeptide is a monomer and binds specifically to an Ephrin

B2 polypeptide, and optionally comprises an additional modification to increase serum half-life, such as a PEGylation or serum albumin or both; (b) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an Ephrin B2 protein, wherein the soluble Ephrin B2 polypeptide is a monomer and binds with high affinity to an EphB4 polypeptide. Optionally, the cancer comprises cancer cells expressing EphrinB2 and/or EphB4 at a higher level than noncancerous cells of a comparable tissue. The cancer may be a metastatic cancer. The cancer may be selected from the group consisting of colon carcinoma, breast tumor, mesothelioma, prostate tumor, squamous cell carcinoma, Kaposi sarcoma, and leukemia. Optionally, the cancer is an angiogenesis-dependent cancer or an angiogenesis independent cancer. The polypeptide agent employed may inhibit clustering or phosphorylation of Ephrin B2 or EphB4. A polypeptide agent may be co-administered with one or more additional anti-cancer chemotherapeutic agents that inhibit cancer cells in an additive or synergistic manner with the polypeptide agent.

5

10

15

20

25

30

In certain aspects, the disclosure provides methods of inhibiting angiogenesis. A method may comprise contacting a cell with an amount of a polypeptide agent sufficient to inhibit angiogenesis. The polypeptide agent may be selected from the group consisting of:

(a) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein, wherein the EphB4 polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide, and optionally comprises an additional modification to increase serum half-life, such as a PEGylation or serum albumin or both; (b) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an Ephrin B2 protein, wherein the soluble Ephrin B2 polypeptide is a monomer and binds with high affinity to an EphB4 polypeptide.

In certain aspects, the disclosure provides methods for treating a patient suffering from an angiogenesis-associated disease, comprising administering to the patient a polypeptide agent. The polypeptide agent may be selected from the group consisting of: (a) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein, wherein the EphB4 polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide, and optionally comprises an additional modification to increase serum half-life, such as a PEGylation or serum albumin or both; (b) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an Ephrin B2 protein, wherein the soluble Ephrin B2 polypeptide is a monomer and binds with high affinity to an EphB4 polypeptide. The soluble polypeptide may be formulated with a pharmaceutically acceptable carrier. An angiogenesis related disease or unwanted angiogenesis related

process may be selected from the group consisting of angiogenesis-dependent cancer, benign tumors, inflammatory disorders, chronic articular rheumatism and psoriasis, ocular angiogenic diseases, Osler-Webber Syndrome, myocardial angiogenesis, plaque neovascularization, telangiectasia, hemophiliac joints, angiofibroma, telangiectasia psoriasis scleroderma, pyogenic granuloma, rubeosis, arthritis, diabetic neovascularization, vasculogenesis. A polypeptide agent may be co-administered with at least one additional anti-angiogenesis agent that inhibits angiogenesis in an additive or synergistic manner with the soluble polypeptide.

5

10

15

20

25

30

In certain aspects, the disclosure provides for the use of a polypeptide agent in the manufacture of medicament for the treatment of cancer or an angiogenesis related disorder. The polypeptide agent may be selected from the group consisting of: (a) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein, wherein the EphB4 polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide, and optionally comprises an additional modification to increase serum half-life, such as a PEGylation or serum albumin or both; (b) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an Ephrin B2 protein, wherein the soluble Ephrin B2 polypeptide is a monomer and binds with high affinity to an EphB4 polypeptide.

In certain aspects, the disclosure provides methods for treating a patient suffering from a cancer, comprising: (a) identifying in the patient a tumor having a plurality of cancer cells that express EphB4 and/or EphrinB2; and (b) administering to the patient a polypeptide agent. The polypeptide agent may be selected from the group consisting of: (i) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein, wherein the EphB4 polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide, and optionally comprises an additional modification to increase serum half-life, such as a PEGylation or serum albumin or both; (ii) a soluble polypeptide comprising an amino acid sequence of an extracellular domain of an Ephrin B2 protein, wherein the soluble Ephrin B2 polypeptide is a monomer and binds with high affinity to an EphB4 polypeptide.

In certain aspects, the disclosure provides methods for identifying a tumor that is suitable for treatment with an EphrinB2 or EphB4 antagonist. A method may comprise detecting in the tumor cell one or more of the following characteristics: (a) expression of EphB4 protein and/or mRNA; (b) expression of EphrinB2 protein and/or mRNA; (c) gene

amplification (e.g., increased gene copy number) of the EphB4 gene; or (d) gene amplification of the EphrinB2 gene. A tumor cell having one or more of characteristics (a)-(d) may be suitable for treatment with an EphrinB2 or EphB4 antagonist, such as a polypeptide agent described herein.

Surprisingly, applicants have found that an EphB4 polypeptide lacking the globular domain can in fact inhibit tumor growth in a xenograft model, inhibit angiogenic tube formation of vascular endothelial cells and inhibit EphrinB2-activated autokinase activity of EphB4. While not wishing to be bound to any mechanism of action, it is expected that the polypeptide either prevents EphB4 aggregation or stimulates the elimination (e.g. by endocytosis) of EphB4 from the plasma membrane. Accordingly, the disclosure provides isolated soluble polypeptides comprising an amino acid sequence of a fibronectin type 3 domain of an EphB4 protein. Such polypeptides will preferably have a biological effect, such as inhibiting an activity (e.g. aggregation or kinase activity) of an EphB4 or EphrinB2 protein, and particularly the inhibition of tumor growth in a human or in a mouse xenograft model of cancer. Such polypeptides may also inhibit angiogenesis in vivo or in an cellbased assay system. Such polypeptides may not bind to EphrinB2 and may specifically exclude all of or the functional (e.g., EphrinB2 binding-) portions of the globular domain of an EphB4 protein. Such a polypeptide will preferably comprise amino acids corresponding to amino acids 324-429 and/or 434-526 of the sequence of Figure 65 (SEQ ID NO:10), or sequences at least 90%, 95%, 98%, 99% identical thereto. An example of such a polypeptide is shown in SEQ ID NO: 15. Such a polypeptide may be modified in any of the ways described herein, and may be produced as a monomer or as a dimer or multimer comprising two or more such polypeptides, such as an Fc fusion construct. Dimers or multimers may be desirable to enhance the effectiveness of such polypeptides. All of the methods for producing and using such polypeptides are similar to those described herein with respect to other EphB4 polypeptides.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

Figure 1 shows amino acid sequence of the B4ECv3 protein (predicted sequence of the precursor including uncleaved Eph B4 leader peptide is shown; SEQ ID NO:1).

Figure 2 shows amino acid sequence of the B4ECv3NT protein (predicted sequence of the precursor including uncleaved Eph B4 leader peptide is shown; SEQ ID NO:2).

Figure 3 shows amino acid sequence of the B2EC protein (predicted sequence of the precursor including uncleaved Ephrin B2 leader peptide is shown; SEQ ID NO:3).

Figure 4 shows amino acid sequence of the B4ECv3-FC protein (predicted sequence of the precursor including uncleaved Eph B4 leader peptide is shown; SEQ ID NO:4).

Figure 5 shows amino acid sequence of the B2EC-FC protein (predicted sequence of the precursor including uncleaved Ephrin B2 leader peptide is shown; SEQ ID NO:5).

Figure 6 shows B4EC-FC binding assay (Protein A-agarose based).

Figure 7 shows B4EC-FC inhibition assay (Inhibition in solution).

Figure 8 shows B2EC-FC binding assay (Protein-A-agarose based assay).

Figure 9 shows chemotaxis of HUAEC in response to B4Ecv3.

Figure 10 shows chemotaxis of HHEC in response to B2EC-FC.

Figure 11 shows chemotaxis of HHAEC in response to B2EC.

Figure 12 shows effect of B4Ecv3 on HUAEC tubule formation.

Figure 13 shows effect of B2EC-FC on HUAEC tubule formation.

Figure 14 is a schematic representation of human Ephrin B2 constructs.

Figure 15 is a schematic representation of human EphB4 constructs.

15 Figure 16 shows the domain structure of the recombinant soluble EphB4EC proteins. Designation of the domains are as follows: L - leader peptide, G - globular (ligand-binding domain), C - Cys-rich domain, F1, F2 - fibronectin type III repeats, H - 6 x His-tag.

Figure 17 shows purification and ligand binding properties of the EphB4EC proteins.

A. SDS-PAAG gel electrophoresis of purified EphB4-derived recombinant soluble proteins (Coomassie-stained). B. Binding of Ephrin B2-AP fusion to EphB4-derived recombinant proteins immobilized on Ni-NTA-agarose beads. Results of three independent experiments are shown for each protein. Vertical axis – optical density at 420 nm.

Figure 18 shows that EphB4v3 inhibits chemotaxis.

Figure 19 shows that EphB4v3 inhibits tubule formation on Matrigel. A displays the strong inhibition of tubule formation by B4v3 in a representative experiment. B shows a quantitation of the reduction of tube-length obtained with B4v3 at increasing concentrations as well as a reduction in the number of junctions, in comparison to cells with no protein. Results are displayed as mean values ± S.D. obtained from three independent experiments performed with duplicate wells.

Figure 20 shows that soluble EphB4 has no detectable cytotoxic effect as assessed by MTS assay.

Figure 21 shows that B4v3 inhibits invasion and tubule formation by endothelial cells in the Matrigel assay. (A) to detect total invading cells, photographed at 20X magnification or with Masson's Trichrome Top left of A B displays section of a Matrigel plug with no GF, top right of A displays section with B4IgG containing GF and lower left section contains GF, and lower right shows GF in the presence of B4v3. Significant invasion of endothelial cells is only seen in GF containing Matrigel. Top right displays an area with a high number of invaded cells induced by B4IgG, which signifies the dimeric form of B4v3. The left upper parts of the pictures correspond to the cell layers formed around the Matrigel plug from which cells invade toward the center of the plug located in the direction of the right lower corner. Total cells in sections of the Matrigel plugs were quantitated with Scion Image software. Results obtained from two experiments with duplicate plugs are displayed as mean values \pm S.D.

10

15

20

25

30

Figure 22 shows tyrosine phosphorylation of EphB4 receptor in PC3 cells in response to stimulation with EphrinB2-Fc fusion in presence or absence of EphB4-derived recombinant soluble proteins.

Figure 23 shows effects of soluble EphB4ECD on viability and cell cycle. A) 3-day cell viability assay of two HNSCC cell lines. B) FACS analysis of cell cycle in HNSCC-15 cells treated as in A. Treatment of these cells resulted in accumulation in subG0/G1 and S/G2 phases as indicated by the arrows.

Figure 24 shows that B4v3 inhibits endovascular response in a murine corneal hydron micropocket assay.

Figure 25 shows that that SCC15, B16, and MCF-7 co-injected with sB4v3 in the presence of matrigel and growth factors, inhibits the in vivo tumor growth of these cells.

Figure 26 shows that soluble EphB4 causes apoptosis, necrosis and decreased angiogenesis in three tumor types, B16 (melanoma), SCC15 (head and neck carcinoma), and MCF-7 (breast carcinoma). Tumors were injected premixed with Matrigel plus growth factors and soluble EphB4 subcutaneously. After 10 to 14 days, the mice were injected intravenously with FITC-lectin (green) to assess blood vessel perfusion. Tumors treated with control PBS displayed abundant tumor density and a robust angiogenic response. Tumors treated with sEphB4 displayed a decrease in tumor cell density and a marked

inhibition of tumor angiogenesis in regions with viable tumor cells, as well as tumor necrosis and apoptosis.

5

10

15

20

25

30

Figure 27 shows expression of EphB4 in prostate cell lines. A) Western blot of total cell lysates of various prostate cancer cell lines, normal prostate gland derived cell line (MLC) and acute myeloblastic lymphoma cells (AML) probed with EphB4 monoclonal antibody. B) Phosphorylation of EphB4 in PC-3 cells determined by Western blot.

Figure 28 shows expression of EphB4 in prostate cancer tissue. Representative prostate cancer frozen section stained with EphB4 monoclonal antibody (top left) or isotype specific control (bottom left). Adjacent BPH tissue stained with EphB4 monoclonal antibody (top right). Positive signal is brown color in the tumor cells. Stroma and the normal epithelia are negative. Note membrane localization of stain in the tumor tissue, consistent with trans-membrane localization of EphB4. Representative QRT-PCR of RNA extracted from cancer specimens and adjacent BPH tissues (lower right).

Figure 29 shows downregulation of EphB4 in prostate cancer cells by tumor suppressors and RXR expression. A) PC3 cells were co-transfected with truncated CD4 and p53 or PTEN or vector only. 24 h later CD4-sorted cells were collected, lysed and analyzed sequentially by Western blot for the expression of EphB4 and β -actin, as a normalizer protein. B) Western blot as in (A) of various stable cell lines. LNCaP-FGF is a stable transfection clone of FGF-8, while CWR22R-RXR stably expresses the RXR receptor. BPH-1 was established from benign hypertrophic prostatic epithelium.

Figure 30 shows regulation of EphB4 in prostate cancer cells by EGFR and IGFR-1. A) Western blot of PC3 cells treated with or without EGFR specific inhibitor AG1478 (1 nM) for 36 hours. Decreased EphB4 signal is observed after AG 1478 treatment. The membrane was stripped and reprobed with β -actin, which was unaffected. B) Western Blot of triplicate samples of PC3 cells treated with or without IGFR-1 specific neutralizing antibody MAB391 (2 μ g/ml; overnight). The membrane was sequentially probed with EphB4, IGFR-1 and β -actin antibodies. IGFR-1 signal shows the expected repression of signal with MAB391 treatment.

Figure 31 shows effect of specific EphB4 AS-ODNs and siRNA on expression and prostate cell functions. A) 293 cells stably expressing full-length construct of EphB4 was used to evaluate the ability of siRNA 472 to inhibit EphB4 expression. Cells were transfected with 50 nM RNAi using Lipofectamine 2000. Western blot of cell lysates 40 h post transfection with control siRNA (green fluorescence protein; GFP siRNA) or EphB4

siRNA 472, probed with EphB4 monoclonal antibody, stripped and reprobed with β -actin monoclonal antibody. B) Effect of EphB4 AS-10 on expression in 293 transiently expressing full-length EphB4. Cells were exposed to AS-10 or sense ODN for 6 hours and analyzed by Western blot as in (A). C) 48 h viability assay of PC3 cells treated with siRNA as described in the Methods section. Shown is mean \pm s.e.m. of triplicate samples. D) 5-day viability assay of PC3 cells treated with ODNs as described in the Methods. Shown is mean ± s.e.m. of triplicate samples. E) Scrape assay of migration of PC3 cells in the presence of 50 nM siRNAs transfected as in (A). Shown are photomicrographs of representative 20x fields taken immediately after the scrape was made in the monolayer (0 h) and after 20h continued culture. A large number of cells have filled in the scrape after 20 h with control siRNA, but not with EphB4 siRNA 472. F) Shown is a similar assay for cells treated with AS-10 or sense ODN (both 10 μ M). G) Matrigel invasion assay of PC3 cells transfected with siRNA or control siRNA as described in the methods. Cells migrating to the underside of the Matrigel coated insert in response to 5 mg/ml fibronectin in the lower chamber were fixed and stained with Giemsa. Shown are representative photomicrographs of control siRNA and siRNA 472 treated cells. Cell numbers were counted in 5 individual highpowered fields and the average + s.e.m. is shown in the graph (bottom right).

5

10

15

20

25

30

Figure 32 shows effect of EphB4 siRNA 472 on cell cycle and apoptosis. A) PC3 cells transfected with siRNAs as indicated were analyzed 24 h post transfection for cell cycle status by flow cytometry as described in the Methods. Shown are the plots of cell number vs. propidium iodide fluorescence intensity. 7.9% of the cell population is apoptotic (in the Sub G0 peak) when treated with siRNA 472 compared to 1% with control siRNA. B) Apoptosis of PC3 cells detected by Cell Death Detection ELISA plus kit as described in the Methods. Absorbance at 405 nm increases in proportion to the amount of histone and DNA-POD in the nuclei-free cell fraction. Shown is the mean ± s.e.m. of triplicate samples at the indicated concentrations of siRNA 472 and GFP siRNA (control).

Figure 33 shows that EphB4 and EphrinB2 are expressed in mesothelioma cell lines as shown by RT-PCR (A) and Western Blot (B).

Figure 34 shows expression of ephrin B2 and EphB4 by in situ hybridization in mesothelioma cells. NCI H28 mesothelioma cell lines cultured in chamber slides hybridized with antisense probe to ephrin B2 or EphB4 (top row). Control for each hybridization was sense (bottom row). Positive reaction is dark blue cytoplasmic stain.

Figure 35 shows cellular expression of EphB4 and ephrin B2 in mesothelioma cultures. Immunofluorescence staining of primary cell isolate derived from pleural effusion of a patient with malignant mesothelioma and cell lines NCI H28, NCI H2373, and NCI H2052 for ephrin B2 and EphB4. Green color is positive signal for FITC labeled secondary antibody. Specificity of immunofluorescence staining was demonstrated by lack of signal with no primary antibody (first row). Cell nuclei were counterstained with DAPI (blue color) to reveal location of all cells. Shown are merged images of DAPI and FITC fluorescence. Original magnification 200X.

5

10

15

20

25

30

Figure 36 shows expression of ephrin B2 and EphB4 in mesothelioma tumor. Immunohistochemistry of malignant mesothelioma biopsy. H&E stained section reveals tumor architecture; bottom left panel is background control with no primary antibody. EphB4 and ephrin B2 specific staining is brown color. Original magnification 200X.

Figure 37 shows effects of EPHB4 antisense probes (A) and EPHB4 siRNAs (B) on the growth of H28 cells.

Figure 38 shows effects of EPHB4 antisense probes (A) and EPHB4 siRNAs (B) on cell migration.

Figure 39 shows that EphB4 is expressed in HNSCC primary tissues and metastases. A) Top: Immunohistochemistry of a representative archival section stained with EphB4 monoclonal antibody as described in the methods and visualized with DAB (brown color) localized to tumor cells. Bottom: Hematoxylin and Eosin (H&E) stain of an adjacent section. Dense purple staining indicates the presence of tumor cells. The right hand column are frozen sections of lymph node metastasis stained with EphB4 polyclonal antibody (top right) and visualized with DAB. Control (middle) was incubation with goat serum and H&E (bottom) reveals the location of the metastatic foci surrounded by stroma which does not stain. B) In situ hybridization of serial frozen sections of a HNSCC case probed with EphB4 (left column) and ephrin B2 (right column) DIG labeled antisense or sense probes generated by run-off transcription. Hybridization signal (dark blue) was detected using alkaline-phosphatase-conjugated anti-DIG antibodies and sections were counterstained with Nuclear Fast Red. A serial section stained with H&E is shown (bottom left) to illustrate tumor architecture. C) Western blot of protein extract of patient samples consisting of tumor (T), uninvolved normal tissue (N) and lymph node biopsies (LN). Samples were fractionated by polyacrylamide gel electrophoresis in 4-20% Tris-glycine gels and subsequently electroblotted onto nylon membranes. Membranes were sequentially probed

with EphB4 monoclonal antibody and β -actin MoAb. Chemiluminescent signal was detected on autoradiography film. Shown is the EphB4 specific band which migrated at 120 kD and β -actin which migrated at 40 kD. The β -actin signal was used to control for loading and transfer of each sample.

5

10

15

20

25

30

Figure 40 shows that EphB4 is expressed in HNSCC cell lines and is regulated by EGF: A) Survey of EphB4 expression in SCC cell lines. Western blot of total cell lysates sequentially probed with EphB4 monoclonal antibody, stripped and reprobed with β -actin monoclonal antibody as described for Fig. 39C. B) Effect of the specific EGFR inhibitor AG1478 on EphB4 expression: Western blot of crude cell lysates of SCC15 treated with 0-1000 nM AG 1478 for 24 h in media supplemented with 10% FCS (left) or with 1 mM AG 1478 for 4, 8, 12 or 24 h (right). Shown are membranes sequentially probed for EphB4 and β -actin. C) Effect of inhibition of EGFR signaling on EphB4 expression in SCC cell lines: Cells maintained in growth media containing 10% FCS were treated for 24 hr with 1 μ M AG 1478, after which crude cell lysates were analyzed by Western blots of cell lysates sequentially probed with for EGFR, EphB4, ephrin B2 and β -actin antibodies. Specific signal for EGFR was detected at 170 kD and ephrin B2 at 37 kD in addition to EphB4 and β -actin as described in Fig. 1C. β -actin serves as loading and transfer control.

Figure 41 shows mechanism of regulation of EphB4 by EGF: A) Schematic of the EGFR signaling pathways, showing in red the sites of action and names of specific kinase inhibitors used. B) SCC15 cells were serum-starved for 24 h prior to an additional 24 incubation as indicated with or without EGF (10 ng/ml), 3 μ M U73122, or 5 μ M SH-5, 5 μ M SP600125, 25 nM LY294002, -- μ M PD098095 or 5 μ M SB203580. N/A indicates cultures that received equal volume of diluent (DMSO) only. Cell lysates were subjected to Western Blot with EphB4 monoclonal antibody. β -actin signal serves as control of protein loading and transfer.

Figure 42 shows that specific EphB4 siRNAs inhibit EphB4 expression, cell viability and cause cell cycle arrest. A) 293 cells stably expressing full length EphB4 were transfected with 50 nM RNAi using LipofectamineTM2000. 40 h post-transfection cells were harvested, lysed and processed for Western blot. Membranes were probed with EphB4 monoclonal antibody, stripped and reprobed with β -actin monoclonal antibody as control for protein loading and transfer. Negative reagent control was RNAi to scrambled green fluorescence protein (GFP) sequence and control is transfection with LipofectamineTM2000 alone. B) MTT cell viability assays of SCC cell lines treated with

siRNAs for 48 h as described in the Methods section. Shown is mean + s.e.m. of triplicate samples. C) SCC15 cells transfected with siRNAs as indicated were analyzed 24 h post transfection for cell cycle status by flow cytometry as described in the Methods. Shown are the plots of cell number vs. propidium iodide fluorescence intensity. Top and middle row show plots for cells 16 h after siRNA transfection, bottom row shows plots for cells 36 h post transfection. Specific siRNA and concentration are indicated for each plot. Lipo = LipofectamineTM200 mock transfection.

5

10

15

20

25

30

Figure 43 shows in vitro effects of specific EphB4 AS-ODNs on SCC cells. A) 293 cells transiently transfected with EphB4 full-length expression plasmid were treated 6 h post transfection with antisense ODNs as indicated. Cell lysates were collected 24 h after AS-ODN treatment and subjected to Western Blot. B) SCC25 cells were seeded on 48 well plates at equal densities and treated with EphB4 AS-ODNs at 1, 5, and 10 µM on days 2 and 4. Cell viability was measured by MTT assay on day 5. Shown is the mean + s.e.m. of triplicate samples. Note that AS-ODNs that were active in inhibiting EphB4 protein levels were also effective inhibitors of SCC15 cell viability. C) Cell cycle analysis of SCC15 cells treated for 36 h with AS-10 (bottom) compared to cells that were not treated (top). D) Confluent cultures of SCC15 cells scraped with a plastic Pasteur pipette to produce 3 mm wide breaks in the monolayer. The ability of the cells to migrate and close the wound in the presence of inhibiting EphB4 AS-ODN (AS-10) and non-inhibiting AS-ODN (AS-1) was assessed after 48 h. Scrambled ODN is included as a negative control ODN. Culture labeled no treatment was not exposed to ODN. At initiation of the experiment, all cultures showed scrapes of equal width and similar to that seen in 1 μ M EphB4 AS-10 after 48 h. The red brackets indicate the width of the original scrape. E) Migration of SCC15 cells in response to 20 mg/ml EGF in two-chamber assay as described in the Methods. Shown are representative photomicrographs of non-treated (NT), AS-6 and AS-10 treated cells and 10 ng/ml Taxol as positive control of migration inhibition, F) Cell numbers were counted in 5 individual high-powered fields and the average + s.e.m. is shown in the graph.

Figure 44 shows that EphB4 AS-ODN inhibits tumor growth in vivo. Growth curves for SCC15 subcutaneous tumor xenografts in Balb/C nude mice treated with EphB4 AS-10 or scrambled ODN at 20 mg/kg/day starting the day following implantation of 5 x 106 cells. Control mice received and equal volume of diluent (PBS). Shown are the mean + s.e.m. of 6 mice/group. * P = 0.0001 by Student's t-test compared to scrambled ODN treated group.

Figure 45 shows that Ephrin B2, but not EphB4 is expressed in KS biopsy tissue. (A) In situ hybridization with antisense probes for ephrin B2 and EphB4 with corresponding H&E stained section to show tumor architecture. Dark blue color in the ISH indicates positive reaction for ephrin B2. No signal for EphB4 was detected in the Kaposi's sarcoma biopsy. For contrast, ISH signal for EphB4 is strong in squamous cell carcinoma tumor cells. Ephrin B2 was also detected in KS using EphB4-AP fusion protein (bottom left). (B) Detection of ephrin B2 with EphB4/Fc fusion protein. Adjacent sections were stained with H&E (left) to show tumor architecture, black rectangle indicates the area shown in the EphB4/Fc treated section (middle) detected with FITC-labeled anti-human Fc antibody as described in the methods section. As a control an adjacent section was treated with human Fc fragment (right). Specific signal arising from EphB4/Fc binding to the section is seen only in areas of tumor cells. (C) Co-expression of ephrin B2 and the HHV8 latency protein LANA1. Double-label confocal immunofluorescence microscopy with antibodies to ephrin B2 (red) LANA1 (green), or EphB4 (red) of frozen KS biopsy material directly demonstrates co-expression of LANA1 and ephrin B2 in KS biopsy. Coexpression is seen as yellow color. Double label confocal image of biopsy with antibodies to PECAM-1 (green) in cells with nuclear propidium iodide stain (red), demonstrating the vascular nature of the tumor.

5

10

15

20

25

30

Figure 46 shows that HHV-8 induces arterial marker expression in venous endothelial cells. (A) Immunofluorescence of cultures of HUVEC and HUVEC/BC-1 for artery/vein markers and viral proteins. Cultures were grown on chamber slides and processed for immunofluorescence detection of ephrin B2 (a, e, i), EphB4 (m, q, u), CD148 (j, v), and the HHV-8 proteins LANA1 (b, f, m) or ORF59 (r) as described in the Materials and Methods. Yellow color in the merged images of the same field demonstrate coexpression of ephrin B2 and LANA or ephrin B2 and CD148. The positions of viable cells were revealed by nuclear staining with DAPI (blue) in the third column (c, g, k, o, s, w). Photomicrographs are of representative fields. (B) RT-PCR of HUVEC and two HHV-8 infected cultures (HUVEC/BC-1 and HUVEC/BC-3) for ephrin B2 and EphB4. Ephrin B2 product (200 bp) is seen in HUVEC/BC-1, HUVEC/BC-3 and EphB4 product (400 bp) is seen in HUVEC. Shown also is β -actin RT-PCR as a control for amount and integrity of input RNA.

Figure 47 shows that HHV-8 induces arterial marker expression in Kaposi's sarcoma cells. (A) Western blot for ephrin B2 on various cell lysates. SLK-vGPCR is a stable clone of SLK expressing the HHV-8 vGPCR, and SLK-pCEFL is control stable

- 17 –

clone transfected with empty expression vector. SLK cells transfected with LANA or LANA \(\Delta 440 \) are SLK-LANA and SLK-\(\Delta 440 \) respectively. Quantity of protein loading and transfer was determined by reprobing the membranes with β -actin monoclonal antibody. (B) Transient transfection of KS-SLK cells with expression vector pvGPCR-CEFL resulted in the expression of ephrin B2 as shown by immunofluorescence staining with FITC (green), whereas the control vector pCEFL had no effect, KS-SLK cells (0.8 x 105/well) were transfected with 0.8 µg DNA using Lipofectamine 2000. 24 hr later cells were fixed and stained with ephrin B2 polyclonal antibody and FITC conjugated secondary antibody as described in the methods. (C) Transient transfection of HUVEC with vGPCR induces transcription from ephrin B2 luciferase constructs. 8 x 103 HUVEC in 24 well plates were transfected using Superfect with 0.8 µg/well ephrin B2 promoter constructs containing sequences from -2941 to -11 with respect to the translation start site, or two 5'-deletions as indicated, together with 80 ng/well pCEFL or pvGPCR-CEFL. Luciferase was determined 48 h post transfection and induction ratios are shown to the right of the graph. pGL3Basic is promoterless luciferase control vector. Luciferase was normalized to protein since GPCR induced expression of the cotransfected β -galactosidase. Graphed is mean + SEM of 6 replicates. Shown is one of three similar experiments.

5

10

15

20

25

30

Figure 48 shows that VEGF and VEGF-C regulate ephrin B2 expression. A) Inhibition of ephrin B2 by neutralizing antibodies. Cells were cultured in full growth medium and exposed to antibody (100 ng/ml) for 36 hr before collection and lysis for Western blot. B) For induction of ephrin B2 expression cells were cultured in EBM growth medium containing 5% serum lacking growth factors. Individual growth factors were added as indicated and the cells harvested after 36 h. Quantity of protein loading and transfer was determined by reprobing the membranes β -actin monoclonal antibody.

Figure 49 shows that Ephrin B2 knock-down with specific siRNA inhibits viability in KS cells and HUVEC grown in the presence of VEGF but not IGF, EGF or bFGF. A) KS-SLK cells were transfected with various siRNA to ephrin B2 and controls. After 48 hr the cells were harvested and crude cell lysates fractionated on 4-20% SDS-PAGE. Western blot was performed with monoclonal antibody to ephrin B2 generated in-house. The membrane was stripped and reprobed with β -actin monoclonal antibody (Sigma) to illustrate equivalent loading and transfer. B) 3 day cell viability assay of KS-SLK cultures in the presence of ephrin B2 and EphB4 siRNAs. 1 x 10⁵ cells/well in 24-well plates were treated with 0, 10 and 100 ng/ml siRNAs as indicated on the graph. Viability of cultures was determined by MTT assay as described in the methods section. Shown are the mean +

standard deviation of duplicate samples. C) HUVE cells were seeded on eight wells chamber slides coated with fibronectin. The HUVE cells were grown overnight in EGM-2 media, which contains all growth supplements. On the following day, the media was replaced with media containing VEGF (10ng/ml) or EGF, FGF and IGF as indicated. After 2 hrs of incubation at 37 °C, the cells were transfected using Lipofectamine 2000 (Invitrogen) in Opti-MEM medium containing 10 nM of siRNA to ephrin B2, Eph B4 or green fluorescence protein (GFP) as control. The cells were incubated for 2 hr and then the fresh media containing growth factors or VEGF alone was added to their respective wells. After 48 hrs, the cells were stained with crystal violet and the pictures were taken immediately by digital camera at 10X magnification.

5

10

15

20

25

Figure 50 shows that soluble EphB4 inhibits KS and EC cord formation and in vivo angiogenesis. Cord formation assay of HUVEC in MatrigelTM (upper row). Cells in exponential growth phase were treated overnight with the indicated concentrations of EphB4 extracellular domain (ECD) prior to plating on MatrigelTM. Cells were trypsinized and plated (1 x 10⁵ cells/well) in a 24-well plate containing 0.5 ml MatrigelTM. Shown are representative 20X phase contrast fields of cord formation after 8 hr plating on MatrigelTM in the continued presence of the test compounds as shown. Original magnification 200 X. KS-SLK cells treated in a similar manner (middle row) in a cord formation assay on MatrigelTM. Bottom row shows in vivo MatrigelTM assay: MatrigelTM plugs containing growth factors and EphB4 ECD or PBS were implanted subcutaneously in the mid-ventral region of mice. After 7 days the plugs were removed, sectioned and stained with H&E to visualize cells migrating into the matrix. Intact vessels with large lumens are observed in the control, whereas EphB4 ECD almost completely inhibited migration of cells into the Matrigel.

Figure 51 shows expression of EPHB4 in bladder cancer cell lines (A), and regulation of EPHB4 expression by EGFR signaling pathway (B).

Figure 52 shows that transfection of p53 inhibit the expression of EPHB4 in 5637 cell.

Figure 53 shows growth inhibition of bladder cancer cell line (5637) upon treatment with EPHB4 siRNA 472.

Figure 54 shows results on apoptosis study of 5637 cells transfected with EPHB4 siRNA 472.

Figure 55 shows effects of EPHB4 antisense probes on cell migration. 5637 cells were treated with EPHB4AS10 (10 μ M) (bottom panels). Upper panels show control cells.

Figure 56 shows effects of EPHB4 siRNA on cell invasion. 5637 cells were transfected with siRNA 472 or control siRNA.

5

20

25

30

Figure 57 shows comparison of EphB4 monoclonal antibodies by G250 and in pull-down assay.

Figure 58 shows that EphB4 antibodies inhibit the growth of SCC15 xenograft tumors.

Figure 59 shows that EphB4 antibodies cause apoptosis, necrosis and decreased angiogenesis in SCC15, head and neck carcinoma tumor type.

Figure 60 shows that systemic administration of EphB4 antibodies leads to tumor regression.

Figure 61 shows a genomic nucleotide sequence of human EphB4 (SEQ ID NO:6).

Figure 62 shows a cDNA nucleotide sequence of human EphB4 (SEQ ID NO:7).

Figure 63 shows a genomic nucleotide sequence of human Ephrin B2 (SEQ ID NO:8).

Figure 64 shows a cDNA nucleotide sequence of human Ephrin B2 (SEQ ID NO:9).

Figure 65 shows an amino acid sequence of human EphB4 (SEQ ID NO:10).

Figure 66 shows an amino acid sequence of human Ephrin B2 (SEQ ID NO:11).

Figure 67 shows a comparison of the EphrinB2 binding properties of the HSA-EphB4 fusion protein and other EphB4 polypeptides.

Figure 68 shows a comparison between the in vivo stability of an EphB4-HSA fusion protein and an EphB4 polypeptide in mice.

Figure 69 shows the EphrinB2 binding activity of soluble EphB4 polypeptides pegylated under specific pH conditions.

Figure 70 shows the chromatographic separation of PEG derivatives of EphB4 protein on SP-Sepharose columns. Purity of the PEG-modified EphB4 protein was analyzed by PAGE. The EphrinB2 binding of the pegylation reaction products is also shown.

Figure 71 shows the purity, as determined by SDS-PAGE, of chromatography-separated unpegylated, monopegylated and poly-pegylated EphB4 fractions.

Figure 72 shows the EphrinB2-binding activity of the chromatography fractions from the EphB4 pegylation reaction.

Figure 73 shows the retention of EphrinB2-binding activity of the chromatography fractions from the EphB4 pegylation reaction after incubation in mouse serum at 37°C for three days.

Figure 74 shows the in vivo stability of unpegylated, monopegylated and polypegylated EphB4 in mice over time.

DETAILED DESCRIPTION OF THE INVENTION

10 I. Overview

5

15

20

25

30

The current invention is based in part on the discovery that signaling through the ephrin/ephrin receptor (ephrin/eph) pathway contributes to tumorigenesis. Applicants detected expression of ephrin B2 and EphB4 in tumor tissues and developed anti-tumor therapeutic agents for blocking signaling through the ephrin/eph. In addition, the disclosure provides polypeptide therapeutic agents and methods for polypeptide-based inhibition of the function of EphB4 and/or Ephrin B2. Accordingly, in certain aspects, the disclosure provides numerous polypeptide compounds (agents) that may be used to treat cancer as well as angiogenesis related disorders and unwanted angiogenesis related processes. Applicants have generated modified forms of EphrinB2 and EphB4 polypeptides and have demonstrated that such modified forms have markedly improved pharmacokinetic properties. Accordingly, in certain aspects, the disclosure provides numerous polypeptide compounds (agents) that may be used to treat cancer as well as angiogenesis related disorders and unwanted angiogenesis related processes.

As used herein, the terms Ephrin and Eph are used to refer, respectively, to ligands and receptors. They can be from any of a variety of animals (e.g., mammals/non-mammals, vertebrates/non-vertebrates, including humans). The nomenclature in this area has changed rapidly and the terminology used herein is that proposed as a result of work by the Eph Nomenclature Committee, which can be accessed, along with previously-used names at web site http://www.eph-nomenclature.com.

The work described herein, particularly in the examples, refers to Ephrin B2 and EphB4. However, the present invention contemplates any ephrin ligand and/or Eph receptor within their respective family, which is expressed in a tumor. The ephrins

(ligands) are of two structural types, which can be further subdivided on the basis of sequence relationships and, functionally, on the basis of the preferential binding they exhibit for two corresponding receptor subgroups. Structurally, there are two types of ephrins: those which are membrane-anchored by a glycerophosphatidylinositol (GPI) linkage and those anchored through a transmembrane domain. Conventionally, the ligands are divided into the Ephrin-A subclass, which are GPI-linked proteins which bind preferentially to EphA receptors, and the Ephrin-B subclass, which are transmembrane proteins which generally bind preferentially to EphB receptors.

5

10

15

20

25

30

The Eph family receptors are a family of receptor protein-tyrosine kinases which are related to Eph, a receptor named for its expression in an erythropoietin-producing human hepatocellular carcinoma cell line. They are divided into two subgroups on the basis of the relatedness of their extracellular domain sequences and their ability to bind preferentially to Ephrin-A proteins or Ephrin-B proteins. Receptors which interact preferentially with Ephrin-A proteins are EphA receptors and those which interact preferentially with Ephrin-B proteins are EphB receptors.

Eph receptors have an extracellular domain composed of the ligand-binding globular domain, a cysteine rich region followed by a pair of fibronectin type III repeats (e.g., see Figure 16). The cytoplasmic domain consists of a juxtamembrane region containing two conserved tyrosine residues; a protein tyrosine kinase domain; a sterile α-motif (SAM) and a PDZ-domain binding motif. EphB4 is specific for the membrane-bound ligand Ephrin B2 (Sakano, S. et al 1996; Brambilla R. et al 1995). Ephrin B2 belongs to the class of Eph ligands that have a transmembrane domain and cytoplasmic region with five conserved tyrosine residues and PDZ domain. Eph receptors are activated by binding of clustered, membrane attached ephrins (Davis S et al, 1994), indicating that contact between cells expressing the receptors and cells expressing the ligands is required for Eph activation.

Upon ligand binding, an Eph receptor dimerizes and autophosphorylate the juxtamembrane tyrosine residues to acquire full activation (Kalo MS et al, 1999, Binns KS, 2000). In addition to forward signaling through the Eph receptor, reverse signaling can occur through the ephrin Bs. Eph engagement of ephrins results in rapid phosphorylation of the conserved intracellular tyrosines (Bruckner K, 1997) and somewhat slower recruitment of PDZ binding proteins (Palmer A 2002). Recently, several studies have shown that high expression of Eph/ephrins may be associated with increased potentials for tumor growth,

tumorigenicity, and metastasis (Easty DJ, 1999; Kiyokawa E, 1994; Tang XX, 1999; Vogt T, 1998; Liu W, 2002; Stephenson SA, 2001; Steube KG 1999; Berclaz G, 1996).

In certain embodiments, the present invention provides polypeptide therapeutic agents that inhibit activity of Ephrin B2, EphB4, or both. As used herein, the term "polypeptide therapeutic agent" or "polypeptide agent" is a generic term which includes any polypeptide that blocks signaling through the Ephrin B2/EphB4 pathway. A preferred polypeptide therapeutic agent of the invention is a soluble polypeptide of Ephrin B2 or EphB4. Another preferred polypeptide therapeutic agent of the invention is an antagonist antibody that binds to Ephrin B2 or EphB4. For example, such polypeptide therapeutic agent can inhibit function of Ephrin B2 or EphB4, inhibit the interaction between Ephrin B2 and EphB4, inhibit the phosphorylation of Ephrin B2 or EphB4, or inhibit any of the downstream signaling events upon binding of Ephrin B2 to EphB4. Such polypeptides may include EphB4 or EphrinB2 that are modified so as to improve serum half-life, such as by PEGylation or stable association with a serum albumin protein.

15 II. Soluble Polypeptides

5

10

20

25

30

In certain aspects, the invention relates to a soluble polypeptide comprising an extracellular domain of an Ephrin B2 protein (referred to herein as an Ephrin B2 soluble polypeptide) or comprising an extracellular domain of an EphB4 protein (referred to herein as an EphB4 soluble polypeptide). Preferably, the subject soluble polypeptide is a monomer and is capable of binding with high affinity to Ephrin B2 or EphB4. In a specific embodiment, the EphB4 soluble polypeptide of the invention comprises a globular domain of an EphB4 protein. Specific examples EphB4 soluble polypeptides are provided in Figures 1, 2, and 15. Specific examples of Ephrin B2 soluble polypeptides are provided in Figures 3 and 14.

As used herein, the subject soluble polypeptides include fragments, functional variants, and modified forms of EphB4 soluble polypeptide or an Ephrin B2 soluble polypeptide. These fragments, functional variants, and modified forms of the subject soluble polypeptides antagonize function of EphB4, Ephrin B2 or both.

In certain embodiments, isolated fragments of the subject soluble polypeptides can be obtained by screening polypeptides recombinantly produced from the corresponding fragment of the nucleic acid encoding an EphB4 or Ephrin B2 soluble polypeptides. In addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry. The fragments can be

produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments that can function to inhibit function of EphB4 or Ephrin B2, for example, by testing the ability of the fragments to inhibit angiogenesis or tumor growth.

5

10

15

20

25

30

In certain embodiments, a functional variant of an EphB4 soluble polypeptide comprises an amino acid sequence that is at least 90%, 95%, 97%, 99% or 100% identical to residues 1-197, 29-197, 1-312, 29-132, 1-321, 29-321, 1-326, 29-326, 1-412, 29-412, 1-427, 29-427, 1-429, 29-429, 1-526, 29-526, 1-537 and 29-537 of the amino acid sequence defined by Figure 65 (SEQ ID NO: 10). Such polypeptides may be used in a processed form, and accordingly, in certain embodiments, an EphB4 soluble polypeptide comprises an amino acid sequence that is at least 90%, 95%, 97%, 99% or 100% identical to residues 16-197, 16-312, 16-321, 16-326, 16-412, 16-427, 16-429, 16-526 and 16-537 of the amino acid sequence defined by Figure 65 (SEQ ID NO:10).

In other embodiments, a functional variant of an Ephrin B2 soluble polypeptide comprises a sequence at least 90%, 95%, 97%, 99% or 100% identical to residues 1-225 of the amino acid sequence defined by Figure 66 (SEQ ID NO: 11) or a processed form, such as one comprising a sequence at least 90%, 95%, 97%, 99% or 100% identical to residues 26-225 of the amino acid sequence defined by Figure 66 (SEQ ID NO: 11).

In certain embodiments, the present invention contemplates making functional variants by modifying the structure of the subject soluble polypeptide for such purposes as enhancing therapeutic or prophylactic efficacy, or stability (e.g., ex vivo shelf life and resistance to proteolytic degradation in vivo). Such modified soluble polypeptide are considered functional equivalents of the naturally-occurring EphB4 or Ephrin B2 soluble polypeptide. Modified soluble polypeptides can be produced, for instance, by amino acid substitution, deletion, or addition. For instance, it is reasonable to expect, for example, that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid (e.g., conservative mutations) will not have a major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains.

This invention further contemplates a method of generating sets of combinatorial mutants of the EphB4 or Ephrin B2 soluble polypeptides, as well as truncation mutants, and is especially useful for identifying functional variant sequences. The purpose of screening such combinatorial libraries may be to generate, for example, soluble polypeptide variants

which can act as antagonists of EphB4, EphB2, or both. Combinatorially-derived variants can be generated which have a selective potency relative to a naturally occurring soluble polypeptide. Such variant proteins, when expressed from recombinant DNA constructs, can be used in gene therapy protocols. Likewise, mutagenesis can give rise to variants which have intracellular half-lives dramatically different than the corresponding wild-type soluble polypeptide. For example, the altered protein can be rendered either more stable or less stable to proteolytic degradation or other cellular process which result in destruction of, or otherwise inactivation of the protein of interest (e.g., a soluble polypeptide). Such variants, and the genes which encode them, can be utilized to alter the subject soluble polypeptide levels by modulating their half-life. For instance, a short half-life can give rise to more transient biological effects and, when part of an inducible expression system, can allow tighter control of recombinant soluble polypeptide levels within the cell. As above, such proteins, and particularly their recombinant nucleic acid constructs, can be used in gene therapy protocols.

5

10

15

20

25

30

There are many ways by which the library of potential homologs can be generated from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be carried out in an automatic DNA synthesizer, and the synthetic genes then be ligated into an appropriate gene for expression. The purpose of a degenerate set of genes is to provide, in one mixture, all of the sequences encoding the desired set of potential soluble polypeptide sequences. The synthesis of degenerate oligonucleotides is well known in the art (see for example, Narang, SA (1983) Tetrahedron 39:3; Itakura et al., (1981) Recombinant DNA, Proc. 3rd Cleveland Sympos. Macromolecules, ed. AG Walton, Amsterdam: Elsevier pp273-289; Itakura et al., (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al., (1983) Nucleic Acid Res. 11:477). Such techniques have been employed in the directed evolution of other proteins (see, for example, Scott et al., (1990) Science 249:386-390; Roberts et al., (1992) PNAS USA 89:2429-2433; Devlin et al., (1990) Science 249: 404-406; Cwirla et al., (1990) PNAS USA 87: 6378-6382; as well as U.S. Patent Nos: 5,223,409, 5,198,346, and 5,096,815).

Alternatively, other forms of mutagenesis can be utilized to generate a combinatorial library. For example, soluble polypeptide variants (e.g., the antagonist forms) can be generated and isolated from a library by screening using, for example, alanine scanning mutagenesis and the like (Ruf et al., (1994) Biochemistry 33:1565-1572; Wang et al., (1994) J. Biol. Chem. 269:3095-3099; Balint et al., (1993) Gene 137:109-118; Grodberg et al., (1993) Eur. J. Biochem. 218:597-601; Nagashima et al., (1993) J. Biol.

Chem. 268:2888-2892; Lowman et al., (1991) Biochemistry 30:10832-10838; and Cunningham et al., (1989) Science 244:1081-1085), by linker scanning mutagenesis (Gustin et al., (1993) Virology 193:653-660; Brown et al., (1992) Mol. Cell Biol. 12:2644-2652; McKnight et al., (1982) Science 232:316); by saturation mutagenesis (Meyers et al., (1986) Science 232:613); by PCR mutagenesis (Leung et al., (1989) Method Cell Mol Biol 1:11-19); or by random mutagenesis, including chemical mutagenesis, etc. (Miller et al., (1992) A Short Course in Bacterial Genetics, CSHL Press, Cold Spring Harbor, NY; and Greener et al., (1994) Strategies in Mol Biol 7:32-34). Linker scanning mutagenesis, particularly in a combinatorial setting, is an attractive method for identifying truncated (bioactive) forms of the subject soluble polypeptide.

5

10

15

20

25

30

A wide range of techniques are known in the art for screening gene products of combinatorial libraries made by point mutations and truncations, and, for that matter, for screening cDNA libraries for gene products having a certain property. Such techniques will be generally adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of the subject soluble polypeptides. The most widely used techniques for screening large gene libraries typically comprises cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates relatively easy isolation of the vector encoding the gene whose product was detected. Each of the illustrative assays described below are amenable to high through-put analysis as necessary to screen large numbers of degenerate sequences created by combinatorial mutagenesis techniques.

In certain embodiments, the subject soluble polypeptides of the invention include a small molecule such as a peptide and a peptidomimetic. As used herein, the term "peptidomimetic" includes chemically modified peptides and peptide-like molecules that contain non-naturally occurring amino acids, peptoids, and the like. Peptidomimetics provide various advantages over a peptide, including enhanced stability when administered to a subject. Methods for identifying a peptidomimetic are well known in the art and include the screening of databases that contain libraries of potential peptidomimetics. For example, the Cambridge Structural Database contains a collection of greater than 300,000 compounds that have known crystal structures (Allen et al., Acta Crystallogr. Section B, 35:2331 (1979)). Where no crystal structure of a target molecule is available, a structure can be generated using, for example, the program CONCORD (Rusinko et al., J. Chem. Inf. Comput. Sci. 29:251 (1989)). Another database, the Available Chemicals Directory

(Molecular Design Limited, Informations Systems; San Leandro Calif.), contains about 100,000 compounds that are commercially available and also can be searched to identify potential peptidomimetics of the EphB4 or Ephrin B2 soluble polypeptides.

In certain embodiments, the soluble polypeptides of the invention may further comprise post-translational modifications. Exemplary post-translational protein modification include phosphorylation, acetylation, methylation, ADP-ribosylation, ubiquitination, glycosylation, carbonylation, sumoylation, biotinylation or addition of a polypeptide side chain or of a hydrophobic group. As a result, the modified soluble polypeptides may contain non-amino acid elements, such as lipids, poly- or monosaccharide, and phosphates. Effects of such non-amino acid elements on the functionality of a soluble polypeptide may be tested for its antagonizing role in EphB4 or Ephrin B2 function, e.g, it inhibitory effect on angiogenesis or on tumor growth.

5

10

15

30

In one specific embodiment of the present invention, modified forms of the subject soluble polypeptides comprise linking the subject soluble polypeptides to nonproteinaceous polymers. In one specific embodiment, the polymer is polyethylene glycol ("PEG"), polypropylene glycol, or polyoxyalkylenes, in the manner as set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. Examples of the modified polypeptide of the invention include PEGylated soluble Ephrin B2 and PEGylated soluble EphB4.

PEG is a well-known, water soluble polymer that is commercially available or can be prepared by ring-opening polymerization of ethylene glycol according to methods well known in the art (Sandler and Karo, Polymer Synthesis, Academic Press, New York, Vol. 3, pages 138-161). The term "PEG" is used broadly to encompass any polyethylene glycol molecule, without regard to size or to modification at an end of the PEG, and can be represented by the formula:

X—O(CH₂CH₂O)_{n-1}CH₂CH₂OH (1), where n is 20 to 2300 and X is H or a terminal modification, *e.g.*, a C₁₋₄ alkyl. In one embodiment, the PEG of the invention terminates on one end with hydroxy or methoxy, *i.e.*, X is H or CH₃ ("methoxy PEG"). A PEG can contain further chemical groups which are necessary for binding reactions; which results from the chemical synthesis of the molecule; or which is a spacer for optimal distance of parts of the molecule. In addition, such a PEG can consist of one or more PEG side-chains which are linked together. PEGs with more than one PEG chain are called multiarmed or branched PEGs. Branched PEGs can be prepared, for example, by the addition of

polyethylene oxide to various polyols, including glycerol, pentaerythriol, and sorbitol. For example, a four-armed branched PEG can be prepared from pentaerythriol and ethylene oxide. Branched PEG are described in, for example, EP-A 0 473 084 and U.S. Pat. No. 5,932,462. One form of PEGs includes two PEG side-chains (PEG2) linked via the primary amino groups of a lysine (Monfardini, C., et al., Bioconjugate Chem. 6 (1995) 62-69).

5

10

15

20

25

30

PEG conjugation to peptides or proteins generally involves the activation of PEG and coupling of the activated PEG-intermediates directly to target proteins/peptides or to a linker, which is subsequently activated and coupled to target proteins/peptides (see Abuchowski, A. et al, *J. Biol. Chem.*, 252, 3571 (1977) and *J. Biol. Chem.*, 252, 3582 (1977), Zalipsky, et al., and Harris et. al., in: Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications; (J. M. Harris ed.) Plenum Press: New York, 1992; Chap.21 and 22). It is noted that an EphB4containing a PEG molecule is also known as a conjugated protein, whereas the protein lacking an attached PEG molecule can be referred to as unconjugated.

Any molecular mass for a PEG can be used as practically desired, *e.g.*, from about 1,000 Daltons (Da) to 100,000 Da (n is 20 to 2300), for conjugating to Eph4 or EphrinB2 soluble peptides. The number of repeating units "n" in the PEG is approximated for the molecular mass described in Daltons. It is preferred that the combined molecular mass of PEG on an activated linker is suitable for pharmaceutical use. Thus, in one embodiment, the molecular mass of the PEG molecules does not exceed 100,000 Da. For example, if three PEG molecules are attached to a linker, where each PEG molecule has the same molecular mass of 12,000 Da (each n is about 270), then the total molecular mass of PEG on the linker is about 36,000 Da (total n is about 820). The molecular masses of the PEG attached to the linker can also be different, e.g., of three molecules on a linker two PEG molecules can be 5,000 Da each (each n is about 110) and one PEG molecule can be 12,000 Da (n is about 270).

In a specific embodiment of the invention, an EphB4 polypeptide is covalently linked to one poly(ethylene glycol) group of the formula: —CO— $(CH_2)_x$ — $(OCH_2CH_2)_m$ —OR, with the —CO (i.e. carbonyl) of the poly(ethylene glycol) group forming an amide bond with one of the amino groups of EphB4; R being lower alkyl; x being 2 or 3; m being from about 450 to about 950; and n and m being chosen so that the molecular weight of the conjugate minus the EphB4 protein is from about 10 to 40 kDa. In one embodiment, an EphB4 ϵ -amino group of a lysine is the available (free) amino group.

The above conjugates may be more specifically presented by formula (II): P—NHCO—(CH₂)_x—(OCH₂CH₂)_m—OR (II), wherein P is the group of an EphB4 protein as described herein, (i.e. without the amino group or amino groups which form an amide linkage with the carbonyl shown in formula (II); and wherein R is lower alkyl; x is 2 or 3; m is from about 450 to about 950 and is chosen so that the molecular weight of the conjugate minus the EphB4 protein is from about 10 to about 40 kDa. As used herein, the given ranges of "m" have an orientational meaning. The ranges of "m" are determined in any case, and exactly, by the molecular weight of the PEG group.

5

10

15

20

25

30

respectively.

One skilled in the art can select a suitable molecular mass for PEG, e.g., based on how the pegylated EphB4 will be used therapeutically, the desired dosage, circulation time, resistance to proteolysis, immunogenicity, and other considerations. For a discussion of PEG and its use to enhance the properties of proteins, see N. V. Katre, Advanced Drug Delivery Reviews 10: 91-114 (1993).

In one embodiment of the invention, PEG molecules may be activated to react with amino groups on EphB4, such as with lysines (Bencham C. O. et al., Anal. Biochem., 131, 25 (1983); Veronese, F. M. et al., Appl. Biochem., 11, 141 (1985).; Zalipsky, S. et al., Polymeric Drugs and Drug Delivery Systems, adrs 9-110 ACS Symposium Series 469 (1999); Zalipsky, S. et al., Europ. Polym. J., 19, 1177-1183 (1983); Delgado, C. et al., Biotechnology and Applied Biochemistry, 12, 119-128 (1990)).

In one specific embodiment, carbonate esters of PEG are used to form the PEG-EphB4 conjugates. N,N'-disuccinimidylcarbonate (DSC) may be used in the reaction with PEG to form active mixed PEG-succinimidyl carbonate that may be subsequently reacted with a nucleophilic group of a linker or an amino group of EphB4 (see U.S. Pat. No. 5,281,698 and U.S. Pat. No. 5,932,462). In a similar type of reaction, 1,1'- (dibenzotriazolyl)carbonate and di-(2-pyridyl)carbonate may be reacted with PEG to form PEG-benzotriazolyl and PEG-pyridyl mixed carbonate (U.S. Pat. No. 5,382,657),

In one embodiment, additional sites for PEGylation are introduced by site-directed mutagenesis by introducing one or more lysine residues. For instance, one or more arginine residues may be mutated to a lysine residue. In another embodiment, additional PEGylation sites are chemically introduced by modifying amino acids on EphB4. In one specific embodiment, carboxyl groups in EphB4 are conjugated with diaminobutane,

resulting in carboxyl amidation (see Li et al., Anal Biochem. 2004;330(2):264-71). This reaction may be catalyzed by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, a water-soluble carbodiimide. The resulting amides can then conjugated to PEG.

5

10

15

20

25

30

PEGylation of EphB4 can be performed according to the methods of the state of the art, for example by reaction of EphB4 with electrophilically active PEGs (supplier: Shearwater Corp., USA, www.shearwatercorp.com). Preferred PEG reagents of the present invention are, e.g., N-hydroxysuccinimidyl propionates (PEG-SPA), butanoates (PEG-SBA), PEG-succinimidyl propionate or branched N-hydroxysuccinimides such as mPEG2-NHS (Monfardini, C., et al., Bioconjugate Chem. 6 (1995) 62-69). Such methods may used to PEGylated at an ϵ -amino group of an EphB4 lysine or the N-terminal amino group of EphB4.

In another embodiment, PEG molecules may be coupled to sulfhydryl groups on EphB4 (Sartore, L., et al., Appl. Biochem. Biotechnol., 27, 45 (1991); Morpurgo et al., Biocon. Chem., 7, 363-368 (1996); Goodson et al., Bio/Technology (1990) 8, 343; U.S. Patent No. 5,766,897). U.S. Patent Nos. 6,610,281 and 5,766,897 describes exemplary reactive PEG species that may be coupled to sulfhydryl groups.

In some embodiments where PEG molecules are conjugated to cysteine residues on EphB4, the cysteine residues are native to Eph4, whereas in other embodiments, one or more cysteine residues are engineered into EphB4. Mutations may be introduced into an EphB4 coding sequence to generate cysteine residues. This might be achieved, for example, by mutating one or more amino acid residues to cysteine. Preferred amino acids for mutating to a cysteine residue include serine, threonine, alanine and other hydrophilic residues. Preferably, the residue to be mutated to cysteine is a surface-exposed residue. Algorithms are well-known in the art for predicting surface accessibility of residues based on primary sequence or a protein. Alternatively, surface residues may be predicted by comparing the amino acid sequences of EphB4 an EphB2, given that the crystal structure of EphB2 has been solved (see Himanen et al., Nature. (2001) 20-27;414(6866):933-8) and thus the surface-exposed residues identified. In one embodiment, cysteine residues are introduced into EphB4 at or near the N- and/or C-terminus, or within loop regions. Loop regions may be identified by comparing the EphB4 sequence to that of EphB2.

In some embodiments, the pegylated EphB4 comprises a PEG molecule covalently attached to the alpha amino group of the N-terminal amino acid. Site specific N-terminal reductive amination is described in Pepinsky et al., (2001) JPET, 297,1059, and U.S. Pat.

No. 5,824,784. The use of a PEG-aldehyde for the reductive amination of a protein utilizing other available nucleophilic amino groups is described in U.S. Pat. No. 4,002,531, in Wieder et al., (1979) J. Biol. Chem. 254,12579, and in Chamow et al., (1994) Bioconjugate Chem. 5, 133.

In another embodiment, pegylated EphB4 comprises one or more PEG molecules covalently attached to a linker, which in turn is attached to the alpha amino group of the amino acid residue at the N-terminus of EphB4. Such an approach is disclosed in U.S. Patent Publication No. 2002/0044921 and in WO94/01451.

5

10

15

20

25

30

In one embodiment, EphB4 is pegylated at the C-terminus. In a specific embodiment, a protein is pegylated at the C-terminus by the introduction of C-terminal azido-methionine and the subsequent conjugation of a methyl-PEG-triarylphosphine compound via the Staudinger reaction. This C-terminal conjugation method is described in Cazalis et al., C-Terminal Site-Specific PEGylation of a Truncated Thrombomodulin Mutant with Retention of Full Bioactivity, *Bioconjug Chem.* 2004;15(5):1005-1009.

Monopegylation of EphB4 can also be produced according to the general methods described in WO 94/01451. WO 94/01451 describes a method for preparing a recombinant polypeptide with a modified terminal amino acid alpha-carbon reactive group. The steps of the method involve forming the recombinant polypeptide and protecting it with one or more biologically added protecting groups at the N-terminal alpha-amine and C-terminal alpha-carboxyl. The polypeptide can then be reacted with chemical protecting agents to selectively protect reactive side chain groups and thereby prevent side chain groups from being modified. The polypeptide is then cleaved with a cleavage reagent specific for the biological protecting group to form an unprotected terminal amino acid alpha-carbon reactive group. The unprotected terminal amino acid alpha-carbon reactive group is modified with a chemical modifying agent. The side chain protected terminally modified single copy polypeptide is then deprotected at the side chain groups to form a terminally modified recombinant single copy polypeptide. The number and sequence of steps in the method can be varied to achieve selective modification at the N- and/or C-terminal amino acid of the polypeptide.

The ratio of EphB4 (or EphrinB2) to activated PEG in the conjugation reaction can be from about 1:0.5 to 1:50, between from about 1:1 to 1:30, or from about 1:5 to 1:15. Various aqueous buffers can be used in the present method to catalyze the covalent addition of PEG to EphB4. In one embodiment, the pH of a buffer used is from about 7.0 to 9.0. In

another embodiment, the pH is in a slightly basic range, e.g., from about 7.5 to 8.5. Buffers having a pKa close to neutral pH range may be used, e.g., phosphate buffer.

In one embodiment, the temperature range for preparing a mono-PEG-EphB4 is from about 4°C. to 40°C, or from about 18°C. to 25°C. In another embodiment, the temperature is room temperature.

5

10

15

20

25

30

The pegylation reaction can proceed from 3 to 48 hours, or from 10 to 24 hours. The reaction can be monitored using SE-HPLC to distinguish EphB4, mono-PEG-EphB4 and poly-PEG-EphB4. It is noted that mono-PEG-EphB4 forms before di-PEG-EphB4. When the mono-PEG-EphB4 concentration reaches a plateau, the reaction can be terminated by adding a quenching agent to react with unreacted PEG. In some embodiments, the quenching agent is a free amino acid, such as glycine, cysteine or lysine.

Conventional separation and purification techniques known in the art can be used to purify pegylated EphB4 or EphrinB2 products, such as size exclusion (e.g. gel filtration) and ion exchange chromatography. Products may also be separated using SDS-PAGE. Products that may be separated include mono-, di-, tri- poly- and un- pegylated EphB4, as well as free PEG. The percentage of mono-PEG conjugates can be controlled by pooling broader fractions around the elution peak to increase the percentage of mono-PEG in the composition. About ninety percent mono-PEG conjugates represents a good balance of yield and activity. Compositions in which, for example, at least ninety-two percent or at least ninety-six percent of the conjugates are mono-PEG species may be desired. In an embodiment of this invention the percentage of mono-PEG conjugates is from ninety percent to ninety-six percent.

In one embodiment, pegylated EphB4 proteins of the invention contain one, two or more PEG moieties. In one embodiment, the PEG moiety(ies) are bound to an amino acid residue which is on the surface of the protein and/or away from the surface that contacts EphrinB2. In one embodiment, the combined or total molecular mass of PEG in PEG-EphB4 is from about 3,000 Da to 60,000 Da, optionally from about 10,000 Da to 36,000 Da. In a one embodiment, the PEG in pegylated EphB4 is a substantially linear, straight-chain PEG.

In one embodiment of the invention, the PEG in pegylated EphB4 or EphrinB2 is not hydrolyzed from the pegylated amino acid residue using a hydroxylamine assay, e.g., 450 mM hydroxylamine (pH 6.5) over 8 to 16 hours at room temperature, and is thus stable. In one embodiment, greater than 80% of the composition is stable mono-PEG-EphB4, more

preferably at least 90%, and most preferably at least 95%.

5

10

15

20

25

30

In another embodiment, the pegylated EphB4 proteins of the invention will preferably retain at least 25%, 50%, 60%, 70%least 80%, 85%, 90%, 95% or 100% of the biological activity associated with the unmodified protein. In one embodiment, biological activity refers to its ability to bind to EphrinB2. In one specific embodiment, the pegylated EphB4 protein shows an increase in binding to EphrinB2 relative to unpegylated EphB4.

In a preferred embodiment, the PEG-EphB4 has a half-life ($t_{1/2}$) which is enhanced relative to the half-life of the unmodified protein. Preferably, the half-life of PEG-EphB4 is enhanced by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400% or 500%, or even by 1000% relative to the half-life of the unmodified EphB4 protein. In some embodiments, the protein half-life is determined in vitro, such as in a buffered saline solution or in serum. In other embodiments, the protein half-life is an *in vivo* half life, such as the half-life of the protein in the serum or other bodily fluid of an animal.

In certain aspects, functional variants or modified forms of the subject soluble polypeptides include fusion proteins having at least a portion of the soluble polypeptide and one or more fusion domains. Well known examples of such fusion domains include, but are not limited to, polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, and an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), which are particularly useful for isolation of the fusion proteins by affinity chromatography. For the purpose of affinity purification, relevant matrices for affinity chromatography, such as glutathione-, amylase-, and nickel- or cobalt- conjugated resins are used. Another fusion domain well known in the art is green fluorescent protein (GFP). Fusion domains also include "epitope tags," which are usually short peptide sequences for which a specific antibody is available. Well known epitope tags for which specific monoclonal antibodies are readily available include FLAG, influenza virus haemagglutinin (HA), and c-myc tags. In some cases, the fusion domains have a protease cleavage site, such as for Factor Xa or Thrombin, which allows the relevant protease to partially digest the fusion proteins and thereby liberate the recombinant proteins therefrom. The liberated proteins can then be isolated from the fusion domain by subsequent chromatographic separation.

In certain embodiments, the soluble polypeptides of the present invention contain one or more modifications that are capable of stabilizing the soluble polypeptides. For

example, such modifications enhance the in vitro half life of the soluble polypeptides, enhance circulatory half life of the soluble polypeptides or reducing proteolytic degradation of the soluble polypeptides.

In a further embodiment, a soluble polypeptide of the present invention is fused to a cytotoxic agent. In this method, the fusion acts to target the cytotoxic agent to a specific tissue or cell (e.g., a tumor tissue or cell), resulting in a reduction in the number of afflicted cells. Such an approach can thereby reduce symptoms associated with cancer and angiogenesis-associated disorders. Cytotoxic agents include, but are not limited to, diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like, as well as radiochemicals.

5

10

15

20

25

30

In certain embodiments, the soluble polypeptides of the present invention may be fused to other therapeutic proteins or to other proteins such as Fc or serum albumin for pharmacokinetic purposes. See for example U.S. Pat. Nos. 5,766,883 and 5,876,969, both of which are incorporated by reference. In some embodiments, soluble peptides of the present invention are fused to Fc variants. In a specific embodiment, the soluble polypeptide is fused to an Fc variant which does not homodimerize, such as one lacking the cysteine residues which form cysteine bonds with other Fc chains.

In some embodiments, the modified proteins of the invention comprise fusion proteins with an Fc region of an immunoglobulin. As is known, each immunoglobulin heavy chain constant region comprises four or five domains. The domains are named sequentially as follows: CH1-hinge-CH2-CH3(-CH4). The DNA sequences of the heavy chain domains have cross-homology among the immunoglobulin classes, e.g., the CH2 domain of IgG is homologous to the CH2 domain of IgA and IgD, and to the CH3 domain of IgM and IgE. As used herein, the term, "immunoglobulin Fc region" is understood to mean the carboxyl-terminal portion of an immunoglobulin chain constant region, preferably an immunoglobulin heavy chain constant region, or a portion thereof. For example, an immunoglobulin Fc region may comprise 1) a CH1 domain, a CH2 domain, and a CH3 domain, 4) a CH2 domain and a CH3 domain, or 5) a combination of two or more domains and an immunoglobulin hinge region. In a preferred embodiment the immunoglobulin Fc region comprises at least an immunoglobulin hinge region a CH2 domain and a CH3 domain, and preferably lacks the CH1 domain.

In one embodiment, the class of immunoglobulin from which the heavy chain constant region is derived is $IgG(Ig\gamma)$ (γ subclasses 1, 2, 3, or 4). The nucleotide and amino acid sequences of human Fc .gamma.-1 are set forth in SEQ ID NOS: 5 and 6. The nucleotide and amino acid sequences of murine Fc γ -2a are set forth in SEQ ID NOS: 7 and 8. Other classes of immunoglobulin, $IgA(Ig\alpha)$, $IgD(Ig\delta)$, $IgE(Ig\epsilon)$ and $IgM(Ig\mu)$, may be used. The choice of appropriate immunoglobulin heavy chain constant regions is discussed in detail in U.S. Pat. Nos. 5,541,087, and 5,726,044. The choice of particular immunoglobulin heavy chain constant region sequences from certain immunoglobulin classes and subclasses to achieve a particular result is considered to be within the level of skill in the art. The portion of the DNA construct encoding the immunoglobulin Fc region preferably comprises at least a portion of a hinge domain, and preferably at least a portion of a CH₃ domain of Fc γ or the homologous domains in any of IgA, IgD, IgE, or IgM.

5

10

15

20

25

30

Furthermore, it is contemplated that substitution or deletion of amino acids within the immunoglobulin heavy chain constant regions may be useful in the practice of the invention. One example would be to introduce amino acid substitutions in the upper CH2 region to create a Fc variant with reduced affinity for Fc receptors (Cole et al. (1997) J. IMMUNOL. 159:3613). One of ordinary skill in the art can prepare such constructs using well known molecular biology techniques.

In a specific embodiment of the present invention, the modified forms of the subject soluble polypeptides are fusion proteins having at least a portion of the soluble polypeptide (e.g., an ectodomain of Ephrin B2 or EphB4) and a stabilizing domain such as albumin. As used herein, "albumin" refers collectively to albumin protein or amino acid sequence, or an albumin fragment or variant, having one or more functional activities (e.g., biological activities) of albumin. In particular, "albumin" refers to human albumin or fragments thereof (see EP 201 239, EP 322 094 WO 97/24445, WO95/23857) especially the mature form of human albumin, or albumin from other vertebrates or fragments thereof, or analogs or variants of these molecules or fragments thereof.

The present invention describes that such fusion proteins are more stable relative to the corresponding wildtype soluble protein. For example, the subject soluble polypeptide (e.g., an ectodomain of Ephrin B2 or EphB4) can be fused with human serum albumin (HSA), bovine serum albumin (BSA), or any fragment of an albumin protein which has stabilization activity. Such stabilizing domains include human serum albumin (HSA) and bovine serum albumin (BSA).

In particular, the albumin fusion proteins of the invention may include naturally occurring polymorphic variants of human albumin and fragments of human albumin (See WO95/23857), for example those fragments disclosed in EP 322 094 (namely HA (Pn), where n is 369 to 419). The albumin may be derived from any vertebrate, especially any mammal, for example human, cow, sheep, or pig. Non-mammalian albumins include, but are not limited to, hen and salmon. The albumin portion of the albumin fusion protein may be from a different animal than the EphB4.

5

10

15

20

25

30

In some embodiments, the albumin protein portion of an albumin fusion protein corresponds to a fragment of serum albumin. Fragments of serum albumin polypeptides include polypeptides having one or more residues deleted from the amino terminus or from the C-terminus. Generally speaking, an HA fragment or variant will be at least 100 amino acids long, preferably at least 150 amino acids long. The HA variant may consist of or alternatively comprise at least one whole domain of HA. Domains, with reference to SEQ ID NO:18 in U.S. Patent Publication No. 2004/0171123, are as follows: domains 1 (amino acids 1-194), 2 (amino acids 195-387), 3 (amino acids 388-585), 1+2 (1-387), 2+3 (195-585) or 1+3 (amino acids 1-194 +amino acids 388-585). Each domain is itself made up of two homologous subdomains namely 1-105, 120-194, 195-291, 316-387, 388-491 and 512-585, with flexible inter-subdomain linker regions comprising residues Lys106 to Glu119, Glu292 to Val315 and Glu492 to Ala511.

In one embodiment, the EphB4-HSA fusion has one EphB4 soluble polypeptide linked to one HSA molecule, but other conformations are within the invention. For example, EphB4-HSA fusion proteins can have any of the following formula: R₁-L-R₂; R₂-L-R₁; R₁-L-R₂-L-R₁; or R₂-L-R₁-L-R₂; R₁-R₂; R₂-R₁; R₁-R₂-R₁; or R₂-R₁-R₂; wherein R₁ is a soluble EphB4 sequence, R₂ is HSA, and L is a peptide linker sequence.

In a specific embodiment, the EphB4 and HSA domains are linked to each other, preferably via a linker sequence, which separates the EphB4 and HSA domains by a distance sufficient to ensure that each domain properly folds into its secondary and tertiary structures. Preferred linker sequences (1) should adopt a flexible extended conformation, (2) should not exhibit a propensity for developing an ordered secondary structure which could interact with the functional EphB4 and HSA domains, and (3) should have minimal hydrophobic or charged character, which could promote interaction with the functional protein domains. Typical surface amino acids in flexible protein regions include Gly, Asn and Ser. Permutations of amino acid sequences containing Gly, Asn and Ser would be

expected to satisfy the above criteria for a linker sequence. Other near neutral amino acids, such as Thr and Ala, can also be used in the linker sequence.

In a specific embodiment, a linker sequence length of about 20 amino acids can be used to provide a suitable separation of functional protein domains, although longer or shorter linker sequences may also be used. The length of the linker sequence separating EphB4 and HSA can be from 5 to 500 amino acids in length, or more preferably from 5 to 100 amino acids in length. Preferably, the linker sequence is from about 5-30 amino acids in length. In preferred embodiments, the linker sequence is from about 5 to about 20 amino acids, and is advantageously from about 10 to about 20 amino acids. Amino acid sequences useful as linkers of EphB4 and HSA include, but are not limited to, (SerGly₄)y wherein y is greater than or equal to 8, or Gly₄SerGly₅Ser. A preferred linker sequence has the formula (SerGly₄)₄. Another preferred linker has the sequence ((Ser-Ser-Ser-Gly)3-Ser-Pro).

In one embodiment, the polypeptides of the present invention and HSA proteins are directly fused without a linker sequence. In preferred embodiments, the C-terminus of a soluble EphB4 polypeptide can be directly fused to the N-terminus of HSA or the C-terminus of HSA can be directly fused to the N-terminus of soluble EphB4.

In some embodiments, the immunogenicity of the fusion junction between HSA and EphB4 may be reduced the by identifying a candidate T-cell epitope within a junction region spanning a fusion protein and changing an amino acid within the junction region as described in U.S. Patent Publication No. 2003/0166877.

In certain embodiments, soluble polypeptides (unmodified or modified) of the invention can be produced by a variety of art-known techniques. For example, such soluble polypeptides can be synthesized using standard protein chemistry techniques such as those described in Bodansky, M. Principles of Peptide Synthesis, Springer Verlag, Berlin (1993) and Grant G. A. (ed.), Synthetic Peptides: A User's Guide, W. H. Freeman and Company, New York (1992). In addition, automated peptide synthesizers are commercially available (e.g., Advanced ChemTech Model 396; Milligen/Biosearch 9600). Alternatively, the soluble polypeptides, fragments or variants thereof may be recombinantly produced using various expression systems as is well known in the art (also see below).

30

25

5

10

15

20

III. Nucleic acids encoding soluble polypeptides

In certain aspects, the invention relates to isolated and/or recombinant nucleic acids encoding an EphB4 or Ephrin B2 soluble polypeptide. The subject nucleic acids may be single-stranded or double-stranded, DNA or RNA molecules. These nucleic acids are useful as therapeutic agents. For example, these nucleic acids are useful in making recombinant soluble polypeptides which are administered to a cell or an individual as therapeutics. Alternative, these nucleic acids can be directly administered to a cell or an individual as therapeutics such as in gene therapy.

5

10

15

20

25

30

In certain embodiments, the invention provides isolated or recombinant nucleic acid sequences that are at least 80%, 85%, 90%, 95%, 97%, 98%, 99% or 100% identical to a region of the nucleotide sequence depicted in SEQ ID Nos. 6-9. One of ordinary skill in the art will appreciate that nucleic acid sequences complementary to the subject nucleic acids, and variants of the subject nucleic acids are also within the scope of this invention. In further embodiments, the nucleic acid sequences of the invention can be isolated, recombinant, and/or fused with a heterologous nucleotide sequence, or in a DNA library.

In other embodiments, nucleic acids of the invention also include nucleotide sequences that hybridize under highly stringent conditions to the nucleotide sequence depicted in SEQ ID Nos. 6-9, or complement sequences thereof. As discussed above, one of ordinary skill in the art will understand readily that appropriate stringency conditions which promote DNA hybridization can be varied. One of ordinary skill in the art will understand readily that appropriate stringency conditions which promote DNA hybridization can be varied. For example, one could perform the hybridization at 6.0 x sodium chloride/sodium citrate (SSC) at about 45 °C, followed by a wash of 2.0 x SSC at 50 °C. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50 °C to a high stringency of about 0.2 x SSC at 50 °C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22 °C, to high stringency conditions at about 65 °C. Both temperature and salt may be varied, or temperature or salt concentration may be held constant while the other variable is changed. In one embodiment, the invention provides nucleic acids which hybridize under low stringency conditions of 6 x SSC at room temperature followed by a wash at 2 x SSC at room temperature.

Isolated nucleic acids which differ from the subject nucleic acids due to degeneracy in the genetic code are also within the scope of the invention. For example, a number of amino acids are designated by more than one triplet. Codons that specify the same amino

acid, or synonyms (for example, CAU and CAC are synonyms for histidine) may result in "silent" mutations which do not affect the amino acid sequence of the protein. However, it is expected that DNA sequence polymorphisms that do lead to changes in the amino acid sequences of the subject proteins will exist among mammalian cells. One skilled in the art will appreciate that these variations in one or more nucleotides (up to about 3-5% of the nucleotides) of the nucleic acids encoding a particular protein may exist among individuals of a given species due to natural allelic variation. Any and all such nucleotide variations and resulting amino acid polymorphisms are within the scope of this invention.

5

10

15

20

25

30

In certain embodiments, the recombinant nucleic acids of the invention may be operably linked to one or more regulatory nucleotide sequences in an expression construct. Regulatory nucleotide sequences will generally be appropriate for a host cell used for expression. Numerous types of appropriate expression vectors and suitable regulatory sequences are known in the art for a variety of host cells. Typically, said one or more regulatory nucleotide sequences may include, but are not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and termination sequences, translational start and termination sequences, and enhancer or activator sequences. Constitutive or inducible promoters as known in the art are contemplated by the invention. The promoters may be either naturally occurring promoters, or hybrid promoters that combine elements of more than one promoter. An expression construct may be present in a cell on an episome, such as a plasmid, or the expression construct may be inserted in a chromosome. In a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selectable marker genes are well known in the art and will vary with the host cell used.

In certain aspect of the invention, the subject nucleic acid is provided in an expression vector comprising a nucleotide sequence encoding an EphB4 or Ephrin B2 soluble polypeptide and operably linked to at least one regulatory sequence. Regulatory sequences are art-recognized and are selected to direct expression of the soluble polypeptide. Accordingly, the term regulatory sequence includes promoters, enhancers, and other expression control elements. Exemplary regulatory sequences are described in Goeddel; *Gene Expression Technology: Methods in Enzymology*, Academic Press, San Diego, CA (1990). For instance, any of a wide variety of expression control sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors to express DNA sequences encoding a soluble polypeptide. Such useful expression control sequences, include, for example, the early and late promoters of SV40,

tet promoter, adenovirus or cytomegalovirus immediate early promoter, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage lambda, the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α -mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should also be considered.

5

10

15

20

25

30

This invention also pertains to a host cell transfected with a recombinant gene including a coding sequence for one or more of the subject soluble polypeptide. The host cell may be any prokaryotic or eukaryotic cell. For example, a soluble polypeptide of the invention may be expressed in bacterial cells such as *E. coli*, insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells. Other suitable host cells are known to those skilled in the art.

Accordingly, the present invention further pertains to methods of producing the subject soluble polypeptides. For example, a host cell transfected with an expression vector encoding an EphB4 soluble polypeptide can be cultured under appropriate conditions to allow expression of the EphB4 soluble polypeptide to occur. The EphB4 soluble polypeptide may be secreted and isolated from a mixture of cells and medium containing the soluble polypeptides. Alternatively, the soluble polypeptides may be retained cytoplasmically or in a membrane fraction and the cells harvested, lysed and the protein isolated. A cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. The soluble polypeptides can be isolated from cell culture medium, host cells, or both using techniques known in the art for purifying proteins, including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for particular epitopes of the soluble polypeptides. In a preferred embodiment, the soluble polypeptide is a fusion protein containing a domain which facilitates its purification.

A recombinant nucleic acid of the invention can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells (yeast, avian, insect or mammalian), or both. Expression vehicles for production of a recombinant soluble polypeptide include plasmids and other vectors. For instance, suitable vectors include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids and pUC-derived plasmids for expression in prokaryotic cells, such as *E. coli*.

5

10

15

20

25

30

The preferred mammalian expression vectors contain both prokaryotic sequences to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNAI/amp, pcDNAI/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, pMSG, pSVT7, pko-neo and pHyg derived vectors are examples of mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug resistance selection in both prokaryotic and eukaryotic cells. Alternatively, derivatives of viruses such as the bovine papilloma virus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells. Examples of other viral (including retroviral) expression systems can be found below in the description of gene therapy delivery systems. The various methods employed in the preparation of the plasmids and transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989) Chapters 16 and 17. In some instances, it may be desirable to express the recombinant SLC5A8 polypeptide by the use of a baculovirus expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1392, pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the \(\beta\)-gal containing pBlueBac III).

Techniques for making fusion genes are well known. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by

conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al., John Wiley & Sons: 1992).

IV. Drug Screening Assays

5

10

15

20

25

30

There are numerous approaches to screening for polypeptide therapeutic agents as antagonists of EphB4, Ephrin B2 or both. For example, high-throughput screening of compounds or molecules can be carried out to identify agents or drugs which inhibit angiogenesis or inhibit tumor growth. Test agents can be any chemical (element, molecule, compound, drug), made synthetically, made by recombinant techniques or isolated from a natural source. For example, test agents can be peptides, polypeptides, peptoids, sugars, hormones, or nucleic acid molecules. In addition, test agents can be small molecules or molecules of greater complexity made by combinatorial chemistry, for example, and compiled into libraries. These libraries can comprise, for example, alcohols, alkyl halides, amines, amides, esters, aldehydes, ethers and other classes of organic compounds. Test agents can also be natural or genetically engineered products isolated from lysates or growth media of cells -- bacterial, animal or plant -- or can be the cell lysates or growth media themselves. Presentation of test compounds to the test system can be in either an isolated form or as mixtures of compounds, especially in initial screening steps.

For example, an assay can be carried out to screen for compounds that specifically inhibit binding of Ephrin B2 (ligand) to EphB4 (receptor), or vice-versa, e.g., by inhibition of binding of labeled ligand- or receptor-Fc fusion proteins to immortalized cells. Compounds identified through this screening can then be tested in animals to assess their anti-angiogenesis or anti-tumor activity in vivo.

In one embodiment of an assay to identify a substance that interferes with interaction of two cell surface molecules (e.g., Ephrin B2 and EphB4), samples of cells expressing one type of cell surface molecule (e.g., EphB4) are contacted with either labeled ligand (e.g., Ephrin B2, or a soluble portion thereof, or a fusion protein such as a fusion of the extracellular domain and the Fc domain of IgG) or labeled ligand plus a test compound (or group of test compounds). The amount of labeled ligand which has bound to the cells is determined. A lesser amount of label (where the label can be, for example, a radioactive

isotope, a fluorescent or colorimetric label) in the sample contacted with the test compound(s) is an indication that the test compound(s) interferes with binding. The reciprocal assay using cells expressing a ligand (e.g., an Ephrin B2 ligand or a soluble form thereof) can be used to test for a substance that interferes with the binding of an Eph receptor or soluble portion thereof.

5

10

15

20

25

30

An assay to identify a substance which interferes with interaction between an Eph receptor and an ephrin can be performed with the component (e.g., cells, purified protein, including fusion proteins and portions having binding activity) which is not to be in competition with a test compound, linked to a solid support. The solid support can be any suitable solid phase or matrix, such as a bead, the wall of a plate or other suitable surface (e.g., a well of a microtiter plate), column pore glass (CPG) or a pin that can be submerged into a solution, such as in a well. Linkage of cells or purified protein to the solid support can be either direct or through one or more linker molecules.

In one embodiment, an isolated or purified protein (e.g., an Eph receptor or an ephrin) can be immobilized on a suitable affinity matrix by standard techniques, such as chemical cross-linking, or via an antibody raised against the isolated or purified protein, and bound to a solid support. The matrix can be packed in a column or other suitable container and is contacted with one or more compounds (e.g., a mixture) to be tested under conditions suitable for binding of the compound to the protein. For example, a solution containing compounds can be made to flow through the matrix. The matrix can be washed with a suitable wash buffer to remove unbound compounds and non-specifically bound compounds. Compounds which remain bound can be released by a suitable elution buffer. For example, a change in the ionic strength or pH of the elution buffer can lead to a release of compounds. Alternatively, the elution buffer can comprise a release component or components designed to disrupt binding of compounds (e.g., one or more ligands or receptors, as appropriate, or analogs thereof which can disrupt binding or competitively inhibit binding of test compound to the protein).

Fusion proteins comprising all, or a portion of, a protein (e.g., an Eph receptor or an ephrin) linked to a second moiety not occurring in that protein as found in nature can be prepared for use in another embodiment of the method. Suitable fusion proteins for this purpose include those in which the second moiety comprises an affinity ligand (e.g., an enzyme, antigen, epitope). The fusion proteins can be produced by inserting the protein (e.g., an Eph receptor or an ephrin) or a portion thereof into a suitable expression vector

which encodes an affinity ligand. The expression vector can be introduced into a suitable host cell for expression. Host cells are disrupted and the cell material, containing fusion protein, can be bound to a suitable affinity matrix by contacting the cell material with an affinity matrix under conditions sufficient for binding of the affinity ligand portion of the fusion protein to the affinity matrix.

In one aspect of this embodiment, a fusion protein can be immobilized on a suitable affinity matrix under conditions sufficient to bind the affinity ligand portion of the fusion protein to the matrix, and is contacted with one or more compounds (e.g., a mixture) to be tested, under conditions suitable for binding of compounds to the receptor or ligand protein portion of the bound fusion protein. Next, the affinity matrix with bound fusion protein can be washed with a suitable wash buffer to remove unbound compounds and non-specifically bound compounds without significantly disrupting binding of specifically bound compounds. Compounds which remain bound can be released by contacting the affinity matrix having fusion protein bound thereto with a suitable elution buffer (a compound elution buffer). In this aspect, compound elution buffer can be formulated to permit retention of the fusion protein by the affinity matrix, but can be formulated to interfere with binding of the compound(s) tested to the receptor or ligand protein portion of the fusion protein. For example, a change in the ionic strength or pH of the elution buffer can lead to release of compounds, or the elution buffer can comprise a release component or components designed to disrupt binding of compounds to the receptor or ligand protein portion of the fusion protein (e.g., one or more ligands or receptors or analogs thereof which can disrupt binding of compounds to the receptor or ligand protein portion of the fusion protein). Immobilization can be performed prior to, simultaneous with, or after contacting the fusion protein with compound, as appropriate. Various permutations of the method are possible, depending upon factors such as the compounds tested, the affinity matrix selected, and elution buffer formulation. For example, after the wash step, fusion protein with compound bound thereto can be eluted from the affinity matrix with a suitable elution buffer (a matrix elution buffer). Where the fusion protein comprises a cleavable linker, such as a thrombin cleavage site, cleavage from the affinity ligand can release a portion of the fusion with compound bound thereto. Bound compound can then be released from the fusion protein or its cleavage product by an appropriate method, such as extraction.

V. Methods of Treatment

5

10

15

20

25

30

In certain embodiments, the present invention provides methods of inhibiting angiogenesis and methods of treating angiogenesis-associated diseases. In other embodiments, the present invention provides methods of inhibiting or reducing tumor growth and methods of treating an individual suffering from cancer. These methods involve administering to the individual a therapeutically effective amount of one or more polypeptide therapeutic agents as described above. These methods are particularly aimed at therapeutic and prophylactic treatments of animals, and more particularly, humans.

5

10

15

20

25

30

As described herein, angiogenesis-associated diseases include, but are not limited to, angiogenesis-dependent cancer, including, for example, solid tumors, blood born tumors such as leukemias, and tumor metastases; benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; inflammatory disorders such as immune and non-immune inflammation; chronic articular rheumatism and psoriasis; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; telangiectasia psoriasis scleroderma, pyogenic granuloma, rubeosis, arthritis, diabetic neovascularization, vasculogenesis, hematopoiesis.

It is understood that methods and compositions of the invention are also useful for treating any angiogenesis-independent cancers (tumors). As used herein, the term "angiogenesis-independent cancer" refers to a cancer (tumor) where there is no or little neovascularization in the tumor tissue.

In particular, polypeptide therapeutic agents of the present invention are useful for treating or preventing a cancer (tumor), including, but not limited to, colon carcinoma, breast cancer, mesothelioma, prostate cancer, bladder cancer, squamous cell carcinoma of the head and neck (HNSCC), Kaposi sarcoma, and leukemia.

In certain embodiments of such methods, one or more polypeptide therapeutic agents can be administered, together (simultaneously) or at different times (sequentially). In addition, polypeptide therapeutic agents can be administered with another type of compounds for treating cancer or for inhibiting angiogenesis.

In certain embodiments, the subject methods of the invention can be used alone. Alternatively, the subject methods may be used in combination with other conventional anti-cancer therapeutic approaches directed to treatment or prevention of proliferative

disorders (e.g., tumor). For example, such methods can be used in prophylactic cancer prevention, prevention of cancer recurrence and metastases after surgery, and as an adjuvant of other conventional cancer therapy. The present invention recognizes that the effectiveness of conventional cancer therapies (e.g., chemotherapy, radiation therapy, phototherapy, immunotherapy, and surgery) can be enhanced through the use of a subject polypeptide therapeutic agent.

5

10

15

20

25

30

A wide array of conventional compounds have been shown to have anti-neoplastic activities. These compounds have been used as pharmaceutical agents in chemotherapy to shrink solid tumors, prevent metastases and further growth, or decrease the number of malignant cells in leukemic or bone marrow malignancies. Although chemotherapy has been effective in treating various types of malignancies, many anti-neoplastic compounds induce undesirable side effects. It has been shown that when two or more different treatments are combined, the treatments may work synergistically and allow reduction of dosage of each of the treatments, thereby reducing the detrimental side effects exerted by each compound at higher dosages. In other instances, malignancies that are refractory to a treatment may respond to a combination therapy of two or more different treatments.

When a polypeptide therapeutic agent of the present invention is administered in combination with another conventional anti-neoplastic agent, either concomitantly or sequentially, such therapeutic agent is shown to enhance the therapeutic effect of the anti-neoplastic agent or overcome cellular resistance to such anti-neoplastic agent. This allows decrease of dosage of an anti-neoplastic agent, thereby reducing the undesirable side effects, or restores the effectiveness of an anti-neoplastic agent in resistant cells.

Pharmaceutical compounds that may be used for combinatory anti-tumor therapy include, merely to illustrate: aminoglutethimide, amsacrine, anastrozole, asparaginase, bcg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, dienestrol, diethylstilbestrol, docetaxel, doxorubicin, epirubicin, estradiol, estramustine, etoposide, exemestane, filgrastim, fludarabine, fludrocortisone, fluorouracil, fluoxymesterone, flutamide, gemcitabine, genistein, goserelin, hydroxyurea, idarubicin, ifosfamide, imatinib, interferon, irinotecan, ironotecan, letrozole, leucovorin, leuprolide, levamisole, lomustine, mechlorethamine, medroxyprogesterone, megestrol, melphalan, mercaptopurine, mesna, methotrexate, mitomycin, mitotane, mitoxantrone, nilutamide, nocodazole, octreotide,

oxaliplatin, paclitaxel, pamidronate, pentostatin, plicamycin, porfimer, procarbazine, raltitrexed, rituximab, streptozocin, suramin, tamoxifen, temozolomide, teniposide, testosterone, thioguanine, thiotepa, titanocene dichloride, topotecan, trastuzumab, tretinoin, vinblastine, vincristine, vindesine, and vinorelbine.

5

10

15

20

25

30

These chemotherapeutic anti-tumor compounds may be categorized by their mechanism of action into, for example, following groups: anti-metabolites/anti-cancer agents, such as pyrimidine analogs (5-fluorouracil, floxuridine, capecitabine, gemcitabine and cytarabine) and purine analogs, folate antagonists and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine (cladribine)); antiproliferative/antimitotic agents including natural products such as vinca alkaloids (vinblastine, vincristine, and vinorelbine), microtubule disruptors such as taxane (paclitaxel, docetaxel), vincristin, vinblastin, nocodazole, epothilones and navelbine, epidipodophyllotoxins (etoposide, teniposide), DNA damaging agents (actinomycin, amsacrine, anthracyclines, bleomycin, busulfan, camptothecin, carboplatin, chlorambucil, cisplatin, cyclophosphamide, cytoxan, dactinomycin, daunorubicin, doxorubicin, epirubicin, hexamethylmelamineoxaliplatin, iphosphamide, melphalan, merchlorehtamine, mitomycin, mitoxantrone, nitrosourea, plicamycin, procarbazine, taxol, taxotere, teniposide, triethylenethiophosphoramide and etoposide (VP16)); antibiotics such as dactinomycin (actinomycin D), daunorubicin, doxorubicin (adriamycin), idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin; enzymes (Lasparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine); antiplatelet agents; antiproliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nitrosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes - dacarbazinine (DTIC); antiproliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate); platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones, hormone analogs (estrogen, tamoxifen, goserelin, bicalutamide, nilutamide) and aromatase inhibitors (letrozole, anastrozole); anticoagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory agents; antisecretory agents (breveldin); immunosuppressives (cyclosporine, tacrolimus (FK-506),

sirolimus (rapamycin), azathioprine, mycophenolate mofetil); anti-angiogenic compounds (TNP-470, genistein) and growth factor inhibitors (vascular endothelial growth factor (VEGF) inhibitors, fibroblast growth factor (FGF) inhibitors); angiotensin receptor blocker; nitric oxide donors; anti-sense oligonucleotides; antibodies (trastuzumab); cell cycle inhibitors and differentiation inducers (tretinoin); mTOR inhibitors, topoisomerase inhibitors (doxorubicin (adriamycin), amsacrine, camptothecin, daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin and mitoxantrone, topotecan, irinotecan), corticosteroids (cortisone, dexamethasone, hydrocortisone, methylpednisolone, prednisone, and prenisolone); growth factor signal transduction kinase inhibitors; mitochondrial dysfunction inducers and caspase activators; and chromatin disruptors.

5

10

15

20

25

30

In certain embodiments, pharmaceutical compounds that may be used for combinatory anti-angiogenesis therapy include: (1) inhibitors of release of "angiogenic molecules," such as bFGF (basic fibroblast growth factor); (2) neutralizers of angiogenic molecules, such as an anti- β bFGF antibodies; and (3) inhibitors of endothelial cell response to angiogenic stimuli, including collagenase inhibitor, basement membrane turnover inhibitors, angiostatic steroids, fungal-derived angiogenesis inhibitors, platelet factor 4, thrombospondin, arthritis drugs such as D-penicillamine and gold thiomalate, vitamin D₃ analogs, alpha-interferon, and the like. For additional proposed inhibitors of angiogenesis, see Blood et al., Bioch. Biophys. Acta., 1032:89-118 (1990), Moses et al., Science, 248:1408-1410 (1990), Ingber et al., Lab. Invest., 59:44-51 (1988), and U.S. Pat. Nos. 5,092,885, 5,112,946, 5,192,744, 5,202,352, and 6573256. In addition, there are a wide variety of compounds that can be used to inhibit angiogenesis, for example, peptides or agents that block the VEGF-mediated angiogenesis pathway, endostatin protein or derivatives, lysine binding fragments of angiostatin, melanin or melanin-promoting compounds, plasminogen fragments (e.g., Kringles 1-3 of plasminogen), tropoin subunits, antagonists of vitronectin $\alpha_{\nu}\beta_{3}$, peptides derived from Saposin B, antibiotics or analogs (e.g., tetracycline, or neomycin), dienogest-containing compositions, compounds comprising a MetAP-2 inhibitory core coupled to a peptide, the compound EM-138, chalcone and its analogs, and naaladase inhibitors. See, for example, U.S. Pat. Nos. 6,395,718, 6,462,075, 6,465,431, 6,475,784, 6,482,802, 6,482,810, 6,500,431, 6,500,924, 6,518,298, 6,521,439, 6,525,019, 6,538,103, 6,544,758, 6,544,947, 6,548,477, 6,559,126, and 6,569,845.

Depending on the nature of the combinatory therapy, administration of the polypeptide therapeutic agents of the invention may be continued while the other therapy is being administered and/or thereafter. Administration of the polypeptide therapeutic agents may be made in a single dose, or in multiple doses. In some instances, administration of the polypeptide therapeutic agents is commenced at least several days prior to the conventional therapy, while in other instances, administration is begun either immediately before or at the time of the administration of the conventional therapy.

VI. Methods of Administration and Pharmaceutical Compositions

5

10

15

20

25

30

In certain embodiments, the subject polypeptide therapeutic agents (e.g., soluble polypeptides or antibodies) of the present invention are formulated with a pharmaceutically acceptable carrier. Such therapeutic agents can be administered alone or as a component of a pharmaceutical formulation (composition). The compounds may be formulated for administration in any convenient way for use in human or veterinary medicine. Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.

Formulations of the subject polypeptide therapeutic agents include those suitable for oral/ nasal, topical, parenteral, rectal, and/or intravaginal administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect.

In certain embodiments, methods of preparing these formulations or compositions include combining another type of anti-tumor or anti-angiogenesis therapeutic agent and a carrier and, optionally, one or more accessory ingredients. In general, the formulations can be prepared with a liquid carrier, or a finely divided solid carrier, or both, and then, if necessary, shaping the product.

Formulations for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles

(using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a subject polypeptide therapeutic agent as an active ingredient.

5

10

15

20

25

30

In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules, and the like), one or more polypeptide therapeutic agents of the present invention may be mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose, and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a tale, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming, and preservative agents.

Suspensions, in addition to the active compounds, may contain suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters,

microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.

5

10

15

20

25

30

In particular, methods of the invention can be administered topically, either to skin or to mucosal membranes such as those on the cervix and vagina. This offers the greatest opportunity for direct delivery to tumor with the lowest chance of inducing side effects. The topical formulations may further include one or more of the wide variety of agents known to be effective as skin or stratum corneum penetration enhancers. Examples of these are 2-pyrrolidone, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, propylene glycol, methyl or isopropyl alcohol, dimethyl sulfoxide, and azone. Additional agents may further be included to make the formulation cosmetically acceptable. Examples of these are fats, waxes, oils, dyes, fragrances, preservatives, stabilizers, and surface active agents. Keratolytic agents such as those known in the art may also be included. Examples are salicylic acid and sulfur.

Dosage forms for the topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants. The subject polypeptide therapeutic agents may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required. The ointments, pastes, creams and gels may contain, in addition to a subject polypeptide agent, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.

Powders and sprays can contain, in addition to a subject polypeptide therapeutic agent, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

Pharmaceutical compositions suitable for parenteral administration may comprise one or more polypeptide therapeutic agents in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents. Examples of suitable aqueous and

nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

5

10

15

20

25

30

These compositions may also contain adjuvants, such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption, such as aluminum monostearate and gelatin.

Injectable depot forms are made by forming microencapsule matrices of one or more polypeptide therapeutic agents in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.

Formulations for intravaginal or rectally administration may be presented as a suppository, which may be prepared by mixing one or more compounds of the invention with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound.

In other embodiments, the polypeptide therapeutic agents of the instant invention can be expressed within cells from eukaryotic promoters. For example, a soluble polypeptide of EphB4 or Ephrin B2 can be expressed in eukaryotic cells from an appropriate vector. The vectors are preferably DNA plasmids or viral vectors. Viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the vectors stably introduced in and persist in target

cells. Alternatively, viral vectors can be used that provide for transient expression. Such vectors can be repeatedly administered as necessary. Delivery of vectors encoding the subject polypeptide therapeutic agent can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review see Couture et al., 1996, TIG., 12, 510).

EXEMPLIFICATION

5

10

15

20

25

30

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.

Example 1. Soluble derivatives of the extracellular domains of human Ephrin B2 and EphB4 proteins

Soluble derivatives of the extracellular domains of human Ephrin B2 and EphB4 proteins represent either truncated full-length predicted extracellular domains of Ephrin B2 (B4ECv3, B2EC) or translational fusions of the domains with constant region of human immunoglobulins (IgG1 Fc fragment), such as B2EC-FC, B4ECv2-FC and B4ECv3-FC. Representative human Ephrin B2 constructs and human EphB4 constructs are shown Figures 14 and 15.

The cDNA fragments encoding these recombinant proteins were subcloned into mammalian expression vectors, expressed in transiently or stably transfected mammalian cell lines and purified to homogeneity as described in detail in Materials and Methods section (see below). Predicted amino acid sequences of the proteins are shown in Figures 1-5. High purity of the isolated proteins and their recognition by the corresponding anti-Ephrin B2 and anti-EphB4 monoclonal or polyclonal antibodies were confirmed. The recombinant proteins exhibit the expected high-affinity binding, binding competition and specificity properties with their corresponding binding partners as corroborated by the biochemical assays (see e.g., Figures 6-8).

Such soluble derivative proteins human Ephrin B2 and EphB4 exhibit potent biological activity in several cell-based assays and *in vivo* assays which measure angiogenesis or anti-cancer activities, and are therefore perspective drug candidates for

anti-angiogenic and anti-cancer therapy. B4ECv3 as well as B2EC and B2EC-FC proteins blocked chemotaxis of human endothelial cells (as tested with umbilical cord and hepatic AECs or VECs), with a decrease in degradation of the extracellular matrix, Matrigel, and a decrease in migration in response to growth factor stimuli (Figures 9-11). B4ECv3 and B2EC-FC proteins have potent anti-angiogenic effect as demonstrated by their inhibition of endothelial cell tube formation (Figures 12-13).

5

15

20

25

A detailed description of the materials and methods for this example may be found in U.S. Patent Publication No. 20050084873.

The sequence of the Globular domain + Cys-rich domain (B4EC-GC), precursor protein is (SEQ ID NO:12):

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSGLDE
EQHSVRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTMLECLSLPRAG
RSCKETFTVFYYESDADTATALTPAWMENPYIKVDTVAAEHLTRKRPGAEATGKV
NVKTLRLGPLSKAGFYLAFQDQGACMALLSLHLFYKKCAQLTVNLTRFPETVPRE
LVVPVAGSCVVDAVPAPGPSPSLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCR
ACAQGTFKPLSGEGSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPS
AHHHHHH

For many uses, including therapeutic use, the leader sequence (first 15 amino acids, so that the processed form begins Leu-Glu-Glu...) and the c-terminal hexahistidine tag may be removed or omitted.

Sequence of the GCF precursor protein (SEQ ID NO:13):

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSGLDE
EQHSVRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTMLECLSLPRAG
RSCKETFTVFYYESDADTATALTPAWMENPYIKVDTVAAEHLTRKRPGAEATGKV
NVKTLRLGPLSKAGFYLAFQDQGACMALLSLHLFYKKCAQLTVNLTRFPETVPRE
LVVPVAGSCVVDAVPAPGPSPSLYCREDGQWAEQPVTGCSCAPGFAEGNTKCRAC
AQGTFKPLSGEGSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPR
SVVSRLNGSSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDPGPR
DLVEPWVVVRGLRPDFTYTFEVTALNGVSSLATGPVPFEPVNVHHHHHH

For many uses, including therapeutic use, the leader sequence (first 15 amino acids, so that the processed form begins Leu-Glu-Glu...) and the c-terminal hexahistidine tag may be removed or omitted.

Amino acid sequence of encoded FL-hB4EC precursor (His-tagged) (SEQ ID 5 NO:14):

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSGLDE EQHSVRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTMLECLSLPRAG RSCKETFTVFYYESDADTATALTPAWMENPYIKVDTVAAEHLTRKRPGAEATGKV NVKTLRLGPLSKAGFYLAFQDQGACMALLSLHLFYKKCAQLTVNLTRFPETVPRE LVVPVAGSCVVDAVPAPGPSPSLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCR ACAQGTFKPLSGEGSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPS APRSVVSRLNGSSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDP GPRDLVEPWVVVRGLRPDFTYTFEVTALNGVSSLATGPVPFEPVNVTTDREVPPAV SDIRVTRSSPSSLSLAWAVPRAPSGAWLDYEVKYHEKGAEGPSSVRFLKTSENRAE LRGLKRGASYLVQVRARSEAGYGPFGQEHHSQTQLDESEGWREQGSKRAILQIEG KPIPNPLLGLDSTRTGHHHHHHH

For many uses, including therapeutic use, the leader sequence (first 15 amino acids, so that the processed form begins Leu-Glu-Glu...) and the c-terminal hexahistidine tag may be removed or omitted.

EphB4 CF2 protein, precursor (SEQ ID NO:15):

10

15

25

MELRVLLCWASLAAALEETLLNTKLETQLTVNLTRFPETVPRELVVPVAGS
CVVDAVPAPGPSPSLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCRACAQGTFK
PLSGEGSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRSVVSRL
NGSSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDPGPRDLVEPW
VVVRGLRPDFTYTFEVTALNGVSSLATGPVPFEPVNVTTDREVPPAVSDIRVTRSSP
SSLSLAWAVPRAPSGAWLDYEVKYHEKGAEGPSSVRFLKTSENRAELRGLKRGAS
YLVQVRARSEAGYGPFGQEHHSQTQLDESEGWREQGGRSSLEGPRFEGKPIPNPLL
GLDSTRTGHHHHHHH

The precursor sequence of the preferred GCF2 protein (also referred to herein as GCF2F) is (SEQ ID NO:16):

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSGLDEEQHS
VRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTMLECLSLPRAGRSCK
ETFTVFYYESDADTATALTPAWMENPYIKVDTVAAEHLTRKRPGAEATGKVNVKT
LRLGPLSKAGFYLAFQDQGACMALLSLHLFYKKCAQLTVNLTRFPETVPRELVVPV
AGSCVVDAVPAPGPSPSLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCRACAQG
TFKPLSGEGSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRSVV
SRLNGSSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDPGPRDLV
EPWVVVRGLRPDFTYTFEVTALNGVSSLATGPVPFEPVNVTTDREVPPAVSDIRVT
RSSPSSLSLAWAVPRAPSGAWLDYEVKYHEKGAEGPSSVRFLKTSENRAELRGLKR
GASYLVQVRARSEAGYGPFGQEHHSQTQLDESEGWREQ

The processed sequence is (SEQ ID NO:17):

LEETLLNTKLETADLKWVTFPQVDGQWEELSGLDEEQHSVRTYEVCEVQR

APGQAHWLRTGWVPRRGAVHVYATLRFTMLECLSLPRAGRSCKETFTVFYYESD

ADTATALTPAWMENPYIKVDTVAAEHLTRKRPGAEATGKVNVKTLRLGPLSKAGF

YLAFQDQGACMALLSLHLFYKKCAQLTVNLTRFPETVPRELVVPVAGSCVVDAVP

APGPSPSLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCRACAQGTFKPLSGEGS

CQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRSVVSRLNGSSLHL

20 EWSAPLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDPGPRDLVEPWVVVRGL

RPDFTYTFEVTALNGVSSLATGPVPFEPVNVTTDREVPPAVSDIRVTRSSPSSLSLA

WAVPRAPSGAWLDYEVKYHEKGAEGPSSVRFLKTSENRAELRGLKRGASYLVQV

RARSEAGYGPFGQEHHSQTQLDESEGWREQ

Biochemical Assays

10

25 A. Binding assay

30

 $10~\mu l$ of Ni-NTA-Agarose were incubated in microcentrifuge tubes with 50 μl of indicated amount of B4ECv3 diluted in binding buffer BB (20 mM Tris-HCl, 0.15 M NaCl, 0.1% bovine serum albumin pH 8) After incubation for 30 min on shaking platform, Ni-NTA beads were washed twice with 1.4 ml of BB, followed by application of 50 μl of B2-AP in the final concentration of 50 nM. Binding was performed for 30 min on shaking

platform, and then tubes were centrifuged and washed one time with 1.4 ml of BB. Amount of precipitated AP was measured colorimetrically after application of PNPP.

B. Inhibition assay

5

10

15

20

25

30

Inhibition in solution. Different amounts of B4ECv3 diluted in 50 μl of BB were pre-incubated with 50 μl of 5 nM B2EC-AP reagent (protein fusion of Ephrin B2 ectodomain with placental alkaline phosphatase). After incubation for 1 h, unbound B2EC-AP was precipitated with 5,000 HEK293 cells expressing membrane-associated full-length EphB4 for 20 min. Binding reaction was stopped by dilution with 1.2 ml of BB, followed by centrifugation for 10 min. Supernatants were discarded and alkaline phosphatase activities associated with collected cells were measured by adding para-nitrophenyl phosphate (PNPP) substrate.

Cell based inhibition. B4ECv3 was serially diluted in 20 mM Tris-HCl, 0.15 M NaCl, 0.1% BSA, pH 8 and mixed with 5,000 HEK293 cells expressing membrane-associated full-length Ephrin B2. After incubation for 1 h, 50 µl of 5 nM B4EC-AP reagent (protein fusion of EphB4 ectodomain with placental alkaline phosphatase were added into each tube for 30 min to detect unoccupied Ephrin B2 binding sites. Binding reactions were stopped by dilution with 1.2 ml of BB and centrifugation. Colorimetric reaction of cell-precipitated AP was developed with PNPP substrate.

C. B4EC-FC binding assay

Protein A-agarose based assay. 10 μl of Protein A-agarose were incubated in Eppendorf tubes with 50 μl of indicated amount of B4EC-FC diluted in binding buffer BB (20 mM Tris-HCl, 0.15 M NaCl, 0.1% BSA pH 8). After incubation for 30 min on shaking platform, Protein AAagarose beads were washed twice with 1.4 ml of BB, followed by application of 50 μl of B2ECAP reagent at the final concentration of 50 nM. Binding was performed for 30 min on shaking platform, and then tubes were centrifuged and washed once with 1.4 ml of BB. Colorimetric reaction of precipitated AP was measured after application of PNPP (Fig. 6).

Nitrocellulose based assay. B4EC-FC was serially diluted in 20 mM Tris-HCl, 0.15 M NaCl, 50 μg/ml BSA, pH 8. 2 μl of each fraction were applied onto nitrocellulose strip and spots were dried out for 3 min. Nitrocellulose strip was blocked with 5% non-fat milk for 30 min, followed by incubation with 5 nM B2EC-AP reagent. After 45 min incubation

- 57 —

for binding, nitrocellulose was washed twice with 20 mM Tris-HCl, 0.15 M NaCl, 50 μ g/ml BSA, pH 8 and color was developed by application of alkaline phosphatase substrate Sigma Fast (Sigma).

D. B4EC-FC inhibition assay

5 Inhibition in solution. See above, for B4ECv3. The results were shown in Figure 7.

Cell based inhibition. See above, for B4ECv3.

E. B2EC-FC binding assay

Protein-A-agarose based assay. See above, for B4EC-FC. The results were shown in Figure 8.

10 Nitrocellulose based assay. See above, for B4EC-FC.

6) Cell-Based Assays

15

20

A. Growth Inhibition Assay

Human umbilical cord vein endothelial cells (HUVEC) (1.5x103) are plated in a 96-well plate in 100 μl of EBM-2 (Clonetic # CC3162). After 24 hours (day 0), the test recombinant protein (100 μl) is added to each well at 2X the desired concentration (5-7 concentration levels) in EBM-2 medium. On day 0, one plate is stained with 0.5% crystal violet in 20% methanol for 10 minutes, rinsed with water, and air-dried. The remaining plates are incubated for 72 h at 37 °C. After 72 h, plates are stained with 0.5% crystal violet in 20% methanol, rinsed with water and airdried. The stain is eluted with 1:1 solution of ethanol: 0.1 M sodium citrate (including day 0 plate), and absorbance is measured at 540 nm with an ELISA reader (Dynatech Laboratories). Day 0 absorbance is subtracted from the 72 h plates and data is plotted as percentage of control proliferation (vehicle treated cells). IC50 (drug concentration causing 50% inhibition) is calculated from the plotted data.

25 B. Cord Formation Assay (Endothelial Cell Tube Formation Assay)

Matrigel (60 μl of 10 mg/ml; Collaborative Lab # 35423) is placed in each well of an ice-cold 96-well plate. The plate is allowed to sit at room temperature for 15 minutes then incubated at 37 °C for 30 minutes to permit the matrigel to polymerize. In the mean

time, HUVECs are prepared in EGM-2 (Clonetic # CC3162) at a concentration of 2X10⁵ cells/ml. The test compound is prepared at 2X the desired concentration (5 concentration levels) in the same medium. Cells (500 µl) and 2X drug (500 µl) is mixed and 200 µl of this suspension are placed in duplicate on the polymerized matrigel. After 24 h incubation, triplicate pictures are taken for each concentration using a Bioquant Image Analysis system. Drug effect (IC50) is assessed compared to untreated controls by measuring the length of cords formed and number of junctions.

C. Cell Migration Assay

10

15

20

25

30

Migration is assessed using the 48-well Boyden chamber and 8 μ m pore size collagen-coated (10 μ g/ml rat tail collagen; Collaborative Laboratories) polycarbonate filters (Osmonics, Inc.). The bottom chamber wells receive 27-29 μ l of DMEM medium alone (baseline) or medium containing chemo-attractant (bFGF, VEGF or Swiss 3T3 cell conditioned medium). The top chambers receive 45 μ l of HUVEC cell suspension (1X106 cells/ml) prepared in DMEM+1% BSA with or without test compound. After 5 h incubation at 37 °C, the membrane is rinsed in PBS, fixed and stained in Diff-Quick solutions. The filter is placed on a glass slide with the migrated cells facing down and cells on top are removed using a Kimwipe. The testing is performed in 4-6 replicates and five fields are counted from each well. Negative unstimulated control values are subtracted from stimulated control and drug treated values and data is plotted as mean migrated cell \pm S.D. IC50 is calculated from the plotted data.

Example 2. Extracellular domain fragments of EphB4 receptor inhibit angiogenesis and tumor growth.

A. Globular domain of EphB4 is required for EphrinB2 binding and for the activity of EphB4-derived soluble proteins in endothelial tube formation assay.

To identify subdomain(s) of the ectopic part of EphB4 necessary and sufficient for the anti-angiogenic activity of the soluble recombinant derivatives of the receptor, four recombinant deletion variants of EphB4EC were produced and tested (Fig. 16). Extracellular part of EphB4, similarly to the other members of EphB and EphA receptor family, contains N-terminal ligand-binding globular domain followed by cysteine-rich domain and two fibronectin type III repeats (FNIII). In addition to the recombinant B4-GCF2 protein containing the complete ectopic part of EphB4, we constructed three deletion variants of EphB4EC containing globular domain and Cys-rich domain (B4-GC); globular,

Cys-rich and the first FNIII domain (GCF1) as well as the ECD version with deleted globular domain (CF2). Our attempts to produce several versions of truncated EphB4EC protein containing the globular domain alone were not successful due to the lack of secretion of proteins expressed from all these constructs and absence of ligand binding by the intracellularly expressed recombinant proteins. In addition, a non-tagged version of B4-GCF2, called GCF2-F, containing complete extracellular domain of EphB4 with no additional fused amino acids was expressed, purified and used in some of the experiments described here.

5

10

15

20

25

30

All four C-terminally 6xHis tagged recombinant proteins were preparatively expressed in transiently transfected cultured mammalian cells and affinity purified to homogeneity from the conditioned growth media using chromatography on Ni²⁺-chelate resin (Fig. 17). Apparently due to their glycosylation, the proteins migrate on SDS-PAAG somewhat higher than suggested by their predicted molecular weights of 34.7 kDa (GC), 41.5 (CF2), 45.6 kDa (GCF1) and 57.8 kDa (GCF2). Sequence of the extracellular domain of human EphB4 contains three predicted N-glycosylation sites (NXS/T) which are located in the Cys-rich domain, within the first fibronectin type III repeat and between the first and the second fibronectin repeats.

To confirm ability of the purified recombinant proteins to bind Ephrin B2, they were tested in an *in vitro* binding assay. As expected, GC, GCF1 and GCF2, but not CF2 are binding the cognate ligand Ephrin B2 as confirmed by interaction between Ephrin B2 – alkaline phosphatase (Ephrin B2-AP) fusion protein with the B4 proteins immobilized on Ni²⁺-resin or on nitrocellulose membrane (Fig. 17).

All four proteins were also tested for their ability to block ligand-dependent dimerization and activation of Eph B4 receptor kinase in PC3 cells. The PC3 human prostate cancer cell line is known to express elevated levels of human Eph B4. Stimulation of PC3 cells with Ephrin B2 IgG Fc fusion protein leads to a rapid induction of tyrosine phosphorylation of the receptor. However, preincubation of the ligand with GCF2, GCF1 or GC, but not CF2 proteins suppresses subsequent EphB4 autophosphorylation. Addition of the proteins alone to the PC3 cells or preincubation of the cells with the proteins followed by changing media and adding the ligand does not affect EphB4 phosphorylation status.

Further, we found that globular domain of EphB4 is required for the activity of EphB4-derived soluble proteins in endothelial tube formation assay.

B. Effects of soluble EphB4 on HUV/AEC in vitro.

5

10

15

20

25

Initial experiments were performed to determine whether soluble EphB4 affected the three main stages in the angiogenesis pathway. These were carried out by establishing the effects of soluble EphB4 on migration / invasion, proliferation and tubule formation by HUV/AEC in vitro. Exposure to soluble EphB4 significantly inhibited both bFGF and VEGF-induced migration in the Boyden chamber assay in a dose-dependent manner, achieving significance at nM (Fig. 18). Tubule formation by HUV/AECS on wells coated with Matrigel was significantly inhibited by soluble EphB4 in a dose-dependent manner in both the absence and presence of bFGF and VEGF (Fig. 19). We also assessed in vitro, whether nM of soluble EphB4 was cytotoxic for HUVECS. Soluble EphB4 was found to have no detectable cytotoxic effect at these doses, as assessed by MTS assay (Fig. 20).

C. Soluble EphB4 receptor Inhibits Vascularization of Matrigel Plugs, in vivo

To demonstrate that soluble EphB4 can directly inhibit angiogenesis *in vivo*, we performed a murine matrigel plug experiment. Matrigel supplemented with bFGF and VEGF with and without soluble EphB4 was injected s.c. into Balb/C nu/nu mice, forming semi-solid plugs, for six days. Plugs without growth factors had virtually no vascularization or vessel structures after 6 days (Fig. 21). In contrast, plugs supplemented with bFGF and VEGF had extensive vascularization and vessels throughout the plug. Plugs taken from mice treated with µg of soluble EphB4 had markedly reduced vascularization of plugs, comparable to plugs without growth factor (Fig. 21). Furthermore, histological examination of plugs showed decreased vessel staining (Fig. 21). Treatment at 0 µg/dose significantly inhibited the amount of infiltration in Matrigel plugs compared to control (Fig. 21).

We examined EphB4 receptor phosphorylation in HUVECs by performing Western blot analyses with lysates from soluble EphB4-treated cells and antibodies against phosphor-tyrosine. We found that soluble EphB4 treatment of serum-starved HUVECs stimulated a rapid and transient decrease in the level of phosphorylated EphB4, in the presence of EphrinB2Fc, EphB4 ligand dimer. Ephrin B2Fc without the soluble EphB4 protein induced phosphorylation of EphB4 receptor (Fig. 22).

D. Effects of soluble EphB4 on tumor growth, in vitro.

We found that soluble EphB4 inhibits the growth of SCC15 tumors grown in Balb/C Nu/Nu mice (Fig. 23).

E. Soluble EphB4 inhibited corneal neovascularization

To further investigate the antiangiogenic activity of soluble EphB4 in vivo, we studied the inhibitory effect of administration of soluble EphB4 on neovascularization in the mouse cornea induced by bFGF. Hydron Pellets implanted into corneal micropocket could induce angiogenesis, in the presence of growth factors, in a typically avascular area. The angiogenesis response in mice cornea was moderate, the appearance of vascular buds was delayed and the new capillaries were sparse and grew slowly. Compared with the control group, on day 7 of implantation, the neovascularization induced by bFGF in mice cornea was markedly inhibited in soluble EphB4-treated group (Fig. 24).

F. Effects of soluble EphB4 on tumor growth, in vivo.

10

15

20

25

30

The same model was used to determine the effects of soluble EphB4 *in vivo*. SCC15 tumors implanted subcutaneously, pre-incubated with matrigel and with or w/o growth factors, as well as implanted sc alone, and mice treated sc or ip daily with 1-5ug of soluble EphB4 were carried out.

Tumors in the control group continued to grow steadily over the treatment period, reaching a final tumor volume of mm3. However, animals injected with soluble EphB4 exhibited a significantly (p<0.0/) reduced growth rate, reaching a final tumor volume of only mm3 (Fig. 25). Similar results were obtained in two further cohorts of such tumor-bearing mice. Soluble EphB4 administration appeared to be well tolerated *in vivo*, with no significant effect on body weight or the general well-being of the animals (as determined by the absence of lethargy, intermittent hunching, tremors or disturbed breathing patterns).

G. Effects of soluble EphB4 on tumor histology.

Histological analysis revealed the presence of a central area of necrosis in all SCC15 tumors, which was usually surrounded by a viable rim of tumor cells um in width. The central necrotic areas were frequently large and confluent and showed loss of cellular detail. Necrosis, assessed as a percentage of tumor section area, was significantly (p<0.02) more extensive in the soluble EphB4-treated group (% necrosis in treated vs. control). To determine whether the reduced volume of soluble EphB4 treated tumors was due to an effect of this protein on the tumor vascular supply, endothelial cells in blood vessels were identified in tumor sections using immunostaining with an anti-platelet cell adhesion molecule (PECAM-1; CD31) antibody (Fig. 26) and the density of microvessels was assessed. Microvessel density was similar in the outer viable rim of tumor cells (the

uniform layer of cells adjacent to the tumor periphery with well defined nuclei) in control and soluble EphB4-treated tumors. Microvessel density was significantly in the inner, less viable region of tumor cells abutting the necrotic central areas in soluble EphB4-treated than control tumors. Fibrin deposition, as identified by Masson's Trichrome staining, was increased in and around blood vessels in the inner viable rim and the central necrotic core of soluble EphB4 treated than control tumors. In the outer viable rim of soluble EphB4 treated tumors, although the vessel lumen remained patent and contained red blood cells, fibrin deposition was evident around many vessels. Soluble EphB4 was found to have no such effects on the endothelium in the normal tissues examined (lungs, liver and kidneys).

10 H. Materials and Methods

15

20

25

30

A detailed description of the materials and methods for this example may be found in U.S. Patent Publication No. 20050084873.

Cell-based EphB4 tyrosine kinase assay

The human prostate carcinoma cell line PC3 cells were maintained in RPMI medium with 10% dialyzed fetal calf serum and 1% penicillin/streptomycin/neomycin antibiotics mix. Cells were maintained at 37 °C in a humidified atmosphere of 5% $\rm CO_2/95\%$ air. Typically, cells were grown in 60 mm dishes until confluency and were either treated with mouse Ephrin B2-Fc fusion at 1 μ g/ml in RPMI for 10 min to activate EphB4 receptor or plain medium as a control. To study the effect of different derivatives of soluble EphB4 ECD proteins on EphB4 receptor activation, three sets of cells were used. In the first set, cells were treated with various proteins (5 proteins; GC, GCF1, GCF2, GCF2-F, CF2) at 5 μ g/ml for 20 min. In the second set of cells, prior to application, proteins were premixed with ephrinB2-Fc at 1:5 (EphB4 protein: B2-Fc) molar ratio, incubated for 20 min and applied on cells for 10 min. In the third set of cells, cells were first treated with the proteins for 20 min at 5 μ g/ml, media was replaced with fresh media containing 1 μ g/ml of EphrinB2-Fc and incubated for another 10 min.

After the stimulation, cells were immediately harvested with protein extraction buffer containing 20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% (v/v) Triton X100, 1 mM EDTA, 1 mM PMSF, 1 mM Sodium vanadate. Protein extracts were clarified by centrifugation at 14,000 rpm for 20 min at 4 °C. Clarified protein samples were incubated overnight with protein A/G coupled agarose beads pre-coated with anti-EphB4 monoclonal antibodies. The IP complexes were washed twice with the same extraction buffer containing

0.1% Triton X100. The immunoprecipitated proteins were solubilized in 1X SDS-PAGE sample loading buffer and separated on 10% SDS-PAGE. For EphB4 receptor activation studies, electroblotted membrane was probed with anti-pTyr specific antibody 4G10 at 1:1000 dilution followed by Protein G-HRP conjugate at 1:5000 dilutions.

Endothelial Cell Tube Formation Assay

5

10

15

20

25

30

Matrigel (60 μ l of 10mg/ml; Collaborative Lab, Cat. No. 35423) was placed in each well of an ice-cold 96-well plate. The plate was allowed to sit at room temperature for 15 minutes then incubated at 37 °C for 30 minutes to permit Matrigel to polymerize. In the mean time, human umbilical vein endothelial cells were prepared in EGM-2 (Clonetic, Cat. No. CC3162) at a concentration of $2x10^5$ cells/ml. The test protein was prepared at 2x the desired concentration (5 concentration levels) in the same medium. Cells (500 μ l) and 2x protein (500 μ l) were mixed and 200 μ l of this suspension were placed in duplicate on the polymerized Matrigel. After 24 h incubation, triplicate pictures were taken for each concentration using a Bioquant Image Analysis system. Protein addition effect (IC50) was assessed compared to untreated controls by measuring the length of cords formed and number of junctions.

Cell Migration Assay

Chemotaxis of HUVECs to VEGF was assessed using a modified Boyden chamber, transwell membrane filter inserts in 24 well plates, 6.5 mm diam, 8 μ m pore size, 10 μ m thick matrigel coated, polycarbonate membranes (BD Biosciences). The cell suspensions of HUVECs (2x 10⁵ cells/ml) in 200 μ l of EBM were seeded in the upper chamber and the soluble EphB4 protein were added simultaneously with stimulant (VEGF or bFGF) to the lower compartment of the chamber and their migration across a polycarbonate filter in response to 10-20 ng/ml of VEGF with or without 100 nM-1 μ M test compound was investigated. After incubation for 4-24 h at 37 °C, the upper surface of the filter was scraped with swab and filters were fixed and stained with Diff Quick. Ten random fields at 200x mag were counted and the results expressed as mean # per field. Negative unstimulated control values were subtracted from stimulated control and protein treated sample values and the data was plotted as mean migrated cell \pm S.D. IC₅₀ was calculated from the plotted data.

Growth Inhibition Assay

HUVEC (1.5x10³ cells) were plated in a 96-well plate in 100 μ l of EBM-2 (Clonetic, Cat. No. CC3162). After 24 hours (day 0), the test recombinant protein (100 μ l)

is added to each well at 2x the desired concentration (5-7 concentration levels) in EBM-2 medium. On day 0, one plate was stained with 0.5% crystal violet in 20% methanol for 10 minutes, rinsed with water, and air-dried. The remaining plates were incubated for 72 h at 37 °C. After 72 h, plates were stained with 0.5% crystal violet in 20% methanol, rinsed with water and air-dried. The stain was eluted with 1:1 solution of ethanol: 0.1M sodium citrate (including day 0 plate), and absorbance measured at 540 nm with an ELISA reader (Dynatech Laboratories). Day 0 absorbance was subtracted from the 72 h plates and data is plotted as percentage of control proliferation (vehicle treated cells). IC₅₀ value was calculated from the plotted data.

Murine Matrigel Plug Angiogenesis Assay

5

10

15

20

25

30

In vivo angiogenesis was assayed in mice as growth of blood vessels from subcutaneous tissue into a Matrigel plug containing the test sample. Matrigel rapidly forms a solid gel at body temperature, trapping the factors to allow slow release and prolonged exposure to surrounding tissues. Matrigel (8.13 mg/ml, 0.5 ml) in liquid form at 4 °C was mixed with Endothelial Cell Growth Supplement (ECGS), test proteins plus ECGS or Matrigel plus vehicle alone (PBS containing 0.25% BSA). Matrigel (0.5ml) was injected into the abdominal subcutaneous tissue of female nu/nu mice (6 wks old) along the peritoneal mid line. There were 3 mice in each group. The animals were cared for in accordance with institutional and NIH guidelines. At day 6, mice were sacrificed and plugs were recovered and processed for histology. Typically the overlying skin was removed, and gels were cut out by retaining the peritoneal lining for support, fixed in 10% buffered formalin in PBS and embedded in paraffin. Sections of 3 μ m were cut and stained with H&E or Masson's trichrome stain and examined under light microscope

Mouse Corneal Micropocket assay

Mouse corneal micropocket assay was performed according to that detailed by Kenyon et al., 1996. Briefly, hydron pellets (polyhydroxyethylmethacrylate [polyHEMA], Interferon Sciences, New Brunswick, NJ, U.S.A.) containing either 90 ng of bFGF (R&D) or 180 ng of VEGF (R&D Systems, Minneapolis, MN, U.S.A.) and 40 μg of sucrose aluminium sulfate (Sigma) were prepared. Using an operating microscope, a stromal linear keratotomy was made with a surgical blade (Bard-Parker no. 15) parallel to the insertion of the lateral rectus muscle in an anesthetized animal. An intrastromal micropocket was dissected using a modified von Graefe knife (2"30 mm). A single pellet was implanted and advanced toward the temporal corneal limbus (within 0±7±1±0 mm for bFGF pellets and

0±5 mm for VEGF pellets). The difference in pellet location for each growth factor was determined to be necessary given the relatively weaker angiogenic stimulation of VEGF in this model. Antibiotic ointment (erythromycin.) was then applied to the operated eye to prevent infection and to decrease surface irregularities. The subsequent vascular response was measured extending from the limbal vasculature toward the pellet and the contiguous circumferential zone of neovascularization Data and clinical photos presented here were obtained on day 6 after pellet implantation, which was found to be the day of maximal angiogenic response.

In vitro invasion assay

5

10

15

20

25

30

"Matrigel" matrix-coated 9-mm cell culture inserts (pore size, 8 μm; Becton Dickinson, Franklin Lakes, NJ) were set in a 24-well plate. The HUVEC cells were seeded at a density of 5x10³ cells per well into the upper layer of the culture insert and cultured with serum-free EBM in the presence of EphB4 ECD for 24 h. The control group was cultured in the same media without EphB4. Then 0.5 ml of the human SCC15 cell line, conditioned medium was filled into the lower layer of the culture insert as a chemo-attractant. The cells were incubated for 24 h, then the remaining cells in the upper layer were swabbed with cotton and penetrating cells in the lower layer were fixed with 5% glutaraldehyde and stained with Diff Quick. The total number of cells passing through the Matrigel matrix and each 8 μm pore of the culture insert wascounted using optical microscopy and designated as an invasion index (cell number/area).

SCC15 tumor growth in mice

Subcutaneously inject logarithmically growing SCC15, head and neck squamous cell carcinoma cell line, at 5X10⁶ cell density; with or without EphB4 ECD in the presence or absence of human bFGF, into athymic Balb/c nude mice, along with Matrigel (BD Bioscience) synthetic basement membrane (1:1 v/v), and examine tumors within 2 weeks. Tumor volumes in the EphB4 ECD group, in the presence and absence of growth factor after implantation were three-fold smaller than those in the vehicle groups. There was no difference in body weight between the groups. Immunohistochemical examination of cross-sections of resected tumors and TUNEL-positive apoptosis or necrosis, CD34 immunostaining, and BrdU proliferation rate will be performed, after deparaffinized, rehydrated, and quenched for endogenous peroxidase activity, and after 10 min permeabilization with proteinase K. Quantitative assessment of vascular densities will also

be performed. Local intratumoral delivery or IV delivery of EphB4 ECD will also be performed twice a week.

30 athymic nude mice, BALB/c (nu/nu), were each injected with 1 x 10^6 B16 melanoma cells with 0.1 ml PBS mixed with 0.1 ml matrigel or 1.5 x 10^6 SCC15 cells resuspended in 200 μ l of DMEM serum-free medium and injected subcutaneously on day 0 on the right shoulder region of mice. Proteins were injected intravenously or subcutaneously, around the tumor beginning on day 1 at a loading dose of 4 μ g/mg, with weekly injections of 2ug/mg. (10 μ g/g, 50 μ g/kg/day), and at 2 weeks post-inoculation. Mice are sacrificed on Day 14. Control mice received PBS 50 μ l each day.

Tumor formation in nude mice

5

10

15

20

25

30

All animals were treated under protocols approved by the institutional animal care committees. Cancer cells $(5x10^6)$ were subcutaneously inoculated into the dorsal skin of nude mice. When the tumor had grown to a size of about 100 mm³ (usually it took 12 days), sEphB4 was either intraperitoneally or subcutaneously injected once/day, and tumorigenesis was monitored for 2 weeks. Tumor volume was calculated according to the formula a^2xb , where a and b are the smallest and largest diameters, respectively. A Student's t test was used to compare tumor volumes, with P<.05 being considered significant.

Quantification of microvessel density

Tumors were fixed in 4% formaldehyde, embedded in paraffin, sectioned by 5 μm, and stained with hematoxylineosin. Vessel density was semi-quantitated using a computer-based image analyzer (five fields per section from three mice in each group).

Example 3. EphB4 Is Upregulated and Imparts Growth Advantage in Prostate Cancer A. Expression of EphB4 in prostate cancer cell lines

We first examined the expression of EphB4 protein in a variety of prostate cancer cell lines by Western blot. We found that prostate cancer cell lines show marked variation in the abundance of the 120 kD EphB4. The levels were relatively high in PC3 and even higher in PC3M, a metastatic clone of PC3, while normal prostate gland derived cell lines (MLC) showed low or no expression of EphB4 (Fig. 27A). We next checked the activation status of EphB4 in PC3 cells by phosphorylation study. We found that even under normal culture conditions, EphB4 is phosphorylated though it can be further induced by its ligand, ephrin B2 (Fig. 27B).

B. Expression of EphB4 in clinical prostate cancer samples

5

10

15

25

30

To determine whether EphB4 is expressed in clinical prostate samples, tumor tissues and adjacent normal tissue from prostate cancer surgical specimens were examined. The histological distribution of EphB4 in the prostate specimens was determined by immunohistochemistry. Clearly, EphB4 expression is confined to the neoplastic epithelium (Fig. 28, top left), and is absent in stromal and normal prostate epithelium (Fig. 28, top right). In prostate tissue array, 24 of the 32 prostate cancers examined were positive. We found EphB4 mRNA is expressed both in the normal and tumor tissues of clinical samples by quantitative RT-PCR. However, tumor EphB4 mRNA levels were at least 3 times higher than in the normal in this case (Fig. 28, lower right).

C. p53 and PTEN inhibited the expression of EphB4 in PC3 cells

PC3 cells are known to lack PTEN expression (Davis, et al., 1994, Science. 266:816-819) and wild-type p53 function (Gale, et al., 1997, Cell Tissue Res. 290:227-241). We investigated whether the relatively high expression of EphB4 is related to p53 and/or PTEN by re-introducing wild-type p53 and/or PTEN into PC3 cells. To compensate for the transfection efficiency and the dilution effect, transfected cells were sorted for the cotransfected truncated CD4 marker. We found that the expression of EphB4 in PC3 cells was reduced by the re-introduction of either wild-type p53 or PTEN. The co-transfection of p53 and PTEN did not further inhibit the expression of EphB4 (Fig. 29A).

20 D. Retinoid X receptor (RXR α) regulates the expression of EphB4

We previously found that RXR α was down-regulated in prostate cancer cell lines (Zhong, et al., 2003, Cancer Biol Ther. 2:179-184) and here we found EphB4 expression has the reverse expression pattern when we looked at "normal" prostate (MLC), prostate cancer (PC3), and metastatic prostate cancer (PC3M) (Fig. 27A), we considered whether RXR α regulates the expression of EphB4. To confirm the relationship, the expression of EphB4 was compared between CWR22R and CWR22R-RXR α , which constitutively expresses RXR α . We found a modest decrease in EphB4 expression in the RXR α overexpressing cell line, while FGF8 has no effect on EphB4 expression. Consistent with initial results, EphB4 was not found in "normal" benign prostate hypertrophic cell line BPH-1 (Fig. 29B).

E. Growth factor signaling pathway of EGFR and IGF-1R regulates EphB4 expression

EGFR and IGF-1R have both been shown to have autocrine and paracrine action on PC3 cell growth. Because we found that EphB4 expression is higher in the more aggressive cell lines, we postulated that EphB4 expression might correlate with these pro-survival growth factors. We tested the relationship by independently blocking EGFR and IGF-1R signaling. EphB4 was down-regulated after blocking the EGFR signaling using EGFR kinase inhibitor AG 1478 (Fig. 30A) or upon blockade of the IGF-1R signaling pathway using IGF-1R neutralizing antibody (Fig. 30B).

F. EphB4 siRNA and antisense ODNs inhibit PC3 cell viability

5

25

30

To define the significance of this EphB4 overexpression in our prostate cancer

model, we concentrated our study on PC3 cells, which have a relatively high expression of
EphB4. The two approaches to decreasing EphB4 expression were siRNA and AS-ODNs.

A number of different phosphorothioate-modified AS-ODNs complementary to different
segments of the EphB4 coding region were tested for specificity and efficacy of EphB4
inhibition. Using 293 cells transiently transfected with full-length EphB4 expression vector

AS-10 was found to be the most effective (Fig. 31B). A Similar approach was applied to the
selection of specific siRNA. EphB4 siRNA 472 effectively knocks down EphB4 protein
expression (Fig. 31A). Both siRNA 472 and antisense AS-10 ODN reduced the viability of
PC3 cells in a dose dependent manner (Fig. 31C, D). Unrelated siRNA or sense
oligonucleotide had no effect on viability.

20 G. EphB4 siRNA and antisense ODNs inhibit the mobility of PC3 Cells

PC3 cells can grow aggressively locally and can form lymph node metastases when injected orthotopically into mice. In an effort to study the role of EphB4 on migration of PC3 cells *in vitro*, we performed a wound-healing assay. When a wound was introduced into a monolayer of PC3 cells, over the course of the next 20 hours cells progressively migrated into the cleared area. However, when cells were transfected with siRNA 472 and the wound was introduced, this migration was significantly inhibited (Fig. 31E). Pretreatment of PC3 cells with 10 μM EphB4 AS-10 for 12 hours generated the same effect (Fig. 31F). In addition, knock-down of EphB4 expression in PC3 cells with siRNA 472 severely reduced the ability of these cells to invade Matrigel as assessed by a double-chamber invasion assay (Fig. 31G), compared to the control siRNA.

H. EphB4 siRNA induces cell cycle arrest and apoptosis in PC3 cells

Since knock-down of EphB4 resulted in decreased cell viability (Fig. 31C) we sought to determine whether this was due to effects on the cell cycle. In comparison to

control siRNA transfected cells, siRNA 472 resulted in an accumulation of cells in the sub G0 and S phase fractions compared to cells treated with control siRNA. The sub G0 fraction increased from 1 % to 7.9%, and the S phase fraction from 14.9 % to 20.8 % in siRNA 472 treated cells compared to control siRNA treated cells (Fig. 32A). Cell cycle arrest at sub G0 and G2 is indicative of apoptosis. Apoptosis as a result of EphB4 knockdown was confirmed by ELISA assay. A dose-dependent increase in apoptosis was observed when PC3 cells were transfected with siRNA 472, but not with control siRNA (Fig. 32B). At 100 nM there was 15 times more apoptosis in siRNA 472 transfected than control siRNA transfected PC3 cells.

10 I. Materials and Methods

5

15

20

25

30

A detailed description of the materials and methods for this example may be found in U.S. Patent Publication No. 20050084873.

Example 4. Expression of EPHB4 in Mesothelioma: a candidate target for therapy

Malignant mesothelioma (MM) is a rare neoplasm that most often arises from the pleural and peritoneal cavity serous surface. The pleural cavity is by far the most frequent site affected (> 90%), followed by the peritoneum (6-10%) (Carbone et al., 2002, Semin Oncol. 29:2-17). There is a strong association with asbestos exposure, about 80% of malignant mesothelioma cases occur in individuals who have ingested or inhaled asbestos. This tumor is particularly resistant to the current therapies and, up to now, the prognosis of these patients is dramatically poor (Lee et al., 2000, Curr Opin Pulm Med. 6:267-74).

Several clinical problems regarding the diagnosis and treatment of malignant mesothelioma remain unsolved. Making a diagnosis of mesothelioma from pleural or abdominal fluid is notoriously difficult and often requires a thoracoscopic or laproscopic or open biopsy and Immunohistochemical staining for certain markers such as meosthelin expressed preferentially in this tumor. Until now, no intervention has proven to be curative, despite aggressive chemotherapeutic regimens and prolonged radiotherapy. The median survival in most cases is only 12–18 months after diagnosis.

In order to identify new diagnostic markers and targets to be used for novel diagnostic and therapeutic approaches, we assessed the expression of EPHB4 and its ligand EphrinB2 in mesothelioma cell lines and clinical samples.

A. EPHB4 and EphrinB2 is expressed in mesothelioma cell lines

5

10

15

20

25

30

The expression of Ephrin B2 and EphB4 in malignant mesothelioma cell lines was determined at the RNA and protein level by a variety of methods. RT-PCR showed that all of the four cell lines express EphrinB2 and EPHB4 (fig. 33A). Protein expression was determined by Western blot in these cell lines. Specific bands for EphB4 were seen at 120 kD. In addition, Ephrin B2 was detected in all cell lines tested as a 37 kD band on Western blot (fig. 33B). No specific band for Ephrin B2 was observed in 293 human embryonic kidney cells, which were included as a negative control.

To confirm the presence of EphB4 transcription in mesothelioma cells, *in situ* hybridization was carried out on NCI H28 cell lines cultured on chamber slides. Specific signal for EphB4 was detected using antisense probe Ephrin B2 transcripts were also detected in the same cell line. Sense probes for both EphB4 and Ephrin B2 served as negative controls and did not hybridize to the cells (figure 34). Expression of EphB4 and Ephrin B2 proteins was confirmed in the cell lines by immunofluorescence analysis (fig. 35). Three cell lines showed strong expression of EphB4, whereas expression of Ephrin B2 was present in H28 and H2052, and weakly detectable in H2373.

B. Evidence of Expression of EPHB4 and EphrinB2 in clinical samples

Tumor cells cultured from the pleural effusion of a patient diagnosed with pleural malignant mesothelioma were isolated and showed positive staining for both EphB4 and Ephrin B2 at passage 1 (figure 35, bottom row). These results confirm co-expression of EphB4 and Ephrin B2 in mesothelioma cell lines. To determine whether these results seen in tumor cell lines were a real reflection of expression in the disease state, tumor biopsy samples were subjected to immunohistochemical staining for EphB4 and Ephrin B2. Antibodies to both proteins revealed positive stain in the tumor cells. Representative data is shown in figure 36.

C. EPHB4 is involved in the cell growth and migration of mesothelioma

The role of EphB4 in cell proliferation was tested using EPHB4 specific antisepses oligonucleotides and siRNA. The treatment of cultured H28 with EPHB4 antisense reduced cell viability. One of the most active inhibitor of EphB4 expression is EPHB4AS-10 (fig. 37A). Transfection of EPHB4 siRNA 472 generated the same effect (fig. 37B).

MM is a locally advancing disease with frequent extension and growth into adjacent vital structures such as the chest wall, heart, and esophagus. In an effort to study this

process in vitro, we perform wound healing assay using previously described techniques (3:36). When a wound was introduced into sub confluent H28 cells, over the course of the next 28 hours cells would progressively migrate into the area of the wound. However, when cells were pretreated with EPHB4AS-10 for 24 hours, and the wound was introduced, this migration was virtually completely prevented (fig. 38A). The migration study with Boyden Chamber assay with EPHB4 siRNA showed that cell migration was greatly inhibited with the inhibition of EPHB4 expression (Fig. 38B).

D. Materials and Methods

5

10

15

20

25

A detailed description of the materials and methods for this example may be found in U.S. Patent Publication No. 20050084873.

Example 5. EphB4 Is Expressed in Squamous Cell Carcinoma of The Head and Neck: Regulation by Epidermal Growth Factor Signaling Pathway and Growth Advantage.

Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most frequent cancer worldwide, with estimated 900,000 cases diagnosed each year. It comprises almost 50% of all malignancies in some developing nations. In the United States, 50,000 new cases and 8,000 deaths are reported each year. Tobacco carcinogens are believed to be the primary etiologic agents of the disease, with alcohol consumption, age, gender, and ethnic background as contributing factors.

The differences between normal epithelium of the upper aerodigestive tract and cancer cells arising from that tissue are the result of mutations in specific genes and alteration of their expression. These genes control DNA repair, proliferation, immortalization, apoptosis, invasion, and angiogenesis. For head and neck cancer, alterations of three signaling pathways occur with sufficient frequency and produce such dramatic phenotypic changes as to be considered the critical transforming events of the disease. These changes include mutation of the p53 tumor suppressor, overexpression of epidermal growth factor receptor (EGFR), and inactivation of the cyclin dependent kinase inhibitor p16. Other changes such as Rb mutation, ras activation, cyclin D amplification, and myc overexpression are less frequent in HNSCC.

Although high expression of EphB4 has been reported in hematologic malignancies, breast carcinoma, endometrial carcinoma, and colon carcinoma, there is limited data on the protein levels of EphB4, and complete lack of data on the biological significance of this protein in tumor biology such as HNSCC.

A. HNSCC tumors express EphB4

5

10

15

25

30

We studied the expression of EphB4 in human tumor tissues by immunohistochemistry, in situ hybridization, and Western blot. Twenty prospectively collected tumor tissues following IRB approval have been evaluated with specific EphB4 monoclonal antibody that does not react with other members of the EphB and EphA family. EphB4 expression is observed in all cases, with varying intensity of staining. Figure 39A (top left) illustrates a representative case, showing that EphB4 is expressed in the tumor regions only, as revealed by the H&E tumor architecture (Fig. 39A bottom left). Note the absence of staining for EphB4 in the stroma. Secondly, a metastatic tumor site in the lymph node shows positive staining while the remainder of the lymph node is negative (Fig. 39A, top right).

In situ hybridization was carried out to determine the presence and location of EphB4 transcripts in the tumor tissue. Strong signal for EphB4 specific antisense probe was detected indicating the presence of transcripts (Figure 39 B, top left). Comparison with the H&E stain (Fig. 39B, bottom left) to illustrate tumor architecture reveals that the signal was localized to the tumor cells, and was absent from the stromal areas. Ephrin B2 transcripts were also detected in tumor sample, and as with EphB4, the signal was localized to the tumor cells (Fig. 39B, top right). Neither EphB4 nor ephrin B2 sense probes hybridized to the sections, proving specificity of the signals.

20 B. High expression of EphB4 in primary and metastatic sites of HNSCC

Western blots of tissue from primary tumor, lymph node metastases and uninvolved tissue were carried out to determine the relative levels of EphB4 expression in these sites. Tumor and normal adjacent tissues were collected on 20 cases, while lymph nodes positive for tumor were harvested in 9 of these 20 cases. Representative cases are shown in figure 39C. EphB4 expression is observed in each of the tumor samples. Similarly, all tumor positive lymph nodes show EphB4 expression that was equal to or greater than the primary tumor. No or minimal expression is observed in the normal adjacent tissue.

C. EphB4 expression and regulation by EGFR activity in HNSCC cell lines

Having demonstrated the expression of EphB4 limited to tumor cells, we next sought to determine whether there was an in vitro model of EphB4 expression in HNSCC. Six HN SCC cell lines were surveyed for EphB4 protein expression by Western Blot (Fig. 40A). A majority of these showed strong EphB4 expression and thus established the basis for subsequent studies. Since EGFR is strongly implicated in HNSCC we asked whether

EphB4 expression is associated with the activation of EGFR. Pilot experiments in SCC-15, which is an EGFR positive cell line, established an optimal time of 24 h and concentration of 1 mM of the specific EGFR kinase inhibitor AG 1478 (Figure 40B) to inhibit expression of EphB4. When all the cell lines were studied, we noted robust EGFR expression in all but SCC-4, where it is detectable but not strong (Fig. 40C, top row). In response to EGFR inhibitor AG1478 marked loss in the total amount of EphB4 was observed in certain cell lines (SCC-15, and SCC-25) while no effect was observed in others (SCC-9, -12, -13 and -71). Thus SCC-15 and -25 serve as models for EphB4 being regulated by EGFR activity, while SCC-9, -12, -13 and -71 are models for regulation of EphB4 in HNSCC independent of EGFR activity, where there may be input from other factors such as p53, PTEN, IL-6 etc. We also noted expression of the ligand of EphB4, namely ephrin B2, in all of the cell lines tested. As with EphB4 in some lines ephrin B2 expression appears regulated by EGFR activity, while it is independent in other cell lines.

5

10

30

Clearly, inhibition of constitutive EGFR signaling repressed EphB4 levels in 15 SCC15 cells. We next studied whether EGF could induce EphB4. We found that EphB4 levels were induced in SCC15 cells that had been serum starved for 24 h prior to 24 h treatment with 10 ng/ml EGF as shown in figure 41B (lanes 1 and 2). The downstream signaling pathways known for EGFR activation shown in figure 41A, (for review see Yarden & Slikowski 2001) were then investigated for their input into EGF mediated 20 induction of EphB4. Blocking PLCg, AKT and JNK phosphorylation with the specific kinase inhibitors U73122, SH-5 and SP600125 respectively reduced basal levels and blocked EGF stimulated induction of EphB4 (Fig. 41B, lanes 3-8). In contrast, inhibition of ERK1/2 with PD098095 and PI3-K with LY294002 or Wortmannin had no discernible effect on EGF induction of EphB4 levels. However, basal levels of EphB4 were reduced when ERK1/2 phosphorylation was inhibited. Interestingly, inhibition of p38 MAPK 25 activation with SB203580 increased basal, but not EGF induced EphB4 levels. Similar results were seen in the SCC25 cell line (data not shown).

D. Inhibition of EphB4 in high expressing cell lines results in reduced viability and causes cell-cycle arrest

We next turned to the role of EphB4 expression in HNSCC by investigating the effect of ablating expression using siRNA or AS-ODN methods. Several siRNAs to EphB4 sequence were developed (Table 1) which knocked-down EphB4 expression to varying degrees as seen in figure 42A. Viability was reduced in SCC-15, -25 and -71 cell lines

transfected with siRNAs 50 and 472, which were most effective in blocking EphB4 expression (Figure 42B). Little effect on viability was seen with EphB4 siRNA 1562 and 2302 or ephrin B2 siRNA 254. Note that in SCC-4, which does not express EphB4 (see Fig. 40A) there was no reduction in cell viability. The decreased cell viability seen with siRNA 50 and 472 treatment was attributable to accumulation of cells in sub G0, indicative of apoptosis. This effect was both time and dose-dependant (Figure 42C and Table 2). In contrast, siRNA2302 that was not effective in reducing EphB4 levels and had only minor effects on viability did not produce any changes in the cell cycle when compared with the mock Lipofectamine TM2000 transfection.

A detailed description of the siRNA constructs for this example may be found in U.S. Patent Publication No. 20050084873.

Table: Effect of different EphB4 siR	NA on Cell Cycle
--------------------------------------	------------------

5

Treatment	Sub G0	G1	S	G2
36hr				
Lipo alone	1.9	39.7	21.3	31.8
100 nM 2302	2.0	39.3	21.2	31.2
100 nM 50	18.1	31.7	19.7	24.4
100 nM 472	80.2	10.9	5.2	2.1
16hr				
Lipo alone	7.8	55.7	15.2	18.5
100 nM 2302	8.4	57.3	14.3	17.3
10 nM 50	10.4	53.2	15.7	17.7
100 nM 50	27.7	31.3	18.1	19.6
10 nM 472	13.3	50.2	15.8	17.5
100 nM 472	30.7	31.9	16.4	18.0

In addition, over 50 phosphorothioate AS-ODNs complementary to the human EphB4 coding sequences were synthesized and tested for their ability to inhibit EphB4 expression in 293 cells transiently transfected with full length EphB4 expression plasmid.

Figure 43A shows a representative sample of the effect of some of these AS-ODNs on EphB4 expression. Note that expression is totally abrogated with AS-10, while AS-11 has only a minor effect. The effect on cell viability in SCC15 cells was most marked with AS-ODNs that are most effective in inhibiting EphB4 expression as shown in figure 43B. The IC₅₀ for AS-10 was approximately 1 μ M, while even 10 μ M AS-11 was not sufficient to attain 50 % reduction of viability. When the effect that AS-10 had on the cell cycle was investigated, it was found that the sub G0 fraction increased from 1.9 % to 10.5 % compared to non-treated cells, indicative of apoptosis (Fig. 43C).

E. EphB4 regulates Cell migration

5

25

30

We next wished to determine if EphB4 participates in the migration of HNSCC.

Involvement in migration may have implications for growth and metastasis. Migration was assessed using the wound-healing/scrape assay. Confluent SCC15 and SCC25 cultures were wounded by a single scrape with a sterile plastic Pasteur pipette, which left a 3 mm band with clearly defined borders. Migration of cells into the cleared area in the presence of test compounds was evaluated and quantitated after 24, 48 and 72 hr. Cell migration was markedly diminished in response to AS-10 that block EphB4 expression while the inactive compounds, AS-1 and scrambled ODN had little to no effect as shown in figure 43D. Inhibition of migration with AS-10 was also shown using the Boyden double chamber assay (Fig. 43E).

20 F. EphB4 AS-10 in vivo anti-tumor activity

The effect of EphB4 AS-10, which reduces cell viability and motility, was determined in SCC15 tumor xenografts in Balb/C nude mice. Daily treatment of mice with 20 mg/kg AS-10, sense ODN or equal volume of PBS by I.P. injection was started the day following tumor cell implantation. Growth of tumors in mice receiving AS-10 was significantly retarded compared to mice receiving either sense ODN or PBS diluent alone (Figure 44). Non-specific effects attributable to ODN were not observed, as there was no difference between the sense ODN treated and PBS treated groups.

G. Materials and Methods

A detailed description of the materials and methods for this example may be found in U.S. Patent Publication No. 20050084873.

Example 6. Ephrin B2 Expression in Kaposi's Sarcoma Is Induced by Human Herpesvirus Type 8: Phenotype Switch from Venous to Arterial Endothelium

Kaposi's Sarcoma (KS) manifests as a multifocal angioproliferative disease, most commonly of the skin and mucus membranes, with subsequent spread to visceral organs (1) Hallmarks of the disease are angiogenesis, edema, infiltration of lymphomononuclear cells and growth of spindle-shaped tumor cells. Pathologically, established lesions exhibit an extensive vascular network of slit-like spaces. The KS vascular network is distinct from normal vessels in the lack of basement membranes and the abnormal spindle shaped endothelial cell (tumor cell) lining these vessels. Defective vasculature results in an accumulation of the blood components including albumin, red and mononuclear cells in the lesions (1). The KS tumor is endothelial in origin; the tumor cells express many endothelial markers, including lectin binding sites for *Ulex europeaus* agglutinin-1 (UEA-1), CD34, EN-4, PAL-E (2) and the endothelial cell specific tyrosine kinase receptors, VEGFR-1 (Flt-1), VEGFR-2 (Flk-1/KDR), VEGFR-3 (Flt-4), Tie-1 and Tie-2 (3, RM & PSG unpublished data). KS cells co-express lymphatic endothelial cell related proteins including LYVE and podoplanin (4).

5

10

15

20

25

30

The herpesvirus HHV-8 is considered the etiologic agent for the disease. In 1994 sequences of this new herpes virus were identified in KS tumor tissue (5), and subsequent molecular-epidemiology studies have shown that nearly all KS tumors contain viral genome. Sero-epidemiology studies show that HIV infected patients with KS have the highest prevalence of HHV-8 and secondly that those with HIV infection but no KS have increased risk of development of KS over the ensuing years if they are also seropositive for HHV-8 (6). Direct evidence for the role of HHV-8 in KS is the transformation of bone marrow endothelial cells after infection with HHV-8 (7). A number of HHV-8 encoded genes could contribute to cellular transformation (reviewed in 8). However, the most evidence has accumulated for the G-protein coupled receptor (vGPCR) in this role (9).

We investigated whether KS tumor cells are derived from arterial or venous endothelium. In addition, we investigated whether HHV-8 has an effect on expression of arterial or venous markers in a model of KS. KS tumor cells were found to express the ephrin B2 arterial marker. Further, ephrin B2 expression was induced by HHV-8 vGPCR in KS and endothelial cell lines. Ephrin B2 is a potential target for treatment of KS because inhibition of ephrin B2 expression or signaling was detrimental to KS cell viability and function.

A. KS tumors express Ephrin B2, but not EphB4

5

10

15

20

25

30

The highly vascular nature of KS lesions and the probable endothelial cell origin of the tumor cells prompted investigation of expression of EphB4 and ephrin B2 which are markers for venous and arterial endothelial cells, respectively. Ephrin B2, but not EphB4 transcripts were detected in tumor cells of KS biopsies by in situ hybridization (figure 45A). Comparison of the positive signal with ephrin B2 antisense probe and tumor cells as shown by H&E staining shows that ephrin B2 expression is limited to the areas of the biopsy that contain tumor cells. The lack of signal in KS with EphB4 antisense probe is not due to a defect in the probe, as it detected transcripts in squamous cell carcinoma, which we have shown expresses this protein (18). Additional evidence for the expression of ephrin B2 in KS tumor tissue is afforded by the localization of EphB4/Fc signal to tumor cells, detected by FITC conjugated anti human Fc antibody. Because ephrin B2 is the only ligand for EphB4 this reagent is specific for the expression of ephrin B2 (figure 45B, left). An adjacent section treated only with the secondary reagent shows no specific signal. Twocolor confocal microscopy demonstrated the presence of the HHV-8 latency protein, LANA1 in the ephrin B2 positive cells (Fig. 45C, left), indicating that it is the tumor cells, not tumor vessels, which are expressing this arterial marker. Staining of tumor biopsy with PECAM-1 antibody revealed the highly vascular nature of this tumor (Fig. 45C, right). A pilot study of the prevalence of this pattern of ephrin B2 and EphB4 expression on KS biopsies was conducted by RT-PCR analysis. All six samples were positive for ephrin B2, while only 2 were weakly positive for EphB4 (data not shown).

B. Infection of venous endothelial cells with HHV-8 causes a phenotype switch to arterial markers

We next asked whether HHV-8, the presumed etiologic agent for KS, could itself induce expression of ephrin B2 and repress EphB4 expression in endothelial cells. Coculture of HUVEC and BC-1 lymphoma cells, which are productively infected with HHV-8, results in effective infection of the endothelial cells (16). The attached monolayers of endothelial cells remaining after extensive washing were examined for ephrin B2 and EphB4 by RT-PCR and immunofluorescence. HUVEC express EphB4 venous marker strongly at the RNA level, but not ephrin B2 (figure 46B). In contrast, HHV-8 infected cultures (HUVEC/BC-1 and HUVEC/BC-3) express ephrin B2, while EphB4 transcripts are almost absent.

Immunofluorescence analysis of cultures of HUVEC and HUVEC/HHV-8 for artery/vein markers and viral proteins was undertaken to determine whether changes in protein expression mirrored that seen in the RNA. In addition, cellular localization of the proteins could be determined. Consistent with the RT-PCR data HUVEC are ephrin B2 negative and EphB4 positive (Fig. 46A(a & m)). As expected they do not express any HHV-8 latency associated nuclear antigen (LANA1) (Fig. 46A(b, n)). Co-culture of BC-1 cells, which are productively infected with HHV-8, resulted in infection of HUVEC as shown by presence of viral proteins LANA1 and ORF59 (Fig. 46A(f, r)). HHV-8 infected HUVEC now express ephrin B2 but not EphB4 (Fig. 46A(e, q, u), respectively). Expression of ephrin B2 and LANA1 co-cluster as shown by yellow signal in the merged image (Fig. 46A(h)). HHV-8 infected HUVEC positive for ephrin B2 and negative for Eph B4 also express the arterial marker CD148 (19) (Fig. 46A (j, v)). Expression of ephrin B2 and CD148 co-cluster as shown by yellow signal in the merged image (Fig. 46A(l)). Uninfected HUVEC expressing Eph B4 were negative for CD148 (not shown).

15 C. HHV-8 vGPCR induces ephrin B2 expression

5

10

To test whether individual viral proteins could induce the expression of ephrin B2 seen with the whole virus KS-SLK cells were stably transfected with HHV-8 LANA, or LANAA440 or vGPCR. Western Blot of stable clones revealed a five-fold induction of ephrin B2 in KS-SLK transfected with vGPCR compared to SLK-LANA or SLK-20 LANAΔ440 (Fig. 47A). SLK transfected with vector alone (pCEFL) was used as a control. SLK-vGPCR and SLK-pCEFL cells were also examined for ephrin B2 and Eph B4 expression by immunofluorescence in transiently transfected KS-SLK cells. Figure 47B shows higher expression of ephrin B2 in the SLK-vGPCR cells compared to SLK-pCEFL. No changes in Eph B4 were observed in SLK-vGPCR compared to SLK-pCEFL. This 25 clearly demonstrates that SLK-vGPCR cells expressed high levels of ephrin B2 compared to SLK-pCEFL cells. This suggests that vGPCR of HHV-8 is directly involved in the induction of Ephrin B2 and the arterial phenotype switch in KS. Since we had shown that HHV-8 induced expression of ephrin B2 in HUVEC, we next asked if this could be mediated by a transcriptional effect. Ephrin B2 5'-flanking DNA-luciferase reporter 30 plasmids were constructed as described in the Materials and Methods and transiently transfected into HUVECs. Ephrin B2 5'-flanking DNA sequences -2491/-11 have minimal activity in HUVEC cells (figure 47C). This is consistent with ephrin B2 being an arterial, not venous marker. However, we have noted that HUVEC in culture do express some

ephrin B2 at the RNA level. Cotransfection of HHV-8 vGPCR induces ephrin B2 transcription approximately 10-fold compared to the control expression vector pCEFL. Roughly equal induction was seen with ephrin B2 sequences -2491/-11, -1242/-11, or -577/-11, which indicates that elements between -577 and -11 are sufficient to mediate the response to vGPCR, although maximal activity is seen with the -1242/-11 luciferase construct.

D. Expression of Ephrin B2 is regulated by VEGF and VEGF-C

5

10

15

25

30

We next asked whether known KS growth factors could be involved in the vGPCR-mediated induction of ephrin B2 expression. SLK-vGPCR cells were treated with neutralizing antibodies to oncostatin-M, IL-6, IL-8, VEGF or VEGF-C for 36 hr. Figure 48A shows that neutralization of VEGF completely blocked expression of ephrin B2 in SLK-vGPCR cells. A lesser, but significant decrease in ephrin B2 was seen neutralization of VEGF-C and IL-8. No appreciable effect was seen with neutralization of oncostatin-M or IL-6. To verify that VEGF and VEGF-C are integral to the induction of ephrin B2 expression we treated HUVEC with VEGF, VEGF-C or EGF. HUVECs were grown in EBM-2 media containing 5 % FBS with two different concentration of individual growth factor (10 ng, 100 ng/ml) for 48 h. Only VEGF-A or VEGF-C induced ephrin B2 expression in a dose dependent manner (Figure 48B). In contrast, EGF had no effect on expression of ephrin B2.

20 E. Ephrin B2 siRNA inhibits the expression of Ephrin B2 in KS

Three ephrin B2 siRNA were synthesized as described in the methods section. KS-SLK cells were transfected with siRNA and 48 h later ephrin B2 expression was determined by Western Blot. Ephrin B2 siRNAs 137 or 254 inhibited about 70% of ephrin B2 expression compared to control siRNA such as siRNA Eph B4 50 or siRNA GFP. Ephrin B2 63 siRNA was less effective than the above two siRNA Ephrin B2 (Figure 49A).

F. Ephrin B2 is necessary for full KS and EC viability, cord formation and in vivo angiogenesis activities

The most effective ephrin B2 siRNA (254) was then used to determine whether inhibiting expression of ephrin B2 has any effect on the growth of KS-SLK or HUVEC cells. The viability of KS-SLK cells was decreased by the same siRNAs that inhibited ephrin B2 protein levels (figure 49B). KS-SLK express high levels of ephrin B2 and this

result shows maintenance of ephrin B2 expression is integral to cell viability in this setting. HUVECs do not express ephrin B2, except when stimulated by VEGF as shown in Fig. 48B. Ephrin B2 siRNA 264 dramatically reduced growth of HUVECs cultured with VEGF as the sole growth factor. In contrast, no significant effect was seen when HUVECs were cultured with IGF, EGF and bFGF. As a control, EphB4 siRNA 50 had no detrimental effect on HUVECs in either culture condition (figure 49C). In addition to inhibition of viability of KS and primary endothelial cells, EphB4-ECD inhibits cord formation in HUVEC and KS-SLK and in vivo angiogenesis in the MatrigelTM plug assay (Figure 50).

G. Methods and Materials

5

10

30

A detailed description of the materials and methods for this example may be found in U.S. Patent Publication No. 20050084873.

Example 7. Expression of EphB4 in Bladder cancer: a candidate target for therapy

Figure 51 shows expression of EPHB4 in bladder cancer cell lines (A), and regulation of EPHB4 expression by EGFR signaling pathway (B).

Figure 52 shows that transfection of p53 inhibit the expression of EPHB4 in 5637 cell.

Figure 53 shows growth inhibition of bladder cancer cell line (5637) upon treatment with EPHB4 siRNA 472.

Figure 54 shows results on apoptosis study of 5637 cells transfected with EPHB4 20 siRNA 472.

Figure 55 shows effects of EPHB4 antisense probes on cell migration. 5637 cells were treated with EPHB4AS10 (10 μ M).

Figure 56 shows effects of EPHB4 siRNA on cell invasion. 5637 cells were transfected with siRNA 472 or control siRNA.

25 Example 8. Inhibition of EphB4 Gene Expression by EphB4 antisense probes and RNAi probes

Cell lines expressing EphB4 were treated with the synthetic phosphorothioate modified oligonucleotides and harvested after 24 hr. Cell lysates were prepared and probed by western blot analysis for relative amounts of EphB4 compared to untreated control cells.

Studies on inhibition of cell proliferation were done in HNSCC cell lines characterized to express EphB4. Loss of cell viability was shown upon knock-down of EphB4 expression. Cells were treated in vitro and cultured in 48-well plates, seeded with 10

thousand cells per well. Test compounds were added and the cell viability was tested on day 3. The results on EphB4 antisense probes were summarized below in Table 6. The results on EphB4 RNAi probes were summarized below in Table 7.

A detailed description of the antisense and siRNA constructs for this example may be found in U.S. Patent Publication No. 20050084873.

Example 9. Inhibition of Ephrin B2 Gene Expression by Ephrin B2 antisense probes and RNAi probes

KS SLK, a cell line expressing endogenous high level of ephrin B2. Cell viability was tested using fixed dose of each oligonuceotide (5uM). Gene expression downregulation was done using cell line 293 engineered to stably express full-length ephrin B2. KS SLK expressing EphrinB2 were also used to test the viability in response to RNAi probes tested at the fixed dose of 50 nM. Protein expression levels were measured using 293 cells stably expressing full-length EphrinB2, in cell lysates after 24 hr treatment with fixed 50 nM of RNAi probes.

The results on Ephrin B2 antisense probes were summarized below in Table 8. The results on Ephrin B2 RNAi probes were summarized below in Table 9.

A detailed description of the antisense and siRNA constructs for this example may be found in U.S. Patent Publication No. 20050084873.

Example 10. EphB4 antibodies inhibit tumor growth

5

10

Figure 57 shows results on comparison of EphB4 monoclonal antibodies by G250 and in Pull-down assay.

Figure 58 shows that EphB4 antibodies, in the presence of matrigel and growth factors, inhibit the *in vivo* tumor growth of SCC15 cells.

BaIbC nude mice were injected subcutaneously with 2.5 x 10⁶ viable tumor cells

SCC15 is a head and neck squamous cell carcinoma line. Tumors were initiated in nu/nu mice by injecting 2.5-5x10⁶ cells premixed with matrigel and Growth factors, and Ab's subcutaneously to initiate tumor xenografts. Mice were opened 14 days after injections.

SCC15 is a head and neck squamous cell carcinoma line, B16 is a melanoma cell line, and MCF-7 is a breast carcinoma line. The responses of tumors to these treatments were compared to control treated mice, which receive PBS injections. Animals were observed daily for tumor growth and subcutaneous tumors were measured using a caliper every 2

days. Antibodies #1 and #23 showed significant regression of SCC15 tumor size compared to control, especially with no additional growth factor added.

Figure 59 shows that EphB4 antibodies cause apoptosis, necrosis and decreased angiogenesis in SCC15, head and neck carcinoma tumor type.

5

10

15

20

25

30

Angiogenesis was assessed by CD-31 immunohistochemistry. Tumor tissue sections from treated and untreated mice were stained for CD31. Apoptosis was assessed by immunohistochemical TUNNEL, and proliferation by BrdU assay. Following surgical removal, tumors were immediately sliced into 2 mm serial sections and embedded in paraffin using standard procedures, Paraffin embedded tissue were sectioned at 5 µm, the wax removed and the tissue rehydrated. The rehydrated tissues were microwave irradiated in antigen retreival solution. . Slides were rinsed in PBS, and TUNNEL reaction mixture (Terminal deoxynucleotidyl transferase and flourescein labeled nucleotide solution), and BrdU were added in a humidity chamber completely shielded from light. The TUNNEL and BrdU reaction mixture were then removed, slides were rinsed and anti-flourescein antibody conjugated with horseradish peroxidase was added. After incubation and rinsing, 3, 3'diaminobenzidine was added. Masson's Trichrome and Hematoxylin and Eosin were also used to stain the slides to visualize morphology. Masson's Trichrome allows to visualize necrosis and fibrosis. The tumor gets blood support from tumor/skin, muscle boundary. As tumor grows, inner regions get depleted of nutrients. This leads to necrosis (cell death), preferably at the tumor center. After cells die, (tumor) tissue gets replaced with fibroblastic tissue. Slides were visualized under 20-fold magnification with digital images acquired. A different morphology was obtained on SCC tumors with each antibody administered. Ab #1 showed an increase in necrosis and fibrosis but not apoptosis. Ab #23 showed an increase in apoptosis, necrosis and fibrosis and a decrease in vessel infiltration. Ab #35 showed an increase in necrosis and fibrosis, and a small increase in apoptosis and a decrease in vessel infiltration. Ab #79 showed a large increase in apoptosis, and necrossis and fibrosis. Ab #91 showed no change in apoptosis but an increase in proliferation. And Ab #138 showed an increase in apoptosis, necrosis, fibrosis and a decrease in proliferation and vessel infiltration. Tumors treated with control PBS displayed abundant tumor density and a robust angiogenic response. Tumors treated with EphB4 antibodies displayed a decrease in tumor cell density and a marked inhibition of tumor angiogenesis in regions with viable tumor cells, as well as tumor necrosis and apoptosis.

Figure 60 shows that systemic administration of antibodies on xenografts leads to tumor regression in SCC15 tumor xenografts.

Alternate day treatment with EphB4 monoclonal antibody or an equal volume of PBS as control were initiated on day 4, after the tumors have established, and continued for 14 days. Systemic administration was administered either IP or SC with no significant difference. All the experiments were carried out in a double-blind manner to eliminate investigator bias. Mice were sacrificed at the conclusion of the two week treatment period. Tumors were harvested immediately postmortem and fixed and processed for immunohistochemistry. EphB4 antibodies 40 mg per kg body weight were administered.

Treatment with EphB4 antibody significantly inhibited human SCC tumor growth compared with control-treated mice (p<0.05). Treatment with EphB4 antibody significantly inhibited tumor weight compared with control-treated mice (p<0.05).

Example 11. HSA-EphB4 ectodomain fusion and PEG-modified EphB4 Ectodomain A. Generation of HSA-EphB4 ectodomain fusion

15

20

30

35

Human serum albumin fragment in XbaI-NotI form was PCR-amplified out for creating a fusion with GCF2, and TA-cloned into pEF6. In the next step, the resulting vector was cut with Xba I (partial digestion) and the HSA fragment (1.8 kb) was cloned into Xba I site of pEF6-GCF2-Xba to create fusion expression vector. The resulting vector had a point mutation C to T leading to Thr to Ile substitution in position 4 of the mature protein. It was called pEF6-GCF2-HSAmut. In the next cloning step, the mutation was removed by substituting wild type KpnI fragment from pEF6-GCF2-IF (containing piece of the vector and N-terminal part of GCF2) for the mutated one, this final vector was called pEF6-GCF2. The DNA sequence of pEF6-GCF2 was confirmed.

The predicted amino acid of the HSA-EphB4 precursor protein was as follows (SEQ ID NO:18):

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSGLDEEQHS VRTYEVCDVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTMLECLSLPRAGRSCK ETFTVFYYESDADTATALTPAWMENPYIKVDTVAAEHLTRKRPGAEATGKVNVKT LRLGPLSKAGFYLAFQDQGACMALLSLHLFYKKCAQLTVNLTRFPETVPRELVVPV AGSCVVDAVPAPGPSPSLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCRACAQG TFKPLSGEGSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRSVV SRLNGSSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDPGPRDLV EPWVVVRGLRPDFTYTFEVTALNGVSSLATGPVPFEPVNVTTDREVPPAVSDIRVT RSSPSSLSLAWAVPRAPSGAVLDYEVKYHEKGAEGPSSVRFLKTSENRAELRGLKR GASYLVQVRARSEAGYGPFGQEHHSQTQLDESEGWREQSRDAHKSEVAHRFKDL

GEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLF
GDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMC
TAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLP
KLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLV
TDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAE
VENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLL
LRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFKQLGEYK
FQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVL
NQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADIC
TLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFA
EEGKKLVAASQAALGL

5

10

The predicted amino acid sequence of the mature form of the HSA-EphB4 protein was as follows (SEQ ID NO:19):

- LEETLLNTKLETADLKWVTFPOVDGOWEELSGLDEEOHSVRTYEVCDVORAPGO 15 AHWLRTGWVPRRGAVHVYATLRFTMLECLSLPRAGRSCKETFTVFYYESDADTAT ALTPAWMENPYIKVDTVAAEHLTRKRPGAEATGKVNVKTLRLGPLSKAGFYLAFQ DQGACMALLSLHLFYKKCAQLTVNLTRFPETVPRELVVPVAGSCVVDAVPAPGPS PSLYCREDGOWAEQPVTGCSCAPGFEAAEGNTKCRACAQGTFKPLSGEGSCOPCP ANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRSVVSRLNGSSLHLEWSA 20 PLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDPGPRDLVEPWVVVRGLRPDFT YTFEVTALNGVSSLATGPVPFEPVNVTTDREVPPAVSDIRVTRSSPSSLSLAWAVPR APSGAVLDYEVKYHEKGAEGPSSVRFLKTSENRAELRGLKRGASYLVOVRARSEA GYGPFGQEHHSQTQLDESEGWREQSRDAHKSEVAHRFKDLGEENFKALVLIAFAQ YLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETY GEMADCCAKOEPERNECFLOHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKY 25 LYEIARRHPYFYAPELLFFAKRYKAAFTECCOAADKAACLLPKLDELRDEGKASSA KORLKCASLOKFGERAFKAWAVARLSORFPKAEFAEVSKLVTDLTKVHTECCHGD LLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLA ADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCC 30 AAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFKQLGEYKFQNALLVRYTKKVP QVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSD RVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTA LVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAA LGL

tctagg tcttgaaag gag tgcctcgtgagg ctccgg tgcccgtcagtgggcagag cgcacatcgcccacagtccccgagaag ttggggggagggteggcaattgaaccggtgcctagagaaggtggcgcggggtaaactgggaaagtgatgtcgtgtactggctccgcaggtaagtgccgtgtgtggttcccgcgggcctggcctctttacgggttatggcccttgcgtgccttgaattacttccacctggctgcag gagttgaggcctggcctggggcgcgcgcgcggggaatctggtggcaccttcgcgcctgtctcgctgctttcgataagtetc tage catttaaa at ttttgat gacet get gege gac get ttttttet gge aa gat ag tet tg taaat geggge caa gat et geacaet gg tat te gegeen gegen geg10 caccgagaatcggacggggtagtctcaagctggccggcetgctctggtgcctggcctcgccgccgtgtatcgccccgccctgggcggcaaggctggcccggtcggcaccagttgcgtgagcggaaagatggccgcttcccggccctgctgcagggagctcaaaat ggaggacgcggcgctcgggagaggggggggggtgagtcacccacacaaaggaaaagggcctttccgtcctcagccgtcgcttca tgtgactccacggagtaccggcgccgtccaggcacctcgattagttctcgagcttttggagtacgtcgtctttaggttgggggag 15 gccctttttgagtttggatcttggttcattctcaagcctcagacagtggttcaaagttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagtttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagtttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagtttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagtttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagtttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagtttttttcttccatttcaggtgtcgtgaggaattagcttggttcaaagggtactaatacgactcactatagggagacccaagctggctaggtaagcttggtaccgagctcggatccactagtccagtgtggtgg aattgcccttCAAGCTTGCCGCCACCATGGAGCTCCGGGTGCTGCTCTGCTGGGCTTC GTTGGCCGCAGCTTTGGAAGAGCCCTGCTGAACACAAAATTGGAAACTGCTG ATCTGAAGTGGGTGACATTCCCTCAGGTGGACGGCAGTGGGAAGCTGAGC 20 GGCCTGGATGAGGAACAGCACAGCGTGCGCACCTACGAAGTGTGTGACGTGCA GCGTGCCCGGGCCAGGCCCACTGGCTTCGCACAGGTTGGGTCCCACGGCGGG GCGCCGTCCACGTGTACGCCACGCTGCGCTTCACCATGCTCGAGTGCCTGTCCC TGCCTCGGGCTGGGCGCTCCTGCAAGGAGACCTTCACCGTCTTCTACTATGAGA ATCAAGGTGGACACGGTGGCCGCGGAGCATCTCACCCGGAAGCGCCCTGGGGC 25 CGAGGCCACCGGGAAGGTGAATGTCAAGACGCTGCGCCTGGGACCGCTCAGCA AGGCTGCTTCTACCTGGCCTTCCAGGACCAGGGTGCCTGCATGGCCCTGCTAT CCCTGCACCTCTTCTACAAAAAGTGCGCCCAGCTGACTGTGAACCTGACTCGAT TCCCGGAGACTGTGCCTCGGGAGCTGGTTGTGCCCGTGGCCGGTAGCTGCGTGG 30 TGGATGCCGTCCCGCCCTGGCCCCAGCCTCTACTGCCGTGAGGATG GCCAGTGGGCCGAACAGCCGGTCACGGGCTGCAGCTGTGCTCCGGGGTTCGAG GCAGCTGAGGGGAACACCAAGTGCCGAGCCTGTGCCCAGGGCACCTTCAAGCC CCTGTCAGGAGAAGGGTCCTGCCAGCCATGCCCAGCCAATAGCCACTCTAACA ACCCCGGGGTGCACCCTGCACCCCTCCTTCGGCTCGCGGAGCGTGGTTT 35 CCCGCCTGAACGGCTCCTCCCTGCACCTGGAATGGAGTGCCCCCCTGGAGTCTG GTGGCCGAGAGGACCTCACCTACGCCCTCCGCTGCCGGGAGTGTCGACCCGGA GGCTCCTGTGCGCCCTGCGGGGGAGACCTGACTTTTGACCCCGGCCCCCGGGAC CTGGTGGAGCCCTGGGTGGTGGTTCGAGGGCTACGTCCTGACTTCACCTATACC TTTGAGGTCACTGCATTGAACGGGGTATCCTCCTTAGCCACGGGGCCCGTCCCA 40 TTTGAGCCTGTCAATGTCACCACTGACCGAGAGGTACCTCCTGCAGTGTCTGAC ATCCGGGTGACGCGGTCCTCACCCAGCAGCTTGAGCCTGGCCTGGGCTGTTCCC CGGGCACCCAGTGGGGCTGTGCTGGACTACGAGGTCAAATACCATGAGAAGGG CGCCGAGGGTCCCAGCAGCGTGCGGTTCCTGAAGACGTCAGAAAACCGGGCAG 45 AGCTGCGGGGGCTGAAGCGGGGAGCCAGCTACCTGGTGCAGGTACGGGCGCGC TCTGAGGCCGGCTACGGCCCTTCGGCCAGGAACATCACAGCCAGACCCAACT GGATGAGAGCGAGGCTGGCGGAGCAGtctagaGATGCACACAAGAGTGAGGTT GCTCATCGGTTTAAAGATTTGGGAGAAGAAAATTTCAAAGCCTTGGTGTTGATT GCCTTTGCTCAGTATCTTCAGCAGTGTCCATTTGAAGATCATGTAAAATTAGTG AATGAAGTAACTGAATTTGCAAAAACATGTGTAGCTGATGAGTCAGCTGAAAA 50 TTGTGACAAATCACTTCATACCCTTTTTGGAGACAAATTATGCACAGTTGCAAC

TCTTCGTGAAACCTATGGTGAAATGGCTGACTGCTGTGCAAAACAAGAACCTG AGAGAAATGAATGCTTCTTGCAACACAAAGATGACAACCCAAACCTCCCCGA TTGGTGAGACCAGAGGTTGATGTGATGTGCACTGCTTTTCATGACAATGAAGAG ACATTTTTGAAAAAATACTTATATGAAATTGCCAGAAGACATCCTTACTTTTAT GCCCGGAACTCCTTTTCTTTGCTAAAAGGTATAAAGCTGCTTTTACAGAATGT TGCCAAGCTGCTGATAAAGCTGCCTGCTTGCCAAAGCTCGATGAACTTCGG GATGAAGGGAAGGCTTCGTCTGCCAAACAGAGACTCAAATGTGCCAGTCTCCA AAAATTTGGAGAAAGACTTTCAAAGCATGGCAGTGGCTCGCCTGAGCCAGA GATTTCCCAAAGCTGAGTTTGCAGAAGTTTCCAAGTTAGTGACAGATCTTACCA 10 AAGTCCACACGGAATGCTGCCATGGAGATCTGCTTGAATGTGCTGATGACAGG GCGGACCTTGCCAAGTATATCTGTGAAAATCAGGATTCGATCTCCAGTAAACTG AAGGAATGCTGTGAAAAACCTCTGTTGGAAAAATCCCACTGCATTGCCGAAGT GGAAAATGATGAGATGCCTGCTGACTTGCCTTCATTAGCTGCTGATTTTGTTGA AAGTAAGGATGTTTGCAAAAACTATGCTGAGGCAAAGGATGTCTTCCTGGGCA 15 TGTTTTTGTATGAATATGCAAGAAGGCATCCTGATTACTCTGTCGTGCTGCTGCT GAGACTTGCCAAGACATATGAAACCACTCTAGAGAAGTGCTGTGCCGCTGCAG ATCCTCATGAATGCTATGCCAAAGTGTTCGATGAATTTAAACCTCTTGTGGAAG AGCCTCAGAATTTAATCAAACAAAACTGTGAGCTTTTTAAGCAGCTTGGAGAGT ACAAATTCCAGAATGCGCTATTAGTTCGTTACACCAAGAAAGTACCCCAAGTGT 20 CAACTCCAACTCTTGTAGAGGTCTCAAGAAACCTAGGAAAAGTGGGCAGCAAA GTGGTCCTGAACCAGTTATGTGTGTTGCATGAGAAAACGCCAGTAAGTGACAG AGTCACAAAATGCTGCACAGAGTCCTTGGTGAACAGGCGACCATGCTTTTCAGC TCTGGAAGTCGATGAAACATACGTTCCCAAAGAGTTTAATGCTGAAACATTCAC 25 CTTCCATGCAGATATATGCACACTTTCTGAGAAGGAGAGACAAATCAAGAAAC AAACTGCACTTGTTGAGCTTGTGAAACACAAGCCCAAGGCAACAAAAGAGCAA CTGAAAGCTGTTATGGATGATTTCGCAGCTTTTGTAGAGAAGTGCTGCAAGGCT GACGATAAGGAGACCTGCTTTGCCGAGGAGGGTAAAAAACTTGTTGCTGCAAG 30 to gag to tag agg georgeg gt to gaa gg taa go ctate ceta accete to et eg gt to tag at total earlier and the contraction of that caccattg agt ttaaaccegctg at cagcet egactg tgccttct agt tgccagc catctg ttgt ttgcccctccccgtg cetteet the catchesis of thegggtgggtgggcaggacagcaaggggggggggggggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggcttctgaggeggaaagaaccagctggggctctagggggtatccccacgcgccctgtagcggcgcattaagcgcggcgggtgtggtg35 ettteccegteaagetetaaateggggeatecetttagggttecgatttagtgetttaeggeacetegaeeceaaaaaaettgattaggg 40 geateteaattagteageaaceatagteegeeetaaeteegeeeatteegeeetaaeteegeeeatteteegeee gcctaggcttttgcaaaaagctcccgggagcttgtatatccattttcggatctgatcagcacgtgttgacaattaatcatcggcatagtattcattttcggatctgatcagcacgtgttgacaattaatcatcggcatagtattcattttcggatctgatcagcacgtgttgacaattaatcatcggcatagtattcattttcggatctgatcagcacgtgttgacaattaatcatcggcatagtattcattttcggatctgatcagcacgtgttgacaattaatcatcggcatagtattagatcagcacgtgttgacaattaatcatcggcatagtattagatcagcacgtgttgacaattaatcattttcggatcagcacgtgttgacaattaatcattgacacgtgatcagateggeatagtataatacgacaaggtgaggaactaaaccatggccaagcetttgtctcaagaagaatccaccctcattgaaagagca 45 gtcaatgtatat cattttactgggggaccttgtgcagaactcgtggtggtggtggcactgctgctgctgctgcagctggcaacctgacttgtategtegegateggaaatgagaacaggggcatettgageeeetgeggaeggtgtegaeaggtgettetegatetgeateetggg at caa age gat agt gaa ag gac ag t ggac ag cega cag cag t t gg gat t eg t gat t get ge cet c t gg t t at gt gg gag gg gat t ggctaagcacttcgtggccgaggagcaggactgacacgtgctacgagatttcgattccaccgccgccttctatgaaaggttgggcttcg 50 gaatcgttttccgggacgccggctggatgatcctccagcgggggatctcatgctggagttcttcgcccaccccaacttgtttattgca

gcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgggggagaggcg aaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaa ccgtaaaaaggccgcgttgctggcgtttttccataggctccgccccctgacgagcatcacaaaaatcgacgctcaagtcagaggt ggegaaacccgacaggactataaagataccaggegtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgctta ceggatacetgteegeettteteettegggaagegtggegettteteaatgeteaegetgtaggtateteagtteggtgtaggtegtte getecaagetgggetgtgtgcaegaacccccgttcagcccgaecgctgcgccttatccggtaactatcgtcttgagtccaacccgg aagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttg t caagaagat cott t gat cttt tetacggggt ctgacgct cag t gaaa caagaaaact cacgt taagggat ttt gat cat gagat tat caaaact cacgt taagggat ctt gagat tat caaaact cacgt taagggat tat caaaact cacgt taagggat ctt gagat tat caaaact cacgt taagggat ctt gagat tat caaaact cacgt taagggat ctt gagat cacgat cacgataaggatetteacetagateettttaaattaaaatgaagttttaaateaatetaaagtatatatgagtaaaettggtetgacagttaceaatg ettaateagtgaggeacetateteagegatetgtetatttegtteatecatagttgeetgaeteeeegtegtgtagataaetaegataegg gagggettaccatetggceccagtgctgcaatgataccgcgagacccacgctcaccggetccagatttatcagcaataaaccagcc ccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcag aagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtga ctggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccg cgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatc cagttegatgtaacccactegtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggc aaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttc

25

30

35

40

10

15

20

B. Cell culture and transfections:

The human embryonic kidney cell line, 293T cells, was maintained in DMEM with 10% dialyzed fetal calf serum and 1% penicillin/streptomycin/neomycin antibiotics. Cells were maintained at 37 °C in a humidified atmosphere of 5% CO₂/95% air.

Transfections of plasmids encoding EphB4 ectodomain, fragments thereof, and EphB4-HSA fusions were performed using Lipofectamine 2000 reagent (Invitrogen) according to suggested protocol. One day before transfections, 293T cells were seeded at a high density to reach 80% confluence at the time of transfection. Plasmid DNA and Lipofectamine reagent at 1:3 ratio were diluted in Opti-MEM I reduced serum medium (Invitrogen) for 5 min and mixed together to form DNA-Lipofectamine complex. For each 10 cm culture dish, 10 μ g of plasmid DNA was used. After 20 min, the above complex was added directly to cells in culture medium. After 16 hours of transfection, medium was aspirated, washed once with serum free DMEM and replaced with serum free DMEM. Secreted proteins were harvested after 48 hours by collecting conditional medium. Conditional medium was clarified by centrifugation at 10,000 g for 20 min and filtered through 0.2 μ filter and used for purification.

C. Chromatographic separation of EphB4 ectodomain and EphB4 ectodomain-HSA fusion protein

The EphB4 ectodomain fused to HSA was purified as follows: 700 ml of media was harvested from transiently transfected 293 cells grown in serum free media and concentrated up to final volume of 120 ml. Membrane: (Omega, 76 mm), 50 kDa C/O. After concentration, pH of the sample was adjusted by adding 6 ml of 1M NaAc, pH 5.5. Then sample was dialyzed against starting buffer (SB): 20 mM NaAc, 20 mM NaCl, pH 5.5 for O/N. 5 ml of SP-Sepharose was equilibrated with SB and sample was loaded. Washing: 100 ml of SB. Elution by NaCl: 12 ml/fraction and increment of 20 mM. Most of the EphrinB2 binding activity eluted in the 100mM and 120mM fractions.

Fractions, active in EphrinB2 binding assay (See SP chromatography, fractions # 100-120 mM) were used in second step of purification on Q-column. Pulled fractions were dialyzed against starting buffer#2 (SB2): 20 mM Tris-HCl, 20 mM NaCl, pH 8 for O/N and loaded onto 2 ml of Q-Sepharose. After washing with 20 ml of SB2, absorbed protein was eluted by NaCl: 3 ml/fraction with a concentration increment of 25 mM. Obtained fractions were analyzed by PAGE and in Ephrin-B2 binding assay. The 200mM and 225mM fractions were found to contain the most protein and the most B2 binding activity.

Soluble EphB4 ectodomain protein was purified as follows: 300 ml of conditional medium (see: *Cell culture and transfections*) were concentrated up to final volume of 100 ml, using ultrafiltration membrane with 30 kDa C/O. After concentration, pH of the sample was adjusted by adding 5 ml of 1 M Na-Acetate, pH 5.5. Then sample was dialyzed against starting buffer (StB): 20 mM Na-Acetate, 20 mM NaCl, pH 5.5 for O/N. 5 ml of SP-Sepharose was equilibrated with StB and sample was loaded. After washing the column with 20 ml of StB, absorbed proteins were eluted by linear gradient of concentration of NaCl (20-250 mM and total elution volume of 20 column's volumes). Purity of the proteins was analyzed by PAGE.

D. Biotinylation of sB4 and sB4-HSA fusion protein.

5

10

15

20

25

30

Both soluble EphB4 ectodomain protein (sB4) and EphB4 ectodomain fused to HSA (HSA-sB4) were biotin labeled through carbohydrate chains using sodium metaperiodate as an oxidant and EZ-Link Biotin Hydrazide (PIERCE, Cat. # 21339) according to manufacture's protocol. The *in vitro* stability of the biotinylated sB4 protein was tested

by incubating 2.0×10^{-9} with 40 μ L of mouse serum at 37°C for 0, 0.5, 1, 2 and 3 days. Two μ L of magnetic beads and B2-AP was added for an extra hour at room temperature. After washing twice with buffer, pnPP was added for 1 hour. Biotinylated sB4 protein was found to very stable over three days, with less than 10% of the B2 binding activity being lost over that time.

E. Ephrin-B2 Binding Properties of B4-HSA

5

10

15

20

25

To test whether the B4-HSA fusion property retained the ability of the EphB4 extracellular domain to bind to EphrinB2, the ability of the purified B4-HSA fusion was compared to that of GCF2F, GCF2, GC, CF and B4-Fc fusion, which comprises the extracellular domain of B4 fused to hIgG1 Fc as described in Example 1. Biotinylated or His-tag protein samples were inoculated with the corresponding affinity magnetic beads and B2-AP for an hour at room temperature, before addition of PnPP. Results of binding assays are shown on Figure 67. B4-HSA was found to retain most of its binding activity towards EphrinB2. Surprisingly, the B4-HSA protein was superior to the B4-Fc fusion in binding to EphrinB2.

An EphB4 ectodomain fusion to the C-terminus of HSA was also generated, and found to retain the ability to bind to EphrinB2 and was found to have enhanced stability *in vivo* over the EphB4 ectodomain.

F. Stability of B4-HSA vs. sB4 in Mice

The stability of the purified biotinylated sB4 and sB4-HSA were assayed *in vivo*. Each of the proteins were intravenously injected into the tail of mice in the amount of 0.5 nmoles per mouse. Blood from the eye of each mouse was taken in time frames of 15 min (0 days), 1, 2, 3 and 6 days. 10 ml of obtained serum was used in binding assay with Ephrin-B2-Alkaline Phosphatase fusion protein and Streptavidin-coated magnetic beads as a solid phase. The stability of the two proteins is shown on Figure 68. sB4-HSA was found to have superior stability relative to sB4. For example, one day after injection, the levels of sB4-HSA in the blood of the mice were 5-fold greater than those of sB4.

G. PEGylation of biotinylated sB4

Prior to PEGylation, biotinylated sB4 protein generated as described above was concentrated up to final concentration of 2 mg/ml using a 30kDa MWCO ultra membrane.

Sample was dialyzed O/N against coupling buffer: 30mM phosphate, 75mM NaCl, pH 8.00. Coupling to PEG was performed at 4°C for 18 hours in 10 fold molar excess of reactive linear PEG unless otherwise indicated. The reactive PEG used was PEG-succinimidyl propionate, having a molecular weight of about 20kda. Coupling to PEG may be similarly performed using branches PEGs, such as of 10kDa, 20kDa or 40kDa. Other linear PEG molecules of 10 or 40 kDa may also be used.

5

10

15

20

25

30

After PEGylation, the protein sample containing EphB4 ectodomain was dialyzed against StB O/N. Three ml of SP-Sepharose was equilibrated with StB and sample was loaded. Washing and elution of absorbed proteins was performed as above (see: *Purification of soluble EphB4 ectodomain and its fusion to HSA*) with just one modification: total elution volume was 40 volumes of column. Figure 69 shows chromatographic separation of PEG derivatives of EphB4 protein on SP-Sepharose columns. Purity of the PEG-modified EphB4 protein was analyzed by SDS-PAGE.

Double modified (PEGylated Biotinylated) sB4 was used on ion-exchange chromatography to separate non-PEGylated, mono-PEGylated and poly-PEGylated proteins from each other. Pegylated sample was dialyzed O/N against 20 mM Na-acetate, 20 mM NaCl, pH 5.5 and loaded onto 2 ml of SP-Sepharose. After washing with 10 ml of buffer, absorbed proteins were separated by gradual elution of NaCl: 3 ml/fraction and increment of 25 mM NaCl. Obtained fractions were analyzed by PAGE and in Ephrin-B2 binding assay.

H. Effect of PEGylation conditions on sB4 binding to EphrinB2

The effects of pegylating biotinylated sB4 under different pH conditions was determined. sB4 was pegylated at pH 6, 7 or 8, and the pegylated products were tested for binding to EphrinB2 as shown in Figure 69. Ephrin2B binding activity was retained when PEGylation was performed at pH 6 and pH 7, but was partially lost at pH 8.

Additional combinations of parameters were tested, including temperature, pH and molar ratio of pegylation agent to sB4 protein, and the ability of the products of the pegylation reaction to bind to Ephrin-B2. The results of the optimization experiment are shown in Figure 70. These results confirm the gradual decrease in B2 binding activity at basic pH.

I. Purification of Pegylated sB4 Species

5

10

15

20

Biotinylated sB4 protein was concentrated up to final concentration of 2 mg/ml using a 30kDa MWCO ultra membrane. Sample was dialyzed O/N against coupling buffer: 30mM phosphate, 75mM NaCl, pH 8.00. Coupling to PEG was performed at 4°C for 18 hours in 10 fold molar excess of reactive PEG. Double modified (PEGylated Biotinylated) sB4 was used on ion-exchange chromatography to separate non-PEGylated, mono-PEGylated and poly-PEGylated proteins from each other. Sample was dialyzed for O/N against 20 mM Na-Acetate, 20 mM NaCl, pH 5.5 and loaded onto 2 ml of SP-Sepharose. After washing with 10 ml of buffer, absorbed proteins were separated by gradual elution of NaCl: 3 ml/fraction and increment of 25 mM NaCl. Obtained fractions were analyzed by PAGE as shown in Figure 71. Fractions 1, 2 and 3 were found to correspond to polypegylated, monopegylated and unpegylated biotinylated sB4.

J. In vitro properties of PEGylated EphB4 derivatives

Fractions 1, 2 and 3 of biotinylated and PEGylated sB4 from the SP column purification, corresponding to polypegylated, monopegylated and unpegylated biotinylated sB4, were tested for their ability to bind EphrinB2 using the standard assay. Results of this experiment are shown on Figure 72. The order of binding activity was found to be Unpegylated > monopegylated > polypegylated.

The fractions were also tested for their stability *in vitro*. The fractions were tested for retention of EphrinB2 binding activity after incubation in mouse serum at 37°C for three days. The results of this experiment are shown in Figure 73. The order of *in vitro* stability was found to be monopegylated > unpegylated > polypegylated.

K. In vivo stability analysis of PEGylated derivatives of EphB4 ectodomain in mice

Practions 1, 2 and 3 of biotinylated and PEGylated sB4 from the SP column

purification, corresponding to polypegylated, monopegylated and unpegylated biotinylated sB4, were introduced by intravenous injection into mice in the amount of 0.5 nMoles/mouse. Blood from each mouse was taken in time frame of 10 min, 1, 2 and 3 days.

10 ml of obtained serum was used in binding assay with Ephrin-B2-Alkaline Phosphatase fusion protein and Streptavidin-coated magnetic beads as a solid phase. Signals, obtained at

10 min were taken as 100%. The two mice for each protein were of a different strain.

Results are shown in Figure 74. Pegylation was found to increase the stability of EphB4 *in vivo* relative to unpegylated EphB4.

INCORPORATION BY REFERENCE

5

All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.

While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification and the claims below.

The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

- 1. An isolated soluble polypeptide comprising an amino acid sequence of an extracellular domain of an EphB4 protein fused to an albumin protein or a fragment thereof, wherein the polypeptide is a monomer and binds specifically to an Ephrin B2 polypeptide, and has an *in vivo* serum half-life at least 50% greater than that of the extracellular domain of the EphB4 alone, and wherein the polypeptide inhibits signaling that results from the interaction between EphB4 and EphrinB2.
- 2. The polypeptide of claim 1, comprising a globular domain of an EphB4 protein or a sequence that is at least 90% identical to a globular domain of EphB4.
- The polypeptide of claim 1, comprising a sequence at least 90% identical to residues 29-197 of the amino acid sequence defined by Figure 65 (SEQ ID NO:10).
 - 4. The polypeptide of claim 1, comprising a sequence at least 90% identical to residues 29-526 of the amino acid sequence defined by Figure 65 (SEQ ID NO:10).
- 5. The polypeptide of claim 1, wherein said polypeptide has a serum half-life *in*15 vivo at least 100% greater than that of an unmodified EphB4 polypeptide.
 - 6. The polypeptide of claim 1, wherein said albumin protein is selected from a human serum albumin (HSA) and bovine serum albumin (BSA).
 - 7. The polypeptide of claim 1 or claim 6, wherein the albumin is a naturally occurring variant.
- 20 8. The polypeptide of any one of claims 1 to 7, wherein the polypeptide has one or more activities selected from:
 - (a) inhibition of EphrinB2 activity;
 - (b) inhibition of EphrinB2 kinase activity;
 - (c) inhibition of EphB4 kinase activity;
- 25 (d) inhibition of clustering of Ephrin B2; and
 - (e) inhibition of clustering of EphB4.

- 9. A pharmaceutical composition comprising a polypeptide of any one of claims 1 to 8, and a pharmaceutically acceptable carrier.
- 10. Use of a polypeptide of any one of claims 1 to 8 for preparing a medicament for inhibiting signaling through Ephrin B2/EphB4 pathway.
- 5 11. Use of a polypeptide of any one of claims 1 to 8 for preparing a medicament for reducing the growth rate of the tumor.
 - 12. Use of a polypeptide of any one of claims 1 to 8 for preparing a medicament for treating cancer in a patient.
- 13. Use of a polypeptide of any one of claims 1 to 8 for preparing a medicament for inhibiting angiogenesis in a patient.
 - 14. Use of a polypeptide of any one of claims 1 to 8 for preparing a medicament for treating a patient suffering from an angiogenesis-associated disease.
 - 15. The polypeptide of any one of claims 1 to 8, wherein the polypeptide comprises one or more modified amino acid residues.
- 15 16. A cosmetic composition comprising the polypeptide of any of claims 1 to 8 or 15, and a pharmaceutically acceptable carrier.
 - 17. The use of claim 12, wherein the cancer comprises cancer cells expressing EphrinB2 and/or EphB4 at a higher level than noncancerous cells of a comparable tissue.
 - 18. The use of claim 12 or claim 17, wherein the cancer is metastatic cancer.
- 19. The use of any one of claims 12, 17 or 18, wherein the cancer is selected from the group consisting of colon carcinoma, breast tumor, mesothelioma, prostate tumor, squamous cell carcinoma, Kaposi sarcoma, and leukemia.
 - 20. The use of any one of claims 12 or 17 to 19, wherein the cancer is an angiogenesis-dependent cancer.

- 21. The use of any one of claims 12 or 17 to 19, wherein the cancer is an angiogenesis-independent cancer.
- 22. A method of inhibiting signaling through Ephrin B2/EphB4 pathway comprising administering a polypeptide of any one of claims 1 to 8.
- 5 23. A method of reducing the growth rate of a tumor comprising administering a polypeptide of any one of claims 1 to 8.
 - 24. A method of treating cancer in a patient comprising administering a polypeptide of any one of claims 1 to 8.
- 25. A method of inhibiting angiogenesis in a patient comprising administering a polypeptide of any one of claims 1 to 8.
 - 26. A method of treating a patient suffering from an angiogenesis-associated disease comprising administering a polypeptide of any one of claims 1 to 8.
- 27. An isolated soluble polypeptide according to claim 1; a pharmaceutical composition according to claim 9; use according to any one of claims 10-14; a cosmetic
 15 composition according to claim 16; or a method according to any one of claims 22-26, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.

Amino acid sequence of the B4ECv3 protein

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSG
LDEEQHSVRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTM
LECLSLPRAGRSCKETFTVFYYESDADTATALTPAWMENPYIKVDTV
AAEHLTRKRPGAEATGKVNVKTLRLGPLSKAGFYLAFQDQGACMALL
SLHLFYKKCAQLTVNLTRFPETVPRELVVPVAGSCVVDAVPAPGPSP
SLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCRACAQGTFKPLSGE
GSCQPCPANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRS
VVSRLNGSSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGD
LTFDPGPRDLVEPWVVVRGLRPDFTYTFEVTALNGVSSLATGPVPFE
PVNVTTDREVPPAVSDIRVTRSSPSSLSLAWAVPRAPSGAWLDYEVK
YHEKGAEGPSSVRFLKTSENRAELRGLKRGASYLVQVRARSEAGYGP
FGQEHHSQTQLDESEGWREQGSKRAILQIEGKPIPNPLLGLDSTRTG

Fig. 1

Amino acid sequence of the B4ECv3NT protein

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEELSGL
DEEQHSVRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATLRFTMLE
CLSLPRAGRSCKETFTVFYYESDADTATALTPAWMENPYIKVDTVAAE
HLTRKRPGAEATGKVNVKTLRLGPLSKAGFYLAFQDQGACMALLSLHL
FYKKCAQLTVNLTRFPETVPRELVVPVAGSCVVDAVPAPGPSPSLYCR
EDGQWAEQPVTGCSCAPGFEAAEGNTKCRACAQGTFKPLSGEGSCQPC
PANSHSNTIGSAVCQCRVGYFRARTDPRGAPCTTPPSAPRSVVSRLNG
SSLHLEWSAPLESGGREDLTYALRCRECRPGGSCAPCGGDLTFDPGPR
DLVEPWVVVRGLRPDFTYTFEVTALNGVSSLATGPVPFEPVNVTTDRE
VPPAVSDIRVTRSSPSSLSLAWAVPRAPSGAWLDYEVKYHEKGAEGPS
SVRFLKTSENRAELRGLKRGASYLVQVRARSEAGYGPFGQEHHSQTQL
DESEGWREQGSKRAILQISSTVAAARV

Fig. 2

Amino acid sequence of the B2EC protein

MAVRRDSVWKYCWGVLMVLCRTAISKSIVLEPIYWNSSNSKFLPGQGL VLYPQIGDKLDIICPKVDSKTVGQYEYYKVYMVDKDQADRCTIKKENT PLLNCAKPDQDIKFTIKFQEFSPNLWGLEFQKNKDYYIISTSNGSLEG LDNQEGGVCQTRAMKILMKVGQDASSAGSTRNKDPTRRPELEAGTNGR SSTTSPFVKPNPGSSTDGNSAGHSGNNILGSEVGSHHHHHH

Fig. 3

Amino acid sequence of the B4ECv3-FC protein

MELRVLLCWASLAAALEETLLNTKLETADLKWVTFPQVDGQWEEL SGLDEEQHSVRTYEVCEVQRAPGQAHWLRTGWVPRRGAVHVYATL RFTMLECLSLPRAGRSCKETFTVFYYESDADTATALTPAWMENPY IKVDTVAAEHLTRKRPGAEATGKVNVKTLRLGPLSKAGFYLAFOD OGACMALLSLHLFYKKCAOLTVNLTRFPETVPRELVVPVAGSCVV DAVPAPGPSPSLYCREDGQWAEQPVTGCSCAPGFEAAEGNTKCRA CAOGTFKPLSGEGSCOPCPANSHSNTIGSAVCOCRVGYFRARTDP RGAPCTTPPSAPRSVVSRLNGSSLHLEWSAPLESGGREDLTYALR CRECRPGGSCAPCGGDLTFDPGPRDLVEPWVVVRGLRPDFTYTFE VTALNGVSSLATGPVPFEPVNVTTDREVPPAVSDIRVTRSSPSSL SLAWAVPRAPSGAWLDYEVKYHEKGAEGPSSVRFLKTSENRAELR GLKRGASYLVQVRARSEAGYGPFGQEHHSQTQLDESEGWREQDPE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEOYNSTYRVVSVL TVLHODWLNGKEYKCKVSNKALPAPIEKTISKAKGOPREPOVYTL PPSRDELTKNOVSLTCLVKGFYPSDIAVEWESNGOPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK

Fig. 4

Amino acid sequence of the B2EC-FC protein

MAVRRDSVWKYCWGVLMVLCRTAISKSIVLEPIYWNSSNSKFLPGQGLVLYPQIGDKLDIICPKVDSKTVGQYEYYKVYMVDKDQADRCTIKKENTPLLNCAKPDQDIKFTIKFQEFSPNLWGLEFQKNKDYYIISTSNGSLEGLDNQEGGVCQTRAMKILMKVGQDASSAGSTRNKDPTRRPELEAGTNGRSSTTSPFVKPNPGSSTDGNSAGHSGNNILGSEVDPEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

Fig. 5

B4EC-FC binding assay (Protein-A-agarose based)

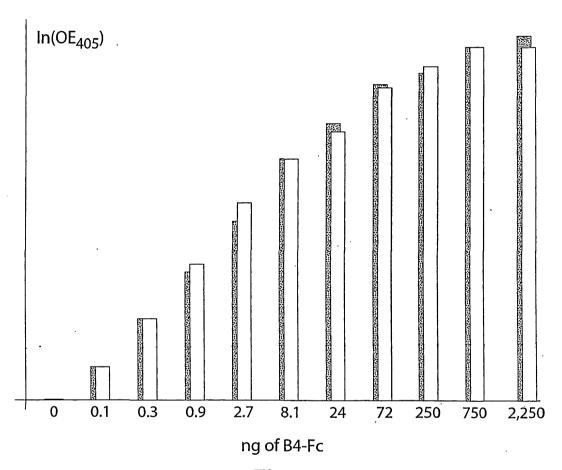


Fig. 6

7/113

B4EC-FC inhibition assay (inhibition in solution)

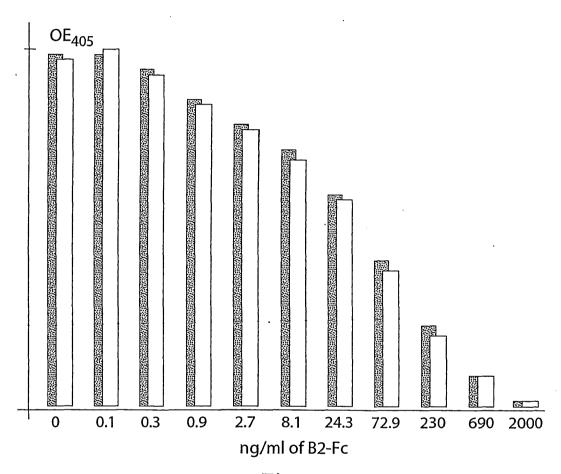


Fig. 7

B2EC-FC binding assay (Protein-A-agarose based assay)

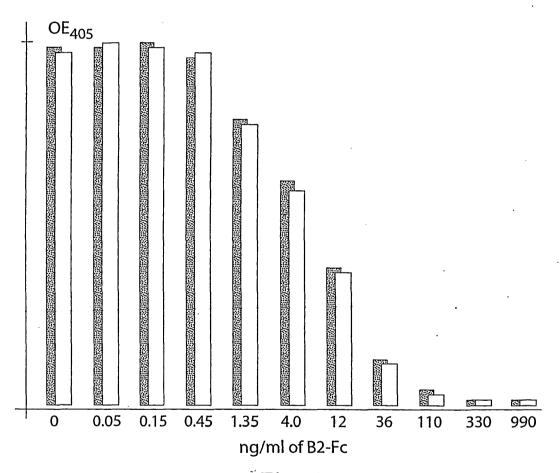


Fig. 8

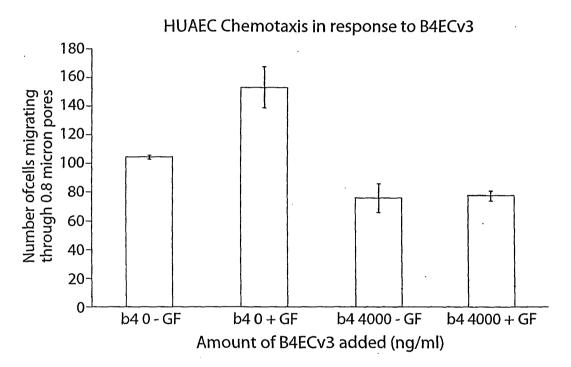


Fig. 9

Chemotaxis of HHEC in response to B2EC-FC

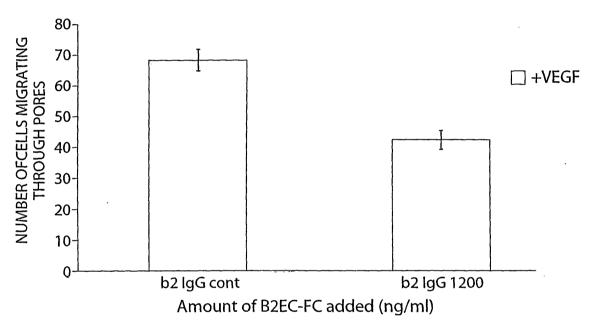


Fig. 10

Chemotaxis of HHAEC in response to B2EC

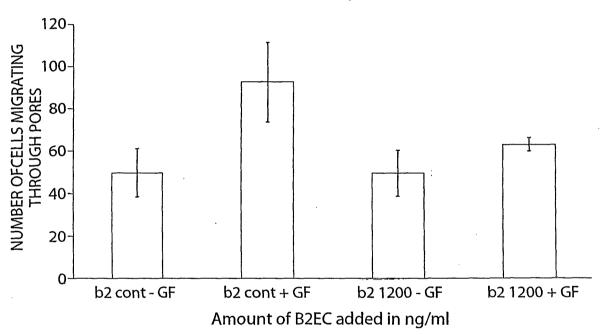


Fig. 11

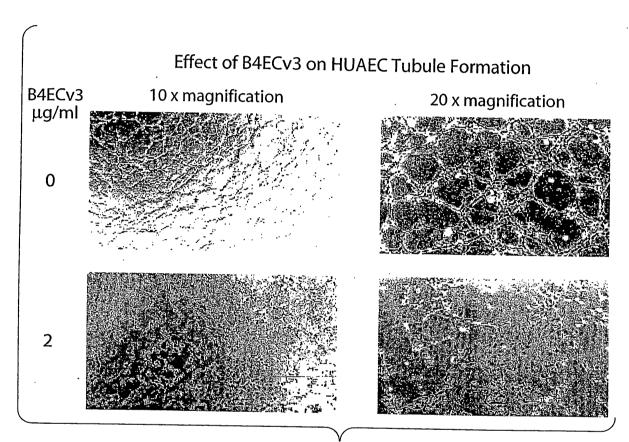


Fig. 12

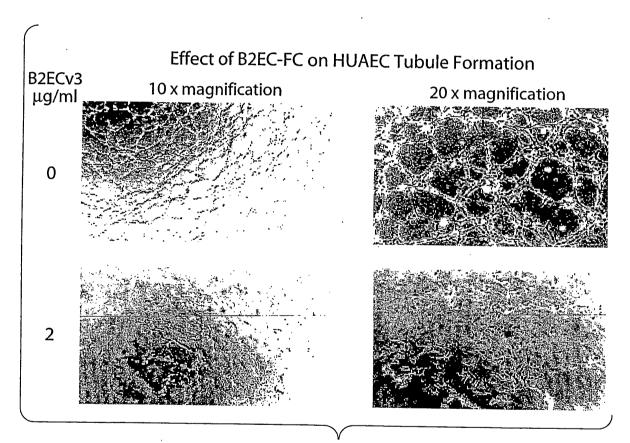


Fig. 13

hEphrin B2 constructs		
VECTOR	DETAILS	
pET15b	E.coli	
pGEX	E.coli	
pEF6	Mammalian, CMV promoter transient	
pAPtag-2	Mammalian, Blasticidin S, EF1a promoter, transient and stable	
pRK5	Mammalian, CMV promoter transient	
pcDNA3	Mammalian, G418, CMV prompter, transient and stable	
pEF6	Mammalian, Blasticidin S, EF1a promoter, transient and stable	
pEF6	Mammalian, Blasticidin S, EF1a promoter, transient and stable	
pEF6	Mammalian, Blasticidin S, EF1a promoter, transient and stable	
pEF6	Mammalian, Blasticidin S, EF1a promoter, transient and stable	
plG-Fc	Mammalian, CMV promoter transient	
□ IgG Fc □ GST ■ V5 tag □ leader peptide or TM		
☐ His tag ☐ AP ☐ hB2 ☐ myc tag		
1 kb		

Fig. 14

15/113

hEph B4 constructs VECTOR **DETAILS 作** pET15b E.coli pET15b E.coli [[[V v.2] pGEX E.coli pGEX V4 E.coli Mammalian, Blasticidin S, pEF6 V:2 EF1a promoter Mammalian, Blasticidin S, pEF6 V-3 EF1a promoter Mammalian, pAPtag-2 CMV promoter Mammalian, pAPtag-2 CMV promoter Mammalian, pAPtag-2 CMV promoter Mammalian, pRK5 CMV promoter Mammalian, G418 pcDNA3 CMV promoter Mammalian, Blasticidin S, pEF6 EF1a promoter Mammalian, Blasticidin S, pEF6 EF1a promoter Mammalian, Blasticidin S, pEF6 V-2 EF1a promoter Mammalian, Blasticidin S, pEF6 V4 EF1a promoter Mammalian, Blasticidin S, pEF6 V:3 EF1a promoter Mammalian, CMV promoter plG-Fc transient plG-Fc Mammalian, CMV promoter transient □ IgG Fc □ GST ■ V5 tag □ leader peptide or TM 1 kb ■ hB2 I myc tag

Fig. 15

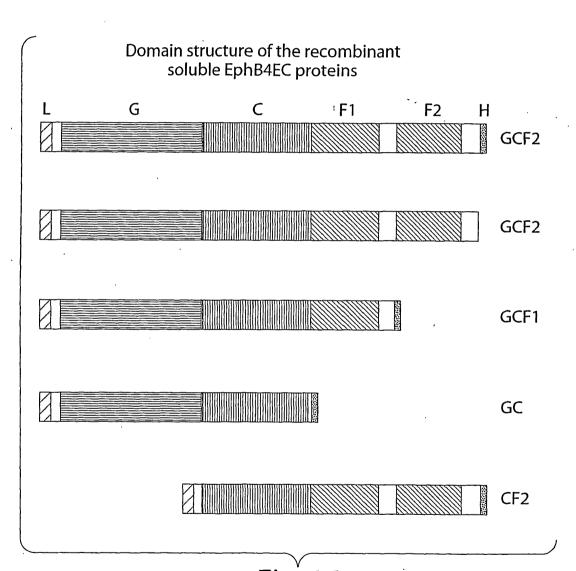


Fig. 16

17/113

Purification and ligand binding properties of the EphB4EC proteins

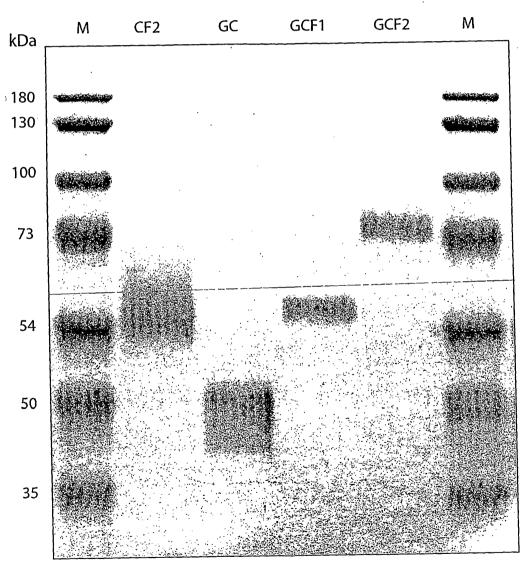


Fig. 17A

18/113

Binding of Ephrin B2-AP fusion to EphB4-derived recombinant proteins immobilized on NTA-agarose beads

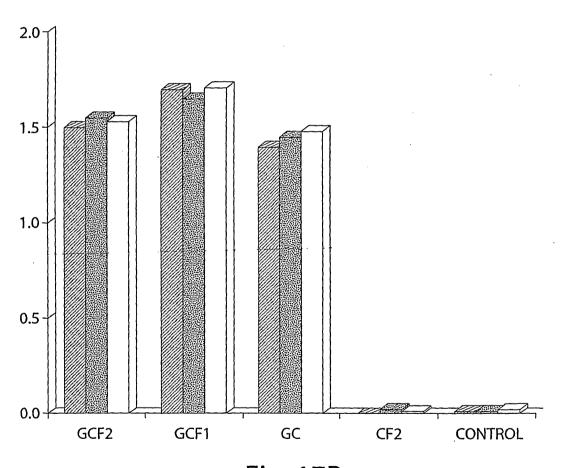


Fig. 17B

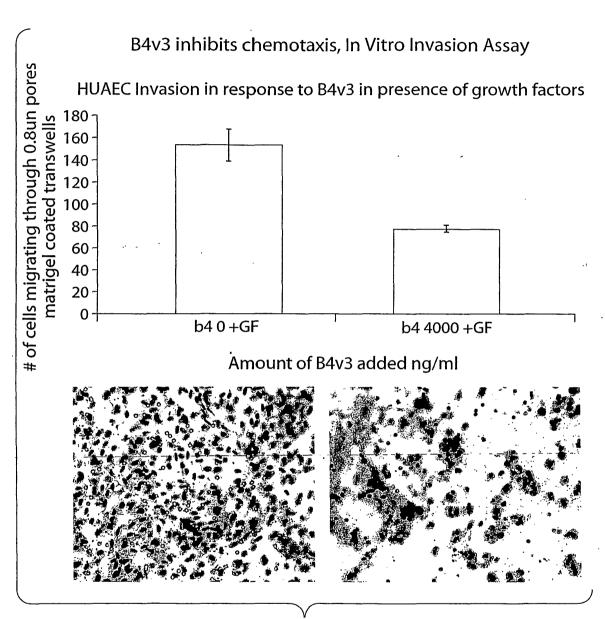


Fig. 18

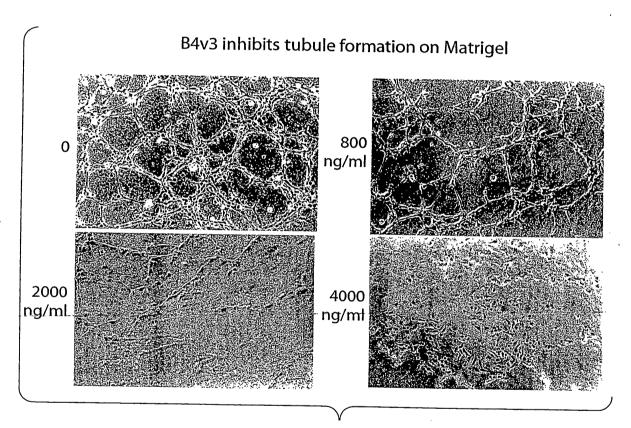


Fig. 19A

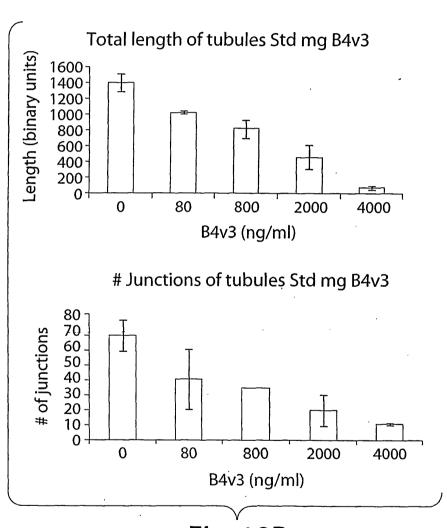


Fig. 19B

Cell Titer 96-HUAEC w/ B4v3

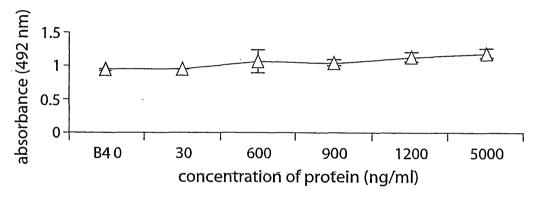


Fig. 20

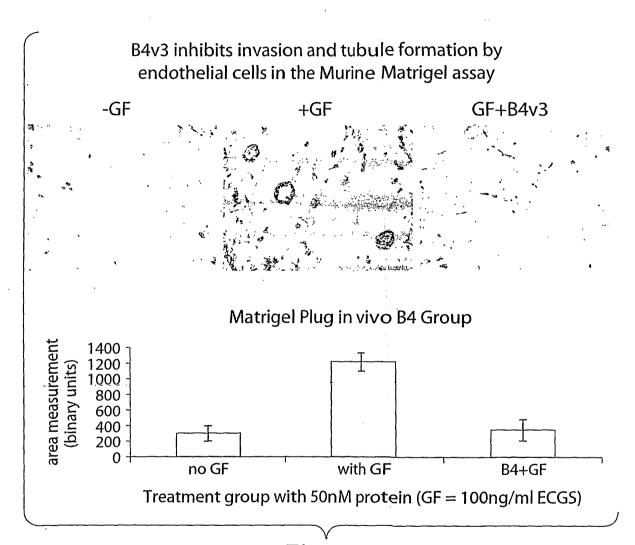


Fig. 21

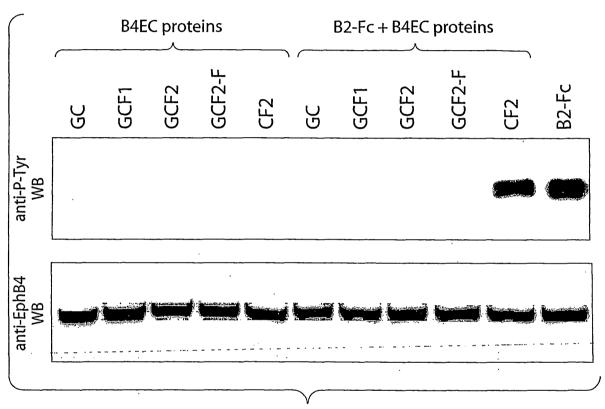
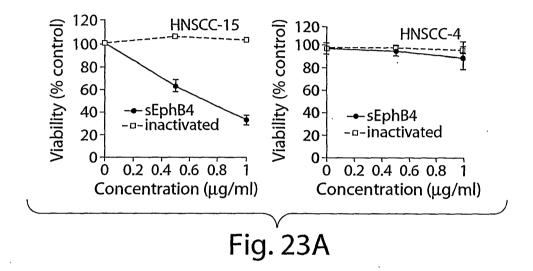
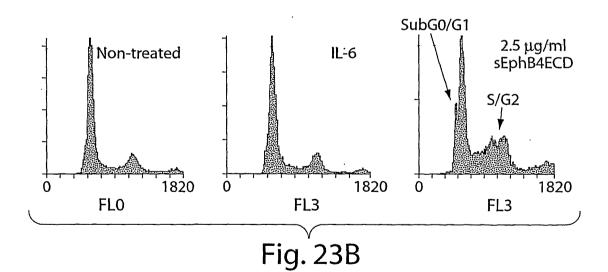




Fig. 22

26/113

B4v3 inhibitis neovascular response in a murine corneal hydron micropocket assay

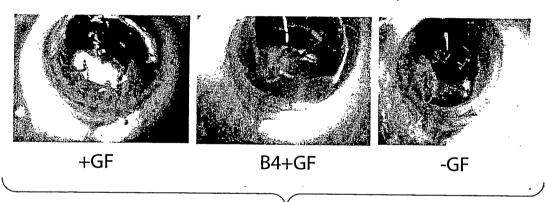


Fig. 24

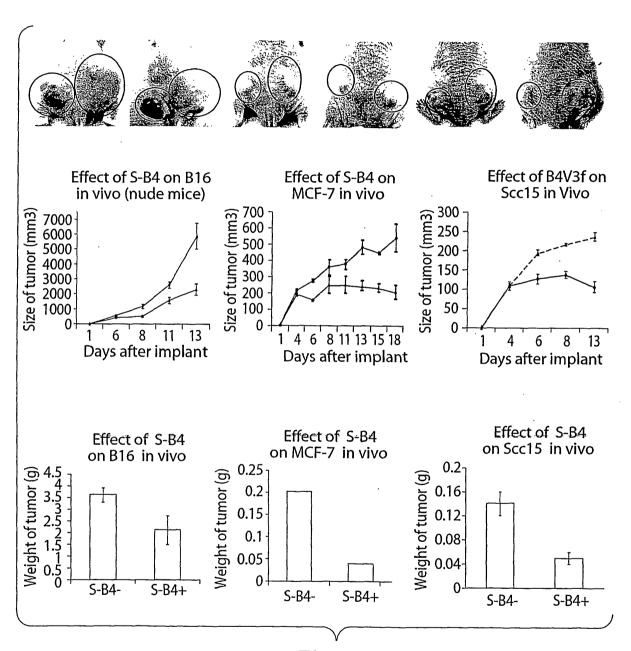


Fig. 25

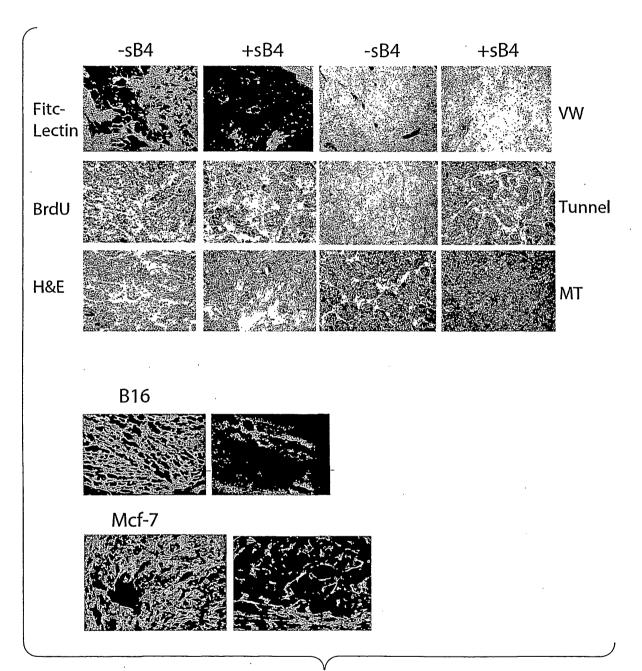


Fig. 26

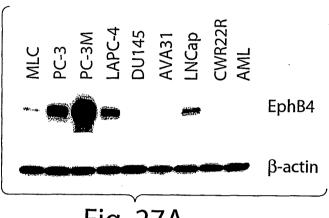


Fig. 27A

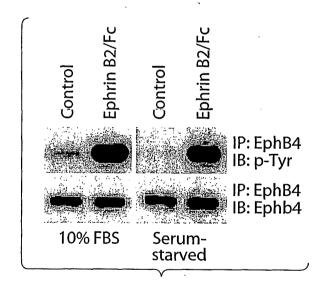


Fig. 27B

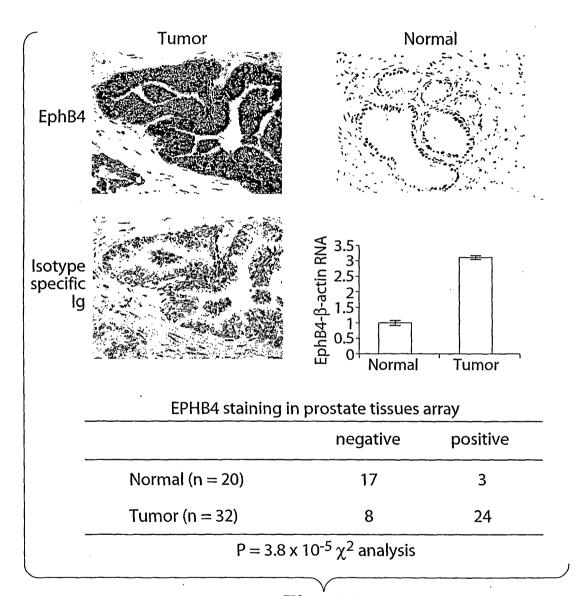
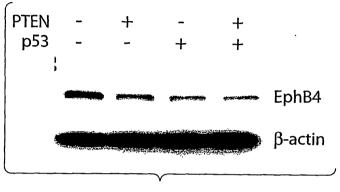
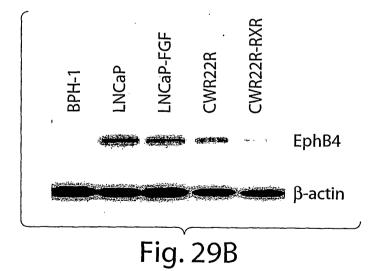
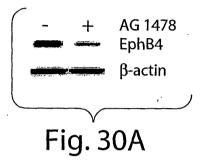
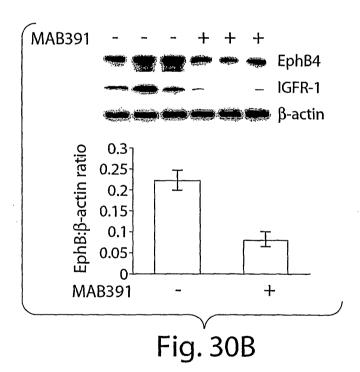
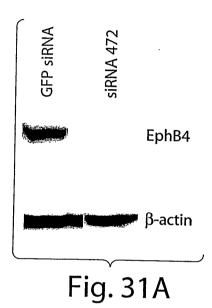
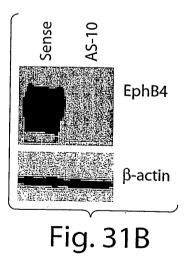
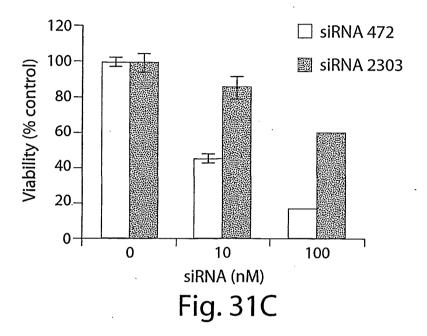
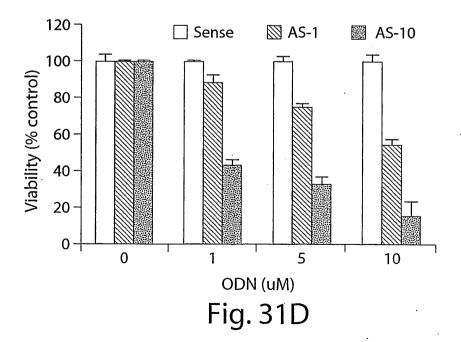


Fig. 28


Fig. 29A





34/113

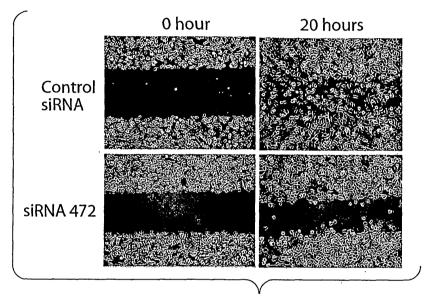


Fig. 31E

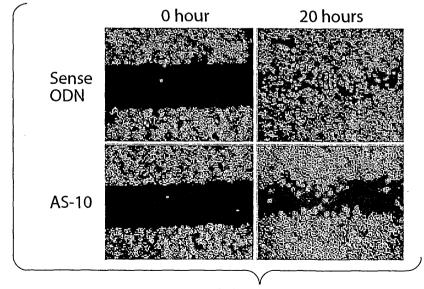


Fig. 31F

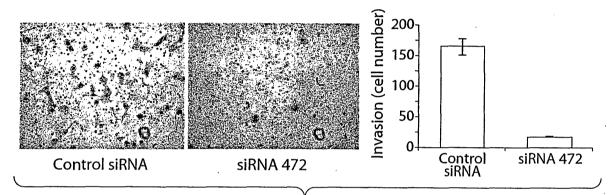


Fig. 31G

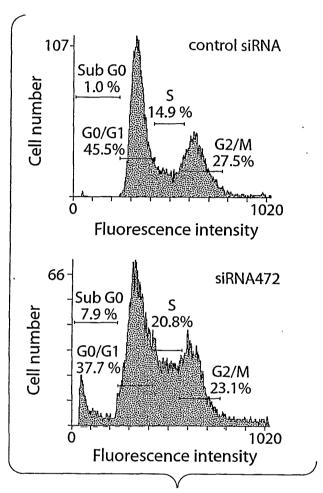


Fig. 32A

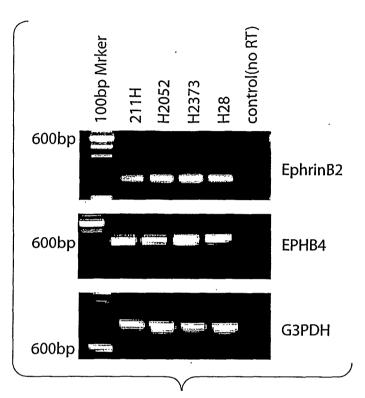


Fig. 33A

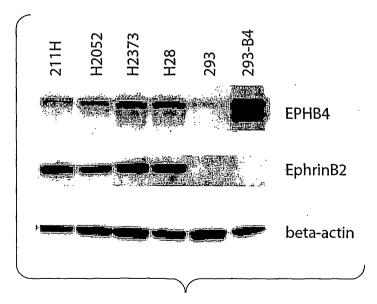


Fig. 33B

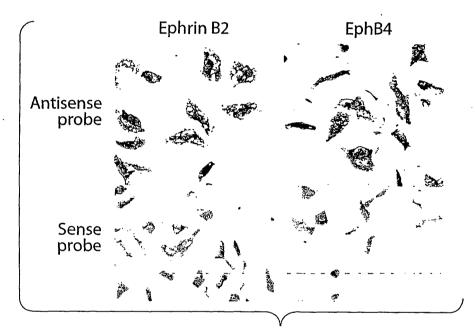


Fig. 34

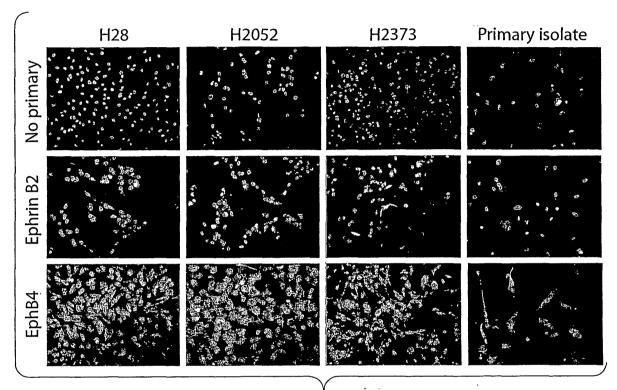


Fig. 35

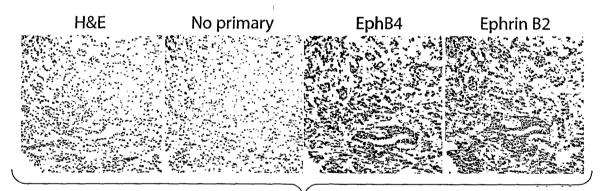


Fig. 36

Effect of EPHB4 antisense ODN on the growth of H28 cells

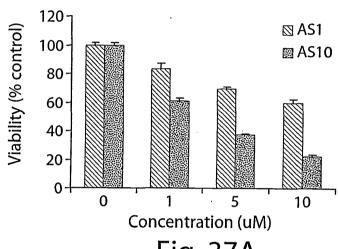


Fig. 37A

Effect of EPHB4 siRNA 472 on the growth of H28 cells

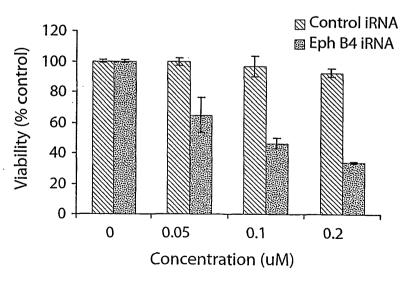


Fig. 37B

43/113

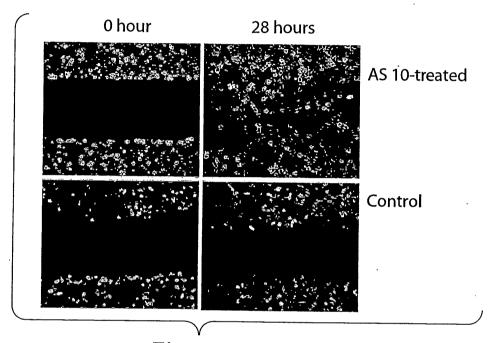


Fig. 38A

Migration Study of H28 with siRNA472(Boyden Chamber)

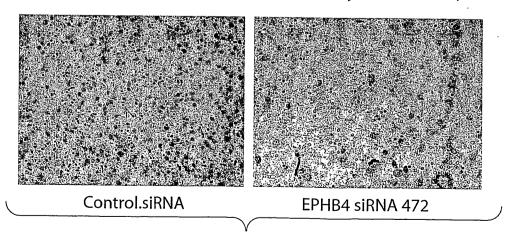


Fig. 38B

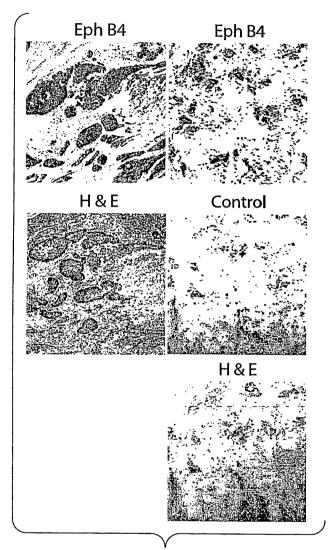


Fig. 39A

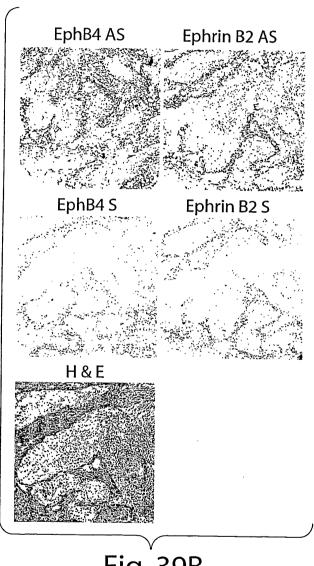


Fig. 39B

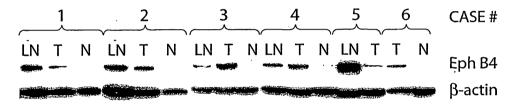


Fig. 39C

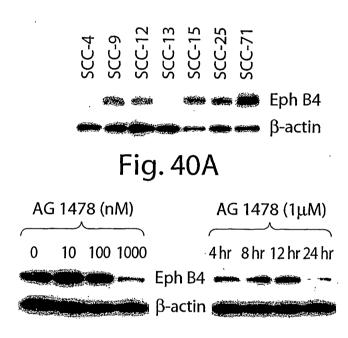


Fig. 40B

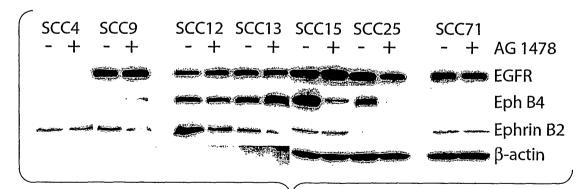
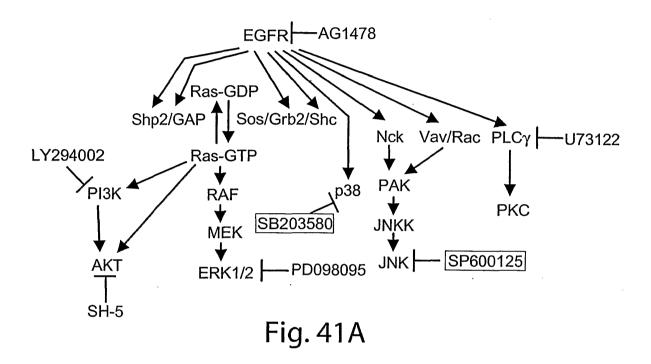



Fig. 40C

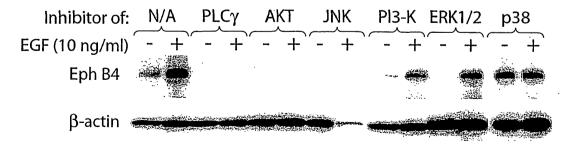
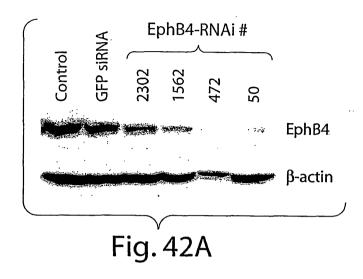



Fig. 41B

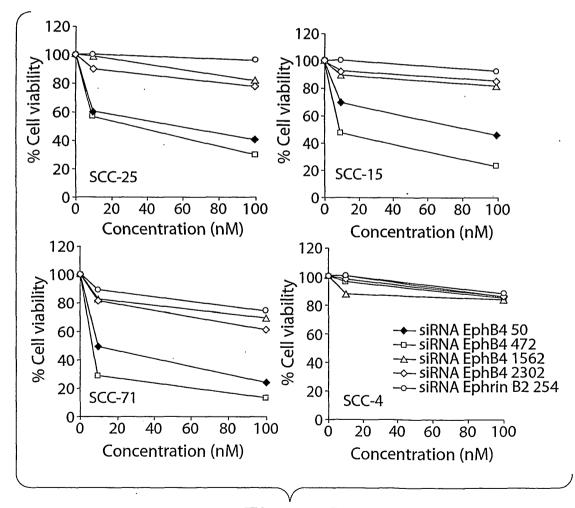
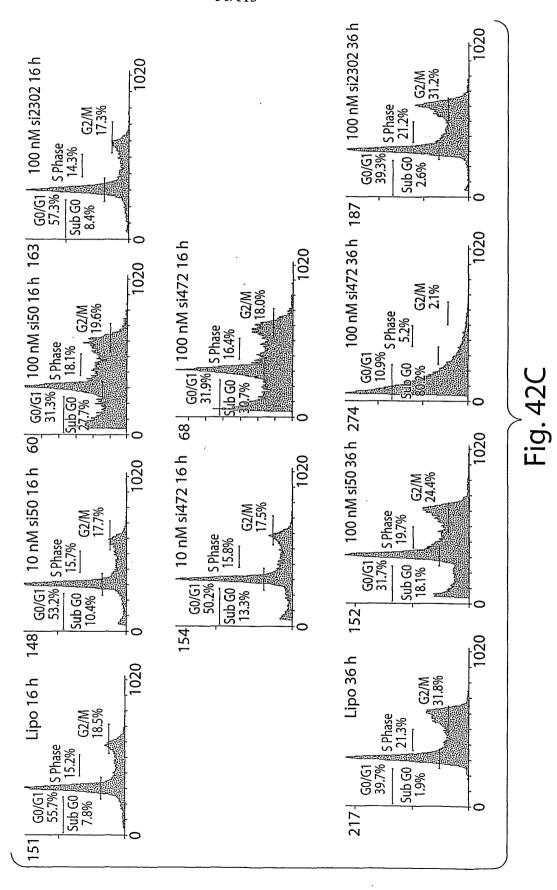



Fig. 42B

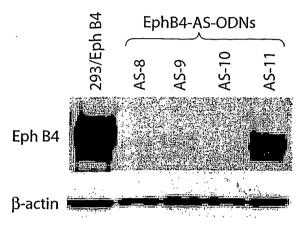
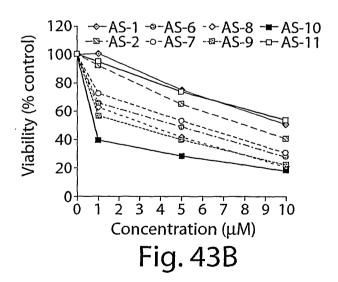
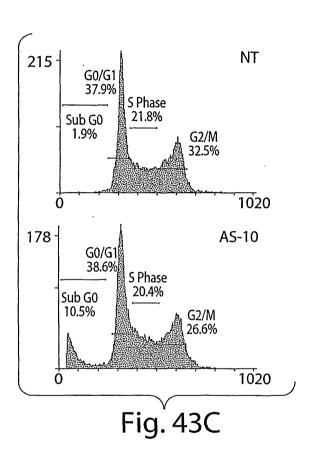




Fig. 43A

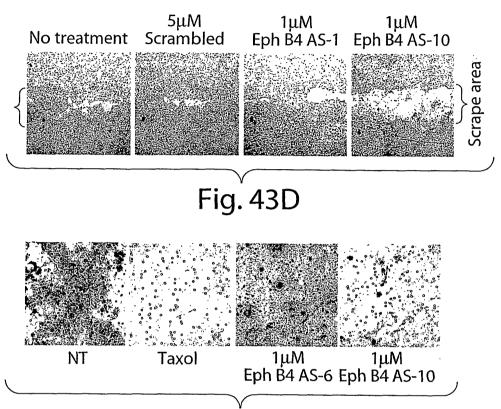
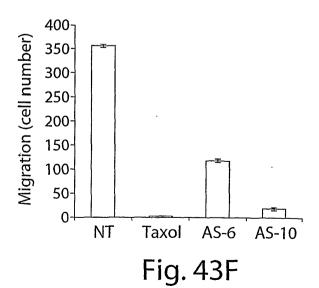
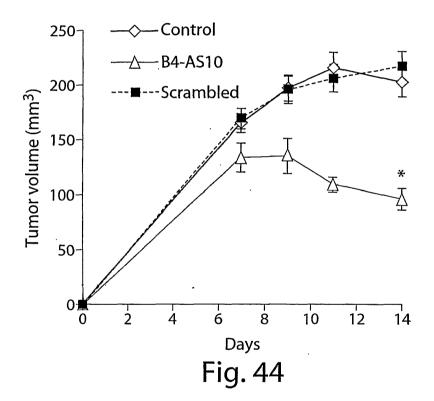




Fig. 43E

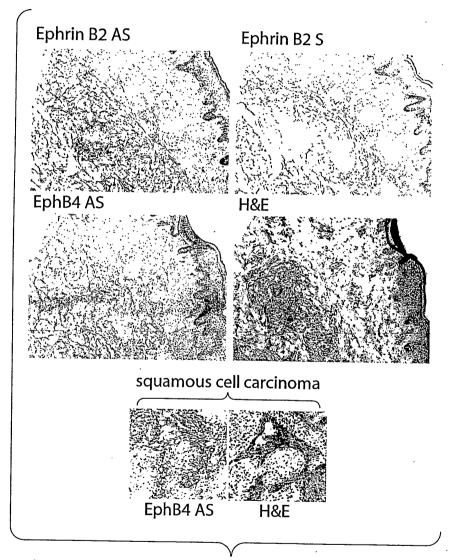


Fig. 45A

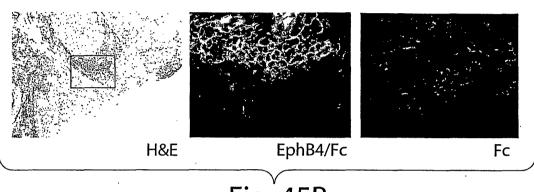


Fig. 45B

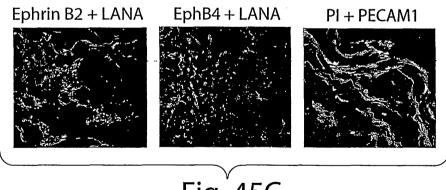


Fig. 45C

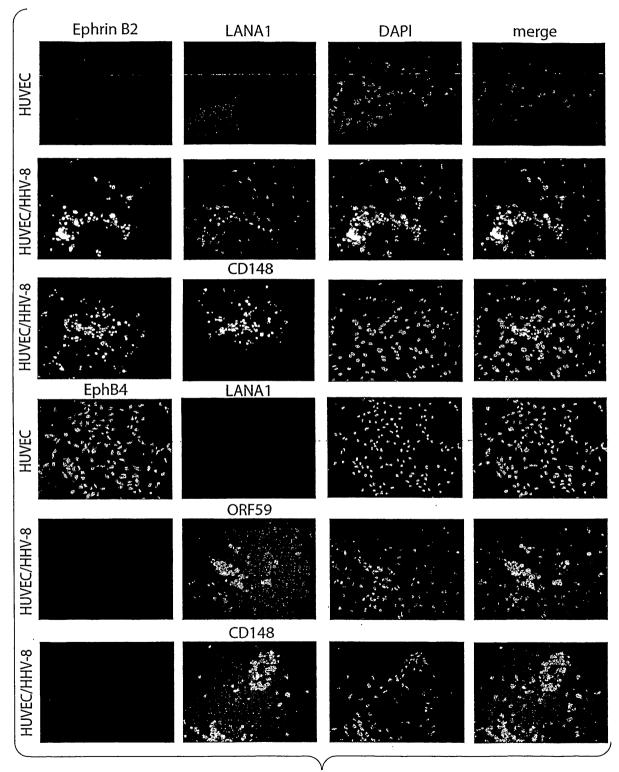


Fig. 46A

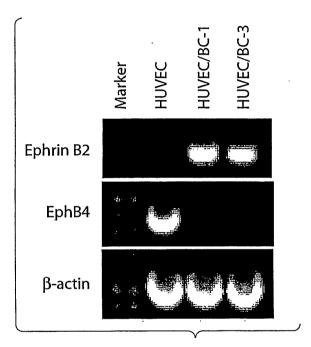
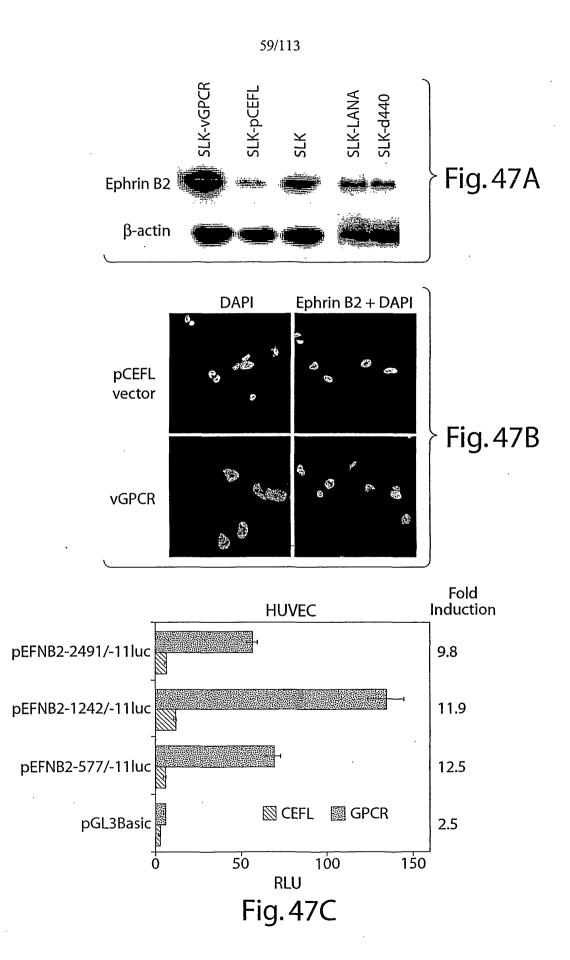



Fig. 46B

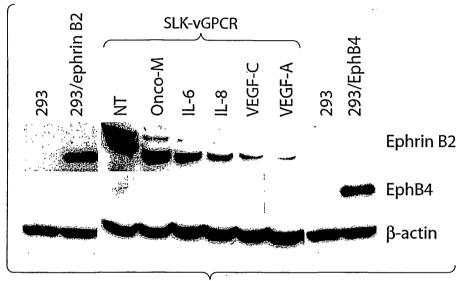


Fig. 48A

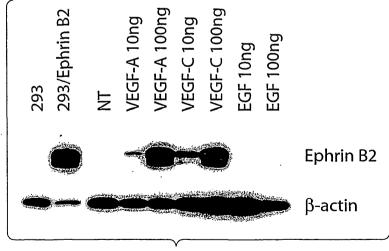
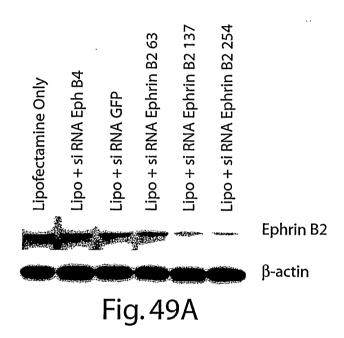
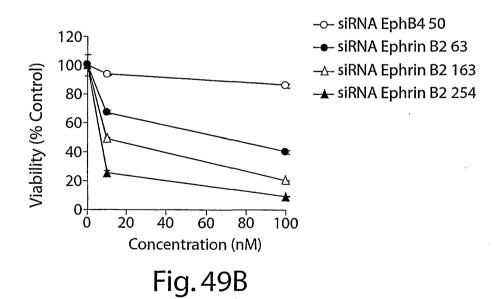




Fig. 48B

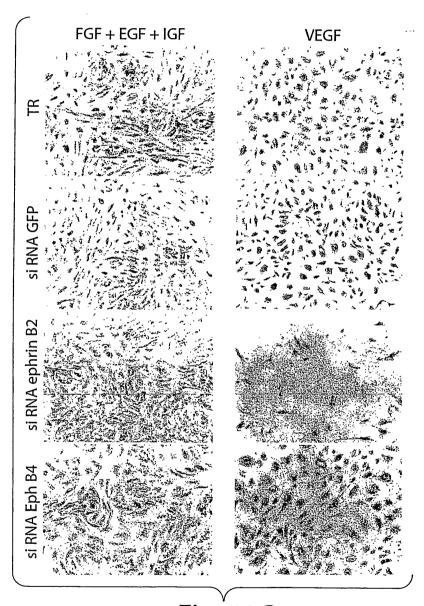


Fig. 49C

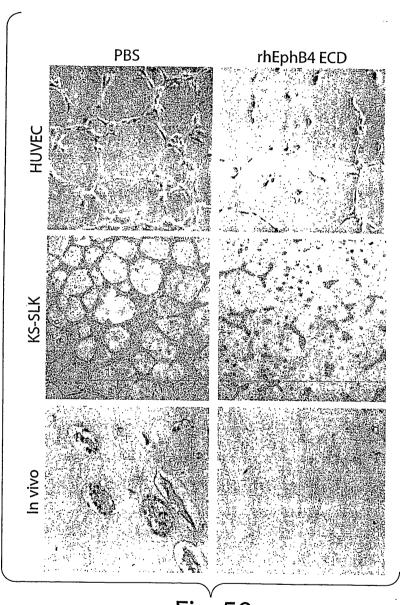
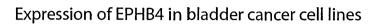
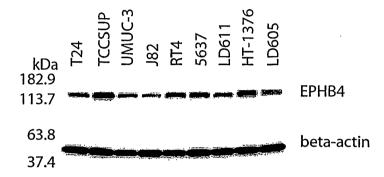




Fig. 50

Regulation of EPHB4 expression by EGFR signaling pathway

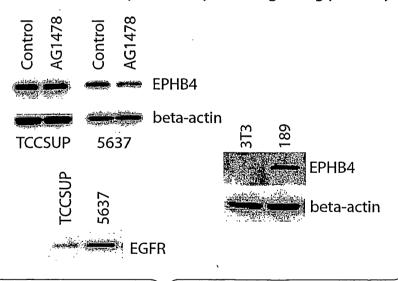


Fig. 51

Transfection of p53 inhibit the expression of EPHB4 in 5637 cell

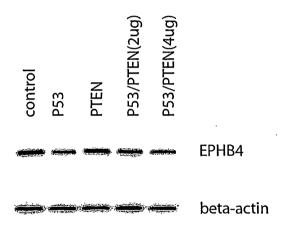


Fig. 52

66/113

Growth inhibition of bladder cancer cell line(5637) upon treatment with EPHB4 siRNA 472

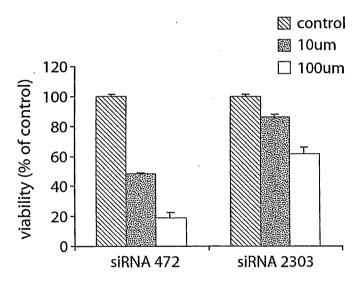
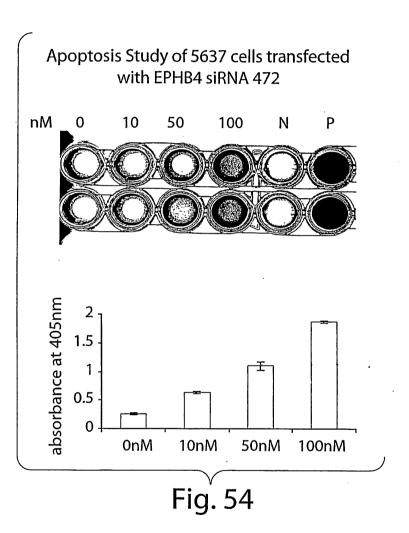



Fig. 53

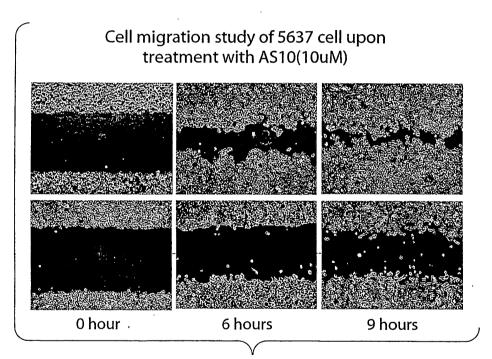


Fig. 55

69/113

Invasion study of 5637 cell transfected with siRNA 472 or control siRNA

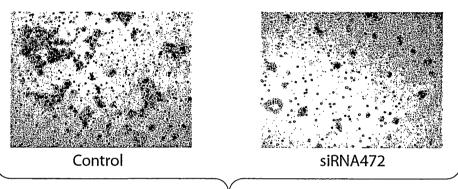


Fig. 56

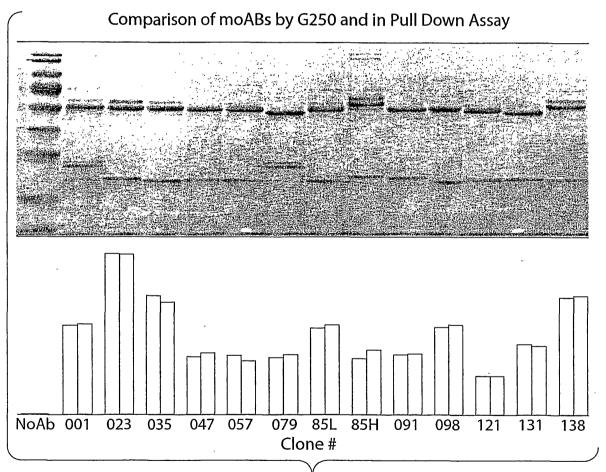


Fig. 57

71/113

SCC15/MG xenograft Tumor regression

B4 Ab's with VEGF - or + in matrigel on Scc15 in nu/nu mice

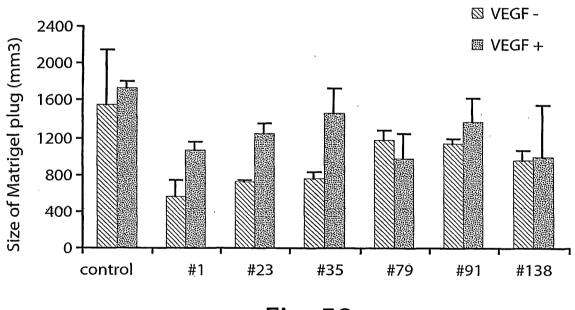


Fig. 58

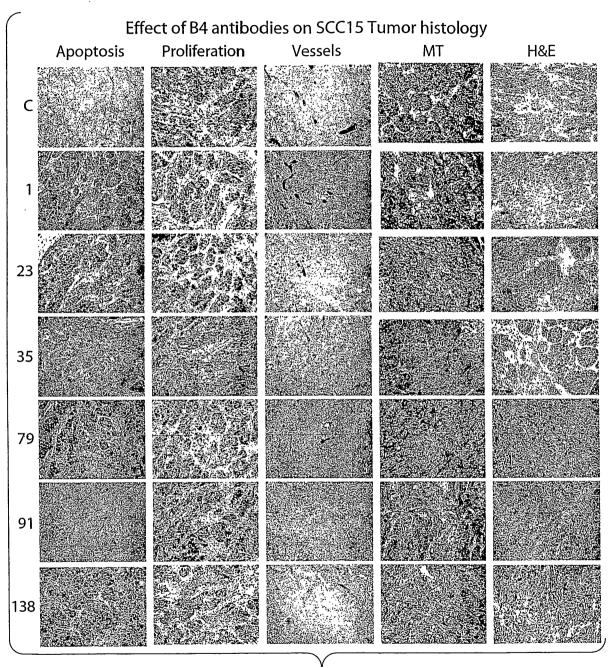
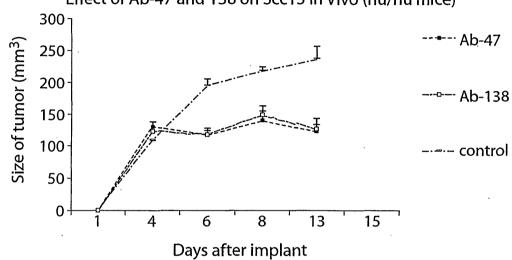



Fig. 59

SCC15/IP,SC B4 Ab treated xenograf Tumor regression

Effect of Ab-47 and 138 on Scc15 in Vivo (nu/nu mice)

Effect of Ab-47 and Ab-138 on Scc15 in Vivo (Nude mice)

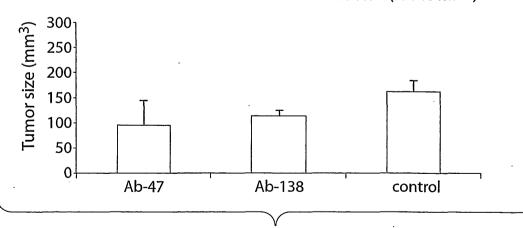


Fig. 60

PCT/US2005/034176

74/113

EphB4 gene

1	ggggtttcat	catgttggcc	aggctggtct	tgaactcctg	acctcaaatg	atccgcctgc
61	ctctgcctcc	caaaatgctg	ggactacagg	cgtgagccac	cgcgcccgcc	acacccacct
121	tttctttacc	gttgtttcct	cgatttttct	ctactcccta	gcgcagctta	gtgcgcgcct
181	cctctggaca	tttttcaggg	cttggttgcg	cgcacagtag	gtccccaaca	ctgaatgttt
241	atggggtgac	tgtgtgaacg	ttcgctgcaa	ggctatccaa	actgggattg	ctccttgagg
301	cccctgggc	ggccgtcaat	tctccaaagc	ttctactccc	ttttccttcc	ttttccccca
361	aaacgcagtc	cctgcgccca	ctagagggtg	gtgggcgcat	ccaagagcgg	catctagagt
421	ccgcagcaag	gtcagagcgg	gctttgtgtg	cgcggtgaac	atttacgtgc	acgcctgggc
481	ggccctccgt	gttgctgctg	ggtgtgtgtt	ttctctgctc	cctggtgcca	gccgggttcg
541	ggcctgtccc	gggggtccct	gggccccagc	cccgacatgc	tcggtcctgg	acagcgcgca
601	ccgccacggc	gcacatctgg	gcggtcccgg	ggttcctcac	ccgccgcccc	tccccttct
661	ccaaactttc	tctcaacttc	ccgacctgct	ccactcggtg	cccctctccg	cttccctcat
721	gaattattca	gtagcgtgag	ctccaatcag	cgcgcccggg	gctcactcgc	ggagcccccg
781	cgttgggaga	gctgccccg	cccccgcgc	gcccctccct	cccgggcccg	gcgccgcccg
841	gcccagttcc	agcgcagctc	agcccctgcc	cggcccggcc	cgcccggctc	cgcgccgcag
901	tctccctccc	tecegeteeg	teceegeteg	ggctcccacc	atccccgccc	gcgaggagag
961	cactcggccc	ggcggcgcga	gcagagccac	tccagggagg	gggggagacc	gcgagcggcc
1021	ggctcagccc	ccgccacccg	gggcgggacc	ccgaggcccc	ggagggaccc	caactccagc
1081	cacgtcttgc	tgcgcgcccg	cccggcgcgg	ccactgccag	cacgctccgg	gcccgccgcc
1141	cgcgcgcgcg	gcacagacgc	ggggccacac	ttggcgccgc	cgcccggtgc	cccgcacgct
1201	cgcatgggcc	cgcgctgagg	gccccgacga	ggagtcccgc	gcggagtatc	ggcgtccacc
1261	cgcccaggga	gagtcagacc	tgggggggcg	agggcccccc	aaactcagtt	cggatcctac
	ccgagtgagg					
1381	ctttggaagg	tgagtttcct	tgcggggggg	ggcgcacccc	gtcactcctg	ggacctcccc
1441	cccaacatct	gggcctcgga	gtggaggggc	cggcctctga	ctacccctac	ccgggcactg
	cagtcccaaa					
	cgacgggtag					
	acattcccct					
1681	tttcctttcc	tccctacccc	actattcaaa	actatctgca	aagtttctgt	cccagtccca
	cctcccgccg					
1801	tcgtgctagg	ccctaaaacg	acccccagcg	ccaattcctt	agcgatcaca	ccttgatcct
	ccagttccac					
1921	ccgctctccc	gcccactgct	cctgcccctg	gtatagggtg	gctccttggt	ttctacaggc
1981	tgcaccccat	ccctttaaat	gcggtctaga	ccccggcccc	aggtgagtcc	cgggcttccc
2041	ttgagaccta	ggagcgggta	gaaactgacc	tacacagccc	ccaggtagaa	actgacctac
2101	acagccccca	catcgcccta	actaacccag	tctatctccc	acctcctggt	ctctccaagc
2161	atttctttgg	ccatggatcg	ctgtccctcc	tggtccccta	aagggggagc	caagagccct
	agaaactctc					
	tctggtatga					
	agcggcgtta				_	
2401	aaggctaggt	gtggggttgg	gagtgagggg	aggcttgccc	agctcagaga	acggagaagg
	gggaacaaaa					
	acgaggtgtg		•			
2581	tgagtgtttc	caagcaccag	gcctgtgctg	agcgccttac	aaatattaat	ttcacccatc

Fig. 61A

PCT/US2005/034176

2617						
				cccattttt		
				ctgtgccgcg		
				agaaagagaa		
				gacagatcaa		•
				tgggctgcgg		
				ccggctggaa		
				ggcatcctgt		
				cacctcaggc		
				ggaagaggct		
				gccaggtgtt		
				gcccccgagg		
				tttttcctaa		
3361	cctgtcccct	cccccgatga	tccgagccaa	gccaggtgtg	ttcacccctc	ccattcatac
3421	cgcccccag	aatctcctcc	cctctgcctt	cccataacca	aatccagatg	tgaggcctcg
3481	gcgggagcct	gggaacccta	gcatcccgac	ctccagtgct	tcctgatcag	ggcactcgtg
				ctatgcccca		
3601	aggagggaag	gacggggtgt	ttggtctgaa	agcagagagg	ggtcttggac	agggaatgaa
3661	attgtggggt	agagaggctg	attctgggac	ttaggggagg	aaacgtggag	gctgagacaa
3721	gaggttcccc	tcccacacca	gcagcctctg	ctcgtggggg	tcaggaccag	ggcgcagctc
3781	tcattttaac	cctttctgag	ctgccgcccc	ttctccccgt	acattttgat	ctccctccct
3841	cctccaggga	ggcctagatc	tggggtatcc	caagggagcc	ccatgcctac	cagatgttgg
3901	gggtggggtt	ggcacttagc	agaagaggcc	agaaatcagg	cgggtgcaga	gggcagggct
3961	tgctcccctc	ttggcccccc	aactcctcta	gctcagagct	aagaggatcc	acctgcctcg
4021	gttcccaggg	atctggtctt	cctgacctcc	ctccccacc	ccaggcactg	actctgtctc
4081	tctgtctgtc	tcagagaccc	tgctgaacac	aaaattggaa	actgctgatc	tgaagtgggt
4141	gacattccct	caggtggacg	ggcaggtgag	agctgcaccc	aggagctgga	gctctggagg
4201	gaaactgagg	gaggagaggg	cgcctgtgcc	gcctgctttc	tgtgtgccac	tcctctcccc
4261	tgtcccccca	gatgacagca	gccccagcag	tgtcgtctga	gcccttctca	gaggcgccct
4321	cctcgcagta	ccagcagccc	ccctttctca	gtccctctca	ctttatagga	ttcaccccat
4381	gcagccctct	ccctggcggc	tccccagccc	ccttgctgac	ctccttctct	gcacagtggg
4441	aggaactgag	cggcctggat	gaggaacagc	acagcgtgcg	cacctacgaa	gtgtgtgacg
4501	tgcagcgtgc	cccgggccag	gcccactggc	ttcgcacagg	ttgggtccca	cggcggggcg
4561	ccgtccacgt	gtacgccacg	ctgcgcttca	ccatgctcga	gtgcctgtcc	ctgcctcggg
4621	ctgggcgctc	ctgcaaggag	accttcaccg	tcttctacta	tgagagcgat	gcggacacgg
4681	ccacggccct	cacgccagcc	tggatggaga	acccctacat	caaggtacct	gggtgccccc
4741	agggctcagc	cacagccaag	gtgggattcc	agccagcagg	cccgtggcct	ggagggcagc
4801	cgatgtagtt	gcgaggcctc	tggcccgcgc	gctgggggct	ggaagcagga	ggcttaggtc
•				gaggagcaga		
				ttctcctcca		
				ccattccctg		
				acctgggggc		
				tcttgcctgt		
	-		_	cctgcctgtc		_
				agcggggtct		
					_	

Fig. 61B

5281	ctctaactcc	tagactcaag	agatttctcc	cacctcggcc	tectaaagtg	ctgggattat
				tactttataa		
				tggcatggcg		
				gcaggccaga		
				cctgcagaaa		
				gtccgggagg		
				agcagcggtg		
				cggaagcgcc		
				ccgctcagca		
				ctatccctgc		
				ccggagactg		
		-		gtccccgccc		
				cagccggtca		
				tgccgaggtg		
		_		actccactca		
				gcttgctctg		
				gcctcccggg		
				caggcacacg		
				tgttggccag		
				aagtgctggg		
		•		ttcacctgaa		
6541	aattccacct	gcagttgtag	caggacctga	cacttgggcc	ccatggaaat	cacaggtatt
6601	gcctgacaca	gtggttcatg	cccatagtgc	cagcactttg	agatgccaag	gtgggaggat
6661	cacttgagcc	caggagttcg	agatcagcct	gggtgacaga	gcaagacccc	gtctctaaaa
				cttgctctgt		
6781	ggtgcgatct	cggctcactg	caagctccgc	ctcccaagtt	aacaccattc	teetgeetea
				gccaccacgc		
6901	ttagtagaga	tggagtttca	ccgtgttagc	caggatggtc	tcgatctcct	gacctcatga
6961	tctgcccgcc	ttggcctccc	aaagtgctgg	gattacaggt	gtgagccacc	acacccggat
7021	tacaaaaact	ttttagataa	ttatctgggc	gacctgcctg	accaacatgg	agaaaccctg
7081	tctctactaa	aaatacaaaa	ttagccggac	atggtggcgc	atgcctgtaa	tcccagctac
7141	ttgggaggct	gaggcaggag	aatcatttga	acccaggaag	cagaggttgc	ggtaagccga
7201	gatcatgcca	ctgcactccg	gtctgggagt	gcactccaac	aagaaggagt	ttcgctcttt
7261	ttgcccaggc	tggagtgcag	tggtgggatc	tcagctcacc	gcaacctcca	cctcccgggt
7321	tcaggcgatt	ctcctgcctc	agcctcccaa	ggagtagctg	ggattatagg	tatgcatcgt
7381	cacacccggc	tacttttgta	tttttagtag	aggcaggttt	ccaccatgtt	ggccaggctg
7441	gtcttgaact	caagtgatct	gccctctttg	gcctccttct	caggaaaaaa	aaaaaatcac
7501	aggtatttac	aggccattcc	aagtgccaaa	agattgtttt	tgctcatggt	gacttcagta
7561	tcacagatgt	taggagactt	gctgctatat	gttaagaaag	aagcacaaat	gttgctgtag
7621	cccaaacttt	tttcctcatg	tttcattgca	tttcagctta	attggtttcc	ctggtattcc
7681	tatgtatttt	gtggagtgct	tttaaaatca	taagttggag	tagaggtctt	tctgtgggct
7741	tcaccagact	gccgagatca	gggtcgaaac	aggtgaggac	cccttctctg	gagagagtct
						ccttagcact
7861	tcatcagcct	taaaagaagc	tggaattttt	tttttttt	ttggagatgg	gatctcgata

Fig. 61C

7921	tgttgcccag	gctggtcttg	aaccccttgg	ctcaagcgat	cctccagcct	cagcctccca
7981		attcgaggca			-	_
8041		tgaatgcttt				
8101		ggtcctgcca				
8161	gccgtctgcc	agtgccgcgt	cgggtacttc	cgggcacgca	cagacccccg	gggtgcaccc
8221	tgcaccagta	agtgaccagc	acccaggtgc	agttcactgg	ggaggggtca	cagacctctg
8281	aggtggaccc	tcacatggcc	cccatcctcc	ctgggcttct	tccctttgtc	cctggcatgc
8341	ttgtccctag	cccggaggaa	catgtggagc	ccactgtctc	caaggcaaga	gtccagcatg
8401	gctgctggtg	cctccattgc	cctctcccca	ccaccgcaga	gcaggtcggc	ctctgcctga
8461	ctccctggtc	tcctgcagcc	cctccttcgg	ctccgcggag	cgtggtttcc	cgcctgaacg
8521	gctcctccct	gcacctggaa	tggagtgccc	ccctggagtc	tggtggccga	gaggacctca
8581		ccgctgccgg			_	
8641	acctgacttt	tgaccccggc	ccccgggacc	tggtggagcc	ctgggtggtg	gttcgagggc
8701		cttcacctat				
8761		cgtcccattt				
8821		gcggctggtg				
8881		gtgaagttgg				
8941		agggcaatgg				-
9001		caggcggatc				-
9061		ctacaaaaaa				
9121		aagaggctga		•		
9181		tcgcaccgct				
9241		tgaataagaa				
9301		ggccccagt				
9361		aaattgagac				
9421		ctgatcacaa				
9481		ctaaaaataa		-		
9541		accagaagaa				
9601		gcactccagc				
9661		taagggacag				
9721		tgcagtgtct				=
9781		tgttccccgg				
9841		aaggccatcc				_
9901		cctgggttgc				
	-	agccttgggt		_		
		ctgtaatagt				
		gtaataccaa				
		accagcctgg				
		cggtagctta				
		caggagtatc				
		aaaattagcc				
		ggagaatggc				
		teeggeetgg				
		caaaaaatac				
					- 555	- 33 3

					acctggggtg	
					caaatagcaa	
					ctgagacagg	
10741	gaacccaagt	gattctcgac	ttgaggtcga	ggctgcagtg	agtcgtgttt	gcaccattgc
10801	attccagcct	gagaaagtga	gaccttgtct	taaaaaaaag	gaatgatatt	atgaatacag
10861	cacatggctt	gcatgcgtaa	gttctcccaa	aggcctcacc	agttgcaagg	caggctagtg
10921	${\tt atgggagtgg}$	agggcgaggg	aaggaggcag	gaagagcaac	aggaacttgg	gttcccgggt
10981	gacggccacc	ccactacctc	tcccggacag	ggcgccgagg	gtcccagcag	cgtgcggttc
11041	ctgaagacgt	cagaaaaccg	ggcagagctg	cgggggctga	agcggggagc	cagctacctg
11101	gtgcaggtac	gggcgcgctc	tgaggccggc	tacgggccct	tcggccagga	acatcacagc
11161	cagacccaac	tggatggtga	gcctggggaa	gggggtgagg	gtgggggttg	gaaagacccc
11221	caaagttcct	gggaagaccc	caggtctcca	aagtcccatc	atctttttt	tttttttt
11281	tttttgagat	ggagtcttgc	tctgtccctc	${\tt aggctggagt}$	gcagtggcac	catctccgct
11341	cactgcaacc	tccgcctccc	ggattcaagc	cattctcctg	cctcagcctc	ccgagtagct
11401	gggattacag	gcgcctgcca	ccgcgcctgg	ccgattttt	gtatttttag	tagagacggg
11461	gcttcaccgc	gttggccagg	ctggtctcga	actcctgacc	ttgtgattcg	cccgcctcgg
11521	cctcccgaag	tgctgggatt	acaggcatga	gccactgcac	ccggtcaaag	tcctatcttc
11581	atgtccttct	tcctgtggat	cacatggcat	gccctagaga	ggagagaacg	taagatgtcg
11641	aaaccaaaac	caacagctga	gttttgtgaa	gtctggcctg	cttcactctg	tacccccagg
11701	ctggagcgca	gttgctcgat	caaagctcac	tgcacagcca	ggcacagtgg	ctcaccctgt
11761	aaccccagca	ctttgggagg	ctgaagcagg	aggatcactt	gaggtcagga	gttcgagacc
					atagaagtta	
11881	gtggtgcaca	cctgtaatcc	cagctactcg	ggaggctgag	gcaggagaat	cgcttgaacc
11941	tgggaggtgg	aggttgcagt	gagctgagat	tgtgccagtg	cactccagcc	tgggcaacag
12001	agcaagactc	tgtctcaaaa	aaaaaaagc	tcaccgcagg	cttgactttt	agcaacaacc
12061	tgacccctga	gctccccatt	ccccatccaa	caaaatggga	atatcatgaa	gcttcctgca
					ctaggccagt	
					gttgcccagg	
					ctcgatctgc	
					cgtgagccac	
					cacccaggct	
					caaccaatcc	
					ctcaactaaa	
					ctcaaattcc	
					ggcatgagcc	
					aatagcttta	
					cgatgacttt	
	_				ttttcagcac	_
		_			tctgttgcct	
	-				ggtcttttgt	
					tatccgtggg	
					tctgtcaccc	
					aggctcaagt	
13141	cctcagcctc	ccaagcagct	gggactgtag	gcatgagcca	ccatgcccag	ctaattttt

Fig. 61E

13201	ttggtatttt	ttgtaaagac	agggtttcac	catgtttccc	aggctggtct	cgaactcctg
13261	agctcaggca	atccacccac	ctcagcctcc	caaagtgctg	tgattacagg	catgagccac
13321	tggacctggc	ctgttttttg	tttttgtttt	gaacacacga	ttttgctttg	tcacccaggc
13381	tggaatgtaa	tggtctgatc	atagtgcatt	gcagcctcaa	actcctgggc	tcaagcgatc
13441	ctcctacctc	agcctcctga	gtatctggga	ccacacgtgc	tcaccaccat	gcttggctaa
13501	ttattattat	tttttgatag	agacggggtc	ttgctatgtt	tcccaggctg	gtcttgaaca
13561	cctggcctca	cacaatcctc	ccacctcagt	atctcagagt	gctgggatta	caggcatgag
13621	ccactgctcc	tggccaatat	ttcatttctt	tttatggaga	cgtaataatc	agttgtatgg
13681	aaatagctga	ttttgtttt	tattgtatct	tttggtgaac	atttcaattg	tatcgacttt
13741	ttggataaaa	acctgaaaat	gtttcacctt	tagaacgttt	cattgaatgg	agatttttt
13801	gtggactctg	gtatttatac	tagaaccaaa	tcaaaaccac	tctggcggct	gggcatgcct
13861	aggctggttt	gagactagcc	tgtccaacct	ggtgaaagcc	catctctact	aaaaatacac
13921	aaattagccg	agcatggtgg	tacacacctg	taatcccagc	tactcaggag	gctgaggcag
13981	gagaatcgca	gaacccggga	ggcggagatt	gcagtgagct	gagattgcgc	cactgcactc
14041	cagcctgggc	gacagagtga	gactgcgtct	caaaaaaaca	aacaaaaaat	tactctggca
14101	gtaagaaaag	atttcgaaac	ttcctccctt	gccctgaggt	acttcagagg	agcctgctgg
14161	cccctggggg	agagtttgaa	acccactgtt	tgttccctga	ccttgcctgc	ttgtgtcctc
14221	tccctccacc	tgtcccctgt	actggggacc	tgttctcagg	agatcacagt	tcattgctca
14281	aagccggggc	tggggcctcc	tacaggacca	tcagtttctc	ctgatcagca	gcctttcctt
14341	ccgcagagag	cgagggctgg	cgggagcagc	tggccctgat	tgcgggcacg	gcagtcgtgg
14401	gtgtggtcct	ggtcctggtg	${\tt gtcattgtgg}$	tcgcagttct	ctgcctcagg	taagggctct
14461	gacacccaga	ggcccctgga	agccctcagt	tgatggccac	ctgcctgggt	gctacaggac
14521	aagcctttct	ggctgtcccc	agcctcttt	tacttgaaat	cttctccaat	ccctgctcct
14581	tcctttggtg	tgtgtgcctc	ataaagatgt	gtgactcagt	ttaccttttg	ttcctttccc
14641	atcggctaca	ggaagcagag	caatgggaga	gaagcagaat	attcggacaa	acacggacag
14701	tatetcateg	gacatggtgg	gttgccctaa	tttgatggga	ataggggct-t	ggggccgggt
14761	gtggtggctc	ctatctataa	tcccagcact	ttgggaggca	${\tt gaggtgggca}$	gatcacttga
14821	ggtcaggagt	tcgagaccag	cctggccaac	atgttgaaac	tccatctcta	taaaaaatac
14881	atcagtcagc	caggcatggt	ggtgggcacc	tgtaatccca	gctactcagg	aggctgaggc
14941	agaagaatca	ttttaacccg	ggaggcggag	attgcagtga	gccaagatcg	cgccactgcg
15001	ctccaggcct	gggtgacaga	gcgagactcc	atctcaggaa	aaaaaaaaa	aaaaaaaaa
15061	accacggaga	caggggtttg	gggctaaaag	ctatgagccg	agcctccgag	tccagtggga
15121	gttaattccc	agctgacggg	gccctgcctg	atttctcagg	tactaaggtc	tacatcgacc
15181	ccttcactta	tgaagaccct	aatgaggctg	tgagggaatt	tgcaaaagag	atcgatgtct
15241	cctacgtcaa	gattgaagag	gtgattggtg	caggtgagag	ccgaaggctg	cccgggcacc
15301	tgggaacgaa	gcgggggtgg	gcagggccac	actggagcgg	gagagctgat	gacctctgcg
15361	tccttgtttg	aaggtgagtt	tggcgaggtg	tgccgggggc	ggctcaaggc	cccagggaag
15421	aaggagagct	gtgtggcaat	caagaccctg	aagggtggct	acacggagcg	gcagcggcgt
15481	gagtttctga	gcgaggcctc	catcatgggc	cagttcgagc	accccaatat	catccgcctg
15541	gagggcgtgg	tcaccaacag	catgcccgtc	atgattctca	cagagttcat	ggagaacggc
15601	gccctggact	ccttcctgcg	ggtgagcacc	ctccctggct	tctgcggcca	cccggagttc
15661	ccacttacac	ccagaggcca	cttgggttaa	gaagccagga	cagacagtgg	gtcccaggtc
15721	acctcctcca	gccttttcct	cttgggctaa	gccctggtcc	tctgcctttt	ctttttttta
15781	agacagagcc	tegetetgte	gcccaggctg	gagtgcagtg	gcgcgatctc	ggctcattgc

15841	tgtctccacc	tccagggttc	aagcgattct	cctgcctcag	tctcccaagt	agctggtact
15901	ataggcatgc	accaccatgc	tgactaattt	ttgtattttt	agtagacaca	gggtttcacc
15961	atgtaggcca	ggctggtatc	aaactcctga	cctcaagtga	tctccccacc	tcagcctccc
16021	aaagtgctgg	tattacaggt	gtgaggcacc	acgcctggcc	agccctctgc	ctttaatttt
16081	ccctctggga	aaggctgggc	tcctgggacc	ttcctttccc	actgccccat	acagctgaag
16141	gttgtcattc	cttcttttt	tttttaattt	tgttttaatt	gaatttttt	tttttgagat
16201	ggagtttcac	tcttgttgcc	caggccggag	tgcaatggca	agatcttggc	tcaccgcaac
16261	ctccgcctcc	caggttcaag	cgattctcct	gccttagcct	ccccagtagc	tgggattata
16321	ggcatgtgcc	accacgcttg	actaattttg	tatttttagt	agagacgggg	gtttctctgt
16381	gttggtcagg	ctggtctcga	actcccgacc	tcaggtgatc	cgcctgcctc	ggcctcccaa
16441	agtgctggga	ttacagacgt	gagccaccgc	gcccggccaa	tttttttt	tttttttaa
16501	gacagagtct	cactctgtcc	tctaggctgg	agtgcagtgg	tgcattcata	gctcactgta
16561	gccttgacct	cctgggctca	agtgatcctc	ccgcctcagc	ctcctgagta	gctggaacta
16621	cactcatgta	ccaccatgct	cagcaaattt	ttaaaatttt	ttgtagagac	aggatctcga
16681	taggttgccc	aggctggtct	gaactcctgg	cctcaagcga	gcctccctcc	tcagcctccc
16741	acagcactgg	gattgcaggc	atgagccact	gtgcctggcc	tgtcattcct	tcttttgaca
16801	aatatttact	gagtgctttc	tacgcaccgg	tcatcctccc	agtccccagg	aataaagcta
16861	tacacacggc	aaactggatt	tctcctcttg	gggagcagag	ggtctaatgg	ggcaggggga
16921	ctgaaaatta	gcaagtaaat	agacaggctt	tttaaaaaag	taaacaaatc	atttcaaatg
16981	tgaaaaaaag	caaacggggt	$\tt ccttcatgca$	${\tt gatgtggcta}$	gagaggaaag	agaactgctt
17041	aatttatttg	gtcactttac	cagattttac	tgacttttt	tttttttta	actttattaa
17101	gcttttcttt	tttcttgaga	tggagtttcc	$\verb"atctgtcacc"$	caggctggag	tgcagtggtg
17161	cgttcttggc	tcaccgcaac	gtccacctcc	tgggttcaag	tgattctcct	gcctcagcct
17221	cctgagtagc	ttggaattgc	atggcatgca	ccaccatacc	cagctgatgt	ttgtattttt
17281	agtagagaca	gggtttcatc	atgttgccca	ggctggtctt	gaactcctgg	gctcaagtga
17341	tccacccatc	teggeeete	aaagtgctgg	gattacaggc	atgagccacc	atgcctggcc
17401	taggcatctt	tttaaaaaaa	tcaaaacatt	tttctatgta	gcaaaataac	attgcattga
17461	acagagttat	agcgattccc	tagcgtcatt	gaatacccag	ttgattttca	cgtttctcta
17521	gttgttctaa	agatgtcctt	cactgctgct	ttattccaac	caggatccag	ttcaagaccg
		ctggttatta				
		gtttagagtg				
17701	tggctcaggt	gatcctcctg	cctcagcctc	ctgggtagct	ggaactacag	gtgcacacca
17761	ccacacctgg	ctaattttta	aattttttac	ggagatgggg	gtctcgctat	gttgcccagg
17821	ctggtctcaa	actcctggac	tcaagcgatc	ctccctcctt	aacctctcaa	agtgctggga
17881	ttacaggcgt	gagccaccac	gcctgctgat	tattatattt	tcgagcctct	ctaaatcttg
17941	agcagttcct	catgatgaca	ctgacacact	gaagggttag	gtcccttgtc	cgcctgaatg
18001	tcttgatttc	tggatttatg	aaattcttct	tatgggatca	tttagcttgt	ctctctgtat
		agaagctcta				
18121	gagatggagt	cctgctgtcg	cccaggctgg	agtgcagtgg	cacaatctcg	gctcactgca
						gctgggacta
		ccaccatgcc				
						ctcagcctcc
18361	cacagtgctg	ggattacagg	catgagccac	tatgcccggc	taatttttgt	atttttagta

18421	gagacagggc	ttcgccatgt	tggccaggct	gatctgaaac	ccctggcctc	aagccatcca
18481	ccctccttgg	cctcccaaag	tgctgggatt	aaacgcgtga	gccaccgtgc	ctggtcgaag
18541	agacagaaag	ggtcttaaag	gttcagtgac	acacacctgt	aatcccagca	ctttgggaag
18601	ctgaggctgg	tggatcactc	gaggccagga	gttagagatc	accctgggca	acatggtgaa
18661	accccgtctc	tacacaaaat	acaaaaatgg	gcagagcatg	atggtgcata	tctgtagtcc
18721	cagctactcg	ggaggctgag	gcgggaggat	cacttaagcc	tgggagatcg	aggctgtagt
18781	gagccatcat	tgcactactg	cattccagcc	tgggcgatcc	catctcttaa	aaagagagag
18841	agatgggaag	accagcacag	gtgaaactgg	tgaacagagg	agagatggta	gatgctgcat
18901	tgggcagtgt	gacgggaacc	cgctggaggg	ctttggcagg	agagtagttt	aagaggatcc
18961	cagctgggca	cagtggctca	cacttgtgat	cccagcactt	ggggaggccg	gggcaggtgg
19021	atcacttgag	gtcaggagtt	cgagaccagc	ctggccaaca	tggtgaaacc	ctgtctgtac
19081	taaaaataca	aaaaccagcc	aggcatggtg	gtgcacccct	gtaatcccag	ctactcagga
19141	gactaagaca	ggagaatcgc	ttgaactcag	gaggcagagg	ttgcagtgag	ccaagatcac
19201	gccactttac	tccagcctgg	gcagtagagc	gagactccat	ctcaaaaaaa	taaataaata
19261	aaaagacctc	tttgctgggt	gctagggagc	aagagcagga	gctgggagag	gcctgcagca
19321	gaagcctgtt	gccagcatcc	aggccgtggg	gtgaagggaa	gggtttggat	ttgggacatg
19381	tcttggaagc	atcaccagca	gaacttgctg	atggattgga	agtggctggt	gagggagaaa
19441	agggggtcaa	aggaaactct	gaggtctata	ccctgaccat	ctggcaagtg	gtggtgttgc
19501	cacaaactga	gcggggagta	gggcaggtgc	aggtctggag	gatggattca	aaattcagtt
19561	tttggagtct	atgtccctgg	ttctgtaggg	ctgcagatgg	tctgccaaat	cttagcggaa
19621	cccagaatac	gggatttgtt	tactgtctgt	gacttgttgg	tttccctggt	gagagcaaac
19681	tctttaaagg	tcaaggttgg	gcttcagacc	ttggtttttg	caccgatcat	tggtcatact
				tacacagcta		
				cacctgtaga		
19861	tgcctgtaat	cccagcacct	tgggaggcca	aggtgggaag	attgcttgag	gccaggagtt
				ccatatctac		
				agtcccagct		
				gcggtgaacc		
				ctaaaaaaac		
				accaggttaa		
				gactgaatgc		
				aagagctgag		
				gcttgcccta		
				ggacgggagg		
	-			gcggaaggat		,
				atctctacta		
				actcaggagg		
				tgcactccag		
				gagggggaac		
				aacgacggac		
				atgcggtacc		
				gtcaacagca	_	
				aactcttccg		
21001	ctggtaatgc	rgggggtaat	actgggtgtg	agcttcttag	ggccaggtgg	gcagggcagg

21061	ttaannaat	aaaaaaataa	aaatttaaa	gaataataa	20000000000	+20200200
					agggagagga	
					tccagatgtc	
					tacaaaaaaa	
					gggaggttga	
					atgtgccact	
					ccaggtgtgg	
					gcctgaggtc	
					aaatacaaaa	
					gaggtaggag	
					tgcactccaa	
				- · · ·	gaaaaagcag	
					gtgagtcccc	
					ggactgcccc	
21841	gccttccgga	agttcacttc	cgccagtgat	gcctggagtt	acgggattgt	gatgtgggag
21901	gtgatgtcat	ttggggagag	gccgtactgg	gacatgagca	atcaggacgt	aagtgtcccg
21961	tggtcctacc	aagctttcct	cgagtgttct	ctcacctggg	atttggggtg	aagggtgggt
22021	tcccagagag	tcatcactgc	tgggttcttg	agaccatgga	gatgacaaaa	aggagaattg
22081	atctttgtat	caaagagttg	agatacaggg	ccaggcctag	tggctcaagc	ctgtaatccc
22141	agcactttgg	gaggccaagg	tgggcagatc	acctaaggtt	aggagttcaa	gaccagcctg
22201	gccaacatgg	tgaaaccccg	tctctaaaaa	aatacaaaaa	attagcccag	catgatgggc
22261	gggtgcctgt	aatcccagct	actcaggagg	ctgagacagg	ataatcgctt	gaacccagga
22321	acagaggttg	cagtgagctg	agatcacgcc	attgctttcc	agcctgggca	actgagcgag
22381	actctgtctt	aataaataaa	taaaagagtt	gggtacagca	tatttgggtc	gcagaaggat
22441	gcagagatgg	agggcagggt	tgagaggtaa	catgtctgta	tcatagccca	agagctgctg
22501	gggccttcag	ccacagagag	cttcaactcc	ggctaggagg	attcctggat	ctgttatttt
22561	ttggggggct	gtggctccta	tcctaccatc	ttccaagtca	ccatttcctg	ggcctgttag
22621	catctttgct	tttcctggac	agecteacce	agagettett	ccctctttc	caggtgatca
					ctgtcccacc	
		-			gccccgcttc	
					caaaatcgtg	
					ctctctgccc	
					ctgtccgcct	
					cattcctccc	
					cactactcag	
					gaagaaagtt	
					gagtaagcag	
					cacggggtct	
					gcgctcatgc	
					acccaaggac	
					ggccatcgcg	
					cccggctctc	
					aagattgggc	
					cttgcctccc	
	-				cttcccgttc	
			•		atagaaatct	
					cgaggtgggc	
,01	-4-33-33-6	Jacgoodgea		3334336	-3-33-3330	-5

			ttgtggacaa			
			tggtgcgtgc			
			gggaggtgga			
24001	actccagcct	ggatgacaga	gtgaaattcc	atctcaaaaa	aaaaaaaaa	aaaaaaaag
24061	aaatgtgaag	gccaggtggt	ggctcacgcc	tgtaatctca	gcactttggg	aggctcaggt
24121	ggaccgattg	cttgagccca	ggagtttgag	agcagcctgg	ccaaaatagc	aaaaccccat
24181	ctctacaaaa	caaaaacaaa	aaaattagct	gggcatggtg	gtgcgtgcct	gtggtcccag
24241	ctactcagga	ggctagagcc	agagggtctc	${\tt aggccagtct}$	gcccctgccc	cacggggcct
24301	gggcacatcc	ctccctaatt	cttcccagcc	tctctctgac	ccagggggcc	tcctctccct
24361	tttttcccct	tatctcagcc	tccagccatc	agcaacctcc	tcttcctctc	cacccagctc
24421	ttcctctccc	acttcggcct	tttctttctc	acactccatt	tccctctacg	gcaatctgtg
24481	${\tt cagcctcttc}$	ccccagtctc	attttgcggg	cttttctctc	ttttctttcc	ttccctggca
24541	cccaagccaa	aggccctgcc	tctggcctcc	agccctaccc	ccttctgcgg	ttgcacagaa
24601	ggatggctgc	ccagctctta	aaaaactgc	ccgggaactg	ttgacatctg	ttctccctcc
24661	cccgctggct	tttctgattg	gcttacaatc	ctgaggctag	${\tt gaccgtctca}$	ggagccaaga
24721	gaggagagcg	gccacaggga	acctagggtc	tcaccaagct	ctcctttcct	tctgcaggga
24781	cctgctccga	atcggagtca	ctctggcggg	acaccagaag	aaaatcttgg	ccagtgtcca
24841	gcacatgaag	tcccaggcca	agccgggaac	cccgggtggg	acaggaggac	cggccccgca
24901	gtactgacct	gcaggaactc	cccaccccag	ggacaccgcc	tccccatttt	ccggggcaga
24961	gtggggactc	acagaggccc	ccagccctgt	gccccgctgg	attgcacttt	gagcccgtgg
25021	ggtgaggagt	tggcaatttg	gagagacagg	${\tt atttgggggt}$	tctgccataa	taggagggga
25081	aaatcacccc	ccagccacct	cggggaactc	cagaccaagg	gtgagggcgc	ctttccctca
25141	ggactgggtg	tgaccagagg	aaaaggaagt	gcccaacatc	tcccagcctc	cccaggtgcc
25201	cccctcacct	tgatgggtgc	gttcccgcag	accaaagaga	gtgtgactcc	cttgccagct
25261	ccagagtggg	ggggctgtcc	cagggggcaa	gaaggggtgt	cagggcccag	tgacaaaatc
25321	attggggttt	gtagtcccaa	cttgctgctg	tcaccaccaa	actcaatcat	tttttccct
			ctgctgcctt	_		
25441	gtcttaattt	ttctccccgt	tccctttttg	tttcttcgtt	ttgtttttct	accgtccttg
25501	tcataacttt	gtgttggagg	gaacctgttt	cactatggcc	tcctttgccc	aagttgaaac
25561	aggggcccat	catcatgtct	gtttccagaa	cagtgccttg	gtcatcccac	atccccggac
25621	cccgcctggg	acccccaagc	tgtgtcctat	gaaggggtgt	ggggtgaggt	agtgaaaagg
25681	gcggtagttg	gtggtggaac	ccagaaacgg	acgccggtgc	ttggaggggt	tcttaaatta
25741	tatttaaaaa	agtaactttt	tgtataaata	aaagaaaatg	ggacgtgtcc	cagctccagg
25801	ggtgatgggg	gtgatggact	agatttctaa	ggagagtggg	gctgggtagg	gagggctttg
			gaggtctgga			
25921	ttatcagccc	cagggtatgt	ttgaggtggt	ggggtgggg	ccgagcgaga	tgaatcattc
25981	gcagctgctt	ctaacgtctc				*

Fig. 61J

84/113

EphB4, mRNA

```
1 ctcggcccgg cggcgcgagc agagccactc cagggagggg gggagaccgc gagcggccgg
 61 ctcagcccc gccacccggg gcgggacccc gaggccccgg agggacccca actccagcca
 121 cgtcttgctg cgcgcccgcc cggcgcggcc actgccagca cgctccgggc ccgccgcccg
 181 egegegegge acagaegegg ggecacaett ggegeegeeg eeeggtgeee egeaegeteg
 241 catgggcccg cgctgagggc cccgacgagg agtcccgcgc ggagtatcgg cgtccacccg
 301 cccagggaga gtcagacctg ggggggcgag ggccccccaa actcagttcg gatcctaccc
 361 gagtgaggeg gegecatgga geteegggtg etgetetget gggettegtt ggeegeaget
 421 ttggaagaga ccctgctgaa cacaaaattg gaaactgctg atctgaagtg ggtgacattc
 481 cctcaggtgg acgggcagtg ggaggaactg agcggcctgg atgaggaaca gcacagcgtg
 541 cgcacctacg aagtgtgtga cgtgcagcgt gccccgggcc aggcccactg gcttcgcaca
 601 ggttgggtcc cacggcgggg cgccgtccac gtgtacgcca cgctgcgctt caccatgctc
 661 gagtgcctgt ccctgcctcg ggctgggcgc tcctgcaagg agaccttcac cgtcttctac
 721 tatgagagcg atgcggacac ggccacggcc ctcacgccag cctggatgga gaacccctac
 781 atcaaggtgg acacggtggc cgcggagcat ctcacccgga agcgccctgg ggccgaggcc
 841 accgggaagg tgaatgtcaa gacgctgcgt ctgggaccgc tcagcaaggc tggcttctac
 901 ctggccttcc aggaccaggg tgcctgcatg gccctgctat ccctgcacct cttctacaaa
 961 aagtgegeee agetgaetgt gaacetgaet egatteeegg agaetgtgee tegggagetg
1021 gttgtgcccg tggccggtag ctgcgtggtg gatgccgtcc ccgcccctgg ccccagcccc
1081 agcctetact geegtgagga tggeeagtgg geegaacage eggteaeggg etgeagetgt
1141 geteeggggt tegaggeage tgaggggaae accaagtgee gageetgtge eeagggeaee
1201 ttcaagcccc tgtcaggaga agggtcctgc cagccatgcc cagccaatag ccactctaac
1261 accattggat cagccgtctg ccagtgccgc gtcgggtact tccgggcacg cacagacccc
1321 eggggtgcac cetgcaccac eceteetteg geteegegga gegtggttte eegeetgaac
1381 ggctcctccc tgcacctgga atggagtgcc cccctggagt ctggtggccg agaggacctc
1441 acctacyccc tecyctycey gyaytyceya cecygayyet cetytycyee etycygygya
1501 gacctgactt ttgaccccgg cccccgggac ctggtggagc cctgggtggt ggttcgaggg
1561 ctacgtcctg acttcaccta tacctttgag gtcactgcat tgaacggggt atcctcctta
1621 gccacggggc ccgtcccatt tgagcctgtc aatgtcacca ctgaccgaga ggtacctcct
1681 gcagtgtctg acateegggt gaegeggtee teacceagea gettgageet ggeetggget
1741 gttccccggg cacccagtgg ggctgtgctg gactacgagg tcaaatacca tgagaagggc
1801 gccgagggtc ccagcagcgt gcggttcctg aagacgtcag aaaaccgggc agagctgcgg
1861 gggctgaagc ggggagccag ctacctggtg caggtacggg cgcgctctga ggccggctac
1921 gggcccttcg gccaggaaca tcacagccag acccaactgg atgagagcga gggctggcgg
1981 gagcagctgg ccctgattgc gggcacggca gtcgtgggtg tggtcctggt cctggtggtc
2041 attgtggtcg cagttctctg cctcaggaag cagagcaatg ggagagaagc agaatattcg
2101 gacaaacacg gacagtatct catcggacat ggtactaagg tctacatcga ccccttcact
2161 tatgaagacc ctaatgaggc tgtgagggaa tttgcaaaag agatcgatgt ctcctacgtc
2221 aagattgaag aggtgattgg tgcaggtgag tttggcgagg tgtgccgggg gcggctcaag
2281 gccccaggga agaaggagag ctgtgtggca atcaagaccc tgaagggtgg ctacacggag
2341 cggcagcggc gtgagtttct gagcgaggcc tccatcatgg gccagttcga gcaccccaat
2401 atcatecgee tggagggggt ggteaceaac ageatgeeeg teatgattet caeagagtte
2461 atggagaacg gcgccctgga ctccttcctg cggctaaacg acggacagtt cacagtcatc
2521 cagetegtgg geatgetgeg gggcategee tegggcatge ggtacettge egagatgage
2581 tacgtccacc gagacctggc tgctcgcaac atcctagtca acagcaacct cgtctgcaaa
```

2641	gtgtctgact	ttggcctttc	ccgattcctg	gaggagaact	cttccgatcc	cacctacacg
2701	agctccctgg	gaggaaagat	tcccatccga	tggactgccc	cggaggccat	tgccttccgg
2761	aagttcactt	ccgccagtga	tgcctggagt	tacgggattg	tgatgtggga	ggtgatgtca
2821	tttggggaga	ggccgtactg	ggacatgagc	aatcaggacg	tgatcaatgc	cattgaacag
2881	gactaccggc	tgccccgcc	cccagactgt	cccacctccc	tccaccagct	catgctggac
2941	tgttggcaga	aagaccggaa	tgcccggccc	cgcttccccc	aggtggtcag	cgccctggac
3001	aagatgatcc	ggaaccccgc	cagcctcaaa	atcgtggccc	gggagaatgg	cggggcctca
3061	caccctctcc	tggaccagcg	gcagcctcac	tactcagctt	ttggctctgt	gggcgagtgg
3121	cttcgggcca	tcaaaatggg	aagatacgaa	gaaagtttcg	cagccgctgg	ctttggctcc
3181	ttcgagctgg	tcagccagat	ctctgctgag	gacctgctcc	gaatcggagt	cactctggcg
3241	ggacaccaga	agaaaatctt	ggccagtgtc	cagcacatga	agtcccaggc	caagccggga
3301	accccgggtg	ggacaggagg	accggccccg	cagtactgac	ctgcaggaac	tccccacccc
3361	agggacaccg	cctccccatt	ttccggggca	gagtggggac	tcacagaggc	ccccagccct
3421	gtgccccgct	ggattgcact	ttgagcccgt	ggggtgagga	gttggcaatt	tggagagaca
3481	ggatttgggg	gttctgccat	aataggaggg	gaaaatcacc	ccccagccac	ctcggggaac
3541	tccagaccaa	gggtgagggc	gcctttccct	caggactggg	tgtgaccaga	ggaaaaggaa
3601	gtgcccaaca	tctcccagcc	tccccaggtg	ccccctcac	cttgatgggt	gcgttcccgc
3661	agaccaaaga	gagtgtgact	cccttgccag	ctccagagtg	ggggggctgt	cccagggggc
3721	aagaaggggt	gtcagggccc	agtgacaaaa	tcattggggt	ttgtagtccc	aacttgctgc
3781	tgtcaccacc	aaactcaatc	${\tt attttttcc}$	${\tt cttgtaaatg}$	cccctccccc	agctgctgcc
3841	ttcatattga	aggtttttga	gttttgtttt	tggtcttaat	ttttctcccc	gttccctttt
3901	tgtttcttcg	ttttgtttt	ctaccgtcct	tgtcataact	ttgtgttgga	gggaacctgt
3961	ttcactatgg	cctcctttgc	ccaagttgaa	acaggggccc	atcatcatgt	ctgtttccag
4021	aacagtgcct	tggtcatccc	acatccccgg	accccgcctg	ggacccccaa	gctgtgtcct
4081	atgaaggggt	gtggggtgag	gtagtgaaaa	gggcggtagt	tggtggtgga	acccagaaac
4141	ggacgccggt	gcttggaggg	gttettaaat	tatatttaaa	aaagtaactt	tttgtataaa
4201	taaaagaaaa	tgggacgtgt	cccagctcca	ggggt		

Fig. 62B

86/113

EphrinB2 Gene

1	gegeetegga	gctgcctgcg	ggcgcacgcc	gtcttccccg	ccagtctgcc	ccggaggatt
61	gggggtccca	gcctgcgtcc	cgtcagtccc	ttcttggccc	ggagtgcgcg	gagctgggag
121	tggcttcgcc	atggctgtga	gaagggactc	cgtgtggaag	tactgctggg	gtgttttgat
181	ggttttatgc	agaactgcga	tttccaaatc	gatagtttta	gagcctatct	attggaattc
241	ctcgaactcc	aagtaagtgg	cgtccgcgat	cccctatgt	cccgccccg	gggtccgccg
301	cgccgtccgg	gcgggaggag	gggtcagtcc	gcggggcctc	ggagcctgtt	tctggaacct
361	cggttccccg	tccccaccc	ccaacccccg	${\tt ccccatttca}$	ctaggtggag	actcctcgct
421	cggctttcca	acccgagccc	cgctggaacg	gacggtctct	ccgcctttcc	tcccccgaac
481	gctcccaggc	gctaaaagct	actatcggct	cgggtgtcaa	gtccgggaag	gtgtccgatg
541	gcgatacctg	accctctcct	gttttcgagg	acgaaggaca	tggccacaat	ctaggctggc
601	cggcacgcgg	ggactggtgg	gctctggaga	gaggcggaga	tgctgcattc	gcggggagcg
661	cgggcggcgt	ggtccggggc	ccgcgggcgg	gcgaccgggg	tggcaggacg	ctggcagcga
721	agcgcgttct	ggagagggga	gcctggagtc	gctacgctgc	\mathbf{c} cgcagagcc	ctggagccgg
781	ggcgccttgg	caccgcgccg	ccagcccgag	ggtgcgcggg	gagctcgcct	gcttcgcagg
841	agaactcggg	cgtcgagccc	tttcctccgc	gccggggaga	${\tt cgggccttag}$	gcttctccct
901	gagggcccgc	cgcacctcgg	cctcccgctt	cgttcataag	ccggtagccc	cggagtatgc
961	ggtctcgatg	gccgacctga	ttgtaatgca	cttcctataa	aagcttaggg	ccctgcccag
1021	tcgacactgc	tcctgaagcc	ttctccctcg	ggaccctggt	aggaatggga	tccttaggat
1081	cagatttgct	cttaccggac	tctacagccg	ggagcgagcc	aggccttgtg	gagagtaact
1141	ttcagtttgg	gccaccagag	tgcattcaga	atttagaaaa	tcccatccat	ccctaaatct
1201	gtgtggtcat	aactcgtagt	${\tt catctgggta}$	ttcagtactg	tgtatcccct	tatttcgaat
1261	cacagccaaa	acatattta	${\tt cagaatcttg}$	${\tt gaattgtagt}$	ctcgggaaac	ttggagaaga
1321	agtatgcaga	cattagctgg	tttctggaga	aaacgtttga	gatcagaagc	aaaatcaatg
1381	gcctaattga	agttgagcaa	gttgggcctg	gttttaggag	aaaagaaatg	ggggattgat
1441	ttagaaatca	cgtcttaaag	gagtgtgtcc	attctcttaa	aagtgtcaaa	tttcaaattc
1501	actaacatgt	taaccaagaa	tcccttcatg	aaaagggcga	aaacgtcggt	tacaaatcgg
1561	tttaaacaaa	tgtttgtatg	atgctagaag	gcactttcaa	caccgctcat	acggagaagt
1621	tacttagctc	tgcctccttc	catgtagtct	gctcttgcat	ggattatatt	tttaatgtaa
1681	attgttgtat	ttgctgatga	agtactggcg	gcggcatctt	tgcatcgatg	ccggctcggg
1741	aggcgccagg	tggtgccgga	aggagccggg	ctaggacctc	gcgcagcagc	gggtcccgga
1801	gtccgggaga	ggcgggcggg	cgggcgaggc	ggtcgcgggg	agcccgcggc	gccgctgccc
1861	gcccggtgcc	tccagaggtc	actcttccat	gcggaatcgc	gcagcgccag	gcctcgcccc
1921	tcccccaggc	cgcctgctcc	agccactctg	cactttcact	gaccggttct	ctttgaggct
	gtttttttt					
2041	gttagcctct	tcagcgttta	gttcggtgtg	tgtatcttta	tctttgcgct	atattaacta
2101	ttagtttgtg	tgtatccggt	aggagaatta	gaaataccta	gttgggagaa	aaagaaaagt
2161	agaacaatag	ttatttcaac	ctaaggttta	gacgttaata	acttcttttt	gtaatgtgtc
2221	gagatggggg	gtcctggggg	gaggtgacag	gtactcacca	ctccccccc	ccattctgat
2281	gatgaagatg	agtctgtctt	tccagctatg	tccagacctg	cgagggccct	gcgtttctgg
2341	aagcctgccg	tttgcgcggt	tgaggttgct	gctgctgtct	tgtcctccac	agcagcattt
	cttttaaaat	_		_		
2461	ggtctccctt	gcagctgaat	gctagctcca	gagatcagaa	agatttcttc	ctgtaggagc
2521	cataggaaag	agtcctctct	aagtttttga	gaatgcatac	aaccccctga	tgacaggggg
2581	tegettteet	tggggaagtt	ttatatttat	ttccagagga	aagtttgaat	cggtaaatat

2641	gatgtggcag	gaaggtaatc	aaatgcattg	aagtttcaca	tcagttccta	tgaactgtgg
2701	aacaattcat	ttgtaatgaa	gccgccatca	gtaattagat	ttgtttcatt	cagaggtcag
2761	cttttttagc	aggtggtcga	cacagggagc	atgcagcagc	tgtttggata	cagggtccag
2821	aaaacccttt	gtaaattcag	cgtctccgta	actactttaa	tcacattgtc	ggctctcccg
2881	tccctgactg	tatgtaataa	tggaaagatg	tcctgcgtgc	tgaaacagta	gctgccctgt
2941	taggttattc	acattgcttt	gatacgttct	ggtagagttg	ggtccgttgt	agccattttg
3001	gttgtttaaa	gttttggttt	tttttttgtt	tttttttaa	ttcagcagag	aacagtaatg
3061	cctagcttcc	gtttttaact	taacacttca	gtagaacatt	ttcttccaag	agggagattt
3121	tggcctaagt	aaagtagtgg	gctcttttt	aaaaaaaat	taattttact	ttaatgtgag
3181	caaatctgta	ttggtatggt	gttctgcaat	gcattacact	gactttgaaa	atttcgagta
3241	ctaatgcctt	atgtctgggg	ttaccattcc	ctgtgcatca	catactagtt	agttaacata
3301	gcattttgct	tttcccatgt	aatttttcc	ctatataata	ctggattcct	gatactaatt
3361	gacttgatac	aaaagaatgg	ctggatgata	tccagataac	gtataataca	tgggcttcac
3421	cacaatcagg	ctctgaataa	atacagacct	gtcagagatt	gataaaataa	actacaatgg
3481	atagtgctgt	ttaaacagtc	cattcaataa	catatataag	ccagcctgcc	ttccattgtg
3541	tctgaaattc	ttatttttgt	aggtaaacaa	$\verb"atgcacattc"$	agcactgatt	gaatagcccc
3601	ttgaactatg	ctccacagtt	tgcgtttggg	ttaatcttgt	cggttttaat	atagagagaa
3661	aaaagctcaa	agcaccaggg	gtggaattgt	tagtgctttc	acatccacat	tcctcacatt
3721	ttgtcaggat	gataaactgt	${\tt aggtaatgga}$	ctgtcgttgt	tctgcaggac	aactgagcca
3781	ggcagagcac	aaagactaag	ctaaagcgat	acctcacaac	${\tt atgcttggta}$	gccttcttt
			aatcatgtgt			
3901	tacagcttca	agccccagaa	acaggagctg	gaggttaaga	tgatttgcta	agcacctggt
3961	tctaaatctt	ttacaaagca	taagctgttg	acgctggttc	tgccgacgca	aagacatgca
4021	gatgactcca	acatttccag	aggcttctga	cttaagctaa	agtgtgtgga	caggtgaatt
4081	cgccatgggc	ctggagacca	gcttgctaaa	aactatgtgt	ttgaatggtt	cctccagaca
4141	gagtcagctg	aagaacaatt	ggtggattta	tattaaaacc	tcttgtctgt	aaacttactg
4201	aggtgcatcc	ttcggttggt	ggatcagtga	gataattgcc	ttcagatgga	cattgcaact
			gtctttcctt			
			ttcgggcgac	· ·		
			ctgcagtaat			
			cctaataaaa			
			aaaatactta			
			ggtcctccta			
		-	caggtcactt		_	
			gtagagcctt			
			ccatagaact			_
	-		tttttaaggg			
			ggatagcaaa		_	
		_	tataaagcca	_	_	_
			taaaccgttg			_
			atactagccg			_
			aaacaaagtg		_	
			atagttaata			
5221	agatgtgatg	taaatcaagg	gcagagtata	aagaaactga	tcccttttga	ttgaagtata

Fig. 63B

5281	gtaaaaaggc	atagagaaac	tagcagcagt	aatctgattg	tatggcaata	aaaccaccat
5341	tttctgtctt	tcagataaaa	ataatgtggt	aaatccatgc	agttcataag	atgtaaaggc
5401	agataaaggg	tgaagccatg	gcaacatata	gattagcttg	atgttagaaa	tgacacgtct
5461	ctgaaaaggg	cgcgggacga	aggcccttgc	ctccaggctg	ttgggcatta	tgtgagaacc
5521	acacagactt	ggaaactggg	attaggaagt	atgaaagctc	tacttgtggt	ctgggatggc
5581	tgaggcagta	aagaaaagct	gctcagttct	tgctcattgg	tggtggataa	tatggcaaag
5641	gtagatttca	ttgactgcct	tttttataga	ttgagattgg	ggctgattaa	aacttcagat
5701	cactgcagtt	gttagggcct	gggagatttt	cctttttaac	tcctggccta	acagcagcag
5761	ccgttctgta	ggattaactg	cacttcgcgg	tcgttgcctt	aatctatttg	ggcttcaggc
5821	agggacatgc	tgggaaggaa	cagagaccag	aggggatagg	tagggctggg	gttatctgaa
5881	aagaaaacag	agaccttttg	atttcagcca	tcttttcaga	cccagctccc	tctcccgctg
5941	catgggagaa	gcaaaggtaa	acaggacaca	ttgtccctct	ccctcagcca	cagagctctt
6001	ctgtgagttt	tgtctttccc	accctggaaa	aaaagataaa	atacaatttt	taaaagggga
6061	gggaggaatt	tagttttaat	tcaaatgagt	agtaatccaa	tatgccaaaa	gcagtgggct
6121	ctacctagat	${\tt gtaatttac}$	tcgtaaatgt	gagtcttaaa	${\tt ctttgagttg}$	aatggggcag
6181	${\tt gctgttagag}$	${\tt gtggtgtaaa}$	ttacaggatt	ataaaaatgt	tagtgctgcc	cagccttaaa
6241	gtcaaaaaca	gaaaaatctc	tgtgctgttg	agtcttcccg	ccctctctcc	tgaacaacct
6301	tgtaagtaag	${\tt ctagacttt}$	gtttttgcct	tccatacttt	ccatttcagc	cattaaacaa
6361	aataagccat	tgaaaccacg	attgggttcc	atgcagagtg	acatccgcaa	tcgggtcaag
6421	ccagaaggaa	${\tt atacttgctc}$	gattgcccc	tatttggcat	tacaggaaag	tctccacact
6481	ttggaagagt	ctgaactctc	aagacattga	aaatgccaaa	ggctgcaaac	accctgtgtc
6541	tttcttgatg	gagtgcatct	tggtgtgttt	tacaaagggg	aattcagtgc	tgttttttg
6601	ttgttgttgt	tgttttttt	ttttaaagag	cagcataggg	cccttctaga	ctcttggatt
6661	${\tt ctgtgtctga}$	caaaaatggt	cattaaatga	gcaatattat	aatttagacc	catttcactg
6721	${\tt attttgttcc}$	aaattctcaa	ctgacttgag	${\tt catctgtttg}$	gggctgtaga	tacattgccc
6781	ttgttgactg	tttttctcgt	ttctatggga	attactgtag	ccattactat	gtagctttca
6841	tagactcaaa	acatttttaa	agtattgcat	ataggctggc	catatccagt	gcctgttact
6901	ttaccttctt	tttctaactt	aatgcagcag	tctgtattaa	cagatccatt	tcatttgtct
6961	agcttcatca	gagagaggct	accccctgat	ttacaggctg	ctcacatcca	agcaccttgc
	attctacact					
7081	gggaacagaa	catgataaat	gtccagcaag	cttgctgcct	ccttcagctt	ttcaaacgca
7141	gactggtgca	tatttatggc	aggcaaatga	caaaagaaaa	agctgaattg	ccctggcctc
7201	cagctttcta	tcagaaacag	ggttaaagtg	attaaagcaa	tcattcaaga	aagccctgcc
						gaagatattt
7321	cagaagtatt	agagataagg	aaggaggatc	tagcaaacca	gtgaaaagag	taggtgacca
7381	gttataaaat	gctttccatg	cacattgaat	gccaggcgaa	cctatttctg	ttattccagc
7441	agacaatcag	cagtggctct	agattattaa	catattttcc	tttcatgtat	aaattcaaat
7501	atgtaattct	agtccaaagc	attctgtggc	tggtaagcac	atacttgctg	atttcaaata
	-		_		_	gtaattctct
	_					tcttttcatt
	_					atttagagcg
			_			atttttattt
		_				attttctcaa
7861	tttaaatcct	gttgcatcca	attttaatta	cagtttttgt	atctgccttc	ccatacttgc

Fig. 63C

7921	tacccacgtc	cccattgcca	ctgcggcctt	atccatgttt	tctgtgtaca	ccactctcgt
7981	atcaccccag	aataattatg	agtgctaccc	agacttttga	aaccactaga	gtcaacatgt
8041	ttgtctttga	ggaaagccaa	tgatgcttta	gcatttttgg	caggggtgga	tgtgtgttta
8101	agtggggtgg	gtgcagctcc	ttattgtctg	cctattctac	tgttgttccc	aatccacatt
8161	ccctgcgggg	cacctaacct	gtgtgcatag	caaagaattt	ccgaccttca	gagccagaag
8221	tgtttctcaa	ttgatctctt	ccagcctagg	gttatagctg	atgaattata	atccttgctc
8281	tttccacacc	tttacctggg	cttaccatgg	ccctaaaaca	tttgcccaga	atcagaattg
8341	tctcatgagt	gagtggggca	aggcaaatcc	tgttccagac	cagctgagaa	tgtacctagc
8401	tgcagaagaa	gttagaaagt	gtcatctttt	acttatctac	cagaactata	ttcgaggtac
8461	attttagatt	taaaaaaaaa	gcaagttctc	gtaggccttg	aatcccccc	ttgctatggg
8521	aaaatggatc	attattataa	tggactgtcc	agtaaagttc	atgatttctc	ctagacatgt
8581	tatatatat	tatgacctag	atcaagagtg	atctctttaa	gtctttctt	cataatccca
8641	cagcactttg	tacttagatg	tacttagaaa	gaaccatata	cacggtacgt	catgattgat
8701	atgcaagcct	tcaccactct	acctgtccta	aaagtcaggg	acacaccttc	ttcatttcat
8761	cagtccctac	ttctatccag	${\tt cattggcatc}$	cagtaagtat	tagtggaatg	gacagacaac
8821	ccgaatttgt	gctgatggca	gtttaccctg	ttttaactgt	catccttctg	ctactagaca
8881	tggatgagac	ctgagacgat	gggactgctc	agaggtccct	ggctcttgaa	ctttagggca
8941	ccagaatccc	ctgcagggct	tgagaaaaca	ggggtttctg	ggccccaccc	ccagagttcc
9001	tgattcctga	ggtctggggt	ggggcttgaa	gatggacatg	tttaacaagc	tcccaggtga
9061	cgctggcaac	tgctgcctca	gggccatgct	gagaaccctc	gccctacaca	aacctttctg
9121	ggaaaacaac	tcaacattaa	${\tt agctgtttgg}$	ggatctctga	agaaatctgt	agtccttgcc
9181	ttgttggggg	agcatcaggg	atctaaccat	tgatggtgga	gtatttgttg	ttaattcagc
9241	aagcaactat	taagtgttag	gcctgttact	cggctctaac	aatacaaggc	agagtgacct
9301	gtaccctcga	${\tt gatttaaagt}$	ctaagtcctg	tagagagaag	cccaggtggg	agcaagcaca
9361	tttagagtta	ggtgcttggt	gcaaggtggg	gacacagaag	aagggaatgg	catttgcctc
9421	tggaggggtc	cggaaacagc	ctagggagga	ggagcttgag	tcttgaaata	ctgtgggcat
9481	ctctaagcaa	agtcacagta	gacagctgaa	ataaagaaaa	tagtaagcaa	gccaaagaaa
9541	cagtatttca	gccaagggca	gcgtgtgtct	atcacgtcca	cctgtgaaca	cgtcccagga
9601						agccactgat
9661						tgagtatgat
9721				-	_	actgtagttt
9781	•	-			_	tagccattta
9841						atctctataa
9901						caacatttaa
9961	_			_		aacaccagtt
	_		_		· .	aatttgcctt
	-	-	_	_	_	atactttcac
			_	-		cattccttat
	_	_	_			taagttctct
	_	_				gactttctca
		-				atattctagt
				_		tggagggatg
	-					ttaactggtg
10501	gacgttgttt	tattaacagc	attttgtgta	tagcactcac	tatgtgccag	ctgctattct

Fig. 63D

10561	aactoootoa	casatactcc	taaaaaatta	atggtaacca	tatgagggaa	ggagtttaa
				gccaaattgg		
				agctagtctg		
				ggagtagtct		
				gatggatcaa		
				tagtcacttt		-
				taaggttatg		
				cagcccattt		
				agtagtattc		-
				tgggagaaaa		
	•	_		gtcaagctaa		
				ttattttgga		
				tcaagtccag		
				tcagtacagc		
				ccaggcggtg		
		and the second s		tgcattttca		
				tctccaacaa		
				ctcctccttg		
	_			agtatttaac		
				tgactaagca		
		, -		tcctaaggta		
				gcttcctttt		
				ccttttcttc		
				cctgtcatac		
				atctgtgaag		
	=			gctgattata		
				tatctcatct		
				accctattta		
				cagactcaat		
	_		_	aagggaaagg		
				ctttgtagtt		
				aaaagatatg		
				attccatttc		
						cattcaggta
				_		tggaaatgcc
12661	ctttgaattt	ctttctctat	gtaaaccatt	tttctttctg	gtgcctcacc	tataaataac
12721	aggagttcca	ccttccttta	tagactcttg	ctgaaagcat	ggtttggaac	aagaccgtac
12781	aggtgcacac	aaattacagt	tgggaaagaa	gcctgcagtg	catcttgtct	ctgaaggtta
12841	tgaaatcctc	cttttagtaa	tggagctggc	gtgatcaagc	cagcaggatg	aaatttggca
12901	tttgtgagat	caccccctt	ctcacttgcc	cactgtacat	agcatcccag	ccttactctt
12961	caaatctcca	cattttttct	tatctagcta	caaaattcat	aggctgattt	ttttggggtg
13021	cgtgtgtggt	tttttttg	tttttttggt	aaataaagac	ctgcattttt	attttgatat
13081	aggtggttga	gttttgtctt	taatttcatg	acagagattt	aactagtctc	aacttttgaa
13141	aagacaacaa	tgatatttgg	ggatcacaca	cttaaagtta	gatttctaga	tgattaatac

13201	caaagtagat	gattttttag	cctcagccat	ttataggtat	gcccttctgt	gaattttta
13261	tgacagtgaa	aatcatggca	cagataaaaa	ttaaataaat	acttctgtta	ttttcctgaa
13321	gaaaaaaaa	aaaagcttaa	actatgagaa	tactgtcttt	gagcacttta	aaataaaatt
13381	gacttcagcc	agcaggattt	tgagcattac	atcacaaata	aaaaacaaga	ttaacatcaa
13441	aaggagtcag	ttttcattca	attgtgcagc	actgtgggct	gtgaaattta	atattattt
13501	gactcatatg	ctaattgtag	actgacagag	gaaaatggat	tgtgtttaaa	taaaaggata
13561	cacagcatca	cacgcagctg	tatcaaatac	aagttgaggt	ctttgggcca	ggaactgggg
13621	gccctctagc	tctgttattg	cagattcaag	tttgacaaat	aaaactttcc	tttagactgt
13681	agtttaatta	$\tt cttttttca$	aaggtatgcg	tgatgaagag	gcacaaatac	acctcacctt
13741	gaagagttgc	taaactggtt	tgtgtgccga	tcagttcacc	gtgtgtttga	atttctgtgc
13801	ttctcatctt	tccttttctt	gaaaagattt	tgcttgtcat	tggtgtgaat	tgtaccccc
13861	accccaccc	atctagtctt	tgctctcaga	tttataacac	tttaatggtt	ccaaattgta
13921	tagcctgctc	ttagacccct	tttctttcc	ttgaataaat	caggttcatg	ttgcagacga
13981	tatttgtttt	aggaaagtgt	gaaagaaggg	gcacctgtga	aaacacgcaa	ttgttccaac
14041	acacatatac	atccaaatta	aagcagaaaa	tgtcaaagcc	tccaatcact	accttatttc
14101	ttggaggttt	aaagccgctg	agaagatagt	ggtgccctcg	ctggaagttt	taaggtaatt
14161	actttttact	ctaagcagta	gtatctggta	acctaattcc	gtataaacct	gacaccctat
14221	cgctacaccc	${\tt cagtatttct}$	ctgatttcag	aataagtctg	cgtagaaact	tgttctgatg
14281	ttaaagtgca	aaagggggca	gtaaagtgct	atccacaaaa	aaggaaaaac	attttccaag
14341	tatttcttat	tactgcctgt	gtctttcgta	ggccctgcct	ttatttattc	attttataac
14401	aaaactctta	tgtttggggc	attcagagaa	taccttatta	${\tt agctgttgca}$	gcaatctagc
14461	attaaatgga	agacatgcaa	gactgaagat	cctgcctgtt	tatgaagtgt	gccatcaaat
14521	tcacatgctc	atgatgcaga	gtccttcttt	gggagtattc	gtattcccaa	gtgcacagag
14581	cacttcggaa	aggagccttg	gtctttggtg	ttaatgctct	cctagctccg	tatagatgtg
14641	gcaggcccaa	agtacatggt	ggggtgaagg	${\tt gtcaagggtt}$	tgggcttatc	cagagcagcg
14701	tgcatccttt	gteaggaggt	gactggaaac	accagccaat	tacagcagaa	ctgcagactg
14761	ctcatctgca	ttcggaattg	cagatgaacc	agtttgtact	cgacttctct	tcttcactgt
14821	aggctttgac	atttaattaa	aaattaaagc	cttttatgga	aaaagtacat	gttttccaaa
14881	atggggtaaa	ttcgaagtat	acttgataca	gaacactggc	ttgggaataa	acctgtgata
14941	ttacatgact	tttggtttgc	aactgctagg	ctgagcctct	ttgtaaagct	gggatttaga
	_	tgtttgtaca				
15061	tcacttattt	gagtaaacaa	gtttgttact	acagcttctg	tggactcaga	gatttatgta
15121	ttaaataggc	cacaacttca	actaggataa	ttttatttat	ctgcttgtta	gggaattgca
						agtcaattat
		_	_			aatcttatca
		_				ttctaagtcc
	_	-				tttgtttatg
15421	gttgtctccg	tgcagtcagc	aaaataaaca	gaacaacatg	ccatatatta	ttgatgtgta
15481	tattttcaac	tgaaattagc	catctgctta	caatgatcat	atacactaat	ggtataattt
		_				gacttatgaa
				·		ggcctcctcc
		_				ctcaccttgt
	_		_	- -	_	ataattacac
15781	ataaatatta	aatatttaaa	tagatcttta	cgtgtgtaat	attaggtaga	agtggctctg

Fig. 63F

15841	gatcgaatct	gatgcttttt	aaatagaagc	tttcccacaa	catttccaag	cactgtcatc
15901	gtgtctgtct	cgatttgggg	tttacctggc	ctagttatct	gtctgggtgt	agaaactggt
15961	agttcctgtt	tgtatctttt	ttgttctgat	${\tt ctctttattc}$	tgtgtcagct	aaatattctt
16021	gcagtcagtt	actaacatat	taactcatcc	ttgtttggaa	actttggcat	atccttccat
16081	ggtttccttc	cgtggacctg	tcgcgtctct	caggagagcc	accaggtata	ttgtcacaca
16141	tttcgcatgt	attttcagag	actacagcag	catcaagtgg	cccccagcg	atttgggttt
16201	tcttctcggt	taatctacac	tctttggcca	accgtgagaa	aacttgtaag	aaggcatcag
16261	atgtttgtgc	taaggtgcgt	gtagtatggt	cagaggaaga	aagaagcagg	gaaaatggag
16321	tggccgtggg	tgggagggga	agcagggagt	gcaatttcgg	gttcactaca	cagctctcca
16381	taaacttctc	cactgctggc	ttcccacgga	tcctcctatt	acactgggca	aagtgcagaa
16441	atagatcagg	cgaccactgc	ctccgtccat	ttcccaggca	ccctgtgaga	cccgataatg
16501	caatacaggt	cagcagaaaa	gtccagactt	gacatcccaa	cgtgccatgg	tctggtctgt
16561	gaatgaaaat	cacatgaggt	gacctctgaa	ctctaagtgg	ctggtttatg	ttttcagtgt
16621	attaggcccg	tgttttaaac	aagcatgtgc	tcgtagtgta	ggttaaaact	ttctgttgtc
16681	ttcattaatt	atgctgtgtt	ctagtctatt	aatattaaag	aatattgtgt	tgcataatga
	ctaattttt					
16801	gtgcgatctc	ggctcactgc	aacctccgcc	tctcggattc	aagcaattct	ctgtctcagc
16861	ctccgagtaa	ctaggactac	aggcgcccgc	caccatgccc	agctaagtgt	tgtattttta
16921	atagagacgg	ggttttacca	tcttggccag	gctggtcttg	aactcctgac	ctcgtgatcc
16981	acccgcctca	gcctcccaaa	gtgctgggat	tataggcgtg	agccaccacg	cctggcaaca
17041	taaggactat	tttttaaagt	ttttacaatt	atgactgtga	agttgaaatg	tctaaattat
17101	tagagatcca	gtttagatta	ctaaatattt	atgtctaatt	gagatgatta	gacttagcca
17161	aagtatccat	gtagaagtat	tagagtctag	attggtgaaa	aacttgaaaa	agcttggctt
17221	aagttcaata	ggtaatccaa	gagtaaaaac	agattccaat	atcagatctt	ttcaccatag
17281	tcatgttaag	tttggaagcc	ctacttgagt	gtttccagtt	ttttccacat	tatattgtgt
17341	ctatatttga	ttcaaaggca	gggcatctat	tgtcttgctt	aggactgatt	cactgggaaa
17401	agccactgga	gttgcctatt	tccactcagt	atgcctcact	cttagagtag	cttcccatgg
17461	ttcccaggca	ggccctccag	tgagaatgca	ccaagccaca	cgccatggcc	tgggaagcag
17521	tcctgaacct	ggagattgtc	ttgatggaaa	ggaagaggca	gccttcccct	cccaggaaga
17581	tagtagagag	cctgctctga	cttcgctcag	ggatggaact	ggtctggctc	agttctctct
17641	cctgtgtggg	acatgaatca	ctcttggtgg	tctttgcttt	ttatttgggc	ttaaaatcag
17701	cagactttat	taaatgacac	ctctctctaa	ccactctctg	tctgggcgaa	gtttaacaag
17761	aacagcctcc	ccccatgtgg	tatgggttgt	aactgtggcg	gtttccctct	gctgtttttg
17821	gttacaagat	gaacattatc	tgaacacaca	gaaagaaatc	tgtatttggc	atccataatg
17881	gaaagtcagt	ttagtaattt	aaacttagcc	agttatcatc	atcataattc	tttttaacac
17941	tttcaaagtc	agcataggag	aagtgtattg	ttgaatatta	caaaatattt	agggcataga
18001	tagatgtgct	gtgtagtttg	atttgttaat	gtgtctaagc	aatcaaagca	acagaattca
18061	aatataaacc	ccatcacttc	caaaatagga	actctgttta	ctgacttgat	tataacatat
18121	ggaactcaat	tgttttccat	taaaaaatga	tactattagg	aaactcaccc	cattttcttt
18181	tcatatatat	tctgctattt	gcataattgt	ctggagtcca	tatgtaatat	taaatgtaaa
18241	acacaaatgc	catgtagctg	gtctgtttct	tcctcacctt	ttggttcctg	gcctcctggg
18301	gaagggttgc	acatctgagc	cgtggtctca	gatgactgcc	tcggaagaag	cctcttccct
18361	tcaggcacca	ctgatgtgtg	cttggtgtgg	agctagactt	tccctggctc	tccatgtgac
18421	gctcacatgt	gcgtgtcttg	atttccctta	acttcatggc	ttatctatga	acagcttgat

Fig. 63G

18481	ttgggggaaa	aaaatgtgtt	tcccaatgct	ggagttataa	ttgaatgtgc	tgcagtcaaa
18541	actgaaatgt	gtgcagagaa	agggggcttt	tcctgtcatg	ctcattgggc	accagtgtgt
18601	cttcacctgt	tttgtgtgtt	aggtccatgc	gtcatgctga	aatgaagaac	atgggatgta
18661	tggggctttg	gacagtgctg	agccaaaagc	aagtgctcaa	aagcagctgt	gtttgtatta
18721	ttagtggttc	tggaggtggc	tgattgcctt	gcattttaag.	tagagaggga	ttgtagaaga
18781	ctgccaatac	ttagaacttt	ttccagagag	gaagggtcag	aaactgcatc	tgcagggctc
18841	cttgctctcc	agaaatgcca	gtgtgcctgg	gagggcatct	tcagaaatcc	agtctctcct
18901	cctcagtgtg	tcctgtaccg	actcagtggt	tctgtcttca	gaattcctat	catgtctgtg
18961	atctgcaaat	agtggtattt	aatttgactt	caatttgtat	aaatgttagc	ttctatttgt
19021	tcattcctat	tttttgttca	attaatacat	tatttattga	gcatctactc	tgtgtcagcc
19081	ccttgggtgt	ttaatactga	attagtcaca	tgtgggactt	gcctgccctc	agggagctag
19141	actataaatt	cctaatgatc	agtggtctcc	acttttctgt	cactcataat	gtctggcaca
19201	acataggtta	cttgagttgt	tacactcaca	gtactgttgt	ttgctgccat	ggtgctttag
19261	gaagtgtgag	agttcccggg	aggcagagtc	aataatgcag	actacacgta	gtgaaaacat
19321	ggccaggaga	gctgtagttc	aggctctcag	ctcaactgca	ctctgtccac	tgagaagcca
19381	taatttcttc	acttaaagtg	actgtgcgct	atggctgttt	atatatacgc	ttaaaaagta
19441	aaagctgcta	aaccactcaa	ggattggggc	cttttgtatt	gatttaatta	aaggaacaat
19501	cattgttta	atgagctcta	gaaacaatta	cttttgaaga	gccgaggatc	aaattcttgc
19561	${\tt ctcacgtttt}$	gccacagtgt	gttctgaaag	gtgaattaat	gcttttggaa	tcatcaggaa
19621	tagtgagctt	tgtcacgatt	tactttttac	aagcgtatct	aatatgcata	ttgaaatgtg
19681	agcctcccca	ccacacttcc	gctttgataa	gcatcccccg	gattgccgtc	actgaccatt
19741	atagatttt	aacaaagttg	gacagtacac	actgaatgaa	aactttacat	caaggaaggc
19801	ctggcgtgtt	tgtaaaatga	${\tt attaaaaggc}$	tcattaaatg	atttatatga	cttacgcctt
19861	ctgaaaatat	ggcctcaaac	acagagatcc	ccaaagccac	accgacccct	gcgtcccatg
19921	ttctcgacct	caccgcatca	gcaccagcaa	gacctgtcgc	tgagacggtg	agtgatgaga
19981	gtcaagagga	gtgacttgca	tggcctggga	ggaaacctcc	tgtgaatctt	tagttaagca
20041	ggaaaaaaaa	aatcctcatg	aaggaaacag	gatcttggga	gcattttgaa	tgaagaagga
				gtaatgtggg		
20161	gatgtacagc	ttgggagggg	gtgtaatgca	ttttcttaaa	agagctgaat	gaatggttga
				tcctaatctc		
				tagtagctaa		
				agaaaaggtt		
				ccttaaagat		
		_				tggaatttag
						catcagaatt
						ccaaacattc
						gatgaaattg
		_				ggctcccact
						tggttgtttt
		_				tttttttgaa
					- -	gaccatcctt
						acatacattt
						tctgttatgt
21061	tttgtgctgc	ttcataacca	cactcatgca	cttttcagaa	aattaatacc	attcattagc

Fig. 63H

21121	ataaatcata	aactattccc	ttggtatggg	tttgaaattg	ggggtgccct	atcatccttg
21181	ctttatctct	tagtgaatta	tgaccctgta	gtcatcatgg	ctggtgggcg	tctctggtta
21241	aagaaagggt	tggattggaa	ggattcagag	gcgattcttt	gttcttaggc	tttaatattt
21301	taatgagcct	gcaggcttgg	ctgcttacga	acgagctgag	atttctaagt	gtgttgttag
21361	tgttagcact	tgtagaagga	tgttcattag	gaagttcttg	tttcagtttt	tcagagaaac
21421	tccccattaa	gaaagatcat	tcaggaacat	ggctaccaag	aaagaggaaa	gggaggaggg
21481	aggctttcag	ctataagcat	taaggggata	ttgtatcagt	agtcttagtt	ctaaagattt
21541	gcttctgaga	attaattgga	gcaaatacat	ctcaagggaa	gaaaaaaaaa	gatttatagg
21601	gcagggacag	tagttgtcct	tgcaagtaga	ggacacttca	ttttgcagct	gaatcaatac
21661	cacaactaat	tatttctggt	tatcttttac	gcatttgtaa	gacattgctt	ttgttcagtg
21721	taataaaaaa	cccattgttt	gatcagtgac	tgactaatta	tgataagtaa	tttgaaacat
21781	tcttgatgaa	acttgtctgt	taattaacat	caacagcaca	gggaaactaa	caggacaaca
21841	aagtattagt	ggatccactg	ttccctccaa	ttgacgagct	ttctctgtgg	catgcccaat
21901	aaactaaagc	tgccaatggt	taaaaaataa	caaacatgtg	ggagatctga	ctcaccacgg
21961	aggaagagtt	atggtaaagt	tacacaaagg	agtactgaaa	tattacaagc	gagggggtgg
22021	taaagaaatg	tcagcaggta	gcctgatcct	acagcttaga	gtaaggaaag	tggtttcttt
22081	ctgtctttcc	tttttcttt	aaagcttaat	tccaaaatac	attcatccca	tattgatctg
22141	aagtaagaga	cttttgataa	attaaagtgt	gaatctgaaa	atgtgtagtt	tgggattatg
22201	ggcattgcct	ggctatcttg	taactgtcat	taatactgtt	aatttttatc	aactcaatgg
22261	ctttttttc	ttatgctttt	agatttctac	ctggacaagg	actggtacta	tacccacaga
22321	taggagacaa	attggatatt	atttgcccca	aagtggactc	taaaactgtt	ggccagtatg
22381	aatattataa	agtttatatg	gttgataaag	accaagcaga	cagatgcact	attaagaagg
22441	2222120000	tataatassa	tataaaaaa	Cacaccaaca	tatcaaattc	accatcaact
22111	aaaatacccc	CCCCCCaac	tgtgccaaac	cagaccaaga	caccaaaccc	accaccaage
22501	ttcaagaatt	cagccctaac	ctctggggtc	tagaatttca	gaagaacaaa	gattattaca
22501 22561	ttcaagaatt ttatatgtaa	cagccctaac gtataatttt	ctctggggtc attcatttat	tagaatttca tttatagaaa	gaagaacaaa ttaagataag	gattattaca ctatataggt
22501 22561 22621	ttcaagaatt ttatatgtaa ttgtatcaat	cagccctaac gtataatttt tttttgtttc	ctctggggtc attcatttat cttaaaatta	tagaatttca tttatagaaa ttgtgacaaa	gaagaacaaa ttaagataag taatttgatg	gattattaca ctatataggt aaaatctatg
22501 22561 22621 22681	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt	cagccctaac gtataatttt tttttgtttc gtccccccc	ctctggggtc attcatttat cttaaaatta ccttttttt	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa	gaagaacaaa ttaagataag taatttgatg aacttcattg	gattattaca ctatataggt aaaatctatg aatttgggac
22501 22561 22621 22681 22741	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac	cagccctaac gtataatttt ttttgtttc gtccccccc cagtattcat	ctctggggtc attcatttat cttaaaatta ccttttttt taagtataca	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt
22501 22561 22621 22681 22741 22801	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta	cagccctaac gtataatttt tttttgtttc gtccccccc cagtattcat ttgaaataaa	ctctggggtc attcatttat cttaaaatta ccttttttt taagtataca tgtattatat	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac
22501 22561 22621 22681 22741 22801 22861	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag	cagccctaac gtataatttt tttttgtttc gtccccccc cagtattcat ttgaaataaa gaccattggt	ctctggggtc attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt
22501 22561 22621 22681 22741 22801 22861 22921	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca	cagccctaac gtataatttt tttttgtttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt	ctctggggtc attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg
22501 22561 22621 22681 22741 22801 22861 22921 22981	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaagggct	cagccctaac gtataatttt tttttgtttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag	attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgttttc	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt
22501 22561 22621 22681 22741 22801 22861 22921 22981 23041	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg	ctctggggtc attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgttttc ggggatgaca	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta
22501 22561 22621 22681 22741 22801 22861 22921 22981 23041 23101	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta aaaccagatt	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagaaaa	ctctggggtc attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat tggtttgctt	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc
22501 22561 22621 22681 22741 22801 22861 22921 22981 23041 23101 23161	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaagggct taacagtcta aaaccagatt atacatatat	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagatag cagaagacaa ataatttgac	attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgtttc	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat ttggtttgctt aagaagagat	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca
22501 22561 22621 22681 22741 22861 22921 22981 23041 23101 23161 23221	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta aaaccagatt atacatatat tatctgaggc	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagatag cagaagaaaa ataatttgac tgacttgtga	ctctggggtc attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgtttc ggatgtgaag	tagaattca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat tggtttgctt aagaagagat tcagctgatg	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc
22501 22561 22621 22681 22741 22861 22921 22981 23041 23101 23161 23221 23281	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagaaaa ataatttgac tgacttgtga cagatctctc	attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgttc ggatgtgaag gtcagcgtca	tagaattca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat tggtttgctt aagaagagat tcagctgatg ttcccagggc	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct
22501 22561 22621 22681 22741 22801 22861 22921 23041 23101 23161 23221 23281 23341	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag caccatcca cttaagggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg aggtgactca	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagatag cagaagataa ataatttgac tgacttgtga cagatctctc gacagctgtt	attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgtttc ggatgtgaag gtcagcgtca cgcgtcattc	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat ttggtttgctt aagaagagat tcagctgatg ttcccagggc aagcaatgaa	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt gtcttttttc	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct ttaatttctt
22501 22561 22621 22681 22741 22861 22921 22981 23041 23101 23161 23221 23281 23341 23401	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg aggtgactca tggtttaaaa	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagaaaa ataatttgac tgacttgtga cagatctctc gacagctgtt ttatactcat	attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgtttc ggatgtgaag gtcagcgtca cgcgtcattc aattaattgg	tagaattca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat ttggtttgctt aagaagagat tcagctgatg ttcccagggc aagcaatgaa gttgaattt	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt gtcttttttc ccagtggctt	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac ctttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct ttaattctt ggttaccata
22501 22561 22621 22681 22741 22861 22921 22981 23041 23101 23161 23221 23281 23341 23401 23461	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg aggtgactca tggtttaaaa gacttcagtt	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagaaaa ataatttgac tgacttgtga cagatctctc gacagctgtt ttatactcat tattagggaa	atteatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgttc ggatgtgaag gtcagcgtca cgcgtcattc aattaattgg ctgctatctg	tagaatttca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat ttcgaaagat tcagctgatg ttcccagggc aagcaatgaa gttgaattt ccactggttt	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt gtctttttc ccagtggctt attatttgcc	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct ttaatttctt ggttaccata ccaaggtgga
22501 22561 22621 22681 22741 22801 22861 22921 23981 23101 23161 23221 23281 23241 23401 23461 23521	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaagggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg aggtgactca tggtttaaaa gacttcagtt ctctaaaact	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagataaa ataatttgac tgacttgtga cagatctctc gacagctgtt ttatactcat tattagggaa ttaggtagga	atteatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgttc ggatgtgaag gtcagcgtca cgcgtcattc aattaattgg ctgctatctg gatcttggt	tagaattca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat ttcgaaagat tcagctgatg ttcccagggc aagcaatgaa gttgaattt ccactggttt gatcaaactg	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt gtcttttttc ccagtggct attattgcc aaactcttgc	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct ttaatttctt ggttaccata ccaaggtgga atctcaacct
22501 22561 22621 22681 22741 22861 22921 22981 23041 23101 23161 23221 23281 23341 23401 23461 23521 23581	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg aggtgactca tggtttaaaa gacttcagtt ctctaaaact atgagccgca	gtataatttt tttttgtttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagaaaa ataatttgac tgacttgtga cagatctctc gacagctgtt ttatactcat tattagggaa ttaggtagga ctttattgtt	attcatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgtttc ggatgtgaag gtcagcgtca cgcgtcattc aattaattgg ctgctatctg gactcttggt attttattt	tagaattca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat ttggtttgctt aagaagagat tcagctgatg ttcccagggc aagcaatgaa gttgaattt ccactggttt gatcaaactg tttagagaca	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt gtctttttc ccagtggct attattgcc aaactcttgc gggtctagct	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct ttaatttctt ggttaccata ccaaggtgga atctcaacct ttgttgccga
22501 22561 22621 22681 22741 22861 22921 22981 23041 23161 23221 23281 23401 23461 23521 23581 23641	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaaggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg aggtgactca tggtttaaaa gacttcagtt ctctaaaact atgagccgca ggctggcgtg	gtataatttt tttttgtttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagaaaa ataatttgac tgacttgtga cagatctctc gacagctgtt ttatactcat tattagggaa ttaggtagga ctttattgtt cagtggcatg	atteattat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgtttc ggatgtgaag gtcagcgtca cgcgtcattc aattaattgg ctgctatctg gactcttggt attttattt atcacagctc	tagaattca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat tcagctgatg ttcccagggc aagcaatgaa gttgaattt ccactggtt gatcaaactg tttagagaca actgtagcct	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt gtctttttc ccagtggct attattgcc aactcttgc gggtctagct tgaactccag	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttctctt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct ttaatttctt ggttaccata ccaaggtgga atctcaacct ttgttgccga ggctcaagtg
22501 22561 22621 22681 22741 22801 22861 22921 23981 23101 23161 23221 23281 23241 23401 23461 23521 23581 23581 23701	ttcaagaatt ttatatgtaa ttgtatcaat tggaaaaatt cctgtgctac cttaatagta cattttaag cacccatcca cttaagggct taacagtcta aaaccagatt atacatatat tatctgaggc ctactatgtg aggtgactca tggtttaaaa gacttcagtt ctctaaaact atgagccgca ggctggcgtg atcctcccac	cagccctaac gtataatttt tttttgttc gtccccccc cagtattcat ttgaaataaa gaccattggt tccattcatt agggattcag gagaagatgg cagaagaaaa ataatttgac tgacttgtga cagatctctc gacagctgtt ttatactcat tattagggaa ttaggtagga ctttattgt cagtggcatg ctcagcctcc	atteatttat cttaaaatta ccttttttt taagtataca tgtattatat ggattttgat cactcattca cagtgaaagg agctcataaa agacgaaact acgctgttc ggatgtgaag gtcagcgtca cgcgtcattc aattaattgg ctgctatctg gatcttggt atttattt atcacagctc aagtagctcg	tagaattca tttatagaaa ttgtgacaaa tttcaaagaa tacccaaaga gaatatattc aggtaaatct tttcgtattt tggtaaaata ttcgaaagat ttggtttgctt aagaagagat tcagctgatg ttcccagggc aagcaatgaa gttgaattt ccactggttt gatcaaactg tttagagaca	gaagaacaaa ttaagataag taatttgatg aacttcattg gaaaaaaaaa agcatctcta tgtgcattgc attctgtgcc gcatgtttc ggggatgaca agtacattac ggtacgtatc agcacatttg cccaggtggt gtctttttc ccagtggct attattgcc aaactcttgc gggtctagct tgaactccag atgtgccact	gattattaca ctatataggt aaaatctatg aatttgggac cactagaatt ctgacaaaac cttttcttt agagactgtg ctcaagaagt ggtcacatta tctttttgc ccttgggtca gagcccacgc gttaaagtct ttaatttctt ggttaccata ccaaggtgga atctcaacct ttgttgccga ggctcaagtg gcacccagct

Fig. 631

	23821	gagtagctta	ccaagaatta	gtaacaacaa	caacaagaaa	aaaaagagag	aatgtggtag
	23881	agtatatact	tagtaaggag	taattattat	aaaataaaag	cattctgaaa	tgaaacaggt
	23941	agatggggtg	gccaagtatg	cagcatagta	gggaaatctt	tgaaaatgta	aaatagttac
	24001	caggtaaaat	aaatggaaac	tttaagcttt	tggaagccta	acaatgtatt	tatattagta
	24061	aagactttat	ttttttattt	tattttattt	tatttttgag	acggagtctc	tctctttcgt
	24121	caggctggag	tgcagtggcg	tgatctcggc	tcactgcaac	ctccacctcc	tgggttcaag
	24181	tgattctcct	gcctcagcct	cccaagtagc	tgggactaca	ggtgtgcgct	aatttttgta
	24241	tttttagtca	agacggggtt	tcaccatgtt	ggccaggatc	atctggatct	cttgaccttg
	24301	tgatccttcc	gccttggcct	cccaaagtac	tgggattcca	ggcgtgagcc	accgcgcctg
	24361	gccttagtaa	agacttttaa	agtaagactt	tttcagtgaa	agctactgtt	aggcatgaca
	24421	tttacaggca	actgaaactg	atcagatgca	tttattaaga	aggttaatgc	ccctaggtgg
	24481	ggtgggagaa	agaaggtcgt	ggtacgggaa	gaggggacac	actagagatg	agatgcccta
	24541	gggcagtgaa	cgcatgtccc	taatgcgtgg	atgcagccca	cgtccaccga	taatgccgac
	24601	acacccagag	tctctcttct	tactttagct	tatgacttca	cgaagaatgc	tttgcaaatt
	24661	ctaagttcgc	actgggcgca	agtggaattt	tagtaaacat	taagagttta	acctttagtg
	24721	tgaaataata	tgcaagatat	gcaaataatt	gtttaccaac	atctctttgc	ttaatgtggt
	24781	gagcatttaa	taattgcttt	ttattaatac	atgagagatt	tgtatttaga	agcagtttaa
	24841	tttataatta	taatattaat	ctacacaata	acgacatcta	ttattttctt	tttttggaaa
	24901	ctcttcatac	cacactaaca	ggttcattgc	agttactgaa	ctactctggc	catcagagct
	24961	ctccttagag	ttacgattta	ccatgcaaaa	gcatatggta	gcctgggata	aatgaatctt
	25021	tcttaataca	gaattgaggg	tctcaagttt	gaaactacga	gaggctattt	gaatgttgct
	25081	ttgggggact	gtcataaggg	ctgggtggag	gactcagggc	taagaagttt	gccaggaagt
	25141	ccagttgaga	ctttcagcag	agttgaaaga	cttccacgat	ggcgtaggca	gaggaaggcg
	25201	tttcagatac	ttgggaaaat	atagaagcca	atttctcacc	caccctacag	caaagctcat
	25261	tgatctacaa	gtttccctag	aaaggaaatg	ggaaatgcag	agaacaaatg	ttaaaatagt
	25321	tttagaaatt	aatattgact	ttgtattgct	tctgcataag	ttccaagaca	ccaaaacaat
	25381	${\tt gaatggattt}$	taaaaagtca	${\tt ctactttgca}$	tatcagacaa	atgcacacac	acacacac
	25441	acacacac	acacacacac	acacacagtc	aagctctgta	ctggcttttt	tgagaaggaa
	25501	agtgtttgaa	gttagtaatt	tttatatcag	tacatttata	aatagtgcta	ggtagcatga
	25561	cggaaagtat	taaaatttac	atgtatattt	ttaacacttc	aaatcgttgg	ttcactttga
	25621	gacagtaaat	aatattagca	tttgagttca	gctttaataa	attctacatg	ggtttaaccc
	25681	caaatctgag	tgtctagttg	gtaagcgcct	tcagaacgag	cagtgttata	ataaatatgt
							tggaggagtg
							ggagtaccct
	25861	acatgaacag	catttcagaa	gaattaaacc	aggaacctag	agtcctactt	gctagtcctg
٠	25921	cttcctaagc	ttaatgagaa	agtcaatttt	atttctttga	actttaattt	atttccctaa
	25981	aaaacgcttt	tagtattgtc	attgttctgg	ctaatgatgg	cggtctcctc	cagtttcaag
	26041	ccaccttagg	gctgggcata	caaatgcaat	ataggatcac	ttgttagtgt	ggtttcaaat
							gttacctgct
			_			-	taatttgaac
		-		_	_		ggcaaactga
		-					gtggcaaaat
	26341	tatatatgaa	tggtcaccga	cttaaaatag	ttccacttaa	atttttcaac	tttctgatgg

Fig. 63J

29041	tacatttaag	gattaaagtc		cttaacttga	gattgcactg	agaaactcct
						ataaattctt
						attaaaggtt
		_				ataattcgaa
	•					tgtgtcaggg
	•		_	-		ctttattgat
						tgttaccagc
	_					caaaagagac
						tttatgtatc
	_					cttctttcag
						agagagttta
						tggagaggat
28321	ttattacttc	cacctttgac	accaaataca	tataactaag	agttaacttt	ggagcagggg
		tgcttcacag				
		taacttaacc				
		catcttaggt				
		gggatcttgg				
		ctacagctgt				
		gtttgatacc				
		tggtgataca		•		
		ttatttatgt				
	_	ttttagaata				
		actgttcttt				
		tttgatttac				
		agcagaagaa				
		tcacaaaata				
		tggaaagctt				
		ggttcagttg				
		gtcttcctta				
		accetgtgtt				
		catagtccgt				-
		agcttcatat				
		agtagctaca				
		catgtgagtc				
		accttcgcat				=
		ttggtgtgtc				
	_	tctgtgcctg				
		tactgggaaa				
		tctgaaattg				_
		aacctctagt				_
		ccttttcttt				
		atctcctaat	_	_		
		attgactttt			_	
		aagacatagc				
		gtattaaatg				• -
0.6401						

Fig. 63K

29101	ggctctcggg	tatagcggag	tcacgacctg	gggatgtctg	tcccatatgg	ctctgtgtgt
29161	aagaagaaaa	agctgctgtg	gacggagact	ctgttcacat	taaatgacat	cacctaagcc
29221	atcatgacag	caagaattat	ttaggaattg	ctcagaataa	aactgccttc	attatttcat
29281	aaaatgtatc	ttggtatctt	tagcacctta	tttatggctt	tttaaaggtt	cactgggatt
29341	tataaataat	tggacaatgc	tagagaccta	gtacaagaat	gaaagaggac	aggcttcttt
29401	cttaataacc	tttaaacatt	catcaggaag	ataaaacttt	aaagcaaaat	aaaacacatg
29461	aaaatagcca	agatgcacag	accagacaag	caaatactac	tttaacttat	ttgtatagtt
29521	cttaagagtc	acatttgttc	ctgaagtttc	aaaatctcgg	gctgagtgtt	tgatcactta
			catactcttg			
29641	tagagcaatt	tttatcactg	tgagaaagct	gaaacttagt	gtgagtagct	tagtacaatt
29701	cagttggcca	tcaaatgtca	gaaacaaaac	tcagtccagg	gccgctggac	ccttaggccg
29761	gcgttgttag	tttacaacag	tgcctcctgg	gtccaaacat	ctaagtgcac	atgtagcaat
29821	agtaaagata	gtatgtatgc	atacataaca	catatgtaga	gacagcagag	tatacgtaca
29881	cacatgttgc	atacatagca	acagcagaga	agctcatgaa	ctataaagga	tggactgtat
29941	gcttgtatca	gacattttgg	tactgacgct	ttgtcatata	ttgtgtaaca	tataaccagc
30001	ttgcaatcat	ctgccccaa	agttgaacta	agaaaatcct	acagggtact	aggaaaggaa
30061	ggccattggg	aaaaggtggt	tatagtggca	atttgttagc	tcttatgaat	tttcttttc
30121	tttttagaca	tactcttaat	tccattttt	${\tt caataaatct}$	atactatttt	gtgtttttat
30181	gttagcaagt	actttaagcc	cctcaataga	${\tt aagttgctac}$	atcatatagt	gattaaaaat
30241	aaaaatctct	caaacataca	agtagaggtg	gtatgagact	tcaaattccc	ttagccaagt
30301	acaagtgcag	cagttttgtt	ggctggctgg	ctgcatagaa	ggactgatgg	attggcagac
30361	cctcaagctg	gagtgtaatt	${\tt gatctcatta}$	cagaggagcc	aggctgggtg	acagttgtgc
30421	tttgcaagtg	${\tt gtttttgca}$	ttggtgaagt	${\tt agcccatttt}$	gttgttcctg	atgttaaaca
30481	ggggatgaag	gtattcttt	attggcacaa	acgcgggaaa	ttgctctgga	ttcttagagg
30541	atagaacatg	tcccctggac	ggaataaggt	tcatgtgtag	ggcaaattta	gataggggca
30601	ccttattggg	gttactactg	gtctctagat	ggtcaaagca	aacaacatgt	ccatctaagc
30661	tgtgatgtcc	atctaagctg	tgtgtgtcca	tgagagtgac	gcattttctc	ctctgcagtg
30721	ttgttatatt	ctaaactgtc	agcagacatt	aattcggtcg	ctggtgaagt	cccaccgcct
30781	agagatgaac	tctgcctccg	atggatgttt	tccacttcag	tgccactcgt	ctcgcaatta
		~	catgcaatta			
			tgaacttttt			
			taatgattga			
						aatattttca
						gatgcttaag
31141	tacagctaat	atagacaata	gggaattatg	ttttatcttt	agaactctta	cattattctt
31201	ttctttaaaa	atgtgagctg	agtcattgct	attgcagtgg	tcatctggcc	gcctattttt
			tagtagattt			
						gagagagtcc
31381	agtggcagtg	ggctggacaa	gatatccaca	tggccctgtg	gcagtgagct	gggcaggaaa
31441	actgcaactg	cttgcaaaca	gcatgtagtt	catctatagc	attttcactt	aacaccaccc
				_		tcgagtccct
		-				gacaaggaat
	_					aggtgtgtct
						atgttcccac
31741	tatattaagt	ttttctgaat	tactgtggca	ataagaaacg	gtcccttaaa	ttatactaga

Fig. 63L

31801	agaaaagctt	tttttttgtt	ttgtttttta	ttttgaaatt	atgttaaatt	ttttttctta
31861	actgagagat	tccacctgca	taaatcgtca	taacttttaa	cagtaagatc	ttagacttag
31921	aaagtgatgt	ttttcctcaa	cagaatttat	taaaaatcaa	gacaccaagc	tgttccaaac
31981	aatagtttga	ggggaaataa	aataaacaac	tccataaata	atcttatgtt	gttaaacatg
32041	tctctagcaa	aacaaacaaa	caaaaaagtc	gggggttggg	ggaggtgcag	tttattgcca
32101	gtactgtctg	gtctttctca	gaaaagcgtc	agtgtacatc	actgagcctg	gacggtatgt
32161	tttcttgatc	tataccccct	atgtgtacat	gtgcttgcac	gcacacacat	gtagacacgc
32221	acacatgtgc	acctgccatc	actttctgct	cttccgtctt	ttcactcttg	agtgtctgta
32281	gccagtagct	ttccaggtct	gtatagtcaa	agatacctat	ggccctgaat	gtcttcactg
32341	attgctattt	gacattcata	cggtttttaa	tggttaaaag	gctttatgcg	aaagctgtga
32401	tagaatttct	cctgttctag	atgtggtgtt	tattgcttta	ttttgtgact	tttctctcag
32461	tagattgacc	ttctccctca	gtgtccaagc	ctcgcatagc	atgatggcac	ctgtaaactc
32521	agttctgtat	cctggtatcc	tttctcttcc	caagtagaag	caattaagta	atatatgtca
32581	tcaaaacctt	ttaagtgcac	atacaaacaa	aatcaactta	ccaaactgct	tcaaagttgt
32641	tccatgttta	acactcttct	ttctgagctc	tgggtagaat	gtcctattat	tgttcatcat
32701	gaatatttga	aattaaagaa	ataaaactgt	accattttct	ttaagagcat	ccatttgtac
32761	ttgataacat	cttcagtcat	atttcaatgc	tggcaaagag	gaggggagtt	ctaaactgtg
32821	actcaatttt	agaatctact	ttttccaaat	tattctgttt	agtgcagaaa	actaattaat
32881	agtgttgcat	agaaaagtca	ctgaagctaa	gccagttatt	acttcttaat	gcatgattta
32941	ctgctttaag	ttttcaaaac	acaaccatag	caatgtggta	ttaattcaag	tgattcttcc
33001	tatcatattg	aacgatattt	tcacgggtga	aaaactcaca	catcctacat	cactgatagt
33061	ttatacagtg	ttttagctgt	ggctccctgc	atgcaaaata	agagttaatc	aaatgtcagt
33121	gagaaccatc	tcatcaagta	gagggcttgt	tttgtttaaa	ttaactttgc	taagtataaa
33181	tttcttcttg	aaaataaatt	ctgggccggg	cgcggtggct	cacgcctgta	atcctagcac
33241	tttgggaggc	cgaggcgggc	ggatcacgag	gtcaggagat	cgagaccaaa	ctggctaaca
33301	ctgtgaaacc	ccgtctctac	taaaaataca	aaaaatgagc	cgggtgtggt	ggcgggctcc
33361	tgtagtccca	gctactcggg	aggctgaggc	aggagaatgg	${\tt cgtgaacctg}$	ggaggcagag
33421	cttgtggtga	gccaagatca	caccactgca	ctccagcctg	ggtgacagag	cgagactccg
33481	tctcaaaaaa	aaaaaaagg	aaaataaatt	cttctgtatt	tttctttctt	caagtgaggc
33541	catttagggg	aaagtatacc	ataaaacttg	ctctaagata	aggcaaattt	ggtattatag
33601	gatgaagtgc	tatgtgattt	${\tt gaagtaatgc}$	tgaattttt	aaatatatta	aactaaacaa
33661	gaataatgag	gccctcggaa	agtcatgatt	atatttctca	tttttctcat	tttaaagcca
33721	cagtgaaaaa	cacataaaag	gaagaagtta	gaaaaaaaaa	tgaatgaaat	tcttttttc
33781	cttttggcaa	attaaataga	tgtttctgtt	tcagaagatt	ttattaatta	actttaaaga
33841	aacagtcatt	tatttttggc	attcagtgaa	cactatcatt	tccatgttta	gaacttttct
33901	tctaagttag	catcttaaaa	gataactgtg	aaactcaagg	cattcaacta	cattaatttg
33961	agtttcagaa	attgaattct	tgtttctaga	gtacatagtt	tgaattgatg	tcagggtgtt
34021	aaatagataa	atcttagctt	cctaggttgt	atattcacac	taattattt	tttatcagcc
34081	ttcttatttt	tcaacttacc	ttattcttt	tgttttttg	acactcagat	ttgatagccc
34141	tgtggtagaa	gaaaacagta	atacagtttg	gtttgttgtt	gtgtttgtgt	ttattttaaa
34201	gtcacggctt	tgctttccat	gttgttactg	gattatgctt	tttttaattc	ttcagtttgc
	_			_		ctgatgtgta
						tgctggaaaa
	_	=			_	tttgtggtta
34441	catgagagta	acttgtgtcc	agtgcagctg	tatgtaaggg	caacgttttt	attctgacga

34501	ctctgtggtt	ttcatgaccc	tggatgctta	tcatgtctct	ctgttggact	tcttcaacgg
34561	agttgataca	aatacttgct	tccaagtgtc	catctgccct	ctcctccatc	ctggccccat
34621	acaaatacgc	tacattttta	aataatttga	aataccctca	atagtattta	tatttcctgg
34681	tgcttcattc	tttccataag	aactgtgata	ccattattct	gtaggatttt	tttgtgcttc
34741	cccgtttcac	atctctgtgc	cagtgagacc	catatatcgg	tgcaaatcca	gaagtttgat
34801	tgtccatctg	attagcacac	tgttagcaat	gtggtggact	aaacacagcc	aagatgtggg
34861	gctggagctt	agcctcctgg	gagcagagcg	gtgaacatca	gatgaagaca	tgtgaaaatg
34921	gagtactact	tcctcttcct	ggggatgggc	taaaaagcac	agccagaaat	attcttgccc
34981	ttccagtctg	ctttacagtt	actcactggt	tctcttttt	ttcctactca	gataaccagt
35041	atactcttcc	cagtgactaa	gaactgcaga	taagtatagg	tgcaaataga	tggcaaaccg
35101	cagatggcag	ctgtgtggtt	tcagatgtgc	tgcagaactt	ttagacgatg	tgaacgcaag
35161	gaacttttt	gctgagcagt	aatctctacc	cactggaaat	taggccctgg	ggggaacaat
35221	gtagtgactt	ctatatactt	actacatgca	gttagacccc	tgaagcaaaa	gcttttaaaa
35281	acaggctgta	aaatgcccat	gtatctttat	taagcctatt	ttccaactgg	atagagaaat
35341	tttctggtaa	tttttaaatt	tgtaaagtct	attttttcc	tgagccaagg	gaaaaaaaat
35401	atctgggccc	taaaagctta	gttataacaa	tgttatttt	tctatctctg	aatgattaaa
35461	tgtgatttca	tttatgtagc	aatactatga	ttgtggctgc	attagatcac	gctgatagaa
35521	agatacaaag	aaaaactaag	tataatgaac	taacaattta	ttttcactct	ttctctaagt
35581	taaaaattcc	cagtacattc	aaatgaacaa	tgaaaataat	tgcagaattg	tctcctgaaa
35641	tggaaataga	tttttttcc	caagcattag	${\tt caatttcttg}$	ttatttttca	aaatcagcca
35701	ctaagccttt	cagagcttct	tggtgactat	tgcaggagaa	atcagaatat	taatcttgtg
35761	${\tt gttttatttc}$	agagttcgct	gccaggaagg	aggtataatt	gggataggag	acttttttt
35821	tttagctgtg	tcactgttca	aggaggggg	tttggaacct	cagcataaga	attacactct
35881	gtgatgagga	tgtagcaggg	gagaagaaag	gtgattttca	ctatgggaag	ctatacttac
35941	atcaagtata	aaatagactg	aagtcatttt	gaattacgtt	atacttgtaa	agtttacctc
36001	$\verb"ctggagtt" tc"$	agttagtacc	${\tt agtgtactaa}$	ctgggttaaa	acagttcatg	gcaccttaga
36061	tcatttctaa	ctcatggcaa	aaatctttcc	tggtggaacg	tgtaactgta	ttttaaatgc
36121	ccctttataa	gcaaccaagt	${\tt atttgggatg}$	ttattttgat	attagtagtg	aatttttcag
36181	tatcttccag	taccctttgc	aagtcacagg	ttgacttaaa	aggaaaagaa	gcaaaatgct
36241	gaatatagca	gaaaaactgt	ctgcattcag	actgttcagc	ccacttttgc	tccccacgtg
36301	gcaagcacac	tcccccaaac	aagcaatagc	ctgtggcttc	agaggaacct	acaaaggcag
36361	catctgtaga	tttttccttc	ttcaactcta	agacttgaat	gtttccctct	tccccacaca
36421	ctttttttt	aaaccaagaa	ataaaaaagt	tttcactctt	aaaggtgcaa	agcagtttca
36481	ttcttatgca	acacagcctt	cctcctactg	tcttatagtc	tgtggatgtt	aaattataga
						accccgtttt
			_	-		tgacctacaa
36661	attaaaagaa	aaaaaaatca	aataatgtgc	acctcttgtg	cttccagttt	gacaaagcag
36721	aagtcatcag	cagtttctcc	ctctgcagac	gcagttctca	attctattta	caagtaactg
	- -					tttggatctg
	_	_	_			tecteceett
		-	-	_		tgttgaaact
	_				_	gttaactttg
						aaaacattgg
	_					gagacatcag
37141	cctttcactt	ctttctatat	gcagacatat	cctaattttt	tagaaaaatc	aaataggaaa

Fig. 63N

		attaattgaa				
		actcatagtt				
		ggagggaaaa			_	
		gtgaggtggg				
37441	aaatgacgag	ttaacaggcg	cagcccacca	acatggcaca	cgtatacata	tgtaacaaac
37501	ctgcacgttg	tgcacatgta	ccctagaact	taaagtataa	taaaaaaaaa	ttttaatagc
37561	cccattaaat	aattaaaaag	attttttta	gattcacaga	agtgtacaaa	atttttaggt
37621	tttttttt	ttaagctgtc	tgctgaatag	tttcttaatg	gtctacaatg	tttgtatcta
37681	caaacagata	ctgtctgctt	cttactaccc	ttccaagaca	agtattatta	tggcaattat
37741	tgcccagttt	cccgggaaaa	${\tt atttatccac}$	agttacagaa	gaatgagatg	caattgtgag
37801	actgtaaagt	ttaagcaagc	actcagagaa	gcacagtgat	atgtatgcac	agaagaggca
37861	gtctttgttt	tgaggaaaac	agtgaaagta	aagttaattc	aagaccacaa	agacaagtaa
37921	ataagtgcct	tatttttgta	gttaatataa	tttcagtgga	atgcatattt	ctaccataaa
37981	tgcatataga	acttgtttgc	tgacctactg	tttggaaaac	aaacaatccc	attagaagaa
38041	tgtctttggg	atttatttt	accagaaaat	${\tt caatccttt}$	ttcagtccct	tgcaaagtac
38101	agtgttacaa	gccaagactt	tgataatcag	gtagaaaatg	gatttaaatt	gcagaaatgt
38161	atatgaaaca	cttttgttcc	ttgccccttg	aactttaggg	gaatgaaaat	gtctagcact
38221	ctccaccttc	ttttctctcc	tggaacttga	actgtaattc	aaagcctgtt	tctcattaaa
38281	gtacctggca	gcctatctct	ttacagcttg	agttacaaag	ctattcagag	acctcgctgg
38341	tctaaagaga	cagaacaagg	atgtgtttaa	atagagcata	ggctgttgaa	aaaaaaatg
38401	ctgaaaatgg	taaaatgatt	ctgtccttcc	ttccactcct	cactgctgag	gtggagaggg
38461	aattcagttg	gtgaacacca	gcaagtggct	ggtaaaagtc	cccactttct	ctccagggct
38521	gccacaggac	ccagaatgag	tggtgggcat	gtgtgtgaac	cctctattca	gccagagttt
38581	tcccgcaaca	ggtagtttgg	ttgaagaggt	tgactaaggt	tgacattggc	agtaataaca
38641	cgtatgttct	tctgatttac	aaaacgatgg	aggaaaaagg	ggagattttg	aagacctgat
38701	ttctggtata	cttcttaagc	atgcataagg	ctgaaaaaag	aagacaaggg	ttgtgggagg
38761	ctcctggtct	agtgtttaca	gaacttggat	gcttgacaaa	cagagcgtca	agctaattgt
38821	tcttgaagca	ggaaatctgc	agtggaggaa	gcaggtgtgg	ggggatgatt	accacgtttg
38881	gaaatggctg	cattaactat	tttgctcttc	tgagtttggc	cccaaaagag	tccatagact
38941	ttttgaagga	tgccatccct	tttatttata	gactaacatt	aaatcagtca	tttgtgaagg
39001	aaggagaaag	tgcctaaata	aatttggagt	cagatagcat	acgtgcggca	gtgtttccga
39061	tatccatttc	tctttatttc	tttttcttt	tctttttggc	tttcagcatc	cccatacttt
39121	cagaaaactt	gtgactaaga	gtgaattctt	atttttcaaa	ttgttttcag	acatttcatg
39181	ttcatgtaaa	cttggcttat	tgatttcctg	atttttcttt	attttttgt	tttgtccatt
39241	ttatttttaa	tcagctacat	caaatgggtc	tttggagggc	ctggataacc	aggagggagg
39301	ggtgtgccag	acaagagcca	tgaagatcct	catgaaagtt	ggacaaggta	aagaccatct
39361	gctgcttcat	gacgccactg	tgacctggtg	tagcccccag	ctagtatggt	gctaatgttg
39421	ccgatgccca	ccttcattcg	ctcttcttt	tagttttcaa	agcaaaccct	tctgcacttt
39481	gagccactga	cagatttcct	caagtcaatg	tactaagctt	ttattggaga	tctaagagtt
39541	aagatcagca	aggtagaatg	tctattgcca	tagatagata	gatagataga	tagataatag
39601	atagatagat	agatagatag	atatttcttt	ttaaaaagca	aaacactttg	gttcaaaatc
39661	aaaatatcca	gaatgaaaac	taaaagcttg	tgcagttttg	ctcatttctg	aatcttgact
39721	acagaagagt	tttgttcatt	gtgacttttc	caatatagat	aacctattgt	gcagaaagaa
39781	ataattattc	ttctaattaa	aaattggtat	agtagtcaat	caacttgctc	agttaaattg
39841	aaatgtcatc	tgcaatgctt	tgcctgccaa	atgcaagaat	ccctatagtt	tccacagatg

				gtataaccat		
				aagactctta		
				agatattgtc		
				tgctggatca	•	
				tggaagaagt		
40201	aaaaccaaat	ccaggtataa	cagcatgatc	tgtgtgtatg	gaggtctgtg	ggtaccacat
				gtctaaagac		
40321	ctggaagtta	cagtgatcag	gaatctttgc	tgtcagtgag	tcattattaa	ttacactcaa
				tcatatattc		
40441	ctgtaagtgc	cagttattag	aactactctg	tcaggccaaa	ggtttcattg	gctgacattt
				gctgatgtta		
40561	ctaatccctc	atctaattat	atctaagcca	cagagggttt	aattgatcct	cttctaaatt
				atagtatttt		
40681	ttgtttcaca	ttttccatgt	aaaagaaaat	attaaacagg	tccctgacaa	aagtgtagaa
				cgttttctta		
40801	tctgtatttg	ttaccatgct	aatgaaggtt	ttatagagta	gctgttgagc	agacatcagc
				ttggtcgttg		
				agggaagttg		
40981	caagatgtgt	caaattcttg	tgacaaactg	ataaatggat	aatataatga	tgccaggcag
41041	ttttttagtg	cttaacattt	gggctggcag	tctgttcggt	gtgagagttt	ctgctgcctt
41101	ccaaatatat	tttaagtgta	aatcaaataa	tacagacgag	ttacgagctg	aacattttcc
				gctgttctgt		
41221	ttctttagaa	ggcaggccct	ttgaaggttt	gcatgaaact	ccctttctca	aaggaggcgg
41281	aagagcaata	ccacataaac	gctcaccgct	gacctggaga	attggccact	tcccttttc
41341	ttccctgccg	ctgccccagg	ctggctgaca	cgggttagaa	gatgaagcaa	gatcaagggc
41401	tggctgtcac	cgacagtctg	tgctcttgct	ggataatgat	acaaaggaaa	ccctgtggct
41461	tgggagggta	gggaagtccc	tcctagagat	acctctcatt	tccttttgcg	ttgagctctt
				ttctagttag		
41581	tcacattttt	aagggtcata	aaagcagtcc	gtctgcactg	ggacagcagt	aactatctct
41641	gaccttttct	gtctccgcgt	ctgcaggttc	tagcacagac	ggcaacagcg	ccggacattc
				cttatttgca		
				ggtcctcttg		
				gctgtcgctc		
						taaggactgc
						acccggtgta
42001	catcgtccag	gagatgcccc	cgcagagccc	ggcgaacatt	tactacaagg	tctgagaggg
						tcccttgagg
						gagggacact
						ttcggccttg
						ttcggactgc
						ggcctctgca
						ggcaggtgcc
						ccgcagtgca
						ctagagttta
42541	gtccttactg	tctcactcgt	tctgttaccc	agggctctgc	agcacctcac	ctgagacctc

42601	cactccacat	ctgcatcact	catggaacac	tcatgtctgg	agtcccctcc	tccagccgct
42661	ggcaacaaca	gcttcagtcc	atgggtaatc	cgttcataga	aattgtgttt	gctaacaagg
42721	tgccctttag	ccagatgcta	ggctgtctgc	gaagaaggct	aggagttcat	agaagggagt
42781	ggggctgggg	aaagggctgg	ctgcaattgc	agctcactgc	tgctgcctct	gaaacagaaa
	gttggaaagg					
42901	cgaagaggcc	agtaggagac	acgacagcac	acacagtgga	ttccagtgca	tggggaggca
42961	ctcgctgtta	tcaaatagcg	atgtgcagga	agaaaagccc	${\tt ctcttcattc}$	cggggaacaa
43021	agacgggtat	tgttgggaaa	ggaacaggct	tggagggaag	ggagaaagta	ggccgctgat
43081	gatatattcg	ggcaggactg	ttgtggtact	ggcaataaga	tacacagete	cgagctgtag
	gagagtcggt					
43201	ttattaaaca	cagggaaagc	atttaggaga	atagcagaga	gccaaatctg	acctaaaagt
43261	tgaaaagcca	aaggtcaaac	aggctgtaat	tccatcatca	tcgttgttat	taaagaatcc
43321	ttatctataa	aaggtaggtc	agatccccct	cccccaggt	tcctccttcc	cctcccgatt
43381	gagccttacg	acactttggt	ttatgcggtg	ctgtccgggt	gccagggctg	cagggtcggt
43441	actgatggag	gctgcagcgc	ccggtgctct	gtgtcaaggt	gaagcacata	cggcagacct
43501	cttagagtcc	ttaagacgga	agtaaattat	gatgtccagg	gggagaagga	agataggacg
43561	tatttataat	aggtatatag	aacacaaggg	atataaaatg	aaagattttt	actaatatat
43621	attttaaggt	tgcacacagt	acacaccaga	agatgtgaaa	ttcatttgtg	gcaattaagt
43681	ggtcccaatg	ctcagcgctt	aaaaaaacaa	attggacagc	tacttctggg	aaaaacaaca
43741	tcattccaaa	aagaacaata	atgagagcaa	atgcaaaaat	aaccaagtcc	tccgaaggca
43801	tctcacggaa	ccgtagacta	ggaagtacga	gccccacaga	gcaggàagcc	gatgtgactg
43861	catcatatat	ttaacaatga	caagatgttc	cggcgtttat	ttctgcgttg	ggttttccct
43921	tgccttatgg	gctgaagtgt	tctctaga			

Fig. 63Q

103/113

EphrinB2, mRNA

```
1 gegeggaget gggagtgget tegecatgge tgtgagaagg gaeteegtgt ggaagtaetg
  61 ctqqqqtqtt ttqatqqttt tatqcaqaac tqcqatttcc aaatcgatag ttttaqaqcc
121 tatctattgg aattcctcga actccaaatt tctacctgga caaggactgg tactataccc
181 acagatagga gacaaattgg atattatttg ccccaaagtg gactctaaaa ctgttggcca
241 gtatgaatat tataaagttt atatggttga taaagaccaa gcagacagat gcactattaa
301 gaaggaaaat acceetetee teaactgtge caaaccagae caagatatea aatteaceat
361 caagtttcaa gaattcagcc ctaacctctg gggtctagaa tttcagaaga acaaagatta
421 ttacattata tctacatcaa atgggtcttt ggagggcctg gataaccagg agggaggggt
481 gtgccagaca agagccatga agatcctcat gaaagttgga caagatgcaa gttctgctgg
541 atcaaccagg aataaagatc caacaagacg tccagaacta gaagctggta caaatggaag
 601 aagttcgaca acaagtccct ttgtaaaacc aaatccaggt tctagcacag acggcaacag
 661 cgccggacat tcggggaaca acatcctcgg ttccgaagtg gccttatttg cagggattgc
721 ttcaggatgc atcatcttca tcgtcatcat catcacgctg gtggtcctct tgctgaagta
781 ccqqaqqaqa cacaqqaaqc actcgccgca gcacacgacc acgctgtcgc tcagcacact
841 ggccacaccc aagcgcagcg gcaacaacaa cggctcagag cccagtgaca ttatcatccc
901 gctaaggact gcggacagcg tcttctgccc tcactacgag aaggtcagcg gggactacgg
 961 gcacccggtg tacatcgtcc aggagatgcc cccgcagagc ccggcgaaca tttactacaa
1021 ggtctgagag ggaccctggt ggtacctgtg ctttcccaga ggacacctaa tgtcccgatg
1081 cctcccttga gggtttgaga gcccgcgtgc tggagaattg actgaagcac agcaccgggg
1141 gagagggaca etecteeteg gaagageeeg tegegetgga eagettacet agtettgtag
1201 catteggeet tggtgaacae acaegeteee tggaagetgg aagaetgtge agaagaegee
1261 catteggaet getgtgeege gteecaegte teeteetega agecatgtge tgeggteaet
1321 caggcctctg cagaagccaa gggaagacag tggtttgtgg acgagagggc tgtgagcatc
1381 ctggcaggtg ccccaggatg ccacgcctgg aagggccggc ttctgcctgg ggtgcatttc
1441 ccccgcagtg cataccggac ttgtcacacg gacctcgggc tagttaaggt gtgcaaagat
1501 ctctagagtt tagtccttac tgtctcactc gttctgttac ccagggctct gcagcacctc
1561 acctgagacc tccactccac atctgcatca ctcatggaac actcatgtct ggagtcccct
1621 cctccagccg ctggcaacaa cagcttcagt ccatgggtaa tccgttcata gaaattgtgt
1681 ttgctaacaa ggtgcccttt agccagatgc taggctgtct gcgaagaagg ctaggagttc
1741 atagaaggga gtggggctgg ggaaagggct ggctgcaatt gcagctcact gctgctgcct
1801 ctgaaacaga aagttggaaa ggaaaaaaga aaaaagcaat taggtagcac agcactttgg
1861 ttttgctgag atcgaagagg ccagtaggag acacgacagc acacacagtg gattccagtg
1921 catggggagg cactcgctgt tatcaaatag cgatgtgcag gaagaaaagc ccctcttcat
1981 tccqqqqaac aaagacgggt attgttggga aaggaacagg cttggaggga agggagaaag
2041 taggccgctg atgatatatt cgggcaggac tgttgtggta ctggcaataa gatacacagc
2101 teegagetgt aggagagteg gtetgetttg gatgattttt taageagaet eagetgetat
2161 acttatcaca ttttattaaa cacagggaaa gcatttagga gaatagcaga gagccaaatc
2221 tgacctaaaa gttgaaaagc caaaggtcaa acaggctgta attccatcat catcgttgtt
2281 attaaagaat ccttatctat aaaaggtagg tcagatcccc ctcccccag gttcctcctt
2341 cccctcccga ttgagcctta cgacactttg gtttatgcgg tgctgtccgg gtgccagggc
2401 tgcagggtcg gtactgatgg aggctgcagc gcccggtgct ctgtgtcaag gtgaagcaca
2461 tacggcagac ctcttagagt ccttaagacg gaagtaaatt atgatgtcca gggggagaag
2521 gaagatagga cgtatttata ataggtatat agaacacaag ggatataaaa tgaaagattt
2581 ttactaatat atattttaag gttgcacaca gtacacacca gaagatgtga aattcatttg
```

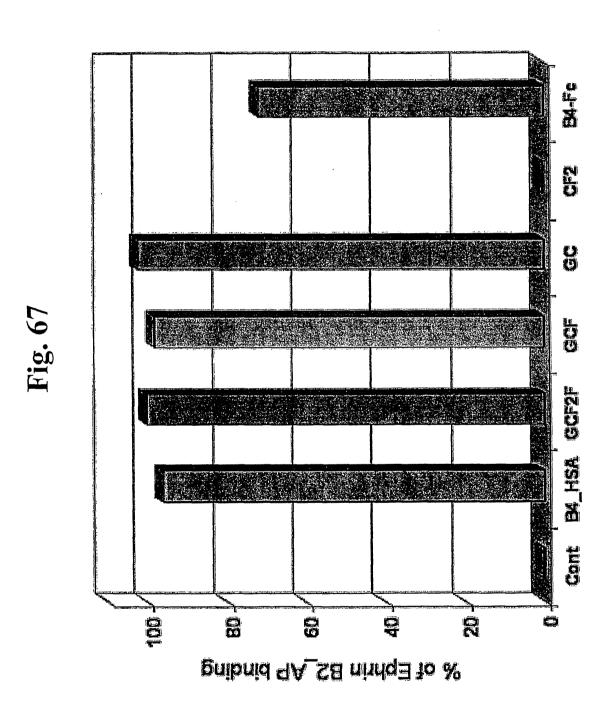
2641	tggcaattaa	gtggtcccaa	tgctcagcgc	ttaaaaaaac	aaattggaca	gctacttctg
2701	ggaaaaacaa	${\tt catcattcca}$	aaaagaacaa	taatgagagc	aaatgcaaaa	ataaccaagt
2761	cctccgaagg	catctcacgg	aaccgtagac	taggaagtac	gagccccaca	gagcaggaag
2821	ccgatgtgac	tgcatcatat	atttaacaat	gacaagatgt	tccggcgttt	atttctgcgt
2881	tgggttttcc	cttgccttat	gggctgaagt	gttctctaga	atccagcagg	tcacactggg
2941	ggcttcaggt	gacgatttag	ctgtggctcc	ctcctcctgt	cctccccgc	accccctccc
3001	ttctgggaaa	caagaagagt	aaacaggaaa	cctacttttt	atgtgctatg	caaaatagac
3061	atctttaaca	tagtcctgtt	actatggtaa	cactttgctt	tctgaattgg	aagggaaaaa
3121	aaatgtagcg	acagcatttt	aaggttctca	gacctccagt	gagtacctgc	aaaaatgagt
3181	tgtcacagaa	attatgatcc	tctatttcct	gaacctggaa	atgatgttgg	tccaaagtgc
3241	gtgtgtgtat	gtgtgagtgg	gtgcgtggta	tacatgtgta	catatatgta	taatatatat
3301	ctacaatata	tattatatat	atctatatca	tatttctgtg	gagggttgcc	atggtaacca
3361	gccacagtac	atatgtaatt	$\tt ctttccatca$	ccccaacctc	tcctttctgt	gcattcatgc
3421	aagagtttct	tgtaagccat	cagaagttac	ttttaggatg	ggggagaggg	gcgagaaggg
3481	gaaaaatggg	aaatagtctg	attttaatga	aatcaaatgt	atgtatcatc	agttggctac
3541	gttttggttc	tatgctaaac	tgtgaaaaat	cagatgaatt	gataaaagag	ttccctgcaa
3601	ccaattgaaa	agtgttctgt	gcgtctgttt	tgtgtctggt	gcagaatatg	acaatctacc
3661	aactgtccct	ttgtttgaag	ttggtttagc	tttggaaagt	tactgtaaat	gccttgcttg
3721	tatgatcgtc	cctggtcacc	cgactttgga	atttgcacca	tcatgtttca	gtgaagatgc
3781	tgtaaatagg	ttcagatttt	actgtctatg	gatttggggt	gttacagtag	ccttattcac
3841	ctttttaata	aaaatacaca	tgaaaacaag	aaagaaatgg	${\tt cttttcttac}$	ccagattgtg
3901	tacatagagc	aatgttggtt	ttttataaag	tctaagcaag	atgttttgta	taaaatctga
3961	attttgcaat	gtatttagct	acagcttgtt	taacggcagt	gtcattcccc	tttgcactgt
4021	aatgaggaaa	aaatggtata	aaaggttgcc	aaattgctgc	atatttgtgc	cgtaattatg
4081	taccatgaat	atttatttaa	aatttcgttg	tccaatttgt	aagtaacaca	gtattatgcc
4141	tgagttataa	atatttttt	ctttetttgt	tttattttaa	tagcctgtca	taggttttaa
4201	atctgcttta	gtttcacatt	gcagttagcc	ccagaaaatg	aaatccgtga	agtcacattc
4261	cacatctgtt	tcaaactgaa	tttgttctta	aaaaaataaa	atatttttt	cctatggaaa
4321	aaaaaaaaa	aaaaa				

Fig. 64B

105/113

EphB4 Precursor Protein

```
1 melrvllcwa slaaaleetl lntkletadl kwvtfpqvdg qweelsglde eqhsvrtyev
61 cdvqrapgqa hwlrtgwvpr rgavhvyatl rftmleclsl pragrscket ftvfyyesda
121 dtataltpaw menpyikvdt vaaehltrkr pgaeatgkvn vktlrlgpls kagfylafqd
181 qqacmallsl hlfykkcaql tvnltrfpet vprelvvpva gscvvdavpa pgpspslycr
241 edgqwaeqpv tgcscapgfe aaegntkcra caqgtfkpls gegscqpcpa nshsntigsa
301 vcqcrvgyfr artdprgapc ttppsaprsv vsrlngsslh lewsaplesg gredltyalr
361 crecrpggsc apcggdltfd pgprdlvepw vvvrglrpdf tytfevtaln gvsslatgpv
421 pfepvnvttd revppavsdi rvtrsspssl slawavprap sgavldyevk yhekgaegps
481 svrflktsen raelrglkrg asylvqvrar seagygpfgq ehhsqtqlde segwreqlal
541 iagtavvgvv lvlvvivvav lclrkqsngr eaeysdkhgq ylighgtkvy idpftyedpn
601 eavrefakei dvsyvkieev igagefgevc rgrlkapgkk escvaiktlk ggyterqrre
661 flseasimgg fehpniirle gyvtnsmpym iltefmenga ldsflrlndg gftviglygm
721 lrgiasgmry laemsyvhrd laarnilvns nlvckvsdfg lsrfleenss dptytsslgg
781 kipirwtape aiafrkftsa sdawsygivm wevmsfgerp ywdmsnqdvi naieqdyrlp
841 pppdcptslh qlmldcwqkd rnarprfpqv vsaldkmirn paslkivare nggashplld
901 qrqphysafg svgewlraik mgryeesfaa agfgsfelvs qisaedllri gvtlaghqkk
961 ilasvqhmks qakpgtpggt ggpapqy
```


Fig. 65

EphrinB2

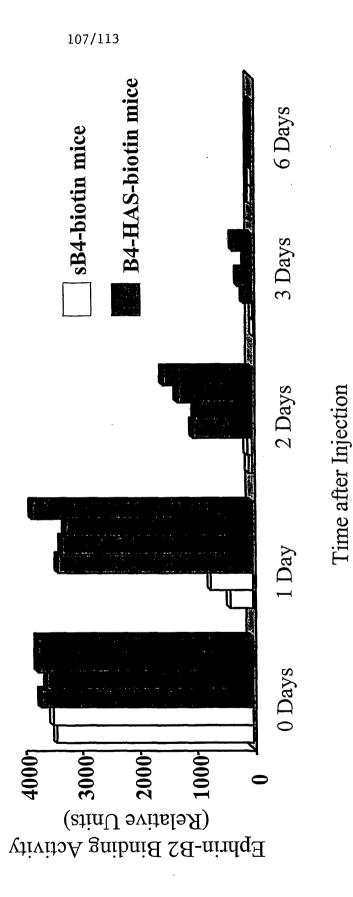

```
1 mavrrdsvwk ycwgvlmvlc rtaisksivl epiywnssns kflpgqglvl ypqigdkldi
61 icpkvdsktv gqyeyykvym vdkdqadrct ikkentplln cakpdqdikf tikfqefspn
121 lwglefqknk dyyiistsng slegldnqeg gvcqtramki lmkvgqdass agstrnkdpt
181 rrpeleagtn grssttspfv kpnpgsstdg nsaghsgnni lgsevalfag iasgciifiv
241 iiitlvvlll kyrrrhrkhs pqhtttlsls tlatpkrsgn nngsepsdii iplrtadsvf
301 cphyekvsgd yghpvyivqe mppqspaniy ykv
```

Fig. 66

106/113

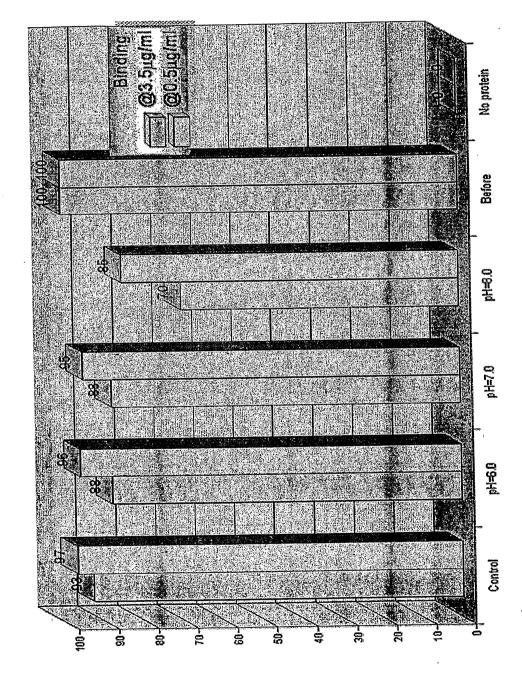
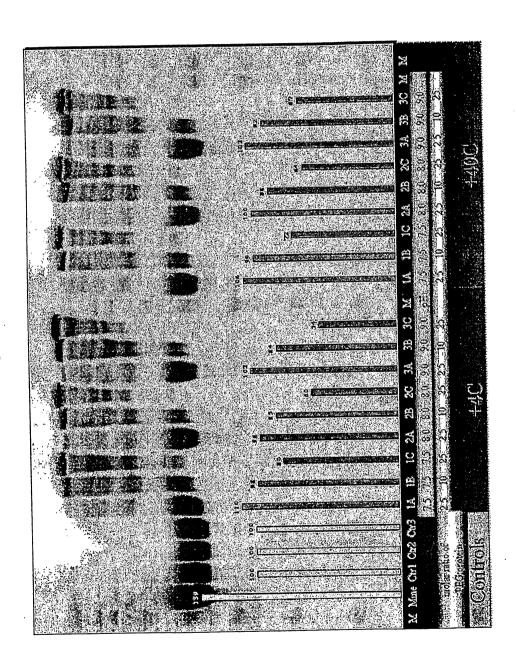
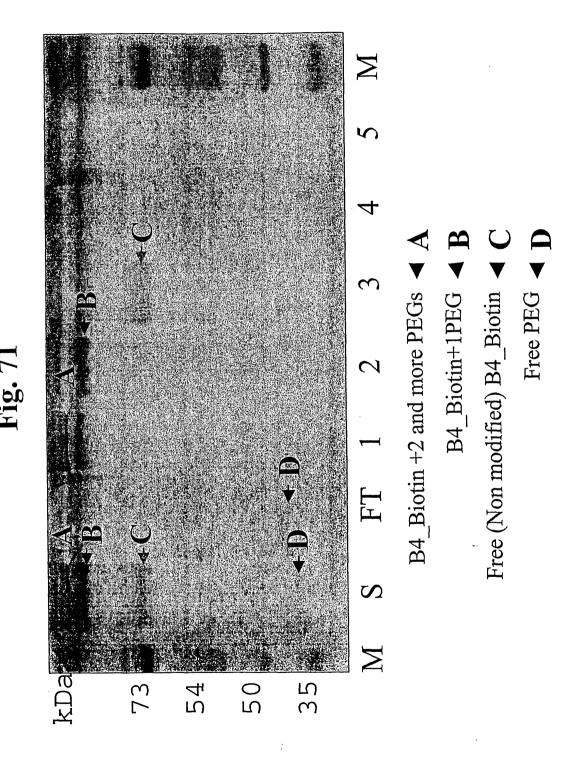




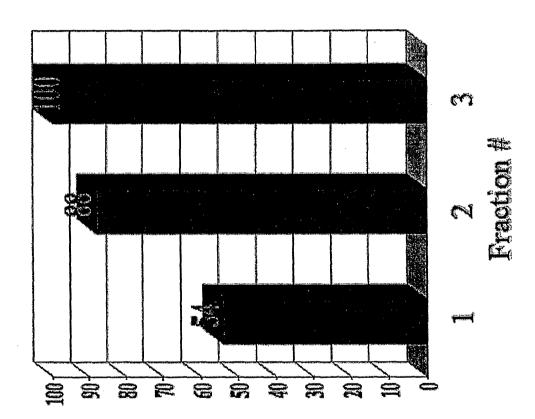
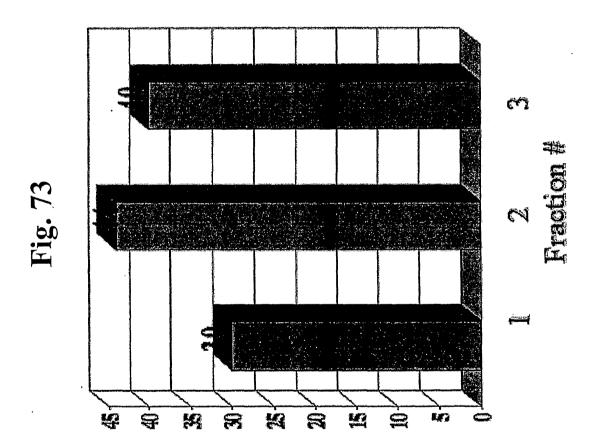
Fig. 69

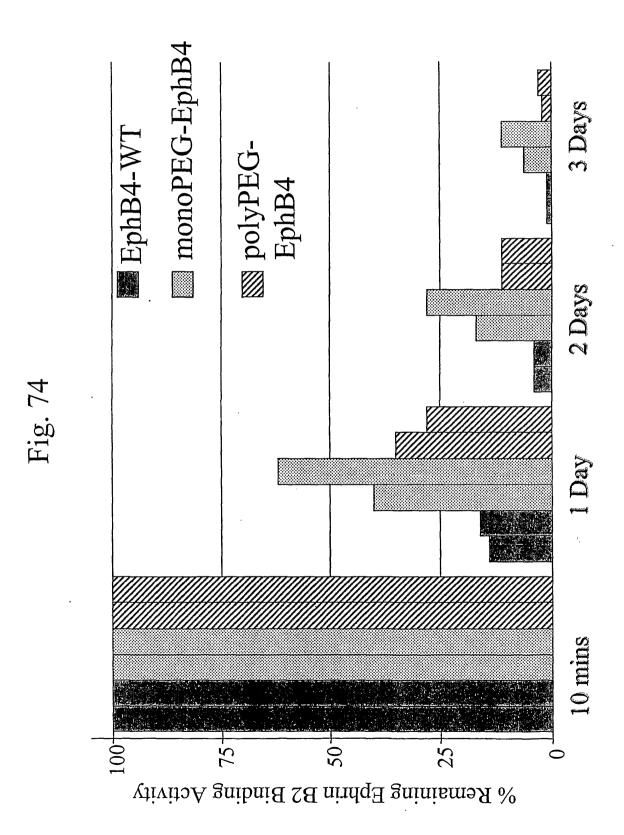
Fig. 70

110/113

<u>.</u>

111/113


Fig. 72

÷

112/113

<u>--</u>

