Title: IMPROVEMENTS IN ELECTROMAGNETIC TRAFFIC SIGNAL DETECTION

Abstract: An electromagnetic traffic signal detection or traffic control system which includes one or more electromagnetic traffic signal detection loops of an electrically conducting material contained within a pavement or road structure operatively connected to traffic control lights or to other traffic control or regulating means, whereby the electromagnetic signal disturbance created by the magnetic field of a metal-containing vehicle passing over the loop activates the traffic control or regulating means.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
IMPROVEMENTS IN ELECTROMAGNETIC TRAFFIC SIGNAL DETECTION

TECHNICAL FIELD

The present invention relates to improvements in electromagnetic traffic signal detection wherein a loop of electrically conducting material is laid on or set into the pavement surface of a roadway or the like. The loop provides means to detect the presence of a motor vehicle or the like passing thereover by means of the disturbance of the electromagnetic signal by the metal body of the vehicle passing over the underlying loop. The disturbance of the electromagnetic signal can be used to activate traffic lights, a boom gate, or the like.

BACKGROUND ART

Electromagnetic signal detection systems are one of several means for detecting the presence of motor vehicles or the like and for controlling or regulating traffic flow. Other detection means include but are not limited to infra-red systems wherein a passing vehicle breaks a beam of infra-red light between two pre-determined points, and pressure-sensitive systems, wherein the weight of a vehicle passing over a pressure-sensitive detector set in or on the road pavement activates the traffic lights, boom gate or other traffic control means.

Electromagnetic signal detection systems are perhaps now the mostly widely used traffic control or traffic regulating system because of their adaptability or versatility, their cost compared to other systems, and their reliability. This is especially so in applications for traffic control on public roads and car parking stations. However, the cost of installation of such electromagnetic signal detection/traffic control systems is relatively high, being both labour intensive and capital equipment intensive, as well as being time consuming.

Existing electromagnetic traffic signal detection loops are retrofitted to the road pavement after the pavement has been laid. This requires that a groove be saw cut into the pavement base or surface layer which damages the integrity of the road pavement, manually installing a loop within the groove and then sealing the groove with a settable filling
material. This process is very labour intensive and time consuming. Further, it has a potential for environmental pollution, and control measures are required to prevent the asphalt and water slurry from the saw cutting from entering the stormwater system, including sediment control weirs and filters.

European Patent EP 0425977 (Beck, Werner) discloses an induction loop for installation in or under the road surface for the automatic operation of switchgear for traffic control means, wherein the electronically conductive material of the induction loop is contained within an open-sided channel or conduit which serves to protect the induction loop but adds bulk which has the effect of making the system more difficult or more time-consuming and costly to install.

Us Patent No 5,008,666 (Gerbert et al) discloses a traffic detection or measurement device including coaxial cables embedded in a polymer matrix together with a vehicular presence detector to indicate data such as vehicle count, vehicle length, vehicle time of arrival, vehicle speed, number of axles per vehicle, axle distance per vehicle, vehicle gap, headway and axle weights. This device is too sophisticated for general application and is difficult or time-consuming and costly to install.

DISCLOSURE OF THE INVENTION

It is an object of the present invention to provide an improved installation method for an electromagnetic traffic signal detection or traffic control system which goes at least some way towards overcoming or at least minimising the prior art problems or limitations referred to above.

It is another object of this invention to provide an improved electromagnetic traffic signal or traffic control system which is universally adaptable for use in most traffic control applications.

It is a further object of this invention to provide an improved electromagnetic traffic signal detection or traffic control system which is relatively simple and inexpensive to
manufacture, is easier and less expensive to install than existing systems, and is simple and reliable in operation.

These and other objects of this invention will become more apparent from the following descriptions and the drawings.

According to one aspect of this invention there is provided an electromagnetic traffic signal detection or traffic control system which includes one or more electromagnetic traffic signal detection loops comprising a pre-formed or pre-wound electrically conducting material in one or more interconnected loops of a predetermined configuration, encapsulated in a protective coating or layer, such as a protective bandage, or by other suitable insulating means, such that the signal detection loops may be inlaid as a single unit within the pavement structure, such as during the construction of the road, or during maintenance or repair thereon. The signal detection loops are operatively connected to traffic signals, a boom gate, or other traffic control or regulating means, whereby the electromagnetic signal disturbance created by the magnetic field of a metal vehicle passing over the loop activates the traffic control or regulating means.

This invention will now be further described by way of example only with reference to the accompanying drawings, wherein

FIG. 1 is a plan view of a typical traffic signal detection loop installation according to one embodiment of the invention;

FIG. 2 is a cross-sectioned view of a section of a typical road pavement construction, showing a cross-section through one section of a traffic detection loop laid on the road pavement base, encased in a protective bandage and covered by a top coat of asphalt; and

FIG. 3 is a cross-sectional view through one section as installed in a concrete road pavement.
BEST MODE OF CARRYING OUT THE INVENTION

FIG. 1 is a plan view of a typical traffic signal detection loop installation according to one embodiment of the invention, shown in a ‘drive on the left’ situation such as in Australia, New Zealand and the United Kingdom. The invention is, however, equally applicable to a ‘drive on the right’ situation such as in the United States of America and Continental Europe.

FIG. 1 illustrates a three-lane carriageway at the intersection with a cross-street. Induction loops 1 and 2 interconnected by electrically conductive cable 3 are installed in the inside lane adjacent to the kerb. Loops 4 and 5 in the middle lane are interconnected via cable 6. Loops 7 and 8 in the outside lane are interconnected by cable 9. Right-turn traffic from the outside lane passes over loops 10 and 11, interconnected by cable 12 within the intersection area. The right-turn arrow 13 marked on the road surface in the outside lane directs right-turn traffic over the right-turn approach loops 8 and 9, and the right-turn departure loops 10 and 11. The lanes are marked on the road pavement surface by means of centre-line 14 and lane dividers 15 and 16. All of the loops 1 to 11 are operatively connected to the traffic lights junction box 17 adjacent to the corner or intersection.

FIG. 2 is a cross-sectional view of a portion of a typical road pavement, showing a cross-section through one section of a traffic detection loop. A bitumen impregnated geotextile base bandage 18 is laid on the road pavement base 24 (and underlying sub grade 25) and electrical conducting material or sensor wires 19 are laid on the base bandage 18 and held in place by encapsulation tape 20. The whole assembly is attached to the road base 24 by means of by a bitumenous adhesion bandage 21, and is then covered by a bitumen surface layer 22 typically 40mm to 150mm in thickness.

FIG. 3 is an isometric cut-away view of a portion of a traffic detection loops showing the composite structure in more detail.
As shown in the drawings relating to this embodiment of the invention, the electromagnetic traffic signal detection loops are pre-wound and encapsulated in a protective bandage so that they may be inlaid as a single unit within the pavement structure during the construction of the road.

Each set of loops comes packed as a single unit, ready to install.

Installation of loops to the road base course takes a fraction of the time that is required for the installation of loops that are cut into the surface of the road.

Because the loops are encapsulated in a protective membrane or bandage, they can be exposed to vehicular traffic for a number of days after installation, without damage to the loop wires.

The loops are installed between the layers of asphalt during the construction of the asphalt road pavement. Therefore eliminating the need to saw cut the road surface, which adversely affects the integrity of the pavement's structure. Ezy Loops can be installed on to any sound flat surface, then overlaid with an asphalt wearing course.

The loops can be installed into a concrete road pavement during construction by tying the loop to the top layer of reinforcing steel mesh.

Advantages of this method of installation of electromagnetic traffic signal detection loops include:-

- no electrical certification required for installation of the loops to the road base;
- no power tools are required for installation of the loops;
- the loops can be formed to suit any traffic lane width and any traffic carriageway, including for example conventional motor vehicle traffic, light rail, parking station entrances, to name a few; and
- the loops can be formed to suit any electromagnetic loop configuration. Standard widths are, for example, 1.6m, 1.8m, 2.0m and 2.2m.
The bandage encapsulated loop ensures that the loop remains in the desired shape or configuration, and serves to protect the wires of the loop during transportation and installation, such as during periods when the loop is laid out on the pavement and exposed to traffic, but is not yet covered by the top layer of asphalt and is exposed or left open to vehicular traffic.

The bandage used to adhere the loops to the road base with the assistance of a light rubber roller. No other processes are required to adhere the loops to the base. The loops can be adhered to a cold base, (i.e. profiled concrete or old asphalt pavement).

Installation onto Base Course

Once the base course has been prepared, i.e. profiled, milled and cleaned in the case of an existing pavement, or layed and rolled in the case of a new pavement, remove the loops from their packing unfold them and place them on the ground in the correct position over the marks. Secure the loops by using the protective bandage. Using a hand roller, roll the loops so that they adhere to the base. Lay the leader wires out so that they intersect the lip of gutter adjacent to the PJ box. Cut a piece of bitumen bandage the length of the leader wires, peel the backing paper off and lay the bandage over the wires. Use the roller to press the bandage down. Remove the corking from the conduit leading to the PJ Box and feed the leader wires through. Recork the gutter groove and conduit. The surface layer of asphalt can now be laid over the loops and rolled. This method can be used if the temperature of the base course is over 100°C, but it is preferable that the temperature is below 80°C.

Although an exemplary embodiment of the present invention has been shown and described, it will be apparent to those having ordinary skill in the art that a number of changes, modifications or alterations to the invention described herein may be made, none of which depart from the spirit of the present invention. All such changes, modifications, and alterations should therefore be seen as being within the scope of the present invention.
It should be appreciated that the present invention provides a substantial advance in electromagnetic traffic signal detection and traffic control providing all of the herein-described advantages without incurring any relative disadvantages.
CLAIMS

1. An electromagnetic traffic measurement system, which includes one or more electromagnetic induction loops comprising a pre-formed or pre-wound electrically conducting material in one or a plurality of interconnected loops of a predetermined configuration, encapsulated in an outer layer or bandage adapted for adhesion to a road or pavement base as a complete composite loop configuration prior to application of a covering surface layer to the road or pavement base.

2. An electromagnetic traffic measurement system as claimed in claim 1, operatively connected to traffic monitoring or to traffic control or regulating means.

3. An electromagnetic traffic measurement system as claimed in claim 1 or claim 2, operatively connected to traffic signals or to a gate control.

4. An electromagnetic traffic measurement system as claimed in any one of the proceeding claims, wherein the outer layer or bandage comprises a bitumen impregnated geotextile base bandage adapted to support one or a plurality of electrically conducting wires or cables, an upper encapsulation tape, and an overlying adhesion bandage for securing the encapsulated loop to the underlying pavement base.

5. An electromagnetic traffic measurement system as claimed in claim 4 wherein the pre-formed composite loop is provided in ready-to-use form for attachment to a road pavement base.

6. A method of installation of an electromagnetic traffic measurement system of the type defined in claim 1, wherein a pre-formed encapsulated electromagnetic induction loop is attached to a road or pavement base in a predetermined configuration or position, the loop is operatively connected to traffic control or regulating means and a surface layer of asphalt or other pavement surfacing
material is applied to the road or pavement base to cover and seal the said loop within the road or pavement.

7. A method as claimed in claim 6 wherein the encapsulated electromagnetic induction loop is attached to the top layer of reinforcing steel mesh in the road pavement base before being overlaid with asphalt or other pavement surfacing material.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. 7: G08G 1/042, E01F 11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC : G08G 1/042, E01F 11/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

AU : IPC AS ABOVE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPAT, USPTO Web Patent Database, Esp@cenet, "install, surface, loop, inductive, adhere, detector etc"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4945356 A (HENDERSON et al.) 31 July 1990 Refer to Column 4 (lines 38,39), column 5 (lines 21-37) and figures 5 & 10 in particular.</td>
<td>1-3,6-7</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C ☐ See patent family annex

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family

- **&**

Date of the actual completion of the international search 21 July 2000

Date of mailing of the international search report 7 AUG 2000

Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA E-mail address: pct@ipaustralia.gov.au Facsimile No. (02) 6285 3929

Authorized officer

P. THONG Telephone No : (02) 6283 2128

Form PCT/ISA/210 (second sheet) (July 1998)