(51) International Patent Classification:
H04W 16/14 (2009.01)

(21) International Application Number:
PCT/EP2012/059566

(22) International Filing Date:
23 May 2012 (23.05.2012)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
1109840.7 13 June 2011 (13.06.2011) GB
1109850.6 13 June 2011 (13.06.2011) GB
1109845.8 13 June 2011 (13.06.2011) GB
1109848.0 13 June 2011 (13.06.2011) GB
1109844.9 13 June 2011 (13.06.2011) GB
1109874.6 13 June 2011 (13.06.2011) GB
1109867.0 13 June 2011 (13.06.2011) GB
1109863.9 13 June 2011 (13.06.2011) GB
1109829.0 13 June 2011 (13.06.2011) GB
1109836.5 13 June 2011 (13.06.2011) GB
1109837.3 13 June 2011 (13.06.2011) GB

(54) Title: DEVICE AND METHOD FOR DERIVING ALIGNMENT INFORMATION

(57) Abstract: A communication device configured to operate in accordance with a first communication protocol and to align itself with one or more communications transmitted in accordance with that protocol by identifying a communication transmitted in accordance with a second communication protocol that is not intended for the communication device, deriving alignment information from the identified communication and configuring itself to receive a communication transmitted in accordance with the first communication protocol in dependence on the alignment information.

FIG. 3

(84) Designated States (unless otherwise indicated, for every

Published:
— with international search report (Art. 21(3))
— with amended claims (Art. 19(1))
DEVICE AND METHOD FOR DERIVING ALIGNMENT INFORMATION

The present invention relates to a communication device that needs to adjust its timing to be in reasonable alignment with another communication device in the network.

This application incorporates by reference UK Patent Application No. 1109867.0 ("Signal acquisition from cold start"), which was filed by the applicant hereof on 13 June 2011.

A communication network may comprise a base station and one or more terminals with which the base station is required to communicate. The base station suitably shares the available communication resource between the terminals (which may number several thousand if the geographical area covered by the base station is large). It is well-known that the available communication resource may be allocated on a time-division and/or a frequency division basis. Dividing the communication resource on a time-division basis typically involves every communication between the base station and the terminals being allocated a time slot. The start and end time of each time slot is known to both parties to the communication. However, for this to be practicable, the base station and the terminals need to have sufficiently aligned clocks.

The base station clock is likely to be accurate since the base station will typically have access to a standard clock or to an absolute time via its connection with the core network or via another means, such as an internal GPS receiver. The base station is therefore likely to have ready access to an accurate time reference that it can use to synchronise its clock. The base station is also likely to have a quality internal clock that is not subject to significant clock drift. Conversely, many terminals will be simple, cheap devices that are unlikely to include expensive, high quality clocks. This is unlikely to be problematic provided that the terminals have a means for synchronising their clock with an accurate time reference at regular intervals, so as to prevent their clock from drifting ever further away from the base station's clock.
Dividing the communication resource on a frequency division basis involves dividing the available bandwidth into different frequency channels. Each channel may be associated with a particular carrier frequency. In order to receive a communication from a base station, the terminal not only needs to know what carrier frequency that communication is to be transmitted on but also has to align itself with that frequency, e.g. by means of a tuning circuit. As mentioned above, many of the terminals will be simple, cheap devices. Often their tuning circuits may not be entirely accurate or may suffer from frequency drift.

Therefore, there is a need for a means by which a simple communication terminal can align itself with communications in a network.

According to a first embodiment of the invention, there is provided a communication device configured to operate in accordance with a first communication protocol and to align itself with one or more communications transmitted in accordance with that protocol by identifying a communication transmitted in accordance with a second communication protocol that is not intended for the communication device, deriving alignment information from the identified communication and configuring itself to receive a communication transmitted in accordance with the first communication protocol in dependence on the alignment information.

The communication device may be configured to derive a timing indication as the alignment information and align itself with a timing of the communication in accordance with the first communication protocol in dependence on that timing indication.

The communication device may be configured to derive a frequency indication as the alignment information and align itself with a frequency of the communication in accordance with the first communication protocol in dependence on that frequency indication.

The communication device may not be configured to operate according to the second communication protocol.
The communication device may be configured to identify the communication transmitted in accordance with the second communication protocol from a part of the frequency spectrum in which it is configured to communicate in accordance with the first communication protocol.

The communication device may be configured to operate in whitespace according to the first communication protocol.

The communication device may be configured to derive the alignment information from a signal transmitted in whitespace.

The communication device may be configured to derive the alignment information from the identified communication without decoding that communication.

The communication device may be configured to derive the alignment information from a repetitive element comprised in the identified communication.

The communication device may be configured to derive the alignment information from a cyclic prefix comprised in the identified communication.

The communication device may be configured to update its clock in dependence on the timing indication.

The communication device may be configured to determine a timing of a scheduled communication in dependence on the timing indication.

The communication device may be configured to perform a synchronisation operation in dependence on the alignment information.

The communication device may be configured to synchronise with a communication transmitted by a base station in accordance with the first communication protocol.
The communication device may be configured to operate in a machine-to-machine network.

According to a second embodiment of the invention, there is provided a method for aligning a communication device configured to operate according to a first communication protocol with one or more communications transmitted in accordance with that protocol, the method comprising identifying a communication transmitted in accordance with a second communication protocol that is not intended for the communication device, deriving alignment information from the identified communication and configuring the communication device to receive a communication transmitted in accordance with the first communication protocol in dependence on the alignment information.

Aspects of the present invention will now be described by way of example with reference to the accompanying drawings. In the drawings:

Figure 1 shows an example of a communication network;

Figure 2 shows an example of a communication frame;

Figure 3 shows an example of a process for improving time alignment;

Figure 4 shows an example of a process for improving frequency alignment; and

Figure 5 shows an example of a communication device.

A communication device may be configured to operate according to a first communication protocol. The device may use communications in accordance with another protocol to help align itself with communications transmitted in accordance with the first protocol. The device may achieve this by deriving alignment information from a communication sent using another protocol. It can use this information to configure itself for receiving communications under the first protocol.
The communication that the terminal uses to derive its alignment information will generally have originated from a network that the terminal is not part of. In other words, the communication will not be one that is intended for the terminal. It is simply a signal that the terminal is using for the limited purpose of deriving alignment information (e.g. timing and/or frequency information). Usually the terminal will not be configured to operate in accordance with the protocol under which the alignment signal was sent. This is not problematic since the terminal does not need to decode the signal.

The first communication protocol may divide the available frequency spectrum on a time-division basis so that the communication device needs to have a clock that is sufficiently close to the clocks of other devices in the network if it is to be able to correctly judge the timings of communications in the network. The communication device may address this requirement by determining a timing indication from a signal transmitted according to a second communication protocol. The communication device may then use that timing indication to determine the timing of a communication according to the first communication protocol. This may straightforwardly be achieved by the communication device using the timing indication to determine an offset between its own clock and that of a reference time, and adjusting its own clock (and thus the time when it expects to receive/transmit data to the base station) accordingly.

The first communication protocol may also (or alternatively) divide the available frequency spectrum on a frequency-division basis. The first communication protocol might also implement frequency hopping. The communication device suitably includes a tuning circuit to enable it to listen to a particular frequency channel. The tuning circuit may include one or more signal generators for generating signals having frequencies that match the frequency of the signal the device wants to listen to. It is helpful for the communication device to be able to calibrate its tuning circuit so that the closest possible frequency match can be achieved. If the communication device can frequency-align itself with a strong signal transmitted in accordance with the second protocol it may synchronise more easily with a weak first-protocol signal. This is because if its frequency reference is closer to the first-protocol signal it will
see stronger correlation peaks when receiving that signal, making further network acquisition simpler.

There is a relationship between a timing indication and a frequency indication so it may be possible to convert between from one to the other. However, the relationship is not a straightforward one so in practice it will often be easier to derive the required timing and/or frequency indication directly from the communication according to the second protocol.

A wireless network may be configured to operate without having been specifically allocated any part of the electromagnetic spectrum. Such a network may be permitted to operate in so-called whitespace: a part of the spectrum that is made available for unlicensed or opportunistic access. Typically whitespace is found in the UHF TV band and spans 450MHz to 800MHz, depending on the country. A large amount of spectrum has been made available for unlicensed wireless systems in this frequency range.

A problem with operating in whitespace is that the available bandwidth is variable and cannot be guaranteed. These limitations are well-matched to the capabilities of machine-to-machine networks in which there is no human interaction. Machine-to-machine networks are typically tolerant of delays, dropped connections and high latency communications.

Any network operating in the UHF TV band has to be able to coexist with analogue and digital television broadcast transmitters. The density of the active television channels in any given location is relatively low (resulting in the availability of whitespace that can be used by unlicensed systems). The FCC has mandated that systems operating in whitespace must reference a database that determines which channels may be used in any given location. This is intended to avoid interference with the TV transmissions and certain other incumbent systems such as wireless microphones. The network will also have to coexist with spurious interference from devices such as electric drills. In order to minimise the impact of the machine-to-machine network on television broadcasts and the negative impact of external
interferers on the machine-to-machine network, the network preferably implements a
frequency hopping sequence generated in dependence on information in the
whitespace database and designed to avoid frequencies found to suffer interference
and/or poor propagation or throughput and frequencies on which the network will
cause interference to other users.

One or more embodiments of the invention will now be described with specific
reference to a wireless network shown in Figure 1. One or more embodiments of the
invention will also be described with specific reference to a wireless network in which
the communication device is a terminal. This is for the purposes of example only and
it should be understood that the mechanisms described herein may be implemented
in any suitable communication network and by any suitable communication device,
irrespective of its role in the network.

The network in Figure 1, which is shown generally at 104, comprises one or more
base stations 105 that are each capable of communicating wirelessly with a number
of terminals 106. Each base station may be arranged to communicate with terminals
that are located within a particular geographical area or cell. The base stations
transmit to and receive radio signals from the terminals. The terminals are entities
embedded in machines or similar that communicate with the base stations. Suitably
the wireless network is arranged to operate in a master-slave mode where the base
station is the master and the terminals are the slaves. Each base station may be
arranged to communicate with a large number of terminals, e.g. a thousand or more.

The base station controller 107 is a device that provides a single point of
communication to the base stations and then distributes the information received to
other network elements as required. The network may be arranged to communicate
with a client-facing portion 101 via the internet 102. In this way a client may provide
services to the terminals via the wireless network.

Other logical network elements shown in this example are:

- Core network. This routes traffic information between base stations and client
 networks.
- Billing system. This records utilisation levels and generates appropriate billing data.
- Authentication system. This holds terminal and base station authentication information.
- Location register. This retains the last known location of the terminals.
- Broadcast register. This retains information on group membership and can be used to store and process acknowledgements to broadcast messages.
- Operations and maintenance centre (OMC). This monitors the function of the network and raises alarms when errors are detected. It also manages frequency and code planning, load balancing and other operational aspects of the network.
- White spaces database. This provides information on the available white space spectrum.
- Client information portal. This allows clients to determine data such as the status of associated terminals, levels of traffic, etc.

In practice, many of the logical network elements may be implemented as databases running software and can be provided on a wide range of platforms. A number of network elements may be physically located within the same platform.

A network such as that shown in Figure 1 may be used for machine-to-machine communications, i.e. communications that do not involve human interaction. Machine-to-machine communications are well-matched to the limitations of operating in white space, in which the bandwidth available to the network may vary from one location to another and also from one time instant to the next. As the network does not have any specific part of the spectrum allocated to it, even unallocated parts of the spectrum may become unavailable, e.g. due to a device in the vicinity that is operating outside of the network but using the same part of the spectrum. Machines are well-adapted to tolerating the delays and breaks in communication that can result from these varying communication conditions. The network should also be adapted to the communication conditions. For example, the network may make use of frequency hopping sequences (which are suitably different for neighbouring cells), different data rates (which can be adapted to the signal conditions and technical
capabilities of particular terminals), spreading codes (which can also be adapted to
the signal conditions and technical capabilities of the terminals) and
acknowledgement mechanisms (so that lost packets can be identified and resent).

The base station may use a frame structure to organise communications with the
plurality of terminals in its cell. Medium access control (MAC) may be used to share
the available radio resource between the plurality of terminals. An example of a
suitable frame is shown in Figure 2. The frame (shown generally at 201) comprises
time to ramp-up to full output power 202 (TJFS), a synchronisation burst 203
(DL_SYNC), an information field providing the subsequent channel structure 204
(DL_FCH), a map of which information is intended for which terminal and uplink
timeslot allocations 205 (DL_MAP), a field to allow acknowledgement of previous
uplink transmissions 206 (DL_ACK) and then the actual information to be sent to
terminals 207 (DL_ALLOC). There is then a guard period for ramp-down of the
downlink and ramp-up on the uplink 208 (T_SW), followed by channels set aside for
uplink contended access 209 (UL_CA) in parallel with the allocated uplink data
transmissions 210 (UL_ALLOC).

Each frame is suitably two seconds long. The base stations may be arranged to
periodically transmit a broadcast frame that all terminals should listen to as far as
possible. The base station may use this frame to transmit multicast control messages
such as: forthcoming changes to the channel assignment/hopping sequences; uplink
transmit power limits; supplementary data transfers; and changes to the broadcast
frame interval. This frame may be transmitted around once every 15 minutes, and
may be considered to form the first frame of a "super-frame". The frame may be
known as the "broadcast channel". The frequency of this frame is a trade-off. If it is
too frequent the terminals will consume excessive battery power listening to the
broadcast frames. If it is too infrequent, it may take too long to "page" or "poll"
terminals and the frequency with which network parameters can be changed
decreases.

Every terminal in the network needs to have access to a clock. Typically each
terminal will have its own clock. The terminal uses the clock to determine when each
frame will start and end, when each time slot within a frame will start and end, and when the base station will hop onto a different frequency in the frequency hopping sequence. The terminal will also use its clock to determine when it should receive transmissions from the base station and when it should make transmissions to the base station. The terminal will use the clock to determine when it should wake from sleep mode if it powers down between scheduled transmissions. The terminal may further use its clock to help synchronise with a base station when it first joins the network or if it wants to switch from one base station to another. Various different mechanisms for efficient synchronisation are described in UK Patent Application No. 1109867.0, which is incorporated herein by reference.

An example of a process that a terminal may employ to determine how far off its clock is from an accurate time reference is shown in Figure 3. The process starts in step 301. In step 302 the terminal determines that a timing update should be performed. The terminal may be configured to perform timing updates at predetermined time intervals, each time that it wakes up (e.g. on first waking), in response to a command from a base station or in response to a determination that the clock has drifted too far from the time reference (e.g. if the terminal misses the start of a frame or a scheduled communication because it wakes-up too late, or if it wakes too early such that it is awake for longer than a predetermined time before it starts to receive a frame). This list of examples is not intended to be exhaustive and the terminal might determine that a timing update is to be performed in dependence on any other suitable indicator. The terminal then identifies a signal that has been transmitted using a different communication protocol from the first communication protocol (step 303). This signal is a signal belonging to a different network from that to which the terminal belongs. The terminal will usually not be capable of operating according to the second protocol. The terminal will therefore typically not decode the signal in the conventional sense of extracting the data encoded in that signal. However, the terminal does use the signal to determine a timing indication (step 304). The terminal then uses the timing indication to work out how far its own clock is from a standard time reference. The base station will usually be substantially aligned with a standard time reference (e.g. GPS absolute time, UTC, GMT etc). Therefore, the terminal can use the timing indication to work out how far its clock is likely to be
from the clock of the base station. This suitably helps the terminal to determine when a communication in its own network will occur (step 305). The process terminates in step 306.

An example of a process that a terminal may employ to determine how far off its clock is from a frequency reference is shown in Figure 4. The process starts in step 401. In step 402 the terminal determines that a frequency update should be performed. The terminal may be configured to perform frequency updates at predetermined time intervals, each time that it wakes up (e.g. on first waking), in response to a command from a base station or in response to a determination that the first protocol signal (e.g. a whitespace signal) is weak, in response to difficulties in synchronising with the base station and/or in response to difficulties in decoding information contained in first protocol communications. This list of examples is not intended to be exhaustive and the terminal might determine that a frequency update is to be performed in dependence on any other suitable indicator. The terminal then identifies a signal that has been transmitted using a different communication protocol from the first communication protocol (step 403). This signal is a signal belonging to a different network from that to which the terminal belongs. The terminal will usually not be capable of operating according to the second protocol. The terminal will therefore typically not decode the signal in the conventional sense of extracting the data encoded in that signal. However, the terminal may use the signal to determine a frequency indication (step 404). The terminal then uses the frequency indication to achieve better frequency alignment with communications in its own network (step 405). The process terminates in step 406.

Obtaining a frequency indication from a secondary signal allows a terminal to use a potentially strong secondary signal to achieve better frequency alignment with a weaker primary signal. As an example, this would allow a terminal configured to operate in a machine-to-machine network such as the network shown in Figure 1 to derive frequency information from a TV signal that it can use to more easily synchronise with the detailed frequency and timing information on a potentially weak machine-to-machine signal. This is because the terminal will see stronger correlation peaks if its frequency reference is closer to the machine-to-machine synchronisation
sequence, making further network acquisition simpler. Various different mechanisms for efficient synchronisation are described in UK Patent Application No. 1109867.0, which is incorporated herein by reference.

There are a number of options for the signal that the terminal uses to determine the alignment information. The terminal might use a standard time reference, such as the signals used by radio clocks. Specific examples of the signals a terminal might use include time references transmitted by radio stations (e.g. the pips transmitted by the BBC) or the absolute time reference obtainable from GPS signals. However, GPS signals tend to have poor penetrative power. For example, they cannot always be received in built-up areas or inside buildings. Also the terminal is preferably a simple device that is cheap to manufacture. It is therefore preferred for the terminal to use a signal that does not require it to have a separate receiver.

A preferred option is for the terminal to use analogue and/or digital television signals to obtain the alignment information. TV signals have good penetration and can be received inside buildings. TV signals also have the advantage of being comprised in the same part of the frequency spectrum as the machine-to-machine network (i.e. whitespace), thus minimising the frequency range required of the terminal's receiver. TV signals are transmitted at precise, predefined frequencies from which a terminal can derive a frequency indication. TV signals also include features that the terminal can use to deduce a timing indication without having to decode that signal. For example, depending on the region, TV signals may include repetitive components or cyclic prefixes from which the terminal can extract timing information without having to decode the signal. The terminal will typically not be capable of decoding the TV data comprised in the signal, but it may be capable of extracting timing and/or frequency information from the signal.

It will often not be possible for the terminal to decode the TV signal because its amplitude is too low. This is particularly the case if the terminal looks in the frequency channels used in its cell for an alignment signal. This is because the channels used for frequency hopping in a whitespace network are selected specifically to avoid the frequencies used by nearby TV transmitter stations. Therefore, if the terminal
restricts its search to those frequency channels it is likely to encounter only low amplitude TV signals, transmitted by TV transmitter stations that are a considerable distance from the cell in which it is located.

The terminal, once it has obtained the timing indication, suitably uses that indication to determine a measure of how much its clock is in error, i.e. how far its clock is likely to be from the base station's clock, the network clock and/or the clocks of other terminals in the network. The terminal may use the timing indication to determine an error in its own clock, which it may store as an offset to be used in calculating wake-up times, start-times of frames, start-times of scheduled communications etc. The terminal might alternatively update its clock directly by resetting it in dependence on what the timing indication indicates is the clock error. The terminal might store timing indications determined at multiple time instances and use those to generate an indication of clock drift. The terminal might determine how often it should obtain a new timing indication in dependence on the determined clock drift. The terminal might also determine, once it has obtained an indication of clock drift, that timing indications can be obtained less frequently. Instead, the terminal may use the indication of clock drift and the time that has elapsed since the last timing update to determine how far its clock is likely to be from that of the base station.

The terminal suitably uses any frequency indication that it derives from the alignment signal to calibrate its tuning circuits; for example, by adjusting the signal generators. The terminal then uses the calibrated tuning circuits for listening to a particular frequency channel.

The mechanisms described herein may be advantageously implemented by a terminal when it tries to attach to a new base station, in order to speed up synchronisation. The terminal may be able to achieve synchronisation more quickly (saving both time and power) if it has a better idea of what the base station's frequency and timings are likely to be. The terminal may also be able to save power by not waking up too early before scheduled communications with the base station (either because of an error in its clock or because the terminal was in the habit of waking up too early to make allowances for errors in its clock and avoid missing
communications). Keeping the terminal in better alignment with the base station may also help to ensure that the terminal does not miss scheduled communications with the base station or communicate on the wrong frequency in a frequency hopping sequence. Calibrating its tuning circuits using a frequency reference may enable the terminal to achieve a better lock on the base station's communications.

An example of the functional blocks that may be comprised in a communication device according to one embodiment of the invention are shown in Figure 5. The communication device, shown generally at 501, comprises a communication unit 503 connected to an antenna 502 for transmitting and receiving messages to and from a base station. The communication unit comprises a tuner 509. The communication unit may also be capable of receiving messages and/or signals transmitted in accordance with a protocol with which it is not configured to operate.

The communication device further comprises an alignment unit 506 configured to derive alignment information from a suitable alignment signal. The communication device comprises a clock 504 and an offset unit 505 for determining an error in the clock in dependence on a timing indication. Timing indications may be fed back from the alignment unit to the offset unit and the clock. The timing indications may also be fed back to the communication unit for scheduling communications, scheduling wake-up times, assisting with synchronisation etc. The terminal may also comprise a monitoring unit 507 for tracking changes in the clock offset to determine an indication of clock drift. Frequency indications may be fed back from the alignment unit to the communication unit and particularly the tuner. The communication device comprises a correlator 508 for synchronising with communications from the base station. The communication unit may effectively act as a central controller and may pass information between the other functional blocks.

The apparatus in Figure 5 is shown illustratively as comprising a number of interconnected functional blocks. This is for illustrative purposes and is not intended to define a strict division between different parts of hardware on a chip. In practice, the communication device preferably uses a microprocessor acting under software
control for implementing the methods described herein. In some embodiments, the algorithms may be performed wholly or partly in hardware.

An example of the protocol according to which the communication device is configured to operate is a machine-to-machine protocol such as Weightless. The protocol according to which the timing indications are transmitted might be a television protocol such as an ATSC or NTSC protocol, or an ISDB-T or DVB-T protocol. These are examples only, and it should understand that any suitable communication protocols might be used.

The mechanisms described herein might be most beneficially implemented by a communication device that is a terminal. However, the communication device might perform any role in the network. For example, the communication device might be a base station.

The applicants hereby disclose in isolation each individual feature described herein and any combination of two or more such features, to the extent that such features or combinations are capable of being carried out based on the present specification as a whole in light of the common general knowledge of a person skilled in the art, irrespective of whether such features or combinations of features solve any problems discloses herein, and without limitation to the scope of the claims. The applicants indicate that aspects of the present invention may consist of any such feature or combination of features. In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention.
CLAIMS

1. A communication device configured to operate in accordance with a first communication protocol and to align itself with one or more communications transmitted in accordance with that protocol by:
 identifying a communication transmitted in accordance with a second communication protocol that is not intended for the communication device;
 deriving alignment information from the identified communication; and
 configuring itself to receive a communication transmitted in accordance with the first communication protocol in dependence on the alignment information.

2. A communication device as claimed in claim 1, configured to:
 derive a timing indication as the alignment information; and
 align itself with a timing of the communication in accordance with the first communication protocol in dependence on that timing indication.

3. A communication device as claimed in claim 1 or 2, configured to:
 derive a frequency indication as the alignment information; and
 align itself with a frequency of the communication in accordance with the first communication protocol in dependence on that frequency indication.

4. A communication device as claimed in any preceding claim, not configured to operate according to the second communication protocol.

5. A communication device as claimed in any preceding claim, configured to identify the communication transmitted in accordance with the second communication protocol from a part of the frequency spectrum in which it is configured to communicate in accordance with the first communication protocol.

6. A communication device as claimed in any preceding claim, configured to operate in whitespace according to the first communication protocol.
7. A communication device as claimed in any preceding claim, configured to derive the alignment information from a signal transmitted in whitespace.

8. A communication device as claimed in any preceding claim, configured to derive the alignment information from the identified communication without decoding that communication.

9. A communication device as claimed in any preceding claim, configured to derive the alignment information from a repetitive element comprised in the identified communication.

10. A communication device as claimed in any preceding claim, configured to derive the alignment information from a cyclic prefix comprised in the identified communication.

11. A communication device as claimed in any preceding claim, configured to update its clock in dependence on the timing indication.

12. A communication device as claimed in any preceding claim, configured to determine a timing of a scheduled communication in dependence on the timing indication.

13. A communication device as claimed in any preceding claim, configured to perform a synchronisation operation in dependence on the alignment information.

14. A communication device as claimed in claim 13, configured to synchronise with a communication transmitted by a base station in accordance with the first communication protocol.

15. A communication device as claimed in any preceding claim, configured to operate in a machine-to-machine network.
16. A method for aligning a communication device configured to operate according to a first communication protocol with one or more communications transmitted in accordance with that protocol, the method comprising:
 identifying a communication transmitted in accordance with a second communication protocol that is not intended for the communication device;
 deriving alignment information from the identified communication; and
 configuring the communication device to receive a communication transmitted in accordance with the first communication protocol in dependence on the alignment information.

17. A communication device substantially as herein described with reference to the accompanying drawings.

18. A method substantially as herein described with reference to the accompanying drawings.
AMENDED CLAIMS
received by the International Bureau on 20 September 2012 (20.09.12)

7. A communication device as claimed in any preceding claim, configured to derive the alignment information from a signal transmitted in whitespace.

8. A communication device as claimed in any preceding claim, configured to derive the alignment information from the identified communication without decoding that communication.

9. A communication device as claimed in any preceding claim, configured to derive the alignment information from a repetitive element comprised in the identified communication.

10. A communication device as claimed in any preceding claim, configured to derive the alignment information from a cyclic prefix comprised in the identified communication.

11. A communication device as claimed in claim 2, or in any of claims 3 to 10, configured to update its clock in dependence on the timing indication.

12. A communication device as claimed in claim 2, or in any of claims 3 to 11, configured to determine a timing of a scheduled communication in dependence on the timing indication.

13. A communication device as claimed in any preceding claim, configured to perform a synchronisation operation in dependence on the alignment information.

14. A communication device as claimed in claim 13, configured to synchronise with a communication transmitted by a base station in accordance with the first communication protocol.

15. A communication device as claimed in any preceding claim, configured to operate in a machine-to-machine network.
FIG. 2

SUBSTITUTE SHEET (RULE 26)
301 Start

302 Determine that a timing update should be performed

303 Identify a signal associated with another communication protocol

304 Determine a timing indication from that signal

305 Use the timing indication to determine when a communication according to the protocol the device is configured to operate by will occur

306 Finish

FIG. 3
401 - Start

402 - Determine that a frequency update should be performed

403 - Identify a signal associated with another communication protocol

404 - Determine a frequency indication from that signal

405 - Use the frequency indication to achieve better frequency alignment with a communication transmitted in accordance with the first protocol

406 - Finish

FIG. 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H94W16/14

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of actual completion of the international search 20 July 2012

Date of mailing of the international search report 27/07/2012

Name and mailing address of the ISA/ European Patent Office, P.O. Box 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel (010-70) 940-2040, Fax (010-70) 340-3016

Authorized officer

Tozlovanu Ana-Delia

Form PCT/ISA/219 (second sheet) (April 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2004156440 Al</td>
<td>12-08-2004</td>
<td></td>
</tr>
<tr>
<td>WO 2011085026 A2</td>
<td></td>
<td>WO 2011085026 A2</td>
</tr>
</tbody>
</table>