Title: METHODS AND COMPOSITIONS FOR STABILIZING UNCONSOLIDATED SUBTERRANEAN FORMATIONS

Abstract: The present invention provides methods of stabilizing subterranean formations and methods of reducing the production of particulates from subterranean formations, which are useful in conjunction with subterranean formations surrounding wellbores and fractures. The methods comprise the steps of applying to a subterranean formation a combination aqueous liquid and surfactant preflush solution, an integrated consolidation fluid and an afterflush fluid and then waiting a chosen period of time.
METHODS AND COMPOSITIONS FOR STABILIZING
UNCONSOLIDATED SUBTERRANEAN FORMATIONS

1. Field of the Invention.

The present invention relates to improved methods for stabilizing unconsolidated regions in subterranean formations.

2. Description of the Prior Art.

Hydrocarbon wells are often located in subterranean zones that contain unconsolidated particulate matter that can migrate out with the oil, gas, water, and/or other fluids produced by the wells. The presence of particulate matter, such as sand, in the produced fluids is disadvantageous and undesirable in that the particulates may abrade pumping and other producing equipment and reduce the fluid production capabilities of the producing zones. Unconsolidated subterranean zones include those which contain loose particulates that are readily entrained by produced fluids and those wherein the particulates making up the zone are bonded together with insufficient bond strength to withstand the forces produced by the production of fluids through the zones.

One method of controlling loose sands in unconsolidated formations involves placing a filtration bed of gravel near the wellbore in order to present a physical barrier to the transport of unconsolidated formation fines with the production of hydrocarbons. Typically, such so-called “gravel packing operations” involve the pumping and placement of a quantity of a desired particulate into the unconsolidated formation adjacent to the wellbore. Such packs are time consuming and expensive to install.

Another method used to control loose sands in unconsolidated formations involves consolidating unconsolidated subterranean producing zones into hard permeable masses by pre-flushing the formation, applying a hardenable resin composition, applying a spacer fluid, applying an external catalyst to cause the resin to set and applying an afterflush fluid to remove excess resin from the pore spaces of the zones. Such multiple-component applications, however, often result in uncertainty and create a risk for undesirable results. For example, when an insufficient amount of spacer fluid is used between the application of the hardenable resin and the application of the external catalyst, the resin may come into contact with the external catalyst in the wellbore itself rather than in the unconsolidated subterranean producing zone. This is very problematic. When resin is contacted with an
external catalyst an exothermic reaction occurs that may result in rapid polymerization. The polymerization may damage the formation by plugging the pore channels, may halt pumping when the wellbore is plugged with solid material, or may even result in a down hole explosion as a result of the heat of polymerization. Also, using these conventional processes to treat long intervals of unconsolidated regions is not practical due to the difficulty in determining if the entire interval that has been treated with both the resin and the activation agent.

SUMMARY OF THE INVENTION

The present invention provides improved methods for consolidating unconsolidated subterranean producing zones.

One embodiment of the present invention describes a method of stabilizing a subterranean formation comprising the steps of applying to the subterranean formation a combination aqueous liquid and surfactant preflush solution, an integrated consolidation fluid and an afterflush fluid and then waiting a chosen period of time. The integrated consolidation fluid of the present invention may be a two-component epoxy-based consolidation fluid comprising a hardenable resin component and a hardening agent component, a one-component furan-based consolidation fluid, a one-component phenolic-based consolidation fluids, or a one-component high temperature epoxy-based consolidation fluid. The afterflush fluid of the present invention may be a liquid or a gas.

Another embodiment of the present invention describes a method of reducing the production of particulates from a subterranean formation comprising the steps of applying to the subterranean formation a combination aqueous liquid and surfactant preflush solution, an integrated consolidation fluid and an afterflush solution and then waiting a chosen period of time. The integrated consolidation fluid of the present invention may be a two-component epoxy-based consolidation fluid comprising a hardenable resin component and a hardening agent component, a one-component furan-based consolidation fluid, a one-component phenolic-based consolidation fluids, or a one-component high temperature epoxy-based consolidation fluid. The afterflush solution of the present invention may be a liquid or a gas.

Still another embodiment of the present invention describes an integrated consolidation fluid of the present invention capable of consolidating a subterranean formation without the need for an external catalyst. The integrated consolidation fluid comprises a
hardenable resin component comprising a hardenable resin and a hardening agent component comprising a liquid hardening agent, a silane coupling agent, and a surfactant.

Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention provides improved methods for preventing the migration of loose and incompetent particulates in subterranean formations surrounding fractures and/or wellbores with fluids produced from the formations. The integrated consolidation fluids of the present invention exhibit high strengths and permeabilities after hardening, low viscosity, an ability to coat unconsolidated subterranean zones in the presence of formation fluids. Moreover, the integrated consolidation fluids of the present invention do not require the use of an external catalyst. While the compositions and methods of the present invention are useful in a variety of well completion and remedial operations, they are particularly useful in consolidating unconsolidated subterranean formations bordering wellbores and fractures.

The integrated consolidation fluids of the present invention comprise a hardenable resin component, and optionally a solvent component. The term “integrated consolidation fluid” refers to a consolidation fluid that may be applied in one step. That is, neither a spacer fluid nor an external catalyst is required for the fluid to effect consolidation of the treated subterranean formation. The integrated consolidation fluids of the present invention may be classified as one of four types: a two-component epoxy-based consolidation fluid comprising a hardenable resin component and a hardening agent component; a one-component furan-based consolidation fluid; a one-component phenolic-based consolidation fluid; or, a one-component high temperature (“HT”) epoxy-based consolidation fluid.

Selection of the type of integrated consolidation fluid may be related to the temperature of the subterranean formation to which the fluid will be introduced. By way of example, for subterranean formations from about 60°F to about 250°F, two-component epoxy-based consolidation fluids comprising a hardenable resin component and a hardening agent component containing specific hardening agents are preferred. For subterranean formations from about 300°F to about 600°F, a one-component furan-based consolidation fluid is preferred. For subterranean formations from about 200°F to about 400°F, either a
one-component phenolic-based consolidation fluid or a one-component HT epoxy-based consolidation fluid is suitable.

Regardless of the type of integrated consolidation fluid chosen, its viscosity should preferably be controlled to ensure that it is able to sufficiently penetrate the unconsolidated portions of the subterranean formation. For example, where the subterranean formation being consolidated is a formation surrounding a wellbore, from about 1 to about 3 feet of penetration into the formation from the wellbore may be desired. Where the subterranean formation being consolidated is a formation wall adjacent to a propped fracture, for example, from about 0.25 to about 2 inches of penetration into the fracture wall is generally sufficient. To achieve the desired level of penetration, the consolidation fluid viscosity is preferably below 100 cP, more preferably below 40 cP, and most preferably below 10 cP. Achieving the desired viscosity will generally dictate a resin to solvent ratio ranging from about 1:0.2 to about 1:20. It is within the ability of one skilled in the art with the benefit of this disclosure to use a sufficient amount of a suitable solvent to achieve the desired viscosity and, thus, to achieve the preferred penetration into the subterranean formation.

One integrated consolidation fluid of the present invention is a two-component epoxy based consolidation fluid comprising a hardenable resin component and a hardening agent component. The hardenable resin component is comprised of a hardenable resin and an optional solvent. The solvent may be added to the resin to reduce its viscosity for ease of handling, mixing and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent may be needed to achieve a viscosity suitable to the subterranean conditions. Factors that may affect this decision include geographic location of the well and the surrounding weather conditions. An alternate way to reduce the viscosity of the liquid hardenable resin is to heat it. This method avoids the use of a solvent altogether, which may be desirable in certain wells. The second component is the liquid hardening agent component, which is comprised of a hardening agent, a silane coupling agent, a surfactant for, *inter alia*, facilitating the coating of the resin on the proppant particles and causing the hardenable resin to flow to the contact points between adjacent resin coated proppant particles, an optional hydrolyzable ester for, *inter alia*, breaking gelled fracturing fluid films on the proppant particles, and an optional liquid carrier fluid for, *inter alia*, reducing the viscosity of the liquid hardening agent component. It is within the ability
of one skilled in the art with the benefit of this disclosure to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions.

Examples of hardenable resins that can be utilized in the liquid hardenable resin component include, but are not limited to, organic resins such as bisphenol A-epichlorohydrin resin, polyepoxide resin, novolak resin, polyester resin, phenol-aldehyde resin, urea-aldehyde resin, furan resin, urethane resin, glycidyl ethers and mixtures thereof. Of these, bisphenol A-epichlorohydrin resin is preferred. The organic resin utilized is included in the liquid hardenable resin component in an amount in the range of from about 70% to about 100% by weight of the liquid hardenable resin component, preferably in an amount of about 85%.

Any solvent that is compatible with the hardenable resin and achieves the desired viscosity effect is suitable for use in the present invention. Preferred solvents are those having high flash points (most preferably about 125°F) because of, inter alia, environmental factors. As described above, use of a solvent in the hardenable resin composition is optional but may be desirable to reduce the viscosity of the hardenable resin component for ease of handling, mixing, and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent is needed to achieve a suitable viscosity. Solvents suitable for use in the present invention include, but are not limited to, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, methanol, butyl alcohol, d’limonene and fatty acid methyl esters. Of these, butylglucidyl ether is preferred. The amount of the solvent utilized in the liquid hardenable resin component is in the range of from about 0% to about 30% by weight of the liquid hardenable resin component, preferably in an amount of about 15%.

Examples of the hardening agents that can be utilized in the liquid hardening agent component of the two-component consolidation fluids of the present invention include, but are not limited to, amines, aromatic amines, polyamines, aliphatic amines, cyclo-aliphatic amines, amides, polyamides, 2-ethyl-4-methyl imidazole and 1,1,3-trichlorotrifluoroacetone. Selection of a preferred hardening agent is dependent, in part, on the temperature of the formation in which the hardening agent will be used. By way of example and not of limitation, in subterranean formations having a temperature from about 60°F to about 250°F,
amines and cyclo-aliphatic amines such as piperidine, triethylamine, N,N-
dimethylaminopyridine, benzylidimethylamine, tris(dimethylaminomethyl) phenol, and 2-
(N$_2$N-dimethylaminomethyl)phenol are preferred with N,N-dimethylaminopyridine most
preferred. In subterranean formations having higher temperatures, 4,4'-diaminodiphenyl
sulfone may be a suitable hardening agent. The hardening agent is included in the liquid
hardening agent component in an amount in the range of from about 40% to about 60% by
weight of the liquid hardening agent component, preferably in an amount of about 50%.

The silane coupling agent may be used, *inter alia*, to act as a mediator to help
bond the resin to the sand surface. Examples of silane coupling agents that can be utilized in
the liquid hardening agent component of the two-component consolidation fluids of the
present invention include, but are not limited to, N-2-(aminoethyl)-3-
aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-
(aminoethyl)-gamma-aminopropyl trimethoxysilane. Of these, n-beta-(aminoethyl)-gamma-aminopropyl
trimethoxysilane is preferred. The silane coupling agent is included in the liquid hardening
agent component in an amount in the range of from about 0.1% to about 3% by weight of the
liquid hardening agent component.

Any surfactant compatible with the liquid hardening agent and capable of
facilitating the coating of the resin onto particles in the subterranean formation may be used
in the present invention. Such surfactants include, but are not limited to, an ethoxylated
nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, and one or more
non-ionic surfactants and an alkyl phosphonate surfactant. The mixtures of one or more
cationic and nonionic surfactants are described in U.S. Patent No. 6,311,773 issued to Todd
et al. on November 6, 2001, which is incorporated herein by reference. A C$_{12} - C_{22}$ alkyl
phosphonate surfactant is preferred. The surfactant or surfactants utilized are included in the
liquid hardening agent component in an amount in the range of from about 2% to about 15%
by weight of the liquid hardening agent component, preferably in an amount of about 12%.

Use of a diluent or liquid carrier fluid in the hardenable resin composition is
optional and may be used to reduce the viscosity of the hardenable resin component for ease
of handling, mixing and transferring. It is within the ability of one skilled in the art, with the
benefit of this disclosure, to determine if and how much liquid carrier fluid is needed to
achieve a viscosity suitable to the subterranean conditions. Any suitable carrier fluid that is
compatible with the hardenable resin and achieves the desired viscosity effects is suitable for
use in the present invention. The liquid carrier fluids that can be utilized in the liquid hardening agent component of the two-component consolidation fluids of the present invention preferably include those having high flash points (most preferably above about 125°F). Examples of liquid carrier fluids suitable for use in the present invention include, but are not limited to, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethylene glycol methyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, propylene carbonate, d-limonene and fatty acid methyl esters. Of these, dipropylene glycol methyl ether is preferred. The liquid carrier fluid is present in the liquid hardening agent component in an amount in the range of from about 0% to about 40% by weight of the liquid hardening agent component, preferably in an amount of about 30%.

Where the integrated consolidation fluid of the present invention is a one-component furan-based consolidation fluid, suitable furan-based resins include, but are not limited to, furfuryl alcohol, a mixture furfuryl alcohol with an aldehyde, and a mixture of furan resin and phenolic resin. Of these, furfuryl alcohol is preferred.

The furan-based resin may be combined with a solvent to control viscosity if desired. Suitable solvents for use in the furan-based consolidation fluids of the present invention include, but are not limited to 2-butoxy ethanol, butyl acetate, and furfuryl acetate. Of these, 2-butoxy ethanol is preferred.

Where the integrated consolidation fluid of the present invention is a one-component phenolic-based consolidation fluid, suitable phenolic-based resins include, but are not limited to, terpolymers of phenol, phenolic formaldehyde resins, and a mixture of phenolic and furan resins. Of these, a mixture of phenolic and furan resins is preferred.

The phenolic-based resin may be combined with a solvent to control viscosity if desired. Suitable solvents for use in the phenolic-based consolidation fluids of the present invention include, but are not limited to butyl acetate, butyl lactate, furfuryl acetate, and 2-butoxy ethanol. Of these, 2-butoxy ethanol is preferred.

Where the integrated consolidation fluid of the present invention is a one-component HT epoxy-based consolidation fluid, suitable HT epoxy-based components included, but are not limited to, bisphenol A-epichlorohydrin resin, polyepoxide resin, novolac resin, polyester resin, glycidyl ethers and mixtures thereof. Of these, bisphenol A-epichlorohydrin resin is preferred.
To achieve the beneficial effects of the present invention, it is preferred that a solvent be used with the one-component HT epoxy-based consolidation fluids of the present invention. Suitable solvents for use in the HT epoxy-based consolidation fluids of the present invention are those solvents capable of substantially dissolving the HT epoxy-resin chosen for use in the consolidation fluid. Such solvents include, but are not limited to, dimethyl sulfoxide and dimethyl formamide. Of these, dimethyl sulfoxide is preferred. A co-solvent such as dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethylene glycol methyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, propylene carbonate, d’limonene and fatty acid methyl esters, may also be used in combination with the solvent. Of these co-solvents, dipropylene glycol methyl ether is preferred.

One embodiment of the methods of the present invention for stabilizing a subterranean formation comprises the steps of applying preflush solution to the unconsolidated subterranean formation, applying adequate integrated consolidation fluid of the present invention to saturate the desired portion of the unconsolidated formation surrounding the wellbore, applying an afterflush fluid to the subterranean formation to, *inter alia*, remove excess consolidation fluid from the pore spaces and the wellbore, and then allowing time for the consolidation fluid to cure.

Another embodiment of the methods of the present invention for reducing the production of particulates from a subterranean formation comprises the steps of applying preflush solution to the unconsolidated subterranean formation, applying adequate integrated consolidation fluid of the present invention to saturate the desired portion of the unconsolidated formation surrounding the wellbore, applying an afterflush fluid to the subterranean formation to, *inter alia*, remove excess consolidation fluid from the pore spaces and the wellbore, and then allowing a chosen period of time for the consolidation fluid to cure.

The chosen period of time needed for the resin to cure will depend on the consolidation fluid used, the temperature of the formation, and the unconfined compressive strength needed in the particular application. Generally, the chosen period of time will be between about 0.5 hours and about 72 hours, preferably between about 6 hours and about 48 hours. Determining the proper cure time is within the ability of one skilled in the art with the benefit of this disclosure.
Preflush solutions suitable for use in the methods of the present invention comprise a combination of an aqueous liquid and a surfactant. The pre-flush solution, inter alia, readies the formation to receive the consolidation fluid and removes oils that may impede the consolidation fluid from making contact with the formation sands. The aqueous liquid may be salt water, brine or any other aqueous liquid that does not adversely react with the other components utilized in accordance with this invention. A preferred aqueous component of the preflush solution is brine. Any surfactant compatible with the aqueous liquid and capable of aiding the curable resin in coating the surface of unconsolidated particles of the subterranean formation may be suitable for use in the present invention. Suitable surfactants include, but are not limited to, ethoxylated nonyl phenol phosphate esters, one or more cationic surfactants, and one or more non-ionic surfactants and an alkyl phosphonate surfactant. The mixtures of one or more cationic and nonionic surfactants are suitable and examples are described in U.S. Patent No. 6,311,773 issued to Todd et al. on November 6, 2001, the disclosure of which is incorporated herein by reference. A C_{12} – C_{22} alkyl phosphonate surfactant is preferred.

The afterflush fluid may be achieved by using a fluid, such as an aqueous liquid or an inert gas. Where the afterflush fluid is an aqueous liquid, it may be salt water or brine or any other aqueous liquid that does not adversely react with the other components utilized in accordance with this invention. A preferred aqueous afterflush fluid solution is brine. Where an aqueous afterflush fluid is used, a volume of about 1 to about 5 times the volume of the consolidation fluid used is generally suitable. In some subterranean formations, particularly gas-producing subterranean formations, it may be advantageous to afterflush using an inert gas, such as nitrogen, rather than an aqueous solution to prevent interaction between the afterflush fluid and the formation. The afterflush fluid acts, inter alia, to displace the curable resin from the wellbore, to remove curable resin from the pore spaces inside the subterranean formation thereby restoring permeability and leaving behind some resin at the contact points between formation sand particulate to form a permeable, consolidated formation sand pack.

To facilitate a better understanding of the present invention, the following examples of some of the preferred embodiments are given. In no way should such examples be read to limit the scope of the invention.
EXEMPLARY

A packed column was created by first packing 0.5 inches of 70/170-mesh sand at the bottom of a Teflon sleeve with inside diameter of 1.0 inch, packing about 4.25 inches of an actual formation sand on top of the 70/170-mesh sand, packing 0.25 inches of 20/40 mesh sand on top of the formation sand, and applying a 100-psi load to the packed column.

The initial permeability of the formation was determined using a solution 5% NH₄Cl brine containing 1% by volume of an alkyl phosphonate surfactant. Next, the packed column was treated with 40 mL of a diluted consolidation fluid solution of low-temperature epoxy resin having a viscosity of 23 cP. The diluted consolidation fluid solution was created by combining 20 mL of a two-component epoxy-based consolidation fluid of the present invention and 20 mL of methanol solvent. The volume of 40 mL of consolidation fluid is equivalent to 2 pore volumes of the packed column. The packed column was then afterflushed with 40 mL of 5% NH₄Cl and allowed to cure at 140°F for 48 hours.

Once the packed column had cured for 48 hours, its permeability was again determined using a solution of 5% NH₄Cl brine. Moreover, cores from the cured packed column were obtained and cut to size to determine the unconfined consolidate strength (UCS) of the consolidated cores.

The results of the tests are displayed in Table 1, below:

<table>
<thead>
<tr>
<th>Well #</th>
<th>Initial Permeability (mD)</th>
<th>Final Permeability (mD)</th>
<th>% Regain</th>
<th>UCS (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>857</td>
<td>819</td>
<td>95</td>
<td>1700</td>
</tr>
<tr>
<td>2</td>
<td>305</td>
<td>206</td>
<td>67</td>
<td>1608</td>
</tr>
</tbody>
</table>

Such high regain values reflect that the permeability of the treated formation remained high after the resin treatment. High regain values generally translate into better production values.
What is claimed is:

1. A method of stabilizing a subterranean formation comprising the steps of:
 applying a preflush solution comprising an aqueous liquid and a surfactant to
 the subterranean formation;
 applying an integrated consolidation fluid to the subterranean formation;
 applying an afterflush fluid is to the subterranean formation; and,
 waiting a chosen period of time.

2. The method of claim 1 wherein the subterranean formation is an area
 surrounding a wellbore.

3. The method of claim 2 wherein the consolidation fluid is applied such that the
 area surrounding the wellbore is saturated to a depth from about 1 to about 3 feet.

4. The method of claim 1 wherein the subterranean formation is an area
 surrounding a fracture.

5. The method of claim 4 wherein the consolidation fluid is applied such that the
 area surrounding the fracture is saturated to a depth is from about 0.25 to about 2 inches.

6. The method of claim 1 wherein the chosen period of time is from about 6 to
 about 48 hours.

7. The method of claim 1 wherein the consolidation fluid has a viscosity of
 below 100 cP.

8. The method of claim 1 wherein the consolidation fluid comprises a hardenable
 resin component comprising a hardenable resin and a hardening agent component comprising
 a liquid hardening agent, a silane coupling agent, and a surfactant.

9. The method of claim 8 wherein the hardenable resin in the liquid hardenable
 resin component is an organic resin comprising bisphenol A-epichlorohydrin resin,
 polyepoxide resin, novolak resin, polyester resin, phenol-aldehyde resin, urea-aldehyde resin,
 furan resin, urethane resin, glycidyl ethers, or mixtures thereof.

10. The method of claim 8 further comprising a solvent for the hardenable resin in
 the liquid hardenable resin component.

11. The method of claim 10 wherein the solvent for the hardenable resin in the
 liquid hardenable resin component comprises butylglycidyl ether, dipropylene glycol methyl
 ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether,
ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, d'limonene, fatty acid methyl esters, or mixtures thereof.

12. The method of claim 8 wherein the liquid hardening agent in the liquid hardening agent component comprises amines, aromatic amines, aliphatic amines, cycloaliphatic amines, piperidine, triethylamine, benzylidimethylamine, N,N-dimethylaminopyridine, 2-(N₂N-dimethylaminomethyl)phenol, tris(dimethylaminomethyl)phenol, or mixtures thereof.

13. The method of claim 8 wherein the silane coupling agent in the liquid hardening agent component comprises N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane or mixtures thereof.

14. The method of claim 8 wherein the liquid hardening agent further comprises a hydrolyzable ester.

15. The method of claim 14 wherein the hydrolyzable ester comprises dimethylglutarate, dimethyladipate and dimethylsuccinate, sorbitol, catechol, dimethylthiobutyl, methyl salicylate, dimethyl salicylate, dimethylsuccinate, tert-butylhydroperoxide, or mixtures thereof.

16. The method of claim 8 wherein the surfactant in the liquid hardening agent component comprises ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, a C₁₂ – C₂₂ alkyl phosphonate surfactant, one or more non-ionic surfactants and an alkyl phosphonate surfactant, or mixtures thereof.

17. The method of claim 8 wherein the liquid hardening agent further comprises a liquid carrier fluid.

18. The method of claim 17 wherein the liquid carrier fluid comprises dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, d'limonene, fatty acid methyl esters or mixtures thereof.

19. The method of claim 1 wherein the consolidation fluid comprises a furan-based resin.

20. The method of claim 19 wherein the furan-based resin comprises furfuryl alcohol, a mixture furfuryl alcohol with an aldehyde, a mixture of furan resin and phenolic resin or mixtures thereof.
21. The method of claim 20 further comprising a solvent for the furan-based resin in the liquid hardenable resin component.

22. The method of claim 21 wherein the solvent comprises 2-butoxy ethanol, butyl acetate, furfuryl acetate, or mixtures thereof.

23. The method of claim 1 wherein the consolidation fluid comprises a phenolic-based resin.

24. The method of claim 23 wherein the phenolic-based resin comprises terpolymer of phenol, phenolic formaldehyde resin, a mixture of phenolic and furan resin, or mixtures thereof.

25. The method of claim 24 further comprising a solvent for the phenolic-based resin.

26. The method of claim 25 wherein the solvent comprises butyl acetate, butyl lactate, furfuryl acetate, 2-butoxy ethanol, or mixtures thereof.

27. The method of claim 1 wherein the consolidation fluid comprises a HT epoxy-based resin and a solvent.

28. The method of claim 27 wherein the HT epoxy-based resin comprises bisphenol A-epichlorohydrin resin, polyepoxide resin, novolac resin, polyester resin, glycidyl ethers, or mixtures thereof.

29. The method of claim 27 wherein the solvent comprises dimethyl sulfoxide, dimethyl formamide, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethylene glycol methyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, propylene carbonate, d’limonene, fatty acid methyl esters, or mixtures thereof.

30. The method of claim 1 wherein the aqueous liquid in the preflush solution comprises salt water, brine, or mixtures thereof.

31. The method of claim 1 wherein the surfactant in the preflush solution comprises ethoxylated nonyl phenol phosphate ester, cationic surfactant, non-ionic surfactant, alkyl phosphonate surfactant, or mixtures thereof.

32. The method of claim 1 wherein the afterflush fluid is a liquid that comprises salt water, brine, or mixtures thereof.

33. The method of claim 1 wherein the afterflush fluid is nitrogen gas.
34. A method of reducing the production of particulates from a subterranean formation comprising the steps of:
 applying a preflush solution comprising an aqueous liquid and a surfactant to the subterranean formation;
 applying an integrated consolidation fluid to the subterranean formation
 applying an afterflush fluid to the subterranean formation
 waiting a chosen period of time.
35. The method of claim 34 wherein the subterranean formation is an area surrounding a wellbore.
36. The method of claim 35 wherein the consolidation fluid is applied such that the area surrounding the wellbore is saturated to a depth from about 1 to about 3 feet.
37. The method of claim 34 wherein the subterranean formation is an area surrounding a fracture.
38. The method of claim 37 wherein the consolidation fluid is applied such that the area surrounding the fracture is saturated to a depth from about 0.25 to about 2 inches.
39. The method of claim 34 wherein the chosen period of time is from about 6 to about 48 hours.
40. The method of claim 34 wherein the consolidation fluid has a viscosity of below 100 cP.
41. The method of claim 34 wherein the consolidation fluid comprises a hardenable resin component comprising a hardenable resin and a hardening agent component comprising a liquid hardening agent, a silane coupling agent, and a surfactant.
42. The method of claim 41 wherein the hardenable resin in the liquid hardenable resin component is an organic resin comprising bisphenol A-epichlorohydrin resin, polyeopxide resin, novolak resin, polyester resin, phenol-aldehyde resin, urea-aldehyde resin, furan resin, urethane resin, glycidyl ethers, or mixtures thereof.
43. The method of claim 41 further comprising a solvent for the hardenable resin in the liquid hardenable resin component.
44. The method of claim 43 wherein the solvent for the hardenable resin in the liquid hardenable resin component comprises butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether,
ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, d'limonene, fatty acid methyl esters, or mixtures thereof.

45. The method of claim 41 wherein the liquid hardening agent in the liquid hardening agent component comprises amines, aromatic amines, aliphatic amines, cycloaliphatic amines, piperidine, triethylamine, benzylidimethylamine, N,N-dimethylaminopyridine, 2-(N,N-dimethylaminomethyl)phenol, tris(dimethylaminomethyl)phenol, or mixtures thereof.

46. The method of claim 41 wherein the silane coupling agent in the liquid hardening agent component comprises N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane or mixtures thereof.

47. The method of claim 41 wherein the liquid hardening agent further comprises a hydrolyzable ester.

48. The method of claim 47 wherein the hydrolyzable ester comprises dimethylglutarate, dimethyladipate and dimethylsuccinate, sorbitol, catechol, dimethylthiolate, methyl salicylate, dimethyl salicylate, dimethylsuccinate, tert-butylhydroperoxide, or mixtures thereof.

49. The method of claim 41 wherein the surfactant in the liquid hardening agent component comprises ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, a C_{12}-C_{22} alkyl phosphonate surfactant, one or more non-ionic surfactants and an alkyl phosphonate surfactant, or mixtures thereof.

50. The method of claim 41 wherein the liquid hardening agent further comprises a liquid carrier fluid.

51. The method of claim 50 wherein the liquid carrier fluid comprises dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, d'limonene, fatty acid methyl esters or mixtures thereof.

52. The method of claim 34 wherein the consolidation fluid comprises a furan-based resin.

53. The method of claim 52 wherein the furan-based resin comprises furfuryl alcohol, a mixture furfuryl alcohol with an aldehyde, a mixture of furan resin and phenolic resin or mixtures thereof.
54. The method of claim 53 further comprising a solvent for the furan-based resin in the liquid hardenable resin component.

55. The method of claim 54 wherein the solvent comprises 2-butoxy ethanol, butyl acetate, furfuryl acetate, or mixtures thereof.

56. The method of claim 34 wherein the consolidation fluid comprises a phenolic-based resin.

57. The method of claim 56 wherein the phenolic-based resin comprises terpolymer of phenol, phenolic formaldehyde resin, a mixture of phenolic and furan resins, or mixtures thereof.

58. The method of claim 57 further comprising a solvent for the phenolic-based resin.

59. The method of claim 58 wherein the solvent comprises butyl acetate, butyl lactate, furfuryl acetate, 2-butoxy ethanol, or mixtures thereof.

60. The method of claim 34 wherein the consolidation fluid comprises a HT epoxy-based resin and a solvent.

61. The method of claim 60 wherein the HT epoxy-based resin comprises bisphenol A-epichlorohydrin resin, polyepoxide resin, novolac resin, polyester resin, glycidyl ethers, or mixtures thereof.

62. The method of claim 60 wherein the solvent comprises dimethyl sulfoxide, dimethyl formamide, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethylene glycol methyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, propylene carbonate, d’limonene, fatty acid methyl esters, or mixtures thereof.

63. The method of claim 34 wherein the aqueous liquid in the preflush solution comprises salt water, brine, or mixtures thereof.

64. The method of claim 34 wherein the surfactant in the preflush solution comprises ethoxylated nonyl phenol phosphate ester, cationic surfactant, non-ionic surfactant, alkyl phosphonate surfactant, or mixtures thereof.

65. The method of claim 34 wherein the afterflush fluid is a liquid that comprises salt water, brine, or mixtures thereof.

66. The method of claim 34 wherein the afterflush fluid is nitrogen gas.
67. An integrated consolidation fluid of the present invention capable of consolidating a subterranean formation without the need for an external catalyst comprising a hardenable resin component comprising a hardenable resin and a hardening agent component comprising a liquid hardening agent, a silane coupling agent, and a surfactant.

68. The integrated consolidation fluid of claim 67 wherein the hardenable resin in the liquid hardenable resin component is an organic resin comprising bisphenol A-epichlorohydrin resin, polyepoxide resin, novolak resin, polyester resin, phenol-aldehyde resin, urea-aldehyde resin, furan resin, urethane resin, glycidyl ethers, or mixtures thereof.

69. The integrated consolidation fluid of claim 67 further comprising a solvent for the hardenable resin in the liquid hardenable resin component.

70. The integrated consolidation fluid of claim 67 wherein the solvent for the hardenable resin in the liquid hardenable resin component comprises butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, d’limonene, fatty acid methyl esters, or mixtures thereof.

71. The integrated consolidation fluid of claim 67 wherein the liquid hardening agent in the liquid hardening agent component comprises amines, aromatic amines, aliphatic amines, cyclo-aliphatic amines, piperidine, triethylamine, benzylidimethylamine, N,N-dimethylaminopyridine, 2-(N₂N-dimethylaminomethyl)phenol, tris(dimethylaminomethyl)phenol, or mixtures thereof.

72. The method of claim 67 wherein the silane coupling agent in the liquid hardening agent component comprises N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane or mixtures thereof.

73. The method of claim 67 wherein the liquid hardening agent further comprises a hydrolyzable ester.

74. The method of claim 73 wherein the hydrolyzable ester comprises dimethylglutarate, dimethyladipate and dimethylsuccinate, sorbitol, catechol, dimethylthiolate, methyl salicylate, dimethyl salicylate, dimethylsuccinate, tert-butylhydroperoxide, or mixtures thereof.
75. The method of claim 67 wherein the surfactant in the liquid hardening agent component comprises ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, a C_{12} – C_{22} alkyl phosphonate surfactant, one or more non-ionic surfactants and an alkyl phosphonate surfactant, or mixtures thereof.

76. The method of claim 67 wherein the liquid hardening agent further comprises a liquid carrier fluid.

77. The method of claim 76 wherein the liquid carrier fluid comprises dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, d'limonene, fatty acid methyl esters or mixtures thereof.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC 7 | E21B43/02 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC 7 | E21B |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>column 5, line 63 -column 12, line 68</td>
<td>4, 5, 15, 16, 19, 21, 30-33, 37-38, 48, 49, 52, 54</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

Y later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

Z document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

V document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search

14 July 2004

Date of mailing of the international search report

20/07/2004

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentias 2 NL - 2280 HV Rivwijk
Tel: (+31-70) 340-2040, Tx: 31 651 epc nl, Fax: (+31-70) 340-3016

Authorized officer:

Tompouloglou, C
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 3 902 557 A (SHAUGHNESSY CHRISTOPHER M ET AL) 2 September 1975 (1975-09-02)</td>
<td>63-66, 74,75</td>
</tr>
<tr>
<td></td>
<td>column 1, line 25 -column 11, line 48</td>
<td>1-3, 6-15, 17-31, 34-36, 39-48, 50-64, 67-74, 76,77, 4,5,16, 32,33, 37,38, 49,65, 66,75</td>
</tr>
</tbody>
</table>
| | Although silane coupling agents are not mentioned, they are so common that those X-designated claims including the silanes lack novelty due to implicit disclosure: Guidelines PCT/GL/ISPE 1,12.04
Even not considering the implicit disclosure, claims 8-15, 17, 18, 41-48, 50, 51 and 67-77 relating to silanes would lack an inventive step over this document considered alone. | |
| | the whole document | |
| | | |
| X | US 4 070 865 A (MC LAUGHLIN HOMER CHARLES) 31 January 1978 (1978-01-31) | 1-3, 6-8, 33-36, 39-41,67, 4,5,15, 16, 30-33, 37,38, 48,49, 63-66, 74,75 |
| | claims 1-17 | |
| | | |
| | | -/- |
INTERNATIONAL SEARCH REPORT

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | US 4 000 781 A (KNAPP RANDOLPH H)
4 January 1977 (1977-01-04) | 1-3, 6-8,
33-36,
39-41, 67 |
| Y | claims 1-17 | 4, 5, 15,
16,
30-33,
37-38,
48, 49,
63-66,
74-75 |
| Y | US 6 311 773 B1 (POWELL RONALD J ET AL)
6 November 2001 (2001-11-06)
cited in the application | 4, 5, 15,
16, 19,
21, 37,
38, 48,
49, 52,
54, 75 |
| | column 2, line 17 -column 2, line 35
column 5, line 7 -column 5, line 15
column 7, line 3 -column 7, line 65 | |
| Y | US 6 342 467 B1 (CHANG FRANK F ET AL)
29 January 2002 (2002-01-29) | 30-33,
63-66 |
| | column 16, line 61 -column 17, line 13
column 26, line 7 -column 26, line 47 | |
| Y | US 6 165 947 A (CHANG FRANK F ET AL)
26 December 2000 (2000-12-26) | 30-33,
63-66 |
| | column 26, line 11 -column 26, line 62 | |
| A | US 3 415 320 A (YOUNG BILL M)
10 December 1968 (1968-12-10)
claims 1-18 | 1-77 |
| A | US 3 199 590 A (YOUNG BILL M)
10 August 1965 (1965-08-10)
claims 1-19 | 1-77 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 2843452 A1</td>
<td>19-04-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 443678 A</td>
<td>07-04-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG 13556 A</td>
<td>30-06-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 473959 A1</td>
<td>01-03-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2416919 A1</td>
<td>07-09-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2005277 A , B</td>
<td>19-04-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2075520 A , B</td>
<td>18-11-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 64984 A1</td>
<td>11-06-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 47680 B1</td>
<td>16-05-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1099791 B</td>
<td>28-09-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MY 35384 A</td>
<td>31-12-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MY 35484 A</td>
<td>31-12-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7808611 A, B</td>
<td>10-04-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 783374 A, B</td>
<td>09-04-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 444179 B</td>
<td>24-03-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7810508 A</td>
<td>07-04-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4368136 A</td>
<td>11-01-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4216829 A</td>
<td>12-08-1980</td>
</tr>
<tr>
<td>US 3902557</td>
<td>02-09-1975</td>
<td>AU 7912075 A</td>
<td>16-09-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1039492 A1</td>
<td>03-10-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1467944 A</td>
<td>23-03-1977</td>
</tr>
<tr>
<td>US 3481403</td>
<td>02-12-1969</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 4070865</td>
<td>31-01-1978</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1326276 A</td>
<td>27-10-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 7602447 A</td>
<td>19-10-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1064247 A1</td>
<td>16-10-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2617645 A1</td>
<td>11-11-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG 13033 A</td>
<td>31-03-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1545941 A</td>
<td>16-05-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1059498 B</td>
<td>31-05-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7604316 A</td>
<td>26-10-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 761368 A</td>
<td>26-10-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA 5312 A</td>
<td>28-02-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4042031 A</td>
<td>16-08-1977</td>
</tr>
<tr>
<td>US 6311773</td>
<td>06-11-2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5981447 A</td>
<td>09-11-1999</td>
</tr>
<tr>
<td>US 6165947</td>
<td>26-12-2000</td>
<td>US 5981447 A</td>
<td>09-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6342467 B1</td>
<td>29-01-2002</td>
</tr>
<tr>
<td>US 3415320</td>
<td>10-12-1968</td>
<td>GB 1183070 A</td>
<td>04-03-1970</td>
</tr>
<tr>
<td>US 3199590</td>
<td>10-08-1965</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>